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Abstract

Saeid Amiri. On variance estimation and a goodness-of-fit test using the bootstrap
method. Licentiate Thesis.
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This thesis deals with the study of variance estimation using the bootstrap method,
including the problem of choosing between nonparametric and parametric bootstrap
methods. Paper I compares the two approaches, determines which method is prefer-
able and analyses the accuracy of the approximations. The underlying concept of
parametric bootstrap is based on the assumption of correct choice of parametric dis-
tribution. Paper II therefore considers goodness-of-fit tests and presents a new test
based on the bootstrap method.
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1 Introduction

The aim of this thesis is to study estimation of variance by using bootstrap methods.
Chapter T reviews and explains variance, kurtosis and the bootstrap approach used
in the Papers I and II. Chapter 2 expends the obtained and presented result in Paper
I and II. Tt includes bootstrapping of variance, the confidence interval of variance
and goodness-of-fit testing by the bootstrap method.

Paper [ discusses the bootstrap approach. It compares nonparametric and para-
metric bootstrap estimation of variance and shows that bootstrap estimations of vari-
ance either by the parametric or nonparametric method are equal but the bootstrap
standard error depends on the sample kurtosis. [Paper I also discusses conditions
where the nonparametric bootstrap is better regardless of whether the distribution
of the parametric bootstrap and the real distribution belong to the same distribution
family.

Paper IT considers goodness-of-fit tests by studying the underlying distribution
of the sample data and supports paper I because the parametric bootstrap is based
on correct choice of the sampling distribution.

1.1 Variance
itd

Let Xy, -+, X,, ~ F. The sample variance is then given as:
1o —
S2 == X, —X)? 1
P=-> ) 1)

i=1

Its expected value and variance can be found, see Kendall and Stuart (1958),

BE(S?) = nT_l& @)
V(s?) — (n ;31)2/14 - (n — 1T)Lgn -3) 2
= ("3 (@2 ((n - DK ~ (n - 3). 3)

Where y; is the ith centrad moments, K is the kurtosis and o2 is the population
variance:
E(X — p)?
K= P& @
(B(X —p)?)
Itis clear that 0% and K have direct effects on V(S 2). The same discussions hold for
53 = 13" [ (X; — X)% The quantities |57 and S7 are the MLE and UMVUE
estimators of variance for the normal distribution. Another estimator is given by
Searle and Intarapanich (1990):

S g g ;(Xf - X )

which has the minimum square error @SE). In the case of the normal distribution,
it reduces to S5, = =5 >, (X; — X)2



1.2 Kurtosis

The concept of kurtosis was introduced by Pearson (1905), as a shape parameter
that is a qualitative property of the distribution, as well as its skewness. Kurtosis is
usually of interest only when dealing with approximately symmetric distributions.
It is defined in many statistical books as e.g. a measure of tail heaviness in com-
parison with the normal distribution or a qualitative property of a distribution that
measures peakness and which can be used to judge the deviation of a distribution
from normality. The sample kurtosis is:

S (@i —7)/n
}-? — =1 (6)

n

(S -o2m)

i=1

Based on the value of kurtosis, the distribution is defined as platykurtic, or flat-
topped when K < 3, which is more concentrated about the mean and flatter than
the normal, mesokurtic when K = 0 and leptokurtic when K > 3 and it is peaked
around the mean and also has more probability in the tails of the distribution than
the normal. Skewed distributions are always leptokurtic, see Everitt and Howell
(2005).

Nevertheless this classification is not always correct. Chissom (1970) showed
that there are many cases when K < 3 but the distribution is not flattened. It can be
defined as a measure of unimodality versus bimodality, see Darlington (1970) and
Chissom (1970) and hence there is no universal agreement about it. It can be seen
that the kurtosis is defined as the expectation of the fourth power of the standardized
variable which, simplifies to

K =Var(Z?) + 1, (7

where Z = (X — p)/o. This is used by Darlington (1970) to define kurtosis as
bimodality, but Hildebrand (1971) gives two distributions to demonstrate that this
does not always hold. Furthermore Moors (1986) explains the easy interpretation
of kurtosis as a measure of dispersion around the two values ;1 + 0. He notes
that the existence of two possibilities cause the confusion about the interpretation
of kurtosis, it is an inverse for concentration in these points. High kurtosis can
arise when 1) concentration of probability mass is near y (corresponding to a peak
unimodal distribution) and 2) concentration of probability mass is in the tail of the
distribution.

Formula (7) shows that the kurtosis is more strongly affected by the tail behavior
of distribution than the center of the distribution. High kurtosis has the potential to
have outliers in one or both tails of the distribution, see Everitt and Howell (2005).
Nevertheless, many distributions have their own value of kurtosis which can be used
to study them or to find a confidence interval for the mean, see Guttman (1948).
Alternative methods are discussed in Ruppert (1987).

On the bounds of kurtosis, Johnson and Jr (1978) showed that:

<K <n
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where 7 is the sample skewness.

If X ~ N(u,0?), it can be shown that K = 3 but in reality it is rare that its
estimator becomes this value, whereas K > 3 or K < 3 are more likely to occur.
Based on (3), this does not affect on the biasAedness of variance but it influences the
accuracy of variance. It can be seen that if K < 3 holds, \7(5 2) decreases and vice

~

versa. In addition, Cramér (1945) shows that E(K) = n_—+61 + 3 which means that

if the distribution is normal then K < 3 is more likely to be observed.

Finding E(K) for other distributions is rather difficult while it can easily be
studied by simulations. Cramér (1945, pp. 356) proves that the estimation of kurto-
sis converges with O(n~1). An and Ahmed (2008) discuss a different version of K
which reduces the biasedness.

In the case of the normal distribution it can be shown that the square of the
sample variance and sample kurtosis are independent but for other distributions it is
rather difficult to derive explicit results. By simulations can show that the correla-
tion of (K, S*) is positive for the ¢ and chi-square distribution but negative for the
uniform distribution.

1.3 Principles of the bootstrap method

The last three decades have brought a vast new body of statistics in the form of
nonparametric approaches to modeling uncertainty, in which it is not the individual
parameters of the probability distribution but rather the entire distribution is sought,
based on the empirical data available. The concept was first introduced in the sem-
inal paper of Efron (1979) as the bootstrap method. Similar ideas have since been
suggested in different contexts as an attempt to give a new perspective to an old and
established statistical procedure known as jackknifing. Unlike Jackknifing, which
is mostly concerned with calculating standard errors of the statistics of interest,
Efron’s Bootstrap method has the more ambitious goal of estimating not only the
standard error but also the distribution of the statistics.

The idea behind the bootstrap method is not ffar from the traditional statistical
methods and provides a complement to these. To discuss the parameter §(F’) let us
look at the mean.

6= 0(F) = — / 2dF(z) = Ep(z). ®)

The same functional of the sample distribution function F can be used:

~ —

6, =06(F,) =X = /l'anKZL‘) = FEp, (), )

where F, (z) is the empirical distribution function. 8(F},) needs some measures
such as A\, (F') of its performance, which can be the bias of 8,, or the variance of
\/ﬁgn, see Lehmann (1999). The bootstrap method involves using a functional h(F")
by means of h(F,,) and correspondingly estimating \,, (F') by the plug-in estimator
An(Fy,) via resampling. én = 6(Xy,- -, X,,) expresses é\n as a function of F,, but
directly as a function of sample X = (X7, -+, X,,). The dependency of §n results
from the fact that X is a function bf [F' and any random sample of X is also a sample
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of F. Therefore to replace F' by F,, in the distribution governing gn, one should
replace it by

where (X7,---,X}) is a sample from F,,, which is not the actual dataset X’ but
rather a randomized or resampled version of X. In other words, (X7, --, X}) is

the set which consists of members of the original dataset, some of which appear
Zero times, some once, twice, and so om. This sample is conceptual sample from F),
which assign probability % to each of the observed value (z1, -+, x,). The most
important property of the bootstrap method relies on the conditional independence
of the given original sample.

From this brief discussion of bootstrap, it is obvious that the nonparametric boot-
strap technique frees the analysis from the most typical assumptions, making it more
attractive to researches in applied ffields. In nonparametric statistics, the concept of
bootstrap is known by the somewhat broader term of resampling. The bootstrap
method can arguably be an instrument in understanding the structure of the random
variable and in error estimation of existing models.

The aim of this work is to study variance. The followings are the steps to boot-
strapping variance:

. Suppose X = (Xy,---,X,) is an i.i.d. random sample of the distribution F'.
Assume Var(X) = o

2. We are interested in #(F) and consider a plug-in estimation: b = 6(Fy,) or
6 = (3(X1, .-+, Xp), where F,, is the empirical distribution function, i.e. Fy,(z) =
% Z?=1 I(X; < ).

3. Generate bootstrap samples, which can be done by two different approaches:

(1) The nonparametric bootstrap method: X ud F,i=1,....B,j=1,...,n.
Note that if Z ~ F), then EZ = X and V(Z) = S%, where S% is the second
moment estimator:

1o —
Sk=-2 X7 - (X%
Yt

The kurtosis of F}, is:

n

Y (Xi—X)'/n
K=Kp = =1 . (11)

n

(Z(Xi - 7)2/71)2

=1

(ii) The parametric bootstrap method: X7 * G5.i = 1.....B,j = 1,...,n
where G3 = G(.|X) is an element of a class {Gx, A € A} of distributions. The
parameter A is estimated by statistical methods such that the expectation of GX
equals X and the variance of Gf): is S%. Tt should be mentioned that the symbols *
and # are used for the nonparametric and parametric bootstrap, respectively, in the
remainder of this work. The kurtosis of K¢, x) is denoted by

Ex(X —1)*
Ketin = G5y~
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4. Calculate the bootstrap replications of the estimator:

~

O(X})=0(X),..., X )i=1,...,B,
The symbol X is used when either the nonparametric or parametric procedure holds.
5. Handle the bootstrap replications as i.i.d. random samples of # and consider the
sample mean and the sample variance. These are:

~ 1 S
0 :§;9<Xi ), (12)
B 2
L ;((Xix)) .
v :EZ;(@(XN‘H) - @ @

The main question examined in fthis thesis is which method is more appropriate
to use. A secondly question when F' and G(.|X') come from the same distribution
family is whether it is possible that the nonparametric method is better. Paper I
presents a comparison of the nonparametric and parametric bootstrap methods for
estimating variance.

1.4 Goodness-of-fit testing

The science of statistics is based on the use of statistical distributions. The effi-
ciency bf a statistical procedure relies on how accurately the underlying distribution
can be identified. Most of the statistical textbooks explain this topic. There are
many different methods for evaluating the statistical distribution of data which are
called goodness-of-fit tests. With the limited information contained in a sample,
it is impossible to identify the underlying distribution exactly. Some methods are
frequently used, such as the Q-Q plot, Shapiro-Wilk test and Jarque-Bera test. The
existing software is dominated by these tests, although there are a variety of alterna-
tive tests such as as the P-P plot, chi-square, Kolmogorov-Smirnov and Anderson-
Durling goodness-of-fit tests that have their own features. It is true that for a small
sample size up to a moderate sample size, they are not successful, but they are fairly
useful in distinguishing normal from extremely non-normal distributions with re-
spect to symmetry and skewness, see Tiku and Akkaya (2004).

Q-Q plot is a graph that measures the conformity between the empirical distribu-

tion and the given theoretical distribution. Let X1, .-, X, %i F' with the ordered
sample X (1), -+, X(n). Associated with each point is the %ﬂ—quantile q; of the

given distribution. Plot X ;) against g;. If it is close ito a straight line then the sam-
ple qualifies as being from a plausible distribution. However, this is a subjective
statistic and a formal test is preferable.
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The Shapiro-Wilk test statistics is follow:

(> aix)®
=1

n

SW = (14)

where T(s) is the order statistics and a; is a constant generated from the means,
variances and covariances of the order statistics of a sample of size n from the
normal distribution. The Shapiro-Wilk test actually compares an estimate of the
standard deviation using a linear combination of the order statistics with the usual
estimate. Thode (2002) recommends it for everyday practice.

The Jarque-Bera statistics is as follow:

JB = %<§2+(I?—3)2/4>, (15)
where 7 and K are the sample skewness and kurtosis. JB has an asymptotic chi-
square distribution with two degrees of freedom. It is obvious that the first one
is based on the order statistic but the second uses the main parameters which are
constant values.

Goodness-of-fit test is covered by D’ Agostino and Stephens (1986), Rayner and
Best (1989) and Thode (2002).

2 Contributions

This chapter discusses the relative contributions of Paper I and II. More precisely,
it can be divided into two parts; the study of bootstrap variance estimation and
goodness-of-fit testing. Since the parametric bootstrap relies on the choice of distri-
bution, study of the underlying distribution of the sample data is important.

2.1 Paperl

Paper T comprises a comparison of the two bootstrap approaches for variance es-
timation. As mentioned above, tthe bootstrap method can basically be applied in
two different ways, the nonparametric and parametric method. It can be shown
that there is no difference in performance between them for the mean, whereas in
the case of variance, the behavior of the nonparametric and parametric bootstrap
method is completely different. The object of Paper I is to explore them in detail
because of the importance of variance estimation.

Although the nonparametric and parametric methods are simultaneously con-
sidered by some authors, the results of the simulations are often given without ex-
plicit discussions of their differing performance. For example, Efron and Tibshirani
(1993) discuss the nonparametric and parametric bootstrap confidence intervals of
variance by using an example, Ostaszewski and Rempala (2000) explains how to
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use the bootstrap method in the actuary sciences and Lee (1994) explains how to
use it in tuning parameters to find more accurate estimations.

Since the bootstrap method is based on the sample, the expectation is that it can
be used to study it. As Hall (1992a) says, the bootstrap method may be expressed
as an expectation conditional on sample or equality as an integral with respect to
the sample distribution function. This allows us to do a direct comparison of the
nonparametric and parametric bootstrap methods. It should be mentioned that two
kind of expectations are discussed, conditional and unconditional. The conditional
expectation clarifies the result of the bootstrap approach whereas the unconditional
expectation is the combination of the bootstrap and the frequenist approaches. As
the aim of bootstrap method is to approach the parameter of interest, hence it is cho-
sen as the criterion for that. The bootstrap methods are studied using the bias and
MSE. [The following theorem is one of the main results of Paper I, which describes
steps to study the biasedness.

Theorem 1: Let X = (Xq,---, X,,) ¢ F with EX* < co. Then for the explained
bootstrap methods,

E(S*|X) = BE(S8*|x). (16)

Kp, < Kgox)y < E(V*|X)<EV#|X), (17)

where K, and K |x) are the sample kurtosis and the kurtosis corresponding to
the parametric distribution Gf):.

The theorem implies that the unconditional expectation of the bootstrap estimator
of the parametric and nonparametric methods for variance estimation are equal

2
B(S2) = B(S?#*) = <"1>E(s§):<”l> o2,

n n
Bn? . Bn?
G- Dm-0w -2+ ") T B-D@-Dn
It is obvious that E(S%*) < E(S%) < 2. Relation (17) indicates that by
using the sample kurtosis one can study the relative performance of the parametric
and nonparametric bootstrap methods.

Theorem 2 in Paper 1 gives the expectation of V*. This theorem states that
E(V*) depends on K, whereas E(V#) depends on K and Kg(|x). It should
be noted that if Kg(|x) depends on the observations, for example the lognormal
distribution, then it is impossible to present a closed form in general. Hence in this
case the study of the performance of the parametric bootstrap is rather difficult but
for the nonparametric bootstrap, it holds all the time. In the case of the normal
distribution, Corollary 1 in Paper I states that:

E(V#)=V(5%).

E(V*) < E(\V#)<V(S%) (18)
Bn3 Bn3

B e 0w w5 V) T B etV =V a9

If the junderlying distributions of F' and G(.|X’) belong to the normal distribution
family, it is expected that the standard error of the parametric bootstrap of variance
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will be close to F' in comparison with the nonparametric bootstrap. Furthermore,
by using the corrections given in (19), it is possible to find the unbiased estimation
of parametric and nonparametric bootstrap lof variance.

It is interesting that when K, > 3, then E(V*|X) > E(V#|X) and also
V(S%) is larger than the expectation bootstrap estimation, (19). Therefore V* is
more likely to be closed to V(S%) than V#. Table 3 in Paper I explains this by
simulations.

The most important result is that for the distribution with the kurtosis between
1.4 an 2, the nonparametric bootstrap has less bias than the parametric bootstrap,
regardless of whether F and G(.|X’) have the same distribution. Example 2 clarifies
this result.

In paper I, Lemma 1 and Lemma 2 discuss the conditional and unconditional
MSE of the bootstrap variance. Lemma 3 gives the conditional MSE of V' * and
Theorem 4 discusses the unconditional MSE of V.

2.2 Bootstrap CI of variance

This section discusses the bootstrap confidence interval (CI) estimation of variance,
parts of which are briefly discussed in Example 4 in [Paper I.

The confidence interval (CI) estimation of variance is explained by Cojbasic and
Tomovic (2007). It is based on two other papers that discuss the CI estimation of
mean, Zhou (2000) and Hall (1992b). These three papers focus on the Edgeworth
expansion and attempt to prove the efficiency of the Edgeworth expansion using the
bootstrap method. The results of Cojbasic and Tomovic (2007) are not far from the
results presented by Zhou (2000) and Hall (1992b) for the mean.

The aim of this thesis is to explain the effect of kurtosis on the bootstrap CI
estimation which was ignored in previous publications. This work includes a com-
parison of the nonparametric and parametric bootstrap of variance, on which kur-
tosis has the principle effect. The parametric and nonparametric bootstrap CI are
illustrated in Efron and Tibshirani (1993) by an example, but the effect of kurtosis
is ignored. Their suggestion is BC, but it is shown that for the data with a normal
distribution this might be not appropriate.

As Efron and Tibshirani (1993) note, one of the principal goals of bootstrap
theory is to produce good confidence interval automatically, which means that the
bootstrap should be close to the exact confidence interval. It exists for the mean and
variance but it is rather difficult to find for most statistics. One of the objects of this
thesis is to perform a comparison bf the nonparametric and parametric bootstrap
approaches to determine which can achieve this aim. The following provides the
standard definition of CI, then discusses the different methods of performing boot-
strap CI of variance and makes comparisons of them.

2.2.1 Confidence interval

Let (0(Xy, -, Xn),0(Xy,- -+, X,,)) be aregion which has a guaranteed probabil-
ity of containing the unknown parameter 6, i.e. for which

P[(0(X1,---, X)) <O <O(X1,--, Xn))] >1-a (20)
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for some preassigned a.. The coverage of (6, 6) is the probability that the random
interval covers the true parameter. It is obvious that the interval is random, not the
parameter, because it is based on pbservations, and therefore the probability refers
to X not #. Since high coverage probability requires unnecessarily wide intervals,
the following definition is more useful:

inf Po[(0(X1,-+, X)) <O<B(Xy, -, X,))] =1—a. 1)
0

As Lehmann (1999) says, this holds when n is large enough and can be replaced by
the weaker requirement:

inf Po[(0(X1,+++, Xn) <O<0(X1.-++. X)) — 1—aas n— 00 (22)
6

A still weaker condition is:
Pg[(Q(Xl, LX) <0 <0(Xy, - ,Xn))] —1l—-aasn—occ (23)

There are different ways to construct CI, see Lehmann (1999), Casella and Berger
(2002), Shao (1999) and Polansky (2008).

Two properties of any given CI are required: consistency which expresses that
the CI contains 4 as the sample size becomes larger, and accuracy which points out
how much the CI of a given method is close to the exact CI, if it exists.

The bootstrap CI is based on the simulations, since the accuracy is more impor-
tant than the consistency. However, most methods of bootstrap CI are constructed in
such a way that the consistency is maintained but the accuracy is not. The methods
can overestimate or underestimate.

2.2.2 Methods

Many different ways of constructing the bootstrap CI are discussed and are de-
scribed in detail in Efron and Tibshirani (1993) and DiCiccio and Efron (1996)
among many authors.
Method I. The most commonly applied method uses the central limit theorem
(CLT). The quantities (X; — X)? are not iid, hence the direct use of CLT is not
possible. To use CLT, Theorem (8.16) in Lehman (1999) can be used to find an
asymptotic distribution. The approximated confidence interval, by using ¢, /2 5, —1
can be found as below.

82 & tayp 52\ L, (24)

n

where K is the sample kurtosis.
Method II. Let X; ~ N(u, 0?). Itis easy to find the CI for o2

nS2 nS?
( . = ) 25)
Xaj2mn-1 Xi—a/2,n—1

In the following, some bootstrap methods are given for which the complete dis-
cussion can be found in Hall (1992a), Efron and Tibshirani (1993) and Davison and
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Hinkley (1996). As previously mentioned, the bootstrap method can be either non-
parametric or parametric. The following includes a general discussions that holds
for both of these. In all discussions ™" and "#" refer fo the nonparametric and para-
metric method, respectively. When a statement holds for both of them, the symbol
"x" 1is used.

Method III. This method is referred to as the standard method, see Efron and Tib-
shirani (1993)

S +t,/25€5, (26)

where 5¢ 7 is the bootstrap estimate of standard error:
Method IV. The CI of variance based on the bootstrap methods can be found using
the following formula:

52 @ (27)

S2 + ¢ ,
n

a/2
where t;/2 is the o/2 percentile lof ¢*,

2X _ Q2
tX = u (28)

/V( 52)x ’
where $2* and V(S?)* are estimated by the bootstrap method. It is called the t-
bootstrap interval. It is obvious that bootstrap resampling is used in estimation of
the variance and the standard error. It should be noted that it is not a pure bootstrap
method, since the CI includes 1/V (S?). The aim of bootstrap is to automatically
find the standard error of the parameter of interest.
Method V. Using Method II, the CI is calculated asymptotically as:

S? S?
< n2>< ’ ;lx ) (29)
Xa/2 lea/Z

where Xi>/<2 is the percentile of the following quantity,

n52><
2x - 7 (30)
Method VI. This method is called the percentile CI,
[0ott0w: O] = (G (/2), G7H(1 = a/2)], (31)

where G—1(a/2) = §2%(a/2), i.e. it is the percentile of the bootstrap resampling
of variance.

Method VII. This method is called bias-corrected and accelerated, BC,,, by Efron
and Tibshirani (1993), and is a substantial improvement on the percentile method in
both theory and practice. It is based on the percentile of the bootstrap distribution.
It is defined as:

Botiow: O%up] = (G (/2), G711 — /2)], (32)
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where

20+ zZarm
1 —a(Zo + 2a/2)

- 20 + 21-a
ay = <I>(z0H— 0 1-a/2 >

1—-a(Z0 + z1-ay2)

where 2,/ is the 100ath percentile point of a standard normal distribution. @ and
Zo change the percentiles used for the BC,, endpoints. These changes correct cer-
tain deficiencies of the standard and percentiles methods. The value of Zy, bias-
correction, is obtained directly from the proportion of bootstrap replications less
than fthe original estimate 6:

H=o0! <7#{9X(g) = 0}), (33)

&~ indicating the inverse function of a standard normal CDF. Z; measures the
median bias of 6 X, that is the discrepancy between the median * and 6 in normal
units.

The quantity of @ is called acceleration because it refers to the rate of change
of the standard error of 8 with respect T0 the true parameter 6. The easiest way
to calculate @ is to use the jackknife value of f. Let X; be the original sample

n

with the ith value X; deleted, é\(l é\( ) and 9( Z i)/, then a simple

acceleration is

n

>0y —0)?

a=—=t : (34)

Efron and Tibshirani (1993) explains this and also suggest it for the CI of variance.

There are other methods that can be used directly based on the bootstrap e.g. the
Edgeworth expansion or the Edgeworth Bootstrap. It should be noted that the CI
based on the Edgeworth expansion uses the effect of skewness to adjust ¢ which is
not considered here.

2.2.3 Results

In this section, numerical simulation of the variance bootstrap method are presented
in order to clarify the results relating to the methods listed in the previous section.
The data set is given in Table 1. The variable x is the spatial perception of 26
neurologically impaired children, which Efron and Tibshirani (1993) used to study
the variance. The data set y is the same as x except that two observations are changed
to increase the estimated kurtosis from 2.592 to 3.411 in order to reveal how much
the CI bootstrap is affected by it.
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Table 1: Data set used in the simulations

Variable Data 52 K Skewness

X 4836202942422042224145146 171.53 2.592 -0.638
03328 344322447 4124263041

y 48 362029424220422241451430 123.07 3411 -0.667

0332834243224474124263041

Efron and Tibshirani (1993, Table [14.2) analyzed the nonparametric and parametric
bootstrap CI of # = V(). In comparisons, it is obvious that the nonparametric
method has smaller length except for t-bootstrap. This does not happen randomly
but has not been explained by them. This can be proved by Theorem 1 in Paper I,
which states that the variance of variance, the square root of which is the standard
error of variance, depends on the sample kurtosis. If the sample kurtosis is less than
3, then it is expected that the nonparametric estimate of that variance of variance
will be less than the parametric estimation, or in other words that the spread of S2*
will be less than of S?#. Since the kurtosis of X is less than 3 (Table 1), this result
is expected.

Table 2: Confidence interval at 95% for x
Method Lower limit Upper limit Length  Shape

1 99.018 244.049 145.031 1
1 118.448 305.233 186.784  2.518
IIT non 100.064 243.003 142.938 1
III par 91.483 251.584 160.101 1

IV non 110.249 283.828 173.578 1.832
IV par 115.847 309.760 193912 2.482
V non 124.379 306.281 181.902  2.857

V par 120.598 311.475 190.876  2.747
VInon 99.927 233.364 133.437 0.863
VI par 96.051 248.405 152.353  1.018

VII non 119.520 258.307 138.786  1.668
VII par 113.565 289.907 176.342  2.042

To clarify this result, Method I-VII are repeated for x and y, which have K <3
and K > 3, respectively. Table 2 and Table 3 show the length and shape are (Up-
per limit-Lower limit) and (Upper limit-S2)/(S2-Lower limit), which are measure
of wideness and asymmetry of interval. The first two lines of both tables are the
standard method for constructing CI of variance, which is based on ¢t and x2. It
is obvious that Method I has smaller length than Method II because the former is
based on the symmetrical distribution but in reality the distribution of variance is
asymmetrical. Method II is known as the exact method, as a criterion which can be
used to study the different methods.
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Table 3: Confidence interval at 95% for y
Method Lower limit Upper limit Length  Shape

I 59.050 187.094 128.043 1

1 84.984 218.999 134.014 2.518
TIT non 61.886 184.258 122.372 1

IIT par 66.084 180.060 113.976 1

IV non 75.743 295.122 219.379  3.635
1V par 77.494 236.850 159.356  2.496
V non 83.498 225.435 141.936 2.586
V par 85.460 219.482 134.022  2.563
VI non 65.223 183.094 117.870 1.037
VI par 69.262 175.156 103.660 1.009
VII non 79.792 227.236 147.443  2.406
VII par 84.531 217.723 133.192  2.455

The aim here is the comparison of nonparametric and parametric bootstrap. In Table
2, the nonparametric bootstrap CI is shorter than the parametric bootstrap CI, but in
Table 3 the opposite occurs because Method I1T uses the square root of V' (52) which
depends on the kurtosis, this method is directly affected by kurtosis. Method IV uses
bootstrap resamples in ¢. Although Method V and VI do not use V' (S52)* directly,
they are based on the 5th and 95th percentiles and of course the spread is affected
directly by kurtosis.

Table 4 includes a comparison of the different CI bootstrap methods in 1000
simulations. The entries in this table show how many times the parametric CI is
shorter than the nonparametric CI. The results thus show how much the kurtosis
affects on the spread of variance estimation of bootstrap resampling. In other words,
if K < 3 then CI based on the nonparametric bootstrap will be conservative and vice
versa.

Table 4: Comparison of CI at 95%.

Data
Method X y
11 0.001  0.998
v 0.3 1
\" 0.163 0.97
VI 0.029 0912
VII 0 0.82

The kntries show how many times the parametric CI is shorter than the nonparametric CI.

Let us now look at the correctness of the methods, i.e. the closeness of the given
methods to the exact method. It is expected that the methods based on ¢ will not
be close to the exact method. Conversely Methods V and VI are based on the exact
method and are thus expected to be closed to it. Basically, it can be seen that the
parametric bootstrap is close to the exact method, which according to Corollary 1
in Paper 1 is as expected. The following discusses how much the nonparametric and
parametric CI are affected by the kurtosis.
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Table 5 shows the Euclidean distance of CI of the given methods to the exact
method. The entries in this table are the result of Monte Carlo simulations of the
bootstrap with B=2000 resamples. It can be seen that Method V is more acceptable
in comparison with other methods, as it expresses the standard error of the paramet-
ric bootstrap is close to the exact method. Method III does not improve anything
as expected. With Method IV, The parametric and nonparametric method for the
ﬁArst data sets are closed against the second data sets, as is obvious because when
K < 3, t* increases, since the CI based on ¢ is shorter than the exact methAod, the
difference between CI and the exact method decreases. However, when K > 3,
t* becomes smaller and therefore the difference between CI and the exact method
increases. As can be seen, for the second data set they are different. Method VI
can be expected to have good results but not much is gained. In the case of method
VII, which is suggested by many authors, there is much difference between the non-
parametric and parametric method for the first data set. This is because although
the E(S%*) = E(S?*) but $?# is more skewed than S?* regardless of the kurto-
sis. This is obvious because S?# comes from the limited range and therefore 2, for
the parametric bootstrap is higher than that for the nonparametric bootstrap. When
K < 3 then the spread of S2* is shorter than S?# and also 2 is smaller than ?g’t.
This makes the CI shorter against K > 3, which makes the spread of S?* wider
than that bf S2#. The fact that Z, of the parametric bootstrap is higher than that of
the nonparametric makes the nonparametric bootstrap close to the parametric boot-
strap, jas can be seen in Table 5. Since K < 3 is more likely to happen because
E(K )rz 3 - nL_H hence it can be seen that the BC\, of variance, which is often
done by the nonparametric approach, is not appropriate.

Table 5: Comparison of the correctness of the CI at 95%
data method 111 v \Y% VI VII
X nonparametric  240.12  16.82  9.11 72.51  44.66
parametric 25141 6.08 429 60.69 11.82
y nonparametric  187.87 73.84 10.47 39.741 9.830
parametric 180.43 2438 3.02 43.81 5.501

2.3 Paperll

The second part of this work is devoted to jgoodness-of-fit tests. Paper II discusses
a bootstrap version of the Jarque-Bera test, which can be generalized to other dis-
tributions other than the normal. Its generality and its ktatistical power makes it
desirable. Its statistics is:

X —p

o N 52_ 2
D=|X-pu 80> 7y K-K |W %—j (35)

K-K

Let W = I because the reciprocal of variance of skewness and kurtosis for other
distributions are not known. Since the aim of the bootstrap method is to estimate the
standard error, it can be used for the parameters concerned. Therefore it can be used
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to estimate W, i.e. the diagonal matrix, the elements of which are the reciprocal of
variance of the parameters concerned. It is referred as DIWV.
iid

Paper IT also presents a new method for goodness-of-fit tests. Let Xy, - --, X, ~
F'. The aim is to study the hypothesis of normality, for some ¢ > 0 and 1z

421, (36)

H()ZF({L') pu

where ¢ is the cumulative distribution function of the standardized normal distribu-
tion. The suggested method is explained as follows:

Consider Uy, Us, Us, Uy and Us where Uy < Uy < Uz < Uy < Us or vice
versa. The aim is 0 find mew parameters that can be used 0 study the goodness-of-
fit test. The reasoning is based on fact that if U; can be used to find y; then U can
be used to find p;, where p1; = E(X — 1)?. The new parameters can be constructed
using the following equations,

TWU + ToUs + T3Us + TyUs +T5Us = g, (37)
TyU} + ToU3 + T3U3 + TyU; + T5UZ = po, (38)
TVU? + ToUS + T3U3 + TyUZ + TsU2 = s, (39)
TVUY + ToU3 + T3Ud + TyUS + TsUs = g, (40)

T+ To+T3+Ty+T5 = C, (41)

Assume that C' is given, which is tthe summation of the coefficients and actually
helps to control the coefficients that plays the role as the penalty. There is a solution
for T; because T' = U~16:

U, Uy Us Us Us
Ui Us U3 Ui UZ
U=| U U3 U3 U US|, (42)
vt vy Ui Uf U2
1 1 1 1 1

0=1 pus |. 43)
Ha

U is a vandermonde matrix, which is nonsingular. Hence there exists a unique
values for T;.

If the distribution is standard normal, then the estimation of moments must be
closeto i3 = 0, o = 1, ug = 0 and g = 3, respectively. Therefore by substituting
these values in equations (37)-(41), the solution is the values that are expected if the
underlying distribution of observations is standard normal. Hence they are referred
to as the theoretical values, T;,7 = [, ..., 5. Based on the sample, the equations are
as follows,

~

O1ur + Ogug + Osug + Ogug + Osus = Jiq, 44
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O1u? + Ogu2 + O3u2 4+ Oqus + Osu? = i, 45)

Olu‘;’ + Ogug + Ogug + 04’1131 + 0511,% = ﬁg, (46)
Olu‘f + Ozué + 03u§ + O4u3 + Og,ug = g, @n
014+ 0;+03+0,4+05 = C, (43)

Where [i; is the estimation of p;. If the chosen distribution is appropriate, then it is
expected that O; is close to T; where O is:

0o=U"'9 (49)

Any suggested criterion should include the comparison of 7; and O;, which are
referred to as the theoretical and observed value. Here the discrepancy measure is
the squared distance of the theoretical and observed value:

G=|T-0|=@-60/ U YU 'O-0). (50)

It is obvious that (U~1)'U~! plays the role of weight in the JB test. The main
question is concerned with the distribution of the suggested criterion for the boot-
strap method used.

Two different bootstrap methods are used in the study of the given statistic; the
parametric and semiparametric method. The parametric bootstrap is based on the
assumed distribution, which can be used for fesampling, while the semiparamet-
ric bootstrap directly combines the parametric and nonparametric bootstrap in the
resampling setting. It gives appropriate p; to observations to participate in the re-
sampling, as discussed in Paper II.

3 Future work

This thesis explores variance and the bootstrap methods. Future work will focus on
the variance in Bayesian bootstrap imputation which is discussed by Rubin (1987)
and Little and Rubin (1987). Imputation is a common technique for handling in-
complete observations by filing in the missing values with plausible values. The
Bayesian bootstrap imputation is based on using resamples from the original ob-
served sample. Kim (2002) studied the biasedness of the multiple- imputation vari-
ance when the object is the estimation of mean. Our aim is to study the Bayesian
bootstrap multiple imputation when the object is the variance.

As it mentioned in Section 2.2.3 on bootstrap CI of variance, the accuracy of
nonparametric BC is weak when the kurtosis is less than 3. It is obvious that 2 is
somewhat biased and studies are needed on how to improve it.

The statistical tests of variance are of interest in a number of research areas.
The comparison of variances test fis discussed and reviewed by Boos and Brownie
(2004). The bootstrap test of variance requires in-depth study. Our aim is to study
the pure nonparametric version which is referred as exponentially titled is discussed
in detail by Marazzi (2002) along with its semiparametric bootstrap which is dis-
cussed in Paper II.
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Abstract

This thesis deals with the study of variance estimation using the bootstrap method,
including the problem of choosing between nonparametric and parametric bootstrap
methods. Paper I compares the two approaches, determines which method is preferable
and analyses the accuracy of the approximations. The underlying concept of parametric
bootstrap is based on the assumption of correct choice of parametric distribution. Paper
I therefore considers goodness-of-fit tests and presents a new test based on the boot-
strap method.
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