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Microbial Inputs in Coffee (Coffea arabica L.) Production 
Systems, Southwestern Ethiopia: Implications for Promotion 
of Biofertilizers and Biocontrol Agents 

Abstract 
 
Arabica coffee is the key cash crop and top mainstay of the Ethiopian economy and requires 
sustainable production methods. Southwestern natural forests, the site of this study, are 
believed to be the centre of origin and diversity for Coffea arabica and still harbour wild 
Arabica coffee that may serve as an important gene pool for future breeding. Cost reductions, 
sustainability and quality improvement are now the major priorities in coffee production 
systems and require organic growing of coffee. Current developments in sustainability 
involve rational exploitation of soil microbial activities that positively affect plant growth and 
this study examines this possibility. The composition of coffee shade tree species and density 
of arbuscular mycorrhizal fungi (AMF) spores and coffee-associated rhizobacteria in different 
coffee production systems in southwestern Ethiopia were investigated. The main objectives 
were to: 1) systematically identify the dominant coffee shade tree species; 2) quantify and 
characterize AMF populations with respect to spatial distribution; 3) screen for beneficial 
rhizobacteria (microbial biofertilizers and biocontrol agents), particularly in the rhizosphere of 
coffee plants; and 4) characterize rhizobacterial isolates of particular interest using molecular 
tools (polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) 
analysis and 16S rDNA gene sequencing). Sampling and determination of microbial 
functional characteristics followed standard methods. Nineteen dominant shade tree species 
belonging to 14 plant families were identified, with the tree legume (Millettia ferruginea) 
dominating. All soil samples contained AMF spores and members of the Glomeromycota, 
Glomus spp. dominating. AMF spore density was affected by sampling point, site, depth, 
shade tree species and shade tree/coffee plant age. Coffee-associated rhizobacterial isolates 
showed multiple beneficial traits (phosphate solubilization, production of organic acids, 
siderophores, indoleacetic acid, hydrogen cyanide, lytic enzymes and degradation of an 
ethylene precursor). Many isolates also revealed a potent inhibitory effect against emerging 
fungal coffee pathogens such as Fusarium xylarioides, F. stilboides and F. oxysporum.  According 
to in vitro studies Bacillus, Erwinia, Ochrobactrum, Pseudomonas, and Serratia spp. were the most 
important isolates to act as potential biofertilizers, biocontrol agents or both. Thus, these 
indigenous isolates deserve particular attention and further greenhouse and field trials could 
ascertain their future applicability for inoculum development. 

Keywords: ACC, fungal coffee pathogens, Glomeromycota, hydrogen cyanide, IAA, lytic 
enzymes, phosphobacteria, PGPR, siderophores, tree legumes  
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Introduction 

The studies presented in this thesis were carried out within the framework 
of a bilateral collaboration between the Swedish University of Agricultural 
Sciences (SLU) and Addis Ababa University (AAU), Ethiopia, with the main 
objectives of capacity building and research promotion in the agricultural 
sector in the country in order to stimulate cooperation and biotechnology 
development. The work was fully funded by the Swedish International 
Development Cooperation Agency (Sida), through its Department for 
Research Cooperation (SAREC), and the coordination role was performed 
by the International Science Programme (ISP), Uppsala University, Sweden. 
The programme phase dealt with the development of environmentally 
friendly technologies potentially leading to enhancement of production and 
productivity of coffee at its centre of origin, southwestern Ethiopia. The 
project was entitled ‘Microbial Inputs in Coffee (Coffea arabica L.) 
Production Systems, Southwestern Ethiopia’. The long-term goals of the 
studies reported here were to initiate development of new biotechnologies 
such as the use of biofertilizers and biocontrol agents (microbial inputs) to 
improve plant growth, i.e. coffee production. Understanding of plant-
microbial interactions in the coffee rhizosphere with special emphasis on 
shade trees and the understorey cash crop coffee (from the plant side) and 
arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria 
(from the microbial aspect) are vital for low-input sustainable production. 
Specific research tasks were to: (1) study the composition of coffee shade 
trees and arbuscular mycorrhizal fungi associated with wild coffee 
populations; and (2) isolate and characterize (traditional and molecular 
systematics) beneficial coffee-associated rhizobacteria. Future stages of the 
project will involve challenging coffee seedlings in greenhouse and field 
conditions with microbes shown in in vitro studies to possess useful 
attributes, in order to select pertinent bio-inoculants. 
 
Arabica coffee has become a major global commodity. Its cultivation, 
processing, trading, transportation and marketing provide employment for 
millions of people. Coffee has for centuries played an important role in the 
Ethiopian economy and represents the main cash crop cultivated by small-
scale farmers for social, economic, political and ecological sustainability 
(Mekuria et al., 2004; Petit, 2007). Coffee production mainly involves 
agroforestry-based systems, although there are both natural coffee forests and 
monoculture plantations. The first two are well accredited in improving soil 
properties, where coffee grows beneath various shade trees (mainly tree 
legumes), and are well suited for sustainable production compared with 
conventional monocultural (unshaded) coffee systems (Cardoso et al., 2003; 
Gole, 2003). In addition, the presence of wild Arabica coffee at the centre of 
its origin is of paramount importance for genetic conservation of this global 
commodity (Aga et al., 2003; Gole, 2003). 
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The economic and ecological problems of today have re-invigorated the 
idea of using biofertilizers and biocontrol agents in order to reduce the 
application of costly and environmentally-polluting agrochemicals to a 
minimum (Hart & Trevors, 2005; Rodríguez et al., 2006). Agrochemicals 
(namely fertilizers and pesticides) have greatly influenced natural rhizosphere 
microbes in agrosystems (Matson et al., 1997). Plant beneficial microbial 
bioresources promise to replace or supplement many such destructive, high-
intensity practices and support ecofriendly crop production (Hart & Trevors, 
2005; Rodríguez et al., 2006). In particular, use of arbuscular mycorrhizal 
fungi (AMF) and plant growth promoting rhizobacteria (PGPR) for the 
benefits of agriculture and ecosystem functions is gaining worldwide 
importance and acceptance (Vessey, 2003; Lucy et al., 2004; Hart & 
Trevors, 2005; Rodríguez et al., 2006). These are bioresources that may 
become potential tools for providing substantial benefits in agriculture, as 
they are key elements for plant establishment under nutrient-imbalance 
conditions. Beneficial soil microbes can help improve plant growth, 
nutrition and competitiveness and plant responses to external stress factors by 
an array of mechanisms (Vessey, 2003; Lucy et al., 2004; Rodríguez et al., 
2006). They can also inhibit soil-borne plant pathogens and induce plant 
resistance to these (Leeman et al., 1996; Vessey, 2003; Lucy et al., 2004).  
 
Mycorrhizal technology can be profitably applied in forestry and in 
agricultural and horticultural crops for better nutrient utilization (Jeffries et 
al., 2003). The contributions of AMF to coffee production systems in coffee 
growing regions of the world have been well recognized (Vaast et al., 1998; 
Habte & Bittenbender, 1999). The use of AMF and PGPR as natural 
fertilizers is reported to be advantageous for the development of sustainable 
agriculture in nutrient (particularly phosphorus) -deficient tropical soils 
(Rodríguez et al., 2006). 
 
There is currently no published information on the use of AMF and PGPR 
in Ethiopian Arabica coffee production systems. However, several reports 
(Jiménez-Salgado et al., 1997; Sakiyama et al., 2001; Vega et al., 2005) reveal 
that putative agriculturally beneficial bacteria are associated with Coffea 
arabica L. 
 
It therefore appeared worthwhile to quantify and screen indigenous 
beneficial microbial bioresources at sites where pathogens, antagonists or 
biofertilizers are expected to display wide abundance and biodiversity. The 
greatest microbial biodiversity is expected at the centre of origin of the plant 
species with which they are associated (K. Lindström, pers. comm.) and 
Requena et al. (1997) have verified that the utmost benefit to the plant host 
arises from native plant beneficial microbes such as AMF and PGPR 
compared with commercial or introduced forms. Consequently, the 
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potential biotechnological applications of native microbes in promotion of 
plant growth have been well accredited (Pandey et al., 2006).  
 
Management of microbes either through selection and inoculation of 
specific microbial strains or simply by promoting naturally existing microbes 
holds great promise for sustainable agriculture compared with artificial inputs 
(Hart & Trevors, 2005; Vassilev et al., 2006). Synergistic interactions with 
AMF (Artursson et al., 2006) are also of great importance for mycorrhizae-
dependent Arabica coffee (Habte & Bittenbender, 1999). Therefore, the 
work presented in this thesis focused on the composition of coffee shade tree 
species and on rhizospheric microbes of Arabica coffee (from natural forest, 
agroforestry-based or monoculture plantations) that displayed biofertilizer or 
biocontrol agent attributes (Papers I-V), with the long-term aim of 
enhancing plant growth within sustainable agriculture in the future. 
 
Role of coffee in the Ethiopian economy 
 
The estimated coffee production area (2% of total cultivated land) in 
Ethiopia is in the range 320,000-700,000 ha (FAO, 1987), although there 
are a potential 6 million ha of cultivable land suitable for coffee production 
(Mekuria et al., 2004). In general, all Ethiopian coffee cultivation systems 
appear to be under the same system of cultivation techniques. However, the 
major conventional production systems include: i) forest coffee (10%); ii) 
semi-forest coffee (35%); iii) garden coffee (50%); and iv) plantation coffee 
(5%) (Aga et al., 2003; Mekuria et al., 2004; Petit, 2007). 
 
The economy of Ethiopia is based on agriculture, and coffee is the central 
agricultural export product. Historically, Ethiopia is the oldest exporter of 
coffee in the world and it is the largest coffee producer and exporter in 
Africa (ITC, 2002). Coffee is a means of subsistence for the rapidly growing 
population of the country as a complement or even sole source of income, 
and it plays a fundamental role in both the cultural and socio-economic life 
of the nation. LMC (2003) estimates that 15 million people are dependent 
on coffee for at least a significant part of their livelihood. Ethiopian coffee 
(Arabica coffee) ranks highly in intrinsic quality of the bean (Bhattacharya & 
Bagyaraj, 2002) and it is the principal economic species, contributing over 
70% of the world’s commercial coffee (Gole et al., 2002). Ethiopian farmers 
normally produce nine spectra of the finest single-origin/speciality coffees 
(Jimma, Nekemte, Illubabor, Limu, Tepi, Bebeka, Yirga Chefe, Sidamo and 
Harar), which are now well diffused into the trade circuits of the coffee 
industry (Mekuria et al., 2004).  
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Southwestern Ethiopia, the origin of wild Arabica 
coffee 
 
More genetically diverse cultivars of C. arabica exist in Ethiopia than 
anywhere else in the world (Aga et al., 2003), which has led botanists and 
scientists to agree that Ethiopia is the centre of origin (primary gene centre) 
for diversification and dissemination of the coffee plant (Fernie, 1966; Zeven 
& Zhukovsky 1975; Bayetta, 2001). Currently, natural coffee forests are 
limited mostly to the southwestern area of the country, where remnants of 
rainforest still exist on patchy areas (Taye, 2001; Gole et al., 2002; Aga et al., 
2003; Gole, 2003). These contain the only wild populations of Coffea arabica 
in the world, which may serve as a gene pool for further international 
Arabica coffee breeding activities (Fernie, 1966; Zeven & Zhukovsky, 1975; 
Bayetta, 2001; Aga et al., 2003; Gole, 2003). They are also highly important 
for in situ/ex situ conservation of Arabica coffee. It is well accepted that 
coffee seeds in general cannot be stored for long-term conservation in seed 
gene banks (Aga, 2005), and therefore the collections of coffee genetic 
resources are traditionally maintained as living trees or shrubs in field gene 
banks (Berthaud & Charrier, 1988). Thus, this southwestern area of Ethiopia 
is of particular value to the world as a whole, as it is the home and cradle of 
biodiversity of Arabica coffee seeds with the best inherent quality 
(Bhattacharya & Bagyaraj, 2002) and production potential (Zeven & 
Zhukovsky, 1975) due to the occurrence of wild coffee populations. In 
southwestern Ethiopia, agroforestry-based and monoculture coffee systems 
are also extensively cultivated. The potential of coffee production in this 
region is very high as a result of suitable altitude, ample rainfall, optimum 
temperature (Gemechu, 1977), suitable planting material (van der Vossen, 
2001; Aga et al., 2003) and good soil fertility (Höfner, 1987). Thus, because 
of the aforementioned facts, increased attention has been drawn to this 
region.  
 

Shade coffee production for sustainable land 
use: Overview 
 
Agroforestry systems can increase soil nutrient availability and accelerate 
phosphorus cycling due to the fact that the deeper tree roots remarkably 
improve soil conditions (Young, 1997). This kind of land use system is 
therefore of paramount importance, particularly in densely populated, 
sloping regions in the humid and sub-humid tropics, which includes the 
major coffee growing areas of Ethiopia.  
 
Intensive methods of unshaded coffee production do not take into 
consideration the environmental and social consequences (Polzot, 2004). 
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Normally, sun-grown coffee displays a reduction in structural complexity 
and diversity and is associated with a number of negative by-products, 
ranging from reduced forest cover, increased soil erosion, chemical runoff 
and water contamination to consolidation of plantations into large 
agribusinesses. It has also been suggested that monoculture reduces the 
spectrum of beneficial fungal species found in the soil after several years of 
continuous cultivation or when natural ecosystems are transformed into 
agro-ecosystems (Sieverding, 1991). Such transformation is a common 
practice in southwestern Ethiopia, where the present studies were carried 
out (Paper II). The current instability in coffee prices on the world market 
can be attributed to transition from shade-grown to sun-grown coffee (Rice 
& McLean, 1999). However, recently a paradigm shift has begun to occur, 
where traditional production systems that were once considered unprofitable 
are being revisited (Polzot, 2004). Studies have revealed that the agroforestry 
coffee systems are more effective in promoting soil conservation than 
conventional monoculture (unshaded) coffee systems (Cardoso et al., 2003).  
 
Moreover, coffee has favourable characteristics for agroforestry practices. In 
its original habitat, coffee naturally occurs in native forests (Taye, 2001; Aga 
et al., 2003; Gole, 2003; Paper I). The period of flowering, when coffee 
requires more light, coincides with the dry season, in which the agroforestry 
trees lose their leaves. A side effect of this is that coffee trees do not compete 
for water with other species (Polzot, 2004). Coffee production increases 
when grown in habitats suitable for sustaining pollinators, for instance, 
honey bees in shade-grown coffee (Roubik, 2002). Therefore, increasing 
tree cover in coffee production is a viable option for mitigating climate 
change that also provides social, economic and ecological benefits (Polzot, 
2004). Like other agroforestry systems that employ a woody component, 
shade-grown coffee agroecosystems contribute to the removal of carbon 
from the atmosphere and its storage on land. 
 
In Ethiopia, farmers traditionally grow coffee as an important cash crop 
under various types of shade trees, mainly dominated by leguminous tree 
species (Taye, 2001; Gole, 2003; Papers I & II). Wide use of tree legumes 
for providing shade has also been well documented in many coffee growing 
countries across the globe (Perfecto et al., 1996; Albertin & Nair, 2004; 
Polzot, 2004). The list of well-known and dominant shade trees 
documented in Ethiopia increases from time to time but mainly 
encompasses Albizia, Acacia, Bersama, Cordia, Croton, Dracaena, Entada, 
Ehretia, Erythrina, Ficus, Leucaena, Millettia, Olea, Pavetta, Prunus, Schefflera, 
Syzygium and others (FAO, 1968; Teketay & Tegeneh, 1991; Taye, 2001; 
Gole, 2003; Papers I & II). 
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Smallholders represent 95% of total production in low input-low output 
systems, making shaded Ethiopian coffee production naturally ‘organic’ 
(Petit, 2007). Farmers usually do not apply agrochemicals and Ethiopia has 
the potential to produce certified organic high quality coffee due to 
favourable growing conditions and the high diversity of genetic resources in 
Coffea arabica (Aga et al., 2003; Mekuria et al., 2004). Thus, the present 
investigation placed special emphasis on this type of production system, 
which protects the environment and maintains biodiversity due to shade tree 
species (Perfecto et al., 1996). The effect of shade trees on Arabica coffee 
production has been tested for a long time and the general belief is that the 
advantages outweigh the suggested negative impacts (Beer et al., 1998; 
Muschler, 2001).  
 
Improvement of coffee attributes 
 
Evidence is increasing that better coffee attributes are generally produced by 
shaded systems, particularly those dominated by tree legumes (Muschler, 
2001; Muleta et al., unpubl.). More precisely, studies from Costa Rica 
(Muschler, 2001) have determined the main benefits of shading on coffee 
plants to be: (1) higher weight of fresh fruits; (2) larger beans; (3) higher 
visual appearance ratings for green and roasted beans; (4) higher acidity and 
body ratings; and (5) absence of off-flavours.  
 
Climate regulation 
 
The importance of overstorey trees in buffering temperature extremes 
(day/night) in coffee production systems is well documented (Beer et al., 
1998; Polzot, 2004). Shade is reported to reduce the effect of excessive heat 
on the coffee plants during the day and to reduce heat losses at night. 
Furthermore, Beer et al. (1998) have recorded the advantages of tree cover 
in reduction of wind speed, which in turn minimizes crop desiccation and 
soil erosion losses. Shade trees also make a great contribution in reduction of 
hail damage (Beer et al., 1998; Muleta et al., unpubl). 
 
Organic matter contribution, nutrient cycling and 
maintenance of biodiversity 
 
The roles of coffee agroecosystems in contributing massive leaf litter input, 
stimulating organic matter turnover and decreasing soil erosion have been 
well addressed (Beer et al., 1998). Coffee agroecosystems store significant 
amounts of carbon in aboveground woody biomass of shade trees, the litter 
layer and soil organic matter compared with unshaded systems, and thus act 
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as potential carbon sinks (Polzot, 2004). Significant aboveground plant 
carbon pools contribute to reductions in greenhouse gas (GHG) emissions 
and the alleviation of GHG accumulation in the atmosphere. Beer et al. 
(1998) point out that coffee agroecosystems could prevent the release of up 
to 1000 t C ha-1. Thus, the contributions shaded coffee plantations make to 
climate change mitigation can be quite significant (Polzot, 2004).  
 
Tree legumes predominate as overstorey trees, both in natural coffee forests 
(Taye, 2001; Paper I) and agroforestry-based coffee systems (Paper II) in 
southwestern Ethiopia. Leguminous shade trees are acknowledged for their 
good capacity for fixing atmospheric nitrogen (Granhall, 1987; Beer et al., 
1998) by forming symbiotic associations with certain soil bacteria, rhizobia 
(Roskoski, 1982; Assefa & Kleiner, 1998; Grossman et al., 2006). In Mexico, 
organic farmers claim that Inga (tree legume) shade improves coffee plant 
health (Grossman, 2003). Similarly, in Costa Rica (Albertin & Nair, 2004) 
and in Ethiopia (Muleta et al., unpubl), the majority of farmers commonly 
mention legume shade trees as the first class tree species  to include in their 
coffee fields. Altogether, native leguminous tree species are often used to 
supply all or a proportion of the N needs of coffee bushes and reduce the 
dependence on synthetic fertilizers (Soto-Pinto et al., 2000; Sprent & 
Parsons, 2000; Grossman et al., 2006), which is fundamental to low-input 
sustainable agricultural practices in most developing countries.  
 
In Ethiopia, various types of shade trees in agroforestry-based coffee 
plantations (Asfaw, 2003) and afromontane forests (Wubet et al., 2003, 2004) 
have been reported to form associations with certain beneficial soil fungi, 
e.g. arbuscular mycorrhizal fungi (AMF). More precisely, coffee bushes 
under some shade trees, mainly leguminous, in both natural coffee forest 
(Paper I) and agroforestry-based coffee (Paper II) are associated with higher 
numbers of AMF spores than those under non-leguminous trees. Beer et al. 
(1998) verified that nutrient turnover and the transfer of major bioelements 
N, P, K, Ca, and Mg to the soil are greater in shaded plantations due to 
excess litter from both trees and coffee bushes. 
 
Increased shade density and complexity is reputedly highly beneficial for 
conservation of biodiversity (Perfecto et al., 1996; Polzot, 2004). Perfecto et 
al. (1996) have reported that many traditional shaded coffee plantations 
resemble natural forests more than any other agricultural system in use, in 
terms of structure and ecology. Studies in Costa Rica indicate that shaded 
coffee systems can support greater numbers of animal populations (Hall, 
2001) and  can act as buffer zones to protected areas and serve as biological 
corridors, thus providing pathways for the migration of fauna between 
natural reserves (Polzot, 2004). 
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Weed suppression 
 
Canopy cover may suppress the major weeds in coffee plantations, such as 
African couch grass (Digitaria scalarum), which in turn can minimize synthetic 
herbicide application and reduce labour inputs, giving rise to cheaper 
production (Beer et al., 1998). In Bonga natural coffee forest, the lower 
stratum (< 2 m) contained various plant species, mainly Desmodium (Paper 
I), which has been reported to be an efficient suppressor of aggressive and 
spontaneous weeds (Bradshaw & Lanini, 1995).  
 
Reduction of disease and pest problems 
 
Cool and wet weather in combination with increased shade can favour the 
incidence of some fungal diseases in shaded coffee systems. Nevertheless, 
shade has also been shown to minimize the occurrence of some fungal 
diseases that may pose serious problems in sun-grown crops (Polzot, 2004). 
In addition, Beer et al. (1998) indicate that shade trees may provide habitats 
for biological control agents due to their rich biodiversity, thus reducing the 
prevalence of disease and the dependence on pesticides in shaded coffee 
production systems. 
 
Minimizing groundwater pollution risks 
 
Groundwater can be contaminated during application of synthetic fertilizers 
in sun-grown coffee fields, often causing increased health risks. Beer et al. 
(1998) reported that groundwater contamination by nitrate and nitrite is 
more common under intensive coffee production with little or no shade 
compared with shaded coffee production systems.  
 
Food production and other benefits 
 
Other valuable benefits associated with shade trees involve fruits suitable as 
food (Peeters et al., 2003). The inclusion of fruit-bearing trees as shade in 
coffee plantations provides farmers with access to additional foods, such as 
mangos, oranges, bananas and avocados (Polzot, 2004).  
 
Apart from their contribution to understorey coffee bushes, farmers derive 
benefits from shade trees in terms of firewood and timber (Beer et al., 1998; 
Peeters et al., 2003, Muleta et al.,unpubl.). For instance, Cordia africana, the 
main timber tree in the country, universally provides shade to coffee plants 
in southwestern Ethiopia (FAO, 1968). Timber-producing shade trees have 
low management costs and can be considered "revenue storage" for farmers 
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that can be cashed during periods of low coffee prices or crop failure 
(Polzot, 2004). Other valuable benefits associated with shade trees involve 
honey production and other options for income (Hailu et al., 2000, Muleta 
et al., unpubl.). In Ethiopia, the most common shade tree species such as 
Croton macrostachyus (Giday, 2001), Albizia gummifera and Syzygium guineense 
(Geyid et al., 2005) also play a vital role in traditional medicine to combat 
various infectious diseases.  
 
Another added advantage of shaded coffee systems is the ever increasing 
demand and willingness of consumers to pay best prices for organic and fair-
trade coffee (Wikström, 2003; van der Vossen, 2005). Premium prices may 
compensate for the possibly low yield but economically viable and 
sustainable returns of shaded coffee systems (Beer et al., 1998).  
 

Arbuscular mycorrhizal fungi (AMF) 
 
AMF are soil-dwelling fungi that form associations with the roots of a 
plethora of terrestrial plants (angiosperms, gymnosperms and many 
pteridophytes and bryophytes) by forming distinct symbiotic structures (Fig. 
1). The AM fungi were formerly included in the order Glomales in the 
Zygomycota (Redecker et al., 2000), but they have recently been moved to 
a new phylum, the Glomeromycota (Schüßler et al., 2001).This group of 
fungi is still an untapped resource for sustainable soil management. They are 
ubiquitous soil-borne microbial fungi, whose origin and divergence have 
been dated back more than 450 million years (Redecker et al., 2000). AMF 
can be found in virtually almost all ecosystems in temperate, tropical and 
arctic regions, except under waterlogged conditions (Smith & Read, 1997). 
As a group, they may have the single largest effect on plant performance of 
any rhizosphere-associated microbe, functioning as an extension of the root 
system of the plant and increasing absorptive area (Leake et al., 2004). 
Arbuscular mycorrhizal (AM) associations are of great importance in forest 
ecology, land rehabilitation, plant health and yield in low input systems of 
the tropics through key ecological processes (Sieverding, 1991). 
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Fig. 1. Cross-section of a plant root with mycorrhizal features (Source: Azcón-
Aguilar & Barea, 1980). 

 
Agronomic and ecological roles of AMF  
 
Most of the root systems of agricultural/horticultural plants and crops are 
colonized by AMF (Sieverding, 1991). The most prominent effect of the 
fungus is improved phosphorus nutrition of the host plant in soils with low 
phosphorus levels due to the large surface area of their hyphae and their high 
affinity P uptake mechanisms (Koide, 1991). There are also reports of 
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production by AMF of organic acids that could solubilize the insoluble 
mineral phosphates (Lapeyrie, 1988), an added advantage in terms of 
improvement of P uptake by host plants. AMF mycelia have also been 
shown to increase uptake of many other nutrients, including N, S, B, Cu, 
K, Zn, Ca, Mg, Na, Mn, Fe, Al, and Si (Clark & Zeto, 2000). In some 
cases, AMF may be responsible for acquiring 100% of host nutrients (e.g. P; 
Smith et al., 2004). Marschner (1998) and Hodge & Campbell (2001) have 
indicated that the improved plant nutrition is due to (i) increased root 
surface through extraradical hyphae, which can extend beyond root 
depletion zone, (ii) degradation of organic material and (iii) alteration of the 
microbial composition in the rhizosphere.  
 
New research suggests that AMF have multiple ecosystem functions and are 
ideal tools for any field where plants and their communities are manipulated, 
including sustainable agriculture, landscape restoration and horticulture, 
among others (Fig. 2; Hart & Trevors, 2005). This multifunctional nature of 
AMF encompasses mineralization of organic nutrients, seedling 
establishment, increased pathogen resistance, herbivore tolerance and 
pollination, and soil stability, heavy metal tolerance/bioremediation, drought 
(hydraulic stresses)/chilling resistance and alleviation of desertification among 
others (Fig. 2; Jeffries et al., 2003; Hart & Trevors, 2005). 
 
The roles of AMF to their hosts in a given environment, however, are 
largely dependent on the nutrient status of the soil, particularly P. Highly 
fertile soils generally exhibit lower mycorrhizal fungal populations. It is 
known that the AM fungi are not able to colonize plant roots strongly under 
P-sufficient conditions (Koide & Schreiner, 1992). In certain cases, the 
growth rates of plants can be reduced by AM colonization in the presence of 
available P (Peng et al., 1993).  
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Fig. 2. Wider applications of AMF in production systems and ecosystems (Source:  
http://aggie-horticulture.tamu.edu/faculty/davies/students/alarcon/AMFApplications.pdf; 10-Jul-2007) 
 
AMF and horticultural crop production (e.g. Coffea 
arabica L.) 
 
Agricultural land carrying low input production systems is a natural 
mycorrhizal habitat, with a high diversity of AMF (up to 40 species per site; 
Vandenkoornhuyse et al., 2002). Most horticultural and crop plants are 
symbiotic with arbuscular mycorrhizal fungi and drive great benefits from 
these particular associations. Coffee plants (Coffea arabica) are usually 
associated with arbuscular mycorrhizal (AM) fungi and highly dependent on 
these particular associations (Habte & Bittenbender, 1999; Miyasaka & 
Habte, 2001). A total of 22 species of AM fungi that are important in 
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Arabica coffee plantations in central Sao Paulo State, Brazil, have been 
identified, with predominance of Glomus, Acaulospora and other genera 
(Lopes et al., 1983). Cardoso et al. (2003) have demonstrated differences in 
the distribution of mycorrhizal fungal spores in soils under agroforestry and 
monocultural coffee systems in Brazil, with higher AMF spore density under 
the former production system, in keeping with the results from Ethiopia 
(Paper II). Arabica coffee rhizospheres in both natural forest (Paper I) and 
agroforestry-based coffee production systems (Paper II) in southwestern 
Ethiopia contain AMF propagules, with predominance of Glomus. Various 
types of shade trees in forests (Wubet et al., 2003, 2004), including 
medicinal and nitrogen-fixing species, have also been found to be associated 
with AMF in Ethiopia. Furthermore, investigations in natural forests (Muleta 
et al., unpubl.) indicate that wild Arabica coffee seedlings show a reasonable 
level of root colonization (30%) as observed elsewhere (Lopes et al., 1983). 
 
The benefits that coffee plants obtain from AMF associations include 
improved growth, nutrition, water relations and tolerance to pathogens 
and/or parasitic nematodes. Vaast & Zasoski (1992) evaluated the effects of 
AMF and nitrogen sources on rhizosphere soil characteristics, growth and 
nutrient acquisition of Arabica coffee seedlings and showed that mycorrhizal 
plants grew better and accumulated more N, Ca and Mg than non-
mycorrhizal plants. Furthermore, Fernández-Martín et al. (2005) investigated 
the effects of AM and a soil-earthworm mixture on the growth of coffee 
plants and revealed that leaf area increased by 6-140% with AM application 
and that mass of the endophytic mycorrhizal fungi was inversely dependent 
on soil fertility. 
 
Vaast et al. (1997) investigated the effects of a root-lesion nematode 
(Pratylenchus coffeae), AM fungi and timing of inoculation on the growth and 
nutrition of a nematode-susceptible Arabica coffee cultivar. The results 
indicated that in the presence of P. coffeae, early AM-inoculated plants 
remained P sufficient and their biomass was 75-80% of that of nematode-
free controls.  
 
The benefits that AMF impart to their hosts vary depending on specific time 
of application. The best results are often obtained when plants are inoculated 
during propagation (micropropagation, cuttings and seedlings). For instance, 
AMF inoculation showed a significant positive effect (P-sufficient) on in vitro 
propagated Arabica coffee microcuttings compared with control plants 
(Vaast et al., 1997). 
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Plant growth promoting rhizobacteria  
 
The rhizosphere is the zone of soil surrounding a plant root where the 
biology and chemistry of the soil are influenced by the root. In the 
rhizosphere, very important and intensive interactions take place between 
the plant, soil, microorganisms and soil microfauna, influenced by 
compounds exuded by the root and by microorganisms feeding on these 
compounds (Antoun & Prévost, 2006). All this activity makes the 
rhizosphere the most dynamic environment in the soil. Gobat et al. (2004) 
have distinguished three rhizosphere fractions: 1) the endorhizosphere 
(interior of the root); 2) the rhizoplane (surface of the root); and 3) the 
rhizospheric soil that adheres to the root when the root system is shaken 
manually. The volume of the soil that is not influenced by the root is 
defined as non-rhizospheric soil or bulk soil. 
 
The rhizosphere is the front-line between plant roots and soil-borne pests. 
Therefore it seems logical that microorganisms that colonize the same niche 
could be ideal candidates for sustainable agriculture (Weller, 1988). In the 
rhizosphere, bacteria are the most abundant microorganisms (Antoun & 
Prévost, 2006). Rhizobacteria are rhizosphere-competent bacteria that 
aggressively colonize plant roots; they are able to multiply and colonize all 
the ecological niches found on the roots at all stages of plant growth, in the 
presence of a competing microflora (Antoun & Kloepper, 2001). 
Rhizobacteria can have a neutral, detrimental or beneficial effect on plant 
growth. Deleterious rhizobacteria are presumed to adversely affect plant 
growth and development through the production of undesirable metabolites 
(phytotoxins) or through competition for nutrients or inhibition of the 
beneficial effects of mycorrhizae (Sturz & Christie, 2003).  
 
Beneficial rhizobacteria are termed either plant growth promoting 
rhizobacteria (PGPR) or plant health promoting rhizobacteria (PHPR) 
according to their mode of action (Sikora, 1992). The term PGPR was first 
used by Kloepper & Schroth (1978) and investigations on PGPR have been 
escalating at an ever increasing rate since then.  
 
The PGPR are defined by three intrinsic characteristics (Barea et al., 2005): 
(i) they must be able to colonize the root, (ii) they must survive and 
multiply in microhabitats associated with the root surface, in competition 
with other microbiota, at least for the time needed to express their plant 
promotion/protection activities, and (iii) they must promote plant growth. 
The PGPR are known to participate in many important ecosystem 
processes. They were first used for agricultural purposes in the former Soviet 
Union and India and are now being tested worldwide (Lucy et al., 2004). 
These authors have also summarized the benefits of PGPR for plant growth, 
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which include increases in: germination rate, root growth, yield (including 
grain), leaf area, biocontrol, chlorophyll content, hydraulic activity, 
tolerance to drought, shoot and root weights.  
 
Mechanisms of action: Overview 
 
A wide array of beneficial rhizosphere bacteria have been categorized as 
PGPR including mainly diazotrophs, bacilli, pseudomonads and rhizobia 
(Antoun & Prévost, 2006). PGPR may induce plant growth promotion 
through different direct or indirect modes of action (Glick et al., 1999; 
Antoun & Prévost, 2006). Direct mechanisms include improvement of plant 
nutrient status (liberation of phosphates and micronutrients from insoluble 
sources; non-symbiotic nitrogen fixation), iron sequestration by 
siderophores, the production of bacterial volatiles and phytohormones and 
lowering of the ethylene level in the plant. The indirect effects can be 
exerted by antibiotic production, depletion of iron from the rhizosphere, 
induced systemic resistance, synthesis of antifungal metabolites, production 
of fungal cell wall lysing enzymes, competition for sites on the root, 
stimulation of other beneficial symbioses and degradation of xenobiotics in 
inhibitor-contaminated soils. Somers et al. (2004) have classified PGPR into 
the following functional groups depending on their inherent activities as: i) 
biofertilizers (increasing the availability of nutrients to the plant), ii) 
phytostimulators (plant growth promoting, usually by the production of 
phytohormones: auxin, cytokinin, gibberelin), iii) rhizoremediators 
(degrading organic pollutants), and iv) biopesticides (controlling diseases, 
mainly by the production of antibiotics and antifungal metabolites).  
 
Phosphate solubilizing bacteria (PSB) 
 
Theoretical estimates have suggested that the accumulated phosphorus (P) in 
agricultural soils due to fixation is sufficient to sustain maximum crop yields 
world-wide for about 100 years (Goldstein et al., 1993). However, although 
P is abundant in soils in both inorganic form (originating mainly from 
applied P fertilizer) and organic form (derived from microorganisms, animals 
and plants) (Paul & Clark, 1989), it is still one of the major plant growth-
limiting nutrients. On average, most nutrients in the soil solution are present 
in millimolar amounts, but phosphorus is present only in micromolar or 
lesser quantities (Ozanne, 1980). These low levels of P are due to the high 
reactivity of soluble P with calcium (Ca), iron (Fe) or aluminium (Al), 
which leads to P precipitation (Fig. 3). Inorganic P in acidic soils is 
associated with Al and Fe compounds, whereas calcium phosphates are the 
predominant form of inorganic phosphates in calcareous soils.  
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Fig. 3. Phosphorus channels in soil. (Source: modified from Bagyaraj et al., 2000). 
 
Organic P may also make up a large fraction of soluble P, as much as 50% in 
soils with high organic matter content (Barber, 1984). Phytate, a 
hexaphosphate salt of inositol, is the major form of P in organic matter, 
contributing between 50 and 80% of the total organic P (Alexander, 1977). 
Although microorganisms are known to produce phytases that can hydrolyze 
phytate, phytate tends to accumulate in virgin soils because it is rendered 
insoluble as a result of forming complex molecules with Fe, Al and Ca 
(Alexander, 1977). Phospholipids and nucleic acids form a mother pool of 
labile P in soil that is easily available to most of the organisms present (Molla 
& Chowdary, 1984). 
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To circumvent the problem of P deficiency, the addition of phosphate 
fertilizers has become a common practice in modern agriculture. The 
production of chemical phosphate fertilizers is a highly energy-intensive 
process, requiring energy worth US$4 billion per annum in order to meet 
the global needs (Goldstein et al., 1993). The situation is further 
compounded by the fact that almost 75-90% of added P fertilizer is 
precipitated by Fe, Al and Ca complexes present in the soils, creating a 
demand for suitable alternatives to mobilize this fixed fraction of the 
important bioelement (Stevenson, 1986). Soil microorganisms are able to 
mobilize insoluble mineral phosphate in a more environmentally friendly 
and sustainable manner. 
 
The involvement of microorganisms in solubilization of inorganic 
phosphates was known as early as 1903 (Kucey et al., 1989). It is estimated 
that P solubilizing microorganisms may constitute 20 to 40% of the 
culturable population of soil microorganisms and that a significant 
proportion of these can be isolated from rhizosphere soil (Kucey, 1983; 
Chabot et al., 1993). Most PSB are isolated from the rhizosphere of various 
plants and are known to be metabolically more active than those isolated 
from sources other than rhizosphere (Baya et al., 1981). In the present study, 
over 72% of the rhizobacteria (both Gram-negative and Gram-positive) 
associated with wild Arabica coffee rhizospheres were shown to be able to 
solubilize mineral P (Paper III). Important phosphate solubilizing 
microorganisms (PSMs) including bacteria and fungi have been well 
reviewed (Rodríguez & Fraga, 1999). In general, P solubilizing bacteria 
commonly outnumber P solubilizing fungi 2-150 fold (Kucey, 1983; Kucey 
et al., 1989). However, fungal isolates exhibit greater P solubilizing ability 
than bacteria in both liquid and solid media (Kucey, 1983). In addition, the 
P solubilizing ability in bacteria (Fig. 4; Paper III) may be lost upon repeated 
sub-culturing but no such loss has been observed in the case of P solubilizing 
fungi (Kucey, 1983). The majority of the phosphate solubilizing 
microorganisms (PSMs) mobilize Ca-P complexes and only a few can 
solubilize Fe-P and Al-P complexes (Kucey et al., 1989). 
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Fig. 4. Insoluble phosphate solubilization studies on Pikovskaya’s agar (PA): (a) and 
(b) show two consistent and efficient phosphate solubilizing isolates (large haloes), 
whereas six others lost their activity (no visible halo) during repeated subculturing 
on PA (Paper III). 
 
Phosphorus biofertilizers in the form of microorganisms can help in 
increasing the availability of fixed phosphates for plant growth by 
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solubilization (Goldstein, 1986; Kucey et al., 1989). PSMs also exhibit other 
traits beneficial to plants, such as production of phytohormones, antibiotics, 
siderophores, vitamins, antifungal substances and hydrogen cyanide 
(Kloepper et al., 1989; Rodríguez & Fraga, 1999; Papers IV & V). In 
addition to being better scavengers of soluble P (P biofertilizers), the 
microorganisms involved in P solubilization can also enhance plant growth 
by increasing the efficiency of biological nitrogen fixation, enhancing the 
availability of trace elements such as Fe, Zn, etc. (Fig. 5; Kucey et al., 1989; 
Rodríguez & Fraga, 1999). It is well established that every aspect of the 
process of formation of the N2 fixing nodule is limited by the availability of 
P and legumes show a high positive response to P supplementation (Deng et 
al., 1998). This most likely has significant positive implications for the 
dominant legume shade trees in the current study areas (Papers I & II). 
 
At the molecular genetics level, the precise mechanism used by different 
PSMs still remains mostly unidentified (Rodríguez et al., 2006). 
Nevertheless, it is generally believed that the production of organic acids, 
added to a steep drop in pH, is the main driving force for mobilization of 
mineral phosphates (Illmer et al., 1995; Goldstein, 1996; Rodríguez & Fraga, 
1999; Paper III). Moreover, Goldstein (1996) proposed direct glucose 
oxidation to gluconic acid (GA) as a major mechanism for mineral 
phosphate solubilization (MPS) in Gram-negative bacteria. As a result of 
acidification of the surrounding medium, soluble orthophosphate ions 
(H2PO4

-1 and HPO4

-2) can be readily released. The PSMs produce a range of 
low molecular weight organic acids such as acetate, lactate, oxalate, tartarate, 
succinate, citrate, gluconate, ketogluconate, glycolate, etc. (Goldstein, 1986;  
Kim et al., 1998; Paper III). More precisely, the organic acids secreted can 
either directly dissolve the mineral phosphate as a result of anion exchange 
of PO4

-3 by acid anion or can chelate both Fe and Al ions associated with 
phosphate (Moghimi et al., 1978). Strong support for this suggested 
mechanism has been provided by evidence that addition of NaOH abolishes 
the P solubilization process, indicating that pH reduction of the system is 
responsible for the P solubilizing abilities of PSMs. 
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Fig. 5. Mechanisms of plant growth promotion by PSMs. (Source: Modified from 
Khan et al., 2006; Papers III, IV, V). 
 
However, acidification does not seem to be the only mechanism of P 
solubilization, as the ability to reduce the pH in some cases does not 
correlate with the ability to solubilize mineral phosphates (Subba Rao, 
1982). For instance, a genomic DNA fragment from Enterobacter agglomerans 
showed mineral phosphate solubilization activity in E. coli JM109, although 
the pH of the medium was not altered (Kim et al., 1997). Similarly, Kucey 
(1988) has demonstrated that the chelating property of the organic acids is 
also important, as it has been shown that the addition of 0.05M ethylene 
diamine tetraacetic acid (EDTA) to the medium has the same solubilizing 
effect as inoculation with a phosphate solubilizing organism. In addition, 
under some circumstances phosphate solubilization has been observed at 
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only slightly acidic or alkaline pH values (Altomare et al., 1999). On the 
other hand, mineral phosphate solubilization has been reported in the 
absence of detectable chelating agents or organic acids, merely by acidifying 
the medium (Illmer et al., 1995). Overall, the exact mechanisms utilized by 
PSMs remain to be discovered (Rodríguez et al., 2006). 
 
Microorganisms also rely on various forms of enzymes (Garcia et al., 1992; 
Rodríguez et al., 2006) in order to mobilize organic phosphate sources. 
These include: (1) non-specific phosphatases, which perform 
dephosphorylation of phospho-ester or phosphoanhydride bonds in organic 
matter; (2) phytases, which specifically cause P release from phytic acid; and 
(3) phosphonatases and C-P lyases, enzymes that perform C-P cleavage in 
organophosphonates. The main activity apparently corresponds to the work 
of acid phosphatases and phytases because of the predominant presence of 
their substrates in soil. The overall plant and microbial mechanisms to 
increase P availability in the rhizosphere excluding mycorrhizal association 
are presented in Fig. 6.  
 
Production of phytohormones (particularly IAA) 
 
Phytohormones, also called plant growth regulators, are well known for 
their regulatory role in plant growth and development and work at 
extremely low concentrations. The most common, best characterized and 
physiologically most active auxin in plants is indole-3-acetic acid (IAA). L-
tryptophan (L-TRP), an amino acid, serves as a physiological precursor for 
biosynthesis of auxins in higher plants and in microbes (Frankenberger & 
Arshad, 1995). Root exudates are natural sources of TRP for the 
rhizosphere microflora, which may enhance auxin biosynthesis in the 
rhizosphere (Martens & Frankenberger, 1994). 
 
Indoleacetic acid is known to stimulate both a rapid response (e.g. increased 
cell elongation) and a long-term response (e.g. cell division and 
differentiation) in plants (Cleland, 1990). More specifically, IAA is a 
phytohormone that is known to be involved in root initiation, cell division 
and cell enlargement (Salisbury, 1994). A significant activity of PGPR is the 
production of auxin-type phytohormones that affect root morphology and 
thereby improve nutrient uptake from soil (Barea et al., 2005). Lucy et al. 
(2004) have shown that IAA-producing PGPR increase root growth and 
root length, resulting in greater root surface area, which enables the plant to 
access more nutrients from soil. 
 
The capacity to synthesize IAA is widespread among soil- and plant-
associated bacteria.  
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Fig. 6. Plant and microbial mechanisms increasing phosphorus (P) availability in the 
rhizosphere (mycorrhizal colonization not considered). Plants and microorganisms 
can increase the availability of inorganic P by altering rhizosphere pH and exuding 
organic acid anions. Plants can also increase the capacity to take up P by increasing 
the root surface area via (i) growing long and thin roots with numerous thin root 
hairs, and (ii) changing the capacity and/or affinity of plasma membrane-embedded 
P transporters. Plants and microorganisms can mobilize P from organic pools and 
convert it to available inorganic forms by phosphatases. The phytase enzyme exuded 
by microorganisms is capable of converting phytate into P esters that phosphatases 
can break down to inorganic P. The outline arrows indicate P uptake. (Source: 
Rengel & Marschner, 2005). 
 
By and large, microorganisms isolated from the rhizosphere and rhizoplane 
of various crops are more active in producing auxins than those from root-
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free soil because of rich supplies of substrates exuded from roots compared 
with non-rhizosphere soil (Strzelczyk & Pokojska-Burdzeij, 1984). A 3-fold 
higher IAA content was found in the rhizosphere compared with non-
rhizosphere environments (Narayanaswami & Veerraju, 1969).  It has been 
estimated that 80% of bacteria isolated from the rhizosphere can produce 
IAA (Patten & Glick, 1996; Ahmad et al., 2006). Similarly, over 66% of wild 
Arabica coffee-associated rhizobacteria secreted IAA (Paper V).  
 
A survey of the IAA biosynthesis pathways utilized by plant-associated 
bacteria reveals that pathogenic bacteria such as Pseudomonas syringae, 
Agrobacterium tumefaciens and Erwinia herbicola synthesize IAA predominantly 
via the indole-3-acetamide (IAM) pathway. Synthesis by this route is 
generally constitutive. PGPR such as Rhizobium, Bradyrhizobium and 
Azospirillum species synthesize IAA, mainly via the indole-3-pyruvic acid 
(IPyA) pathway, which may be subject to more stringent regulation by plant 
metabolites (Patten & Glick, 1996). Other rhizobacteria may produce 
cytokinins (Timmusk et al., 1999) and gibberellins (Khan et al., 2006).  
 
Lowering of ethylene production 
 
The term ‘stress ethylene’ was coined by Abeles (1973) to describe the 
acceleration of ethylene biosynthesis by plants in response to biological and 
environmental stresses.  Ethylene stimulates senescence and leaf and fruit 
abscission, inhibits plant growth (i.e. roots) and triggers cell death near 
infection sites (Bashan & de-Bashan, 2005). In agriculture it is important to 
control ethylene levels, often by lowering them in order to prevent 
economic losses.  
 
1-aminocyclopropane-1-carboxylate (ACC) is the immediate direct 
physiological precursor of ethylene. Several soil microorganisms, mainly 
Pseudomonas spp. synthesize the enzyme ACC deaminase (reviewed by Glick 
et al., 1999) which degrades ACC, thus preventing plant production losses 
by inhibitory levels of ethylene. In the present study, over 27% of 
rhizobacteria (all Pseudomonas spp.) isolated from wild Coffea arabica 
rhizospheres were able to degrade ACC (Paper V). Glick et al. (1998) put 
forward the theory that the mode of action of some PGPR was the 
production of ACC deaminase. Those authors suggested that ACC 
deaminase activity would decrease ethylene production in the roots of host 
plants and result in root lengthening. In some cases, the growth promotion 
effects of ACC deaminase-producing PGPR appear to be best expressed in 
stressful situations (Grichko & Glick, 2001). 
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Biocontrol of fungal plant diseases (particularly coffee 
diseases) 
 
Phytopathogenic microbes have an immense impact on agricultural 
productivity, greatly reducing crop yields and sometimes causing total crop 
loss (Antoun & Prévost, 2006). Major pathogens induce well-known root or 
vascular diseases with obvious symptoms (Weller, 1988). Pathogenic fungi in 
general and Fusarium spp. in particular are highly destructive pathogens of 
both greenhouse and field-grown major crops under favourable conditions 
for disease development. The disease caused by this fungus is characterized 
by yellowing of the older leaves, browning of the vascular system, wilting in 
a later stage and finally death of the whole plant. Chlamydiospores of the 
pathogen remain in infested soils for several years and invasion occurs 
through wounds on the root surface.  
 
At present, emerging serious fungal wilt diseases are one of the biggest 
challenges confronting African coffee growers, with noticeable yield losses 
(Adugna et al., 2001; Geiser et al., 2005; Serani et al., 2007). Coffee wilt 
disease or tracheomycosis caused by Fusarium xylarioides Steyaert 
(teleomorph: Gibberella xylarioides Heim and Saccas) is becoming an 
important major coffee disease of both Robusta and Arabica coffee in coffee 
growing regions of Africa (Adugna et al., 2001; Geiser et al., 2005; Silva et 
al., 2006). The incidence of coffee vascular disease (tracheomycosis) in 
Ethiopia is reported to be 60%, with significant yield losses due to very 
severe damage and ultimate death of millions of coffee bushes (Adugna et al., 
2001). Other important coffee pathogens reported from Ethiopia include 
Fusarium stilboides Wollenw (telemorph: Gibberella stilboides) (Silva et al., 
2006) and Fusarium oxysporum Schlechtend.: Fr. (Wellman, 1954). However, 
studies reveal that F. xylarioides causes more deaths of young coffee plants 
than any other Fusarium spp. (Serani et al., 2007).   
 
Currently, control of plant disease is a pressing need for agriculture across 
the globe, particularly in economically disadvantaged countries. Existing 
practices for controlling plant disease are fundamentally based on genetic 
resistance in the host plant, management of the plant and its environment, 
and synthetic chemicals (Strange, 1993). The high cost of pesticides, the 
emergence of fungicide-resistant pathogen biotypes and other social and 
health-related impacts of conventional agriculture on the environment have 
increased interest in agricultural sustainability and biodiversity conservation 
(van der Vossen, 2005). Moreover, many of the synthetic chemicals may 
lose their usefulness due to revised safety regulations and concern over non-
target effects (Guy et al., 1989). 
 
Thus, there is a need for new solutions to plant disease problems that 
provide effective control while minimizing cost and negative consequences 
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for human health and the environment (Cook et al., 1996). In most systems, 
the biological elements are the primary factors in disease suppression and the 
topic of ‘biological control of plant pathogens’ has gained feasibility in the 
context of sustainable issues (Weller et al., 2002). The rich diversity of the 
microbial world provides a seemingly endless resource for this purpose. 
Biological control is also likely to be more robust than disease control that is 
based on synthetic chemicals. The complexity of the organism interactions, 
the involvement of numerous mechanisms of disease suppression by a single 
microorganism, and the adaptedness of most biocontrol agents to the 
environment in which they are used all contribute to the belief that 
biocontrol will be more durable than synthetic chemicals (Cook, 1993). 
Microorganisms that can grow in the rhizosphere are ideal for use as 
biocontrol agents, since the rhizosphere provides the front-line defence for 
roots against attack by pathogens (Weller, 1988). The groups of soil 
microorganisms with antagonistic properties towards plant pathogens are 
diverse, including plant-associated prokaryotes and eukaryotes (Barea et al., 
2005). Increased plant productivity by biocontrol mechanisms is indirect and 
results from the suppression of deleterious microorganisms and soil-borne 
pathogens, by PGPR in particular (Schippers et al., 1987).  
 
Bacillus/Paenibacillus spp. have been tested on a wide variety of plant species 
for their ability to control diseases. They are appealing candidates for 
biocontrol because they produce endospores that are tolerant to heat and 
desiccation (Weller, 1988). Currently, Pseudomonas spp. are also receiving 
much attention as biocontrol agents due to their remarkable potential for 
rhizosphere competence (Bashan & de-Bashan, 2005). The world-wide 
interest in these groups of bacteria was sparked by studies initiated for 
sustainable production systems. The fluorescent pseudomonads (De Freitas & 
Germida, 1990) and Bacillus spp. (Landa et al., 1997) are the main candidates 
for the biological control of diseases induced by fungal pathogens and they 
have been applied successfully to suppress fusarium wilts of various plant 
species. Similarly, among wild Arabica coffee rhizosphere isolates, Bacillus 
and Pseudomonas spp. in particular showed remarkable inhibition against 
Fusarium xylarioides, F. stilboides and F. oxysporum under in vitro conditions 
(Fig. 7, Paper IV). 
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Fig. 7. Control plates (left row) and dual culture media showing some rhizobacteria 
and coffee pathogen interactions: a) F. oxysporum, b) P. chlororaphis (AUPB23) vs F. 
oxysporum, c) P. chlororaphis (AUPB24) vs F. oxysporum, d) F. stilboides, e) 
Pseudomonas sp.(AUPB15) vs F. stilboides, f) Bacillus sp. (AUBY95) vs F. stilboides (no 
inhibition), g) F. xylarioides, h) B. subtilis vs F. xylarioides. Arrows indicate the zones 
of inhibition (Paper IV). 
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Mechanisms used by biocontrol PGPR  
 
Pathogen suppression by antagonistic microorganisms can result from one or 
more mechanisms depending on the particular antagonist involved (Barea et 
al., 2005). An effective biocontrol agent often acts through a combination of 
several different mechanisms (Whipps, 2001). 
 
Siderophore production  
 
Living organisms require iron as a component of proteins involved in 
important life processes such as respiration, photosynthesis and nitrogen 
fixation. Iron is one of the major elements in the earth’s crust but soil 
organisms such as plants and microbes have difficulty in obtaining sufficient 
iron to support their growth because of formation under aerobic conditions 
of ferric oxides, which cannot be readily transported into cells. Under such 
iron starvation, bacteria, fungi and plants secrete small, specialized efficient 
iron (III) chelator molecules commonly known as siderophores (Drechsel & 
Jung 1998). After the iron-siderophore complexes have formed, these now 
soluble complexes are internalized via active transport into the cells by 
specific membrane receptors (Glick et al., 1999). Following either cleavage 
or reduction to the ferrous state, the iron is released from the siderophore 
and used by a cell (Glick et al., 1999). 
 
Lankford (1973) coined the term siderophore to describe low molecular 
weight (approximately 600 to 1500 daltons) molecules that bind ferric iron 
with an extremely high affinity. Siderophore was derived from a Greek term 
meaning iron carrier (Ishimaru, 1993). The dominant iron-binding ligands 
of siderophores are hydroxamates and catecholates (phenolates), but 
carboxylate, oxazoline, α-hydroxy carboxylate and keto hydroxyl bidentate 
siderophores have also been found (Essén et al., 2006). In addition, hybrid 
siderophores with more than one type of ligand group exist (Neilands, 
1981). Each functional group presents two atoms of oxygen, or less 
commonly, nitrogen, that bind to iron (III). While bacterial siderophores are 
structurally diverse, fungal siderophores are dominated by hydroxamate 
siderophores (Drechsel & Jung, 1998). On the other hand, plant 
siderophores are linear hydroxy- and amino-substituted iminocarboxylic 
acids, such as mugineic and avenic acids (Sugiura et al., 1981).  
 
Many bacteria are capable of producing more than one type of siderophore 
or have more than one iron-uptake system to take up multiple siderophores 
(Neilands, 1981). A considerable number of wild Arabica coffee-associated 
rhizobacteria (67%) produce siderophores (Paper IV). Wide arrays of 
beneficial plant-associated bacterial genera, e.g. Pseudomonas, Azotobacter, 
Bacillus, Enterobacter, Serratia, Azospirillum and Rhizobium secrete various 
types of siderophores (Glick et al., 1999; Loper & Henkels 1999; Paper IV). 
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Siderophores function mainly in the solubilization, transport and storage of 
iron (Stephan et al., 1993). Some other important mechanisms by which 
siderophore-producing bacteria contribute to the promotion of plant growth 
are described briefly below. 
 
Siderophores produced by certain strains of fluorescent Pseudomonas spp. 
have been linked to suppression of soil-borne plant diseases. It has been 
suggested that siderophores act antagonistically by sequestering iron from the 
environment, restricting growth of the pathogen (Bashan & de-Bashan, 
2005). Convincing evidence for the involvement of siderophores in disease 
suppression is readily available (Bashan & de-Bashan, 2005). For example, a 
mutant strain of P. putida that overproduces siderophores has been shown to 
be more effective than the wild bacterium in controlling the pathogenic 
fungus Fusarium oxysporum in tomato. Many wild strains that lose their 
siderophore trait also lose biological control activity. The extent of disease 
suppression as a consequence of bacterial siderophore production is affected 
by several factors (Bashan & de-Bashan, 2005), including the specific 
pathogen, the species of biocontrol PGPR, the soil type, the crop and the 
affinity of the siderophore for iron. For instance, siderophore-mediated 
suppression should be greater in neutral and alkaline soils than in acid soils 
(Baker et al., 1986). Thus, disease suppression under controlled laboratory 
conditions is only an indication of the efficacy of the biocontrol agent in the 
field.  
 
Pathogens are thought to be sensitive to suppression by siderophores for 
several reasons: (a) they produce no siderophores of their own; (b) they are 
unable to use siderophores produced by the antagonists or by other 
microorganisms in their immediate environment; (c) they produce too few 
siderophores or  biocontrol PGPR produce siderophores that have a higher 
affinity for iron than those produced by fungal pathogens, allowing the 
former microbes to scavenge most of the available iron, and thereby prevent 
proliferation of fungal pathogens; or (d) they produce siderophores that can 
be used by the antagonist, but they are unable to use the antagonist’s 
siderophores (Weller, 1988; Bashan & de-Bashan, 2005). 
 
Bashan & de-Bashan (2005) have reported that depletion of iron from the 
rhizosphere normally does not affect plant growth, as plants can thrive on 
less iron than can microorganisms. However, some plants can bind and 
release iron from bacterial iron-siderophore complexes, and use the iron for 
growth. Thus, these plants benefit in two ways: from the suppression of 
pathogens and from enhanced iron nutrition, resulting in increased plant 
growth.  
 
Pseudomonas siderophores have also been implicated in inducing systemic 
resistance (ISR) in plants (Leeman et al., 1996), i.e. enhancement of the 
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defence capacity of the plant against a broad spectrum of pathogens. 
Exposure to pathogens, non-pathogens, PGPR and microbial metabolites 
stimulates the plant’s natural self-defence mechanisms before a pathogenic 
infection can be established, effectively `immunizing' the plant against 
fungal, viral and bacterial infections (Bashan & de-Bashan, 2005). Protection 
occurs by accumulation of compounds such as salicylic acid, which plays a 
central protective role in acquired systemic resistance, or by enhancement of 
the oxidative enzymes of the plant. While acquired systemic resistance is 
induced upon pathogen infection, induced systemic resistance can be 
stimulated by other agents, such as PGPR inoculants. The feasibility of 
protecting plants by induced systemic resistance has been demonstrated for 
several plant diseases. For instance, plants inoculated with the biocontrol 
PGPR P. putida and Serratia marcescens were protected against the cucumber 
pathogen P. syringae pv. Lachrymans (Bashan & de-Bashan, 2005). 
 
Hydrogen cyanide (HCN) production  
 
Considerable numbers of free-living rhizospheric bacterial communities, 
mainly Pseudomonas spp. (Faramarzi et al., 2004; Ahmad et al., 2006; 
Faramarzi & Brand, 2006; Paper IV), are capable of generating HCN by 
oxidative decarboxylation from direct precursors such as glycine, glutamate, 
or methionine (Castric, 1977). Other rhizobacterial genera reported to 
produce HCN include Bacillus (Ahmad et al., 2006; Faramarzi & Brand, 
2006) and Chromobacterium (Faramarzi & Brand, 2006; Paper IV). However, 
hydrogen cyanide has not been detected in cultures of Pseudomonas 
aeruginosa, Serratia marcescens, Bacillus subtilis, Staphylococcus aureus and 
Escherichia coli (Michaels & Corpe, 1965). 
 
In general, cyanide is formed during the early stationary growth phase 
(Knowles & Bunch, 1986). Cyanide occurs in solution as free cyanide, 
which includes the cyanide anion (CN-) and the non-dissociated HCN. It 
does not take part in growth, energy storage or primary metabolism, but is 
generally considered to be a secondary metabolite that has an ecological role 
and confers a selective advantage on the producer strains (Vining, 1990). 
Cyanide is a phytotoxic agent capable of inhibiting enzymes involved in 
major metabolic processes and is considered one of the typical features of 
deleterious rhizobacterial isolates (Bakker & Schippers, 1987). Nevertheless, 
at present its applications in areas of biocontrol methods (see below) are 
increasing (Voisard et al. 1989; Devi et al., 2007).  
 
Cyanogenesis in bacteria accounts in part for the biocontrol capacity of the 
strains that suppress fungal diseases of some economically important plants 
(Voisard et al., 1989).  For instance, for many pseudomonads, production of 
metabolites such as hydrogen cyanide (HCN) is the primary mechanism in 
the suppression of root fungal pathogens. Cyanogenic bacterial species have 
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also been found to be effective in killing the subterranean termite 
Odontotermes obesus, an important pest of major agricultural crops and forest 
plantation trees, under in vitro conditions (Devi et al., 2007), in addition to 
suppression of plant parasitic nematodes (Siddiqui et al.,  2006). Hydrogen 
cyanide (HCN) effectively blocks the cytochrome oxidase pathway and is 
highly toxic to all aerobic microorganisms at picomolar concentrations. 
However, producer microbes, mainly pseudomonads, are reported to be 
resistant (Bashan & de-Bashan, 2005). 
 
Production of lytic enzymes 
 
A large array of other microbial substances is involved in the suppression of 
phytopathogenic growth and subsequent reduction in damage to plants. 
These substances include lytic enzymes such as chitinase, ß-1,3-glucanase, 
protease and lipase (Bashan & de-Bashan, 2005). Many Pseudomonas and 
Bacillus species are capable of producing some of these hydrolytic enzymes 
(Paper IV). For example, Pseudomonas stutzeri produces extracellular chitinase 
and ß-1,3-glucanase, which lyse the pathogen Fusarium sp. (Bashan & de-
Bashan, 2005). Cladosporium werneckii and B. cepacia can hydrolyze fusaric 
acid (produced by Fusarium), which causes severe damage to plants (Bashan 
& de-Bashan, 2005). Direct evidence for the role of cell-wall degrading 
enzymes in biocontrol in vivo comes from studies utilizing mutant strains 
overexpressing or lacking a particular enzyme, or transgenic plants 
expressing these enzymes (Pozo et al., 2004). 
 
Antibiotics 
 
Many organisms operative in pathogen suppression also act via antibiosis 
(Mazzola, 2002). Antibiotic production by biocontrol PGPR is perhaps the 
most powerful mechanism against phytopathogens (Bashan & de-Bashan, 
2005). Indeed, the first clear-cut experimental demonstration that a bacteria-
produced antibiotic could suppress plant disease in an ecosystem was made 
by Tomashow & Weller (1988). Fluorescent pseudomonads (Paper IV) have 
been shown to produce a range of antibiotics, e.g. 2,4-
diacetylphloroglucinol, which suppress the growth of various soil-borne 
fungal phytopathogens (Mazzola, 2002).  
 
Competition 
 
Competition for nutrients and suitable niches is another key mechanism 
among pathogens and biocontrol PGPR in biocontrol of some plant diseases 
(Bashan & de-Bashan, 2005). Members of the pseudomonads are highly 
efficient in competition for root resources among rhizobacterial 
communities (Barea et al., 2005). On plant surfaces, host-supplied nutrients 
include exudates, leachates, waste products of other organisms or senesced 
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tissue (Pal & Gardener, 2006). To successfully colonize the phytosphere, a 
microbe must effectively compete for the available nutrients. Biocontrol 
rhizosphere bacteria have the ability to multiply and spread in the 
rhizosphere environment, to colonize potential infection sites on the root 
and to act by direct contact with the pathogens (Insunza et al., 2002). 
Although difficult to prove directly, much indirect evidence suggests that 
competition between pathogens and non-pathogens for nutrient resources is 
important for limiting disease incidence and severity (Bashan & de-Bashan, 
2005; Pal & Gardener, 2006). The degree of the susceptibility of soil-borne 
pathogens to the prevailing competition remarkably varies among microbes. 
In general, soil-borne phytopathogens such as species of Fusarium and 
Pythium that infect through mycelial contact are more susceptible to 
competition from other soil- and plant-associated microbes than those 
pathogens that germinate directly on plant surfaces and infect through 
appressoria and infection pegs (Pal & Gardener, 2006).  
 
Studies have often revealed multiple modes of action of the population of 
putative PGPR inhabiting the rhizosphere (Weller, 1988; Haas & Keel, 
2003). It is important to remember that in a given biological agent more 
than one mechanism may operate to suppress a pathogen, and the relative 
importance of a particular mechanism may vary with the physical or 
chemical conditions in the rhizosphere (Weller, 1988). In addition, 
Pseudomonas spp. produce several metabolites with antimicrobial activity 
towards other bacteria, fungi and even nematodes (Haas & Keel, 2003). 
Several reports also show the potential of combining different biocontrol 
agents with different disease-suppressive mechanisms in the field (de Boer et 
al., 2003) and the combined inoculation of selected rhizosphere 
microorganisms has been recommended for maximising plant growth and 
nutrition (Probanza et al., 2001). 
 
Interactions between AMF and rhizobacteria 
 
Despite the difficulty in selecting a multifunctional microbial inoculum, 
appropriate microbial combinations can be recommended for a given 
biotechnological input related to improvement of plant performance. 
Beneficial plant-microbe interactions in the rhizosphere are primary 
determinants of plant health and soil fertility (Jeffries et al., 2003). The 
rhizosphere of mycorrhizal plants (mycorrhizosphere) harbours a great array 
of microbial activities responsible for several key ecosystem processes (Barea 
et al., 2002). A typical beneficial effect is that exerted by the ‘mycorrhiza-
helper-bacteria’ (MHB), a term coined by Garbaye (1994) for those bacteria 
known to stimulate mycelial growth of mycorrhizal fungi and/or enhance 
mycorrhizal formation. Within the mycorrhizosphere, AMF interact 
positively with various types of rhizobacterial communities that have proven 
agronomic and/or ecological significance, including symbiotic/free living 
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N2-fixing bacteria, phosphate solubilizing bacteria, heavy metal detoxifying 
bacteria, microbial biocontrol agents and microbes that are involved in soil 
aggregate formation (Barea et al., 2005). Certain rhizobacteria are known to 
produce compounds such as phytohormones that increase the rates of root 
exudation (Azcón-Aguilar & Barea, 1992). Consequently these rhizosphere 
microorganisms may be able to affect the presymbiotic stages of AM 
development, such as spore germination rate and mycelial growth for root 
colonization (Azcón-Aguilar & Barea, 1995). Once the arbuscular symbiosis 
has developed, AM hyphae influence the surrounding soil, i.e. the 
mycorrhizosphere (Linderman, 1988), resulting in the development of 
distinct microbial communities relative to the rhizosphere and bulk soil 
(Andrade et al., 1997). Mycorrhiza formation in its turn changes several 
aspects of plant physiology and some nutritional and physical properties of 
the rhizospheric soil (Barea et al., 2002) and consequently results in alteration 
of the microbial composition in the rhizosphere (Marschner, 1998; Hodge 
& Campbell, 2001).  
 
Muthukumar et al. (2001) have indicated that microorganisms act 
synergistically when inoculated simultaneously. Many biocontrol agents, 
both Gram-negative (Barea et al., 1998; Barea et al., 2005) and Gram-
positive (Budi et al., 1999) strains, at least (cf. above) do not have inhibitory 
effects on AM formation. None of the Pseudomonas strains tested to date 
affect: (i) the numbers or diversity of the native AM fungal population; (ii) 
the percentage of root length that becomes mycorrhizal; or (iii) AM 
performance (Barea et al., 2005). On the other hand, the antifungal activities 
of certain Pseudomonas spp. may improve plant growth and nutrient (N and 
P) acquisition by the mycorrhizal plants (Barea et al., 1998). Among Gram-
positives, a Paenibacillus sp. isolated from the mycorrhizosphere of sorghum 
shows antagonistic activity against soil-borne fungal pathogens and stimulates 
mycorrhization (Budi et al., 1999). The same applies to certain P. polymyxa 
strains associated with wheat (Artursson et al., unpubl.). 
 
Ratti et al. (2001) found that a combination of the arbuscular mycorrhizal 
fungus Glomus aggregatum and the PGPR Paenibacillus polymyxa and 
Azospirillum brasilense maximized biomass and P content of the host plant 
Cymbopogon martinii when grown with an insoluble source of inorganic 
phosphate. Similarly, both Enterobacter sp. and Bacillus subtilis were found to 
promote the establishment of the AM Glomus intraradices and to increase 
plant biomass and tissue N and P contents (Toro et al., 1997). Kim et al. 
(1998) also found that P content increased with inoculation with either the 
AM Glomus etunicatum or the phosphate solubilizing PGPR Enterobacter 
agglomerans; however, the highest N and P uptake was observed when 
tomatoes were inoculated with both organisms. It is interesting that in each 
of the above reports, one or more of the helper bacteria are known to have 
P solubilizing capabilities and this clearly suggests that the bacteria are acting 
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in concert with the AM to improve P acquisition of the host plant. AM 
inoculation per se improves the establishment of both inoculated and 
indigenous phosphate solubilizing rhizobacteria acting as MHB (Toro et al., 
1997; Barea et al., 2002). In the mycorrhizosphere, AMF also interact with 
various soil-borne fungal phytopathogens such as agents of Fusarium wilt. A 
growing body of evidence reveals that inoculation with AMF significantly 
suppresses disease development and incidence induced by Fusarium spp. 
(Harrier & Watson, 2004). The potential biotechnological applications of 
native free-living microbes with multiple beneficial traits (Vassilev et al., 
2006) and synergistic interactions (Babana & Antoun, 2006) in promotion of 
plant growth have been well addressed. 
 

Biofertilizers for sustainable agriculture  
 
Sustainable farming systems strive to minimize the use of costly and 
environmentally unfriendly synthetic pesticides/agrochemicals and to 
optimize the use of alternative management strategies to improve soil 
fertility and control soil-borne pathogens (Harrier & Watson, 2004). A more 
sustainable agriculture that is ‘ecologically sound, economically viable, 
socially just and humane’ (Gips, 1987) should aim to recycle minerals in the 
soil with no or few external inputs, maintain a high biodiversity in agro-
ecosystems, favour mechanical and biological weed control, and better 
exploit soil-plant-microbe interactions for plant nutrition and protection 
against pests (Edwards et al., 1990). An answer to this is the biofertilizer, an 
environmentally friendly fertilizer now used in many countries. During the 
last couple of decades, the use of biofertilizers-PGPR for sustainable 
agriculture has increased tremendously in various parts of the world. Vessey 
(2003) defined biofertilizer as a substance that contains living 
microorganisms which, when applied to seed, plant surfaces or soil, colonize 
the rhizosphere or the interior of the plant and promote growth by 
increasing the supply or availability of primary nutrients to the host plant. 
The term is not synonymous with organic/biological fertilizer or 
biopesticide. The main sources of biofertilizers are PGPR, beneficial 
rhizospheric fungi such as arbuscular mycorrhizae and Penicillium bilaii and 
cyanobacteria (blue-green algae) that are long known to have plant growth 
promoting effects via increasing the nutrient status of host plants (Vessey, 
2003). Various studies have demonstrated a positive influence of 
biofertilization on horticultural plant growth, development and yield 
(Rodríguez Sr., 2006). Significant increases in growth and yield of 
agronomically important crops in response to inoculation with biofertilizers 
have been reported (Asghar et al., 2002). Moreover, AM products are now 
commercially available as biofertilizers in Europe, Asia and the U.S.A 
(Narutaki & Miyamoto, 1996; Talavera et al., 2001).  
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The mode of action by which biofertilizers enhance the nutrient status of 
host plants (cf. above) can be categorized into some important areas (Vessey, 
2003): (1) biological N2 fixation; (2) increasing the availability of nutrients in 
the rhizosphere (e.g. solubilization of phosphorus); (3) inducing increases in 
root surface area; (4) enhancing other beneficial symbioses of the host such 
as arbuscular mycorrhizae and phytohormone production; 5) production of 
enzymes that decrease phytohormone production by the host,  induction of 
the host to produce signal substances to other symbionts (e.g. flavonoids); 
and (6) combination of modes of action. Recorded important benefits from 
biofertilizers include: 1) Increasing crop yield by 20-30%; 2) replacing 
chemical nitrogen and phosphorus by 25%; 3) activating the soil 
biologically; 4) restoring natural soil fertility; and 5) providing protection 
against drought and some soil-borne diseases 
(http://www.vasat.org/learning_resources/OrganicFAQs/biofertilizer.htm; 
21-Aug-2007). In addition, some PGPR appear to promote growth by 
acting as both biofertilizer and biopesticide. For instance, strains of 
Burkholderia cepacia have been shown to have biocontrol characteristics to 
Fusarium spp., but also to stimulate growth of maize under iron-poor 
conditions via siderophore production (Bevivino et al., 1998). The overall 
simplified methods of using biofertilizers are presented in Fig. 8.  
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Fig. 8. General methodology for obtaining and using biofertilizers. Source: 
(http://www.pugwash.org/reports/ees/cuba2004/02%20Pugwash/07_Ondina.pdf.; 
21-Aug-2007) 
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Conclusions 
  
The main findings of this thesis can be summarized as follows: 
 
A number of the shade trees studied, particularly the tree legumes, are ideal 
for agroforestry systems because most coffee rhizospheres under them 
presented higher AMF spore counts and greater diversity, even in deep soil 
layers, than unshaded coffee plants (Papers I and II). Canopy bases and 
topsoil layers harboured higher mean spore densities of AMF (Paper II). 
Overall, members of Glomeromycota were dominated by Glomus and 
Acaulospora (Papers I and II). The presence of these native AMF genera in 
particular in the study areas is highly vital for the establishment and growth 
of wild Arabica coffee seedlings.  
 
Phosphate solubilizing rhizobacterial isolates from wild coffee plants were 
screened for P solubilization efficiency (Paper III). In all cases, pH and 
mobilized P values had an inverse relationship. By and large, Gram-negative 
phosphobacteria showed remarkable superior activities over the Bacillus 
group in terms of lowering the pH and releasing P into the growth medium. 
2-ketogluconic and gluconic acids were the principal organic acids exuded 
by all Gram-negative wild Arabica coffee-associated rhizobacteria and caused 
steep declines in pH values. The production of these organic acids can be 
suggested to be the main mechanism used by these rhizobacteria to mobilize 
insoluble P sources. Higher concentrations of 2-ketogluconic acid were 
measured in HAP medium (the most insoluble P source), indicating 
enhanced induction of glucose dehydrogenase (GDH) as a result of 
phosphate starvation. Isolates AUEY28 and AUEY29 (both Erwinia sp.) 
showed remarkable P solubilizing abilities, making them the most promising 
candidates for a bioinoculant development programme.  
 
Potent inhibitory effects were exhibited by several coffee-associated 
rhizobacterial isolates against deleterious coffee wilt diseases caused by 
Fusarium spp. (Paper IV). Wild Arabica coffee-associated antagonists showed 
more prominent inhibitory activity against F. xylarioides and F. stilboides than 
against F. oxysporum. The highest percentage inhibition against the target 
fungal pathogens was caused by the isolate AUPB24 (P. chlororaphis).  The 
antagonists were found to produce various inhibitory substances as possible 
mechanisms of inhibition of the coffee fungal pathogens. 
 
PCR-RFLP and 16S rRNA gene analyses revealed a limited number of 
rhizobacteria, mainly Pseudomonas and Bacillus spp., but this study does 
provide first-hand information on the presence of some strains closely 
related to rhizobacteria of proven importance for plant growth promotion 
(Paper V). Several members of the pseudomonads showed some direct 
phytobeneficial traits, e.g. production of IAA and utilization of ACC.  
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Overall, the rhizobacterial isolates showed multiples of beneficial traits that 
can qualify them either as potential biofertilizers or biocontrol agents (Papers 
III-V). The natural coffee forests of southwestern Ethiopia are therefore 
ideal focal sites not only for in situ coffee genetic resources and biodiversity 
conservation but also for isolation of rhizobacteria with biocontrol and 
biofertilizer capacities for the promotion of organically grown coffee. 
 
Future trends 
 
Given that this investigation is the first of its kind in coffee growing areas of 
Ethiopia and that studies on the wild Arabica coffee-associated AMF and 
rhizobacteria are generally lacking, there is much opportunity for further 
research in this field, both in Ethiopia and elsewhere. Field-collected AMF 
spores and identification based on morphotypes (as in this study) provide 
only a static picture of the AMF community. A fuller understanding of the 
AMF community composition in natural coffee forests can be obtained by 
using trapping and molecular methods that directly involve plant roots 
and/or spores in combination with the conventional techniques. It is also 
recommended that further studies be conducted to determine microbial 
communities by involving both culture and culture-independent techniques 
(extraction and analysis of total soil DNA) to reveal the real picture of 
rhizobacteria diversity associated with wild Arabica coffee. The current in 
vitro study verified the presence of many indigenous beneficial rhizobacteria 
of wild Arabica coffee plants that can function both as potent biofertilizers 
and biocontrol agents. The development of better screening procedures and 
understanding of the genetic basis of phosphate solubilization and 
rhizospheric competence will help in developing novel PSMs that could be 
studied in greenhouse and field trials to ascertain their future applicability for 
inoculum development. In general, the availability of new and powerful 
technologies for studying co-operative microbial interactions in the 
rhizosphere guarantees a greater understanding of these processes, which will 
facilitate their successful applications in biotechnology. Further studies may 
address the consequences of the co-operation between microbes in the 
rhizosphere under field conditions to assess their ecological impacts and 
biotechnological potential. As our understanding of the mechanisms used by 
PGPR advances, it becomes feasible to enhance their capacity to stimulate 
plant growth by modifying promising traits in both areas of biofertilizers and 
biocontrol agents, e.g., by introducing genes responsible for the biosynthesis 
of desirable metabolites that can extend the range of their abilities to 
improve sustainable plant productivity, while maintaining environmental 
quality.  



 46 

Thus, future research in rhizosphere biology which relies on the 
development of molecular and biotechnological approaches should increase 
our knowledge of coffee rhizospheres and make it possible to achieve 
integrated management of soil microbial populations. 
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