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Abstract 

Herrera-Foessel, S.A. 2007. Enhancing the genetic diversity and durability of leaf rust 
resistance in durum wheat. Doctoral Thesis. ISSN 1652-6880, ISBN 978-91-576-7300-8. 
 
The importance of leaf rust, caused by Puccinia triticina, has increased dramatically in 
recent years in durum wheat (Triticum turgidum ssp. durum) worldwide. Little is known on 
the occurrence and nature of resistance in this crop. Thirty durum wheat lines derived from 
the International Maize and Wheat Improvement Center (CIMMYT) were characterized for 
their resistance to the Mexican P. triticina race BBG/BN which was identified in 2001 and 
caused susceptibility of a large number of the world’s durum wheat cultivars. 

Ten genotypes with race-specific resistance displayed low to intermediate seedling 
reactions to leaf rust. In the field, eight genotypes were immune and two displayed 
moderate levels of resistance. The slow rusting resistant lines displayed a range of disease 
severity responses indicating genetic diversity. 

The yield protection conferred by race-specific and slow rusting resistance was 
investigated in yield loss trials under high leaf rust pressure in the field. Race-specific 
resistance provided effective protection against yield losses caused by leaf rust. Yield losses 
for slow rusting resistant lines were higher than for immune race-specific resistant ones, but 
significantly lower than for the susceptible checks. Slow rusting lines with high resistance 
levels and reduced yield losses were identified. 

The slow rusting components; latent period, uredinium size and receptivity, were 
determined in greenhouse experiments, and associations of these components with leaf rust 
progress in the field were calculated. The results indicated that predominantly uredinium 
size contributed to slow leaf rust progress in durum wheat. 

The genetic basis and diversity of race-specific resistance was also determined in 
progenies from crosses of nine durum wheat lines with a leaf rust susceptible parent, and 
from intercrosses among the resistant parents. Five distinct sources of resistance were 
identified, four of which involved single partially, or completely, dominant genes, of which 
two were closely linked, and a pair of partially dominant complementary genes. Using 
molecular tools, the two linked genes were located on the long arm of chromosome 6B. 

The best slow rusting resistant lines and the five distinct race-specific resistance sources 
can be used for enhancing the diversity and durability of leaf rust resistance in durum 
wheat. 
 
Keywords: Triticum turgidum ssp. durum, Puccinia triticina, Puccinia recondita f. sp. 
tritici, genetic resistance, control, yield losses, inheritance studies, mapping.  
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Introduction 

Wheat is on a global basis the most widely grown cereal grain and occupies 17% 
(220 million hectares) of the total cultivated land in the world. It is the main staple 
food for 35% of the total world’s population. The two most common types of 
wheat are bread wheat and durum wheat. Durum wheat is grown on approximately 
17 million hectares in the world and about half of the area is in developing 
countries where durum wheat is used for making a range of products (CIMMYT, 
2006). The wheat rusts (leaf rust, yellow rust and stem rust) have historically been 
diseases of great importance and they have significantly influenced the 
development of human civilisation (Roelfs et al., 1992; McIntosh et al., 1995). 
Early records of devastations of rust have for example been described in the Bible 
and in early Greek and Roman literature (Roelfs et al., 1992; McIntosh et al., 
1995). Host plant resistance is the most effective way to protect wheat from losses 
due to rust diseases. However, breakdown of the resistance to leaf rust in durum 
wheat was recently reported in several countries. For example leaf rust epidemics 
during 2001 to 2003 severely affected a durum wheat production area of 250,000 
hectares in north-western Mexico causing estimated losses of at least US$32 
million (Singh et al., 2004). The principal source of durum wheat germplasm for 
the developing world is from the International Maize and Wheat improvement 
Center (CIMMYT), in Mexico. The main objective of this study was to reduce 
genetic vulnerability of durum wheat to leaf rust epidemics in developing 
countries by enhancing the genetic diversity and durability of leaf rust resistance 
in CIMMYT durum wheat germplasm.  
 

Background 
The host: general genetic aspects of durum wheat 
Durum wheat (Triticum turgidum var. durum) is grown on 8-10% of the total 
cultivated wheat area worldwide (Mac Key, 2005; Kantety et al., 2005). The 
durum wheat production in the developing world is concentrated in the Middle 
East, Central India, and the Mediterranean region of West Asia and North Africa 
(WANA). Other production areas include Ethiopia, Argentina, Chile, Russia, 
Kazakhstan and Mexico. In developing countries, durum wheat is produced in 
areas where it plays an important role for food security and livelihoods of millions 
of resource-poor farmers and their families (Ammar et al., 2006). During 1991-
1997 more that 90% of the durum wheat cultivars released in developing countries 
were introduced, or derived from, germplasm developed at CIMMYT (Pfeiffer & 
Payne, 2005). Durum wheat is used for the production of pasta products, 
couscous, bulgur, frekeh, leavened and flat bread and other regional dishes in 
WANA and the Mediterranean basin. It is also used for making other products 
such as chapatis in the Indian subcontinent, leavened bread in Caucasus, and 
tortillas and mote in Central and South America (Pena & Pfeiffer, 2005).   
 

Wheat belongs to the grass family Poaceae (=Gramineae) which includes 
approximately 10,000 different species (Levy & Feldman, 2002), and the 
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subgroup or tribe, Triticeae Dumort (Mac Key, 2005). The classification of the 
genus Triticum and other related genera within the tribe have been under 
discussion, particularly in combining the species of Aegilops into Triticum (Mac 
Key, 1966; Gupta & Baum, 1986). Several species with different ploidy-levels are 
grouped in the genus Triticum. In Table 1 the members of the Triticum genera 
(sensu stricto) are presented according to Feldman (2001).  
 

The development of wheat into different polyploidy series is a classical example 
of alloploidization. Allopolyploids (or amphiploids) contain two or more diverged 
homoeologous genomes derived from hybridization of species (Levy & Feldman, 
2002). The hybrid that results from such a cross is fertile only through 
chromosome doubling (Levy & Feldman, 2002). 
 

Durum wheat (T. turgidum ssp. durum Desf.) is an allotetraploid (2n = 28, 
AABB) that arose from hybridization followed by chromosome doubling of a 
cross between Triticum urartu (genome AA) and a species related to Aegilops 
speltoides (genome BB). The true origin of the B genome has been under 
discussion for a long time and still remains elusive (Levy & Feldman, 2002; 
Huang et al., 2002). Bread wheat is an allohexaploid (2n = 42, AABBDD) and 
evolved through a cross of tetraploid Triticum turgidum (AABB) and the diploid 
Aegilops taushii (= Ae. squarrosa) (genome DD), which was followed by 
chromosome doubling (Levy & Feldman, 2002).   
 

Allopolyploids are characterized by their bivalent pairing and disomic 
inheritance. Pairing at meiosis only occurs between truly homologous 
chromosomes and very seldom across homoeologous ones (Mac Key, 2005). A 
great discovery was that bivalent pairing was determined mainly by one major 
suppressor gene, Ph1, located on chromosome 5BL (Riley & Chapman, 1958; 
Sears & Okamoto, 1958). The control of meiotic pairing was later found to depend 
on the balance of several suppressor and modifying genes (Kimber & Sears, 
1987). 

 
The tetraploid wheats can be divided in two groups of species, the emmer group 

(2n=28, AABB) and the Timopheevi group (2n=28, AAGG). The domestication of 
wild types T. araraticum and T. dicoccoides led to the development of T. 
timopheevi and T. dicoccum, respectively (Bozzini, 1988). The cultivated areas of 
T. timopheevi remained limited geographically to Armenia and Transcaucasia, 
whereas T. dicoccum spread from the Near East to large areas of the 
Mediterranean and Middle East, Egypt and Ethiopia (Bozzini, 1988). Durum 
wheat is the most important cultivated tetraploid wheat today and is grown in 
many countries.    
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The discovery in the 1930s that colchicine can induce chromosome doubling 
opened the possibilities of further studying wheat evolution by mimicking 
polyploidization events (Feldman, 2001). The tetraploidization event for the 
formation of wild emmer wheat (Triticum turgidum ssp. dicoccoides, genome 
AABB), the progenitor of durum wheat (Triticum turgidum ssp. durum, genome  
AABB), occurred a few hundred thousand to half a million years ago (Huang et 
al., 2002; Levy & Feldman, 2002). T. timopheevii (genome AAGG) was formed 
later than wild emmer wheat as it has shown less genetic variation than the emmer 
group (Mori et al., 1995). The hybridization event that led to the formation of 
bread wheat (T. aestivum) was more recent and occurred approximately 8,000 to 
10,000 years ago (Huang et al., 2002; Levy & Feldman 2002).  
 

The domestication of diploid wheat occurred in the northern Levantine Corridor 
of the Fertile Crescent in the Near East, while domesticated tetraploid wheat 
originated at the watershed of the Jordan River in the southern Levantine Corridor. 
The first indication of the cultivation of wild emmer wheat is in the Prepottery 
Neolithic A period around 10,300-9,500 years ago. Domesticated non-brittle as 
well as naked forms of emmer wheat appeared in the Prepottery Neolithic B 
period, 9,500-7,500 years ago (Feldman, 2001).    
 

The geographical origin of hexaploid wheat, where hybridization occurred 
between domesticated tetraploid wheat and Ae. taushii, is southwest of the 
Caspian Sea, in western Iran (Feldman, 2001; Levy & Feldman 2002). Other 
centers of variation or diversity for tetraploid wheat is the Ethiopian plateau, the 
Mediterranean basin and the Transcaucasia (Feldman, 2001). Ethiopia was 
considered by Vavilov (1951) to be the centre of origin of tetraploid wheat, but 
was later changed to be the centre of diversity (Feldman, 2001). 
 

The genome sizes differ for the members of the grass family, from 450 Mb for 
rice to 16,000 Mb for hexaploid wheat (Arumuganathan & Earle, 1991). The 
genome sizes of diploid and tetraploid wheat are estimated to be 5,600 Mb and 
13,000Mb, respectively (Arumuganathan & Earle, 1991). This variation in the 
grass family is in part due to differences in ploidy level but mainly due to the 
amount of repetitive DNA (Keller, 2005). The size of the bread wheat genome is 
five times larger that the human genome (Keller, 2005). 
 
The pathogen: general aspects of Puccinia triticina   
Leaf rust caused by Puccinia triticina Erikss. is the most common and widely 
distributed of the wheat rusts and continues to pose a major threat to wheat 
production in many countries (Knott, 1989). Total crop losses due to leaf rust are 
rare but yield reductions up to 62% are reported under conditions favorable for 
disease build-up (Sayre et al., 1998).  On a world wide basis leaf rust causes more 
damage than the other wheat rusts (Samborski, 1985).  
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The wheat rusts belong to the genus Puccinia, the family Pucciniaceace of the 
order Uredinales and class Basidomycetes (Knott, 1989). The rust fungi are 
obligate biotrophs. P. triticina has a complex life cycle with sexual and asexual 
spore stages (basidial, pycnial, aecial, uredinial and telial) and host alternation 
(Roelfs et al., 1992).  
 

For all wheat rust fungi the urediniospores play the most important role in the 
propagation of disease. Large numbers of urediniospores are produced by the 
uredinia over a period of several weeks causing rapid multiplication of inoculum 
(Roelfs et al., 1992). The uredinial cycle repeats every 8 to 20 days depending on 
temperature and other environmental conditions (Chester, 1946). Urediniospores 
are wind-borne and germinate in the presence of free water. They have a great 
dispersal capacity and can be carried by wind over long distances (Roelfs et al., 
1992).  
 

Durum wheat is the host of two different species causing leaf rust; Puccinia 
triticina Eriks. and P. tritici-duri = P. recondita f. sp. tritici, type A (Anikster et 
al., 1997) (Table 2). The main telial-uredinial host of P. triticina is T. aestivum 
and T. turgidum ssp. durum although its host range is broad and includes 
cultivated and wild wheats, triticale, rye and wild barley (Anikster et al., 1997). 
The main pycnial-aecial host of P. triticina is Thalictrum speciosissimum from the 
Ranunculaceae family. The scientific name P. recondita f. sp. tritici was 
previously used for P. triticina, but the wheat leaf rust pathogen has been shown 
morphologically distinct and genetically isolated from the leaf rust species 
normally attacking rye (P. recondita) (d’Oliveira & Samborski, 1966; Savile, 
1985; Anikster et al., 1997).   
 

P. tritici-duri has Anchusa italica as its principal pycnial-aecial host and T. 
turdigum ssp. durum as its principal telial-uredinial host but is also compatible 
with T. aestivum (Table 2). P. tritici-duri is geographically limited to areas where 
the alternate host occurs and has been found in Morocco and Portugal (d’ Oliveira 
& Samborski, 1966; Anikster et al., 1997). P. triticina has, on the other hand, been 
successfully escorted by cultivated wheats around the world ahead of the limits of 
T. speciosissimum and its sexual cycle (Anikster et al., 1997).  
 
Host – pathogen interaction 
The most efficient and environmentally friendly method to reduce yield losses due 
to the leaf rust pathogen is to use resistant cultivars (Knott, 1989). Chemical 
control is not justified under low yielding and low priced circumstances such as 
those found in many developing countries. Several rust resistance genes have been 
identified and used in breeding for resistance (McIntosh et al., 1995a), but variants 
of the pathogen (referred to as races) that can overcome the resistance in one or 
several of these resistant cultivars can evolve.   
 

A race or pathotype can be defined as an individual or group of biotypes that 
give the same combination of high (susceptible response) and low (resistant 
response) infection type responses on a specified set of differential host cultivars 
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(Browder, 1971). New races of the rust fungi evolve constantly in nature 
(Samborski, 1985) through mechanisms such as mutation, genetic drift, gene flow, 
sexual and asexual recombination, and selection (McDonald & Linde, 2002). 
Mutation is considered to be the most important source of variation and 
evolutionary force in rust fungi (Samborski, 1985). Mutation coupled with 
efficient directional selection (widespread deployment of a resistance gene) 
contributes to a rapid increase of virulent races in a population (McDonald & 
Linde, 2002). Other mechanisms that may contribute to evolution, but are not 
thought to play a major role at least for P. triticina, are sexual recombination on 
the alternate host and somatic hybridization (asexual recombination via 
anastomosis of germ tubes and hyphae) (Samborski, 1985). Introduction of new 
genotypes by migration of spores is an important mechanism that allows 
exchanges between geographically separated populations (McDonald & Linde, 
2002).   
 

Stripe rust was the first disease for which host resistance was shown to be an 
inherited trait that follows the rules of Mendelian genetics (Biffen, 1905). Stakman 
& Levine (1922) later demonstrated physiological specialization of P. graminis 
(causing stem rust) and that the resistance to stem rust can be overcome by 
variants of the pathogen. Flor (1956) studied inheritance of pathogenicity in the 
pathogen and inheritance of resistance in the host using flax (Linum 
usitatissimum)-flax rust (Melampsora lini) as a model system and concluded that 
“for every gene that conditions resistance in the host there is a corresponding gene 
in the parasite that conditions pathogenicity”. This concept or model is known as 
the “gene-for-gene theory” (Flor, 1971) and has been demonstrated in other 
systems such as for wheat and wheat rusts (Luig & Watson, 1961). In this model it 
is presumed that the host genes for resistance are dominant and the genes for 
virulence (the ability of the pathogen to overcome the host gene for resistance) are 
recessive. Low infection type response occurs only when the host carries a gene 
for resistance for which the pathogen does not carry the corresponding gene for 
virulence. Hence, the recognition of an avirulent pathogen by a resistant host leads 
to incompatibility, i.e. resistance. According to this model, susceptibility, or 
compatibility, occurs either because the pathogen carries the corresponding gene 
for virulence or the host does not carry the gene for resistance to which the 
pathogen is virulent or avirulent. Most of the leaf rust resistance genes (Lr) in 
Table 3 have been demonstrated to follow the gene-for-gene relationship 
(McIntosh et al., 1995a), but some exceptions have also been reported 
(Vanderplank, 1968; Parlevliet, 1985; Kolmer & Dyck, 1994; Kolmer, 1996). 
 
Race-specific and slow rusting resistance 
Two different types of resistance are often described in the literature against 
specialized fungi that parasitize living cells have been described: race-specific 
resistance, which is also known as vertical or hypersensitive resistance; and race-
non specific, or horizontal, non-hypersensitive, partial or slow rusting resistance. 
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 Race-specific, or vertical, resistance is a type of resistance that is effective 
against some races but ineffective against others (Vanderplank, 1963; 1968). This 
type of resistance is based on a post-haustorial mechanism, which involves a 
hypersensitive reaction with rapid cell-death of invaded and neighboring cells 
resulting in a necrotic lesion (Parlevliet, 1975; 1994). Parlevliet (1994) reviewed 
the different types of resistance against biotrophic and hemi-biotrophic fungi and 
concluded that hypersensitive resistance is often governed by genes that follow the 
gene-for gene relationship, has large effects and is controlled by major genes 
which are race-specific and often dominant. These genes usually occur in large 
numbers, and more than 50 race-specific genes have been documented in wheat 
(Table 3).   
 

The vulnerability of wheat to leaf rust epidemics has increased with the 
tendency to grow large areas of genetically homogeneous cultivars with resistance 
based on single race-specific resistance genes (Samborski, 1985). New virulent 
races have evolved and breeding for rust resistance has been characterized by the 
so called boom-and-bust syndrome where new cultivars with new effective 
resistance genes incorporated had to be released continuously (Kilpatrick, 1975). 
Race-specific resistance is therefore usually not considered durable, especially if 
the resistance is based on deployment of single genes. One way to prolong the 
effectiveness of these genes is to ‘pyramid’ or combine several effective race-
specific genes into a single cultivar. The pathogen is then forced to undergo a 
sequence of mutations corresponding to each resistance gene reducing the 
probability of break-down of resistance (McDonald & Linde, 2002).  
 

Partial, or horizontal, resistance was described by Vanderplank (1963; 1968) as 
race-non specific with a non-differential interaction between the host and the 
pathogen and evenly effective against all races of the pathogen. Hence, it does not 
follow the gene-for-gene relationship. Parlevliet (1994) showed that there were 
small differential interactions for partial resistance to barley leaf rust isolates and 
did therefore choose not to call it race-nonspecific. Caldwell (1968) described this 
type of resistance to the wheat rust fungi as general or slow rusting resistance 
because it was manifested as slow development of disease on a cultivar compared 
to a specific check cultivar despite a compatible host-pathogen interaction. This 
type of resistance was shown to be based on a pre-haustorial mechanism, which 
did not involve rapid cell death and necrotic lesions (Rubiales & Niks, 1995; 
Martinez et al., 2001). The same chromosome regions were shown to be effective 
against other diseases (yellow rust, powdery mildew, barley yellow dwarf virus) 
(Singh, 1993; Parlevliet, 1994). Slow rusting resistance to leaf rust in barley and 
wheat was found to be the result of the collective effect of a longer latent period, 
smaller uredinium size, reduced infection frequency (receptivity), and reduced 
spore production (Vanderplank, 1963; Parlevliet, 1975; Ohm & Shaner, 1976; 
Parlevliet, 1985; Wilcoxson, 1981). This type of resistance is considered to be 
durable. 
 

Genetic studies have indicated that slow rusting to leaf rust is determined by few 
to several genes with moderately high heritability (Parlevliet, 1978; Bjarko & 
Line, 1988a; Singh & Rajaram, 1992; Navabi et al., 2003; Das et al., 2004). 
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Additive gene effects are predominant for this type of resistance but other types of 
interactions are also reported (Bjarko & Line, 1988b; Das et al., 1992). Of the 
over 50 known wheat leaf rust resistance genes (Table 3) only Lr34 and Lr46 have 
been classified as genes conferring slow rusting or partial resistance. The slow 
rusting genes Lr34 and Lr46 have often been used in combinations with other 
slow rusting genes (Singh et al., 2005). Singh et al. (2000) showed that bread 
wheat lines that were nearly immune to leaf and stripe rust could be developed by 
accumulating 4-5 slow rusting genes through intercrossing lines that carried 
intermediate disease levels followed by selection under high rust pressure. Several 
near-immune slow rusting bread wheat lines for release in developing countries 
have since been produced by using these lines as a source of resistance for 
breeding (Singh et al., 2004b). Genetic studies have shown that at least 10 to 12 
different slow rusting genes are involved in conferring slow rusting resistance in 
CIMMYT bread wheats (Singh et al., 2005). 
 
Different P. triticina populations occur on bread and durum wheat 
Several studies have shown that the P. triticina populations predominant on durum 
wheat are different from those predominant on bread wheat. The genes effective 
against predominant races of durum and bread wheat rust pathogens are therefore 
also expected to be different. Huerta-Espino & Roelfs (1992) conducted a global 
survey of P. triticina collections from both durum and bread wheat and found that 
the races attacking these two species were different when tested with the North 
American differential-set (Long & Kolmer, 1989). Leaf rust cultures isolated from 
durum wheat were seldom virulent to the most susceptible bread wheat cultivars, 
while the same cultures were often virulent to durum wheat cultivars tested 
(Huerta-Espino & Roelfs, 1992). Similarly, the cultures from bread wheat that 
were highly virulent on bread wheat were often avirulent on durum wheat. Huerta-
Espino & Roelfs (1992) found that a majority of the leaf rust collections from 
durum wheat belonged to the physiological race BBB following the nomenclature 
system of Long & Kolmer (1989). The virulence frequency to Lr1, Lr2a, Lr2c, 
Lr3 and Lr26 was much lower in the leaf rust populations isolated from durum 
wheat. While 54% of the cultures from durum wheat were avirulent to Lr1, Lr2a, 
Lr2c and Lr3, only 6% were avirulent when collected from bread wheat. Leaf rust 
isolates from durum wheat were often virulent to Lr10 and Lr23 (Roelfs & Huerta-
Espino, 1992). All of the over 1,000 leaf rust isolates from bread wheat were 
virulent to the universally susceptible bread wheat Thatcher (carrying adult plant 
resistance gene Lr22b) compared to only 48% of the 201 isolates from durum 
wheat (Roelfs & Huerta-Espino, 1992).  
 

Differences in races that occur on bread and durum wheat were also reported in 
studies from Ethiopia (Dmitrev & Gorshkov, 1980; Kuzmichev, 1984) and from 
Mexico (Singh, 1991). Dmitrev & Gorshkov (1980) and Kuzmichev (1984) 
reported that leaf rust collected from durum wheat in Ethiopia affected durum 
wheat more severely that bread wheat, and leaf rust isolates from bread wheat 
affected bread wheat more severely. Some durum wheat leaf rust races were also 
reported avirulent to all leaf rust resistance (Lr) genes tested.  Singh (1991) 
conducted a leaf rust survey in Mexico during 1988 and 1989 and identified 23 
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different P. triticina races. An interesting feature was that the predominating races 
isolated from durum wheat were different from those from bread wheat, even 
when the fields were adjacent. The P. triticina race BBB/BN predominated in 
durum wheat, while the most frequently occurring races in bread wheat fields were 
TCB/TD and TBD/TM. Singh (1991) used the nomenclature system according to 
Long & Kolmer (1989) for race determination with two supplementary Mexican 
sets for a complete description of variation. Race BBB/BN was virulent to few of 
the known wheat leaf rust resistance genes and would have been classified as 
physiologic race 1 according to the historical race nomenclature key of Johnston 
& Levine (1955). 
 

Ordonez et al. (2004) analyzed P. triticina from durum wheat collected from 
several countries and distinguished at least two different groups of P. triticina 
adapted to durum wheat. They were distinct from the isolates found on bread 
wheat in their virulence pattern based on 36 near-isogenic lines of Thatcher. Leaf 
rust isolates from durum wheat originating from Argentina, France, Mexico, Spain 
and California showed high infection type responses (susceptible response) on 24 
durum wheat cultivars tested and on differentials carrying Lr10,14b,20,23,33,41 
and Lr44.  Few isolates collected from durum wheat fields in Chile and  northern 
USA had virulence specificities similar to leaf rust races from bread wheat and 
had low infection types (resistant response) on the durum wheat cultivars. Several 
isolates from Ethiopia had low infection types on the universally susceptible bread 
wheat cultivar Thatcher, and all Ethiopian isolates had high infection type 
responses on durum wheat cultivars tested in the study.  
 

Huerta-Espino & Roelfs (1992) pointed out that even if leaf rust races from 
durum wheat may appear similar based on bread wheat differentials they can be 
very different when tested on different durum wheat lines. 
 
Resistance to leaf rust in durum wheat  
Information is limited on the nature and the genetic basis of leaf rust resistance in 
durum wheat. Of the known designated leaf rust resistance genes only Lr14a and 
Lr23 are reported to have originated from durum or emmer wheat. Other genes 
that have been suggested to be present in durum and emmer wheat are Lr3 (Singh 
et al., 1992), Lr10 (Aguilar-Rincon, 2001), Lr13 (Singh et al., 1992), Lr16, Lr17a 
(Zhang & Knott, 1990) and Lr33 (Dyck, 1994). These genes have been postulated 
to be present in durum wheat by comparing the reaction pattern to different P. 
triticina races with bread wheat differentials carrying known Lr genes. If the 
pattern of the seedling reaction to a diverse collection of races is different from the 
pattern exhibited by the known resistance genes then it can indicate that such 
resistance is conferred by an unidentified gene(s). Dissimilar patterns of reaction 
have often been observed in durum wheat when tested with a range of races 
(Zhang & Knott, 1990; Singh et al., 1992; Bai & Knott, 1994). Different behavior 
of durum wheat and bread wheat to different races have been reported in studies 
from Italy (Paradies, 1980; 1981) and India (Pandey & Rao, 1984; Sharma et al., 
1986) and have also led to the conclusion that the resistance in durum wheat is 
different.   
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While extensive inheritance studies have been conducted to investigate the 

genetic basis of resistance in bread wheat, only a few have been reported from 
durum wheat. The genetic studies for leaf rust resistance in durum wheat are 
summarized in Table 4. Most genetic studies reported (Table 4) on durum wheat 
were on seedling resistance under greenhouse conditions. The resistance in several 
durum wheat lines was conferred by recessively inherited genes. In bread wheat, 
recessive resistance is not so common. Only a few of the known designated genes 
identified in bread wheat, such as Lr14b (Dyck & Samborski, 1970), Lr30 (Dyck 
& Kerber, 1981) and Lr3, in certain backgrounds (Sacco et al., 1998) were 
reported to be recessively inherited. The recessive and dominant nature of 
resistance may change depending on the test conditions and genetic background as 
shown in bread wheat (Dyck & Kerber, 1985; Kolmer, 1996).  
 

Pathogen collections from bread wheat have often been used for conducting 
genetic studies on durum wheat. The relevance of the information generated with 
the use of improper races can be considered low if the objective is to improve 
resistance in durum wheat. Mishra (1996) therefore studied the inheritance of 
resistance in durum wheat by using leaf rust isolates collected from durum wheat 
fields from several countries (Chile, Ethiopia, India, Israel, Italy, Morocco, 
Mexico, Pakistan, Romania and Turkey). Inheritance studies were conducted on F1 
and F2 seedlings in controlled greenhouse conditions. In all, 27 dominant and 21 
recessive resistance genes were identified among 15 cultivars. Based on 
differences in specificity, resistance phenotypes, and inheritance, 21 of the 
dominant genes and all of the 21 recessive genes were thought to be unique and 
different from previously identified genes from bread wheat. However, their allelic 
relationships were not investigated and the results were not verified using F3 
families. In general the inheritance was simple and often conditioned by one or 
two genes. Resistance was either incompletely dominant or recessive. A 
characterizing feature for the leaf rust -durum wheat interaction was the high 
frequency of mesothetic (random distribution of variable-sized uredinia on a single 
leaf) infection type responses. In particular Y and Z infection type responses could 
be observed, with greater compatibility towards the leaf tip or towards the leaf 
base, respectively. Of the known leaf rust resistance genes only Lr11 and Lr37 
confer such reaction (Y) and none of these genes were thought to be present in 
durum wheat material investigated by Mishra (1996).        
 

Singh et al. (1993) studied the genetic basis of resistance in nine CIMMYT-
derived durum wheat lines, including the most commonly grown Mexican cultivar 
Altar C84 at that time. The Mexican P. triticina race BBB/BN prevalent during 
that period on durum wheat was used in their study. The inheritance studies were 
based on rust evaluations conducted on seedlings and/or adult plants of F1, F2 
populations and F3 lines. A partially dominant gene conferred seedling resistance 
in Altar C84 as well as in three other durum wheat lines which seemed to interact 
in an additive manner with two other partially effective slow rusting genes.  
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Information on slow rusting resistance in durum wheat is limited. In the same 
study by Singh et al. (1993) the genetic basis of five CIMMYT-derived durum 
wheats lines; Mexicali 75, Yavaros 79, Diver, Kingfisher and Somorguho, 
showing compatible (susceptible) responses to P. triticina race BBB/BN were 
investigated. Based on these studies resistance in these lines was conferred by two 
additive genes, of which at least one was common in all durum wheat parents. 

 
The importance of leaf rust in durum wheat has increased after the recent 

breakdown of resistance in various important cultivars in several countries. Singh 
et al. (2004a) reported severe leaf rust epidemics during 2001, 2002 and 2003 in 
durum wheat fields in north-western Mexico due to a new P. triticina race, later 
identified as BBG/BN.  Most of the cultivars grown in Mexico, including Altar 
C84, as well as the majority of durum wheat cultivars from 31 different countries 
were susceptible to this new race. In addition, almost 90% of the entire CIMMYT 
durum wheat collection was also susceptible. The resistance in Altar C84 had 
remained effective for 16 years before becoming ineffective to race BBG/BN. 
Adjacent bread wheat fields were not affected by this new race. Singh et al. 
(2004a) also reported that CIMMYT derived durum wheat cultivars in recently 
became susceptible in Chile, southern France, Spain and Syria, and that durum 
wheat lines that were resistant to the Mexican race BBG/BN also were resistant in 
these countries. Recent studies have confirmed that the durum wheat leaf rust 
races in Spain and France have similar virulence specificity to the predominant 
Mexican race when tested on bread wheat differentials (Martinez et al., 2005; 
Goyeau et al., 2006). Singh et al. (2004a) identified several durum wheat lines that 
conferred either race-specific or slow rusting resistance to the new P. triticina race 
in Mexico after screening thousands of lines. A new cultivar, Jupare C2001, 
resistant to the new P. triticina race, has today replaced Altar C84 in north-
western Mexico. The seedling resistance gene to which race BBG/BN is virulent 
and that was present in Altar C84 as well as in most CIMMYT durum wheat 
germplasm remains undesignated.  
 
Mapping leaf rust resistance genes in bread and durum wheat 
Chromosome location is a basic step for identifying and understanding the allelic 
relationships of resistance genes (McIntosh et al., 1995a). Most of the known 
designated resistance genes to leaf rust were identified through cytogenetic 
analysis using aneuploids (plants that do not have the normal chromosomal 
number) (McIntosh et al., 1995a).    
 

Monosomic analysis (a monosomic lacks one chromosome of the chromosome 
pairs) is the most commonly used cytogenetic method in bread wheat (Knott, 
1989) and is the most suitable method for locating dominant genes (McIntosh et 
al., 1995a). Until recently, the chromosome locations of most of the mapped leaf 
rust resistance genes were determined using monosomic analysis and telocentric 
(chromosomes with the centromere in the terminal end) mapping (Table 3). Sears 
(1954) developed the complete set of 21 monosomics for each chromosomes using 
the bread wheat cultivar Chinese spring. The monosomic analysis involves 
crossing 21 monosomics as the female parent with the resistant cultivar carrying 
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the unknown resistance gene. The F1 plants with 41 chromosomes are allowed to 
self pollinate and the F2 plants are evaluated for rust resistance. The monosomic 
that coincides with the chromosome location of the gene gives a distorted 
segregation in the F2 and subsequent segregating generations (Knott, 1989). Sears 
(1953; 1954) also produced chromosome substitution lines and other types of 
aneuploids (nullisomics, trisomics, tetrasomics) which were also used in mapping. 
Monosomic analysis is often combined with telocentric mapping where 
ditelosomics (a plant with one chromosome represented by a homologous pair of 
telocentric chromosomes) developed by Sears (1966) are used for determining the 
chromosome arm location and recombination distance of the gene from the 
centromere. These cytogenetic stocks were also used in recent years to determine 
the location of molecular markers. 
 

In durum wheat, the use of aneuploid analysis has not been as successful as in 
bread wheat (Joppa, 1987; Knott, 1989). Aneuploidy is not as well tolerated in the 
tetraploids compared to hexaploids (Joppa, 1987). Reductions in chromosome 
numbers are more detrimental in tetraploids than increases in chromosome 
number. The monosomics in tetraploid wheats often show poor fertility and 
instability and were therefore not used in durum wheat for mapping of traits of 
interest (Joppa, 1987). Joppa & Williams (1983) produced a complete set of 14 
different disomic-substitution lines with 13 pairs of durum wheat (cv. Langdon) 
chromosomes and a pair of D-genome chromosomes substituting the homeologous 
chromosome pair from the A or B genome. A complete set of double-ditelosomics 
for the A-and B-genome chromosomes were also developed in Langdon durum 
wheat that can be used for determining gene to centromere distances (Joppa, 
1987).  
 

Recent studies have shown that the aneuploids developed by Joppa & Williams 
(1983) and Joppa (1987) can effectively be used to find the chromosome location 
of traits in durum wheat (Hussein et al, 2005; Singh et al., 2006). Hussein et al. 
(2005) used the Langdon durum wheat D-genome disomic-substitution lines to 
determine the location of two adult plant leaf rust resistance genes in durum and 
emmer wheat. The two novel genes were temporarily designated Lrac104 and 
Lrac124 and were located on chromosome 6B and 4A, respectively. Bhagwat et 
al. (2004) used trisomics (one extra chromosome) to determine the chromosomal 
location of a recessive gene on chromosome 2B in durum wheat HD 4502. 
 

The chromosome location of a few leaf rust resistance genes originating from 
durum or emmer wheat have been determined (Table 3). One of the alleles of 
Lr14, designated as Lr14a, is thought to have originated from the emmer wheat 
cultivar Yaroslav and then been transferred to the T. aestivum cultivars Hope and 
H-44 which were used in mapping (McIntosh et al., 1967; McIntosh et al., 1995a). 
Lr23 was transferred to hexaploid wheat from T. turgidum ssp. durum cv. Gaza 
(Watson & Stewart, 1956) and localized to chromosome 2BS by McIntosh & 
Dyck (1975). Marais et al. (2005) determined the location of a gene that was 
introduced to bread wheat from T. dicoccoides to chromosome 6BS. Dyck (1994) 
transferred two leaf rust resistance genes from T. turgidum ssp. dicoccoides to 
hexaploid wheat, one of which was identical to Lr33. Resistance originating from 
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durum wheat sometimes is not expressed when transferred to bread wheat due to 
the effect of suppressor genes (Bai & Knott, 1992; Roelfs & Huerta Espino, 1992; 
Nelson et al., 1997).  
 

Molecular markers have been used in the last decades for chromosome mapping 
of genes that determine simply inherited traits or for finding quantitative trait loci 
(QTL) often associated with more complex traits. Another major application of 
molecular techniques is finding molecular markers closely linked, or co-
segregating, with the trait of interest for the use in marker assisted selection 
(MAS) (Gupta et al., 1999). Mapping of leaf rust resistance in bread wheat has 
also proven possible using molecular techniques (Friebe et al., 1992; Nelson et al., 
1997; Brown-Guedira et al., 2003; William et al., 2003). The most commonly 
used molecular technique for the initial mapping of leaf rust resistance genes was 
RFLP (Table 4). However, markers that are tightly linked to the gene of interest 
and PCR-based markers (STS, SSRs, ISSRs) that are easy to manage have later 
been identified and developed for several of these genes (Huang & Gill, 2001). 
William et al. (2003) used bulked segregant analysis (BSA) with amplified 
fragment length polymorphisms (AFLP) (Vos et al., 1995) and partial linkage 
mapping to map the slow rusting leaf rust resistance gene Lr46. The BSA 
approach was developed by Michelmore et al. (1991) for identifying markers in a 
specific region of the genome. The procedure involves preparing two bulked DNA 
samples from individuals selected from a segregating population of a cross that are 
contrasting in respect to the trait of interest. Polymorphic markers that distinguish 
the two samples are searched for and then used in the full population to determine 
the linkage status of the molecular marker with the trait. 
 

Mapping of leaf rust resistance genes in durum wheat is almost non-existent. 
Nelson et al. (1997) mapped Lr23 present in the durum wheat cultivar Altar C84 
and its suppressor gene SuLr23 in 2D using a cross between a synthetic hexaploid 
developed from Altar C84 and a T. taushii and the bread wheat cultivar Opata.  
Zhang et al. (2005) recently transferred Lr19 into durum wheat to improve leaf 
rust resistance and yellow pigment and they used RFLP markers to characterize 
the alien chromosome segment that carried the gene.  
 
 

Objectives 

The objective of the work presented here was to reduce genetic vulnerability of 
durum wheat (Triticum turgidum ssp. durum) in farmers’ fields against leaf rust 
(Puccinia triticina) epidemics in developing countries. This was to be achieved by 
enhancing the genetic diversity and durability of leaf rust resistance in CIMMYT 
durum wheat germplasm. The following research activities were undertaken: 
 

1) Characterization of CIMMYT durum wheat for the type of resistance; 
viz. race-specific or slow rusting resistance (Paper I, II, III, IV). 
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2) Assessment of the yield protection obtained from race-specific and slow 
rusting genes through yield loss trials (Paper I). 

 

3) Investigation of the slow rusting components; latent period, uredinium 
size and receptivity, in durum wheat and assessment of the relationship 
between these components and field disease parameters (Paper II). 

 

4) Determination of the genetic basis and genetic diversity of race-specific 
resistance through genetic analysis (Paper III). 

 

5) Identification of the chromosome location of race-specific resistance 
genes (Paper IV). 

 
 

Materials and methods 

Singh et al. (2004a) evaluated approximately 30,000 tetraploid wheat lines for 
resistance to the Puccinia triticina race BBG/BN that was detected in north-
western Mexico during the crop season 2000-2001. Durum wheat lines carrying 
race-specific resistance but also lines showing slow disease progress in the field 
despite a compatible host reaction were identified. From these initial screenings 
thirty advanced CIMMYT durum wheat lines and cultivars (listed in papers I to 
IV) were characterized further for the type of resistance in the greenhouse and in 
the field. Ten of these possessed race-specific resistance, eighteen were slow 
rusting and two were susceptible. 
 

All thirty durum wheat lines were included in yield loss protection trials (Paper 
I). Seven of those showing slow rusting resistance and two susceptible durum 
wheat lines were used for the study on slow rusting resistance components (Paper 
II). Nine of those that showed race-specific resistance and one susceptible durum 
wheat were included for the inheritance studies (Paper III). Chromosome mapping 
involved two race-specific resistant and one susceptible line (Paper IV). 

 
Two different sites in Mexico were used for field experiments, El Batán and 

Ciudad Obregón. The El Batán research station (and CIMMYT headquarter) is 
located northeast of Mexico City at 2230 meters above sea level (masl), with a 
wheat crop season from mid-May to mid-October. Ciudad Obregón is situated in 
the State of Sonora, in north-western Mexico at 39 masl with a wheat crop season 
from mid-November to late April. The main durum wheat production areas in 
Mexico are located in the north-western part of the country. 
 

The avirulence/virulence formula for the P. triticina race BBG/BN (Singh et al., 
2004a) used in all studies is:  
Lr1,2a,2b,2c,3,3bg,3ka,9,12,13,14a,15,16,17,18,19,21,24,25,26,27+31,29,30,32, 
34,35,36,37/10,11,14b,20,23,33.  
 

Artificial leaf rust epidemics were initiated in all field trials (Papers I-IV) by 
inoculating ‘spreaders’ consisting of the susceptible durum wheat cultivar Atil 
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C2001. Inoculations were conducted by spraying with urediniospores suspended 
in light mineral oil (Soltrol 170). To obtain a uniform leaf rust pressure the 
spreaders were sown as borders around the entire experiment and as small hills at 
one end of each plot.  
 

In the field, leaf rust severity and host reaction were evaluated at weekly 
intervals (Papers I, II). Leaf rust severity (% rusted tissue) was recorded according 
to the modified Cobb Scale (Peterson et al., 1948).  Host reaction was recorded 
using four categories (resistant, moderately resistant, moderately susceptible and 
susceptible) as described in Roelfs et al. (1992), The area under the disease 
progress curve (AUDPC) was determined by using an Excel based program 
following the formula described in Roelfs et al. (1992) (Papers I, II). 
 

All greenhouse studies were conducted at El Batán, in Mexico, where a 
collection of Mexican P. triticina races is preserved. In the greenhouse, plants 
were inoculated with P. triticina race BBG/BN by spraying with urediniospores 
suspended in Soltrol oil using an atomizer. After inoculations plants were 
transferred to a dew-chamber overnight to assure germination and infection of the 
pathogen. Greenhouse evaluation of rust infection type responses followed the 0-4 
scale described in Roelfs et al. (1992) (Papers I-IV).  
 

A paired split plot design was used for establishing the two yield protection 
trials (differing in sowing dates) with fungicide (Tebuconazole)-protected and rust 
infected (non-protected) treatments (Paper I). Grain yield as well as agronomic 
and yield traits were estimated in each plot according to Sayre et al. (1998). 
Percentage losses were calculated by comparing the mean values from the 
protected plots with that from the unprotected. The genotypic correlations were 
calculated between all measured parameters. Different statistical models were used 
for the analysis of data (such as spatial analysis) (Papers I, II) using ASREML 
(Gilmour et al., 2002). The genotypic correlations were computed using SAS 
(SAS Institute Inc, 1999).  
 
  The slow rusting components; latent period, receptivity, and uredinium size, 
were evaluated on flag leaves in three repeated greenhouse experiments (Paper II) 
according to Das et al. (1993), Lee & Shaner (1985) and Singh & Huerta-Espino 
(2003), respectively. A randomized complete block design was used for the 
greenhouse tests and the field trial at El Batán. Disease data from the yield 
protection trials were also used for this study. Phenotypic correlations between 
field parameters, the final disease severity and area under the disease progress 
curve (AUDPC), and slow rusting components were calculated and a multiple 
regression analysis conducted using Excel and SAS (SAS Institute Inc, 1999), 
respectively. Different models in SAS were used for analysis of data depending on 
the association of repeated measurements for each component.       
 

For inheritance studies (Paper III), the nine race-specific resistant parents were 
crossed with the susceptible cultivar Atil C2001 as the female parent. Individual 
F1 plants were harvested and allowed to self in order to obtain F2 populations. 
Approximately 98 space sown F2 plants grown under disease-free conditions were 
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harvested individually to obtain F3 lines/families for each cross. For the allelism 
test, the resistant parents were also intercrossed and F2 populations obtained by 
individually harvesting F1 plants. Approximately 200 F2 plants per cross were 
individually evaluated and grouped into two categories; resistant and susceptible. 
The 98 F3 families were grown as plots and individually evaluated into three 
categories; homozygous resistant, segregating and susceptible. The F2 phenotypic 
and F3 genotypic frequencies were compared with expected frequencies using χ2-
analyses. 
 

Two F3 populations (Atil C2000 × Camayo; Atil C2000 × Storlom) 
characterized in the inheritance studies, and the parents were used for bulked 
segregant analysis to map resistance genes (Paper IV). The molecular approach 
used was similar to that by William et al. (2003). The bulked segregant analysis 
approach according to Michelmore et al. (1991) was used to search for amplified 
fragment length polymorphisms (AFLP) (Vos et al., 1995) that were linked to the 
leaf rust resistance genes. Publicly available linkage maps from bread wheat 
(Roeder et al., 1998) were utilised for detecting the chromosomal location of 
AFLP markers with the help of Map maker (Lander et al., 1987). One sequence 
tagged site (STS) marker, generated from a RFLP marker that co-segregates with 
Lr3 (Sacco et al., 1998) and various known microsatellite markers (SSRs) were 
also used for mapping. Molecular and phenotypic characterisation of 197 F3 
families generated from individually harvested F2 plants from the Camayo × 
Storlom cross were undertaken to establish the allelic relationship between genes 
in both parents. Responses of the parents were also compared to the bread wheat 
near-isogenic lines carrying Lr3a, Lr3ka, and Lr3bg.  
 
 
Results and discussion 

Effect of leaf rust on grain yield and yield traits of durum wheats 
with race-specific and slow rusting resistance to leaf rust (Paper 
I)  
The thirty durum wheat lines included in the study were evaluated for leaf rust 
responses, grain yield and related traits, under high leaf rust pressure with or 
without fungicide protection in two replicated trials, differing in sowing dates at 
Ciudad Obregón, Mexico. In the late sown trial, plants were exposed to leaf rust at 
an earlier development stage than in the trial with the normal planting date. Most 
durum wheat lines with race-specific resistance were immune in the field. Durum 
wheat lines with slow rusting resistance showed a range of severity responses, but 
the severities were significantly lower than those of the susceptible checks. Leaf 
rust caused grain yield losses of up to 71% in susceptible durum wheat lines in 
non-protected plots when compared to protected plots.  Lines with race-specific 
resistance had negligible or low yield losses. Yield losses for the slow rusting 
resistant durum wheat material varied and were high for several genotypes. The 
grain yield losses were attributed to reductions in biomass, harvest index, kernels 
per square meter, kernel weight, number of kernels per spike, and number of 
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spikes per meter square. Test weight, which has implications on the end-use 
quality of durum wheat, was also significantly reduced for the susceptible and 
most of the slow rusting durum wheat lines.  
 

This study demonstrated the effectiveness of race-specific resistance in 
protecting grain yield from leaf rust. Several slow rusting lines with reduced 
severity responses and/or with low yield losses were also identified. The results 
presented here indicate that yield losses in durum wheat for the same severity level 
are higher compared to previously reported losses for bread wheat.  
 

Evaluation of slow rusting resistance components to leaf rust in 
CIMMYT durum wheats (Paper II)  
Achieving durability by selecting slow rusting or partial resistance should be an 
important breeding objective to reduce genetic vulnerability and to provide a long 
term control of leaf rust. The slow rusting components and their effects on leaf 
rust in durum wheat had not been studied previously. 
 

Across the three experiments the mean uredinium size was significantly smaller 
and the latent period significantly longer for slow rusting material than the 
susceptible checks. The mean receptivity was not lower for all slow rusting 
resistant lines compared to the susceptible checks as would have been expected. 
Several slow rusting lines had higher mean receptivity than the two susceptible 
lines. The uredinium size was the only component with a non-significant genotype 
× experiment interaction, indicating that the ranking of the lines were similar in 
each experiment. Repeated measurements of the uredinium size did not alter the 
ranking of the durum wheat genotypes. 
 

Disease progress in the field, measured as mean AUDPC and final disease 
severity (FDS), in each trial and across trials, was significantly lower for the slow 
rusting durum wheat lines than for the susceptible checks. Rankings of genotypes 
were not consistent in different field environments due to a significant genotype × 
field trial interaction.  
 

Latent period and particularly uredinium size showed strong associations with 
disease parameters in the field. The phenotypic correlation coefficients (r) between 
uredinium size and AUDPC and FDS ranged between 0.86 and 0.90 depending on 
field trial. The r-values for the latent period and the above field disease parameters 
ranged between -0.60 and -0.80. Receptivity was not associated with disease 
parameters in the field. The three slow rusting components explained 62 and 66% 
of the variability for AUDPC and FDS, respectively; only uredinium size had a 
significant regression coefficient.  
 

Our results are in agreement with similar studies on bread wheat showing that 
slow leaf rusting resistant genotypes possess smaller uredinium sizes and longer 
latent periods than susceptible genotypes, but this association was not found for 
receptivity. No association was found between receptivity and the other 
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components or with field disease parameters. Receptivity has shown to be more 
prone to environmental variation and experimental errors in studies on bread 
wheat and barley (Parlevliet, 1986; Das et al., 1993). Unavoidable fluctuations in 
the amount of inoculum deposited on the leaves could have affected the results on 
the mean receptivity.  
 

The level of slow leaf rusting resistance in the field was best predicted by the 
size of uredinia in the greenhouse. Similar results were also obtained for bread 
wheat by Das et al. (1993) and Singh & Huerta-Espino (2003). In other studies, 
latent period has instead been found to be the most reliable component and best 
predictor for slow disease progress in the field in bread wheat and barley 
(Parlevliet, 1985; Broers, 1989a; 1989b; Singh et al., 1991; Zadoks, 1971). 
 

The slow rusting durum wheat lines evaluated in this study show variations for 
individual components as well as for resistance levels in the field indicating that 
there should be genetic diversity for genes determining such resistance.  
 

New genes for leaf rust resistance in CIMMYT durum wheats 
(Paper III) 
Searching for different sources of resistance for the enhancement of genetic 
diversity and for pyramiding of effective race-specific genes are important steps 
towards reducing the risks of rapid break-down of resistance due to evolution and 
selection of new virulence alleles in the pathogen population.  
 

Five different sources of resistance in durum wheat to P. triticina race BBG/BN 
were identified in this study. These genes were temporarily designated as LrJup1 
+ LrJup2, LrLlar, LrGuay, LrCam and LrStor. The same pair of partially 
dominant complementary genes LrJup1 + LrJup2 conferred resistance in the 
currently popular Mexican durum wheat cultivar Jupare C2001 and the lines 
Hulita and Pohowera. Four distinct partially, or completely, dominant single genes 
conferred resistance in the remaining material. The resistance in Somateria and the 
Chilean cultivar Llareta INIA was due to the same dominant gene LrLlar whereas 
resistance in the sister lines Guayacan 2 and the Chilean cultivar Guayacan INIA 
was conferred by the same partially dominant gene LrGuay. Another partially 
dominant gene LrCam present in Camayo was linked in repulsion to a distinct 
gene LrStor in Storlom. Based on CIMMYT international nursery data and 
recently published information on races (Ordonez et al., 2004; Martinez et al., 
2005; Goyeau et al. 2006), all identified genes confer or are expected to impart 
effective protection to the predominant races of durum P. triticina in Mexico, US, 
Chile, Spain and France and can therefore be used in enhancing genetic diversity 
for leaf rust resistance. To prolong their durability these genes should be deployed 
in combinations.  
 

A mesothetic infection type response in seedlings of durum wheat is a frequent 
feature and was in agreement with earlier published results (Mishra, 1996). Of the 
nine race-specific resistant durum wheat parents used for the crosses, five 
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displayed a mesothetic response in seedlings that varied from ‘X-’ to ‘X+’. 
Another characteristic feature of race-specific resistance in durum wheat was that 
infection type responses observed in the greenhouse tended to become lower, or 
plants became more resistant, as developmental stages advanced, reaching 
immunity in the field. For example, Jupare C2001 displayed the infection type 
response ‘X-’ in seedlings, ‘;1-’ in adult plant tests in the greenhouse and 
immunity (no visible symptoms) in the field. A similar tendency was observed in 
the F1 plants of the susceptible × resistant crosses. In adult plant tests in the 
greenhouse the F1 plants of some crosses were susceptible indicating that the 
resistance was of a recessive nature. However, in the field the F1 plants from the 
same crosses showed intermediate levels of resistance which indicates partial 
dominance. The recessive and dominant nature of resistance may therefore change 
depending on the test conditions and genetic background as has been shown in 
bread wheat (Kolmer, 1996). Due to the higher responses in the greenhouse, 
classification of F2 plants from some susceptible × resistant crosses was sometimes 
difficult, making the field evaluations more reliable. It is therefore recommended 
that future inheritance studies of leaf rust resistance in durum wheat carried out in 
the greenhouse should be complemented with field observations.  
 

Complementary genes conditioning leaf rust resistance with a partially dominant 
interaction have not previously been reported in durum wheat. The genes Lr27 and 
Lr31 are the only known complementary genes that impart leaf rust resistance in 
bread wheat (Singh & McIntosh, 1984a; 1984b). Although the presence of two 
complementary genes is necessary for the expression of resistance, the pathogen 
can mutate from avirulence to virulence at a single locus. The host-pathogen 
interaction is therefore not different from a single resistance gene.  
 

Identification and mapping of Lr3 and a linked leaf rust 
resistance gene in durum wheat (Paper IV) 
Determination of the chromosome location of genes identified in our study would 
reveal important information for their efficient deployment in durum wheat and 
for further breeding. It would also reveal whether any of these genes are already 
known designated genes identified previously in bread wheat or if they are novel.  
 

Three AFLP markers were found to be associated with the leaf rust resistance 
gene present in Camayo; the nearest AFLP marker (P33/M48352) being at a 
distance of 1.1 cM. One of the linked AFLP markers mapped to the long arm of 
chromosome 6B in the ITMI population (derived from the cross of a synthetic 
wheat with the bread wheat cultivar Opata) for which a dense molecular map is 
publicly available (Roeder et al., 1998). The genomic location of the leaf rust 
resistance gene present in Camayo was thereby also mapped to the long arm of 
chromosome 6B.  
 

Of the already known wheat leaf rust resistance genes located in chromosome 
6B (McIntosh et al., 1995a), Lr3 was the most likely candidate to be present in 
durum wheat. Three different alleles, Lr3a (Lr3), Lr3bg, and Lr3ka (Haggag & 
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Dyck, 1973; McIntosh et al., 1995) have been described at the Lr3 locus. The 
RFLP marker, Xmwg798, had previously been reported to co-segregate with Lr3a 
in the bread wheat cultivar Sinvalocho MA (Sacco et al., 1998). In the study 
presented here the sequence tagged site (STS) version of the same marker, 
Xmwg798, generated by Kunzel et al. (2000) in the Atil C2000 × Camayo and Atil 
C2000 × Storlom F3 populations was used for validating if any of the two genes 
could be Lr3a.  
 

The marker Xmwg798 was completely associated with the resistance gene in 
Storlom indicating that this gene is most likely Lr3a. This marker was absent in 
Camayo. The bread wheat near-isogenic lines carrying each of the alleles at the 
Lr3 locus, i.e. Lr3a, Lr3bg and Lr3ka, were also tested for the presence of 
Xmwg798. Since Xmwg798 detected all three alleles, it turned out to be a locus-
specific rather than allele-specific marker. We therefore cannot exclude that gene 
present in Storlom is Lr3bg rather than Lr3a. The infection type response of Lr3ka 
is very different from the infection type of Storlom, and therefore leaves that 
option out.  
 

The allelic relationship between the two genes was further investigated using 
approximately 200 F3 families from the Camayo × Storlom cross. Phenotypic 
evaluation for rust reaction and molecular characterization of the AFLP markers 
and Xmwg798 indicated that the two genes were most likely very closely linked in 
repulsion. The AFLP marker most closely associated to the gene in Storlom was 
located at a distance of 1.4 cM to Xmwg798. Only one of the 200 F3 families 
evaluated had susceptible plants. The remaining had the leaf rust responses of 
either one of the parents or had plants with a combination of both. This apparent 
recombinant and the fact that Camayo does not have Xmwg798 supports the 
hypothesis that these genes are not alleles of the same locus but are in fact very 
closely linked. The phenotypic response of Camayo to P. triticina race BBG/BN is 
also different from the responses of any of the near-isogenic bread wheat lines 
carrying Lr3a, Lr3bg or Lr3ka. Further studies on race-specificity with races 
avirulent and virulent to Lr3a, Lr3bg and Lr3ka could reveal additional 
information on the allelic relationship between the two genes. Since both Camayo 
and Storlom also carry an additional common resistance gene which is effective to 
all Mexican P. triticina races except BBG/BN, identification of allelic relationship 
based on host-pathogen interaction studies were not possible. 
 

The leaf rust resistance genes identified in the genetic and mapping studies can 
be effectively deployed in countries where prevalent durum wheat P. triticina 
races are avirulent on these genes. Leaf rust resistance gene Lr3a is considered to 
have a low value in bread wheat because virulent races are common worldwide 
(McIntosh et al., 1995a). However, the P. triticina races from durum wheat are 
known to be avirulent on most of the known leaf rust resistance genes (Huerta-
Espino & Roelfs; 1992; Ordonez et al., 2004). Many of these known Lr genes, 
such as Lr3, would therefore be useful for durum wheat especially if present 
together with other genes such as the one that conferred resistance to the durum 
wheat cultivar Altar C84 for 16 years until succumbing to race BBG/BN. This still 
undesignated gene in Altar C84 has played an important role to protect CIMMYT 
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durum wheat germplasm from P. triticina races of bread wheat at least in Mexico, 
where P. triticina races from bread wheat did not evolve for virulence to this gene. 
 

The protection against P. triticina conferred by the known race-specific genes in 
bread wheat has turned out to be short-lived. Therefore, the same could be 
expected in durum wheat. Use of identified race-specific genes in combinations 
would enhance their longevity.  
 
 

Conclusions 

From the work presented and discussed, the following general conclusions can be 
drawn: 
 

1) Losses due to leaf rust can be effectively reduced to negligible levels by 
the deployment of resistant durum wheat cultivars. Race-specific 
resistance protected the crop most effectively against severe leaf rust 
epidemics. A high level of slow rusting resistance identified in this study 
was associated with reduced yield losses. The best slow rusting resistant 
lines can be utilized by breeding programs for generating durable 
resistance. 

 

2) Uredinium size determined in the greenhouse was the best predictor for 
slow rusting resistance in durum wheat under field conditions. Among 
slow rusting resistance components, uredinium size is the easiest to 
measure and it had no significant genotype × environment interaction. 

 

3) Five distinct sources of race-specific resistance were identified in 
CIMMYT durum wheat germplasm. Although these genes demonstrate 
diversity for resistance their longevity can be enhanced if utilized in 
combinations in commercial cultivars. 

 

4) Molecular techniques proved to be effective for mapping leaf rust 
resistance genes in durum wheat. Two closely linked genes were mapped 
to the long arm of chromosome 6B and one of the genes was identified as 
Lr3a. Although Lr3a is known to occur in bread wheat, it was confirmed 
for the first time in durum wheat. The other gene appears to be novel. 

 
 

Future perspectives 

Inheritance studies for slow rusting resistance in durum wheat are needed to 
enhance the knowledge of the genetic basis and genetic diversity of such 
resistance. Eight slow rusting resistant parents were crossed with a susceptible 
durum wheat line in order to determine the genetic nature and basis of such 
resistance in CIMMYT durum wheat germplasm. These slow rusting lines were 
also intercrossed to investigate the genetic diversity for this type of resistance. 
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Complex crosses involving three and four slow rusting resistant parents were also 
made to accumulate slow rusting genes for the development of durum wheat 
cultivars with higher resistance and negligible yield losses under high leaf rust 
pressure.  
 

A set of differentials with known Lr genes and unknown leaf rust resistance 
genes from durum wheat origin must be developed for determining variation in 
populations of P. triticina from durum wheat. These differentials can also serve 
for testing for the presence (postulating) of resistance genes in durum wheat. 
Highly susceptible semi-dwarf durum wheat lines that lack any known or 
unknown race-specific resistance genes were recently developed at CIMMYT as 
the first step to achieve this objective (Huerta-Espino & Singh, pers. com.). 
 

Chromosome mapping is necessary for further characterization of the remaining 
race-specific resistance genes identified in this study and for mapping genes that 
confer slow rusting resistance. Molecular markers can be used for mapping as was 
shown from the study described here. In addition, PCR based molecular markers 
tightly linked to race-specific resistance genes should be developed for marker 
assisted gene pyramiding in breeding programs to enhance the longevity of 
resistance.  
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