
1

From QTL to QTN

Identification of a Quantitative
Trait Nucleotide Influencing Muscle Development and

Fat Deposition in Pig

Anne-Sophie Van Laere
Veterinary Faculty

Department of Animal Breeding and Genetics
Uppsala

Doctoral thesis
Swedish University of Agricultural Sciences

Uppsala 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Epsilon Open Archive

https://core.ac.uk/display/11694818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Acta Universitatis Agriculturae Sueciae

2005: 9

ISSN 1652-6880
ISBN 91-576-7008-0
© 2005 Anne-Sophie Van Laere, Uppsala
Tryck: SLU Service/Repro, Uppsala 2005



3

Abstract

Van Laere, A.S. 2004. From QTL to QTN. Identification of a Quantitative Trait
Nucleotide Influencing Muscle Development and Fat Deposition in Pig. Doctor’s
dissertation.
ISSN:1652-6880, ISBN:91-576-7008-0

Most traits of economical importance in animal production are quantitative i.e. they are
characterized by a continuous variation of phenotypic values. Examples for such traits
are carcass weight, milk production and lean meat content. The phenotype of an animal
for a quantitative trait depends on its genotype at several loci (called quantitative trait
loci, QTL) as well as on environmental factors. Up to date, a large number of QTLs have
been identified in farm animals by segregation analysis either within commercial
populations or in crossbreed populations. Animal geneticists face now the challenge to
identify the causative mutations lying behind these QTLs.
In this thesis, we report the identification of the causative mutation for a major QTL
influencing muscle development, fat deposition and heart size in pig. Previous studies
have mapped this locus to the distal end of pig chromosome 2p. Furthermore, they
have hypothesized that the causative mutation(s) may lie in an element regulating the
expression of insulin-like growth factor 2 (IGF2). Firstly, we sequenced the IGF2
region in the pig and made comparative sequence analysis with available human and
mouse sequences. We then used an identity-by-descent approach and managed to
pinpoint the causative mutation to a GA transition located in an evolutionary
conserved CpG island in IGF2 intron 3 (IGF2-intron3-G3070A). Subsequently, we used
electrophoretic mobility shift assay and transient transfection experiments and showed
that the QTN (quantitative trait nucleotide) abrogates the binding of a putative
repressor.  We completed our study by determining the core binding site of this trans-
acting factor and by performing DNase I footprinting of the CpG island containing the
QTN. In addition, we identified an IGF2 antisense transcript (IGF2-AS) and showed that
its expression was also influenced by the QTN.
The discovery of mutations causing QTLs in farm animals opens great future prospects.
Besides evident practical breeding interests there are also major scientific interests, as
understanding the mechanism causing the QTL effects will broaden our general
knowledge on how the genome operates.

Keywords: antisense transcript, CpG island, quantitative trait locus, quantitative trait
nucleotide, repressor, Sus scrofa.
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Introduction

Most traits of economical importance in animal production are quantitative i.e.
they are characterized by a continuous variation of phenotypic values. Examples
for such traits are carcass weight, milk production and lean meat content. The
phenotype of an animal for a quantitative trait depends on its genotype at several
loci (called quantitative trait loci, QTL) as well as on environmental factors
(Andersson, 2001). Up to date, a large number of QTLs have been identified in
farm animals by segregation analysis either within commercial populations or in
crossbreed populations. Animal geneticists face now the challenge to identify the
causative mutations lying behind these QTLs. The major obstacle is the poor
precision in the location of those loci. Indeed, the complex relation between
genotype and phenotype complicates the detection of recombinants between
markers and QTL as the genotype of an individual can only be determined by
progeny testing. In addition, the nature of QTL mutations might complicate their
identification. QTLs are not responsible for disorders but only for mild variation
in phenotypic value and are therefore expected to be caused by a variant gene
product or an altered gene expression rather than by a defect in gene product or in
gene expression. The causative mutation(s) can hence be regulatory or structural
and might be extremely difficult to distinguish from neutral linked mutations
(Georges & Andersson, 1996).

During the last decades, overweight and metabolic disorders have been
increasing in western countries. As a consequence, the demand on “lighter” more
healthy products has also increased. This led the pig industry to select for animals
with higher lean muscle and reduced fat deposition. This selection goes in
opposite direction to the one occurring on wild boars. Indeed, natural selection
favours animals that can store energy (i.e. fat), as those will be able to survive
periods of starvation. A three-generation intercross was made between wild boars
and Large White domestic pigs in an attempt to discover QTLs responsible for the
differences in growth and fat deposition observed between those animals
(Andersson et al., 1994; Andersson-Eklund et al., 1998). This successful approach
led to the discovery of several QTLs, including one influencing muscle
development, fat deposition and heart size.  This locus maps to the distal end of
pig chromosome 2p (SSC2p) and has the particularity of being imprinted
(maternally silenced). Early studies (Jeon et al., 1999; Nezer et al., 1999) have
suggested IGF2 (insulin-like growth factor 2) as a candidate gene for this QTL
because of:

- its chromosomal location,
- its paternal-specific expression,
- its effect on myogenesis.
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I. Chromosomal location of IGF2

The chromosomal location of IGF2 in pigs was unknown at the time the QTL was
discovered.  However, it was suspected to co-localize with the QTL because of its
position in the human genome. Indeed, IGF2 was known to map to human
chromosome 11p15.5 and bidirectional chromosome painting had shown that
HSA11pter-q13 corresponds to SSC2p (Goureau et al., 1996) . A FISH
(fluorescent in situ hybridisation) experiment was consequently set up to confirm
the assignment of IGF2 to SSC2p. In this experiment, a porcine BAC clone
containing IGF2 was hybridized to porcine metaphase chromosomes and gave a
consistent signal on the distal end of chromosome 2p (band 2p1.7) (Jeon et al.,
1999). This confirmed that IGF2 and the QTL both mapped to the distal end of
pig chromosome 2.

II. Effects of IGF-II

Insulin-like growth factor II (IGF-II) is a 67 amino acid-long, single chain
polypeptide belonging to the insulin family. This family also includes insulin and
insulin-like growth factor I (IGF-I). The genes coding for these three proteins are
orthologs (i.e. they have evolved from a common ancestral gene) and are the result
of two duplication events. The first duplication occurred approximately 600
million years ago and gave raise to insulin and a common ancestor for the two
insulin-like growth factors. This ancestor then led to the genes coding for IGF-I
and IGF-II after an additional duplication event that took place around 300 million
years ago (Froesch et al., 1985).

IGF-II and insulin show 47% sequence identity at the amino acid level.
Furthermore, they have the same three-dimensional structure since they have the
same three interchain disulphide bridges and hydrophobic core (O’Dell & Day,
1998).

Receptors

IGF-II exerts its biological effects through three receptors:

IGF-I receptor
The IGF-I receptor binds IGF-I with highest affinity but it binds also IGF-II (with
2-15 times lower affinity) and insulin (with 100-500 lower affinity). It is present
in a large variety of tissues where it mediates most of the effects of both IGF-I and
IGF-II (Cohick & Clemmons, 1993).

IGF-II receptor
The IGF-II receptor has a high affinity for IGF-II. It can also bind IGF-I but with a
100 to 500 times lower affinity and it does not bind insulin at all. This receptor is
mainly known for its clearance role; hence, it internalizes IGF-II upon binding and
transports it to the lysosomes for degradation (Jones & Clemmons, 1995). In
addition, it has been demonstrated to mediate part of the physiological actions of
IGF-II e.g. on myosarcoma cell motility (Minniti et al., 1992) and on extravillous
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trophoblast cell migration (McKinnon et al., 2001). The IGF-II receptor possesses
two binding sites for mannose-6-phosphate (Man-6-P) in addition to its IGF-II
binding site and is therefore also known as cation-independent mannose-6-
phosphate receptor. These Man-6-P sites mediate the transport of lysosomal
enzymes from the Golgi apparatus to the pre-lysosomes and the endocytosis of
ligands containing Man-6-P e.g. thyroglobulin.

Insulin receptor
The insulin receptor binds both insulin and IGF-II, but it has a ten times lower
affinity for IGF-II compared to insulin. It was shown to mediate part of the growth
promoting function of IGF-II in human and mouse fetus (Louvi, Accili &
Efstratiadis, 1997). The insulin and IGF-I receptors are structurally highly similar
heterotetrameric glycoproteins composed of two alpha and two beta subunits
(α2β2). Hybrid insulin/IGF-I receptors composed of one αβ IGF-I half receptor and
one αβ insulin half receptor have even been found on cells expressing both types
of receptors (Jones & Clemmons, 1995).

Binding Proteins

More than 99% of circulating IGFs are bound by Insulin-like Growth Factor
Binding Proteins (IGFBP) (Dupont et al., 2003). Up till now, six IGFBP
(IGFBP1-6) have been described. They are characterized by conserved amino- and
carboxy-terminal but each of them has a unique central domain. Their main role is
to modulate the biological effects of the IGFs by (1) maintaining a reservoir of
IGFs in circulation, (2) transporting IGFs across the capillary membrane, (3)
localizing the IGFs to specific tissues, (4) modulating binding of the IGFs to their
receptors and (5) prolonging the half-life of the IGFs (Wood, 1995). In addition,
they have also been shown to have various IGF-independent actions e.g. as growth
modulators (Mohan & Baylink, 2002).

Biological actions

IGF-II acts both through endocrine and autocrine / paracrine pathways and has been
shown to:

-  Promote feto-placental growth: IGF-II has metabolic, mitogenic and
differentiative actions on a wide range of fetal tissues and on the placenta
(Jones & Clemmons, 1995). Experiments using transgenic mice have
proven that IGF-II is a potent fetal growth factor. DeChiara, Robertson &
Efstratiadis (1990) showed, for example, that knockout Igf2 mice weigh
only 60% of the normal weight at birth.

-  Promote both cell proliferation and cell differentiation. Hence, Florini
and co-workers (1991) demonstrated that autocrine secretion of IGF-II
plays a major role in skeletal muscle cell differentiation. Oksbjerg,
Gondret & Vestergaard (2004) reported that, in muscle cells, the
stimulation of proliferation and differentiation by the IGFs is
concentration- and time-dependant.

-  Prevent apoptosis: this has been shown e.g. in cultures of myoblast,
neurons and oligodendrocytes (Jones & Clemmons, 1995)
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- Mediate insulin-like effects e.g. on glucose and fat metabolism (Jones &
Clemmons, 1995).

- Increase cell motility (and hence malignancy) in myosarcoma (Minniti et
al., 1992), to increase migration of extravillous trophoblastic cells
(McKinnon et al., 2001).

In addition, over-expression of IGF-II has been shown to cause cell
hyperproliferation associated with tumour formation (Wood, 1995).

III. Imprinting

Definition

Genomic imprinting has been defined as “an epigenetic modification that is
parental-origin specific, and/or preferential expression of a specific parental allele
in somatic cells of the offspring” (Feinberg, Cui & Ohlsson, 2002). The term
“epigenetic” literally means outside conventional genetics (Jaenisch & Bird,
2003); thus, epigenetic modifications are modifications of the chromatin (e.g.
histone acetylation, DNA methylation) without modification of the DNA sequence
(Wilkins & Haig, 2003).  Those modifications are heritable trough many cell
divisions but can also be reset (at least in germline).

Transmission of imprints

The exact nature of the primary epigenetic modification(s) responsible for the
establishment of imprinting is still unknown. Nevertheless, Li and co-worker’s
(1993) study on knockout mice has proven that methylation is necessary at least
for maintaining imprinting. The imprints causing parent-of-origin specific
expression have to be reset at each generation in order to correspond to the
germline of the new individual. Hence, imprints go through a three-step life cycle
(Reik & Walter, 2001a):

Erasure
This first step occurs in the primordial germ cells. Imprints inherited from the
parents are removed and DNA is totally unmethylated. Nuclear transplantation
experiments in mouse have shown that Igf2 is silenced at this stage whereas H19
is expressed (Labosky et al., 1994).

Establishment
The new imprints specific to the germline (oocyte or sperm) are set up at a late
fetal stage in males and after birth in females. De novo methylation takes place and
results in overall higher methylation in male germ cells than in oocytes.

Maintenance
The new imprints have to be transmitted to both daughter cells at mitoses. This is
more challenging than it first appears as the new imprints have to resist the
genome-wide demethylation occurring after fertilization and the de novo
methylation taking place after implantation.



11

(Epi)genetic characteristics of imprinted genes

Clusters
Eighty percents of imprinted genes are found in clusters. Genes linked in the same
cluster are believed to be co-regulated (Reik & Walter, 2001a), notably through
Imprinting Control Regions (ICR). These are CpG-rich cis-acting elements that are
found associated to approximately 50% of the known imprinted genes and are
essential for the correct imprinting to occur (Fergusson-Smith & Surani, 2001).
ICRs can be up to several kilobases long and are differentially methylated (usually
the maternally-derived ICR is methylated) (Delaval & Feil, 2004).

CpG islands
CpG islands are not an exclusive characteristic of imprinted genes but imprinted
genes are much more often associated with CpG islands than non-imprinted genes
(88% versus 47% in mouse) (Reik & Walter, 2001a). Gardiner-Garden and
Frommer (1987) defined CpG islands as DNA stretches fulfilling the three
following criteria:

- length > 200 bp,
- G + C content > 50%,
- Observed CpG / Expected CpG > 0.6.

Direct repeats
The presence of tandem direct repeats associated to GC-rich sequences is a
common characteristic among many imprinted genes. These repeats have been
suggested to attract the methylation machinery by mimicking foreign DNA
structure. Indeed, DNA methylation has been proposed to have evolved to protect
the host against the spreading of transposons and endogenous retroviruses. The
methylation and subsequent heterochromatization of the tandem repeats could lead
to spreading of methylation to the nearby GC-rich region. Nevertheless, deletion
experiments realized with H19 transgenes have shown that the tandem repeats
alone are not sufficient to cause allele-specific methylation (Reik & Walter,
2001a).

Except for their association with imprinted genes, the repeats themselves do not
have much in common. Their sequence, number of repetitions, length, position
relatively to the gene, position relatively to the CpG island or DMR (differentially
methylated region) varies. Consequently, if they are involved in the acquisition
and/or the maintenance of differential methylation they would probably act
through their organization. This could be done by:

- Influencing the DNA secondary structure
- Being recognized by protein complexes, e.g. methyltransferase

DNA methylation
DNA methylation has been shown to be a key element to maintain imprinting
(Brannan & Bartolomei, 1999; Tilghman, 1999). In eukaryotes, methylation
occurs on the carbon at position 5 of cytosines found in CpG dinucleotides (and
much more rarely in CpNpG trinucleotides) (Strachan & Read, 1999).
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5’  mCpG   3’                 5’  mCpNpG   3’
3’    GpCm  5’                 3’    GpNpCm  5’

The resulting 5-methylcytosines are unstable and tend to deaminate into thymines.
This phenomenon has resulted in a decrease of the frequency of CpG dinucleotides
in the genome over time so that the actual observed frequency only corresponds to
23% and 19% of the expected frequency in human and mouse, respectively
(Fazzari & Greally, 2004).

The majority of known imprinted genes have been shown to contain
differentially methylated regions (DMR). These CpG-rich regions can be
methylated on the active or silenced allele and can contain various types of
regulatory elements like enhancers, repressors and chromatin boundaries.
Differential methylation results in allele-specific gene expression by modifying the
protein-DNA interactions. Indeed, the addition of a methyl group to the cytosine
modifies the aspect of the major groove of the DNA (which contains most of the
DNA-protein recognition sites) (Constância et al., 1998; Fazzari & Greally, 2004)
and can consequently:

- prevent binding of transcription factors,
- allow methyl CpG binding proteins (e.g. MeCP1, MeCP2) to bind. These

proteins bind specifically to methylated DNA and mediate silencing through
histone deacethylation and subsequent chromatin condensation (Jones, 1999;
Jaenish & Bird, 2003).

Antisense transcripts
Fifteen percent of known imprinted genes have an antisense transcript. Amazingly,
this antisense gene is also imprinted and (almost) always maternally silenced,
whether the sense transcript is maternally or paternally expressed (Reik & Walter,
2001a). The hypothesis that the antisense transcript is important for the regulation
of the sense gene was recently proven for Air (antisense Insulin-like growth factor
2 receptor) (Sleutels, Zwart & Barlow, 2002) and Kcnq1ot1 (antisense Kcnq1)
(Thakur et al., 2004).

It is amazing to notice that if (almost) all imprinted antisense genes are
paternally transcribed, the majority of the DMRs are maternally methylated. Reik
& Walter (2001b) have linked these observations to the fact that the genome-wide
demethylation occurring after fertilization is active on the paternally inherited
chromosomes but passive on the maternally inherited ones. Hence, they suggested
that this active demethylation could be an attempt from the mother’s side to
remove paternal imprints. Paternal imprints would then have evolved towards
another type of silencing mechanism i.e. antisense transcripts.

Asynchronous replication
Kitsberg and co-workers (1993) studied the timing of replication of imprinted
genes by in situ hybridization to interphase nuclei. They showed that replication
of imprinted genes is asynchronous and even allele-specific as the paternal allele
always replicates before the maternal allele. Hence, Kitsberg and co-workers
suggested that the different replication time is a necessary imprint to establish
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allele-specific gene expression (e.g. by changing the accessibility of the DNA for
methyltransferases).

Meiotic recombination
The observation that regions actively transcribed during gametogenesis are more
prone to recombination led Thomas and Rothstein (1991) to the hypothesis that
the sex-specific recombination frequencies observed at certain places of the genome
might be caused by sex-specific gene expression e.g. imprinting. Pàldi, Gyapay &
Jami (1995) suggested that chromatin is organized in higher-order structures that
are responsible for:

- Asynchronous replication.
-  Different frequency of meiotic recombination between sexes: actively

transcribed regions have a more “open” chromatin structure which allows
more recombinations (possibly because enzymes initiating crossing-overs
have a better access to the DNA).

- Imprinting: genes display allele-specific expression if:
o They have specific signals in their sequence.
o Modifying enzymes can access those signals in one sex but not

in the other because of the different chromatin environment.

Regulation of expression at the IGF2 locus

I G F 2  is part of a cluster of imprinted genes located on HSA11p15.5
(corresponding to SSC2p1.7).  Two ICRs (imprinted control regions) regulate the
imprinting of these genes. The first one, Kv ICR, controls the imprinting of the
centromeric subcluster which contains KCNQ1, KCNQ1OT1 and CDKN1C. The
second one, H19 ICR, is located 2-4 kb upstream of the H19 promoter and
controls imprinting at the telomeric subcluster which contains H19 and IGF2 (Du
et al., 2003). These two genes are reciprocally imprinted so that in most tissues
H19 is maternally expressed (Bartolomei, Zemel & Tilghman, 1991) and IGF2 is
paternally expressed (DeChiara, Robertson & Efstratiadis, 1991; Nezer et al.,
1999). Furthermore, Li et al. (1998) suggested that the human H19 gene is an
antagonist of IGF2 expressivity in trans. The mechanisms controlling imprinting
at the IGF2-H19 domain are complex and appear to be tissue-specific. In the
endoderm, expression of IGF2 and H19 depends on activation of their promoters
by a set of shared enhancers located 3’ of H19 (Leighton et al., 1995). On the
maternal chromosome, the unmethylated H19 ICR is bound by CCCTC-binding
factors (CTCF). This creates a chromatin boundary which isolates the IGF2
promoters from the endodermal enhancers and results in silencing of IGF2 and
expression of H19. On the paternal chromosome, methylation of the ICR prevents
CTCF from binding which results in activation of the IGF2 promoters by the
endodermal-specific enhancers and IGF2 transcription (Bell & Felsenfeld, 2000;
Hark et al., 2000; Kanduri et al., 2000a, b). In addition, the methylated ICR
directs methylation and subsequent silencing of the H19 promoter (Srivastava et
al., 2000) (Figure 1).  The situation appears to be more complex in mesodermal
tissues. In addition to mesodermal-specific enhancers located 3’ of H19 (Ishihara et
al., 2000), a series of other control elements have also been found as e.g. a
silencer located in DMR1 (IGF2 intron 3) (Eden et al., 2001) and a muscle-
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specific silencer situated in the IGF2-H19 intergenic region (Ainscough et al.,
2000).

F i g u r e  1
Representation
of the boundary
model
explaining
imprinting at
the I G F 2 - H 1 9
locus. The H19
I C R  i s
unmethylated
on the maternal
chromosome
a n d  i s
consequently

 bound by CTCF.  This creates a chromatin boundary that prevents the endodermal
enhancers (represented as triangles) to activate IGF2 expression. The promoter of H19
is unmethylated and its expression can hence be activated by the endodermal
enhancers. On the contrary, the H19 ICR is methylated on the paternal chromosome
(methyl groups are represented as stars). This methylation spreads to the H19 promoter
which becomes silenced. In addition CTCF cannot bind to the methylated ICR and the
endodermal enhancers can activate transcription of IGF2 (modified from Rand & Cedar,
2003).

At imprinted loci, the level of transcription of the transcribed allele is still
controlled by transcription factors like at non-imprinted loci. Most information
available on the regulation of IGF2’s four promoters (P1-4) (Sussenbach 1989; van
Dijk et al., 1991) comes from studies made in different human liver cell lines.
Hence, promoter P1 has been shown to be activated by the ubiquitous
transcription factor Sp1 (Rodenburg, Holthuizen & Sussenbach, 1997) and by the
CCAAT/enhancer binding protein (C/EBP) (van Dijk. et al., 1992). Promoters P3
and P4 have been shown to be regulated by the zinc finger transcription factors
Egr-1 and WT1. These two proteins bind to the same DNA element but binding of
Egr-1 results in transcriptional activation whereas binding of WT1 results in
transcriptional repression (Bae et al., 1999; Lee et a l . , 1998). In addition,
Rietveld et al. (1999) have demonstrated that transcription from promoter P3
responds to AP-2 binding so that overexpression of AP-2 results in activation of
P3 in cells with low endogenous level of AP-2 and repression of P3 in cells with
high endogenous level of AP-2. P3 has also been shown to be activated by the
zinc finger oncogene PLAG1 (Zatkova et al., 2004). Finally, Sp1 was shown to
bind to promoter P4 and to cooperate with Egr-1 to mediate maximal activity of
this promoter (Lee, Park & Lee, 2001). The regulation of IGF2 transcription in
skeletal muscle cells has been less studied and is poorly understood. However,
Erbay et al. (2003) have demonstrated that the Ser/Thr kinase mTOR initiates
myoblast differentiation by regulating the expression of IGF2. In addition, Zhang
et al. (1998) have suggested that AP-2 may contribute to IGF-II overexpression in
an embryonal skeletal muscle tumor (rhabdomyosarcoma).
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Aims of the thesis

The objectives of this thesis were:
-  To identify the causative mutation(s) for a major QTL in the pig

influencing muscle growth, fat deposition and heart size located on
SSC2p.

- To characterize the molecular mechanism(s) through which the mutation
exerts its effects.
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Methods

I. Transient transfection

This method can be used to determine if a DNA element is involved in
transcriptional regulation of gene expression e.g. if it acts as promoter or enhancer.
Firstly, the element of interest is cloned in a plasmid containing a reporter gene
which expression can be easily assayed (e.g. luciferase, green fluorescent protein,
chloramphenicol acetyl transferase).  If the element is a putative promoter, it will
be inserted in a plasmid containing a strong enhancer (e.g. SV40 enhancer). On the
other hand, if the experimentator wants to test a supposed enhancer or silencer, it
will be cloned in a plasmid containing a promoter. In this case, it is generally
recommended to use the homologous promoter. Secondly, the plasmid is
transfected into a suitable cell line. This can be done by a biochemical (e.g. cation
lipid, calcium phosphate), physical (e.g.  electroporation) or virus-mediated
method. It is important to simultaneously transform the cells with a control vector
(expressing a different reporter) to be able to monitor differential cell growth and
transfection efficiency. Finally, the activity of the reporter is assayed after one to
four days incubation and the observed reporter signal is normalized to the control.

II. Electrophoretic Mobility Shift Assay (EMSA)

EMSA is a standard biochemical in vitro method to detect protein-DNA
interactions (Fried & Crothers, 1981). This assay is based on the fact that
migration of DNA through a native polyacrylamide gel is retarded upon protein
binding. First, a short double stranded DNA fragment (called the probe) is
radioactively labelled. Second, the probe is incubated with proteins to allow DNA-
protein complexes to form. Proteins from diverse origins can be used in EMSA
e.g. nuclear or whole-cell extracts from cells or tissues (Dignam, Lebovitz &
Roeder, 1983) and purified recombinant proteins. Third, the protein-DNA binding
reactions are electrophoresed on a native polyacrylamide gel to separate free and
protein-bound DNA. After autoradiography, the band corresponding to the DNA-
protein complex appears higher on the gel compared to the free probe; the probe
has also been “shifted” (Fig. 2). The migration of the DNA-protein complex
depends mainly on the charge, shape and multimeric state of the protein. The
specificity of the obtained complexes has to be tested by the addition of an excess
of cold probe to the binding reaction. If the protein binds specifically it has the
same affinity for the cold and for the radioactively labelled probe. Hence, both
probes will compete for its binding and as the cold probe is in large molar excess
there will be no protein left to bind to the labelled probe, which results in the
disappearance of the complex.
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Figure 2 Hypothetical EMSA. The free (unbound) probe as well as two specific and one
unspecific complex are represented (modified from Carey & Smale, 2000)

The major advantages of EMSA are its simplicity and its high sensitivity. In
addition, it allows the detection of complexes of different composition, each
complex appearing as a band with a specific migration. Furthermore, EMSA gives
the possibility to check the identity of proteins included in a complex by using
antibodies. Hence, a specific antibody can be added to the protein-DNA binding
reaction and its binding to the protein will result in an antibody-protein-DNA
complex which gel migration will be even more retarded (this is called a
supershift). Alternatively, the antibody can cover the DNA binding site of the
protein and thereby prevent the formation of the complex, resulting in the
disappearance of the shifted band (Carey & Smale, 2000).

III. DNase I Footprinting

DNase I footprinting allows the detection of protein-DNA interactions in vitro
(Galas and Schmitz, 1978). This method is based on the principle that DNA
regions bound by proteins are protected from digestion by DNase I. Basically, a
double-stranded DNA probe corresponding to the region of interest is radioactively
labelled on one end and used to set up two parallel reactions: one with proteins,
the other without. After incubation, a specific amount of DNase I is added to both
reactions so that each DNA molecule is cut only once. DNase I cuts randomly, and
in the absence of proteins the probe will be digested in a series of labelled
fragments ranging from one bp to full length probe. On the other hand, if DNA-
protein complexes form, the DNA bound by the proteins will not be accessible to
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the enzyme and this will result in the absence of DNA fragments of specific sizes.
Both reactions are then run on a denaturing polyacrylamide gel to separate the
DNA fragments according to their length. After autoradiography of the gel, the
probe incubated without proteins will appear as a continuous series of bands. The
probe incubated with proteins will also appear as a series of bands, but if protein-
DNA complexes have formed the areas corresponding to the complexes will be
devoid of bands. Those regions are called “footprints” (Carey & Smale, 2000).
Usually, a Maxam-Gilbert sequencing reaction of the probe is run together with
the DNase I digestions to enable the localization of the footprints (Fig. 3). The
main advantage of this method is that it gives the approximate binding site of
each protein binding to the probe. Furthermore, it is possible to analyse a quite
long DNA region in a single experiment (the probes are generally at least 300 bp
long).

Figure 3 Hypothetical DNase I
footprinting experiment allowing
the detection of two protected
regions. Footprint 1 appears as a
region devoid of bands whereas
in footprint 2 the bands are only
weakened compared to the ones
from the probe incubated without
proteins. A ladder (which i s
usually a Maxam- Gilbert A+G
s e q u e n c i n g  r e a c t i o n )  i s
electrophoresed together with the
digested probes to allow
localization of the footprints.
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Results and discussion

I. Comparative sequence analysis of the INS-IGF2-H19 gene
cluster in pigs (Paper 1)

The aim of this work was to further characterize the region containing the
mutation(s) causing the QTL. Here we report the sequence analysis of two pig
contigs. The first one is 32 kb long and contains the five last exons of TH
(Tyrosine hydroxylase) as well as the entire INS (insulin) and IGF2 genes. The
second one contains H19 and covers 56 kb.

We started by characterizing the order and the structure of INS, IGF2 and H19 in
pig and showed that they were identical to the ones in human. Hence, the gene
order is as follows: TH - 1.9 kb - INS - 0.7 kb - IGF2 - 88.1 kb - H19. IGF2 is
composed of ten exons (1-9 and 4b) that display high sequence identity between
human and pig (Fig. 4).

Figure 4. Genomic structure of porcine IGF2. The ten exons of IGF2 are represented as
boxes, black boxes correspond to the translated exons. The four promoters of IGF2 (P1-
4) are represented by arrows.

Nezer et al. (1999) showed that the coding region of IGF2 was identical between
pigs with different QTL genotypes. We therefore suspected the causative
mutation(s) to lie in (a) regulatory element(s). Such elements tend to be well
conserved between species. This results from natural selection as individuals
carrying mutations in a regulatory element might display erratic gene expression
and lower fitness. Consequently, we compared our pig sequence with available
human and mouse sequences to find these conserved regions. We report 59
evolutionary conserved elements (outside exons, promoters and simple repeats) in
the INS-IGF2 region and 38 in the H19 region. Most of them have an unknown
function but some have been assigned an important role in regulating the
expression of IGF2 in human and mouse e.g. DMR1, CTCF binding sites,
endodermal enhancers (see introduction).

As expected from phylogenetic studies, the overall sequence similarity was
higher between pig and human than between pig and mouse or human and mouse.
The pig sequence displays an amazingly large number of CpG islands: nine in the
INS-IGF2 region and sixteen in the H19 region. This can be put into relation with
the imprinting of the region. Indeed, CpG islands are more often found associated
with imprinted than with non-imprinted genes. The sequence is also characterized
by its low abundance of interspersed repeats. Once again, this could be related to
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the imprinting of IGF2 and H19 as the introduction of foreign sequence might
perturb the complex regulatory mechanisms controlling their expression.

Another important part of this work was to characterize IGF2 transcripts and
promoter usage in different fetal and adult tissues. We found that IGF2
transcription is tissue- and development-specific and that it can be initiated from
four promoters (P1-4 located upstream of exons 1, 4, 5 and 6, respectively).

II. A regulatory mutation in IGF2 causes a major QTL effect on
muscle growth in the pig (Paper 2)

Nezer and co-workers (2003) refined the position of the QTL to a 250 kb-long
interval between the markers 370SNP6/15 and SWC9 (located in the 3’
untranslated region of IGF2). The only known paternally expressed genes mapping
to this region were insulin and IGF2. Therefore, we decided to re-sequence 28.6 kb
covering these two genes on 15 chromosomes which QTL status could be
determined by progeny testing and marker-assisted segregation analysis. One of
the chromosomes (H254) appeared to be recombinant and allowed us to localize
the QTL downstream of the first exon of IGF2. Among the 258 polymorphisms
differentiating the 15 chromosomes, we only found one SNP co-segregating
perfectly with the QTL status of the chromosome. Therefore, this SNP, a GA
transition at position IGF2-intron 3-nt 3072, has to be the causative mutation. The
wild type allele (G) is associated with lower muscle mass and was therefore named
”q” while the mutant allele (A) causes higher muscle development and was called
”Q”. The quantitative trait nucleotide (QTN) is located in an evolutionary
conserved CpG island of unknown function. Consequently, we set up EMSA and
transient transfection experiments to uncover its mechanism of action. In addition,
we studied the methylation status of the CpG island by bisulphite sequencing.

We carried out EMSA with nuclear extracts from three different cell types
(C2C12 murine myoblasts, HepG2 human hepatocytes and HEK 293 human
embryonic kidney cells) and three different 27 bp-long probes:

- q: wild-type probe
- Q: mutant probe
- q*: wild-type probe with a methylated CpG at the QTN. As methylation

is important for expression of imprinted genes we designed this probe in
order to test the influence of methylation on in vitro binding to the QTN.

We demonstrated the existence of a specific complex forming only with the wild-
type probe but not with the mutant probe nor with the methylated probe.

We transfected C2C12 myoblast cells with reporter plasmids expressing firefly
luciferase under the control of the thymidine kinase minimal promoter (TK) and a
578 bp-long fragment corresponding to the q or Q genotype at the QTN. After
normalization, we found that the q insert doubles the basal TK transcription
whereas the Q insert increases it seven times.
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Figure 5 Results of transient
t ransfec t ion  exper iments
carried out with reporter
plasmids expressing firefly
luciferase under the control of
TK and an insert corresponding
to the q (q+TK) or Q (Q+TK)
allele at the QTN. Results were
normalised to a  Renilla
luciferase control plasmid and
are expressed as relative
activit ies to a plasmid
expressing firefly luciferase
under the sole control of TK.
The triple asterisk indicates
that the differences observed
between the three plasmids are
highly significant (P<0.01).

These results were quite difficult to conciliate with the results of the EMSA.
For this reason, we replaced the TK promoter with IGF2 promoter 3 (P3) and
repeated the experiment. We choose P3 because it is the most actively transcribed
promoter in muscle cells and because it is influenced by the QTN in vivo (see
below). This time, we found that q reduces the basal P3 transcription with 70%,
whereas Q only reduces it with 30%.

Figure 6 Results of transient
transfections carried out like
in Fig. 6 but plasmids
express luciferase under the
control of the P3 instead of
TK.

Taken together with the EMSA these new results suggest that the QTN
abrogates the binding of a repressor to a cis-element. In addition, our transient
transfection experiments illustrate how important it is to use a homologous rather
then a heterologous promoter in this kind of experiments.

We analyzed the methylation of the CpG island containing the QTN and found
that it is independent from the genotype at the QTN and from the parental origin
of the allele. However, we found that it is tissue-specific. Hence, on average, 26%
of the CpG dinucleotides are methylated in liver but only 3.4% are methylated in
skeletal muscle. Interestingly, the effect of the QTN is observed in muscle i.e. in a
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non-methylated tissue where the putative repressor is able to bind, but no effect is
seen in liver which is more methylated and where the putative repressor might
consequently not be able to bind so efficiently (according to the EMSA results). It
would be very exciting to analyze the situation in other tissues to check if this
association between methylation status and QTN effect holds.

We quantified the expression of IGF2 in vivo and found a significantly higher
expression in postnatal muscle samples from QQ and Qpatqmat animals compared to
qpatQmat and qq animals. A weaker (but significant) difference could also be
observed in postnatal heart samples but not in postnatal liver nor in any tested
prenatal tissue sample. Furthermore, we showed that IGF2 transcription was
increased from all three promoters located downstream of the QTN (i.e. P2-4).

Finally, we genotyped the progeny of 13 heterozygous sires (Qq) and of 50
homozygous sires (QQ or qq) and used this data in segregation analyses. We
found evidence for segregation in all heterozygous families but we could not find
any indication of segregation among progeny sired by homozygous males.
Furthermore, Jungerius et al. (2005) showed that the QTN also controls the QTL
for backfat thickness found in a Meishan x European Whites cross. In conclusion,
we demonstrated that the SSC2p QTL is caused by a GA transition at position
IGF2-intron 3-nt 3072 and that this mutation influences IGF2 expression. Hence,
we showed that, in addition to its well-known fetal role, IGF2 is involved in
postnatal muscle development.

III. IGF2 antisense transcript expression in porcine postnatal
muscle is affected by a quantitative trait nucleotide in intron 3
(Paper 3)

The aim of this study was to search for an IGF2 antisense (IGF2-AS) gene in pig,
and upon its existence to:

- Characterize and quantify its transcript(s).
- Examine its imprinting status.
- Determine whether its expression was influenced by the IGF2 QTN.

We have shown by RT-PCR and RNase protection assay (RPA) that IGF2-AS
indeed exists in pig. Furthermore, we have shown that it has two different
transcription start sites; a major site located around IGF2 intron4-nt70 and a minor
site located approximately at IGF2 intron3-nt2294 (RPA results) or intron3-
nt2205 (5’ RACE results). The 3’ end of the transcripts was mapped to position
IGF2 intron2–nt1236 by RACE. We found three different transcripts originating at
the major start site. These transcripts contain from three to five exons and share all
the same first and last exons (Fig. 7).
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Figure 7. Genomic structure of porcine IGF2 and multiple IGF2-AS transcripts
(a-d). Exons  are represented as boxes, black boxes correspond to the translated
exons. Promoters are represented by arrows

Hence, we can conclude that the structure of IGF2-AS is not well conserved
between pig, human and mouse as this gene only has three exons in human and
four in mouse. However, some of the exons are quite well conserved between
species (Table 1).

Table1. Sequence identities between IGF2-AS exons in pig and  human or mouse.

Pig exon Human exon Mouse exon % Identity
1 1 72
2 2 60
5 3 63

Northern blot analyses revealed the existence of three transcripts in fetal muscle
(4.7 kb, 3.3 kb and 2.1 kb), two in fetal liver (3.5 kb and 2.1 kb) and one in fetal
kidney (3.3 kb). Surprisingly, the shortest band observed on the northern blot is
longer than the longest transcript predicted by the RT-PCR and 3’ RACE results.
This could result from preferential amplification of short truncated transcripts by
the nested RACE PCR or from a real heterogeneity of the transcripts.

Next, we examined the imprinting status of IGF2-AS in liver and muscle
samples from fetal, 3-weeks- and 4-months-old piglets. This was done by
sequencing an A to C transversion at IGF2-AS exon2-nt32 which allowed us to
discriminate between Q and q alleles at the QTN. We found that IGF2-AS is
imprinted and only expressed from the paternal allele. This reflects the status at
other imprinted loci as most antisense transcripts found in imprinted genes are
maternally silenced. However, we should note that in muscle of 4-months-old pigs
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we could detect some transcription from maternal origin which indicates that
imprinting is partially released.

Finally, we used real-time PCR analysis to quantify IGF2-AS transcripts in
muscle and liver from fetal, 3-weeks- and 4-months old pigs carrying the q or Q
allele at the QTN. Firstly, we found that the expression of IGF2-AS decreases
noticeably after birth. Secondly, we found that in 3-weeks- and 4-months-old pig
muscle it depends on the genotype at the QTN. Indeed, at these stages, IGF2-AS
expression was significantly higher in Q than in q muscle samples. Hence, the
putative repressor binding at the QTN seems to influence both IGF2 and IGF2-AS
expression.

The function of IGF2-AS is still unknown, but it has been suggested that it
could take part in the regulation of IGF2 expression. Indeed, it is noteworthy that
in pig as well as in human, the first and the last exon of IGF2-AS overlap part of
IGF2 exon 4 and the entire exon 3, respectively. Consequently, IGF2-AS could
interfere with transcripts originating from P1 and P2.

IV. Molecular Characterization of a Region in IGF2 Intron 3
harbouring a Quantitative Trait Nucleotide affecting Muscle
Growth in the Pig (Paper 4)

The aim of this study was to:
- Determine the binding site of the transcription factor binding to the QTN.
- Characterize the CpG island containing the QTN.
- Search for polymorphisms in the CpG island in human.

 We used EMSA to determine which nucleotides were important for the binding
of the putative repressor described in paper 2. Firstly, we performed EMSA with a
series of mutated probes to determine if these mutations could abolish formation
of the specific complex obtained with the wild-type probe. Secondly, we used the
mutated oligonucleotides in a competition assay to determine if they were still
able to compete against the wild-type probe. Taking these results together, we
found that the core binding site of the transcription factor is: 5’-GCTCG-3’. New
database searches did not reveal any factor with similar binding capacities.

DNase I footprinting of the 333 bp surrounding the QTN revealed two protected
regions, FP1 and FP2:

-  FP1 covers ~50 bp (from nucleotide position ~3027 to ~3076) and
includes the core binding site of the putative repressor and a perfect
consensus AP-2 binding site.

- FP2 is a ~ 30 bp-long footprint located ~20 bp upstream of FP1 (from
nucleotide position ~2981 to ~3008) and covers a putative Sp1 binding
site.

AP-2 has previously been shown to regulate IGF2 transcription from P3 and it
would be particularly interesting to confirm it’s binding to FP2. Even more
interesting would be to know if it binds DNA as a heteromer with the putative
repressor. Hence, if they bind together, one could try to purify the repressor by co-
immunoprecipitating it with AP-2.
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Comparative sequence analyses of the CpG island containing the QTN have
revealed a high sequence conservation between pig and human. This led us to the
hypothesis that the human DNA sequence could contain cis-elements involved in
muscle development, as is the case in pig. Therefore, we resequenced this region
in individuals with low versus high muscle mass. We discovered three SNPs and
one insertion/deletion. Interestingly, one of the mutations (CT, at position
IGF2-intron 3-3462) lies in the putative AP-2 site included in FP2. Consequently,
we analysed the in vitro binding capacity of this site by running EMSA with a
wild-type and a mutant probe of the region. We were able to detect binding of
specific complexes with similar mobility using both wild-type and mutant
sequences. It would be very interesting to complement this experiment by a
supershift assay with AP-2-specific antibodies to confirm the involvement of this
transcription factor.
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Future prospects

This thesis summarizes the work that led to the identification of the causative
mutation for a QTL influencing muscle development, fat deposition and heart size
in pig. In addition, it presents how we have started to uncover the molecular
mechanisms by which this QTN mediates its effects. We have shown that the
mutation abrogates the binding of a putative repressor element, which results in
increased expression of IGF2 and IGF2-AS. We have also demonstrated that other
transcription factors bind DNA in the immediate vicinity of this repressor. The
obvious next step in this project will be to clone and characterize this repressor.
Different methods could be considered to achieve this goal e.g. one-hybrid screen,
in vitro expression library screening, biochemical purification. In order to choose
the most appropriate approach, it is important to collect as much information as
possible on this transcription factor and on its possible interactions with the
neighbouring DNA-binding factors. It is for example essential to know if it binds
DNA by itself or as a heteromer (as could be suspected from the DNase I
footprinting results). Indeed, some of the methods cited above are only capable to
deal with proteins binding as monomer, homodimer or homopolymer. In addition,
identifying a known factor binding DNA together with the repressor could be
extremely useful; antibodies against this factor could be used to co-
immunoprecipitate both factors as a first step towards purification of the repressor.

The identification of the gene coding for a transcription factor might be a
difficult task, but it would be worth the effort as this repressor could have
fascinating therapeutic uses in the future. Indeed, it could be inactivated to increase
the expression of IGF2 in specific tissues. Our study has demonstrated that it is
active in skeletal muscle and heart but not in liver. In addition, it may also be
active in adipocytes as the IGF2-QTL also influences backfat thickness. Hence,
one could imagine to inactivate it in order to increase the muscle mass of patients
suffering from muscular degenerative diseases. Furthermore, it could be transiently
inactivated in patients confined in bed to avoid the muscle loss accompanying
long periods of inactivity. In addition, if its activity is confirmed in adipocytes, it
could even be used to treat obese patients.

Finally, the identification of the causative mutation for the IGF2-QTL makes it
very easy to select pigs with the favourable Q allele to breed for the next
generations and hence to fix the mutation in populations were it is present. In
addition, it will also facilitate the introgression of the mutant allele in pig breeds
where it is absent.  Indeed, when the introgression of a favourable gene variant is
based on linked markers there is always a risk to loose it because of a
recombination between the markers and the actual causative mutation. This
problem has now been eliminated and makes the IGF2-QTL a very attractive
candidate for introgression into certain commercial populations.
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