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Abstract  
Agriculture is extremely vulnerable to climate change. Higher temperatures 

eventually reduce yields of desirable crops while encouraging weed and pest 

proliferation. Changes in precipitation patterns increase the likelihood of short-run 

crop failures and long-run production declines. Although there will be gains in some 

crops in some regions of the world, the overall impacts of climate change on 

agriculture are expected to be negative, threatening global food security: in this 

contest , the aim of this study was to assess potential climate change changing in 

ambient  on production and phenology for two of the most important varieties of 

grapevine  at two  experimental sites in Sardinia, The vine has been extensively 

studied in the context of climate change studies. These studies can be separated into 

two groups: first, studies on the impacts observed in recent years and related to 

climate change and on the other hand, studies which, through experimentation 

(mimicking future conditions) or modeling, try to determine the conditions of 

production of this crop in the future. In this study an analysis of the potential impacts 

of climate change on grapevine (Vitis vinifera L.) will be presented. Namely 

predicting the responses of two main Sardinian varieties - Cannonau and 

Vermentino, in order to ascertain reliable adjustment cultural practices as well to 

define possible mitigation strategies.  The  objectives of this research were to 

evaluate the effects of climate change and grapevine and phenology, at two 

experimental sites in Sardinia, differents for soil, climate conditions. To achieve 

these main objectives, the approach used in this study was:  The application and 

assessment of a coupled climate scenario-crop model method, in which Atmosphere-

Ocean General Circulation Models, used to generate future climate scenarios, are 

integrated into crop models to simulate future crop yields. The analysis of daily 

meteorological variables for current climatic conditions and climate change 

projections. These data are used as input variables for crop simulation models in 

conjunction with soil parameters and agronomic and management information, to 

simulate the dynamics of plant growth and development. The comparison of the 

results of these simulations for both current and future climatic conditions. Impacts 

of climate change are then expressed as changes in crop productivity and 

phenological phases. 

To summarize, the specific aims of the work are:  

to calibrate and validate Win-Stics  model  of the Cannonau and Vementino grapevin 
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 to assess the climate change impact on and phenological crop phases, 

Riassunto  
L'agricoltura è estremamente vulnerabile ai cambiamenti climatici. Temperature più 

elevate eventualmente ridurre le rese delle colture auspicabile incoraggiando nel 

contempo la proliferazione delle infestanti e dei parassiti. Cambiamenti nei modelli 

termici e di precipitazione possono far registrare un decremento dei prodotti agricoli 

sia in termini qualitativi che quantitativi. . 

Secondo questa generale prospettiva  si procede ad un l'analisi dei potenziali impatti 

dei cambiamenti climatici sulla vite (Vitis vinifera L.) delle due varietà principali 

della Sardegna - Cannonau e Vermentino,  

Considerando infatti l'importanza economica del settore vitivinicolo , è 

indispensabile effettuare valutazioni finalizzate a fornire le informazioni necessarie 

per implementare adeguate strategie di adattamento tali da consentire una 

massimizzazione dei risultati in termini qualitativi e quantitativi. Per tale valutazione 

è stato impiegato il modello WinStics usando  I dati climatici prodotti dallo scenario 

utilizzando un Runge Kutta 2 livello di regime tempo Hevi per l'integrazione tempo 

Clmcmm 8 km: per il  periodo temporale  1965-2100 con  risoluzione spaziale  pari a 

8 km,. generati  dal modello globale CMCC-MED, il cui componente atmosferica è 

ECHAM5 (T159 80 km di risoluzione spaziale, 6 risoluzione temporale h) e 

considerando lo scenario A1B dell'IPCC. 

Si è proceduto quindi a  Calibrare e validare  il modello Win-STICS  per   tre fasi 

fenologiche (dormienza, fioritura,maturazione ) delle varietà  di  Cannonau e 

Vermentino coltivate in Sardegna  e valutare l'impatto del cambiamento climatico e 

sulle fasi fenologiche delle suddette coltivazioni viticole . 
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1. Climate change impacts on grapevine 

1.1. Introduction  

 

Grapevine (Vitis vinifera L.) is a woody perennial plant that reaches reproductive 

maturity in 4 to 5 years, and may remain economically productive for 50 to 60 years. 

Bud break occurs annually over a characteristic range of variety-specific dates (from 

March to April) and it is followed by a period of intensive vegetative growth during 

which the shoots elongate and produce leaves very rapidly. Vegetative growth 

usually slows when flowering of the 1 to 3 clus- ters on each shoot begins. Relative 

earliness or lateness of bud break for a variety depends upon weather patterns. The 

number of viable fruits (berries) that continue the development is determined shortly 

after flowering, when the maturing fruit clusters become  the primary sinks for 

photosynthate. Ripening fruits undergo 2 growth phases: (1) seed development and 

the building of the hard, green berry structure and (2) sugar accumulation, color 

change, and rapid enlargement, the start of which is called veraison. Full maturity, 

depending upon the variety and the site, is typically reached during August to 

September in the Northern Hemisphere. Growth and development of grapevine are 

influenced by environmental factors such as temperature and radiation, which make 

this crop sensitive to climate change. However, photosynthesis and growth  are also 

stimulated by increasing CO2 concentration (Kimball et al. 1993, Rogers & Dahlman 

1993) and such an increase may result in greater accumulation of fruit and total 

biomass. The winegrape and wine industry provides a set of forward indicators for 

all agricultural industries as they confront climate change. This is because 

winegrapes are particularly challenged not only by the expected increased incidence 

of extreme weather-related events (heat, drought, frost, wind, hail, bushfires) but 

also by the expected higher temperatures in the growing season that will bring 

forward the harvest date to a hotter month. The temperature rise in the critical 

harvest month for winegrapes may therefore be two or three times greater than the 

expected temperature rise in the current harvest month. While the industry is highly 

sensitive to the effects of climate change, it also has a track record of a high level of 

adaptability to shocks. There is scope for further adaptation, in terms of both the 

relocation of its activities and within existing locations. Options for adaptation at the 

vine, vineyard, winery and consumer levels need to be explored, and choosing the 

best ones will take time and require significant research and development 
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expenditures. The grapevine is one of the oldest cultivated plants that, along with the 

process of making wine, have resulted in a rich geographical and cultural history of 

development (Johnson, 1985; Penning-Roswell, 1989; Unwin, 1991). Today’s 

viticultural regions for quality wine production are located in relatively narrow 

geographical areas and therefore climatic niches put them at greater risk from both 

short-term climate variability and long-term climate change than other more broad 

acre crops.  

 

In general, the overall wine style that a region produces is a result of the baseline 

climate, while climate variability determines vintage quality differences. Climatic 

changes, which influence both variability and average conditions, therefore have the 

potential to bring about changes in wine styles. Our understanding of climate change 

and the potential impacts on viticulture and wine production has become 

increasingly important as changing levels of greenhouse gases and alterations in 

Earth surface characteristics bring about changes in the Earth’s radiation budget, 

atmospheric circulation, and hydrologic cycle (IPCC, 2001). Observed warming 

trends over the last hundred years have been found to be asymmetric with respect to 

seasonal and diurnal cycles with greatest warming occurring during the winter and 

spring and at night (Karl et al., 1993; Easterling et al. 2000). The observed trends in 

temperatures have been related to agricultural production viability by impacting 

winter hardening potential, frost occurrence, and growing season lengths (Carter et 

al., 1991; Menzel and Fabian, 1999; Easterling et al., 2000; Nemani et al., 2001; 

Moonen et al., 2002; Jones, 2005c). To place viticulture and wine production in the 

context of climate suitability and the potential impacts from climate change, various 

temperature-based metrics (e.g., degree-days, mean temperature of the warmest 

month, average growing season temperatures, etc.) can be used for establishing 

optimum regions (Gladstones, 1992). For example, average growing season 

temperatures typically define the climate-maturity ripening potential for premium 

quality wine varieties grown in cool, intermediate, warm, and hot climates (Jones, 

2006; Figure 1).  
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Figure 1 – The climate-maturity groupings given in this figure are based on relationships between phonological
requirements and climate for high to premium quality wine production in the world's benchmark regions for each variety.
The dashed line at the end of the bars indicates that some adjustments may occur as more data become available, but
changes of more than +/- 0.2-0.6°C are highly unlikely.  
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For example, Cabernet Sauvignon is grown in regions that span from intermediate to 

hot climates with growing seasons that range from roughly 16.5-19.5ºC (e.g., 

Bordeaux or Napa). For cooler climate varieties such as Pinot Noir, they are 

typically grown in regions that span from cool to lower intermediate climates with 

growing seasons that range from roughly 14.0-16.0ºC (e.g., Northern Oregon or 

Burgundy)From the general bounds that cool to hot climate suitability places on high 

quality wine production, it is clear that the impacts of climate change are not likely 

to be uniform across all varieties and regions, but are more likely to be related to 

climatic thresholds whereby any continued warming would push a region outside the 

ability to produce quality wine with existing varieties. For example, if a region has 

an average growing season average temperature of 15ºC and the climate warms by 

1ºC, then that region is climatically more conducive to ripening some varieties, while 

potentially less for others. If the magnitude of the warming is 2ºC or larger, then a 

region may potentially shift into another climate maturity type (e.g., from 

intermediate to warm). While the range of potential varieties that a region can ripen 

will expand in many cases, if a region is a hot climate maturity type and warms 

beyond what is considered viable, then grape growing becomes challenging and 

maybe even impossible. 

Furthermore, observations and modeling has shown that climate change will not just 

be manifested in changes in the mean, but also in the variance where there are likely 

to be more extreme heat occurrences, but still swings to extremely cold conditions. 

Therefore, even if average climate structure gets better in some regions, variability 

will still be very evident and possibly even more limiting than what is observed 

today. Overall the impacts on wine quality and challenges related to climate change 

and shifts in climate maturity potential will likely be evidenced mostly through more 

rapid plant growth and out of balance ripening profiles. For example, if a region 

currently experiences a maturation period (véraison to harvest) that allows sugars to 

accumulate to favorable levels, maintains acid structure, and produces the optimum 

flavor profile for that variety, then balanced wines result. In a warmer than ideal 

environment, the grapevine will go through its phenological events more rapidly 

resulting in earlier and likely higher sugar ripeness and, while the grower or 

winemaker is waiting for flavors to develop, the acidity is lost through respiration 

resulting in unbalanced wines without greater after harvest inputs or adjustments in 

the winery. As a result, higher alcohol levels have been observed in many regions, 

for example Duchêne and Schneider (2005) found that potential alcohol levels of 
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Riesling at harvest in Alsace have increased by 2.5% (by volume) over the last 30 

years and was highly correlated to significantly warmer ripening periods and earlier 

phenology. Godden and Gishen (2005) summarize trends in composition for 

Australian wines, and while not attributing any influence to the much warmer 

conditions experienced in Australia today (McInnes et al., 2003; Webb et al., 2005), 

they show increases in the alcohol content of 12.3% to 13.9% for red wines and 

12.2% to 13.2% for white wines from 1984-2004. For Napa, average alcohol levels 

have risen from 12.5% to 14.8% from 1971-2001 while acid levels fell and the pH 

climbed (Vierra, 2004). While Vierra (2004) argues that this trend is due to the 

tendency for bigger, bolder wines driven by wine critics and the economics of 

vintage rating systems, Jones (2005d) and Jones et al. (2007c) find that climate 

variability and change are likely responsible for over 50% of the trend in alcohol 

levels. Besides changes in wine styles, one of the more germane issues related to 

higher alcohol levels is that wines typically will not age as well or as long as wines 

with lower alcohol levels. Finally, harvests that occur earlier in the summer, in a 

warmer part of the growing season (e.g., August or September instead of October in 

the Northern Hemisphere) will result in hotter harvested fruit and potentially 

desiccated fruit without greater irrigation inputs. 

Preliminary studies on the effects of climate change on shifts in the areas suitable for 

grapevine growth have been carried out coupling the information from general 

circulation models (GCMs), or historical data-sets, with current knowledge about the 

environmental constraints that delimit the areas of grapevine cultivation (Kenny & 

Harrison  1992, Orlandini et al. 1993). For more detailed  predictions on growth and 

yield of grapevine (as well as of other crops) under climate change, deterministic 

simulation models are used (see Kenny et al. 1993 and Harrison et  al. 1995 for 

reviews). Models provide tools that allow us to use the hypotheses generated from 

experimental studies to simulate plant responses to novel climatic conditions, in 

order to understand the major climate change effects and to define appropriate 

measures for dealing with such changes. To date, no predictions are available on 

potential changes in mean yield and yield variability of grapevine resulting from 

global environmental change. The effects of increasing CO2 concentration, and 

changes in temperature and radiation, on yield of grapevine were simulated with a 

simple mechanistic crop growth model. Field data obtained from a Free Air Carbon 

diox- grapevine. Enrichment (FACE) experiment were used for model 

parameterization under conditions of elevated CO2. Synthetically generated weather 

data for a location in northern  Italy, and site-specific equilibrium scenarios 
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(UKHI and UKLO) and transient scenarios (UKTR and GFDL), were used as the 

baseline climate and as future climate scenarios, respectively. Therefore, mean yield 

and yield variability of 2 varieties (Sangiovese and Cabernet Sauvignon) were 

examined in terms of crop response characteristics across the years simulated. 

Grapevine phenology, quality and yield are very dependent on climate either at a 

regional scale, or at a local scale (mesoclimate: altitude, slope aspect and nearness to 

water, wind). They are influenced by the microclimate (influenced by vine spacing, 

reflectance of radiation from soil, and canopy management) (Gladstones, 2004). 

Regional climate has been the focus of assessments of climate change impacts. At 

the local level, the impact of site selection and management are increased, and these 

are important for potential adaptations to climate change. In particular the 

temperature has the most influence on grapevines.  

 

The sensitivity occurs through interrelated effects of temperature on the vegetative 

and reproductive growth: 

 timing of key events in the annual cycle of growth and reproduction 

(phenology) 

 other reproductive effects 

 photosynthesis, respiration and transport of assimilated carbon 

  biochemistry and transport of flavour molecules and precursors in the berry. 

The physiological and morphological differences between varieties (genotypes) 

enable wine grape production over a relatively large range of climates than otherwise 

would occur with a more restricted range of genotypes. However, there are many 

obstacles to establishing a new variety and obtaining consumer acceptance (Rose, 

2008). For each variety it is possible to define climates for premium wine production 

(Jones, 2008). Each grape variety grows in a range of temperature ranges and for 

some of them the range is large, e.g. Riesling compared to Pinot Noir (Fig 1)  

Viticulture regions tend to lie in the 12–22°C isotherm (Jones, 2007). Grapes can be 

grown outside this range, at some cost in terms of other valuable characteristics 

foregone. Chardonnay for example, classified by Jones as an ‘intermediate group’ 

grape between cool and warm (Fig. 1), has 38% of total area cultivated in 
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Australia in hot climates with a mean January temperature MJT >23 C (1998 data, 

Paterson, 2004). Profitability ultimately drives the selection of location and 

particular grapes may be grown in areas which are ‘too warm’ according to the 

analysis in Figure 1. The difference between varieties is not stable over different 

regions and some varieties can show plasticity in their phenology, a feature of great 

interest in the context of climate change. Riesling can ripen earlier than Shiraz in 

warm regions, but later than Shiraz in cool regions (Dry 1984). 

1.2. Impacts of climate change 

The direct effects of climate change are summarised in this section, and they include: 

 the earlier budburst, the earlier harvest and the shorter season (with 

variations by region and variety)the significance of harvesting in a warmer 

climate 

 the compression of harvest dates among varieties 

 the links between higher temperature and lower quality 

 the links between higher temperature and higher yield 

 the general reduction in gross returns and the degree of relocation required to 

maintain them 

 the higher levels of aridity and the rising demand for irrigation water 

 the negative effects of weather extremes 

 the uncertain effects of higher levels of CO2. 

 

Webb et al. (2007) examined the effect of climate change in six regions with two 

varieties; Chardonnay (early season) and Cabernet Sauvignon (late season). Three 

climate models were used in order to capture the range in uncertainty in global 

warming using different climate sensitivities and different GHG emissions scenarios. 

VineLOGIC (Godwin et al. 2002) was used to determine the changes in the annual 

cycle of growth and reproduction (phenology) after confirming the model’s 

predictive performance with past records. Budburst was predicted to be earlier in 5 

regions with the range in uncertainty of timing overlapping for both varieties and 

regions. For Margaret River, budburst was predicted to be later due to 
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insufficient chilling during winter, which would also cause erratic timing. Excluding 

Margaret River the other 5 regions had lower and upper bound average changes 

between 2030 and 2050 of: -3 to -10 days for budburst, -8 to -27 days for harvest, 

and -4 and -20 days for season duration. 

 

Two important sets of findings from this work are worth emphasising. One is the 

‘dual warming impact’, whereby the earlier harvest induced by the warming effects 

on phenology  means that harvests will occur earlier, in a month that has a higher 

average temperature today. The temperature rise in the critical harvest month for 

winegrapes may therefore be two or three times greater than the expected 

temperature rise in the current harvest month. This could potentially reduce berry 

quality through greater loss of volatiles and greater water loss. 

 

The second important finding is that differences in harvest dates between early and 

late-harvesting varieties will be compressed due to late varieties being more sensitive 

to warming than early varieties. This will put greater strain on the logistics of winery 

intake, and that impact will be compounded by increased volatility in future weather 

patterns. 

 

The hot, dry conditions leading up to the 2008 vintage provided a natural experiment 

in dealing with both of these effects: the higher March temperatures in the cooler 

parts of South Australia brought forward harvest dates and compressed the 

difference across varieties in their optimal harvest date. As a result, harvesting 

labour and machines were in excess demand and wineries had difficulty sequencing 

their intakes optimally, so quality sufferedWebb et al. (2008a) used the historical 

statistical (negatively sloped or inverted u-shaped) relationships between 

temperature and prices paid for grapes by variety to estimate the effects of climate 

change. Allowing for the mix of outputs in different regions and assuming that mix 

remained constant, the predicted percentage change in prices paid for wine grapes 

are large for most regions and particularly those with a high proportion of national 

production, eg Riverland (2030, -5 to -32%; 2050, -9 to -87%) and Riverina (2030, -

9% to -73%; 2050, -16 to -100%). Even cooler climates were predicted to show 

significant reductions in prices, again because of lower quality (eg Tasmania: 
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2030, -2 to -8%; 2050, -3 to -19%). Amongst the predicted least affected (percentage 

cost less than -18% (2050)), but with relatively high national production, were the 

Coonawarra, McLaren Vale an Langhorne Creek. Taking into account the 

uncertainties in both climate predictions and temperature sensitivities, the national 

impact was predicted to be between ‐7 and ‐39% (2030) and ‐9 to ‐76% by 2050. 

At the same time, yield tends to increase with increased temperature, assuming no 

effect on water supply. Webb (2006) estimated changes in gross returns (change in 

yield times change in price). Most of the large producing regions show significant 

reductions in gross return, but there are notable exceptions including McLaren Vale, 

and Langhorne Creek. The national impact for both 2030 and 2050 were negative 

The previous results assume locations of grape growing remain the same. Webb’s 

(2006) estimates of the maxima in gross return at a particular temperature for each 

variety allowed a spatial projection on to future climate maps of Australia. A 

southward shift of 40 km by 2030 and 65 to 115 km by 2050 would maintain gross 

returns. Shifts to higher altitude can have the same effect. This shift could affect 

areas currently listed as nature reserves, and there may be impact from fire (smoke 

taint) when vineyards are closer to forested areas. Fire frequency may increase with 

increased warming and aridity (Hennessy et al. 2005). 

 

Another important channel of effect could be via weather extremes. Extreme heat 

days could be significant. From a study relevant to the USA, White et al (2006) 

showed that predictions based o average increase alone are likely to considerably 

underestimate the impact of climate change on viticulture. The differences in 

reduction in suitable area between using average temperature increase and increased 

frequency of extreme heat days are very substantial (60% versus 81% reduction in 

area). The studies by Webb reviewed above did not take into account the impact of 

increasing frequency of extreme heat days. Rising carbon dioxide will have a 

significant stimulatory effect on vegetative and fruit yield of grapevines (Bindi et al., 

2001) through its influence as the source of carbon for photosynthesis. The predicted 

changes in carbon dioxide and temperature have only once been factored in to 

models to predict vine performance, relevant to Italy (Bindi et al. 2001). The CO2 

effect strongly interacts with temperature (Morison and Lawlor, 1999) and nutrition 

(McKee and Woodward, 1994). For example fo yield in soybean the negative effects 

of rising temperature are largely offset by the fertiliser effect of high carbon 
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dioxide (Long et al. 2006). Higher carbon dioxide also increases transpiration 

efficiency, a component of crop water use efficiency (Kimball et al. 2002). There are 

also species-dependent secondary affects of high carbon dioxide for which we have 

no knowledge of for grapevines. These can include effects on phenology and growth 

patterns. It is unlikely that high CO2 will have major effects on the phenology of 

grapevines because of the dominant effect of temperature, but based on effects 

observed in other woody deciduous plants it is likely that shoot branching and leaf 

morphology may be altered (Hättenschwiler et al. 1997) and this has implications for 

vine management and adaptation to climate change. 

Following are summarised the key direct effects: 

 higher temperatures across the growing season will bring forward the 

winegrape harvest date to hotter month, so the warming effect of climate 

change will have a double impact in lowering the 

 quality of winegrapes 

 differences in harvest dates between early and late-harvesting varieties will be 

compressed due 

 to late varieties being more sensitive to warming than early varieties, which 

will strain the logistics 

 of harvesting and winery intake 

 that impact on the logistics of harvesting and winery intake will be 

compounded by greater 

 volatility in future weather patterns 

 quality of grapes will suffer as a consequence and, despite higher potential 

yields, gross margins 

 in most areas are expected to fall 

 re-locating vineyards to cooler locations (to lower latitudes and higher 

altitudes) could help but 

 overall there will be a reduction in suitable areas for growing quality 
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winegrapes in Australia 

 an increased frequency of extreme heat days and greater constraints on water 

supplies in the 

 wake of more-frequent droughts will exacerbate the above trends. 
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1.3. Indirect effects 

 

Soil also influences yield and quality and in some cases can largely define a region. 

The water and nutrients derived from the soil by the vine, combined with the 

climate, can strongly influence the ratio of vegetative to reproductive growth (vine 

balance), and it is this that the viticulturist is largely trying to manage to achieve the 

optimum for fruit quality and yield (Dry et al. 2005). There will be non-linear effects 

of climate change caused by interactions between soil, climate and nutrition, in part 

dependent on adaptation in vine management. With increased aridity often comes 

decline in soil structure and increased salinity (Clarke et al. 2002; Richards et al., 

2008). Soil structure decline and increased sodicity can occur when saline water is 

used for summer irrigation and then subsequently the soil receives high quality 

rainwater during winter (Clarke et al., 2002) 

 

Pest and disease pressure is likely to increase and also shift to new areas further 

south with warmer winters and warmer night temperatures. This is suggested by 

international experience. For example, Pierce’s disease is predicted to move to 

Oregon and Washington wine regions where it is currently not present due to lower 

winter temperatures (Tate, 2001). In Italy, Downey mildew is predicted to increase 

disease pressure due to increasing temperatures (Salinari et al. 2006). Virus-vector 

nematodes are also predicted to spread at a rate of 160–200 km per 1°C in Great 

Britain aided by man (Neilson and Boag, 1996) 

There is an increased risk of phylloxera spread based on the increased rate of 

emergence of the insect from the soil with warming, and making the spread of the 

insect more probable Also after a drought event or when water allocation to vines is 

reduced this results in more obvious phylloxera (visually) stress on the vine, more 

rapid decline and increased population abundance (ibid). 

High CO2 may increase vine canopy size and density, resulting in higher biomass, 

nutritional quality and favourable microclimate for disease proliferation (Manning 

and Vontiedemann, 1995). 
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1.4. Winery level impacts 

 

The major impact to wine quality and production with change in climate will be 

largely the result of impacts on the grapevine. Winemaking in theory may be 

undertaken in a variety of climates without a significant impact on the resulting 

wine, though costs may differ across climates related to refrigeration and 

requirements. Carbon offsets will be larger for wineries in warmer climates, though 

there are ways of increasing efficiency of wine production by reducing refrigeration 

costs (Pearce, 2008). De Bolt et al. 2006 discovered one of the key enzymes 

controlling the synthesis of tartaric acid in the berry. It would be possible through 

genetic modification to alter the expression of the gene in order to increase tartaric 

content of berries in warming climates, thereby maintaining optimal acid/sugar 

balance. Chardonnay, Cabernet Sauvignon and Shiraz from commercial crops across 

Australia has advanced at a rate between 0.5 and 3 days per year (Petrie and Sadras 

2007). Faster maturity has been fully compensated by early harvest in Chardonnay, 

but not in Cabernet Sauvignon and Shiraz, which are therefore being harvested with 

higher sugar concentrations. This is consistent with the time trends in the 

composition of Australian wines reported by Godden and Gishen (2005). For red 

wine, they showed an increase in alcohol content at approximately 1% per decade. 

Also in red wines, there has been a trend for an increasing concentration of residual 

sugars. Remediation of high alcohol in the winery will require new yeasts that can 

ferment sugar but without creating alcohol, this could be done relatively easily by 

genetic modification of the yeast or by using adaptive evolution to rapidly select 

strains of yeast that have the desired characteristics (Thornton, 1985; McBryde et al. 

2006). The alternative engineering solution is reverse osmosis procedures to de-

alcoholise wine, but this can also take out flavour compounds. 
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1.5. Model Projections of Wine Region Climates 

 

Projections of future climates are produced through models based upon knowledge 

of how the climate system works and used to examine how the environment, in this 

case viticulture and wine production, are likely to respond to these changes. These 

climate models are complex 3-D, mathematical representations of our 

Earth/Atmosphere system that represent spatial and temporal analyses of the laws of 

energy, mass, moisture, and momentum transfer in the atmosphere and between the 

atmosphere and the surface of the Earth. Additionally, climate models are based 

upon IPCC emissions scenarios (IPCC, 2001) which reflect estimates of how 

humans will emit CO2 in the future. The many models in use today, combined with 

the fact that they are modeling a non-linear system and using different emission 

scenarios, result in a range of potential changes in temperature and precipitation for 

the planet (IPCC, 2001). Work over the last three decades using model projections 

show that the observed warming trends in wine regions worldwide are predicted to 

continue. From one of the early analyses of the impacts climate change on 

viticulture, it was suggested that growing seasons in Europe should lengthen and that 

wine quality in Champagne and Bordeaux should increase (Lough et al., 1983). 

These results have largely been proven correct. Furthermore, spatial modeling 

research has also indicated potential shifts and/or expansions in the geography of 

viticulture regions with parts of southern Europe predicted to become too hot to 

produce high quality wines and northern regions becoming more stable in terms of 

consistent ripening climates and/or viable once again (Kenny and Harrison, 1992; 

Butterfield et al., 2000). Examining specific varieties (Sangiovese and Cabernet 

Sauvignon), Bindi et al. (1996) found that climate change in Italy should lead to 

shorter growth intervals but increases in yield variability. Other studies of the 

impacts of climate change on grape growing and wine production reveal the 

importance of changes in the geographical distribution of viable grape growing areas 

due to changes in temperature and precipitation, greater pest and disease pressure 

due to milder winters, changes in sea level potentially altering the coastal zone 

influences on viticultural climates, and the effect that increases in CO2 might have on 

grape quality and the texture of oak wood which is used for making wine barrels 

(Tate, 2001; Renner, 1989; Schultz, 2000; McInnes et al., 2003). At the broadest 

scale of global suitability for viticulture, it has long been considered that viticulture 

zones are found between either the mean annual 10-20°C isotherms (de Blij, 
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1983; Johnson, 1985) or the growing season 12-22°C isotherms (Gladstones, 2005; 

Jones, 2006), however Jones (2007a) found that the growing season criteria is more 

valid as the 12-22°C isotherms more 

completely encompasses the world’s viticulture regions (not shown). To examine the 

global latitudinal bounds of viticulture suitability due to climate, Jones (2007a) used 

output from the Community Climate System Model (CCSM) on a 1.4°x1.4° 

latitude/longitude resolution and B1 (moderate), A1B (mid-range), and A2 (high) 

emission scenarios to depict the 12-22°C isotherms shifts for three time periods 

1999, 2049, and 2099. Changes from the 1999 base period show both shifts in the 

amount of area suitable for viticulture and a general latitudinal shift poleward ( 

Figure 2)  By 2049, the 12°C and 22°C isotherms shift 150-300 km poleward in both 

hemispheres depending on the emission scenario. By 2099, the isotherms shift an 

additional 125-250 km poleward. The shifts are marginally greater on the poleward 

fringe compared to those on the equatorial fringe in both hemispheres. However, the  

 

relative area of land mass that falls within the isotherms across the continents 

expands in the Northern Hemisphere while contracting in the Southern Hemisphere 

due to land mass differences (Figure 2). Similar shifting is seen by 2099 for all 

scenarios Using Hadley Centre climate model (HadCM3) output and an A2 emission 

scenario (Pope et al. (2000) to 2049 for 27 of the world’s top wine producing 

regions, Jones et al. (2005a) compared the average climates of two periods, 1950-

1999 and 2000-2049. The results suggest that mean growing season temperatures 

Figure 2 – Maps of growing season average temperatures (Northern Hemisphere, Apr-Oct upper panels;
Southern Hemisphere, Oct-Apr lower panels) derived from observations and model runs from the
Community Climate System Model (CCSM). The left panel is the 1999 run and the right panel is for the
2049 run. Future projections are driven by the A1B emission scenario (moderate future consumption).
The highlighted isotherms (white) are the mean 12°-22°C representing the latitudinal limits of the
majority of the world’s grape growing areas (Gladstones 2005; Jones 2006)
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will warm by an average 1.3ºC over the wine regions studied with Burgundy 

(Beaujolais), Rhine Valley, Barolo, and Bordeaux differences ranging from 0.9-

1.4ºC (Figure 3). 

  
Figure 3 – Modeled growing season average temperature anomalies for a) the Beaujolais region of 
Burgundy, b) the Rhine Valley, c) Barolo, and d) Bordeaux as analyzed by (Jones et al., 2005a). The 
modeled temperature data are from the HadCM3 climate model on a monthly time scale extracted from 
a 2.5° x 3.75° grid centered over the wine producing regions for 2000-2049. The anomalies are 
referenced to the 1950-1999 base period from the HadCM3 model. Trend values are given as an 
average decadal change and the total change over the 50-year period. 

 Also, the projected changes are greater for the Northern Hemisphere (1.3ºC) than 

the Southern Hemisphere (0.9ºC). Examining the rate of change projected for the 

2000-2049 period only reveals significant changes in each wine region with trends 

ranging from 0.2ºC to 0.6ºC per decade. Overall trends during the 2000-2049 period 

average 2ºC across all regions with the smallest warming in South Africa (0.9ºC/50 

years) and greatest warming in Portugal (2.9ºC/50 years). For the Burgundy 

(Beaujolais), Rhine Valley, Barolo, and Bordeaux regions, decadal trends are 

modeled at 0.3-0.5ºC while the overall trends are predicted to be 1.5 2.4ºC (Figure 

3). In addition, Jones et al. (2005a) showed that many of the wine regions may be at 

or near their optimum growing season temperature for high quality wine production 

and further increases, as predicted by the differences between the means of the 1950-

1999 and 2000-2049 periods, will place some regions outside their theoretical 

optimum growing season climate. The magnitude of these mean growing season 

changes indicate potential shifts in climate maturity types for many regions at 
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or near a given threshold of ripening potential for varieties currently grown in that 

region. Referring back to Figure 1, where Bordeaux’s growing season climate of the 

last 50 years averaged 16.5ºC and add to it the overall trend in projected warming in 

Bordeaux of 2.3ºC by 2049. An 18.8ºC average growing season would place 

Bordeaux at the upper end of the optimum ripening climates for many of the red 

varieties grown there today and outside the ideal climates for the main white 

varieties grown. Still more evidence of these impacts come from Napa, where a 

17.5ºC historical average is projected to warm by 2.2ºC to 19.7ºC by 2049. This 

would place Napa at the upper end of optimal ripening climates for nearly all of the 

most common varieties (Figure 1). Finally, the results also show warming during the 

dormant periods which could influence hardening potential for latent buds, but 

observations and models indicate continued or increased  seasonal variability which 

could spell problems in freeze or frost prone regions. For the United States as a 

whole, White et al. (2006) used a high-resolution (25 km) regional climate model 

forced by an IPCC A   premium winegrape production area in the conterminous 

United States could decline by up to 81% by the late 21st century. The research 

found that increases in heat accumulation will likely shift wine production to warmer 

climate varieties and/or lower-quality wines. Additionally the models show that 

while frost constraints will be reduced, increases in the frequency of extreme hot 

days (>35°C) in the growing season are projected to completely eliminate winegrape 

production in many areas of the United States. Furthermore, grape and wine 

production will likely be restricted to a narrow West Coast region and the Northwest 

and Northeast, areas where excess moisture is already problematic (White et al., 

2006). From a more regional analysis, Jones (2007d) examined suitability for 

viticulture in the western U.S., which has long been based on a standard heat 

summation formulation originally proposed by Amerine and Winkler (1944). 

Winkler regions are defined by growing degree-days using a base of 10°C over the 

growing season of April-October. The resulting five regions show broad suitability 

for viticulture across cool to hot climates and the varieties that grow best in those 

regions. Using recent historical data at a 1 km resolution (Daymet; Thornton et al. 

(1997)) depicts that the cooler region I is found higher in elevation, more coastal, 

and more northerly (e.g., the Willamette Valley) while the warmest region V areas 

are mostly confined to the central valley and further south in California (e.g., the San 

Joaquin Valley; Figure 4). 
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 Averaged over the 1980-2003 time period, 34% of the western U.S. falls into 

regions I-V with 59% being too cold (< 1111 °C units) and 7% too hot (>2778 °C 

units). Separated into individual regions finds that region I encompasses 34.2%, 

region II 20.8%, region III 11.1%, region IV 8.7%, and region V 25.2%. Therefore 

the western U.S. is predominately at the margins of suitability with 59.4% in the 

coolest and hottest regions (regions I and V, respectively). Using projections for 

average growing season temperatures from the Community Climate System Model 

(CCSM) of 1.0-3.0°C for 2049 results in a range of increases in growing degree-days 

of 15-30% (Figure 4). At a 15% increase in growing degree days by 2049, the area 

of the western U.S. in regions I-V increases 5% from 34% to 39% and at the higher 

range of a 25% increase in growing degree days, increases by 9% to 43%. 

 Overall the changes shown reduction in the areas that are too cold from 59% to 41% 

while the areas that are too hot increase from 7% to 16% in the greater warming 

scenario (Jones, 2007d). Similarly, by individual region there are shifts to 

predominately more land in region I (34.2% to 40.6%), smaller changes to region II 

(20.8% to 23.4%), region III (11.1% to 14.2%), and region IV (8.7% to 10.1%), and 

a reduction of region V area from 25.2% to 11.6%. Spatially the shifting of regions 

occurs toward the coast, especially in California, and upwards in elevation. In 

another regional analysis for the west coast of the U.S., Lobell et al. (2006) 

examined the impacts of climate change on yields of perennial crops in California. 

The research combined the output from numerous climate models (testing climate 

uncertainty) with multiple statistical crops models (testing crop response 

Figure4 Winkler Regions for the western U.S. based on Daymet (Thornton et al., 1997) daily 1 km
resolution daily temperature data (growing degree-days, base 50°F over Apr-Oct). The left panel is
the average over the 1980-2003 time period. The middle panel is a projection of a 15% increase over
1980-2003 (low range of climate change expected by 2049). The right panel is a projection of a 25%
increase over 1980-2003 (high range of climate change expected by 2049). 
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uncertainty) for almonds, walnuts, avocados, winegrapes, and table grapes. The 

results show a range of warming across climate models of ~1.0-3.0°C for 2050 and 

2.0- 6.0°C for 2100 and a range of changes in precipitation from -40 to +40% for 

both 2050 and 2100. Winegrapes showed the smallest yield declines compared to the 

other crops, but showed substantial spatial shifts in suitability to more coastal and 

northern counties. The authors also note that yield trends have low attribution to 

climate trends and are more due to changes in technology (mostly) and an increase in 

CO2 (likely). Other regional work in both Europe (Kenny and Harrison, 1992; 

Butterfield et al. 2000; Stock, 2005), Australia (McInnes et al., 2003; Webb et al., 

2005), and South Africa (Carter, 2006) has examined climate change through 

different modeling approaches but has come up with similar results. Kenny and 

Harrison (1992) did some of the early spatial modeling of future climate change 

impacts on viticulture in Europe and indicated potential shifts and/or expansions in 

the geography of viticulture regions with parts of southern Europe predicted to 

become too hot to produce high quality wines and northern regions becoming viable 

once again. Examining changes in the Huglin Index of suitability for viticulture in 

Europe (Huglin, 1985), Stock (2005) shows increases of 100-600 units that result in 

broad latitudinal shifts with new areas on the northern fringes becoming viable, 

changes in varietal suitability in existing regions, and southern regions becoming so 

hot that overall suitability is challenged. Specifically in Spain, Rodriguez et al. 

(2005) examine different emission scenarios to place lower and upper bounds on 

temperature and precipitation changes and find trends of 0.4-0.7ºC per decade with 

summer warming greater than in the winter. Overall the changes result in warming 

by 2100 of between 5-7ºC inland and 3-5ºC along the coast. Concomitant with these 

temperature projections, Rodriguez et al. (2005) show much drier springs and 

summers and lower annual rainfall which is less homogeneous across Spain than is 

temperature. Furthermore, to examine grapevine responses to climate change, Lebon 

(2002) used model output to show that the start of Syrah ripening (véraison) in 

Southern France would shift from the second week of August today to the third week 

of 

July with a 2ºC warming and to the first week of July with a 4ºC warming. 

Additionally the research found that significant warming during maturation and 

especially at night would disrupt flavor and color development and ultimately the 

wine’s typicity (Lebon, 2002).  

In Australia, Webb et al. (2005) analyzed climate change scenarios for viticulture 

showing  that temperatures by 2070 are projected to warm in Australia by 1.0-
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6.0ºC increasing the number of hot days and decreasing frost risk, while precipitation 

changes are more variable but result in greater growing season stress on irrigation. 

The changes projected for Australia has tied future temperature regimes to reduced 

wine quality with southerly and coastal shifts in production regions being the most 

likely alternative to maintaining viability.  

In South Africa, regional projections of rising temperatures and decreased 

precipitation are projected to put additional pressure on both the phenological 

development of the vines and on the necessary water resources for irrigation and 

production (Carter, 2006). The research implies that the practice of winemaking in 

South Africa is likely to become riskier and more expensive with the most likely 

effects being shifts in management practices to accommodate an increasingly limited 

water supply. The author notes that the situation will likely exacerbate other 

economic issues such as increases in the price of wine, a reduction in the number of 

wine growers, and need for implementation of expensive and yet unknown adaptive 

strategies (Carter, 2006).  

Together these studies, and those detailed previously, indicate that the challenges 

facing the wine industry include more rapid phenological development, changes in 

suitable locations for some varieties, a reduction in the optimum harvest window for 

high quality 

wines, and greater management of already scarce water resources. 
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2. Adaptation and mitigation strategies in viticulture  
 

A recent report raised concerns that the projected increase in the frequency of hot 

(>35°C) summer days might compromise and eventually eliminate wine grape 

production in warm areas of the USA, with production partly shifting to cooler areas 

(White et al. 2006). This fear seems tenuous, given the stunning success of the 

Australian wine industry over the past 20 years. Yields of both red and white V. 

vinifera cultivars have increased there significantly during the last two decades of 

the 20thcentury and have since levelled off in both warm and hot regions (Dry and 

Coombe 2004), while the total vineyard area for wine grapes has almost tripled. 

Nonetheless, Webb et al. (2008b) reported significant negative correlations between 

grape prices and mean summer temperatures across Australian wine regions. For 

comparison, average prices for Cabernet Sauvignon grapes from California’s Napa 

Valley exceeded $4100/ton in 2006, while those from the Central Valley sold for 

~$260/ton; the latter region having a 2.7°C higher mean annual temperature than the 

former (Cahill and Field 2008). Although the potential decline in prices may be 

partly, but by no means completely, compensated by possible increases in yield, 

these findings are important because, as discussed previously, by the middle of the 

21st century the projected warming trend will shift many warm regions closer to 

climatic conditions currently experienced in hot regions. Although hot extremes and 

heat waves are set to become more frequent over the course of this century(IPCC 

2007), the most imminent challenges facing the wine, table grape and raisin 

industries in arid and semiarid regions are probably not heat waves per se, but 

increasing drought and salinity because of higher evaporation coupled with declining 

water availability (Schultz2000, Stevens and Walker 2002). Rising salinisation of 

soils could pose a serious threat to grape growing, because most irrigated vineyards, 

especially deficit-irrigated vineyards, are at risk from salinisation owing to dissolved 

saltsin irrigation water (in contrast to rain water). Salinity limits vine growth, 

photosynthesis, productivity, and fruitquality (Downton and Loveys 1978, Walker et 

al. 1981,Downton 1985, Shani et al. 1993, Cramer et al. 2007). 

Mitigation practices include abundant watering at the end of each season to leach 

salts down the soil profile (provided fresh water is available), application of straw or 

other mulch to limit evaporation, and less soil tilling to conserve soil structure. In 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

27 

addition, some rootstocks derived from American Vitis species (e.g. Ramsey, 

1103Paulsen, Ruggeri 140, 101–14) are relatively tolerant of saline conditions 

(Downton 1985, Stevens and Walker2002). However, this tolerance may decrease 

with prolonged salt exposure. Sun-exposed grape berries are often subject to sunburn 

and subsequent shriveling as a consequence of overheating and excess UV and/or 

visible light. The projected increase in the frequency of hot summer days will 

undoubtedly exacerbate this problem, especially on the afternoon side of canopies 

(Spayd et al. 2002). This may require adaptations in row direction (e.g. away from 

the prevailing north-south orientation) and alterations in trellis design and training 

systems (e.g. away from the relatively common current practice of manually 

positioning shoots vertically upward toward ‘sprawl’ systems without shoot 

positioning). Sprawl systems are cheaper to construct: often, only one wire is 

required to support the permanent cordon, sometimes with the addition of one pair of 

‘foliage’ wires to prevent excessive wind damage, which contrasts with the multiple 

wires necessary for vertical shoot-positioning systems. In addition, changes in 

cultural practices may include less shoot positioning and less leaf removal in the fruit 

zone, which would also reduce lab our costs. Other practices may include the use of 

cover crops or resident vegetation to improve the canopy microclimate through their 

cooling effect (Nazrala 2007), or installation of under vine or overhead sprinkler 

systems for evaporative canopy cooling. Both of these approaches would also tend to 

reduce soil temperature and limit daily thermal amplitudes in the root zone (Pradel 

and Pieri 2000). However, such practice swill not only increase overall vineyard 

water use but also make grape production more expensive (Tesic et al.2007, Celette 

et al. 2009). Maintaining a green cover crop throughout the growing season in dry 

regions typically requires installation of additional irrigation hardware, such as 

micro-sprinklers. Moreover, cover crops compete with grapevines for water and 

nutrients, especially in warm/dry regions, so that vineyard fertilizer requirements 

may increase if vine productivity is to be maintained (Keller et al. 2001, Keller 2005, 

Tesic et al. 2007,Celette et al. 2009). Such mitigating practices notwithstanding, 

excessive sunburn might lead to susceptible cultivars becoming unsuitable for 

planting in warmer regions, especially those that also experience high solar radiation 

during the growing season. A relatively simple strategy for wine grape growers to 

delay fruit maturation such that it occurs during the cooler end of the season would 

be to markedly increase the crop load carried by the vines. In the Napa and Sonoma 

Valleys of California, increasing yields have been accompanied by better wine 

quality because of an asymmetric warming trend (at night and in spring) after 
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1950 (Nemani et al.2001). However, while this may be an attractive option for 

growers, it is unpopular among winemakers and is often forbidden by law in Europe. 

Moreover, larger crops would tend to offset gains in irrigation water savings arising 

from better water-use efficiency. In many areas, the consequences for wine grape 

production of the projected decline in irrigation water availability may be relatively 

minor owing to their already low water use met by drip irrigation, usually combined 

with deficit irrigation strategies (Dry et al. 2001, Kriedemannand Goodwin 2003, 

Keller 2005). In the early 2000s,ultra-premium-quality Cabernet Sauvignon grapes 

were grown in eastern Washington, USA, with an annual water supply from both 

rainfall and drip irrigation of as little as 308 mm (Keller et al. 2008). This contrasts 

with table, raisin and juice grapes, whose larger canopies and heavier crops require 

substantially more water. For example, well-watered Concord grapes may use as 

much as three times more water than deficit-irrigated red wine grapes (Tarara and 

Ferguson 2006). Moreover, many on-wine-grape growers still supply water by flood, 

furrow or overhead-sprinkler irrigation, methods that are inherently far less water-

efficient than is drip irrigation. For the most part, these vineyards will have to be 

converted to drip irrigation to conserve water. Although this will put an additional 

short-term financial burden on growers, there may be savings in the longer term, 

because lab our costs for operation and maintenance tend to be lower with drip 

irrigation. Because grape cultivars differ in their suitability for and adaptability to 

different climates, shifts in the cultivar profile of different regions, and possibly the 

emergence of hitherto unsuitable lesser-known or even novel cultivars, can be 

expected over the coming decades. A shift of grape production to cooler regions of 

the world, i.e. towards higher latitudes and altitudes, is another likely scenario as a 

result of global warming (cf. Schultz 2000). However, such shifts imply that some 

vineyards located in thewarmest and/or driest regions may be abandoned, which has 

implications for the quality of life in rural areas. Moreover, vineyard development in 

novel areas is dependent on the availability of affordable land, irrigation water and 

labour force. It will also require substantial investments in infrastructure and 

vineyard establishment. With the typical life of a vineyard exceeding 30 years, 

decision son cultivars, clones, rootstocks, and vineyard sites will have to be made on 

a long-term basis. Moreover, vineyards that are planted now will experience an 

essentially new climate 20 years from now (Cahill and Field 2008), making such 

decisions challenging. An additional issuethat has to be taken into account is harvest 

logistics: because grapes ripen more rapidly in warmer climates, the ‘harvest 

window’ tends to be more compressed, so that grape intake to accommodate 
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‘optimum’ maturity for different cultivars may pose scheduling, labour and capacity 

problems for growers and wineries alike. 

From the above-mentioned overview of published information, one may conclude 

that grapevine reproductive development has an optimum temperature range from 

about 20 to 30°C, with temperatures below 15°C and above 35°C leading to marked 

reductions in yield formation and fruit ripening. But this conclusion has an important 

caveat: it is not clear whether this temperature range applies to ambient or to tissue 

temperatures. Most studies attempting to uncover temperature effects were 

conducted indoors, often in growth chambers, where tissue temperatures typically 

equal ‘room’ temperatures. In contrast, plant tissues exposed to sunlight normally are 

heated above ambient by solar radiation but fall below ambient at night. One elegant 

study conducted with field grown vines avoided this pitfall by heating the measured 

berry-skin temperature of shaded bunches to the berry skin temperature of sun-

exposed bunches and cooling exposed bunches to the temperature of shaded 

bunches, thereby also separating the potential effects of temperature from those of 

light (Spayd et al. 2002, Tarara et al.2008). Without trying to diminish the value of 

growth chamber studies, it is probably fair to ask for more such innovative 

experiments that manipulate temperature and/or light in the field.The expected 

increase in climate variation (IPCC2007) flies in the face of growers’ attempts to 

minimize spatial and annual variation in grape yield and quality. This is a concern, 

for a recent analysis with Cabernet Sauvignon wines from California’s Napa Valley 

found that wine prices were closely related to seasonal weather between 1970 and 

2004 (Ramirez 2009). Studies aimed at understanding the consequences of climatic 

change and variability are crucial for the many regional wine industries to remain 

competitive. The only free air CO2 enrichment study conducted with grapevines thus 

far (Bindi et al. 2001, 2005, Tognetti et al. 2005) found increases of 40–50% in both 

vegetative and reproductive biomass with little change in fruit and wine 

composition. The authors concluded that rising atmospheric CO2 may strongly 

stimulate vine growth and productivity while not affecting fruit and wine quality. 

One might add that‘no effect’ also implies that there may not be any beneficial 

effects on wine quality. Yet it is puzzling that to date not a single study has 

investigated the interactive effects on grapevines of the predicted simultaneous rise 

in temperature and atmospheric CO2 In spite of the obvious importance for the 

global wine industry, we do not know how rising CO2 influences the widely studied 

effects (see previous discussion) of temperature variation and water supply on vine 
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growth, phenology, yield formation, fruit ripening and composition and, ultimately, 

wine quality. Such studies, conducted over long periods (multiple years), are critical 

to enable development of future mitigation strategies and to test cultivar suitability in 

a changing climate. Growers will require knowledge to choose from among 

alternative options to prepare for warmer growing seasons with less water and, in 

some areas, increasingly saline soils. One option is the choice of better-adapted 

planting material, but this requires a coordinated approach to evaluating alternative 

cultivars, clones, and rootstocks ina range of climates. With the roughly 500 million 

bases of the V. vinifera genome now sequenced (Jaillon et al. 2007,Velasco et al. 

2007) and progress in genomics adding toour understanding of the function of 

important genes (e.g. Terrier et al. 2005, Cramer et al. 2007, Deluc et al.2007, Pilati 

et al. 2007), the new tools of the functional genomics, proteomics, metabolomics, 

etc.will need to be put to use to investigate in more detail the developmental and 

environmental regulation of yield formation, fruit development and ripening. They 

will also need to be integrated with more general grape physiology and viticulture 

research. And perhaps it is time to begin developing genetically modified cultivars 

that will be able not only to cope with warmer temperature, higher CO2and less 

water of higher salinity, but will also produce high-quality fruit under such 

conditions. Unfortunately.we continue to have a poor understanding of the concept 

of fruit and wine quality. Professional judges do not agree or do not consistently 

recognize wine quality (Hodgson 2008),and there is no consensus on what 

constitutes quality relevant or quality-impact compounds in grapes. The 

identification and definition of such key components is critical for better vineyard 

management and harvest decisions to produce grapes according to end-use 

specifications. Clear specifications will enhance the ability to differentiate wines and 

other nutritionally valuable grape-related products according to consumer demand. 

Soil management will have to take its place alongside canopy management as a key 

component of the sustainable vineyard management ‘toolbox’ (Keller 2005). This 

calls for research into the integration of appropriate and refined (deficit) irrigation 

techniques with vine nutrition, salinity management and vineyard floor management 

to optimize vine productivity, maximize fruit quality and ensure long-term soil 

fertility, perhaps in conjunction with enhanced carbon sequestration (e.g. Morlat and 

Chaussod 2008). Crop load and canopy management should be fine-tuned according 

to the desired end-use of the grapes from a particular vineyard block. This will not 

only require more quantitative assessments of interactions among treatment 

combinations, but also integration with precision viticulture approaches, and 
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adaptations of trellis designs to facilitate mechanization. Quantitative data will need 

to be incorporated into models, and hard and software, including (remote) sensor 

technology, will need to be developed for mechanization and, ultimately, automation 

of cultural practices and vineyard sampling that are fully integrated with real-time 

decision management support systems and precision viticulture technology. 

Interdisciplinary research conducted by teams of various combinations of molecular 

biologists, physiologists, viticulturists, oenologists, sensory scientists, chemists, 

physicists, mathematicians, computer scientists and economists will have to tackle 

these issues. In addition to the undisputed need for extension of applied research 

results to industry, there is also a requirement for fundamental research that can be 

used as a basis to develop practical outcomes. It should be clear that a one-sided 

focus on applied, practical research that promises short term returns on investment 

will eventually deplete the novel ideas that give rise to unforeseen applicable 

questions.  
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3. The instruments for evaluating the impacts of the climate 

change  

3.1. Preface      

In 1992 the IPCC released emission scenarios to be used for driving global 

circulation models to develop climate change scenarios. The so-called IS92 scenarios 

were path breaking. They were the first global scenarios to provide estimates for the 

full suite of greenhouse gases. Much has changed since then in our understanding of 

possible future greenhouse gas emissions and climate change. Therefore the IPCC 

decided in 1996 to develop a new set of emissions scenarios which will provide 

input to the IPCC Third Assessment Report but can be of broader use than the IS92 

scenarios. The new scenarios provide also input for evaluating climatic and 

environmental consequences of future greenhouse gas emissions and for assessing 

alternative mitigation and adaptation strategies. They include improved emission 

baselines and latest information on economic restructuring throughout the world, 

examine different rates and trends in technological change and expand the range of 

different economic-development pathways, including narrowing of the income gap 

between developed and developing countries. To achieve this a new approach was 

adopted to take into account a wide range of scientific perspectives, and interactions 

between regions and sectors. Through the so-called “open process” input and 

feedback from a community of experts much broader than the writing team were 

solicited. The results of this work show that different social, economic and 

technological developments have a strong impact on emission trends, without 

assuming explicit climate policy interventions. The new scenarios provide also 

important insights about the interlinkages between environmental quality and 

development choices and will certainly be a useful tool for experts and decision 

makers. 
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3.2. The emission scenarios 

 

The IPCC published a new set of scenarios in 2000 for use in the Third Assessment 

Report (Special Report on Emissions Scenarios - SRES). The SRES scenarios were 

constructed to explore future developments in the global environment with special 

reference to the production of greenhouse gases and aerosol precursor emissions. 

They use the following terminology: 

 Storyline: a narrative description of a scenario (or a family of scenarios), 
highlighting the main scenario characteristics and dynamics, and the 
relationships between key driving forces. 

 Scenario: projections of a potential future, based on a clear logic and a 
quantified storyline. 

 Scenario family: one or more scenarios that have the same demographic, 
politico-societal, economic and technological storyline. 

The SRES team defined four narrative storylines (see Figure 5), labeled A1, A2, B1 

and B2, describing the relationships between the forces driving greenhouse gas and 

aerosol emissions and their evolution during the 21st century for large world regions 

and globally . Each storyline represents different demographic, social, economic, 

technological, and environmental developments that diverge in increasingly 

irreversible ways. 

Figure5: Schematic illustration of SRES scenarios. Four qualitative storylines yield four sets of 
scenarios called “families”: A1, A2, B1, and B2. Altogether 40 SRES scenarios .All are equally valid 
with no assigned probabilities of occurrence. The set of scenarios consists of six scenario groups drawn 
from the four families: one group each in A2, B1, B2, and three groups within the A1 family, 
characterizing alternative developments of energy technologies: A1FI (fossil fuel intensive), A1B 
(balanced), and A1T (predominantly non-fossil fuel). Within each family and group of 
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scenarios, some share “harmonized” assumptions on global population, gross world product, and final 
energy. These are marked as “HS” for harmonized scenarios. “OS” denotes scenarios that explore 
uncertainties in driving forces  beyond those of the harmonized scenarios. The number of scenarios 
developed within each category is shown. For each ofthe six scenario groups an illustrative scenario 
(which is always harmonized) is provide 

Within each scenario family two main types of scenarios were developed – those 

with harmonized assumptions about global population, economic growth, and final 

energy use and those with alternative quantification of the storyline. Together, 26 

scenarios were harmonized by adopting common assumptions on global population 

and gross domestic product (GDP) development. Thus, the harmonized scenarios in 

each family are not independent of each other. The remaining 14 scenarios adopted 

alternative interpretations of the four scenario storylines to explore additional 

scenario uncertainties beyond differences in methodological approaches. They are 

also related to each other within each family, even though they do not share common 

assumptions about some of the driving forces. There are six scenario groups that 

should be considered equally sound that span a wide range of uncertainty, as 

required by the Terms of Reference. These encompass four combinations of 

demographic change, social and economic development, and broad technological 

developments, corresponding to the four families (A1, A2, B1, B2), each with an 

illustrative “marker” scenario. Two of the scenario groups of the A1 family (A1FI, 

A1T) explicitly explore alternative energy technology developments, holding the 

other driving forces constant, each with an illustrative scenario. Rapid growth leads 

to high capital turnover rates, which means that early small differences among 

scenarios can lead to a large divergence by 2100. Therefore the A1 family, which 

has the highest rates of technological change and economic development, was 

selected to show this effect. In accordance with a decision of the IPCC Bureau in 

1998 to release draft scenarios to climate modelers for their input in the Third 

Assessment Report, and subsequently to solicit comments during the open process, 

one marker scenario was chosen from each of four of the scenario groups based on 

the storylines.  

The scenarios span a wide range of future levels of economic activity, with gross 

world product rising to 10 times today’s values by 2100 in the lowest to 26-fold in 

the highest scenarios. A narrowing of income differences among world regions is 

assumed in many of the SRES scenarios. Two of the scenario families, A1 and B1, 

explicitly explore alternative pathways that gradually close existing income gaps in 

relative terms. Technology is at least as important a driving force as demographic 

change and economic development. These driving forces are related. Within 
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the A1 scenario family, scenarios with common demographic and socio-economic 

driving forces but different assumptions about technology and resource dynamics 

illustrate the possibility of very divergent paths for developments in the energy 

system and land-use patterns. 

The SRES scenarios cover a wider range of energy structures than the IS92 

scenarios. This reflects uncertainties about future fossil resources and technological 

change. The scenarios cover virtually all the possible directions of change, from high 

shares of fossil fuels, oil and gas or coal, to high shares of non-fossils. In most 

scenarios, global forest area continues to decrease for some decades, primarily 

because of increasing population and income growth. This current trend is eventually 

reversed in most scenarios with the greatest eventual increase in forest area by 2100 

in the B1 and B2 scenario families, as compared to 1990. Associated changes in 

agricultural land use are driven principally by changing food demands caused by 

demographic and dietary shifts. Numerous other social, economic, institutional, and 

technological factors also affect the relative shares of agricultural lands, forests, and 

other types of land use. Different analytic methods lead to very different results, 

indicating that future land use change in the scenarios is very model specific. All the 

above driving forces not only influence CO2 emissions, but also the emissions of 

other GHGs. 

In particular  we can see as the SRES scenarios cover most of the range of carbon 

dioxide (figure 6),  other GHGs, and sulfur emissions found in the recent literature 

and SRES scenario database. Their spread is similar to that of the IS92 scenarios 
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Figure 6 Global CO2 emissions related to energy and industry (Figure 2a) and land-use changes 
(Figure 2b) from 1900 to 1990, and for the 40 SRES scenarios from 1990 to 2100, shown as an index 
(1990 = 1). 
 

 

for CO2 emissions from energy and industry as well as total emissions but represents 

a much wider range for land-use change. The six scenario groups cover wide and 

overlapping emission ranges. The range of GHG emissions in the scenarios widens 

over time to capture the long-term uncertainties reflected in the literature for many of 

the driving forces, and after 2050 widens significantly as a result of different 

socioeconomic developments. In  figures 3 and 4 we can see in greater detail the 

ranges of total CO2 emissions for the six scenario groups of scenarios that constitute 

the four families (the three scenario families A2, B1, and B2, plus three groups 

within the A1 family A1FI, A1T, and A1B). 
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Figure 7 Total global annual CO2 emissions from all sources (energy, industry, and land-use change) 
from 1990 to 2100 (in gigatonnes of carbon (GtC/yr)) for the families and six scenario groups 

 

Figure 8: Total global cumulative CO2 emissions (GtC) from 1990 to 2100 (Figure 4a) and histogram 
of their distribution byscenario groups (Figure 4b). 
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3.3. The climate model 
 
Understanding the climate system is a problem of great intrinsic scientific interest. 

Our growing understanding of interactions between the atmosphere, oceans, 

biosphere, cryosphere and land surface is revolutionizing the Earth sciences. 

Moreover, in recent years, a sense of urgency has infused research on modelling the 

climate system. The prospect of human activities altering atmospheric composition, 

affecting climate globally and regionally, and ultimately affecting human economies 

and natural ecosystems, has stimulated the development of models of the climate 

system. 

An important concept in climate system modelling is the notion of a hierarchy of 

models of differing levels of complexity, dimensionality and spatial resolution, each 

of which may be optimum for answering different questions, but it is not meaningful 

to judge one level as being better or worse than another, independent of the context 

of analysis. 

The most general computer models for climate change employed by the IPCC are the 

coupled, which solve the equations of the atmosphere and oceans approximately by 

breaking their domains up into volumetric grids, or boxes, each of which is assigned 

an average value for properties like velocity, temperature, humidity (atmosphere) 

and salt (oceans). The size of the box is the models’ spatial resolution. The smaller 

the box, the higher the resolution. An assumption of research involving general 

circulation models (GCMs) is that the realism of climate simulations will improve as 

the resolution increases In practice, the approach has been to “parameterize” that is, 

to use empirical or semi-empirical relations to approximate net (or area-averaged) 

effects at the resolution scale of the model It is important to stress that all climate 

system models contain empirical parameterizations and that no model derives its 

results entirely from first principles. The main conceptual difference between simple 

and complex models is the hierarchical level at which the empiricism enters 
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3.4. The climate system  

 

The climate system is a complex, interactive system consisting of the atmosphere, 

land surface, snow and ice, oceans and other bodies of water, and living things. The 

atmospheric component of the climate system most obviously characterises climate; 

climate is often defined as ‘average weather’. Climate is usually described in terms 

of the mean and variability of temperature, precipitation and wind over a period of 

time, ranging from months to millions of years (the classical period is 30 years). The 

climate system evolves in time under the influence of its own internal dynamics and 

due to changes in external factors that affect climate (called ‘forcings’). External 

forcings include natural phenomena such as volcanic eruptions and solar variations, 

as well as human-induced changes inatmospheric composition. Solar radiation 

powers the climate system. 

 

 

Figure 9 The climate system 

There are three fundamental ways to change the radiation balance of the Earth:  

1) by changing the incoming solar radiation (e.g., by changes in Earth’s orbit or 

in the Sun itself);  2) by changing the fraction of solar radiation that is reflected 

(called ‘albedo’; e.g., by changes in cloud cover, atmospheric particles or 

vegetation);  3) by altering the longwave radiation from Earth back towards space 

(e.g., by changing greenhouse gas concentrations). Climate, in turn, responds 

directly to such changes, as well as indirectly, through a variety of feedback 
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mechanisms. The amount of energy reaching the top of Earth’s atmosphere each 

second on a surface area of one square metre facing the Sun during daytime is about 

1,370 Watts, and the amount of energy per square metre per second averaged over 

the entire planet is one-quarter of this About 30% of the sunlight that reaches the top 

of the atmosphere is reflected back to space. Roughly two-thirds of this reflectivity is 

due to clouds and small particles in the atmosphere known as ‘aerosols’. Light-

coloured areas of Earth’s surface – mainly snow, ice and deserts – reflect the 

remaining one-third of the sunlight. The most dramatic change in aerosol-produced 

reflectivity comes when major volcanic eruptions eject material very high into the 

atmosphere. Rain typically clears aerosols out of the atmosphere in a week or two, 

but when material from a violent volcanic eruption is projected far above the highest 

cloud, these aerosols typically influence the climate for about a year or two before 

falling into the troposphere and being carried to the surface by precipitation. Major 

volcanic eruptions can thus cause a drop in mean global surface temperature of about 

half a degree celsius that can last for months or even years. Some man-made aerosols 

also significantly reflect sunlight. 

 

 

Figure 10 The energy balance in the atmospheric system  

The energy that is not reflected back to space is absorbed by the Earth’s surface and 

atmosphere. This amount is approximately 240 Watts per square metre (W m–2). To 

balance the incoming energy, the Earth itself must radiate, on average, the same 

amount of energy back to space. The Earth does this by emitting outgoing longwave 

radiation. Everything on Earth emits longwave radiation continuously. That is the 

heat energy one feels radiating out from a fire; the warmer an object, the more 
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heat energy it radiates. To emit 240 W m–2, a surface would have to have a 

temperature of around –19°C. This is much colder than the conditions that actually 

exist at the Earth’s surface (the global mean surface temperature is about 14°C). 

Instead, the necessary –19°C is found at an altitude about 5 km above the surface. 

The reason the Earth’s surface is this warm is the presence of greenhouse gases, 

which act as a partial blanket for the longwave radiation coming from the surface. 

This blanketing is known as the natural greenhouse effect. The most important 

greenhouse gases are water vapour and carbon dioxide. The two most abundant 

constituents of the atmosphere – nitrogen and oxygen – have no such effect. Clouds, 

on the other hand, do exert a blanketing effect similar to that of the greenhouse 

gases; however, this effect is offset by their reflectivity, such that on average, clouds 

tend to have a cooling effect on climate (although locally one can feel the warming 

effect: cloudy nights tend to remain warmer than clear nights because the clouds 

radiate longwave energy back down to the surface). Human activities intensify the 

blanketing effect through the release of greenhouse gases. For instance, the amount 

of carbon dioxide in the atmosphere has increased by about 35% in the industrial era, 

and this increase is known to be due to human activities, primarily the combustion of 

fossil fuels and removal of forests. Thus, humankind has dramatically altered the 

chemical composition of the global atmosphere with substantial implications for 

climate. 

Because the Earth is a sphere, more solar energy arrives for a given surface area in 

the tropics than at higher latitudes, where sunlight strikes the atmosphere at a lower 

angle. Energy is transported from the equatorial areas to higher latitudes via 

atmospheric and oceanic circulations, including storm systems. Energy is also 

required to evaporate water from the sea or land surface, and this energy, called 

latent heat, is released when water vapour condenses in clouds  Atmospheric 

circulation is primarily driven by the release of this latent heat. Atmospheric 

circulation in turn drives much of the ocean circulation through the action of winds 

on the surface waters of the ocean, and through changes in the ocean’s surface 

temperature and salinity through precipitation and evaporation. Due to the rotation of 

the Earth, the atmospheric circulation patterns tend to be more east-west than north-

south. Embedded in the mid-latitude westerly winds are large-scale weather systems 

that act to transport heat toward the poles. These weather systems are the familiar 

migrating low- and high-pressure systems and their associated cold and warm fronts. 

Because of land-ocean temperature contrasts and obstacles such as mountain ranges 

and ice sheets, the circulation system’s planetary-scale atmospheric waves 
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tend to be geographically anchored by continents and mountains although their 

amplitude can change with time. Because of the wave patterns, a particularly cold 

winter over North America may be associated with a particularly warm winter 

elsewhere in the hemisphere. Changes in various aspects of the climate system, such 

as the size of ice sheets, the type and distribution of vegetation or the temperature of 

the atmosphere or ocean will influence the large-scale circulation features of the 

atmosphere and oceans. There are many feedback mechanisms in the climate system 

that can either amplify (‘positive feedback’) or diminish (‘negative feedback’) the 

effects of a change in climate forcing. For example, as rising concentrations of 

greenhouse gases warm Earth’s climate, snow and ice begin to melt. This melting 

reveals darker land and water surfaces that were beneath the snow and ice, and these 

darker surfaces absorb more of the Sun’s heat, causing more warming, which causes 

more melting, and so on, in a self-reinforcing cycle. This feedback loop, known as 

the ‘ice-albedo feedback’, amplifies the initial warming caused by rising levels of 

greenhouse gases. Detecting, understanding and accurately quantifying climate 

feedbacks have been the focus of a great deal of research by scientists unravelling 

the complexities of Earth’s climate. 
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3.5. The climate sensitivity 

 

Climate sensitivity is the term used by the Intergovernmental Panel on Climate 

Change (IPCC) to express the relationship between the human-caused emissions that 

add to the Earth’s greenhouse effect — carbon dioxide and a variety of other 

greenhouse gases — and the temperature changes that will result from these 

emissions. 

 

Specifically, the term is defined as how much the average global surface temperature 

will increase if there is a doubling of greenhouse gases (expressed as carbon dioxide 

equivalents) in the air, once the planet has had a chance to settle into a new 

equilibrium after the increase occurs. In other words, it’s a direct measure of how the 

Earth’s climate will respond to that doubling. 

 

That value, according to the most recent IPCC report, is 3 degrees Celsius, with a 

range of uncertainty from 2 to 4.5 degrees. 

 

This sensitivity depends primarily on all the different feedback effects, both positive 

and negative, that either amplify or diminish the greenhouse effect. There are three 

primary feedback effects — clouds, sea ice and water vapor; these, combined with 

other feedback effects, produce the greatest uncertainties in predicting the planet’s 

future climate.  

 

With no feedback effects at all, the change would be just 1 degree Celsius, climate 

scientists agree. Virtually all of the controversies over climate science hinge on just 

how strong the various feedbacks may be — and on whether scientists may have 

failed to account for some of them.  

 

Clouds are a good example. Clouds can have either a positive or negative feedback 

effect, depending on their altitude and the size of their water droplets. Overall, most 

scientists expect this net effect to be positive, but there are large uncertainties.  

It is important to note that climate sensitivity is figured on the basis of an overall 

doubling, compared to pre-industrial levels, of carbon dioxide and other greenhouse 

gases. But the temperature change given by this definition of climate sensitivity is 

only part of the story. The actual increase might be greater in the long run 
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because greenhouse gas levels in the atmosphere could more than double without 

strong policies to control emissions. But in the short run, the actual warming could 

be less than suggested by the climate sensitivity, since due to the thermal inertia of 

the ocean, it may take some time after a doubling of the concentration is reached 

before the climate reaches a new equilibrium. 

 

There are various types of climate models. Some focus on certain things that affect 

climate such as the atmosphere or the oceans. Models that look at few variables of 

the climate system may be simple enough to run on a personal computer. Other 

models take into account many factors of the atmosphere, biosphere, geosphere, 

hydrosphere, and cryosphere to model the entire Earth system. They take into 

account the interactions and feedbacks between these different parts of the planet. 

Earth is a complex place and so many of these models are very complex too. They 

include so many math calculations that they must be run on supercomputers, which 

can do the calculations quickly. All climate models must make some assumptions 

about how the Earth works, but in general, the more complex a model, the more 

factors it takes into account, and the fewer assumptions it makes 

There are currently several other complex global climate models that are used to 

predict future climatic change. The most robust models are compared by the IPCC 

(Intergovernmental Panel on Climate ) 

Figure 11Steps involved in calculating greenhouse gas and aerosol concentration changes, climatic 
change, and sea level rise using simple climate models 
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In general a wide range of models exists for most of the components of the climate 

system but we shall use the term “simple climate model” (SCM) to refer primarily to 

the upwelling-diffusion climate and ocean carbon cycle models and the term 

“complex model” to refer to the atmospheric and ocean GCMs, whether run as 

stand-alone models or as coupled models.  

The essential difference between simple and complex models is the degree of 

simplification, or the level at which parametrization is introduced. Simple linked 

models have been used to go from emissions of a suite of gases to concentrations, 

climatic change, and sea level rise (Figure 11). 

Agriculture, like most business, is a decision-making enterprise. Farmers and policy 

makers are constantly faced with the task of matching and allocating time and 

resources to efforts that are likely to produce desired outcomes. Agriculture involves 

biological factors for which, in many cases, the interactions with the environment are 

unknown. Deviations from expected outcomes are often caused by random 

environmental variables over which the decision maker has little or no control. Year-

to-year variations in weather cause large variations in crop yields. Uncertainty in 

weather creates a risky environment for agricultural production. Thus chance, and 

therefore risk, enters the decision-making process, and farmers and policy makers 

are unwillingly forced to gamble with nature. 

During the last decades the application of simulation and system analysis in 

agricultural research has increased considerably. The simulation model is one of the 

most complex methods among the approaches used to describe the soil-plant-

atmosphere system. Models that use weather data and soil and plant data in 

simulating crop yields have the potential for being used to asses the risk of 

producing a given crop in a particular soil-climate regime and for assisting in 

management decisions that minimize the risk of crop production (e.g. Tsuji et al., 

1998). Models, in general, are a mathematical representation of a real-world system 

(e.g. Mize and Cox, 1968). In reality, it is impossible to include all the interactions 

between the environment and the modeled system in a computer model. In most 

cases, a model is a simplification of a real-world system (e.g. Hoogenboom, 2000). 

A model might include many assumptions, especially when information that 

describes the interactions of the system is inadequate or does not exist. Depending 

on the scientific discipline, there are different types of models, ranging from very 

simple models that are based on one equation to extremely advanced models, that 

include thousands of equations (e.g. Hoogenboom, 2000). Crop models, in 
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general, integrate current knowledge from various disciplines, including 

meteorology, soil physics, soil chemistry, crop physiology, plant breeding, and 

agronomy, into a set of mathematical equations to predict growth, development and 

yield (e.g. Hoogenboom, 2000).  

Simulation models are robust tools to guide our understanding of how a system 

responds to a given set of conditions. Crop simulation models are increasingly being 

used in agriculture to estimate production potentials, design plant ideotypes, transfer 

agrotechnologies, assist strategic and tactical decisions, forecast real time yields and 

establish research priorities (e.g. Bannayan and Crout, 1999; Penning de Vries and 

Teng, 1993; Uehera and Tsuji, 1993). Numerous crop growth and yield models have 

been developed for a wide range of purposes in recent years (e.g. Casanova et al., 

2000; Hoogenboom, 2000). These models range in complexity from the most 

sophisticated simulators of plant growth, primarily intended for research into plant 

physiological interactions, to multiple regression models using only a few monthly 

weather variables to forecast regional crop yields. Generally, plant-process yield 

models have been developed to predict yield at the level of an average plant in a 

specified field. Thus the input data required by these models include plant 

parameters specific to the variety or hybrid planted in some field and soils 

parameters describing the soil in that field. The prediction of crop development is an 

important aspect of crop growth modelling.  

 One use of the crop models developed in recent years is to simulate the effects of 

cultural practices and climatic scenarios on crop growth and yield. However, their 

use for predicting yields over large areas is limited by the difficulty in obtaining 

information about local conditions or crop characteristics at any given point. Some 

crop or soil features may be considered to be constant for a group of genotypes in a 

given region, but others depend on changes in local conditions (e.g. Guerif and 

Duke, 1998). Testing over a range of environmental conditions is required to 

establish confidence in applying models (e.g. Goudriaan and Van Laar, 1994). Crop 

models are available for almost all economically important crops and on many 

occasions they have been successfully used in research. In the future, models may be 

useful for improving the efficiency of agricultural systems and could be a tool for 

farmers trying to improve the profitability of their farms (e.g. Jacobson et al., 1995). 

Nevertheless, before this is possible, models must be calibrated and evaluated for 

each climatic region where they are intended for use in decision making (e.g. Sau et 

al. 1999).  
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Crop simulation models permit the summary of scientific knowledge on the 

biological processes that regulate plant growth. They integrate the work of experts in 

different fields and place it all at the disposal of any agronomist. As such, these 

models appear as very powerful tools. Low cost and time saving are their two major 

advantages over field experimentation. These models simulate final variables of the 

crop cycle, such as grain yield, but also simulate the evolution of some intermediate 

variables. They are generally built with an analytical purpose. Yet, these models are 

sometimes used as a predictive tool (e.g. Trousland-Kerdiles and Grondona, 1997). 

Large area yield forecasting prior to harvest is of interest to government agencies, 

commodity firms and producers. Early information on yield and production volume 

may support these institutions in planning transport activities, marketing of 

agricultural products or planning food imports. Moreover, at world scale, agricultural 

market prices are affected by information on the supply or consumption of 

foodstuffs. Market price adjustments or change in agricultural supplies in one area of 

the world often causes price adjustments in other areas far distant (Supit and van der 

Goot, 2002). 

 It is no longer necessary nowadays to demonstrate the usefulness of simulation 

models to explain and predict crop yields or changes in the environment at various 

scales of agricultural production (e.g. Boote et al., 1996). The value of exploring 

agronomic situations not tried experimentally (or difficult to try out experimentally) 

is all the greater when the model can simulate several crops arranged in succession, 

and when as many cropping techniques and environmental limiting factors as 

possible are included (e.g. Cabelguenne et al., 1999). Crop models can also be used 

to generate input data for models for technical/economic optimisation, notably in the 

context of the analysis of European or national policies for competitiveness and 

environmental protection (e.g. Flichman, 1995; van Ittersum and Rabbinge, 1997). In 

an economic context in which techniques and regulations are rapidly evolving, or 

where the objectives and limitations applied to cropping systems are also very 

diverse, long-term experiments cannot provide answers quickly enough for action to 

be taken. Models are called upon more and more to contribute to the formulation of 

innovative cropping systems. Clearly, the credibility of the conclusions from long-

term exploratory simulations rests heavily on the reliability of the models, and 

especially on a good prediction of the yields of crops subjected to various water and 

thermal stresses (e.g. Cabelguenne et al. 1999). 
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3.6. The crop models  

This section will not discuss all crop models that are available for simulating crop 

growth, but will consider some examples that have been used by scientists 

throughout the world and will review some desirable characteristics for a crop model 

that is to be used for climate change impact assessment For a crop model to be useful 

as a climate change impact assessment tool, it has to reliably predict yield as a 

function of weather variables and have a relatively limited number of essential 

variables and parameters – models developed to express understanding derived 

directly from research are not particularly suited to practical application where 

limited data might be available for parameterization, calibration and testing. It must 

also be available to users in a robust yet flexible package that readily facilitates 

implementation, have a CO2 response equation in the simulation, and operate at 

suitable spatial and temporal scales. A review of literature for regional studies using 

the CROPGRO model (for a review of the model, see Hoogenboom et al., 1992), the 

CERES model (a user manual is provided by Goodwin et al., 1990) and the 

SUBSTOR model (described by Singh et al., 1998) reveals a predominance of work 

conducted for more developed countries (perhaps because the necessary data of 

suitable quality are available for these regions). The impact assessments focus 

mainly on the effects of elevated CO2, temperature, precipitation and radiation on 

yield, but some authors have examined how these factors influence crop suitability 

and changing spatial distributions of crops (for instance, Iglesias et al., 2000; 

Rosenzweig et al., 2002; Jones and Thornton, 2003). While workers tend to conclude 

that increases in yield are likely, they discuss issues of importance such as timing of 

water in Indian monsoon, which can cause reduced yield (Lal et al., 1998, 1999), and 

the uncertainty of the yield forecasts (soybean and peanut yield increases, maize and 

wheat yield decreases) in the south-eastern United States (Alexandrov and 

Hoogenboom, 2004). The potential effect of the daytime vs. night-time rise in 

temperature is discussed by Dhakhwa et al. (1997), who suggest that an 

asymmetrical change, with greater change at night-time, would have less impact on 

yield than a symmetrical change. Another important issue is the potential 

significance of cultivar selection (Alexandrov et al., 2002; Kapetanaki and 

Rosenzweig, 1997). There have been studies for Africa and other developing regions 

(for example, Jones and Thornton, 2003), but authors recognize that a model to 

predict yield changes is unlikely to capture the true impact of climate change on 

smallholders and non-mechanized farmers in these regions. Other crop models have 

been used for climate change impact assessment: EuroWheat (Harrison and 
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Butterfield, 1996; Hulme et al., 1999) for wheat crops; the Hurley pasture model 

(Thornley and Cannell, 1997) for grass; GLYCIM (Haskett et al., 1997) for soybean; 

and CropSyst (Stöckle et al., 1994; Tubiello et al., 2000) for various C3 and C4 

crops, mainly cereals. A characteristic of the work published in scientific literature is 

that most models are not well adapted to subsistence and low-input production 

systems, and therefore example studies tend to focus on agricultural production in 

more developed countries, where mechanization and husbandry inputs are a 

significant part of the production systems used. 
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3.7. Animal models 

A review of the literature reveals that there are many crop models available for 

climate change impact assessment, but there are few animal models that have been 

used to evaluate the impact of climate change on the animal. Most work focuses on 

how climate change affects animal production systems, with a particular emphasis 

on the supply of nutrients to the animal (for instance, the production of grass) and 

related environmental impacts (soil–water models). Two examples that can be found 

in the literature are A review of the literature reveals that there are many crop models 

available for climate change impact assessment, but there are few animal models that 

have been used to evaluate the impact of climate change on the animal. Most work 

focuses on how climate change affects animal production systems, with a particular 

emphasis on the supply of nutrients to the animal (for instance, the production of 

grass) and related environmental impacts (soil–water models). Two examples that 

can be found in the literature are: 

 

 SPUR (Wight and Skiles, 1987), which stands for Simulation of Production and 

Utilization of Rangelands. It is an ecologically based model designed to help 

optimize rangeland management systems. By considering hydrology, plant growth, 

animal physiology and harvesting, the model can forecast the effects of 

environmental conditions on range ecosystems, in addition to the animal simulation 

based on the Colorado beef cattle production model. The detail and complexity of 

the animal model mean that it may be excessively detailed for climate change impact 

work (Mader et al., 2002). The inputs for the animal component include breeding 

season, calving season, castration date and day of weaning. Animal parameters 

include birth weight, yearling weight, mature weight, milk production, age at puberty 

and gestation length. The climate data required are precipitation, maximum and 

minimum temperature, solar radiation, and wind run. The SPUR model can also be 

regarded as a system model, as it simulates soil, plant and animal interactions. It is 

placed under the category of animal model because it has been used for climate 

change impact assessment for animals (Hanson et al., 1993; Eckert et al., 1995). 

National Research Council Nutrient Requirements of Beef Cattle (NRC, 1996). It 

was published as a book reviewing the literature on beef cattle nutrient requirements, 

and the accompanying computer models utilize current knowledge of factors that 

affect the nutritional needs of cattle and enable the user to define these factors to 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

51 

customize the situation for a specific feeding program. The model uses information 

on diet type, animal status, management, environment and the feeds in the diet. The 

effect of temperature on voluntary feed intake (VFI) is at the centre of the model. 

The model uses climate variables, primarily average daily temperature, to generate 

an estimate of daily VFI. Based on daily VFI, estimates of production output (daily 

body weight gain) can then be produced. Frank et al. (1999) used the model to evalu-

ate climate change impacts on animals in the United States Testing the validity of 

assumptions, parameterization and calibration of animal models for less-developed 

countries is of particular importance given the forecast of drought and heat stress on 

animals in tropical, semi-arid and Mediterranean regions, and the potential 

constraints that might hinder adaptation in these situations. 

 

System models 

 

The Decision Support System for Agrotechnology Transfer (DSSAT), which is 

currently available in version 4.0, is a good example of a system modelling tool. It 

has been used for the last 15 years for modelling crop (type and phenotype), soil, 

weather, and management or husbandry interactions (ICASA, 2006), and it has also 

been employed to assess climate change impacts (for instance, in Holden et al., 

2003; Holden and Brereton, 2003).  

The minimum dataset required for DSSAT consists of site weather data describing 

maximum and minimum air temperature, rainfall and radiation (stochastic weather 

generators are provided to create daily data if only monthly mean data are available); 

site soil data describing horizonation, texture, bulk density, organic carbon, pH, 

aluminium saturation and root distribution (basic soil descriptions can be used to 

parameterize a soil based on examples provided); and management data (planting 

dates, fertilizer strategies, harvesting, irrigation and crop rotations). Additional detail 

can be used as required by the research programme. The system then allows the user 

to define a crop/management scenario using a series of modules: 

 

(a) Land module – defines the types of soils and fields when the system is being used 

for site-specific work. Can be generalized for climate change impact 

assessment. 

(b) Management module – deals with planting, crop husbandry, rotation 

management, fertilizer, irrigation and harvesting. 
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(c) Soil module – a soil water balance submodule and two soil nitrogen/organic 

matter modules including integration of the CENTURY model. For climate 

change impact assessment much of the detail can be ignored if suitable data do 

not exist. 

(d) Weather module – reads daily weather data or generates suitable data from 

monthly mean values. 

(e) Soil–plant–atmosphere module – deals with competition for light and water 

among the soil, plants and atmosphere.  

(f) Crop growth simulation modules – specific crop models (CROPGRO, CERES 

and SUBSTOR), each of which is well established in the scientific literature, 

are used to simulate the growth of 19 important crops (soybean, peanut, 

drybean, chickpea, cowpea, velvet bean, faba bean, pepper, cabbage, tomato, 

bahia grass, brachiaria grass, rice, maize, millet, sorghum, wheat, barley and 

potato). 

 

 

 The DSSAT systems can be regarded as a flexible system model, but there have 

been a number of other specific system models developed, many with a view to 

understanding more about climate change impacts. Typically, these models focus on 

a combination of agricultural production and biogeochemical cycling. Examples 

include: 

 

PaSim (Riedo et al., 1998, 2000). The pasture simulation model is a mechanistic 

ecosystem modelthat simulates dry matter production and fluxes of carbon (C), 

nitrogen (N), water, and energy in permanent grasslands with a high temporal 

resolution. PaSim consists of submodels for plant growth, microclimate, soil biology 

and soil physics. It is driven by hourly or daily weather data. Site-specific model 

parameters include the N-input from mineral and/or organic fertilizers and 

atmospheric deposition, the fractional clover content of the grass/clover mixture, the 

depth of the main rooting zone, and soil physical parameters. Different cutting and 

fertilization patterns as well as different grazing regimes can be specified as 

management options. 

 

Dairy_sim (Fitzgerald et al., 2005; Holden et al., 2008). Dairy_sim was designed to 

assess theinteractions between climate and management in spring-calving milk 

production systems based on the grazing of grass pastures. The simulator 
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comprises three main components: a grass herbage growth model, an intake and 

grazing behaviour model, and a nutrient demand model. The model has been 

improved to better account for soil water balance and field trafficability, but does not 

explicitly consider biogeochemical cycles. The level of detail was specified as 

appropriate for climate change impact studies, but is probably regionally constrained 

to the Atlantic Arc of Europe and areas with a similar climate. 

 

CENTURY (Parton et al., 1987, 1995). The CENTURY model simulates carbon, 

nutrient and water dynamics for grassland and forest ecosystems. It includes a soil 

organic matter/decomposition submodel, a water budget submodel, grassland and 

forest plant production submodels, and functions for scheduling events. The model 

computes flows of carbon, nitrogen, phosphorus and sulphur. Initial data 

requirements are: monthly temperature (minimum, maximum and average in degrees 

C), monthly total precipitation (cm), soil texture, plant nitrogen, phosphorus, sulphur 

content and lignin content of plant material, atmospheric and soil nitrogen inputs, 

and initial concentrations of soil carbon, nitrogen, phosphorus and sulphur 

 

 

 

 

EPIC (Williams et al., 1990). The Erosion Productivity Impact Calculator (also 

known as the Environmental Policy Integrated Climate) model was designed to 

assess the effect of soil erosion on productivity by considering the effects of 

management decisions on soil, water, nutrient and pesticide movements and their 

combined impact on soil loss, water quality, and crop yields for areas with 

homogeneous soils and management. The model has a daily timestep and can 

simulate up to 4 000 years; it has been used for drought assessment, soil loss 

tolerance assessment, growth simulation, climate change analysis, farm-level 

planning and water quality analysis. Examples of its application include Mearns et 

al. (2001) and Brown and Rosenberg (1999) 

 

DNDC (Zhang et al., 2002). The denitrification–decomposition model is a process-

oriented modelof soil carbon and nitrogen biogeochemistry. It consists of two parts, 

the first of which considers soil, climate, crop growth and decomposition submodels 

for predicting soil temperature, moisture, pH, redox potential and substrate 

concentration profiles driven by ecological drivers (such as climate, soil, 
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vegetation and anthropogenic activity). The second considers nitrification, 

denitrification and fermentation submodels for predicting NO, N2O, N2, CH4 and 

NH3 fluxes based on modelled soil environmental factors. 

 

 

3.8. Forest models 

 

There are a large number of forest and related models that have been used to 

evaluate climatechange impacts on natural and commercial forestry. Some examples 

will be used to illustrate the tools available. ForClim is a simplified forest model 

based on the gap dynamics hypothesis (so-called “gap” models) that was designed to 

use a limited number of robust assumptions and to be readily parameterized so that it 

could be used for climate change impact assessment (Bugmann, 1996). It has a 

modular structure that considers environment, soil and plants separately but 

interactively, and was tested by evaluating whether it could simulate forest structures 

related to climate gradients. Examples of its use include Bugmann and Solomon 

(1995) and Lindner et al. (1997).  

The FORSKA/FORSKA 2 models (Prentice et al., 1993) simulate the dynamics of 

forestlandscapes with phenomenological equations for tree growth and 

environmental feedbacks. Establishment and growth are modified by species-specific 

functions that consider winter and summer temperature, net assimilation, and 

sapwood respiration as functions of temperature, CO2 fertilization, and growing-

season drought. All of the trees in a 0.1 ha patch interact through competition for 

light and nutrients. The landscape is simulated as an array of such patches. The 

probability of disturbance on a patch is a power function of time since disturbance. 

This model does not explicitly consider soil fertility but assumes uniform patch 

conditions and simulates the effect of nutrient limitation using maximum biomass 

curves. It is also used by Lindner et al. (1997). It is necessary to recognize that forest 

models might not simulate meaningful changes from baseline over periods of 20–40 

years due to the difficulty of capturing responses in complex ecosystems over 

relatively short periods. The impact of climate change is more likely to be visible 

over periods of 75–150 years. For commercial, monoculture forestry, the impact of 

changes in atmospheric chemistry, drought and high winds may become detectable 

by simulation modelling for a shorter period because the system is more readily 

modelled. 
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3.9. Other bioresource models 

          While most models used by the agricultural community (in its broadest sense) to 

assess impacts of climate change can be directly related to production aspects, there 

are models available that look at wider environmental issues that overlap with 

agricultural activity. A good example of such a model is SPECIES: spatial 

evaluation of climate impacts on the envelope of species (Pearson et al., 2002). This 

is a scale-independent model that uses an artificial neural network model coupled to 

a climate–hydrology model to simulate the relationship between biota and 

environment and it is useful for examining the impact of climate change on the 

distribution of species and how this might change (Berry et al., 2002a). The 

approach requires quite intensive observations in the region being examined and thus 

is most useful where there is a well-established and dense meteorological 

observation network. The SPECIES model has also been used to evaluate forest 

responses to climate change (Berry et al., 2002b). 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

56 

 

4. The objective of the work 

The vine has been extensively studied in the context of climate change studies. 

These studies can be separated into two groups: first, studies on the impacts 

observed in recent years and related to climate change and on the other hand, studies 

which, through experimentation (mimicking future conditions) or modeling, try to 

determine the conditions of production of this crop in the future. 

In this study an analysis of the potential impacts of climate change on grapevine 

(Vitis vinifera L.) will be presented. Namely predicting the responses of two main 

Sardinian varieties - Cannonau and Vermentino, in order to ascertain reliable 

adjustment cultural practices as well to define possible mitigation strategies.  

 

The  objectives of this research were to evaluate the effects of climate change and 

grapevine and phenology, at two experimental sites in Sardinia, differents for soil, 

climate conditions. 

To achieve these main objectives, the approach used in this study was: 

 The application and assessment of a coupled climate scenario-crop model method, 

in which Atmosphere-Ocean General Circulation Models, used to generate future 

climate scenarios, are integrated into crop models to simulate future crop yields. 

 

 The analysis of daily meteorological variables for current climatic conditions and 

climate change projections. These data are used as input variables for crop 

simulation models in conjunction with soil parameters and agronomic and 

management information, to simulate the dynamics of plant growth and 

development. 

The comparison of the results of these simulations for both current and future 

climatic conditions. Impacts of climate change are then expressed as changes in crop 

productivity and phenological phases. 

To summarize, the specific aims of the work are:  
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 to calibrate and validate Win-Stics  model  of the Cannonau and Vementino 

grapevin 

 to assess the climate change impact on and phenological crop phases, 

5. Material and methods  

 

The global model CMCC_MED: 

The global model at higher horizontal resolution is the CMCC-MED coupled 

atmosphere–ocean general circulation model, which has been implemented and 

developed in the framework of the European project CIRCE .The CMCC-MED 

model is an evolution of the SINTEX-G and the ECHAM-OPALIM  models. The 

atmospheric model component is ECHAM5  with a T159 horizontal resolution, 

corresponding to a Gaussian grid of about 0.75° x 0.75°. This configuration has 31 

hybrid sigma-pressure levels in the vertical and top at 10 hPa. The parameterization 

of convection is based on the mass flux concept, modified following Nordeng 9  . 

Moist processes are treated using a mass conserving algorithm for the transport  of 

the different water species and potential chemical tracers. The transport is resolved 

on the Gaussian grid. In the CMCC_MED model the ocean component is simulated 

through a coarse-resolution global ocean model and a high-resolution eddy-

permitting model of the Mediterranean Sea. The global ocean component is OPA 8.2 

(Ocean PArallelise, in its ORCA2 global configuration. The horizontal resolution is 

2o x 2o with a meridional refinement near the equator, approaching a minimum 0.5o 

grid spacing. The model has 31 vertical levels, 10 of which lie within the upper 100 

m. ORCA2 also includes the Louvain La Neuve (LIM) model for the dynamics and 

thermodynamics of sea-ice. The Mediterranean Sea model 10  is a regional 

configuration of the NEMO (Nucleus for European Modeling of the Ocean) model 

with a 1/16o horizontal resolution and 71 levels along the vertical. The 

communication between the atmospheric model and the ocean models is carried out 

with the OASIS3 coupler  Every 160 minutes (coupling frequency), heat, mass and 

momentum fluxes are computed and provided to the ocean model by the atmospheric 

model. Sea Surface Temperature (SST) and sea surface velocities are provided to the 

atmospheric model by both ocean models. The global ocean model provides also 

sea-ice cover and thickness to the atmospheric model. The relatively high coupling 

frequency adopted allows an improved representation of the interaction 
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processes occurring at the air-sea interface. No flux corrections are applied to the 

coupled model.  

 

Figure 11 The CMCC-MED climate scenario simulations: 
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The COSMO-CLM model: 

The COSMO-CLM regional model is a non-hydrostatic model for the simulation of 

atmospheric processes. It has been developed by the DWD–Germany and by the 

COSMO consortium for weather forecast services. Successively, the model has been 

updated by the CLM-Community, in order to develop also climatic applications. The 

non-hydrostatic modelling allows a good description of the convective phenomena, 

which are generated by vertical movement (through transport and turbulent mixing) 

of the properties of the fluid as energy (heat), water vapour and momentum. 

Convection can redistribute significant amounts of moisture, heat and mass on small 

temporal and spatial scales. Furthermore convection can cause severe precipitation 

events (as thunderstorm or cluster of thunderstorms). The mathematical formulation 

of COSMO‐CLM is made up of the Navier-Stokes equations for a compressible flow 

The parameterization settings includes a Tiedtke convection scheme  with a moisture 

convergence closure, a turbulence scheme with prognostic turbulent kinetic energy 

(TKE) and a Kessler scheme for grid-scale precipitation which treats cloud ice 

diagnostically. The model includes several other parameterizations, in order to keep 

into account, at least in a statistical manner, several phenomena that take place on 

unresolved scales, but that have significant effects on the meteorological interest 

scales (for example, interaction with the orography). Further parameterizations are 

available in order to describe some important physical phenomena for the 

atmospheric evolution, for example solar radiation, soil behaviour and microphysics. 

The discretization of the fluid dynamics equations is performed by using finite 

difference approximation on a computational grid defined in a rotated spherical 

coordinate system. The pole is tilted and can be positioned such that the equator runs 

through the centre of the model domain. Problems resulting from the convergence of 

the meridians can be minimized for any limited area model domain on the globe. 

Especially, for a very small domain with negligible impact of the curvature of the 

earth's surface, the equations become identical to those for a tangential Cartesian 

coordinate system. Three time integration algorithms are available: the first one is 

based on a second order accurate Runge-Kutta method on two time levels; the 

second is based on the “horizontal explicit - vertical implicit” variant of Leapfrog 

scheme, the third based on a semi-implicit Leapfrog scheme on three time levels. 

The parallelization is done by horizontal domain decomposition using a soft-coded 

2-gridline halo. The Interface software MPI is used as Message Passing. The 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

60 

regional models consider limited domains, therefore their boundary conditions are 

obtained from global climate models. A Runge Kutta 2 time level HEVI scheme for 

the time integration Clmcmm 8km: Period 1965-2035, spatial resolution 8 km, time 

step 40 sec, computational grid with 207 x 211 nodes and 40 vertical levels. 

Boundary conditions obtained from the global model CMCC-MED, whose 

atmospheric component is ECHAM5 (T159 80 km spatial resolution, 6 h time 

resolution) and considering the IPCC A1B scenario. 
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 A first step of evaluation the impact is defined by a description the real situation 

agronomic of area study, in particular.  

Study 

area  
varieties Soil  

Thickness and 

height; vineyard 

Sella Mosca 

Alghero 
Cannonau  1 1.30*2.00 m*2.00 

Azienda Sanna 

Berchidda 
Vermentino 1 1.30*2.00 m*2.00 

 

 

This analysis allowed us to observe the impacts on the vineyard if there was no 

change in its current structure. We have made a parallel simulation of different 

variables for the years 2006 2007 and 2008 2009 

The simulations were carried out as follows: for each combination x Region x Soil x 

structure we conducted the simulation with all the years of each series climate 

(Control, A1B). The option used in the model was the sequence of cultural seasons, 

in order to take into account root development. In each case we simulated a series of 

variables that describe different aspects of growth, phenology and yield. All 

variables were simulated using a daily time step  To analyze the results, we used the 

average value of each variable on all years for each combination technique, in the  

scenarios (control, A1b), four fundamental moments of growth and plant 

development: flowering, veraison, the harvest and the end of the cycle. 
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5. The Win STics Model 

In this chapter we'll make a description about the model and its main components.  

STICS is a model that has been developed at INRA (France) since 1996. STICS is a 

crop model at a daily time scale. Its inputs relate to climate, soil and the cropping 

system. Its outputs relate to production (quantity and quality), the environment and 

variations in soil characteristics in cropping situations. STICS has been designed as a 

simulation tool to be operational in cultivation conditions. Its main purpose is to 

simulate the effects of variations in the physical environment and cropping system 

on the production of a farming plot. It has also been designed to be used as a tool 

with which to work, collaborate and transfer knowledge to other closely-related 

scientific fields. From a conceptual point of view, STICS is made up of a number of 

original parts relative to other crop models (e.g. simulation of crop temperature, 

simulation of many techniques) but most of the remaining parts are based on 

conventional formalizations or have been taken from existing models. Its strong 

points are the following: 

 its generic quality: adaptability to a variety of crops (wheat, maize, soy, 

sorghum, flax, grasslands, tomatoes, beet, sunflower, peas, oil seed rape, 

bananas, sugar cane, carrots, lettuce, etc.), 

 its robustness: its ability to simulate a range of pedoclimatic conditions 

without generating any major bias, to the detriment sometimes of local 

accuracy, 

 a relative ease of access to input parameters and variables, 

 its "conceptual" modularity: possibility to add new modules (e.g. 

volatilisation of ammonia, symbiotic fixation of nitrogen, plant mulch, stony 

soils, multiple organic residues, etc.).  

The purpose of this modularity is to facilitate any subsequent evolutions.  The 

context of the internal and external communication it generates and which serves as 

a basis for the model's development, as witnessed by the successive versions of the 

software. The simulated object is a cropping situation whose physical environment 

and management schedule can be accurately determinate and defined. The main 

processes simulated are crop growth and development, together with the water and 
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nitrogen balances. The selected formalizations are based on known analogies or on 

the simplification of more complex formalizations. The functions used have also 

been selected on the basis of their being generic, which enabled us to apply them to a 

variety of crops.The STICS model is written in FORTRAN 90 and operates with a 

standard PC-compatible micro-computer in a user friendly environment using 

Windows. STICS simulates the behavior of the soil/crop system over one crop cycle 

or several crop cycles to simulate rotations. The upper boundary of the system is the 

atmosphere characterised by standard climatic variables (radiation, minimum and 

maximum temperatures, rainfall, reference evapo transpiration and possibly wind 

and humidity) and the lower boundary corresponds to the soil/subsoil interface Crops 

are generally perceived in terms of their aboveground biomass and nitrogen content, 

leaf area index, and the number and biomass (and nitrogen content) of harvested 

organs. Vegetative organs (leaves, branches or tillers) are thereby not separated in 

terms of their biomass. Soil is described as a sequence of horizontal layers, each of 

which is characterized in terms of its water content, mineral nitrogen content and 

organic nitrogen content. Soil and crop interact via the roots, and these roots are 

defined with respect to root density distribution in the soil profile. 

The STICS model is structured into modules (Fig 12) with each module composed of 

sub-modules dealing with specific mechanisms. In particular a first set of three 

modules deals with the ecophysiology o aboveground plant parts (phenology, shoot 

growth, yield formation) whereas a second set of four modules define the generic 

interaction of the  soil and underground plant parts. Finally the crop managements 

modules define the different interactions between the applied techniques and the 

soil/crop system. The microclimate module  describe the combine effects between 

the climate, the water balance and the  vegetative system.  

 Figure 12 The various modules of the STICS model. 
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In general the phenological stages are used as steps for simulating vegetative 

dynamics (leaf area 

index and roots) and harvested organ filling (grain, fruit, tuber) (see Table 1) 

 Table 1( List of phenological stages of STICS .Some stages are required as a function of the 

options chosen : * for sows crops,**for determinate crops, ***for indeterminate crops. 

 

As in most crop models , the development stages simulated by STICS  can  differ 

from the stages defined in classical agronomic scales. The development stages in 

STICS are growth stages rather than organogenetic stages (Brisson and Delècolle, 

1991). Stages correspond in fact in the trophic or morphologic strategy of the crop 

that the evolution of leaf area index  or grain.   

The periods separating the successive stages between emergence and physiological 

maturity are specific to each species and variety. These periods are evaluated in 

development units, reproducing the phonological time of the plant.  In general the 

temperature is  used in crop model as the driving variable of the phenological time. 

The other factors affecting the rate of development are modeled as brakes or 

accelerators on Thant rate per unit thermal time (Brisson and Delècolle, 1991). 

These factor in general including the photoperiod and vernalisation an sometimes 

Development stages (leaf area 
index) 

Harvested organs stages 

IPLT : sowing or planting (annuals) 
GER: germination * 
DEBDORM and IFINDORM : beginning  and break of dormancy ( woody 
plants)  
LEV : emergence or budding 
LET : end of the plantlet frost 
sensitive stage 

LAT**: beginning of the critical phases for 
grain number onset  

AMF : maximum acceleration of 
leaf growth, e 
end of juvenile phase 

FLO : flowering (start of fruit sensitivity to 
frost 

LAX : maximum leaf area index, 
end of leaf leaf 
growth, net or gross depending 
on the option 

DRP : onset of filling of harvested organs 

SEN : onset of net senescence 
(LAI option) 

NOUd***: end of fruit setting 

LAN : nil leaf area index (LAInet 
option) 

DEBDES ; onset of water dynamics in 
fruits 

 MAT : physiological maturity 

REC : harvest 
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water deficit. Through the use of crop temperature, the effect of the water deficit on 

development is linked to thermal units and not a reducing factor. Of course, what is 

simulated by the use of crop temperature is an acceleration of the cycle, while some 

authors speak of delay in the case of early stress acting upon floral induction 

.nitrogen nutrition can also have effect on the progress of the cycle , a well light 

conditions trough plant density. In particular, the sum of degree-days can be 

calculated on the basis of air temperature or crop temperature. When phenology is 

calculated on the basis of crop temperature, the duration of phases must be corrected 

with respect to the standard values expressed in ‘air temperature’ development units 

(Brisson et al., 2002). The use of crop temperature for crops subjected to water stress 

makes it possible to simulate accelerated phenology, as suggested by Idso et al. 

(1978). There are plants for which early plant stress has a reverse effect, i.e. delaying 

flowering (e.g. rice: Wopereis et al., 1996 or banana: Brisson et al., 1998b).  

Consequently,  was introduced in STICS, just allowing to test how flowering delay is 

related to stress: until the DRP stage, the development unit can be multiplied by a 

stress factor accounting for the maximum of water and nitrogen stresses. 

Radiation interception 

There are a different methods of calculation tha radiation interception. In particular 

for row crops which takes crop geometry into account in a simple fashion (Brisson et 

al., 1999) in this method, the interrow is represented as 20 points equally distributed 

and the radiation received at each point is calculated from the critical angles below 

which this point receives solar radiation directly. On either side of these critical 

angles, radiation is reduced due to absorption by the crop; the radiation received at 

each point is the sum of radiation intercepted and transmitted by the crop and the 

non-intercepted radiation. Both of these components include a direct part and a 

diffuse part, taking row orientation into account and assuming that the direct 

radiation evolves sinusoidally during the day. The diffuse radiation/total radiation 

ratio is calculated according to Spitters et al. (1986). For vineyards One way of using 

the radiation transfer module is to simulate the effect of row orientation. 

Radiation use efficiency 

STICS directly calculates the daily accumulation of aboveground biomass, which is 

the net result of the processes of photosynthesis, respiration and root/shoot 

partitioning. This daily accumulation is a function of the intercepted radiation 

according to a parabolic law involving the maximal radiation use efficiency 
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(RUE). Maximal values of RUE, specific to each species and phenology-dependant, 

are given as input parameters. The maximal RUE is lower during the juvenile phase 

because it takes into account the preferential accumulation of assimilates in the roots 

at the beginning of the cycle. 

Stress indices 

In the STICS model the stress indices are values between 0 and 1 that reduce the 

vital plant functions. These indices mostly result from relationships calculated as 

functions of stress state variables. We can define a different variable, in particular 

the water stress is the  soil water content while the nitrogen nutrition index is the 

nitrogen stress variable and the source/sink ratio is the trophic stress variable . in this 

case the relationships are simple bilinear functions, i.e. equal to a constant until a 

critical level of the state variable is reached and then linearly decreasing, using just 

one crop dependent parameter. For the integration the information The STICS model 

also includes stresses for frost and anoxia, and thermal stresses affect the RUE and 

filling of the harvested organ 

Yield formation and quality  

By definition the yield is the weight and the quality of the organs that can be 

reproductive organs - either grains or fruits , or vegetative storage organs either 

stems or roots . Yield prediction is a goal of most crop model. In STICK model thee 

a double approach for definition this process. In STICS model there are a double 

approach for simulation this process, according to difference between indeterminate 

plant and determinate plant, in particular the souce/sink approach for a indeterminate 

plant propose by Ritchie and Otter (1984) or Jones et al (2003). Or determinate crops 

there is a dynamic harvest index. Concerning  to the  simulation of the harvested 

product quality of the model is a original option of  the STICS model. Water content 

is calculated independently, relying on hydration (or dehydration)dynamics based on 

species parameters and on the evolution of crop temperatures during filling and 

maturation. The quantity of nitrogen in harvested organs, both for determinate and 

indeterminate species , is a increasing proportion of the quantity of nitrogen in the 

original biomass (harvested organ N/total plant N). For sugars and lipids, it is 

assumed that the concentration is proportional to the dry matter in the organs. 

 

Root growth 
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This simulation process is s separated from aboveground growth. The roots system 

absorbes only mineral nitrogen and water. For the annual species  the root front 

begins at the sowing depth while the perennial plants the initial value of the root 

front can be deeper in the soil. 

The second possibility is calculate he root density profile according to two methods: 

a first option is propose by Brisson, 1998 and it possible to calculate the root profile 

that is effective with respect to absorption, assuming that it always has the same 

sigmoidal shape established on the basis of plant parameters and of the depth of the 

dynamic root front. This formalization assumes that, at the surface, root density 

always reaches the optimal threshold for water and nitrogen absorption, set at 0.5 cm 

cm3. But  there is a second option that makes it possible to estimate the actual root 

density profile using a logistic function that is in each layer of the soil profile in 

proportion to the roots present and as a function of the soil constraints (drought, 

anoxia, penetrability). 

 

 

Crop management 

 

In this module we draw attention about the irrigation practices, fertilizer practices 

and the microclimate. In particular according to concept that the water transfer 

through the canopy depending on the irrigation systems used, the supplies can be 

either over-the-crop, under-the crop or in the soil (drip irrigation). In the case of 

under-the-crop irrigation, clearly the water balance is not affected  by of rain 

interception by the foliage system. In the case of subsurface drip irrigation the output 

in water balance is not subjected to soil evaporation phenomena either, while the 

water retained on the foliage, directly subjected to the evaporative demand of the 

surrounding atmosphere, can evaporate, thereby significantly reducing the saturation 

deficit within the canopy and crop water requirements. The maximum amount of 

water retained by the foliage is directly proportional to the LAI and varies from one 

species to another between 0.2 and 0.7 mm LAI. The general water balance is based 

on estimating the water requirements of the soil/leaf system on the one hand and on 

the water supply to the soil/root system on the other. 

LAI 
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The STICS model includes several options for simulating this variable. A  first 

method describes a logistic curve of development units taking on an asymptote that 

is characteristic for the species with an inflection point at the end of the juvenile 

phase (AMF). This value is then multiplied by the effective crop temperature, the 

planting density combined with an inter-plant competition factor that is characteristic 

for the variety, and the water and nitrogen stress indices. A more sophisticated 

option was incorporated into version 5.0 where LAI evolution results from gross 

growth and senescence as a result of the natural ageing of the foliage and stress-

induced senescence. This method for calculating LAI is closer to the usual methods 

(Milroy and Goyne, 1995; Chapman et al., 1993). Growth is simulated in the same 

way as in the previous option and the simulation of senescence is based on the notion 

of lifetime applied directly to LAI. In addition there are a simple option for LAI 

calculation to directly soil cover rate, this options used deed in general for  

horticultural crops for example lettuce.  

Nitrogen balance 

Net nitrogen mineralisation in the soil is the sum of humus mineralisation and the 

mineralisation of organic residues. The former process is permanent and is always 

positive, whereas the second process varies in relation to the C/N ratio of the organic 

residues and can be either positive (net mineralisation) or negative (net 

immobilisation) 
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 Data requirements 

The data set consists) on three macro-areas the climatic component,  the edafic one 

and finally the plant. In particular daily climatic variables are required: minimum 

and maximum temperatures, radiation and rainfall whereas the soil system is the 

following: organic nitrogen content, active lime content, clay content, albedo when 

dry, run-off coefficient, pH, soil evaporation accumulation during the potential 

phase. Most of these parameters are obtained from classical chemical or physical 

analyses. A few parameters require specific measurements.  About the  crop 

management in the model system there is some default variable tha can be used for 

simulation process, for example sowing (date, depth, density, variety) or planting 

(interrow, row orientation), mineral and organic fertilisation, irrigation, fertigation, 

soil tillage with ploughing-in of residues, use of plant or plastic mulching, thinning, 

cutting (forage) or harvesting (once or several times) using various criteria 

physiological maturity, water, nitrogen, sugar or lipid contents 

5.2. Win Stics  model calibration 
 

Statistical analysis 

 
The performance of model was determined using several indexes mainly based on 

the calculation of correlation and differences between estimated and measured 

dormancy , flowering and harvest values. Results obtained from data used for  site 

Alghero  were analyzed calculating the correlation coefficient (r) and its square, the 

coefficient of determination (R2), the root mean squared error (RMSE), general 

standard deviation or relative root mean squared error (GSD), modelling efficiency 

index (EF), coefficient of residual mass (CRM), mean bias error (MBE), mean 

absolute error (MAE), and Index of agreement (d-Index) for the predicted and 

observed  values.  

The Pearson correlation coefficient (r) is the correlation coefficient between 

measured and calculated values defined as: 

 

 



 








n

i

n

i
ii

n

i
ii

MMEE

MMEE
r

1 1

22

1

)()(

)()(
 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

70 

 
The range of r is -1≤ r ≤1. A value of r=1 indicates that there exists a perfect linear 

relationship between simulated and observed values. However this does not 

necessarily imply that the model is perfect. 

 
The RMSE was used to test the accuracy of the model, which is defined as the 

variation, expressed in the same unit as the data, between simulated and measured 

values (Loague and Green, 1991): 
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where Ei and Mi indicate the simulated and measured annual values of the year i and 

n the number of annual values. RMSE represents the typical size of model error, 

with values equalling or near zero indicating perfect or near perfect estimates. The 

RMSE was also expressed as a coefficient of variation (GSD) by dividing it by the 

mean of the measured yield or anthesis values ( M ):  
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In addition, the accuracy of the model was evaluated using another index based on 

squared differences, the modelling efficiency index (EF): 
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EF values greater than 0 indicate that the model estimates are better predictors than 

the average measured value, with negative values indicating the opposite. A EF 

value equal or near 1 means a perfect or near perfect estimates.  
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To measure the tendency of the model to overestimate or underestimate the 

measured values three statistics were used: the coefficient of residual mass (CRM), 

the mean bias error (MBE) and the mean absolute error (MAE): 
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A negative CRM indicates a tendency of the model toward overestimation (Xevi et 

al., 1996). A positive bias error indicates a tendency to over predict a variable while 

a negative bias error implies a tendency to under predict a variable. MAE values near 

or equal to zero indicate a better match along the 1:1 line comparison of estimated 

and observed values (Rasse et al., 2000). 

 
 

Willmott (1981) propose an Index of agreement (d) defined as: 
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If the model is perfect, then observed values are equal to simulated values and d=1.  

If the model predictions are identical in all cases and equal to the average of the 

observed values, d=0. These limiting values are the same as for EF, but for other 

cases, the two criteria will have different values. 
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5.4. Calibration for Cannonau  variety  
 

The model calibration for Cannonau variety  was performed using data from 

Sella&Mosca experimental site  for the period 2006-2009, was used: three years  

dormancy, florewing an harvest  stages. 

Cannonau’ (syn. Grenache) is one of the most cultivated red grape varieties around 

the world, due to its rusticity and resistance to aridity. The leaves are light green, 

hairless in both sides and the plants are frequently vigorous, with high affinity to 

nitrogen and vertical yellow shoots. In order to prevent physiological disorders such 

as flower and fruit abortion, frequently caused by the high nitrogen absorption 

capacity, the cultural practices adopted in vineyard management, from the rootstock 

choice to the fertilization and irrigation, must limit plants vigour. 

The first experimental site for  was implemented in a ‘Cannonau’ vineyard from the 

Sella&Mosca 40° 38’ N - 8° 18’ E 

Fourteen years old  Vitis vinifera vines cv. ‘Cannonau’ grafted on 1103P rootstock 

were planted on rows North-South oriented. The vines were spaced 2.04 m between 

rows and 1.0 m along rows. Vines were trained to a mobile free cordon, developed 

by Sella&Mosca from the late 1990s:the foliage is supported by a single wire and is 

free to flutter. This training system also allows good exposure to sunlight and 

optimum conditions for the development of the bunches 
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CANNONAU        Estimated Measured
 

        DORMANCY 

Maximum Mx = 396  Mean 378 386 
Minimum Mn = 368  Standard Deviation 22.05 16.17 
Mean Mm = 48.3  Minumun 354 368.00 
Number of samples n = 3  Maximun 397 396 
Pearson coefficient r= 0.95***     

Coefficient of determination R2= 0.91     

Root Mean Square Error RMSE = 10.66     

General standard Deviation GSD = 22%     

Modelling Efficiency EF = 1.00     

Coefficient of Residual Mass CRM = 0.02     

Mean Bias Error MBE = -8.33     

Mean Absolute Error MAE = 9.00     

Index of agreement d-Index= 1.00     

          
    

Table 2 The statistical results for dormancy calibration in Cannonau variety  

The results for dormancy calibration show perfect correspondence between mean 

values of observed and simulates. The Pearson's r value (r 0.95) is significant for p< 

0.001. The coefficient of determination R indicates that 91% of the total variation is 

explained by the model.   
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CANNONAU        Estimated Measured
 

        FLOWEWING 

Maximum Mx = 514  Mean 511 511 
Minimum Mn = 507  Standard Deviation 9.54 3.79 
Mean Mm = 511  Minimum 502 507 
Number of samples n = 3  Maximum 521 514 
Pearson coefficient r= 0.73**     

Coefficient of determination R2= 0.53     

Root Mean Square Error RMSE = 5.91     

General standard Deviation GSD = 1%     

Modelling Efficiency EF = -2.66     

Coefficient of Residual Mass CRM = 0.00     

Mean Bias Error MBE = -0.33     

Mean Absolute Error MAE = 5.67     

Index of agreement d-Index= 0.68     

          
    

 

CANNONAU        Estimated Measured
 

        HARVEST

Maximum Mx = 631  Mean 625. 627 
Minumum Mn = 619  Standard Deviation 14.2 6.93 
Mean Mm = 627  Minumun 613 619 
Number of samples n = 3  Maximun 641 631 
Pearson coefficient r= 0.74***     

Coefficient of determination R2= 0.5     

Root Mean Square Error RMSE = 8.     

General standard Deviation GSD = 1%     

Modeling Efficiency EF = -1.26     

Coefficient of Residual Mass CRM = 0.00     

Mean Bias Error MBE = -1.67     

Mean Absolute Error MAE = 8.33     

Index of agreement d-Index= 0.76     

          
    

Table 3-4 The statistical results for flowering and harvest  calibration in Cannonau variety 

In this case the results for flowering ad harvest  calibration show a sufficient 
correspondence between mean values of observed and simulates. Can you see  The 
Pearson's r value (r 0.73) is significant for p< 0.001 but   the coefficient of 
determination R indicates that 53% of the total variation is explained by the model. 
In according to the fact that the model in general tends to reduce the variability of 
simulated values, The number of samples is not many 
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5.5. Validation from Vermentino variety 

 

In the literature, is often used both the term “validation” and “evaluation”. A rather 

common definition is that validation concerns determining whether a model is 

adequate for its intended purpose or not. This emphasizes the important fact that a 

model should be judged with reference to an objective (this definition seems to 

indicate that the result of a validation exercise is “yes”(the model is valid) or “not” 

(not valid); but it is rarely the case that one makes such a categorical decision). 

Rather one seeks a diversity of indications about how well the model represents crop 

responses. For this reason it would be preferable to use the term “evaluation” 

(Wallach, 2006).  In this case  the model evaluation, in its simplest form, is a 

comparison between simulated and observed values. Beyond comparisons, there are 

several statistical measures available to evaluate the association between predicted 

and observed values, among them are the Pearson correlation coefficient (r) and its 

square, the coefficient of determination (R2). Willmott (1982) has pointed out that 

the main problem with this analysis is that the magnitudes of r and R2 are not 

consistently related to the accuracy of prediction where accuracy is defined as the 

degree to which model predictions approach the magnitudes of their observed 

counterparts. Further, as R2 often is unrelated to the sizes of the difference between 

observed and predicted values, high or statistically significant R2 may be 

misleading. 

Hence, also other different test criteria, have been used to evaluate the performance 

of the model, e.g., RMSE, GSD, EF, CRM, MBE, MAE, and d-Index, because it is 

important to use more than one measure in order to bring out different aspects of 

model agreementand. 

The model validation for Vermentino  variety  was performed using data from 

Berchidda  experimental site for the period 2005--2008, was used: three years  

dormancy, flowering an harvest  stages 

Vermentino’ is the white grape variety cultivated in Sardinia. The plants have long 

shoots with medium hairiness in the inferior side of the leaf, frequently suffering 

from shoot base infertility. C The second experimental site was installed in a 

‘Vermentino’ vineyard from Sanna winery in Berchidda ( OT), The ‘Vermentino’ 

(Vitis vinifera L.) grapevines were grafted on 1103P rootstock. The vines had North-

South row orientation and were spaced 2.5 m between rows and 0.8 m along rows. 
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Vines were cane pruned to a single guyot and trained to vertical trellis in a single 

curtain. 
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VERMENTINO        Estimated Measured
 

        DORMANCY 

Maximum Mx = 370  Mean 367 369 
Minumum Mn = 368  Standard Deviation 3.00 1.15 
Mean Mm = 369  Minumun 364 368 
Number of samples n = 3  Maximun 370 370 
Pearson coefficient r= 0.86***     

Coefficient of determination R2= 0.75     

Root Mean Square Error RMSE = 2.88     

General standard Deviation GSD = 1%     

Modeling Efficiency EF = -8.38     

Coefficient of Residual Mass CRM = 0.01     

Mean Bias Error MBE = -2.33     

Mean Absolute Error MAE = 2.33     

Index of agreement d-Index= 0.55     

          
    

 

VERMENTINO        Estimated Measured
 

        FLOWERING 

Maximum Mx = 499  Mean 502 496 
Minumum Mn = 492  Standard Deviation 12.06 4.04 
Mean Mm = 496  Minumun 491 492 
Number of samples n = 3  Maximun 515 499 
Pearson coefficient r= 0.81***     

Coefficient of determination R2= 0.66     

Root Mean Square Error RMSE = 9.32     

General standard Deviation GSD = 2%     

Modeling Efficiency EF = -6.99     

Coefficient of Residual Mass CRM = -0.01     

Mean Bias Error MBE = 5.67     

Mean Absolute Error MAE = 6.33     

Index of agreement d-Index= 0.55     

          
    

. Table 5-6 The statistical results for dormancy and flowering  evaluation in Vermentino variety  
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VERMENTINO        Estimated Measured
 

        HARVEST

Maximum Mx = 621   Mean 628 608 
Minimum Mn = 602   Standard Deviation 3.21 10.69 
Mean Mm = 608   Minimum 626 602 
Number of samples n = 3   Maximum 632 621 
Pearson coefficient r= 0.99***      

Coefficient of determination R2= 0.98      

Root Mean Square Error RMSE = 20.5      

General standard Deviation GSD = 3%      

Modeling Efficiency EF = ‐4.57      

Coefficient of Residual Mass CRM = ‐0.03      

Mean Bias Error MBE = 19.67      

Mean Absolute Error MAE = 19.67      

Index of agreement d-Index= 0.47      

          
       

Table 7 The statistical results for harvest  evaluation in Vermentino variety  

The results for Vermentino evaluation show a good correspondence between mean 

values of observed and simulated data, with a little bit lower standard deviations for 

simulated values.  

The value of Pearson's r (r = 0.9) is significant for p <0.001. The coefficient of 

determination R2 indicates that 90% of the total variation is explained by the model. 

The RMSE index value is fairly low, moreover, the percentage of GSD (20%) 

indicates how the model works well in the simulation of phenological data. The 

CRM index value (-0.03) and MBE index values confirm the good ness of this 

estimate and a slightest tendency to understimate 
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Sensitivity analysis   

A crop model is the result of a long and complex construction process, involving 

data at multiple stages for understanding basic processes, elaborating model 

structure, estimating parameters and evaluating prediction quality. In various stages 

of a model’s life, however, there is a need to study the model on its own, with an 

emphasis on its behaviour rather than on its coherence with a given data set. This is 

where uncertainty analysis sensitivity analysis and related methods become useful 

for the modeller or model user. Uncertainty analysis consists of evaluating 

quantitatively the uncertainty or variability in the model components (parameters, 

input variables, equations) for a given situation, and deducing an uncertainty 

distribution for each output variable rather than a misleading single value. An 

essential consequence is that it provides methods to assess, for instance, the 

probability of a response to exceed some threshold. This makes uncertainty analysis 

a key component of risk analysis (Vose, 1996). The aim of sensitivity analysis is to 

determine how sensitive the output of a crop model is, with respect to the elements 

of the model which are subject to uncertainty or variability. This is useful as a 

guiding tool when the model is under development as well as to understand model 

behaviour when it is used for prediction or for decision support. For dynamic 

models, sensitivity analysis is closely related to the study of error propagation, i.e. 

the influence that the lack of precision on model input will have on the output. 

Because uncertainty and sensitivity analysis usually relies on simulations, they are 

also closely related to the methods associated with computer experiments. A 

computer experiment is a set of simulation runs designed in order to explore 

efficiently the model responses when the input varies within given ranges (Sacks et 

al., 1989; Welch et al., 1992). The goals in computer experiments identified by 

Koehler and Owen (1996) include optimization of the model response, visualization 

of the model behaviour, approximationby a simpler model or estimation of the 

average, variance or probability of the response to exceed some threshold. Within a 

given model, model equations, parameters and input variables are all subject to 

variability or uncertainty. First, choices have to be made on the model structure and 

on the functional relationships between input variables and state and output 

variables. These choices may sometimes be quite subjective and it is not always 

clear what their consequences will be. Martinez et al. (2001) thus perform a 

sensitivity analysis to determine the effects of the number of soil layers on the output 

of a land surface–atmosphere model. For spatial models, there is frequently a 
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need to evaluate how the scale chosen for input variables affects the precision of the 

model output (see e.g. Salvador et al., 2001). Second, parameter values result from 

estimation procedures or sometimes from bibliographic reviews or expert opinion. 

Their precision is necessarily limited by the variability and possible lack of adequacy 

of the available data. Some parameters may also naturally vary from one situation to 

another. The uncertainty and natural variability of parameters are the central point of 

many sensitivity analyses. Bärlund and Tattari (2001), for example, study the 

influence of model parameters on the predictions of field-scale phosphorus losses, in 

order to get better insight into the management model ICECREAM. Ruget et al. 

(2002) perform sensitivity analysis on parameters of the crop simulation model 

STICS, in order to determine the main parameters that need to be estimated 

precisely. Local sensitività methods, based on model derivatives with respect to 

parameters, are commonly used for checking identifiability of model parameters 

(Brun et al., 2001). Third, additional and major sources of variability in a model 

output are, of course, the values of its input variables. Lack of precision when 

measuring or estimating input variables needs to be quantified when making 

predictions from a model or when using it for decision support. Aggarwal (1995) 

thus assesses the implications of uncertainties in crop, soil and weather inputs in the 

spring wheat WTGROWS crop model. Rahn et al. (2001) compare contrasted input 

scenarios for the HRI WELL-N model on crop fertilizer requirements through a 

sensitivity analysis. They identify the main factors which need to be measured 

precisely to provide robust recommendations on fertilization. Contrasted settings of 

the input variables are used for performing sensitivity or uncertainty analyses 

assuming different scenarios by Dubus and Brown (2002). Model structure, model 

parameters and input variables represent three basic sources of model uncertainty. It 

is often advisable to study their influence on a model simultaneously (Saltelli et al., 

2000) and alternative groupings of uncertainty sources may then be more adequate. 

Rossing et al. (1994), for example, distinguish sources that can be controlled by 

more intensive data collection (model parameter estimates), and uncontrollable 

sources when predictions are made (daily temperature, white noise). Ruget et al. 

(2002), on the other hand, decompose the sensitivity analyses according to STICS 

sub-modules on, e.g. energy conversion, rooting or nitrogen absorption. Jansen et al. 

(1994) advocate to divide uncertainty sources into groups of parameters or input 

variables which can be considered to be mutually independent. As shown by the 

examples above, uncertainty and sensitivity analysis may have various objectives, 
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such as: 

• to check that the model output behaves as expected when the input varies; to 

identify which parameters have a small or a large influence on the output; 

• to identify which parameters need to be estimated more accurately; 

• to detect and quantify interaction effects between parameters, between input 

variates 

or between parameters and input varieties; 

• to determine possible simplification of the model; 

• to identify input variables which need to be measured with maximum 

accuracy. 

Some of these objectives have close links with other methods associated with 

modelling, like model construction, parameter estimation or model use for 

decision support. The diversity of motivations for performing sensitivity 

analysis is associated with a large choice of methods and techniques. In  this 

contest   a major issue with simulation modeling is the large number of model 

parameters (calibration values) and input data that are required. The question 

naturally arises: what happens if The parameter values and assumptions of 

any model are subject to change and error. Sensitivity analysis (SA), broadly 

defined, is the investigation of these potential changes and errors and their 

impacts on conclusions to be drawn from the model (e.g. Baird, 1989). SA 

can be easy to do, easy to understand, and easy to communicate. It is possibly 

the most useful and most widely used technique available to modellers who 

wish to support decision makers. The importance and usefulness of SA is 

widely recognised: 

"A methodology for conducting a sensitivity analysis  is a well established 

requirement of any scientific discipline. A sensitivity and stability analysis 

should be an integral part of any solution methodology. The status of a 

solution cannot be understood without such information. This has been well 

recognised since the inception of scientific inquiry and has been explicitly 

addressed from the beginning of mathematics". (Fiacco, 1983, p3). 

 we get some of these wrong? The correct question is: how sensitive is the 

model to variations in parameters or data? Especially since parameter 
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calibration is largely a black 

art, sensitivity analysis allows us to see where we should concentrate our 

calibration and modeling efforts, i.e., where the model is most sensitive. 

The weather has a major influence on the cycle of the grapevine (Vitis vinifera L.). 

In particular, the temperature is the meteorological variable that acts more activity 

and vegetative stages phenology. Since  the '60s, many studies about the exit from 

dormancyof latent buds, have analyzed the effects of low temperatures Whereas 

most of the areal wine is concentrated in regionswhere winter temperatures fall 

below 5 and 10 ° C. Pouget (1963) found that dehydration of the plant material, 

causedfrom temperatures below 5-10 ° C, is closely related to the exit fromdormancy 

of the buds, where the percentage of water loss issufficiently high (15-20%). In this 

contests the weather parameters selected for sensitivity analysis were ambient 

temperature (± 1 to ± 5°C),  The model simulated a different phenological stages 

with climate series 1991 to 2009.  have been compared with corresponding 

treatments for the year 2005-2009. This methodology have been enforced to two 

different area study  as we described We have simulated The effects of ambient 

temperature on three phenological stages, in particular dormancy and  flowering. the 

results are presented in  Fig. 16 to 21 and in Table 8 to 13 respectively. Sensitivity of 

Winstics model showed a gradual increase about  dormancy  correlate with a 

increase the temperature. The model simulates partially this relationship because the 

entrance in dormancy coincides with an increase of the way of cis-ABA fig 16, 19  

and table 8, 11 (Koussa et al. 1994) For the flowering stage we can see as the model 

simulated this process in figure 17, 20 and table o, 12 in particular the reduction in 

temperature from –1 to –5°C  revealed an retard in flowering according to (García de 

Cortázar 2006) show that the increase in temperature would lead to a reduction in the 

duration of the vegetative cycle and the advance of all phases 
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Mean ambient 

temperature (°C) 

Simulated Dormancy stage 

(day) 

% Change from base 

dormancy stage (386 day) 

+1 346 -10% 

+5 403 +4% 

-1 338 -12% 

-5 293 -24% 

Table 8 Sensitivity of WinStics model to ambient temperature under optimal condition 

Figure  23 Effects of  ambient temperature on dormancy stage in Cannonau variety as compared with 
base date 
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Mean ambient 
temperature (°C) 

Simulated Flowering stage 
(day) 

% Change from base 

flowering stage (511 day) 

+1 504 -1% 

+5 556 +8% 

-1 489 -4.3% 

-5 446 -12.7% 

Table 9 Sensitivity of WinStics model to ambient temperature under optimal condition 

Figure 14 Effects of  ambient temperature on flowering stage in Cannonau variety as compared with 
base date 
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Mean ambient 

temperature (°C) 

Simulated Harvest stage 

(day) 

% Change from base 

Harvest stage (627 day) 

+1 323 +4% 

+5 655 -0.6% 

-1 591 -5.7% 

-5 551 -12% 

Table 10 Sensitivity of WinStics model to ambient temperature under optimal condition 

Figure 15 Effects of  ambient temperature on harvest stage in Cannonau variety as compared with 
base date 
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Mean ambient 

temperature (°C) 

Simulated Dormancy stage 

(day) 

% Change from base 

dormancy stage (369 day) 

+1 417 +13% 

+5 434 +17% 

-1 341 -7.5% 

-5 291 -21% 

Table 11 Sensitivity of WinStics model to ambient temperature under optimal condition 

 

 

 Figure 16 Effects of  ambient temperature on dormancy stage in Vermentino variety as compared with 
base date  
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Mean ambient 

temperature (°C) 

Simulated Flowering stage 

(day) 

% Change from base 

Flowering stage (496 day) 

+1 569 +20% 

+5 585 +17% 

-1 491 -1% 

-5 444 -10.4% 

Table 12 Sensitivity of WinStics model to ambient temperature under optimal condition 

 

Figure 17 Effects of  ambient temperature on flowering stage in Vermentino variety as compared with 
base date 
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Mean ambient 

temperature (°C) 

Simulated Harvest stage 

(day) 

% Change from base 

Harvest stage (608 day) 

+1 675 +11% 

+5 690 +13% 

-1 595 -2% 

-5 548 -9% 

Table 13 Sensitivity of WinStics model to ambient temperature under optimal condition 

 

 Figure 18 Effects of  ambient temperature on harvest stage in Vermentino variety as compared with base date  
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7. Resultsand Discussion 

The phenology simulations are made for the two main varieties grown in the 

Sardinia region ‘Cannonau’ (syn. Grenache) and Vermentino with climate input the 

scenarios IPCC A1B spatial resolution 8 km, time step 40 sec, computational grid 

with 207 x 211 nodes and 40 vertical levels.  whose atmospheric component is 

ECHAM5 (T159 80 km spatial resolution, 6 h time resolution) and considering the  

scenario we performed the simulation with all the years of each series climate 

(Control, A1B ). to period 1965 to 2100.In this chapter can we see a graphic 

representations of the phenological stages for two  varieties. About the dormancy 

stage in all decade simulated there are a important delay of to go  dormancy stage ( 

In both the variety). This process is according to  Koussa et al. (1994) depend for the 

significant correlation between the ability to bud and the content of ABA. In 

particular The inhibitory action of this growth regulator on germination seems to be 

exercised in particular dall'isomer cis (cis-ABA). The entrance dormancy coincides 

with an increased content of cis-ABA However we can register a few year with of to 

go dormancy  is delayed respect to normal data (fig.23). In fact the model simulates 

partially this relationship because the entrance in dormancy coincides with an 

increase of the way of cis-ABA. The flowering stage is subject to anticipations  on 

the average a week in both varietal in the  simulation by scenarius A1B ( fig 28 , 

33)Advanced flowering occurred in all periods of the record, with relatively delayed 

flowering during the 25, 35, 50, 66,  78, 92 year  for the Cannonau variety. (fig 20, 

21)  Concerning by the Vermentino variety, about the flowering is advanced on the 

average 5 (day fig 43)   , but probably this differences is typical of the variety  

however there are a flowering very delayed during 8, 12, 23, 34, 48, 75, 82, 87 year. 

(fig 43)..But this aspect is very favorable because  at germination temperature values 

lower than -3 ° C are ultimately detrimental. Just before flowering drops in 

temperature to 2.5 ° C can affect the crop and cause damage to the plants In regions 

with cool climates and short growing seasons, early-ripening varieties are necessary 

whereas in hot climates, late varieties have enough time to achieve full maturation.:  

The timing of these developmental stages is also related to the ability of the vine to 

yield fruit, with early and fully expressed phenological events (i.e., adverse weather 

during floraison would disrupt the event) usually resulting in larger yields . 

Additionally, phenological timing has been related to vintage quality with early 

harvests generally resulting in higher quality vintages. In this case we can see with in  
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both varietal have a harvest stage enough late. In particular the Cannonau variety 

harvest occurred to average a 23 day after the normal date. Relative to Vermentino 

varietal the date of harvest occurred only a after week respect to date control. (fig 

48) .In this contest we  can affirmed in  according to many study that The climate 

has a major influence on the life cycle of the grapevine (Vitis vinifera L.);  in 

particular the temperature is the variable weather that acts more activity on the 

dynamics of emergence and vegetative stages of phenological.  
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Figure 19a, b, c Simulation dormancy stage Variety Cannonau Alghero 
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Figure 20 a, b, c Simulation dormancy stage Variety Cannonau Alghero 
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 Figure 21 a, b, c Simulation dormancy stage Variety Cannonau Alghero 
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 Figure 22 a, b, Simulation dormancy stage Variety Cannonau Alghero 
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Figure 23 Difference by real value and simulation value Dormancy stage in Alghero, Cannonau Variety 
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 Figure 24 a, b, c Simulation Flowering stage Variety Cannonau Alghero
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    Figure 25 a, b, c Simulation Flowering stage Variety Cannonau Alghero
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 Figure 26 a, b, c Simulation Flowering stage Variety Cannonau Alghero
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 Figure 27 a, b Simulation Flowering stage Variety Cannonau Alghero



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

101 

 

 

 

 

 

 

 

 

 

 

Figure 28 Difference by real value and simulation value Flowering  stage in Alghero, Cannonau Variety 
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Figure 29 a, b, c Simulation Harvest stage Variety Cannonau Alghero
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 Figure 30 a, b, c Simulation Harvest  stage Variety Cannonau Alghero
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 Figure 31 a, b, c  Simulation Flowering stage Variety Cannonau Alghero
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 Figure 32 a, b Simulation Flowering stage Variety Cannonau Alghero
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Figure 33  Difference by real value and simulation value Harvest   stage in Alghero, Cannonau Variety 

 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

107 

 



Maria Pasquangela Muresu Impacts of climate change  on  grapevine. 
The  use of  Crop model WinStics to estimate potential impacts on grapevine 

( Vitis vinifera L) in Sardinia scale 
 

 

108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 a, b, c  Simulation Dormancy  stage Variety Vermentino Berchidda 
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 Figure 35 a, b, c  Simulation Dormancy  stage Variety Vermentino Berchidda 
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Figure 36 a, b, c  Simulation Dormancy  stage Variety Vermentino Berchidda
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Figure 37 a, b,   Simulation Dormancy  stage Variety Vermentino Berchidda
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Figure 38  Difference by real value and simulation value Dormancy   stage in Berchidda, Vermentino Variety 
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Figure 39 a, b, c  Simulation Flowering  stage Variety Vermentino Berchidda
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Figure 40 a, b, c  Simulation Flowering  stage Variety Vermentino Berchidda
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Figure 41 a, b, c  Simulation Flowering  stage Variety Vermentino Berchidda
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Figure 42a, b,  Simulation Flowering  stage Variety Vermentino Berchidda
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Figure 43  Difference by real value and simulation value Dormancy   stage in Berchidda, Vermentino Variety 
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Figure 44 a, b ,c  Simulation Harvest  stage Variety Vermentino Berchidda
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Figure 45 a, b ,c  Simulation Harvest  stage Variety Vermentino Berchidda
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Figure 46a, b ,c  Simulation Harvest  stage Variety Vermentino Berchidda
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Figure 47 a, b   Simulation Harvest  stage Variety Vermentino Berchidda
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Figure 48  Difference by real value and simulation value Dormancy   stage in Berchidda, Vermentino Variety 
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8. Conclusion 
The results of the analysis performed in this study confirm the good performance of the Winstics 

model  applied  grapevine variety in Sardinia . The model was successfully calibrated and validated as 

far as the simulation of  phenological stage dormancy, flowering and harvest As major results, the 

model  simulates partially the dormancy stage because  the entrance in dormancy coincides with an 

increase of the way of cis-ABA and this process is very complicated for the model. Major difficulties 

to obtain a satisfactory calibration of the model, and thus good performance in the validation phase, 

are related to the size of the datasets available for the study. In fact, the process of crop model 

application requires, in this case , a collection of large data sets, which must include weather, soil, and 

crop management data, collected over long time periods.  Moreover, data set somehow do not contain 

the input data essentials for crop model functioning in simulation  in  grapevine cicle ,, with the 

obvious limitations that this may cause. 
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