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Sommario

La presente tesi è costituita da tre parti principali.
Nella prima parte è riportata una breve introduzione alla scienza non lineare, al-

l’analisi non lineare e alla termodinamica del non equilibrio. Vengono inoltre illustra-
ti i concetti di cinetica chimica delle reazioni oscillanti, con particolare riferimento
alla reazione di Belousov–Zhabotinsky .

Nella seconda parte viene descritta la formulazione del modello matematico
reazione–diffusione–convezione (RDC), usato nelle simulazioni numeriche per lo stu-
dio degli scenari di transizione al caos degli oscillatori chimici, e la relativa traduzione
in un opportuno linguaggio di programmazione.

Nella terza parte, i metodi impiegati per la caratterizzazione del sistema e i dati
ottenuti. Ciò che si osserva è una sequenza distinta e caratteristica di biforcazioni,
ascrivibile allo scenario di tipo RTN, in cui un regime quasiperiodico si trasforma
in un regime con raddoppiamento del periodo nella via al caos chimico. L’influenza
esercitata in maniera opposta dai due parametri sulla dinamica del sistema suggerisce
che esista una sorta di competizione tra i fenomeni di trasporto, nella fattispecie
diffusione e convezione. Viene anche rilevato un comportamento simmetrico tra
oscillazioni chimiche e caos spazio-temporale. Questo lascia ipotizzare che i due
aspetti siano una manifestazione dello stesso fenomeno, rafforzando l’ipotesi che le
oscillazioni chimiche e le instabilità dovute ai fenomeni di trasporto siano all’origine
del caos deterministico per questo tipo di sistemi. Parallelamente, è stato portato
avanti uno studio di dinamica molecolare per il calcolo dei coefficienti di diffusione
degli intermedi attivi nella reazione Belousov–Zhabotinsky , cioè HBrO2 and Ce(III),
per mezzo del mean square displacement e della funzione di autocorrelazione delle
velocità. I dati ottenuti hanno permesso una comprensione più approfondita della
competizione idrodinamica osservata.

Abstract

This doctoral dissertation consists of three main parts.
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In part one, a general overview of the basic concepts of nonlinear science, nonlin-
ear analysis and non-equilibrium thermodynamics is presented. Kinetics of chemical
oscillations and the well known Belousov–Zhabotinsky reaction are also illustrated.

In part two, a Reaction–Diffusion–Convection (RDC) model is introduced as a
convenient framework for studying instability scenarios by which chemical oscillators
are driven to chaos, along with its translation to an opportune code for numerical
simulations.

In part three, we report the methods and the data obtained. We observe that dis-
tinct bifurcation points are found in the oscillating patterns as Diffusion coefficients
(di) or Grashof numbers (Gri) vary. Singularly there emerge peculiar bifurcation
paths, inscribed in a general scenario of the RTN type, in which quasi–periodicity
transmutes into a period-doubling sequence to chemical chaos. The opposite influ-
ence exhibited by the two parameters in these transitions clearly indicate that dif-
fusion of active species and natural convection are in ‘competition‘ for the stability
of ordered dynamics. Moreover, a mirrored behavior between chemical oscillations
and spatio-temporal dynamics is observed, suggesting that the emergence of the two
observables are a manifestation of the same phenomenon. The interplay between
chemical and transport phenomena instabilities is at the general origin of chaos for
these systems.

Further, a molecular dynamics study has been carried out for the calculation of
diffusion coefficients of active species in the Belousov–Zhabotinsky reaction, namely
HBrO2 and Ce(III), by means of mean square displacement and velocity autocor-
relation function. These data have been used for a deeper comprehension of the
hydrodynamic competition observed between diffusion and convective motions for
the stability of the system.

Luigi Ciotti Tesi di Dottorato in Scienze Chimiche Università degli Studi di Sassari
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Order from disorder

Among the several advances of the 20th century, nonlinear science is exceptional
for its generality. Indeed, it plays a key role in almost every branch of modern
fundamental and applied research. Its first goal is to provide the concepts and
techniques for an unified description of a particular, but wide, class of phenomena
where simple deterministic systems generate complex behaviors, with the emergence
of unattended temporal dynamics and spatial patterns.

Our scientific knowledge is often based on the assumption that in a natural
system, subject to external and well defined conditions, individual effects can be
unambiguously traced back to particular causes. In other words, a compound cause
is viewed as the algebraic sum of a collection of simple causes, each of which can be
uniquely linked to a particular effect. The total effect responding to the total cause
is then considered to be just the linear sum of the constituent effects.

For its undoubted charm, this idea, along with its corollaries of reproducibility
and unlimited predictability, mastered for a long time our way of thinking and
gradually led us toward an idea of a linear world. Although attractive and reassuring,
this idea is slowly changing because it can give only a partial view of the natural
world. In many situations, and mainly in daily life, we can observe in fact radical
deviation from these proportional laws. In simple terms, considering the cooperation
between the different elements of a system, nonlinear science recognized that the
whole is more than a sum of its parts, providing a context for consideration of
phenomena like tsunamis (tidal waves), biological evolution, atmospheric dynamics,
and the electrochemical activity of a human brain, among many others.

Nonlinear science introduces a new way of thinking, based on an interchange
between qualitative and quantitative techniques, topological and geometric conside-
rations, deterministic and statistical aspects. The fundamental laws of microscopic
(Newton and Schröedinger equations) and macroscopic physics (Navier-Stokes and
mass-action law) are inadequate for the comprehension or the formulation of comple-
xity induced by the evolution of nonlinear systems. On the other hand dissipative
structures, negative entropy, autoorganization, attractors, fractals, Lyapunov ex-
ponents, are part of a new vocabulary proposed by modern nonlinear science and
provide a new pragmatic way to tackle a challenge where the classic approach fails.

The evolution of the state variables of a system, obeying to the classical laws of
physics, is described by a system of differential equations first order in time along
with spatial derivatives (laplacian and gradient). These can be ordinary (ODE),
like Hamilton or chemical kinetic equations, or partial (PDE), like fluidodynamic or
reaction-diffusion equations. In the last case, typical for a macroscopic description,
we have to deal with infinite degrees of freedom, which are the values of state

xix



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

variables (now fields) in every point of the space as a function of time. In some
cases we can reduce them to a finite number of variables by means of the well known
Galerkin’s reduction method: the fields are described as Fourier series and equations
for amplitude are truncated to the first normal modes, providing an ODE system
for amplitudes of every mode important for the description of our system. A general
form for these equations is given by

∂Xi(r, t)}
∂t

= Fi({Xj (r, t)}, {∇kXj (r, t)}, µ) (1)

where µ are control parameters and play an important role in the behavior of a
dynamic system: they are related to the internal structure of the system (diffusion
coefficients, viscosity) and regulate also the way by which the system communicates
with the external environment (thermal constraints, residence time, etc.). Although
the problem described by our ODE system is deterministic (we can predict the
evolution for every time t, once initial values Xi at the time t0 are known), it requires
an infinite amount of data specifying initial conditions in a precise way. In practice,
it has nonsense value, because measurements performed by an observer are always
of finite precision. This is not only an instrumental, but also a natural limit for
knowledge, according to Heisenberg’s uncertainty principle. Such a dynamic system
has in principle an infinite number of variables, i.e., the values of fields Xi(r, t).
Sometimes discretization or reduction can be very difficult and such systems are
often solved via numerical integration.

In the phase space Γ our system will be represented by a small region of volume
δΓ0, rather than a point, whose extension is given by the precision of measurements.
For the observer, the points inside this region represent the same macroscopic state.
Thanks to the idea of statistic ensemble (Gibbs, 1902) we can introduce the function
ρ, the density of probability, expressed as the ratio between the probability that the
system is in a determined state to the number N of states available, when the region
of space is very small

ρ =
1

N
lim

δΓ0→0

δN

δΓ
(2)

In order to forecast the probability of occurrence of certain values of state variables
Xi , we have to solve an equation for ρ. The theorem of uniqueness (appendix V)
states that the number of trajectories in the phase space must be conserved. This
signifies that ρ can be considered as a trajectory density and, in analogy to the
mass density for a fluid, we can write the following relation between probability (or
trajectory) density and evolution laws:

dlnρ

dt
= −∇F (3)

which can be integrated, giving

1

t
ln
ρt
ρ0

= −1

t

∫ t

0
dt

′∇F = −(∇̄F)t (4)

where (∇̄F)t is the temporal average. Equations 3 and 4 are the starting point for
the classification of dynamical systems into two main categories, conservative and
dissipative:
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• if (∇̄F)t = 0, ρt = ρ0; trajectory density is conserved and the system is said
to be conservative;

• if (∇̄F)t < 0, ρt < ρ0; trajectories will contract in the phase space and tend
to regions with lower dimension: the system is said to be dissipative.

Dissipative structures are among the new concepts introduced by nonlinear science,
i.e., ordered structures when a system is far from its thermodynamic equilibrium.
The mechanism of formation of dissipative structures cannot be explained in terms
of classical thermodynamics or statistical mechanics used for equilibrium structures.
One of the first numerical studies for dissipative systems was carried out in the early

Figura 1: the Lorenz’s chaotic attractor

1960’s by Edward Norton Lorenz Lorenz, 1963, an american mathematician and me-
teorologist, who was trying to understand the failures of linear prediction techniques
for weather forecasts. Using one of the world’s first mass-produced computers to
simulate atmospheric dynamics, he found that long aperiodic trajectories could be
produced quite robustly.

Figura 2: the butterfly ef-
fect

Then, in one of history’s most serendipitous episodes
of computer rounding error, he found that the aperiodi-
city was paired with sensitive dependence on initial con-
ditions. He then reduced the atmosphere simulation to a
differential equation in three variables that produced the
Lorenz’s attractor (figure 37). Lorenz later gave a lec-
ture entitled Predictability: Does the Flap of a Butterfly
Wings in Brazil set off a Tornado in Texas?, which cau-
sed the concept of sensitive dependence on initial condi-
tions to become popularly known as the butterfly effect
(figure 2). Chaos describes a system that is predicta-
ble in principle but unpredictable in practice. In other
words, although the system follows deterministic rules,
its time evolution appears random. In dynamic systems
theory, the term chaos is applied to deterministic sy-
stems that are aperiodic and that exhibit sensitive de-
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pendence on initial conditions. Sensitivity means that a small change in the initial
state will lead to progressively larger changes in later system states. Because initial
states are seldom known exactly in real-world systems, predictability is severely li-
mited. The concept of chaos has been used to explain how systems that should be
subject to known laws of physics, such as weather, may be predictable in the short
term but are apparently random on a longer time scale.

The study carried out for this doctoral dissertation has been focused on the nu-
merical study of nonlinear dynamics encountered in a reaction–diffusion–convection
system. When kinetics has an autocatalytic mechanism as a source of nonlinearity,
the Belousov–Zhabotinsky reaction becomes a particular case.

The Belousov–Zhabotinsky reaction is the most studied oscillating reaction, used
as laboratory model for more complex systems in biology and biophysics, that ex-
hibits a plethora of dynamical phenomena under opportune conditions, when the
system is far from its thermodynamic equilibrium. Complex temporal evolution and
ordered dissipative structures, observed in experiments and emerging as particular
solutions of our modelization, has been investigated by means of nonlinear analysis
techniques.

Further,molecular dynamics simulations have been carried out for the calculation
of an important dynamical property of our system: the diffusion coefficient of the
intermediate species participating in the Belousov–Zhabotinsky reaction.
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0.1 Non-equilibrium Thermodynamics

The second principle of Thermodynamics in its classic form introduces the entro-
py state function S. In isolated systems entropy increases for irreversible processes
and is zero at equilibrium

dS

dt
≥ 0 (5)

According to Rudolf Clausius’s postulate, the entropy of the universe is increasing:
it would necessarily imply that the whole universe is devoted to a thermic death, in
contradiction of what we can directly observe in the actual instant and what we can
deduce from the past.

Figura 3: Ilya Prigogine

While Clausius formulated his second principle
in the early 1850s, Charles Darwin founded his own
evolution theory by observing that the history of our
planet evolved by increasing its grade of complexity.
How then would it be possible to conjugate the two
theories? Is it probable that both Clausius and Dar-
win were right? A first reply to this question could
be to conceive the biological life beyond the physical
laws, deeming the existence of life in our planet as
an highly improbable event that found an autosustai-
nable way to be. This hypothesis has been made by
Jacques Monod (Nobel Prize in Medecine, 1965) in
his book Chance and Necessity. On the other hand,
Ilya Prigogine (Nobel Prize in Chemistry, 1977, figu-
re 3) tried to reply to the question operating inside
the physical laws Prigogine, 1947. Non-equilibrium
has been considered, for a long time, only as a perturbation able to hinder the onset
of equilibrium. We can deal, indeed, with a new class of phenomena considering a
process far from its thermodynamic equilibrium.

0.1.1 Dissipative structures

If we apply, for instance, a thermal gradient to a cell containing a mixture of two
different gases, we can observe an enrichment of one gas near the hottest wall, while
the second stays by the coldest. As a result, entropy of the system is lower than
it would be in a homogenoeus mixture: in this case non-equilibrium could became
a source of order. Let us consider, as a further example, a thin layer of a fluid
between two horizontal plates in a gravity field. The two plates have two different
temperatures T0 and T1 so that T0 ≥ T1. When ∆T = T0 − T1 = 0 the fluid reaches
the thermodynamical equilibrium, characterized by homogeneous temperature and
absence of motion. Suppose that we now increase the thermal gradient such that
∆T = T0 − T1 > 0. This condition will move the system away from equilibrium
and heat will flow from the hottest to the coldest wall. When ∆T is weak the fluid
will stay at rest: an observer moving along the horizontal plane will feel uniform
temperature and density.
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Figura 4: Qualitative view of convection
Bénard cells

If ∆T exceeds the critical value ∆Tc,
a motion of the fluid is observed, cha-
racterized by the presence of convection
cells, the so-called Bénard cells (Figure
48). These cells have typical dimension
and geometry. Also velocity, tempera-
ture and density at a fixed point are ti-
me dependent. We can further observe
that two contiguous cells rotate in op-
posite direction: therefore, in a determi-
ned point of the space, a small element
of volume can exist in two different sta-
tes, in the sense that it can be part of
a cell rotating in clockwise and counter-

clockwise direction at the same time. The rotating direction is choosen by local
thermal fluctuations: it is then impossible to predict the rotation trend. This phe-
nomenon causes a symmetry breaking associated with the sense of rotation. In other
words Bénard’s convection destroys the translational symmetry in the horizontal di-
rection. We have therefore formation of order starting from disorder. The emerging
structures are said dissipative structures Nicolis, 1995; Nicolis e Prigogine, 1977.

0.1.2 Isolated systems

Isolate systems do not exchange energy or matter with the external environment.
For such systems we have that dS > 0: an entropy increase is associated with a
disorder increase, because the system doesn’t trend to the formation of organized
structures, but to equilibrium structures.

In statistical mechanics, i.e. thermodynamic laws reinterpreted on a microscopic
basis, we have the Boltzmann’s order principle for isolated systems:

S = kB lnΩ (6)

where kB is the Boltzmann’s constant and Ω is the number of complexions. In
other words statistical interpretation, according to the second principle, forecasts a
maximization of the number of the microstates accessible by the system.

0.1.3 Closed systems

For closed systems, which have only energy exchange with external environment,
the situation is very similar and could be valued considering the free energy function
F , defined as

F = E − TS (7)

where E is the energy of the system and T is the temperature. F reaches the
minimum value at equilibrium. There is then a competition between energy E and
entropy S. At low temperature the contribution of S is negligible and a minimum
of F corresponds to a minimum of E. For increasing temperature the system will
move toward higher entropy states.
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The first step in the redefinition of the problem is to understand that Boltzmann’s
order principle is not adapted to describe dissipative structures, because they are
not equilibrium structures. These new structures can appear only when we operate
far from the thermodynamic branch, characterized by a maximum of entropy S and
a minimum of free Gibbs energy F . Non-equilibrium thermodynamics leads us to
formulate a sufficient condition for the stability of the thermodynamic branch. If
this condition it is not satisfied, the thermodynamic branch will become unstable
and the system can evolve toward new structures implying a coherent behavior.

0.2 Open Systems

In order to heal the apparent contrast between classic thermodynamics and the
organization observed in biological life, it is necessary to consider open systems, by
analyzing non-equilibrium states from a different point of view.

A thermodynamic system is said to be open when it has an exchange of mat-
ter and energy with the external environment. Biological systems are open. The
extended version of the second principle of thermodynamics, applicable to open sy-
stems, was formulated by Ilya Prigogine in 1945. The entropy variation dS in a time
interval dt can be regarded as the sum of two terms

dS = deS + diS (8)

where deS is the flow of entropy due to energy and matter exchange with the en-
vironment, while diS is the entropy production due to irreversible processes in the
internal system (i.e. diffusion, thermal conduction, chemical reactions). The second
principle requires diS ≥ 0. For an isolated system deS = 0, therefore dS = diS ≥ 0.
Open systems differ from isolated ones by the deS term, the external entropy flow.
Contrarily to diS, that cannot be negative, the deS term does not have a fixed si-
gn. We can then imagine some situations where the system reaches an entropy state
lower than the initial state because of a negative entropy flow from the environment.

∆S =

∫

Γ
dS < 0 (9)

This state, highly improbable from a classical thermodynamic point of view, can
be indefinitely held if the system reaches a stationary state dS = 0, or deS =
−diS < 0. Theoretically, if we give a sufficient amount of negative entropy to our
system, it is possible to decrease the entropic content in order to have creation of
ordered structures, avoiding a violation of the second principle. This contribution
must happen far from equilibrium conditions, otherwise diS and deS are zero. This
is of great concern for living beings: for example biosphere as a whole is a non-
equilibrium system, because it is fed with a solar energy flow; cellular membranes are
supplied with different chemical reactions and have gradients of chemical substances.
Summarizing, we can deal with thermodynamic systems characterized by two main
trends:

• tendence to equilibrium with a high grade of disorder

• tendence to a stationary state characterized by a cooperative and coherent
behavior of the different parts
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Without entering into the details of thermodynamic study, it is possible to demon-
strate that the creation of coherent ordered structures occurs far from equilibrium
in an open system, when it obeys to nonlinear laws, while destruction of order is
observed at the equilibrium or thereabouts.

0.3 Nonlinear Systems

The insability of the thermodynamical branch in open systems gives rise to the
possibility of studying a plethora of uncommon phenomena, like autoorganization
and chaotic dynamics. We briefly introduce here the basis for a nonlinear dynamics
approach. From a mathematical point of view an operator F is linear if

F(f + g) = F(f) + F(g) (10)

and
F(af) = aF(f) (11)

where a is a constant and f, g are functions. If F does not satisfy equations 120 and
121, the operator is nonlinear. In a linear system the effect of the combined action
of two separate causes is simply the overlap of the single effects. On the other hand,
in a nonlinear system the overlapping principle is no longer valid and the combined
actions of two separate causes can lead to new situations. One of the most surprising
features of nonlinear systems is the phenomenon of bifurcation. We illustrate this
concept by considering the very simple example of the hoop. We consider (figure 40)
a rigid vertical ring of radius r in a field of gravity.

Figura 5: A mass m on a vertical rotating
hoop

A massm is initially placed at an an-
gle θ from the lower end of the vertical
diameter and is allowed to move along
the ring with no friction. As long as the
ring as a whole is at rest, it will perform
a periodic motion around position A (if
θ 6= 0) or will remained fixed for ever
on A (if θ = 0), the equilibrium state
of our simple device. Now let the ring
be rotated around its vertical diameter
with a constant angular velocity ω, as
a result of an external constraint (here
an appropriately applied torque). Expe-
riment shows that as long as ω is small
the mass still oscillates around the same
equilibrium position A as before. But,
beyond a critical threshold ωc the situa-
tion changes completely and the mass
oscillates around a new equilibrium po-

sition corresponding to a nonzero value of the angle θ. Actually there exist two such
equilibria, placed symmetrically around the vertical diameter. There is no prefe-
rence for either of the equilibria to be choosen: the choice is dictated by the initial
position and velocity of the mass which, in many respects, is governed by chance.
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Figura 6: Bifurcation of new equilibria θ+ and θ
−

Still, in a given experiment only one of these equilibria will be realized and the mass
will accordingly oscillate around it. To the observer, this will appear as an asymme-
tric realization of a perfectly symmetric physical situation, a symmetry breaking in
other words, like the Bénard cells rotation, the particular symmetry being broken
here being the reflection symmetry around the vertical diameter.

It is convenient to organize this information on a diagram (figure 41) in which
the equilibrium position θ, characterizing the state of our system, is plotted against
the angular velocity ω - the constraint acting on the system. Below the threshold ωc

only one position is available, corresponding to θ = 0 (branch a in figure 41). Beyond
ωc this state cannot be sustained. We express this in figure 41 by the dashed line
along the branch a′. For each ω > ωc two new equilibria become available and we
obtain two branches of states b1 and b2 which merge with a at ω = ωc but separate
from it at ω 6= ωc. This is the phenomenon of bifurcation and ωc is said to be a
bifurcation point. The new solutions emerging from this scenario can be stationary
(transcritic and pitchfork bifurcations) or time-periodic (Hopf bifurcations). For
more details, see appendix V.

The action of an external periodic force on a nonlinear oscillator of the kind
depicted in figure 40 gives rises, under certain conditions, to an aperiodic motions
of the mass m referred to as deterministic chaos. A more detailed description of
this characteristic signature of nonlinear systems will follow in the next sections and
appendix V Nicolis, 1995; Strogatz, 1994.

0.4 The Phase Space

The temporal evolution of a dynamic system can be described by the system
variables set in an n-dimensional space Γ called the phase space. Due to the ex-
perimental impossibility to exactly know the position of a point with an infinite
precision, in the phase space the initial state will not be a point but a finite element
of volume δΓ0. For an observer the points contained in δΓ0 represent the macro-
scopic state of the experimental system. From every point, viewed as a different
initial condition, a trajectory starts in the phase space. The envelope of all these
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trajectories is called the phase portrait and in three dimensional space has a tubular
or cylindric shape (figure 42).

Figura 7: Trajectories in the phase space for
a dynamic system

It is important to evaluate how the
dimension of the volume varies with ti-
me. A rigorous description of the evo-
lution of δΓ0 in terms of divergence of
the trajectory flow F is reported in ap-
pendix V. Here we use the conclusions
of that derivation, in order to define dis-
sipative systems. A dynamic system is
said to be conservative if the relative vo-
lume in the phase space is conserved and
∇·F = 0, while dissipative systems show
a decrease with time in the phase spa-
ce volume and ∇ · F < 0. From this it
arises that trajectories starting from a
determined volume in the phase space
will trend to a subset, called the attrac-
tor. Attractors are objects limited and
enclosed in the phase space, whose di-
mension d is strictly inferior than the
space dimension n (we then exclude the

Γ space from this category). Attractors can be monodimensional (fixed points),
bidimensional and periodic (limit cycles) or with higher dimensions (quasiperiodic
and fractal attractors). It is important to note that a non-dissipative system cannot
have attractors.

A very important theorem, that plays a decisive role in the phase portrait struc-
ture, is the Theorem of Existence and Uniqueness. In the phase space Γ given X0 as
a non-singular point, belonging to a certain open subset U and satisfying Lipschitz’s
condition

| F(Y)− F(X) |≤ k | Y −X | (12)

for some k < ∞, thus exists an interval t0 < t < t0 + T such that in U there is a
unique solution X(t ;X0, t0 ) for the equation

dX

dt
= F(X, µ) (13)

where F is the evolution law, X are the degrees of freedom of the system and µ is
a set of control parameters.

0.4.1 One variable system

When phase space is monodimensional, attractors must have dimension D = 0
and therefore only fixed points can exist. In terms of the original differential
equation 121, fixed points represent equilibrium or steady solutions, since dX/dt =
0.

Luigi Ciotti Tesi di Dottorato in Scienze Chimiche Università degli Studi di Sassari



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

Figura 8: fixed points and a limite cycle

0.4.2 Two variables system

Since n = 2 attractors in the phase space can have fixed points with D = 0
and limit cycles with D = 1 (figure 36). While fixed points identify a stationary
behavior, limit cycles indicate a periodic motion. Trajectories combining two fixed
points are heteroclines, while a curve that starts from a fixed point and comes back to
it is a homocline. The Existence and Uniqueness Theorem has an important corollary
stating that intersections between trajectories are possible only if the intersection
point is also singular. This constraint is particularly severe in a bidimensional phase
space, where it is has an important topological consequence. If a closed line C
exists, every trajectory inside C will stay trapped in there for ever. If in C exists
some singular point, a trajectory will move toward it eventually, otherwise it will
approach the closed orbit. For a vectorial field in a plane, this corollary is known as
Poincaré–Bendixson Theorem.

0.4.3 Three variables system

Besides fixed points and closed curves, in this case other attractors exist without
violating the Theorem of Uniqueness, such as simple and k–fold torus (torus with
k ≥ 2 holes). It is possible to demostrate that a k–fold torus must possess at least
2k − 2 fixed points, implying that there is no torus other than the simple one free
of fixed points. In the phase space a torus can be parametrized by two angular
coordinates φ and ψ and the resulting motion will be biperiodic, with periods T1
and T2 (figure 9).

If T1 and T2 have an integer ratio, such as

T1
T2

=
p

q
∀ p, q ∈ Z (14)

the motion can be reduced to a periodic one and will be represented by a closed
curve winding p and q times along the two angular directions of the torus. On the
other hand, if T1

T2
is irrational, the resulting motion will be quasiperiodic, characte-

rized by a helix winding along the torus without ever closing to itself and without
any self-intersections. A two-dimensional torus embedded in a three-dimensional
space consitutes the natural prototype of quasiperiodic behavior. Such behavior is
encountered in a large classe of nonlinear systems under nonequilibrium constraints.
A valid method for classifying a toroidal attractor is the Poincaré’s map, that plots
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Figura 9: 2–torus

the intersections of a quasiperiodical dynamics with an opportune surface (the so
called Poincaré’s surface).

0.4.4 Fractals

Our exploration of the geometry of the phase space has led us to identify diffe-
rent kind of attractors as prototypes of stationary behavior (fixed point), periodic
behavior (closed curve) and quasiperiodic behavior (torus). When dimension n ≥ 3,
corresponding motion is chaotic and manifolds other than attractors of conven-
tional geometry exist, sometimes called strange attractors or fractals Mandelbrot,
1982. Roughly speaking, fractals are complex geometric shapes with fine structure
at arbitrarily small scales.

Figura 10: euclidean dimensions

Usually they have some degree of
self-similarity. In other words, if we ma-
gnify a tiny part of a fractal, we will
see features reminiscent of the whole:
sometimes similarity is exact, more of-
ten it is only approximate or statisti-
cal. Fractals are of great interest be-
cause of their exquisite combination of
beauty, complexity and endless structu-
re. They are reminiscent of natural ob-
jects like mountains, clouds, coastlines,
shells and broccoli in a way that classi-
cal geometrical shapes like squares and
cones can’t match (figure 11). The in-
trinsic dimension D of such objects is
not an integer. The canonical algorithm
to construct fractals mimics a process of
successive fragmentation. If we take an
object with linear size equal to 1 resi-

ding in Euclidean dimension D, and reduce its linear size by the factor 1/l in each
spatial direction, it takes N number of self similar objects to cover the original object
(figure 10)

N = lD (15)
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D = lim
k→∞

log 4k

log 3k
=

log 4

log 3
≈ 1.2619

since from a segment of linear size l, four self-similar segments of side ǫ = l/3 are
constructed, and so forth.

0.5 Deterministic Chaos

Chaos has been routinely observed in controlled laboratory experiments. Che-
mical reactions, optical systems such as lasers, and fluid dynamics experiments ha-
ve been designed to exhibit chaotic dynamics. The existence of chaos in natural
phenomena is more controversial. Celestial mechanics can be approximated using
Newton’s laws to high precision. Since n-body gravitational systems contain chaotic
trajectories for n ≥ 3, chaotic orbits of celestial bodies are probably pervasive in
the solar system. In other areas such as population dynamics, weather and climate,
the issue is clouded due to the question of whether the process can be convincingly
modeled as a deterministic system. A system is said to be chaotic when it shows
an irregular and unpredictable evolution, along with sensitivity to initial conditions.
It is worth noting that chaotic dynamics is very different from a random walk, the
first being governed by an internal structure that regulates its dynamic evolution.
In the phase space, a chaotic system has its own attractor, while random dynamics
fill the space as noise does. A very efficient way to characterize deterministic chaos
is by means of Lyapunov exponents (see appendix V): they measure how trajectories
originating from close points diverge after a time t in the phase space. We can now
give the following definitions

• a deterministic system is chaotic if it shows aperiodic behavior and sensitivity
to initial conditions;

• in the phase space chaotic dynamics are confined in a compact attractor, wi-
th dimension 2 < d ≤ n and geometry compatible with fractal manifolds,
according to the Theorem of existence and uniqueness (see appendix V);

• a chaotic system has a positive Maximal Lyapunov Exponent (MLE > 0);

• temporal data series for chaotic dynamics have a characteristic FFT spectrum
with a wide band at low frequency values.

0.6 Transition scenarios to chaos

If a nonlinear system has chaotic dynamics, then it is natural to ask how this
complexity develops as control parameters vary. The identification and description
of routes to chaos has had important consequences for the interpretation of experi-
mental and numerical observations of nonlinear systems. If an experimental system
appears chaotic, it can be very difficult to determine whether the experimental data
comes from a truly chaotic system, or if the results of the experiment are unreliable
because there is too much external noise. Chaotic time series analysis provides one
approach to this problem, but an understanding of routes to chaos provides another.
In many experiments there are parameters that are fixed in any realization of the
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experiment, but which can be changed. If recognizable routes to chaos are observed
when the experiment is repeated at different values of the parameter, then there is
a sense in which the presence of chaotic motion has been explained. By the early
1980s, three general ‘scenarios‘ or ‘routes to chaos had been identified Eckmann,
1981; Hilborn, 1994 period doubling Feigenbaum, 1979, intermittency and RTN sce-
nario, the third being the most useful instrument for this dissertation (appendix
V). As we shall see, in their standard forms each of these transitions uses the term
route to chaos in a different way, so care needs to be taken over the interpretation
of experimental or numerical observations of these transitions.

0.6.1 Ruelle-Takens-Newhouse (RTN) scenario

In 1971, Ruelle and Takens published a mathematical paper with the title ‘On the
Nature of Turbulence‘. In this paper and a subsequent improvement with Newhouse
(1978) Newhouse, Ruelle e Takens, 1978; Ruelle e Takens, 1971, they discuss the
Landau’s scenario for the creation of turbulence by the successive addition of new
frequencies to the dynamics of the fluid. They show that if the attractor of a system
has three independent frequencies, then a small perturbation of this system has a
strange attractor. The result became known colloquially as “three frequencies implies
chaos”.

Let’s consider a dynamic system in a stationary state (S) that loses its stability
and undergoes a first Hopf bifurcation (B1) as a control parameter µ increases, so
that a new oscillatory periodic regime (P ) appears, with a characteristic frequency
f1 in the FFT spectrum (figure 13). As µ progressively increases, a second Hopf
bifurcation (B2) produces a new quasiperiodic regime (QP2), with two incommen-
surable frequencies f1 and f2, whose ratio is an irrational number. A last Hopf
bifurcation (B3) causes the appearance of a quasiperiodic dynamics (QP3) with a
third frequency f3. This regime is unstable and difficult to observe experimentally
(3-torus), and it collapses into a strange attractor, typical of a chaotic dynamic (C),
with a broad signal at low frequencies in the FFT spectrum. From a topological
point of view, this scenario can be summarized in the following way: fixed point →
limit cycle → 2-torus → 3-torus → strange attractor.
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(a)

(b)

Figura 13: (a) bifurcation and topological sequence for RTN scenario and (b) the relative
FFT spectra.
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Oscillating reactions

Oscillations of chemical origin have been present as long as life itself. Every
living systems contains hundreds of chemical oscillators. The systematic study of
oscillating chemical reactions and of the broader field of nonlinear chemical dyna-
mics is of considerably more recent origin, however. While the study of oscillating
reactions did not become well established until the mid-1970s, the first experimen-
tal and theoretical works, that led up to the ideas of Prigogine on nonequilibrium
thermodynamics and experimental and theoretical work of Belousov, Zhabotinsky,
Field, Körös and Noyes, go back to the 19th century.

In 1828, Fechner described an electrochemical cell that produced on oscillating
current, this being the first published report of oscillations in a chemical system.
Ostwald observed in 1899 that the rate of chromium dissolution in acid periodically
increased and decreased. Because both systems were inhomogeneous, it was believed
then, and trough much of our own century, that homogeneous oscillating reactions
were impossible.

In the last fourty years, very important progresses have been made in nonlinear
chemistry and oscillating reactions can be designed ad hoc in different forms and
studied by coupling chemical kinetics with diffusion (thermic and molecular) and
fluidodynamics.

In chapter 0.6.1 we describe the basic concepts of nonlinear chemical kinetics,
whilst in chapter 0.8 we will study the Belousov–Zhabotinsky reaction.

0.7 Chemical kinetics

The quantitative interpretation of experimental results in chemical kinetics is
frequently based on the constructions and subsequent analysis of mechanisms or
models. Mechanisms typically aim for a semiquantitative match to a particular reac-
tion; models are often deliberately dimpler and attempt to catch the main qualitative
features of a broader class of reactions.

0.7.1 Elementary steps

If we propose a sequence of individual reactions which are likely to be significant
in carrying the reaction from the original reactant to the final products, the corre-
sponding reaction rate equations can then be written out based on the law of mass
action. The reaction rate equations specify the rates at which the concentrations
of the various chemical species change with time, and how these rates depend upon
those concentrations. The idea is to break the overall reaction up into a number
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of component reactions. Typical of such a component is an elementary step. An
example of an elementary step is the following, between a hydrogen atom and an
oxygen molecule

H +O2 → OH +O• (19)

The rate v of an elementary step is given simply in terms of the concentrations of
the participating reactants (those on the left-hand side of the reaction step). For
the above example

v = k [H][O2] (20)

Elementary steps are typically, but not exclusively, bimolecular – involving two
species Atkins, 1994; Espenson, 1981. The reaction is envisaged as occurring in
a single collision between the reactants. Bimolecular reactions then give rise to
a quadratic dependence of rate on concentration, i.e., to an overall second-order
process. Equation 20 also involves a coefficient k . This is the reaction rate coefficient
or constant. Typically, rate constants are independent of concentration but they may
be quite sensitive functions of the temperature. This temperature dependence can
frequently be expressed by the Arrhenius law

k(T ) = Ae−
Ea
RT (21)

where T is the absolute temperature, R = 8.314JK−1mol−1 is the universal gas
constant, A is the pre-exponential factor and Ea is the activation energy. Many
chemical reactions are exothermic or endothermic. The consequent evolution or
removal of energy may cause local temperature rises in the reacting mixture and the
temperature dependence of k may then have important consequences.

0.7.2 Overall rate equations

The overall rate equations for a given mechanism are derived by combining
the rates of all the individual elementary steps. An acceptable mechanism for the
hydrogen-oxygen reaction (a valuable example to illustrate this) over a limited range
of pressure and temperature involves the elementary steps described in table 1.

(0) H2 +O2 → 2OH v = k0 [H2][O2]
(1) OH +H2 → H2O +H v = k1 [OH][H2]
(2) H +O2 → OH +O v = k2 [H][O2]
(3) O +H2 → OH +H v = k3 [O][H2]
(4) H → 1/2H2 v = k4 [H]

Tabella 1: elementary steps for the hydrogen-oxygen reaction

In each case, the rate of the individual step has been derived from the law of mass
action. The rate v is defined as the rate at which the reactant species disappears. In
the last step, this means that a noninteger stoichiometric factor arises. The reaction
rate equations can now be constructed. As an example, we can consider the rate
of change of the hydroxyl radical concentration, d[OH]/dt. Two OH radicals are
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produced in the first step and one is produced in each of steps (2) and (3), while an
OH radical is removed in step (1). The rate of equations is thus

d[OH]

dt
= 2k0 [H2][O2]− k1 [OH][H2] + k2 [H][O2] + k3 [O][H2] (22)

Athough it is necessary to write six rate equations for the six different chemical
species, the concentrations of the six chemical species cannot all vary independen-
tly. There are two different type of chemical atoms, H and O, from which all the
species are formed. As no reaction converts H to O, or vice versa, the total number
of each of these atoms must be conserved. With six rate equations and two con-
servation conditions, the system has four degrees of freedom or four independent
concentrations and can be reduced to a set of four rate equations.

0.7.3 Nonelementary processes

In many real situation, a kinetic mechanism involving only true elementary steps
is not attainable. Often a number of elementary steps are so intimately coupled that
it is only possible to observe their overall effect. In these situations, experimentally-
determined empirical rate laws are particularly useful.

The Belousov–Zhabotinsky reaction (see chapter 0.8) is a characteristic example
Scott, 1994. As a part of the mechanism for that system, the following processes are
important (table 2).

(a) BrO−

3 +Br− + 2H+ → HBrO2 +HOBr
(b) HBrO2 +Br− +H+ → 2HOBr
(c) HOBr +Br− +H+ → Br2 +H2O

Tabella 2: pseudo-elementary steps for the Belousov–Zhabotinsky reaction

None of these is necessarily believed to be an elementary step even though they
have each been written in the same stoichiometric form as the elementary steps seen
above in the H2 + O2 mechanism. Here, the form of reactions (a) - (c) is partly
to identify the species that disappear in each process (the reactants) and those
that are formed (the products). In some cases, this form is also partly intended
to convey information about the empirical rate laws which have been determined
for each particular process. Thus, for process (a) the rate of conversion of bromate
or bromide ions into the species HBrO2 and HOBr is found to be first order in
[BrO−

3 ] and in [Br−] and second order in the concentration of H+; we can write
then for process (a)

−d[BrO−

3 ]/dt = −d[Br−]/dt = −1/2d[H+]/dt

= +d[HBrO2]/dt = +d[HOBr]/dt

= k5 [BrO
−

3 ][Br
−][H+]2 (23)

There is no suggestion, however, that this conversion is brought about by a single
reactive collision between the four species on the left-hand side of the reaction (a).
In general, once all the important processes and their empirical rate laws have been
identified, these are again combined to produce the full rate equations for the total
rates of change of each concentration.
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0.8 Nonlinearity and feedback

The buzzwords nonlinearity and feedback are the key features of the chemical
kinetics underlying all the exotic phenomena such as oscillating reactions. The
simplest type of chemical reaction is of the kind

A+BC → AB + C (24)

with rate equations

− d[A]/dt = −d[BC]/dt = d[AB]/dt = d[C]/dt = k [A][BC] (25)

In many kinetic studies aimed at determining the reaction rate constant k , the
concentration of one of the two reactants, BC say, will be arranged to be in great
eccess over that of the other. The concentration of the species in excess can then be
treated as a constant, giving a pseudo-first-order reaction. This is the only example
of linear system in chemical kinetics. All non-first-order processes are nonlinear and
thus nonlinearity is the rule, rather than the exception.

Nonlinearity is of mild interest, while of primary importance is feedback, which
arises when the products of later steps in the mechanism influence the rate of some
of the earlier reactions and, hence, the rate of their own production. This may take
the form either of positive feedback (autocatalysis) or negative feedback (autoinhibi-
tion). Several examples of feedback are known in different chemical systems, such as
combustion and isomerization processes, gas-liquid partial oxidation processes, gas-
solid heterogeneous catalysis, solid-liquid electrodissolution and corrosion, enzyme
processes and glycolysis in biological systems.

The Belousov–Zhabotinsky reaction has an autocatalytic step, which is at the
very origin of oscillations and other characteristic behaviors, where two moles of
HBrO2 are produced from the reaction between one mole of HBrO2 and one mole
of BrO−

3 . In the next chapter the Belousov–Zhabotinsky reaction will be analyzed
in details.
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The Belousov–Zhabotinsky

reaction

Boris Pavlovich Belousov began his studies on oscillating reactions in 1950 while
head of the Laboratory of Biophysics in the former USSR Ministry of Health. He
was looking for an inorganic analog of the Krebs cycle, a key metabolic process in
which citric acid is an intermediate. He investigated a solution of bromate, citric
acid and ceric ions (Ce4+). He expected to see the monotonic conversion of yellow
Ce4+ into colorless Ce3+. Instead, the solution repeatedly cleared and then became
yellow again! He strove to publish the data observed but different editors refused his
manuscript, with the assumption that the supposed reaction and the spontaneous
temporal self-organization observed violated the Second Law of Thermodynamics.

In 1961, Anatol Zhabotinsky, a graduate student in biophysics at Moscow State
University, began looking at the same system and modified the original recipe, repla-
cing citric with malonic acid. In 1962, Zhabotinsky wrote a manuscript that he sent
to Belousov for his comment Zhabotinsky, 1964. After their fructuous epistolary ex-
change, that brought the Belousov–Zhabotinsky reaction to the attention of several
Western chemists, in 1980 the Lenin prize was awarded to Belousov, Zhabotinsky,
Krinsky, Ivanitsky and Zaikin for their work on the Belousov–Zhabotinsky reaction
Zaikin e Zhabotinsky, 1970.

The Belousov–Zhabotinsky reaction involves the oxidation of an organic species
such as malonic acid by an acidified bromate solution in the presence of a metal ion
catalyst

2BrO3
− + 3CH2(COOH)2 + 2H+ → 2CHBr(COOH)2

+ 3CO2 + 4H2O
(26)

Various metal ions can be employed, with the Ce(III)/Ce(IV ) Johnson, Scott e
Thompson, 1997; Wang, Soerensen e Hynne, 1994, 1995 and [Fe(II)(phen)]2+/[Fe(III)(phen)]3+

(ferroin/ferriin) Strizhak e Kawczynski, 1995; Wang et al., 2005 couples most widely
used. Cerium and ferroin catalyzed BZ systems show different behaviors both in
temporal and spatial evolution, mainly because of the redox potential of the cata-
lysts Ganapathisubramanian e Noyes, 1982; Hegedus et al., 2006; Keki et al., 1992;
Smoes, 1979; Taylor, 2002. In a closed system, the reaction typically exhibits a short
induction period, followed by an oscillatory phase. The color alternates between red
and blue (for the ferroin/ferriin couple, figure 14) with a period of approximately
one minute.
The oscillations may last for over two hours during which perhaps a hundred oscil-
lations are observed. Oscillations can arise in a macroscopic medium if the system
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Figura 14: color change in a homogeneous BZ system

is sufficiently far from the state of thermodynamic equilibrium Nicolis e Prigogi-
ne, 1977. Ultimately, the oscillations die out and the system then drifts slowly and
monotonically towards its chemical equilibrium state.

Figura 15: potentiometric records for the
BZ reaction

Typical experimental records, as
measured by Pt and bromide sensitive
electrode, each referenced to a calomel
electrode, are shown in figure 15. The
Pt electrode responds primarily to the
metal ion redox couple: this shows a
sharp change from the reduced to the
oxidized state followed by a more gra-
dual return. The sharp switch is also
associated with the abrupt color change.
The bromide electrode responds prima-
rily to [Br−]. A slow decrease AB in
[Br−] can be observed, before the sharp
drop BC that accompanies the oxida-
tion of the metal catalyst and the color
change. This gives rise to a relaxation

waveform, with a second segment of relatively slow evolution CD before the bromide
ion concentration increases rapidly again DA.

Although there are oscillatory variations in the concentrations of some inter-
mediate species, it is also important to note that the concentrations of the major
reactants, bromate and malonic acid, decrease slowly but continuously during the
reaction process. In consequence, the reaction continuously flows in the direction of
decreasing free energy: there is no oscillation in the direction of the overall reaction
which is always moving inexorably towards the chemical equilibrium state.

The BZ reaction makes it possible to observe propagating chemical waves and
development of complex patterns in time and space by naked eye on a very convenient
human time scale of dozens of seconds and space scale of several millimeters. The BZ
reaction can generate up to several thousand oscillatory cycles in a closed system,
which permits studying chemical waves and patterns without constant replenishment
of reactants Field e Burger, 1985.

0.9 A mechanism for the BZ reaction

Although its apparent simplicity, the mechanism of the Belousov–Zhabotinsky
reaction is very complex (figure 16). The understanding of the Belousov–Zhabotinsky
system has been developed primarily in terms of the Field-Körös-Noyes (FKN) me-
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(FKN5) BrO−

3 +HBrO2 +H+
→ 2BrO·

2 +H2

v = k5 [BrO−

3 ][HBrO2][H+]− k5 [BrO·

2]
(FKN6) BrO·

2 +Mred +H+
→ HBrO2 +Mox

v = k6 [BrO·

2][Mred][H
+]

Process C 2Mox +MA+BrMA → fBr− + 2Mred+ other products
v = kc [Org][Mox]

Tabella 4: scheme for Process C

Rate constants FKN Oregonator*

k1 8.0× 109 M−2s−1 6.4× 109 M−1s−1

k2 3.0× 106 M−2s−1 2.4× 106 M−1s−1

k3 2.0 M−3s−1 1.3 M−1s−1

k4 3.0× 103 M−1s−1 3.0× 103 M−1s−1

k5 42.0 M−2s−1 33.6 M−1s−1

kc 1.0 M−1s−1 1.0 M−1s−1

*Assumes [H+] = 0.8 M

Tabella 5: rate constants for FKN and Oregonator models

an earlier cycle of the oscillatory reaction) is removed. At the end of the induction
period (point B), the bromide ion concentration has fallen to [Br−]cr and there is
then an autocatalytic acceleratory oxidation of the metal ion catalyst via Process B
to point C. In the absence of a resetting mechanism, this would be effectively the
end of the story. In order to regenerate the starting conditions, a source of bromide
ions is needed and the catalyst must be reduced back to its lower oxidation state.
These requirements are met simultaneously through Process C, which involves the
organic reactant, malonic acid (MA). A detailed understanding of Process C has
only recently begun to emerge Györgyi, Turanyi e Field, 1990. However, the origi-
nal representation of FKN allows to analyze the different aspects from a qualitative
point of view. This proposes that HOBr can give rise to the bromination of MA,
perhaps through the formation of Br2, to produce bromomalonic acid BrMA. Both
MA and BrMA react with Mox to yield the reduced form of the catalyst and, in the
case of BrMA, bromide ion. Process C is thus represented as in table 4 The stoi-
chiometric factor f provides something on an ‘adjustable‘ parameter. It represents
the number of bromide ions produced as two Mox ions are reduced. If Mox reacts
solely with BrMA, f = 2; for f > 2/3 there is a net increase in bromidic ion through
each oscillatory cycle. In the simplest analysis, f is taken as a constant: in more
sophisticated studies, f is allowed to vary with the instantaneous concentrations of
MA, BrMA or of HOBr. A chain mechanism involving malonyl radicals MA• and
bromine atom radicals Br• has been proposed to account for stoichiometric factors
greater than 2. The rate of Process C, as written above, depends on the total con-
centration of organic species [Org] which early on is approximated by the initial
concentration of MA. The rate constants for the steps in the FKN mechanism are
given in table 5.
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(O3) A+ Y → X + P v = k3AY
(O2) X + Y → 2P v = k2XY
(O5) A+X → 2X + 2Z v = k5AX
(O4) 2X → A+ P v = k4X

2

(OC) B + Z → 1/2f Y v = kcBZ

Tabella 6: the oregonator kinetic scheme

A BrO−

3

B All oxidizable organic species
P HOBr
X HBrO2

Y Br−

Z Mox

Tabella 7: a simplified notation

0.10 Condition for oscillations: the Oregonator

With a reasonable mechanism and the appropriate values for the reaction rate
constants, it should be possible not only to match individual experimental obser-
vations but also to predict more generally the experimental conditions under which
oscillations might be observed. For this, it is especially convenient to use the Ore-
gonator model, developed by Field and Noyes (1974) at University of Oregon and
derived from the FKN scheme. This is frequently written in the form reported in
table 6 A literal translation is used for chemical species in order to simplify the no-
tation (table 7). The concentrations of the major reactants, A and B, are treated as
constants and [H+] is subsumed into the rate constants. The reaction rate equations
for the intermediate species X,Y, Z are

dX

dt
= k3AY − k2XY + k5AX − 2k4X

2 (29)

dY

dt
= −k3AY − k2XY + 1/2fkcBZ (30)

dZ

dt
= 2k5AX − kcBZ (31)

The next stage is to transform the concentrations X,Y, Z into dimensionless va-
riables. The transformation to be used here involves replacing X,Y, Z and t in
equations 29 - 31 by x, y, z and τ , defined by

x = 2k4X/k5A, y = k2Y/k5A, z = kck4BZ/(k5A)
2, τ = kcBt (32)

Essentially, however, these still represent the concentrations of HBrO2, Br
−,Mox

and time, and can be most usefully thought of in these terms. The advantage of
these substitutions is that the rate equations now become

dx

dτ
=

qy − xy + x(1− x)

ǫ
(33)
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dy

dτ
=

−qy − xy + f z

ǫ′
(34)

dz

dτ
= x− z (35)

There are three dimensionless parameters

ǫ = kcB/k5A, ǫ
′

= 2kck4B/k2 k5A, q = 2k3 k4/k2 k5 (36)

The first of these depend on the initial concentrations of bromate ion, MA and
H+; q involves only the reaction rate constants. For typical values, A = 0.06M and
B = 0.02M, we have

ǫ = 10−2, ǫ
′

= 2.5× 10−5, q = 9.0× 10−5 (37)

The autocatalysis in HBrO2 is revealed by the term x(1−x) in equation 33: this has
a quadratic form and arises from Process B, step (O5), limited by the disproportio-
nation step (O4). The term (q − x)y in equation 33 arises from the production and
removal of HBrO2 via steps (O3) and (O2), i.e. Process A. The other important
point involves the size of ǫ and ǫ

′

. Both of these are small, with ǫ
′

being much less
than 1, and appear in the denominator of a reaction rate equation. Because ǫ

′

is
so small, the concentration of bromide ion y will change quickly in time (i.e. dy/dτ
will be large) unless the numerator in equation 34 is also small. This argument is
simply a mathematically-based statement of the classic steady-state approximation,
so now we assume

y = yss =
f z

x+ q
(38)

at all times, i.e. the bromide concentration is in a dynamic steady state relative to
the HBrO2 concentration. Substituting this result into the reaction rate equations,
we have

dx

dτ
=

1

ǫ

[

x(1− x)− x− q

x+ q
f z

]

(39)

dz

dτ
= x− z (40)

The two terms in equation 39 represent Process B and Process A respectively, whilst
the two terms in equation 40 describe the production of Mox in Process B and its
reduction in Process C. We will not apply the staedy-state approximation, based
on the magnitude of ǫ, to HBrO2: partly this is because no simple formula for xss
emerges but also we must retain two concentrations to allow oscillatory behavior
(see Cauchy’s Theorem, Appendix V).

Equations 39 and 40 can be integrated numerically for any given choice of f .
Figure 17 shows the resulting variation in x and z for different values of f .

a) f = 0.25

After some initial transient development, the concentrations settle to constant,
steady-state values. Steady states different from the chemical equilibrium sta-
te arise in this model because the consumption of the reactants has been
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Figura 17: evolution of HBrO2 and Mox concentrations (x and z) for Oregonator model
with a) f = 0.25; b) f = 1; c) f = 3.

neglected. Under steady-state conditions, the rates of change of both interme-
diate concentrations become zero simultaneously, dx/dτ = dz/dτ = 0. Thus
zss = xss, where xss is given by

xss = zss = 1/2{1− f + q + [(f + q − 1)2 + 4q(1 + f )]1/2} (41)

A low value for f corresponds to relatively weak resetting Process C, as few
bromide ions are produced as the catalyst is reduced. The corresponding
steady-state concentrations of HBrO2 and Mox are thus relatively high whilst
the steady-state bromide ion concentration yss is relatively low.

b) f = 1

The situation is quite different. A steady-state solution still exists, but the
system does not settle to it. Instead a sustained, periodic oscillation in x and
z (and hence also in y) about the steady state emerges. The steady state is
unstable for this set of parameter values. The computation may be repeated
for various other values of f , with oscillatory behavior being observed over the
range 1/2 < f < 1 +

√
2.

c) f = 3

the system has a value for f slightly above the maximum for oscillations and it
is said excitable. An excitable system is characterized by having a stable steady
state and so is not spontaneously oscillatory. Small perturbation, e.g., by small
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Figura 18: an example of the x− z plane for the Oregonator model showing the x− and
z−nullclines.

reductions in the bromide concentration, disturbs the system from this state
transiently, but the system returns quickly without any change in color. With
slightly larger perturbations, the system is stimulated into a single excursion,
with a color change and back to the original steady state, with a single large
peak in the intermediate concentrations, similar to a single oscillation.

0.11 Oscillating regime

The reason why the steady state loses its stability over the range of f indicated
above can be revealed pictorially. For this, we look not at the evolution of x or z as
a function of time, but plot the evolution of one concentration as a function of the
other. The two concentrations x and z form a phase plane: as x and z vary with
time, they draw out a curve or trajectory on this plane. We can use the properties
of the phase plane to graphically solve equations 39 and 40 and thus obtain the
conditions for oscillations without recourse to computation. There are two special
curves that lie on the phase plane, as indicated in figure 18: these are the nullclines
that connect x, z pairs for which dx/dτ = 0 (the x−nullcline) or dz/dτ = 0 (the
z−nullcline). The last is simply the straight line x = z emerging from the origin
with unit slope. Any trajectory crossing this line must have a maximum or minimum
in z at that point. The x−nullcline is determined by the more complex condition

x(x+ q)(1− x)

f (x− q)
= z (42)

This is a cubic-type curve which asymptotes to z → ∞ as x → q and has z = 0
for x = 1; the range of interest is then q < x < 1 and the nullcline has a minimum
and a maximum in this range. The two nullclines divide the phase plane into four
regions, in which the sign of dx/dτ and dz/dτ vary between positive and negative,
indicating the slope of any trajectory in that region. High values for x correspond
to low instantaneous concentrations of bromide ion (from equation 38) whilst low
HBrO2 concentration correspond to high [Br−]. Remembering that Process A
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corresponds to the reduction of [Br−], we can recognize that this will occur while
the system is close to the left-hand branch of the x−nullcline. Along the right-hand
branch, Process B (oxidation of the catalyst) is important and z increases. Process
C corresponds to the oxidation of the organic species by Mox and so occurs at high z.
This process reduces [HBrO2] and increases [Br−], so causing the system to move
to the left and down in the phase plane. The nullclines for f = 0.25, 1, 3 are shown
in figure 19. In each case, there is a single point at which the x− and z−nullclines
intersect. At such a point, dx/dτ = dz/dτ = 0, so this locates the steady state
solution. In the case of figure 19, with f = 0.25 (a), the intersection point lies to the
right of the maximum. If we start at some arbitrary point (x0, z0), corresponding
to the initial concentration of x and z, the subsequent evolution may be predicted
by the following argument.

Figura 19: pictorial representation of oscil-
lations in the x − z phase
plane

If the initial point does not lie on
the x−nullcline, the right-hand sinde
of equation 39 will be nonzero: if the
initial point is below the x−nullcline,
dx/dτ will be positive. Also, because
of the small parameter ǫ that effectively
occurs as a divisor of the rate expres-
sion, dx/dτ will be large in magnitu-
de. This means that the HBrO2 con-
centration will change rapidly, on a ti-
mescale such that z remains effectively
constant. This gives rise to a horizon-
tal movement in (a) from (x0, z0) to so-
me point on the right-hand branch of
the x−nullcline. Now dx/dτ = 0. Un-
less the system has actually jumped to
the steady state intersection, dz/dτ re-
mains nonzero. This gives rise to a slo-
wer evolution: if the system lies below
the z−nullcline, dz/dτ will be positive,
so the concentration of Mox will increa-
se. As z varies, so x will continuou-
sly adjust to keep the right-hand side of
equation 39 close to zero. Thus the tra-
jectory undergoes a slow evolution along
the x−nullcline until it approaches the
steady-state intersection. The trajecto-
ry illustrated in (a) corresponds to the
time-series shown in the part (a) of fi-
gure 17. A similar argument shows that
any initial points finally approach the
steady state, although if we start abo-
ve the x−nullcline, the initial jump is
to the left-hand branch of the x−nullcline, followed by a slower evolution down
this branch, a second jump from the minimum onto the right-hand branch of the
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x−nullcline and then the final approach to (xss, zss).
With f = 3, the intersection lies on the left-hand branch of the x−nullcine, close

to the minimum. Again, we can use the argument that any system lying off the
x−nullcline will respond by a horizontal jump to one or other of the outer branches
of that nullcline, followed by a slower evolution along it. In this way, the steady state
is finally reached, as indicated by the trajectory corresponding to the time-series of
the part (c) in figure 17.

For the case f = 1, however, the situation is different. The intersection point
now lies on the middle branch of the x−nullcline. If we start at some arbitrary
initial point below the x−nullcline, the system jumps to the right-hand branch and
then moves upwards towards the maximum (as dz/dτ > 0). At the maximum,
dz/dτ is still positive, so the system must leave the x−nullcline. This gives rise to a
horizontal jump to the left-hand branch of the x−nullcline. Now dz/dτ < 0, so the
system moves slowly down this branch, towards the minimum. At the minimum,
dz/dτ is still negative, so again the system leaves the x−nullcline. This causes a new
horizontal jump back to the right hand branch and the process repeats. At no time
can the system jump to the middle branch, and so the steady-state point is never
approached. Instead there is a continuous cycling in the phase plane around the
limit cycle ABCD. The system evolves to this limit cycle from all initial conditions,
i.e., from all starting points in the x − z phase plane, so the amplitude and period
of the oscillation depend only on the kinetics and the experimental conditions, not
on the initial conditions. Also, if the system receives some later perturbation, it
will return to the same limit cycle and hence to oscillations of the same amplitude
and period. This indicates that the limit cycle is stable and is an attractor for the
system. The condition for oscillations is simply that the steady state should lie
on the middle branch of the x−nullcline, i.e., that xss lies between the minimum
and the maximum. The coordinates of minimum and maximum in the x−nullcline
depend on the parameters q and f , being given approximately by

min =















x = (1 +
√
2)q

y = 1 + 1/
√
2

z = (1 +
√
2)2q/f

(43)

max =











x = 1/2

y = 1/2

z = 1/4f

(44)

for q ≪ 1. The condition for the steady state, equation 41, to lie at the minimum
is then f = 1 +

√
2, whilst for the steady state to coincide with the maximum, we

require f = 1/2. The condition for oscillation is thus, as given previously,

1/2 < f < 1 +
√
2 (45)

In ‘chemical‘ words, oscillations are suppressed if f , the number of bromide ions
produced for every two oxidized catalyst ions reduced in Process C, is either too
large or too small. A balance between the efficiency of Process C and the rates
of Processes A and B must be achieved. If f is too small, the system settles to a
steady state corresponding to the oxidized form of the catalyst and low bromide ion
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concentration. If f is too large, the build-up of bromide inhibits the autocatalysis
and oxidation in Process B and reduced steady state is established. The change
from steady state to oscillatory reaction as f enters the above range occurs via a
Hopf bifurcation.
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Transport phenomena

The FKN and Oregonator kinetic mechanisms contain a unique feedback step,
unable to explain the very complex periodic dynamics observed in Belousov–Zhabotinsky
experiments. Moreover, besides the temporal oscillations observed in continuous flow
reactors, in a thin, unstirred layer of the reaction mixture one can observe propa-
gation waves and chemical patterns. Thus a homogeneous system exhibits not only
temporal but also spatial self-organization. This behavior has been justified by con-
sidering the coupling between kinetics and transport phenomena, i.e., diffusion and
convection.

0.12 Excitable media

Propagating waves may develop in particular systems called excitable, i.e., sy-
stems in which a group of elements is coupled to each other and each elements can
pass informations to its neighbours Kapral e Showalter, 1994; Murray, 1993. In exci-
table systems, each point is characterized by a rest state, that is stable under small
perturbations. It means that the response to a small brief perturbation is small,
with an amplitude that varies smoothly with the perturbation amplitude. On the
contrary, an impulse with a strength greater than a certain threshold can cause that
point to undergo a large amplitude excursion from, and eventually return to, its rest
state value. For spatially extended excitable systems, the subthreshold response is
localized, while the suprathreshold response is a traveling wave. The length of time
required to return close to the steady state value is a factor that determines the
refractory time of that point; a refractory point cannot easily undergo another cycle
until it recovers. Summarizing, the dynamics described for excitable media, that is
characterized by a stable steady state, a threshold and a return to the steady state,
is possible if at least two mechanisms occur: a fast nonlinear excitation and a slower
recovery process. A wave of activity moving across the excitable media and initiated
by an impulse over a certain threshold, propagates with a speed controlled by how
fast elements ahead of the wave are induced to cross the threshold. Thus, wave
speed is a function of diffusion coefficient (a “passive” property of the media) and
the rate of rise of the diffused species of the excited element (an “active” property of
the media). A simple and intuitive example of an excitable medium is a wildfire. It
travels through the forest as a wave from its initiation point and regenerates with
every tree it ignites. Thus, no fire can return to a burnt spot until the vegetation
has gone through its refractory period and regrown. In biology field, one of the most
widely studied systems with excitable behavior is neural communication by nerve
cells via electrical signalling.
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In chemical context, among the most studied excitable medium is the Belousov–
Zhabotinsky reaction.

0.12.1 Travelling waves

A wave is characterized by the shape and speed of propagation of the front,
that can change continuously. A travelling wave is a special case of wave, which
does not change shape during its travel and whose speed of propagation is constant.
Therefore, travelling wave fronts of chemical reactions are characterized by uniform
speed and a constant concentration profile.

More in general, we can deal with three different types of chemical waves

1. fronts, that convert reactants in products, so that the composition ahead of
and behind the wave is quite different;

2. pulses, they occur when an intermediate is firstly produced by a certain front
and then it is converted back by a second recovery wave;

3. periodic wave trains, i.e., a combination of a series of fronts or pulses which
are continuously being initiated at some point or centre and which follow each
other in the medium.

The pulses can give rise to different types of spatial patterns such as target patterns,
spiral waves (one- or multiarmed spirals), Archimedean or inwardly rotating spirals.

0.12.2 Targets and spirals

Reactions that show oscillations in closed systems give rise to a range of intere-
sting behavior in unstirred systems Scott, 1994. Diffusion can interact with nonlinear
reaction kinetics to generate propagating waves of chemical reactivity and spatial
patterns. The most common kind of chemical wave is the single propagating front,
where, in an unstirred medium, there is a relatively sharp boundary between reacted
and unreacted material, and this boundary or wavefront moves through the solution
at an essentially constant speed. In a uniform two-dimensional medium, such as
a Petri dish (figure 20), a wave emanating from a point produces a circular front,
since it travels at the same velocity in all directions. If we have a system that gene-
rates repeated waves, we obtain a pattern of concentring circles, known as a target
pattern. When two o more initiation sites are present, waves can collide, which re-
sults in annihilation of the colliding waves and can lead to patterns of considerable
complexity Epstein e Pojman, 1998.

If target waves are broken, e.g., by gently tilting the reaction mixture, the two
ends created respond by curling up to form a pair of counter-rotating spirals. Spiral
waves has been observed not only in aqueous solutions but also in a wide range
of excitable systems, such as catalytic crystal surfaces Ertle, 1991 and heart mu-
scle Davidenko et al., 1992. Similar structures occur in a great variety of natural
environments, like oceans, atmosphere and galaxies Lin e Shu, 1964 (figure 21).

In chemical systems archimedean spirals are mainly observed. An archimedean
spiral is the locus of points corresponding to the locations over time of a point
moving away from a fixed point with a constant speed along a line which rotates
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Figura 20: target and spirals in a BZ gel reaction

(a) nautilus shell (b) hurricane (c) spiral galaxy

Figura 21: spiral shapes in nature

with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be
described by the equation

r = a+ bθ (46)

with real numbers a and b. Changing the parameter a will turn the spiral, while b
controls the distance between successive turnings.

Contrarily to target patterns, which reflect the local heterogeneities such as
defects in the surface or dust particles, all spirals in a given BZ reaction mixture
rotate with the same period and wavelength, reflecting the bulk kinetics. The advent
of modern imaging systems coupled to computer acquisition hardware has led to an
increase in the detail with which spirals have been studied. At the centre of a given
spiral is a core with a diameter of 30 µm.

The evolution of spiral geometry is followed by studying the spiral tip, i.e., the
free end of a spiral, defined by

(

∇c1 ×∇c2
)

xtip ,ytip
= sup

[

(∇c1 ×∇c2
)]

, ∀ x, y (47)

In the simplest form of spiral evolution, the tip of the spiral, where the oxidation
front and the reduction back meet, rotates around this circular core with the same
frequency as the bulk spiral. As the conditions are varied, however, the spiral tip
begins to meander Epstein e Pojman, 1998. Initially, this involves a second oscillation
appearing, so the tip describes a quasiperiodic motion. As the behavior becomes
more complex, various patterns resembling flowers are described by the tip path
Biosa, Bastianoni e Rustici, 2006.

0.13 Diffusion

Molecular or ionic diffusion, often called simply diffusion, is the thermal motion
of all (liquid or gas) particles at temperatures above absolute zero. The rate of this
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movement is a function of temperature, viscosity of the fluid and the size (mass) of
the particles. Diffusion explains the net flux of molecules from a region of higher
concentration to one of lower concentration. The result of diffusion is a gradual
mixing of material. In a phase with uniform temperature, absent external net for-
ces acting on the particles, the diffusion process will eventually result in complete
mixing. Molecular diffusion is typically described mathematically using Fick’s la-
ws of diffusion. Fick’s first law relates the diffusive flux to the concentration, by
postulating that the flux goes from regions of high concentration to regions of low
concentration, with a magnitude that is proportional to the concentration gradient
(spatial derivative). In one spatial dimension, this is

J = −D
∂c

∂x
(48)

or, in two or more dimensions,

J = −D∇c (49)

where J is the diffusion flux, D is the diffusion coefficient or diffusivity, c is the
concentration, x is the position. The diffusivity D depends on the temperature,
viscosity of the fluid and the size of the particles, according to the Einstein-Stocks
relation

D =
kBT

6πηr
(50)

where kB is the Boltzmann constant, T is the absolute temperature, η is the viscosity
of the medium and r is the radius of the particle. In dilute aqueous solutions
the diffusion coefficients of most ions are similar and have values that at room
temperature are in the range of 0.6− 2.0× 10−5cm2s−1.

Fick second law predicts how diffusion causes the concentration to change with
time,

∂c

∂t
= D∇2c (51)

where the velocity of variation of concentration is proportional to the second spatial
derivative of the concentration.

0.13.1 Turing structures

Original and beautiful spatio-temporal patterns in biological systems, such as
leopard spots or zebra stripes, are known as Turing structures, in honour of Alan
Turing, a british mathematician who provided, in 1952, a simple model for the theory
of morphogenesis, i.e. the development of pattern and form in living systems.

Turing suggested that chemicals, which he also called morphogens, can react and
diffuse in such a way as to produce spatial patterns, stationary in time and periodic
in space.

The coupling between kinetics and diffusion can be expressed as

∂c

∂t
= f(c) +D∇2

c (52)

where c is the vector for morphogen concentrations and f(c) represents the reaction
kinetics.
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Figura 22: the CIMA
reaction

Turing surprisingly realized that the competition bet-
ween diffusion and autocatalysis on two different time
scales can lead to the formation of spatial patterns. The
key elements, whose suitable combination could give rise
to spatial pattern formation, are the diffusion rates of
participants. The kinetics should include a positive feed-
back, such as autocatalysis, on a species called activa-
tor and an inhibitory process. The inhibitor’s diffusion
coefficient should be much greater than the activator’s
one. The first examples of Turing structures occurring
in chemical systems has been evidenced in the chlorite-
iodide-malonic acid (CIMA) reaction Castets et al., 1990;
Kepper, Boissonade e Epstein, 1990 (figure 22).

0.14 Convection

The influence of gravity field on the kinetics–diffusion coupling is of great im-
portance. Although simple calculations seems to suggest that gravity should have
negligible influence on chemical reactions1, it can drastically alter the macroscopic
transport of heat and matter through convection, or macroscopic fluid motion. Na-
tural convection is the movement of fluid as the result of differences in density, so
that denser fluid sinks and less dense fluid rises (chapter I, the Bénard instabili-
ty).This motion is resisted by the viscosity of the medium, which acts like friction
does in slowing the motion of solids. Convection is a much more efficient process
than diffusion for transporting heat and matter. In a system that exhibits sensitivity
to orientation with respect to the force of gravity, wavefronts can propagate up to
six time faster when reaction-diffusion mechanism is coupled with convection. In
the next section, the equations governing fluid dynamics are illustrated, in order to
take into account the effect of natural convection in the evolution of spatio-temporal
organization of BZ systems.

0.15 The fundamental equations of hydrodynamics

Mechanics of continuous media is the branch of physics that studies hydrody-
namic phenomena and heat flow. The central idea of this discipline is to consider
local density, velocity and energy as continuous functions of space and time Chan-
drasekhar, 1961; Currie, 1993. Due to the molecular nature of matter, it is very
hard to rigorously describe these concepts. However, we can define, for instance,
local density considering the mass contained in a small element of volume ∆V . This
volume contains many molecules and then density can be considered as a continuous
function of r, but it is small enough so that the mass divided per V still describes the
local density in r. In other words, we are dealing with a ‘continuous‘ matter, other

1The mass of a small molecule is on the order of ≈ 10
−26kg, which translates into a gravitational

force of about 10
−25N; we can compare this with the force of attraction between the electron and

the proton in a hydrogen atom, which is of the order of 10−8N. Even allowing for shielding effects,
electrostatics forces will always be many orders of magnitude stronger than gravitational forces, so
that gravity does not affect directly the fundamental atomic and molecular interactions.
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than discrete. Such systems are described by Partial Differential Equation systems
(PDEs), in order to evaluate spatial and temporal variations of local density.

The fundamental laws of hydrodynamics are expressed by the following equations

∂ρ

∂t
+

∂

∂xj
(ρuj ) = 0 (53)

Pij = −pδij + 2µeij −
2

3
µδij ekk (54)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρXi +
∂Pij

∂xj
(55)

φ = 2µe2ij −
2

3
µe2jj (56)

ρ
∂

∂t
(cV T ) + ρuj

∂

∂xj
(cV T ) =

∂

∂xj

(

ξ
∂T

∂xj

)

− p
∂uj
∂xj

+ φ (57)

where ρ is the density of the fluid, ui are the components of velocity in the three
spatial directions, xi are cartesian coordinates, Xi are the components of the resul-
tant of external forces acting on the system. We assume that the internal energy
U = U(T ) is a function of the temperature only. Equation 53 derives from the prin-
ciple of mass conservation and is known as equation of continuity. Equations 55 and
57 derive from the principle of conservation of momentum and energy, respectively.
Equation 54 states the nature of the tensor for viscous stress, while 56 is the term
for heat dissipation due to this viscous stress. All these equations are then coupled
to the state equations which describe the system along with appropriate boundary
conditions. For an incompressible fluid, the velocity field is solenoidal because it
satisfies the following equation

∂uj
∂xj

= 0 (58)

This simplifies our system because equations 53 and 55 become

∂ρ

∂t
= −uj

∂ρ

∂xj
(59)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρXi −
∂p

∂xj
+ µ∇2ui (60)

The last (60) is the original form of the Navier-Stokes equations. It is necessary
now to define the density as a state function of the system variables. In all che-
mical reactions we find regions with different density, because density depends on
temperature and composition. Temperature is different if the reaction occurs in
two contiguous regions of the solution at a different time. The same considerations
can be made for composition, because it is impossible to have a solution completely
homogeneous. We can thus introduce some coefficients for taking into account the
variation of density with temperature T and composition C.

α = −1

ρ

∂ρ

∂T
(61)
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βi =
1

ρ

∂ρ

∂Ci

(62)

where Ci is the molar concentration of the i−th species. Thus, in a first approxi-
mation, the total density of a solution is given by

ρ = ρ0

[

1− α(T − T0) +
∑

i

βi(C − C0)i

]

(63)

Further, if we assume that

• viscous dissipation terms are negligible;

• density term can be ignored besides when it influences external acting forces;

• the constants are independent of the state of the system and are invariants
during its dynamical evolution;

we then obtain the hydrodynamic equations in the Boussinesq approximation Bous-
sinesq, 1903

∂uj
∂xj

= 0 (64)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+
(

1 +
δρ

ρ0

)

Xi + ν∇2ui (65)

∂T

∂t
+ uj

∂T

∂xj
= k∇2T (66)

where ρ0 is the density for the reference state, δρ is the density variation respect to
ρ0, ν = µ/ρ0 is the kinematic viscosity and k = ξ/ρ0CV is the thermal diffusivity of
the fluid.
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The

Reaction–Diffusion–Convection

System

Instability scenarios by which a nonlinear system is driven to spatio–temporal
chaos have been extensively studied , pointing out a strict interplay between kinetics
and hydrodynamics.

The emergence of spatio–temporal patterns and self–organized structures like tra-
veling waves and rotating spirals is, in fact, governed by the coupling of chemical
reactions and transport phenomena Abramian, Vakulenko e Volpert, 2003; Agladze,
Krinsky e Pertsov, 1984; Cross e Hohenemberg, 1993; Gaponenko e Volpert, 2003;
Q.Ouyang e J.-M.Flesselles, 1996.

Kinetics–hydrodynamics coupling has also been invoked to explain the onset of tem-
poral chaos in oscillating chemical systems such as Belousov–Zhabotinsky reaction,
in which hydrodynamic control seems to regulate the onset of chemical turbulence .
This hypothesis is confirmed by experimental evidence for chaotic transients in BZ
unstirred systems Agladze, Krinsky e Pertsov, 1984, in which a strict dependence on
(i) stirring Biosa, Bastianoni e Rustici, 2006, (ii) viscosity Rustici et al., 2001 and
(iii) reactor geometry Liveri et al., 2003 has been observed.

A convenient formalism used to describe such systems is the so called RDC
(Reaction-Diffusion-Convection) model, a more general extension of the Reaction–
Diffusion (RD) system with a third term (C) that considers the influence exerted
by the gravitational field on the RD instabilities Wu et al., 1995. In this way dif-
fusion of the main intermediate species and natural convection are coupled to the
kinetic mechanism. To this end, a set of nondimensional equations is derived, cou-
pling oregonator kinetics with diffusion and taking into account, specifically, the
convective motions induced by gradients of density only ascribed to concentration
inhomogeneities.

In this chapter we present the mathematical model used to describe our RDC
system and in the next its translation to an opportune Fortran code for numerical
simulations.

0.16 RDC equations

In order to obtain our PDE system, we have to opportunely modify the kinetic
equations 39 and 40, by taking into account the concentration of starting reagents

lxi
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Figura 23: bidimensional representation of a RDC problem

a and b

dx

dτ
=

1

ǫ

[

x(a − x)− x− qa

x+ qa
fbz

]

(67)

dz

dτ
= ax− bz (68)

We can now couple them to the diffusive term given by Fick’s second law (51) and
the Navier-Stokes equations (60) , along with the convective term V∇Ci , where V

is the velocity field and Ci are the concentrations of intermediate species expressed
by x and z. We must also consider the state equations for density (61 - 62) and the
hydrodynamic equations formulated in Boussinesq’s approximation (64 - 66). For the
sake of simplicity, the concentrations of reactants are represented by Ci , the cartesian
coordinates by x̂ and ŷ and P = p − ρ0gẑ is the reduced pressure. The problem is
then presented by means of the vectorial components of the velocity U (along the
x̂-axis) and V (along the ŷ-axis). We are thus approximating a three-dimensional
problem to a bidimensional slab in which ŷ represents the vertical component along
which the gravity force acts Wu et al., 1995 (figure 23).

∂tCi + U∂x̂Ci + V ∂ŷCi −Di∇2Ci = Ki(Cj , λ̄) (69)

∂tU + U∂x̂U + V ∂ŷU +
1

ρ0
∂x̂P − ν∇2U = 0 (70)

∂tV + U∂x̂V + V ∂ŷV +
1

ρ0
∂ŷP − ν∇2V

= −g
2

∑

i=1

βi(Ci − C0i)

(71)

∂x̂U + ∂ŷV = 0 (72)
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where Ci and Ki(Cj , λ̄) are the species concentrations and the kinetic equations of
a general chemical process, λ̄ is the set of kinetic parameters and P is the pressure.
Di is the diffusion coefficient of i th intermediate species, ν is the kinematic viscosity
and g the gravitational acceleration. The sum in the right hand of equation 71
substitutes the term (ρ− ρ0)/ρ0, which is the density variation due to the change of
concentration of the i th species with respect to the medium density ρ0. As a matter
of fact, when temperature gradients can be neglected, ρ can be expressed as

ρ = ρ0

[

1 +
∑

i

βi(Ci − C0i)
]

(73)

To obtain the dimensionless equations we consider the time scale t0 to be equal
to the chemical time scale of the dimensionless kinetic model; the space scale x̂0
measures the spatial domain. We consider the following transformation to dimen-
sionless (barred) variables: t̄ = t/t0; x̄ = x̂/x̂0; ū = U/v0; v0 = ν/x̂0; p̄ = P/p0 with
p0 = (ρ0x̂0v0)/t0. Furthermore we write the dimensionless concentrations and the
relative kinetic functions in lower case style. The equation system reads:

∂t̄ci −
Di t0
x̂20

∇2ci +
v0t0
x̂0

(u∂x̄ci + v∂ȳci) = ki(cj , λ̄) (74)

∂t̄ū− νt0
x̂20

∇2ū+
v0t0
x̂0

(ū∂x̄ū+ v̄∂ȳū) +
t0

x̂0v0ρ0
p0∂x̄p̄ = 0 (75)

∂t̄v̄ −
νt0
x̂20

∇2v̄ +
v0t0
x̂0

(ū∂x̄v̄ + v̄∂ȳv̄) +
t0

x̂0v0ρ0
p0∂ȳp̄

= −gt0
v0

∑

i

βi(ci − c0i)
(76)

∂x̄u+ ∂ȳv = 0 (77)

neglecting the bars upon the dimensionless variables and introducing some new
parameters, the system becomes:

∂tci − di∇2ci +Dν(u∂x̂ci + v∂ŷci) = ki(cj , λ̄) (78)

∂tu−Dν∇2u+Dν(u∂x̂u+ v∂ŷu) + ∂x̂p = 0 (79)

∂tv −Dν∇2v+Dν(u∂x̂v + v∂ŷv) + ∂ŷp

= −Dν

∑

i

Gri(ci − c0i)
(80)

∂xu+ ∂yv = 0 (81)
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where di , the dimensionless diffusion coefficient and Gri , the Grashof number

of the i th species, are the set of control parameters µ used in our study

µ =















di =
Di t0
x̂20

Gri =
gx̂30βi
ν2

(82)

while Dν = νt0/x̂
2
0 is the dimensionless viscosity. It is worth noticing that the term

(ci − c0i), which is normally included in the Grashof number for systems where the
concentration gradient is fixed, is here kept out since it dynamically varies in time
and space. HoweverGri is still dimensionless since ci are dimensionless. It represents
the entity of convection only ascribed to isothermal density changes Bockmann, Hess
e Muller, 1996; Cliffe, Taverner e Wilke, 1998 and is related to the hydrodynamic
instability, giving the balance between momentum and viscosity forces acting in the
system. The temperature terms are neglected since it has been demonstrated that
diffusion of chemicals is two orders of magnitude smaller than thermal diffusivity
and has a stronger influence for the onset of convection Pojman e Epstein, 1990;
Vasquez, Wilder e Edwards, 1993; Wilder, Edwards e Vasquez, 1992.
The set of equation can be written in the more condensed form:

∂tci − di∇2ci +Dν(v · ∇)ci = ki(cj , λ̄) (83)

∂tv −Dν∇2
v +Dν(v · ∇)v +∇p = −Dν

∑

i

Gri(ci − c0i) (84)

∇ · v = 0 (85)
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0.17 The model

The term ∇p can be eliminated by taking the curl of both sides of equation 84.
We therefore introduce the vorticity as

w = ∇× v (86)

and the stream function as

ψ =

{

u = ∂yψ

v = −∂xψ
(87)

and we get the w − ψ form of our Reaction–Diffusion–Convection (RDC) model for
a general chemical process2

∂ci(x̂, ŷ; t)

∂t
+Dν

(

u
∂ci(x̂, ŷ; t)

∂x̂
+ v

∂ci(x̂, ŷ; t)

∂ŷ

)

− di∇2ci(x̂, ŷ; t) = ki(cj , λ̄)

(88)

∂w(x̂, ŷ; t)

∂t
+Dν

(

u
∂w(x̂, ŷ; t)

∂x̂
+ v

∂w(x̂, ŷ; t)

∂ŷ

)

−Dν∇2w(x̂, ŷ; t) = −Dν

∑

i

Gri
∂ci(x̂, ŷ; t)

∂x̂

(89)

∂2ψ(x̂, ŷ; t)

∂x̂2
+
∂2ψ(x̂, ŷ; t)

∂ŷ2
= −w(x̂, ŷ; t) (90)

u =
∂ψ(x̂, ŷ; t)

∂ŷ
(91)

v = −∂ψ(x̂, ŷ; t)
∂x̂

(92)

We also impose the following boundary conditions:

1. no-flow (Dirichlet’s condition) for the chemical concentrations at the wall of
the slab (the extremes of the space domain are 0 ≤ x̂ ≤ a and 0 ≤ ŷ ≤ b)

[∂ci(x̂, ŷ; t)

∂x̂

]

0,a
=

[∂ci(x̂, ŷ; t)

∂ŷ

]

0,b
= 0 (93)

2. no-slip (von Neumann’s condition) for the fluid velocity

∂u

∂x̂
+
∂v

∂ŷ
= 0 (94)

2This model has been developed in 2000 by Dr. M. Masia in his MSc degree thesis.
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Figura 24: bidimensional integration grid

0.18 Computational methods

The mathematical formulation of our problem is thus defined by a set of parabolic
partial differential equations, because of the presence of first order temporal and
second order spatial derivatives

∂ϕ

∂t
=

(∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

(95)

Such kind of problems are generally integrated over spatio-temporal grids to ob-
tain numerical solutions with different numerical methods (see appendix 0.36), once
initial and boundary conditions are known Smith, 1965.

0.18.1 Alternating direction implicit method

This section is concerned with the numerical solution method adopted in our mo-
del - the ADI (alternating direction implicit) method - to solve a parabolic equation
of this kind

∂ϕ

∂t
=

(∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

(96)

over a rectangular region 0 ≤ x ≤ a, 0 ≤ y ≤ b, where ϕ is known initially at all
points within and on the boundary of the rectangle, and is known subsequently at
all points on the boundary. The coordinates (x, y, t) of the nodes of the solution
domain are x = iδx, y = j δy, t = nδt, where i , j ,n are positive integers; we also
denote the values of ϕ at these nodes by ϕ(iδx, j δy,nδt) = ϕi ,j ,n (figure 24). The
explicit finite-difference representation of equation 96

ϕi ,j ,n+1 − ϕi ,j ,n

δt
=

k

(δx)2
(ϕi−1,j ,n − 2ϕi ,j ,n + ϕi+1,j ,n)

+
k

(δy)2
(ϕi ,j−1,n − 2ϕi ,j ,n + ϕi ,j+1,n)

(97)

Luigi Ciotti Tesi di Dottorato in Scienze Chimiche Università degli Studi di Sassari



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

appears attractively simple but is computationally laborious because the condition
for its validity, which is

k
[ 1

(δx)2
+

1

(δy)2

]

δt ≤ 1

2
(98)

necessitates extremely small values for δt. For most problems it is an impractical
method. The Crank-Nicolson method, namely

ϕi ,j ,n+1 − ϕi ,j ,n

δt
=
k

2

[

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
)i ,j ,n

+ (
∂2ϕ

∂x2
+
∂2ϕ

∂y2
)i ,j ,n+1

]

(99)

is valid for all values of x = iδx, y = j δy and t = nδt, but it requires the solution
of (M − 1)(N − 1) simultaneous algebraic equations for each step forward in time,
where Nδx = a and Mδy = b. Unlike the 1-dimensional case they cannot be solved
by a simple recursive process. For large values of M and N they would usually be
solved iteratively.

The most efficient method at present, for rectangular regions, is the ADI method
proposed by Peaceman and Rachford in 1955 Peaceman e Rachford, 1955 it involves
about twenty-five time less work than the explicit method and seven times less
work than the Crank-Nicolson method. Let assume that the solution is known
for time t = nδt. The ADI method consists of replacing only one of the second-
order derivatives, ∂2ϕ/∂x2 say, by an implicit difference approximation in terms of
unknown values of ϕ from the (n+1)th time-level, the other second-order derivative,
∂2ϕ/∂y2, being replaced by an explicit finite-difference approximation. Application
of the corresponding finite-difference equation to each of the (N − 1) nodes along a
row parallel to the x-axis (figure 24) gives (N−1) equations for the (N−1) unknown
values of ϕ at these nodes for time t = (n + 1)δt. When there are (M − 1) rows
parallel to the x-axis, the advancement of the solution over the whole rectangle to
the (n + 1)th time steps involves the solution of (M − 1) independent systems of
equations, each system containing (N − 1) unknowns.

ϕi ,j ,n+1 − ϕi ,j ,n

kδt
=
ϕi−1,j ,n+1 − 2ϕi ,j ,n+1 + ϕi+1,j ,n+1

(δx)2

+
ϕi ,j−1,n − 2ϕi ,j ,n + ϕi ,j+1,n

(δy)2

(100)

The advancement of the solution to the (n + 2)th time level is then achieved by
replacing ∂2ϕ/∂y2 by an implicit finite-difference approximation and ∂2ϕ/∂x2 by
an explicit one, and writing down the finite-difference equation corresponding to
each node along columns paralles to the y-axis. This gives (N − 1) independent
systems of equations, each system involving (M − 1) unknowns. The time interval
δt must be the same for each advancement.

ϕi ,j ,n+2 − ϕi ,j ,n+1

kδt
=
ϕi−1,j ,n+1 − 2ϕi ,j ,n+1 + ϕi+1,j ,n+1

(δx)2

+
ϕi ,j−1,n+2 − 2ϕi ,j ,n+2 + ϕi ,j+1,n+2

(δy)2

(101)
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The solution of these systems is much easier than the solution of the (M−1)(N−1)
algebraic equations associated with fully implicit methods. The system of equations
involved is symmetric and tridiagonal (banded with bandwidth 3), and is typically
solved using tridiagonal matrix algorithm. It can be shown that this method is
unconditionally stable and second order in time and space.
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The code

The mathematical model used in our study has been translated to an opportune
code that solves partial differential equations with the method of finite difference
with alternating direction Press et al., 1992. It has been developed in a Fortran 77
language3 and modified in a vectorizable Fortran 90 code4, in order to reduce the
simulation time required for a calculation. At this moment, a 30 million temporal
steps simulation can be carried out in 24 hours, instead of some months. The name
of last version of the code used in the nonlinear dynamics group is oregon.f90.

0.19 The concentration functions

Let’s discuss the application of ADI method to one of the equations of the
Reaction-Diffusion-Convection PDE system (equations 88 - 94), namely equation
88 and its kinetic relative 39.
We run over the discretized x-axis (i cursor) to solve the system for the time n+1/2:

ξ
n+1/2
i ,j − ξni ,j

τ/2
−Di

[

ξ
n+1/2
i+1,j − 2ξ

n+1/2
i ,j + ξ

n+1/2
i−1,j

h2

−
ξni+1,j − 2ξni ,j + ξni−1,j

h2

]

+Dν

[

uni ,j
ξ
n+1/2
i+1,j − ξ

n+1/2
i−1,j

2h

+ vni ,j
ξni ,j+1 − ξni ,j−1

2h

]

=
1

ǫ

[

ξni ,j (1− ξni ,j ) + fχn
i ,j

q − ξni ,j
q + ξni ,j

]

(102)

where ξ = c1 and χ = c2 refer to HBrO2 and Ce4+, respectively. We now proceed
over the discretized y-axis (j cursor) to solve the system for the time n + 1

ξn+1
i ,j − ξ

n+1/2
i ,j

τ/2
−Di

[

ξ
n+1/2
i+1,j − 2ξ

n+1/2
i ,j + ξ

n+1/2
i−1,j

h2

−
ξn+1
i+1,j − 2ξn+1

i ,j + ξn+1
i−1,j

h2

]

+Dν

[

uni ,j
ξ
n+1/2
i+1,j − ξ

n+1/2
i−1,j

2h

+ vni ,j
ξn+1
i ,j+1 − ξn+1

i ,j−1

2h

]

=
1

ǫ

[

ξni ,j (1− ξni ,j ) + fχn
i ,j

q − ξni ,j
q + ξni ,j

]

(103)

3Prof. V. Volpert, Université de Lyon
4Dr. P. C. Cresto, Universitá di Sassari
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Clearly, in the first step terms in x direction are calculated by means of the implicit
approximation, while explicit approximation is used proceeding along the y direction.
Viceversa, for the second time step, the computation is explicit while running over
the x direction and implicit in the y direction.

Equation 102, and similarly equation 103, can be re–written with the unknown
terms for the time (n + 1/2) as a function of known terms at time n.

ξ
n+1/2
i ,j

τ/2
−Di

[

ξ
n+1/2
i+1,j − 2ξ

n+1/2
i ,j + ξ

n+1/2
i−1,j

h2

]

+Dνu
n
i ,j

[

ξ
n+1/2
i+1,j − ξ

n+1/2
i−1,j

2h

]

=
ξni ,j
τ/2

+Di

[

ξni+1,j − 2ξni ,j + ξni−1,j

h2

]

−Dνv
n
i ,j

[

ξni+1,j − ξni−1,j

2h

]

+
1

ǫ

[

ξni ,j (1− ξni ,j ) + fχn
i ,j

q − ξni ,j
q + ξni ,j

]

(104)

We have then to deal with 3 fundamental unknowns for time (n + 1/2):

ξ
n+1/2
i+1 , ξ

n+1/2
i and ξ

n+1/2
i−1

where j is fixed. In other terms the problem can be re–written in the form

A(i−1,j )ξi−1,j +B(i ,j )ξi ,j + C(i+1,j )ξi+1,j = Fi ,j (105)

where A(i−1,j ), B(i ,j ), C(i+1,j ) represent the expression for ξi−1,j , ξi ,j and ξi+1,j

respectively, while Fi ,j includes the known terms for the time level n. This formula,
extended to all the points of the j–th row, generates a tridiagonal matrix M, so
that we can re–write equation 105 as

Mξ̄ = F̄ (106)

In this notation j is neglected, i is the cursor along x direction and k is the index
of the m terns (A(i−1,j ), B(i ,j ), C(i+1,j )) to be considered to solve the concentration
profile over the j–th row. The solution of this linear system of equations requires the
imposition of suitable boundary conditions. In this case we can use Dirichlet boun-
dary conditions,that sets the borders of the spatial domain equal to zero: ξ(1,j ) = 0
and ξ(m,j ) = 0, along the x direction and ξ(i ,1) = 0 and ξ(i ,n) = 0, along the y
direction. We can also impose the Von Neumann (no–flow) boundary conditions by
which a concentration plateau is introduced at the borders of the spatial domain:
ξ1 = ξ2 and ξm−1 = ξm along the x axis and ξ1 = ξ2 and ξn−1 = ξn along the y
direction. This condition allows us to write the form

ξm−1 = Aa(m−1)ξm +Bb(m−1) (107)

and, being ξm−1 = ξm , then

ξm−1 =
Bb(m−1)

(1−Aa(m−1))
(108)
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The result of these considerations leads to the bidiagonal form of the previous matrix

M =



















1 Aa(1,2) 0 ··· ··· 0 0 0

0 1 Aa(2,3) 0 ··· 0 0 0

0 0 1 Aa(3,4) 0 0 0 0

0 0
...

...
... 0 0 0

0 ··· 0 0 1 Aa(k,i+1) 0 0

0 ··· 0
...

...
... 0 0

0 ··· 0 0 0 1 Aa(m−1,m−2) 0
0 ··· 0 0 0 0 0 1



















(109)

and consequently

Mξ̄ =



















0
Bb(2)
Bb(3)

...
Bb(i)

...
Bb(m−1)

0



















(110)

which can be directly solved starting from the boundary value ξm and following the
algorithm

ξm−1 = Aa(m−1)ξm +Bb(m−1) (111)

0.20 The output files

The spatial configurations of concentrations of HBrO2 and Ce4+ are recorded
in output files named bro(ce)________.dat at a time specified by the parameter
wrstep (see appendix 0.36.5). The dashed line in the filename is a eight-digits
integer given by 100×ht, where ht is the temporal integration step. This operation
is also reiterated along the y direction for all j , in order to scan the entire solving
grid and to build up the temporal evolution for the concentrations. In appendix
0.36.5 an example of the implementation of the algorithm in the FORTRAN 90
programming language is described. The same method is used to solve equations for
vorticity w and stream function ψ (see equations 86-94). The temporal evolution
of chemical oscillations is written in the output file timeav.dat, which contains
the average values for concentrations of HBrO2 and Ce4+ (see appendix 0.36.5).
This file contains also the temporal average values of vorticity and stream function
(psi________.dat), as described in table 8.

0.21 Initial conditions

The initial distribution of concentrations over the integration grid is formulated
in order to produce a dishomogeneous situation, typical of reaction–diffusion system.
In this way, convective motions occur under the influence exherted by gravitational
field and opportune conditions of the medium viscosity. Therefore the functions
describing initial concentrations were set according to the model for a reaction-
diffusion BZ system proposed in Jahnke, Skaggs e Winfree, 1989, the so-called step
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Columns Contents
1 wrstep

2 [HBrO2]av
3 [Ce4+]av
4 [HBrO2]stdev
5 [Ce4+]stdev
6 wav

7 ψav

Tabella 8: the structure of output file timeav.dat

Figura 25: initial [Ce4+] distribution

functions, used in the simulation of spiral waves (figure 25)

c01 =

{

0.8, 0 < θ < 0.5

c1(ss), elsewhere.
(112)

c02 = c2(ss) +
θ

8πf
(113)

where c2(ss) = c1(ss) = q(f + 1)/(f − 1), θ is the polar coordinate angle and, as
suggested by the experimental results about the influence of the initial concentrations
on the onset of chaos, the original function for c02 was multiplied by a factor of 1.3.
The resulting Fortran translation is in appendix 0.36.5.

0.22 The input file

The input file param.dat allows the regulatation of the following set of values

• initial parameters;

• kinetic parameters, useful to control the chemistry of our system, so that it
can be set to an opportune region of the phase space;

• hydrodynamic parameters;

Luigi Ciotti Tesi di Dottorato in Scienze Chimiche Università degli Studi di Sassari



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

• dimensionless diffusivity di and Grashof numbers Gri : they constitute the
set of µ control parameters considered in this study in order to follow the
dynamical evolution of our system.

The input file is structured in a manner that makes possible to evaluate the different
effects of reaction–diffusion–convection on system dynamics in a separate way

m = 101

nf = 150000001

wrstep = 10001

Gr1 = 10.00000

Gr2 = 10.00000

d1 = 0.02000

visc = 1.00000

eps = 0.00005

ff = 1.60000

q = 0.01000

A = 1.00000

B = 1.00000

t1_default_value = 0.80000

init_ce = 1.33333

The first three parameters represent: the number m of points in the integration grid,
the number nf of temporal steps in a single simulation and wrstep is the time every
spatial configuration is recorded. The second group of parameters are the Grashof
number Gri for the two main intermediate species, the dimensionless diffusivity di
and the dimensionless viscosity Dν .
Lastly, we have the kinetic parameters for oregonator model: ǫ, f , q.
A is the initial concentration of BrO−

3 , B the initial concentration of malonic acid,
init_ce the initial concentration of the catalyst Ce4+, t1_default_value the stan-
dard value for step functions.

Numerical integration was performed using the time step of 1.0 × 10−6 on a
square grid of 100 points in each direction. The temporal scale applied to the
system is the same imposed in the dimensionless form of the kinetic oregonator
functions (t0 = 1/(k0B = 21s = oregonator time unit, otu). The spatial scale
x0 is arbitrarily set to 0.06 cm, equal to the minimum spatial domain for which
we experimentally observe chaotic dynamics in a Belousov–Zhabotinsky unstirred
system. Dimensionless viscosity Dν = 58.50, ν being the kinematic viscosity set
equal to the water viscosity 0.01 cm2s−1. Grashof numbers and diffusivities range
Gri ∈ {0.00, 12.50} and di ∈

{

1.5× 10−7, 1.5× 10−6
}

where, for sake of simplicity,
we set Gr1 = Gr2 and d1 = d2. Diffusivity in param.dat file is expressed as df and
ranges from 0.01 to 0.10, due to the fact that df = di/(1.5× 10−5cm2s−1).

The decision to use a range for di from one to two orders of magnitude inferior
to the value of 1.5 × 10−5cm2s−1 indicated in Jahnke, Skaggs e Winfree, 1989; Wu
et al., 1995 arises from the fact that in our simulations any RDC coupling hasn’t
never been observed for this value. Probably, the order of magnitude reported in
literature for BZ active species is greater than that accessible by convective motions
resulting from concentration gradients.
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Figura 26: [Ce4+] spatial distribution at di = 6.0× 10−7

0.23 The model at work

The formulation of the code and the structure of the input file provide a very
functional way to study a complex RDC system, breaking it into simpler forms
Budroni et al., 2008; Marchettini et al., 2010.

In other words, we can neglect the influence of convection and deal with a reaction–
diffusion (RD) system, or even ignore the coupling with diffusion, in order to study
only chemical oscillations (R system). For instance, setting Grashof numbers Gri
and diffusivities di equal to zero, the plot of temporal evolution file timeav.dat for
chemical spatial concentrations allows one to immediately perform important quali-
tative analysis. A simpler R system will give periodic temporal chemical oscillations
of the two main intermediate species [HBrO2] and [Ce4+] (figure 48), characterized
by a single main frequency of ω1 = 0.394 ofu and its principal harmonics in the
FFT amplitude spectrum. The (c1, c2) phase space will show a limit cycle attrac-
tor, typical of periodic dynamics. The 3d plot of the spatial concentration of the
intermediate species has the shape as in figure 25.

Keeping fixed Gri = 0 and increasing di , we observe the coupling between orego-
nator kinetic functions and diffusivity. The 3d spatial configuration of intermediates
immediately changes, giving rise to a well-shaped spiral wave, typical of a reaction-
diffusion (RD) system (figure 26). In figure 27 we also show temporal series and
fft spectrum for the RD system. It is clear that dynamics continues to be periodic,
with a decrease in the amplitude of the oscillations and a shift in the frequency of
limit cycle to higher values (ω1 = 0.740 ofu), as shown in fft spectrum, due to the
effective coupling between kinetics and diffusion. To be more precise, a frequency
shift occurs in fft spectrum when diffusivity increases, as shown in figure 28. This
behavior seems to be related to the increase in rotational speed of spiral waves, when
diffusivity change (figure 29).

Things dramatically change when we introduce the convective term, so that a
RD system becomes a RDC one. The next chapter reports in detail the qualitative
study carried out in this project, where we show that natural convection, modeled
according to our PDE system, is the main responsible for the transition to chemical

Luigi Ciotti Tesi di Dottorato in Scienze Chimiche Università degli Studi di Sassari



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

100 120 140 160 180 200
0.0

0.4

0.8

time (oregonator time units, otu)

[H
B

rO
2
]

(a) temporal evolution of
concentration

0.0 0.5 1.0 1.5 2.0

5.0.103

1.0.104

1.5.104

2.0.104

frequency (oregonator frequency units, ofu)

a
m

p
lit

u
d
e

1 2 1 3 1 4 1

(b) FFT amplitude spec-
trum

0 20 40 60 80 100

0.05

0.10

0.15

0.20

time (oregonator time units, otu)

[H
B

rO
2
]

(c) temporal evolution of
concentration

0.0 0.5 1.0 1.5 2.0

1000.0

2000.0

3000.0

4000.0

5000.0

frequency (oregonator frequency units, ofu)

a
m

p
lit

u
d
e

2 1

1

(d) FFT amplitude spec-
trum

Figura 27: the R (a–b) and RD (c–d) systems

0.4 0.6 0.8 1.0
0

2000

4000

6000

frequency (oregonator frequency units, ofu)

am
p

li
tu

d
e

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

diffusivity factor

Figura 28: frequency shift for di = 1.5× 10−7 − 10−6 and Gri = 0
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(a) df = 0.02 (b) df = 0.03 (c) df = 0.04 (d) df = 0.05

(e) df = 0.06 (f) df = 0.07 (g) df = 0.08 (h) df = 0.09

(i) df = 0.10

Figura 29: increase in rotation speed of spiral waves induced by variation of diffusivity in
the range 3.0× 10−7 (a) – 1.5× 10−6 (i) for a pure RD system (Gri = 0)

chaos observed experimentally in Belousov–Zhabotinsky unstirred systems. Moreo-
ver, we notice a hydrodynamic competition between diffusivity and Grashof number
for the stability states of our dynamic model, both in temporal and spatio-temporal
evolution.
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Spatio-Temporal chaos

In a RD model, the diffusion breaks the symmetry of the kinetic system and
introduces an instability that leads to new stable solutions, which have the form
of characteristic dissipative structures. Therefore, we can imagine the reaction-
diffusion-convection (RDC) system as an extension of the reaction-diffusion model,
in which the addiction of a convective term will result in a sort of competition with
diffusion for the new states of stability for the system Q.Ouyang e J.-M.Flesselles,
1996.

However, a range of values of Grashof numbers Gri will exist, for which the RDC
coupling corresponds to a kind of inertia respect to the diffusive regime: the rotating
solution imposed by diffusion still assumes a preminent role. As Grashof numbers
increase, the system will reach a critical point in which the instability due to the
convective motions assumes a prevaricating character and the system dynamics will
evolve to new regimes driven by hydrodynamics, with a route to chaos similar to the
transition to turbulence observed in fluids Belk e Volpert, 2004; Ducrot e Volpert,
2005; Gaponenko e Volpert, 2003; Gollub e Benson, 1980; Guzmán e Amon, 1994;
McLaughlin e Orszag, 1982; Molenaar, Clercx e Heijst, 2005.

In figure 30 we illustrate the effect induced by convection on the shape of spiral
wave concentration: as Grashof number increases, distortion and also breaking of
the spiral wave occurs Budroni et al., 2009; Jahnke, Skaggs e Winfree, 1989, resulting
in spatio–temporal chaos Biktashev, Holden e Tsyganov, 1998; Pérez-Villar et al.,
2002; Ramos, 2001; Sandstede, Scheel e Wulff, 1999.

Although the effects of hydrodynamics in a oscillating RDC system has been
extensively studied, a comprehensive understanding on the relative, separate role
played by diffusion and convection in terms of stability of periodic solutions is mis-
sing. Experimental attempts to shed light on these aspects (see for example Rossi
et al., 2005) have pointed out the difficulty to control the species diffusivity without
affecting other variables and suggest that a numerical approach is in this context
not only convenient but necessary.

In this chapter we give a comparative overview of the effect associated to the main
transport phenomena on system dynamic evolution, by extending the exploration of
the RDC system 88–94, to a significant domain of the (Gri ,di) parameter space.

To this end we perform a set of numerical simulations of the RDC model, ranging
Gri ∈ [0.00, 12.50] and di ∈ [10−7, 10−6]× 1.5, setting, for sake of simplicity, Gr1 =
Gr2 and d1 = d2. In detail the dynamic evolution of the system is followed by the
variation of one parameter, holding the other fixed at a determined value.

In previous studies we interestingly pointed out that local and spatially averaged
properties of the oscillating RDC system behave coherently to each other Budroni,
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(a) Gri = 2.0 (b) Gri = 4.0 (c) Gri = 6.0

(d) Gri = 9.8 (e) Gri = 9.9 (f) Gri = 10.0

Figura 30: distortion and breaking of spiral waves induced by convection (Gri > 0) at
di = 6.0× 10−7

Rustici e Tiezzi, 2011. In this way all the information on the system dynamics is
preserved if we record the species concentration averaged over the spatial domain
〈ci(x̂, ŷ; t)〉 as a function of time. As a matter of fact it is what one experimentally
does following spectrophotometrically the Belousov–Zhabotinsky reaction in a clo-
sed and unstirred reactor. The resulting time series are directly analyzed by means
of Fast Fourier Transform (FFTs), in order to detect the emergence of new dyna-
mical regimes as the control parameters are varied. Chaotic series are characterized
calculating the Maximal Lyapunov Exponent (MLE) λi using the Kantz’s algorithm
(see appendix V).

0.24 Grashof number as control parameter

We observe that when Gri lies in the interval (0.00− 9.70), intermediate species
(and coherently all the system properties) oscillate according to a periodic or bipe-
riodic dynamics for the whole range of di examined. To be more precise, the FFT
spectra of 〈ci(x, y; t)〉 temporal series reveal one distinct main frequency ω1 = 0.394
ofu (oregonator frequency units) for Gri up to 9.00. Along with ω1 = 0.394 we can
recognize a frequency halving n × ω1

2 (n ∈ N
+) as Gri = 9.40 (figure ??, appen-

dix ??). The periodicity of the new solution presents a retard with respect to the
convectionless stationary state probably because of the hydrodynamic inertia.

The interesting part of the bifurcation diagram is concentrated in the range
Gri ∈ [9.40, 10.00] and di ∈ [3.0 × 10−7, 1.5 × 10−6], where the system exhibits
transitions to complex oscillations, as illustrated in appendix ?? by the following

• figure ??,

• figure ??,

• figure ??
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For instance, if we fix di = 6 × 10−7 and increase the hydrodynamic parameter up
to the value 9.70, a first supercritical Hopf bifurcation occurs, driving the system
from periodic to quasi-periodic dynamics. System oscillations are characterized by
the appearance of a new frequency ω2 = 0.536 ofu in the FFT spectrum, (typical of
a toroidal attractor in the phase space), whose ratio to ω1 is an irrational number
(figure ??).
As the Grashof numbers are further increased up to Gri = 9.80, the quasiperiodic
dynamics is forced to temporal chaos: the system dynamics undergoes to a series of
supercritical pitchfork bifurcations, clearly shown in the FFT spectrum (figure ??)
where the main frequency ω1 and the relative subharmonics n × ω1

2m (m,n ∈ N
+)

are present in addition to ω2. This dynamics is associated with a multi–periodic
toroidal-like attractor that eventually collapses into a strange attractor (figure ??).
The route to chaotic oscillations can be schematized as follows: P (periodic) → QP 2

(quasiperiodic) → mP −QP 2 (m–period quasiperiodic) → C (chaotic).
Typically quasi–periodic forced systems follow a topological transition to chaos

(i) by a destruction of the torus–2 to simple cycle and than through some standard
route Ott, 1993 or (ii) through the emergence of an unstable torus–3, which collapses
into a fractal, chaotic object: the RTN scenario Rustici et al., 1996. Here the glo-
bal transition cannot be pertinently classified into a pure RTN scenario since from
quasi–periodicity the system undergoes a sequence of period–doubling bifurcations
to aperiodicity, combining a pure RTN with a period–doubling path of bifurcations.
This singular scenario has been shown for electronic systems (see for example Chan
e Tse, 1997), but it is quite rare for chemical oscillators.
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(a) df = 0.04 (b) df = 0.05 (c) Gri = 0.06

(d) df = 0.07 (e) Gri = 0.08 (f) df = 0.09

Figura 31: the shape of spiral wave is restored when di increases and Gri is fixed

0.25 Diffusivity as control parameter

Things drastically change when diffusion coefficient varies: starting from the
chaotic state previously found (let say Gri = 9.90) and keeping Gri fixed, an inverse
transition is observed as di increases from 6 × 10−7 to 1.5 × 10−6. In particular
the system dynamics moves from chaos to periodicity according to a pure RTN
scenario Rustici et al., 1999. In appendix ??, figures ??, ?? and ?? illustrate the
fundamental steps of this second transition, that can be summarized in the following
way: C (chaotic) → QP 2 (quasi–periodic) → BP (bi–periodic) → P (periodic).

Signal Linear combination Frequency (ofu)
ω1 - 0.394
ω2 - 0.536
ω3 - 0.505
α ω2 − ω1 0.142
β 2ω1 − ω2 0.252
γ 3ω1 − ω2 0.646
δ ω1 + ω2 0.930
ǫ ω2 − ω1 0.111
ζ 2ω1 − ω2 0.283
η ω2 − 0.5ω1 0.308
θ 2.5ω1 − ω2 0.480
ι 3ω1 − ω2 0.677
κ ω2 + 0.5ω1 0.702
λ 3.5ω1 − ω2 0.874
µ ω1 + ω2 0.899

Tabella 9: FFT spectra frequencies

In details, from aperiodicity (figure
??) at Gri ∈ [9.90, 10.00] and di =
6×10−7, the system dynamics is swit-
ched to a quasiperiodic regime via a
supercritical Hopf bifurcation at di =
7.5 × 10−7 (figure ??). As a matter
of fact a new frequency ω3, whose ra-
tio to ω1 is an irrational number, ap-
pears in the FFT spectrum at 0.505
ofu. Main linear combinations of two
frequencies are also evidenced in fi-
gure ??, appendix ??, and listed in
table 9. When diffusivity rises up to
9 × 10−7 a periodic (period–2) solu-
tion is found, characterized by ω1 and
the harmonics n× ω1

2 (figure ??). For
di = 1.35 × 10−6 the system finally
returns to simple periodic oscillations (figure ??).
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Figura 34: sensitivity to inital conditions for the chaotic state at Gri = 9.9 when [Ce4+] =
1.33333 (blue curve) and 1.33339 (red curve)

0.27 Frequency locking

A circle map is given by iterating the map

θn+1 = θn +Ω− K

2π
sin(2πθn) (114)

where 0 < θ < 1 is the polar angle, K is the coupling strength and Ω the driving
phase. For small to intermediate values of K (that is, in the range 0 < K < 1) and
certain values of Ω, the map exhibits a phenomenon called phase-locking.

Figura 35: bifurcation diagram
for circle maps

In a phase-locked region, the values θn advan-
ce essentially as a rational multiple of n, althou-
gh they may do so chaotically on the small sca-
le. The phase-locked regions, or Arnold tongues,
are illustrated in black in the bifurcation diagram
showed in figure 35, for Ω held fixed at 1/3, and
K running from 0 to 4π (horizontal axis). ap al-
so exhibits subharmonic routes to chaos, that is,
period doubling of the form 3, 6, 12, 24, . . .

In the description of both diffusion and con-
vection driven transitions, we intentionally ne-

glect to discuss narrow parameter windows within the quasiperiodic – chaotic re-
gions, where periodicity is found. The original route to chaos evidenced and the
occurrence of periodic intervals (figure 36) suggests that, similarly as in circle maps
Ott, 1993, there must be some characteristic relationship among critical parameters
which determines frequency-locking phenomena and deserves more detailed investi-
gation. This singular scenario has been shown for electronic systems (see for example
Chan e Tse, 1997) but is quite rare for chemical oscillators.
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Diffusion coefficients and

Molecular dynamics

In the previous chapter, we investigated the system dynamics in a particular
range of diffusion coefficients of intermediate species. We pointed out that reaction-
diffusion coupling does not occur if we assume a value of diffusion coefficient Di =
1.5× 10−5cm2s−1, as indicated in Jahnke, Skaggs e Winfree, 1989; Wu et al., 1995.

In this last chapter we would like to illustrate the results obtained from molecular
dynamics simulations in the prediction of a dynamic property such as diffusion
coefficient, in order to extend our discussions to the analysis of the RDC model in
exam, with particular attention to the experimental results obtained in our research
group.

This chapter is structured in the following way: in every section we briefly discuss
some basic concepts of molecular dynamics approach and we attach the results
obtained in our simulations for Ce3+ and HBrO2.

5

0.28 Molecular Dynamics

Molecular dynamics (MD) simulation is an essential technique to study a variety
of molecular properties including molecular diffusion Wang e Hou, 2011. It is useful
to study diffusion process not only in atomic details, but also under thermodynamic
conditions not easily reachable by experiments.

Concerning our study, we carried out molecular dynamics calculations of the
diffusion coefficients of Ce3+ and HBrO2. Every set of simulations, at different
levels of a potential hypersurface, has been carried out for 216 molecules of water
and 1 molecule of the intermediate species in the microcanonical ensemble. The
temperature fluctuations for every run is shown in figure 37.

For Ce3+ we used a force field consisting of a polarizable term, as reported in
M. Souaille, Spezia e Cartailler, 2007.

Concerning HBrO2, we used a GAFF potential Wang et al., 2004, whose van
der Waals parameters are inherited from traditional Amber force field Cornell et al.,
1995

5MD simulations have been carried only for Ce3+ and not for Ce4+, due to the lack of parameters
of force field potential for the last.
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Figura 37: temperature fluctuations in NVE ensemble

Figura 38: bending and torsional angles in HBrO2
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Epot =
∑

bonds

kr(r − req)
2 +

∑

angles

kθ(θ − θeq)
2

+
∑

dihedrals

vn
2
[1 + cos(nφ− γ)]

+
∑

i<j

{

4ǫij

[(σij
rij

)12
−
(σij
rij

)6]

+
qiqj
rij

}

(115)

where θ and φ are defined as in figure 48.
The set of molecular dynamics parameters used in our simulations are summa-

rized in appendix 0.36.5.

0.29 The radial distribution function

The radial distribution function (or RDF) is an example of a pair correlation
function, which describes how, on average, the atoms in a system are radially packed
around each other. This proves to be a particularly effective way of describing the
average structure of disordered molecular systems such as liquids.

Figura 39: RDF sche-
matic
representa-
tion

The RDF can be deduced also experimentally from x-ray
or neutron diffraction studies, thus providing a direct com-
parison between experiment and simulation. It can also
be used in conjunction with the interatomic pair potential
function to calculate the internal energy of the system,
usually quite accurately. To construct a RDF, we choo-
se an atom in the system and draw around it a series of
concentric spheres, set at a small fixed distance ∆r apart
(see figure 39). At regular intervals a snapshot of the sy-
stem is taken and the number of atoms found in each shell
is counted and stored. At the end of the simulation, the
average number of atoms in each shell is calculated. This
is then divided by the volume of each shell and the ave-
rage density of atoms in the system. Mathematically the
formula is

g(r) =
1

ρ

n(r)

4πr2∆r
(116)

where g(r) is the radial distribution function, n(r) is the mean number of atoms in
a shell of width ∆r at distance r, ρ is the mean atom density. All the atoms in the
system can be treated in this way, leading to an improved determination of the RDF
as an average over many atoms.

The RDF is usually plotted as a function of the interatomic separation r. A
typical RDF plot shows a number of important features. Firstly, at short separations
(small r) the RDF is zero. This indicates the effective width of the atoms, since they
cannot approach any more closely. Secondly, a number of obvious peaks appear,
which indicate that the atoms pack around each other in shells of neighbours. The
occurrence of peaks at long range indicates a high degree of ordering. Usually,
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Figura 40: RDF for Ce3+ and HBrO2

at high temperature the peaks are broad, indicating thermal motion, while at low
temperature they are sharp. They are particularly sharp in crystalline materials,
where atoms are strongly confined in their positions. At very long range every RDF
tends to a value of 1, which happens because the RDF describes the average density
at this range. In figure 40 a comparison plot for RDF of Ce3+ and HBrO2 shows an
important feature of our chemical system: cerium ions are geometrically well-packed
with water molecules in at least two different coordination spheres, as shown by a
first sharp peak that decays to zero and a second well-defined peak, whilst bromous
acid seems to be quite “hydrophobic”, showing a broad band at short distance.

0.30 The mean square displacement

Molecules in liquids and gases do not stay in the same place, but move about
constantly. The motion of an individual molecule in a dense fluid does not follow a
simple path. As it travels, the molecule is jostled by collisions with other molecules
which prevent it from following a straight line. If the path is examined in close detail,
it will be seen to be a good approximation to a random walk. Mathematically, a
random walk is a series of steps, one after another, where each step is taken in a
completely random direction from the one before. This kind of path was analyzed
by Albert Einstein in a study of Brownian motion and he showed that the mean
square of the distance travelled by particle following a random walk is proportional
to the time elapsed. This relationship can be written as

MSD =
〈

r2 (t)
〉

= 6Di t+ C (117)

where
〈

r2
〉

is the mean square displacement (or distance) and t is time. The symbol
〈〉 stand for an average over the number N of the particles of the system considered.

MSD =
〈

r2 (t)
〉

=
1

N

N
∑

i=1

r 2
i (t) (118)
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Di and C are constants. The constant Di is the most important of these and defines
the diffusion rate. It is called the diffusion coefficient.

What is the mean square distance and why is it significant? Imagine a single
particle undertaking a random walk. For simplicity we assume this is a walk in one
dimension. Each consecutive step may be either forward or backward, we cannot
predict which, though we can say we are equally likely to step forward as to step back:
a drunk man comes to mind! From a given starting position, the distance we are
likely to travel can be determined simply by adding together the steps, taking into
account the fact that steps backwards subtract from the total, while steps forward
add to the total. But since both forward and backward steps are equally probable,
we will come to the surprising conclusion that the probable distance travelled sums
up to zero. If however, instead of adding the distance of each step, we add the square
of the distance, we realize that we will always be adding positive quantities to the
total. In this case the sum will be some positive number, which grows larger with
every step. This obviously gives a better idea about the distance (squared in this
case) that a particle moves. If we assume that each step takes place at regular time
intervals, we can easily see how the square distance grows with time. In a molecular
system a molecule moves in three dimensions, but the same principle applies. Also,
since we have many molecules to consider, we can calculate a square displacement for
all of them. The average square distance, taken over all molecules, gives us the mean
square displacement. This is what makes the mean square displacement (or MSD
for short) significant in science: through its relation to diffusion it is a measurable
quantity, one which relates directly to the underlying motion of the molecules.

The linear dependence of the MSD plot is apparent. If the slope of this plot is
taken, the diffusion coefficient Di may be readily obtained from Einstein’s equation

∂
〈

r2 (t)
〉

∂t
= 6Di (119)

At very short times however, the plot is not linear. This is because that the path
a molecule takes will be an approximate straight line until it collides with its nei-
ghbour. Only when it starts the collision process its path will resemble a random
walk. Until it makes that first collision, we may say it moves with approximately
constant velocity, which means the distance it travels is proportional to time, and
its MSD is therefore proportional to the time squared. Thus at very short time, the
MSD resembles a parabola. This is of course a simplification - the collision between
molecules is not like the collision between two pebbles, it is not instantaneous in
space or time, but is “spread out” a little in both. This means that the behaviour of
the MSD at short time is sometimes more complicated than this MSD plot shows.

The implementation of a fortran 90 algorithm to calculate MSD is reported
in appendix 0.36.5. Figure 41 illlustrates the comparison between mean square
displacement plots calculated for the intermediate species of Belousov–Zhabotinsky
reaction.

0.31 The velocity autocorrelation function

The velocity autocorrelation function (VACF) is a prime example of a time de-
pendent correlation function, and is important because it reveals the underlying na-
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Figura 41: mean square displacement for Ce3+ (a) and HBrO2 (b)

ture of the dynamical processes operating in a molecular system. There is a special
case of a more general relationship between the VACF and the mean square displa-
cement, and belongs to a class of properties known as the Green-Kubo relations,
which relate correlation functions to so-called transport coefficients.

We can describe the distance r(t) a molecule moves in time as an integral of its
velocity v(t)

r(t) =

∫ t

0
v(u)du (120)

The square of this distance is thus

r2(t) =

∫ t

0

∫ t

0
v(u) · v(u′)dudu′ (121)

defining u′ = u + s and integrating over u, results in the following form where the
ensemble average has also been taken

〈

r2(t)
〉

= 2

∫ t

0
(t− s) 〈v(0) · v(s)〉 ds (122)

In this equation 〈v(0) · v(s)〉 is the velocity autocorrelation function VACF, so the
relationship between MSD and VACF is now apparent. This can also be written as

〈

r2(t)
〉

= 2t

∫ t

0
〈v(0) · v(s)〉 ds− 2

∫ t

0
s 〈v(0) · v(s)〉 ds (123)

What this integral shows is that the MSD is comprised of two parts. The first term
on the right includes the time t explicitly and if we assume that when t is large, the
VACF decays to zero (as it usually does) then the integral here will have a fixed
value. Since the second term also integrates to a fixed value for large t, we can see
that this equation is equivalent to Einstein’s, provided we assume that

3Di =

∫ t

0
〈v(0) · v(s)〉 ds (124)

and

C = −2

∫ t

0
s 〈v(0) · v(s)〉 ds (125)
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Figura 42: velocity autocorrelation function for Ce3+ (a) and HBrO2 (b)

when t is large. This is a very important result, as it shows how the diffusion
coefficient can be obtained from both the VACF and the MSD.

Consider a single atom at time zero. At that instant the atom i will have a
specific velocity vi . If the atoms in the system did not interact with each other,
the Newton’s Laws of motion tell us that the atom would retain this velocity for all
time. This of course means that all our points of VACF would have the same value,
and if all the atoms behaved like this, the plot would be a horizontal line. It follows
that a VACF plot that is almost horizontal, implies very weak forces are acting in
the system.

On the other hand, what happens to the velocity if the forces are small but
not negligible? Then we would expect both its magnitude and direction to change
gradually under the influence of these weak forces. In this case we expect the scalar
product 〈v(0) · v(s)〉 to decrease on average, as the velocity is changed. In such
a system, the VACF plot is a simple exponential decay, revealing the presence of
weak forces slowly destroying the velocity correlation. Such a result is typical of the
molecules in a gas.

What happens when the interatomic forces are strong? Strong forces are most
evident in high density systems, such as solids and liquids, where atoms are packed
closely together. In these circumstances the atoms tend to seek out locations where
there is a near balance between repulsive forces and attractive forces, i.e., the most
energetically stable positions. In solids these locations are extremely stable, and
the atoms cannot escape easily from their positions. Their motion is therefore an
oscillation: the atom vibrate backwards and forwards, reversing their velocity at the
end of each oscillation. If we now calculate the VACF, we will obtain a function
that oscillates strongly from positive to negative values and back again. The oscilla-
tions will not be of equal magnitude however, but will decay in time, because there
are still perturbative forces acting on the atoms to disrupt the perfection of their
oscillatory motion. So what we see is a function resembling a damped harmonic
motion. Liquids behave similarly to solids, but now the atoms do not have fixed
regular positions. A diffusive motion is present to destroy rapidly any oscillatory
motion. The VACF therefore may perhaps show one very damped oscillation (a
function with only one minimum) before decaying to zero. In simple terms this may
be considered a collision between two atoms before they rebound from one another
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and diffuse away. Figure 42 illustrate the different VACF calculated from MD simu-
lations for both Ce3+ and HBrO2. For cerium atoms we can observe the so-called
back scattering configuration, that suggests a well-packed coordination with water
molecules.

0.32 Prediction of diffusion coefficients

Table 10 summarizes the diffusion coefficients estimated by MSD and VAC calcu-
lations for intermediate Ce3+ and HBrO2. We can immediately see that Ce3+ ions
diffuse about 20 times slower than HBrO2. This behavior can be justified conside-
ring well-packed water-cerium ions and slightly hydrophobic bromous acid molecules,
as it results from RDF and VAC plots (figures 40 and 42) . The mean value between
VAC and MSD estimations corresponds to 1.38 × 10−6cm2s−1 (df = 0.09). This
value is a bifurcation point periodic↔biperiodic in our numerical study of stabili-
ty, as results from the second RTN scenario evidenced, with diffusivity as control
parameter and Grashof number fixed.

VACF MSD
Ce3+ 0.1450± 0.0265 0.1310± 0.0210
HBrO2 2.5827± 0.4795 2.6023± 0.4255

Tabella 10: average diffusion coefficients
(10−5cm2s−1)

The range of Di exhamined in
our nonlinear dynamical simulations
finds a counterpart in molecular dy-
namics calculations. The lower va-
lue of diffusion rate for Ce3+ ions
seems therefore to control the entity
of RDC coupling and can be consi-
dered as the main responsible for the
route to chaos observed when di varies.

From an experimental point of view, we can hence imagine that starting from
a value of cerium diffusivity of < 1.38 × 10−6cm2s−1, the system can be switched
through different dynamical scenarios by the variation of temperature Masia et al.,
2001, concentration of reactants Biosa et al., 2005, medium viscosity Rossi et al.,
2005. At this point, it becomes important to understand how the system dynamics is
affected by different diffusion coefficients and Grashof numbers: this will constitute
the natural extension of this work.
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Future perspectives

The study carried out for my doctoral dissertation has reached some interesting
goals and evidenced

• a competition between diffusion and convection for the dynamical stability of
a RDC system;

• a new route to spatio-temporal chaos in a chemical nonlinear system;

• a first estimation of diffusion coefficients of intermediate species of Belousov–
Zhabotinsky reaction by molecular dynamics simulations.

All the theoric results obtained have an important experimental interpretation
within the research in nonlinear chemistry carried out by our group.

The discussed pathway to chaos via a combined Hopf–Pitchfork bifurcation,
observed from a numerical point of view when Gri varies and Di is fixed, constitutes
a new achievement and deserves deeper and formal studies, as it is quite unusual
for chemical systems. Also some small windows of periodicity within quasiperiodic–
chaotic regions, which are fairly reminiscent of frequency–locking phenomena, should
be investigated in more detail in order to evaluate whether an RDC system can be
reasonably reduced to a particular case of a circle map.

The values of diffusion coefficients for intermediate species Ce3+ and HBrO2 in
Belousov–Zhabotinsky reaction, that have been estimated by MD simulations using
VAC and MSD calculations, indicate that the lower diffusion rate of Ce3+ controls, in
fact, the RDC coupling. These values should be now used for a comprehensive study
of our proposed RDC model, performing new simulations in which both intermediate
species have different diffusivity and also different Grashof numbers.
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Nonlinear Analysis

0.33 Stability

Consider a system – dissipative or conservative – evolving according to equation
123. We suppose that the system has reached, after a certain lapse of time, a
‘reference‘ state Xs on an invariant manifold. In principle, the system will remain
therein for ever and will undergo a dynamic behavior dictated by the particular type
of manifold considered.

Figura 43: geometric view of stability

In actuality, a real-world system ne-
ver stays in a single state as time va-
ries. As a result the instantaneous state
X(t) will continuously deviate from Xs

by an amount x(t), referred to as the
perturbation

X(t) = Xs + x(t) (126)

Xs is stable in the sense of Lyapunov
if, for any given neighborhood Uǫ of
Xs there esists a certain neighborhood
Uδ(ǫ) such that any trajectory emana-
ting from the interior of Uδ(ǫ) never lea-
ves Uǫ. Xs is unstable if no such nei-
ghborhood Uδ(ǫ) can be found. Xs is
asymptotically stable if it is stable and
if, in addition, any trajectory emanating
from the interior of Uδ(ǫ) tends to Xs as t → ∞. In other words, there is Lyapu-
nov stability if, for any ǫ > 0, there exists a δ(ǫ) > 0 such that for any X(0) with
|X(0) −Xs| < δ, one has |X(t) −Xs| < ǫ for all t ≥ 0. Asymptotic stability if, in
addition, |X(t) −Xs| → 0 as t → ∞. In this latter case Xs will be an attractor of
the dynamic system. Clearly then, asymptotic stability can hold only in dissipative
systems.

0.33.1 The principle of linearized stability

The starting point is to substitute equation 126 into 123. Using the fact that the
reference state Xs is itself a particular solution of these latter equations one obtains

dx

dt
= F(Xs + x, µ)− F(Xs, µ) (127)

ci
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We assume that F can be Taylor expanded in formal power series of x around Xs.

F(Xs + x, µ) = F(Xs, µ) +
(∂F

X

)

Xs

· x+
1

2

( ∂2F

∂X∂X

)

Xs

· xx+ . . . (128)

Substituting equation 128 into 127

dx

dt
= L(µ) · x+ h(x, µ) (129)

where we introduce the short hand notation

L(λ) =
( ∂F

∂X

)

Xs

h(x, µ) =
1

2

( ∂2F

∂X∂X

)

Xs

· xx+ . . . (130)

The linear operator L(µ) is simply the Jacobian matrix of F evaluated at the refe-
rence state, whereas h(x, µ) contains contributions that are nonlinear in x. A useful
example is illustrated in appendix V.

Comparing the equations 130 and 123 we can see that the former is an equivalent
version of the latter in which the origin of coordinates in phase space has been placed
on Xs. In dynamic systems involving a finite number of degrees of freedom, h(x, µ)
is a vector in phase space, whereas L(µ) is a n×n matrix whose elements are given
by Lij = (∂Fi/∂Xj )Xjs

, (i , j = 1, . . . , n). However, equation 130 still constitutes a
highly nonlinear problem which, as a rule, is as intractable as the original problem
(123).

At this point, a most important result can be invoked to enable further progress.

Theorem 1. If the trivial solution x = 0 of the linearized problem (131) is asymp-
totically stable, then x = 0 (or equivalently X = Xs) is an asymptotically stable
solution of the nonlinear problem (130 or 123). If the trivial solution x = 0 of the
linearized problem is unstable, then x = 0 (or equivalently X = Xs) is an unstable
solution of the nonlinear problem.

This theorem, also known as the principle of linearized stability, compares the
stability properties of the following two problems

• the original, fully nonlinear problem (130);

• the ‘auxiliary‘ linearized problem, in which high order terms are omitted

dx

dt
= L(µ) · x (131)

0.33.2 Linear stability analysis of fixed points

The objective is to set up quantitative criteria of stability of the fixed points of a
dynamic system. This will be possible thanks to the principle of linearized stability
which reduces stability to a linear problem (equation 131). This set of ordinary
differential equations admits solutions that depend on time exponentially

x = ueωt (132)
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Substituting into 131
dueωt

dt
= L(µ)ueωt (133)

we have that u and the characteristic exponent ω must satisfy the relations

L(µ) · u = ωu (134)

or, in more explicit form
∑

j

Lij (µ)uj = ωui (135)

In other words u and ω are, respectively, eigenvectors and eigenvalues of L(µ) and
stability is thus reduced to an eigenvalue problem. An important point is that
independently of the properties of u, which takes into account the structure of x as
a vector in phase space, the knowledge of eigenvalue ω provides a full solution of the
problem of stability. Indeed, separating ω into real and imaginary part

|x| ≈ e(Reω)tei(Imω)t (136)

it follows that

• if Reω < 0, |x| is exponentially decreasing and hence the reference state x = 0
(or X = Xs) is asymptotically stable;

• if Reω > 0, the perturbation grows exponentially and hence the reference state
is unstable.

These two regimes, for which the principle of linearized stability applies, are sepa-
rated by the regime where Reω = 0. This borderline state – between asymptotic
stability and instability – is known as marginal stability.

Figura 44: real part of eigenvalue ω versus
µ

Notice that the occurrence of instabili-
ty and marginal stability is compatible
with both conservative and dissipative
systems. In contrast, asymptotic stabi-
lity implies by necessity a contraction
of phase space volumes and can there-
fore occur only in dissipative systems.
The eigenvalue problem (134) allows to
better understand the importance of the
control parameters µ. Indeed, a varia-
tion of µ induces a variation of L and,
through it, of the eigenvalue ω. Two
typical possibilities are depicted by cur-
ves (a) and (b) of figure 44. In (a), ω
crosses the µ-axis with a positive slope.
This will be reflected by the fact that as
µ increases, the system will switch from
asymptotic stability to instability. As
the reference fixed point will no longer
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be a physically legitimate solution for
µ > µc, a qualitative change of behavior is to be expected when µc is crossed. For
this reason we shall refer to λc as the critical value of the control parameter. In
constast, in (b) the real part of eigenvalue ω remains negative for all values of µ:
the fixed point is always asymptotically stable and no qualitatively new regime is
expected to arise spontaneously from the action of perturbations. It is clear by now
that the central problem of stability theory is the determination of eigenvalue ω of
the operator L(µ). An explicit calculation can be carried out from equation 135

l11u1 + l12u2 + . . . + l1nun = ωu1

l21u1 + l22u2 + . . . + l2nun = ωu2
...

...
. . .

...
...

ln1u1 + ln2u2 + . . . + lnnun = ωun

(137)

where a generic row has the following form

n
∑

j=1

Lij (µ)uj = ωui (138)

which we write in the more suggestive form

n
∑

j=1

(Lij (µ)− ωδkrij )uj = 0, i = 1, . . . , n (139)

This set of homogeneous algebraic equations for uj admits a nontrivial solution
provided that the determinant of the matrix of coefficients of uj vanishes. This
gives rise to the characteristic equation

det|(Lij (µ)− ωm(µ)δkrij )| = 0 (140)

where we have introduced the index m to account for the fact that equation 140,
which is an algebraic equation for ωm, will in general admits several solutions. Unless
the matrix L(µ) has some remarkable symmetries built in, the eigenvalues ωm will
be distinct.

0.34 Bifurcation analysis

The linear stability analysis is a powerful instrument to depict the qualitative
behavior of a dynamic system around a critical value of the control parameter µc,
known as a bifurcation point. We have already shown how it is possible to obtain
useful informations from a bifurcation diagram (figure 41), in which a variable of the
system (the angle θ) is plotted against a control parameter (the angular velocity ω).
However, as soon as one enters the domain of instability, the linearized equations
become inadequate, as they predict runaway to infinity. In order to investigate the
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existence of new physically acceptable solutions which emerge beyond the threshold
of instability, the full nonlinear equations will have to be analyzed.

The starting point is given by equations

dx

dt
= L(µ) · x+ h(x, µ) (141)

We suppose that linear stability analysis performed on these equations has esta-
blished the existence of a critical value µc such that the linearized operator L(µc)
admits an eigenvalue with vanishing real part, Reωc = Reω(µc) = 0. The linearized
version of 141

dx

dt
= L(µ) · x (142)

then admits at µ = µc a solution of the form

x = uei(Imωc)t = ueiΩct (143)

Substituting into 142 and setting mu = µc,

[iΩcI− L(µc)] · u = 0 (144)

where I is the identity matrix. In other words, the operator

Jc = iΩcI− L(µc) (145)

admits at least one eigenvector u corresponding to a zero eigenvalue. We also express
this property by the statement that Jc admits a nontrivial null space. The question
is now what is the behavior of solutions of the full nonlinear problem (141) for
values of the control parameter µ in a certain neighborhood of µc. The following
two theorems give a surprisingly comprehensive answer.

Theorem 2. If x = 0 remains a solution of 141 in a neighborhood of µc, ωc is a
simple eigenvalue that is a simple root of the characteristic equation, then µ = µc
is a bifurcation point, in the sense that there is at least one new branch of solutions
outgoing from (x = 0, µc). This branch either extends to infinity or meets another
bifurcation point.

Theorem 3. If ωc is a simple eigenvalue and the additional transversality condition
is satisfied,

[ d

dλ
Reω(µ)

]

µ=µc

6= 0 (146)

guaranteeing that the Reω versus µ curve in figure 44 crosses the µ-axis at µ = µc,
then:

• the bifurcating solutions will be stationary if Ωc = 0 in equation 144;

• the bifurcating solutions will be time-periodic if Ωc 6= 0 in equation 144 (Hopf
bifurcation).
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Figura 45: (a) transcritical; (b) pitchfork; (c) Hopf bifurcation

In both of the above cases supercritical branches (bifurcating in the region of µ-
values for which the reference state has lost its stability) are stable and subcritical
ones (bifurcating in the region of µ-values for which the reference state is stable)
are unstable, provided that the remaining eigenvalues of L(µc) have negative real
parts. Figure 45 summarizes the various possibilities: full and dotted lines represent,
respectively, asymptotically stable (S) and unstable (U) branches of solutions. In
curves (a) and (b) the amplitude of the solution is plotted versus the control para-
meter; in curve (c) the continuous family of solutions corresponding to the different
values of the phase of the oscillatory motion is schematically depicted.

0.35 Lyapunov exponents

The Lyapunov exponent λi of a dynamical system is a quantity that characterizes
the rate of separation of infinitesimally close trajectories (figure 46).

Figura 46: Lyapunov exponents

Quantitatively, two trajectories in phase
space with initial separation vector δx0

diverge according to

|δxt| ≈ eλi t|δx0| (147)

The rate of separation can be different for
different orientations of initial separation
vector . Thus, there is a spectrum of Lyapu-
nov exponents λi , equal in number to the di-
mensionality of the phase space Γ. It is com-
mon to refer to the largest one as the Ma-
ximal Lyapunov exponent (MLE), because
it determines a notion of predictability for a
dynamical system
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MLE = lim
t→∞

1

t
ln

|δxt|
|δx0|

(148)

A positive MLE is usually taken as an indication that the system is chaotic (provided
some other conditions are met, e.g., phase space compactness, sensitivity to initial
conditions, etc.).

The maximal Lyapunov exponent has been calculed using the Kantz algori-
thm from TISEAN package TISEAN software package; Hegger, Kantz e Schreiber,
1999. The algorithm looks for exponential perturbation growth by implementing the
formula

S(ǫ,m, t) =

〈

ln(
1

Un

∑

sn′∈Un

|sn+t − sn′+t|)
〉

n

(149)

where sn′ represents a return point in the phase space close to the point sn visited
previously by the system; m is the embedding dimension and Un the neighborhood
with diameter ǫ. The maximal Lyapunov exponent λ is given by the slope of the pen-
cil derived by S(ǫ,m, t) for different m, where it exhibits a linear increase, identical
for each m.

0.36 Period doubling scenario

Feigenbaum, Coullet and Tresser discovered this route to chaos: the resulting
dynamics is the consequence of subsequent period-doubling bifurcations. This beha-
vior can be easily followed by an FFT amplitude spectrum, where a signal doubling
is produced when the system becomes unstable and two new steady states appear
Feigenbaum, 1979. In 1976 the biologist Robert May presented the logistic map as
a plausible population model with a period-doubling cascade of bifurcations and
chaotic trajectories

xn+1 = rxn(1− xn) (150)

where xn is a number between zero and one, and represents the ratio of existing
population to the maximum possible population at year n, r is a positive number
and represents a combined rate for reproduction and starvation.

Figure 47 shows the attractor of the logistic map (150) as a function of the
parameter r, for 2.4 < r < 4.0. We can observe that for small r, the attractor is
always periodic and has period 2n , with n increasing as r increases. Beyond some
critical value r = rc, with rc ≈ 3.57, the attractor may be more complicated and it
seems to be contained in 2n bands that merge as r increases.
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Figura 48: finite difference method

Numerical methods

0.36.1 Finite difference method

Assuming the function ϕ(x), whose derivatives are to be approximated, is properly-
behaved, by Taylor’s theorem we have

ϕ(x+ h) = ϕ(x) + hϕ
′

(x) + 1/2h2ϕ
′′

(x) + 1/6h3hϕ
′′′

(x) + . . . (151)

ϕ(x− h) = ϕ(x)− hϕ
′

(x) + 1/2h2ϕ
′′

(x)− 1/6h3hϕ
′′′

(x) + . . . (152)

and adding the two equations

ϕ(x+ h) + ϕ(x− h) = 2ϕ(x) + h2ϕ
′′

(x) + o(h4) (153)

If we neglect orders greater than 2, we also have

ϕ
′′

(x) ≈ 1

h2
[ϕ(x+ h)− 2ϕ(x) + ϕ(x− h)] (154)

Subtracting 152 from 151, we obtain

ϕ
′

(x) ≈ 1

2h
[ϕ(x+ h)− ϕ(x− h)] (155)

Equation 155 approximates the slope of tangent to the curve with the slope of
the chord joining the points ϕ(x − h) and ϕ(x + h) (figure 48) and is said central

cix



Competition Between Transport Phenomena in a Reaction-Diffusion-Convection System

difference approximation. The slope of the tangent can be also approximated by a
forward difference, i.e., the slope of the chord joining the points ϕ(x) and ϕ(x+ h)

ϕ
′

(x) ≈ 1

h
[ϕ(x+ h)− ϕ(x)] (156)

or by a backward difference, between the points ϕ(x− h) and ϕ(x)

ϕ
′

(x) ≈ 1

h
[ϕ(x)− ϕ(x− h)] (157)

Both equation 156 and 157 can be obtained from 151 and 152 ignoring derivatives
beyond the second order: this methods imply then a first order error.

0.36.2 Notation for multiple variables

Let ϕ be a function of independent variables x and t. We divide the x− t plane
in a grid of regular rectangles of sides δx = h and δy = k. The coordinates (x, t) of
a point or node P will be x = ih and t = jk, with i , j integers. The value of ϕ at
point P is then ϕP = ϕ(ih, jk) = ϕi ,j . From equation 154 we have

(∂2ϕ

∂x2

)

i ,j
≈ ϕi+1,j − 2ϕi ,j + ϕi−1,j

h2
(158)

Analogically for the t variable,
(∂2ϕ

∂t2

)

i ,j
≈ ϕi+1,j − 2ϕi ,j + ϕi−1,j

k2
(159)

with errors O(h2) and O(k2), respectively. Using this notation, the forward diffe-
rence approximation for ∂ϕ/∂t at point P is

(∂ϕ

∂t

)

i ,j
≈ ϕi ,j+1 − ϕi ,j

k
(160)

with a O(k) error.

0.36.3 Explicit methods

Using a forward difference at time tj and a second-order central difference for
the space derivative at position xi (according to equations 160 and 158), an explicit
solution for the parabolic partial differential equation 95 is given by the recurrence
equation

ϕi ,j+1 − ϕi ,j

k
=
ϕi+1,j − 2ϕi ,j + ϕi−1,j

h2
(161)

Therefore we can obtain a formula for the unknown quantity ϕi ,j+1 from the value
of the function at the time j

ϕi ,j+1 = ϕi ,j + r(ϕi+1,j − 2ϕi ,j + ϕi−1,j ) (162)

where r = k/h2. So, with this recurrence relation, and knowing the values at time
j , one can obtain the corresponding values at time j + 1. The values ϕ0,j and ϕi ,j

must be replaced by the boundary conditions. This explicit method is known to
be numerically stable and convergent whenever r ≤ 1/2. The numerical errors are
proportional to the time step and the square of the space step ∆ϕ = O(k) +O(h2).
This method is said explicit because allows the calculation of an unknown quantity
in function of known values.
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0.36.4 Implicit methods

If we use the backward difference at time tj+1 and a second-order central diffe-
rence for the space derivative at position xi we get the recurrence equation

ϕi ,j+1 − ϕi ,j

k
=
ϕi+1,j+1 − 2ϕi ,j+1 + ϕi−1,j+1

h2
(163)

We can obtain ϕi ,j+1 from solving a system of linear equations

(1 + 2r)ϕi ,j+1 − rϕi−1,j+1 − rϕi+1,j+1 = ϕi ,j (164)

The scheme is always numerically stable and convergent but usually more numeri-
cally intensive than the explicit method as it requires solving a system of numerical
equations on each time step. The errors are linear over the time step and quadratic
over the space step.

0.36.5 The Crank-Nicolson method

If we use the central difference at time tj+1/2 and a second-order central difference
for the space derivative at position xi we get the recurrence equation

ϕi ,j+1 − ϕi ,j

k
=
1

2

(ϕi+1,j+1 − 2ϕi ,j+1 + ϕi−1,j+1

h2

+
ϕi+1,j − 2ϕi ,j + ϕi−1,j

h2

)

(165)

This formula is known as the Crank–Nicolson method. We can obtain ϕi ,j+1 from
solving a system of linear equations

(2 + 2r)ϕi ,j+1 − rϕi−1,j+1 − rϕi+1,j+1 =

(2− 2r)ϕi ,j + rϕi−1,j − rϕi+1,j
(166)

The scheme is always numerically stable and convergent but usually more numeri-
cally intensive as it requires solving a system of numerical equations on each time
step. The errors are quadratic over the time step and formally are of the fourth de-
gree regarding the space step, ∆ϕ = O(k2) +O(h4). However, near the boundaries,
the error is often O(h2). Usually the Crank–Nicolson scheme is the most accurate
scheme for small time steps. The explicit scheme is the least accurate and can be
unstable, but is also the easiest to implement and the least numerically intensive.
The implicit scheme works the best for large time steps.
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The Fortran 90 Code

0.37 The concentration functions

In this section we describe how the oregon.f90 code implements the ADI method
applied on concentration functions, as expressed by equation 88 and its kinetic
relative 39.

DO j=2,m-1

**** DIRICHLET BOUNDARY CONDITIONS ****

Aa(1,j)=ONE

Bb(1,j)=ZERO

**** FROM TRIDIAGONAL TO BIDIAGONAL MATRIX ****

DO i=2,m-1

A(i,j) = Di/(hx*hx)+Dv*U(i,j)

B(i,j) = -2*TWO*Di/(hx*hx)-TWO/h

C(i,j) = Di/(hx*hx)-Dv*U(i,j)

F(i,j) = (-TWO/ht)*T1(i,j)+

Dv/2hx*V(i,j)*(T1(i,j+1)-T1(i,j-1))-

Di/(hx*hx)*(T1(i,j+1)-T1(i,j)-T1(i,j)+T1(i,j-1))-

1/q1*(T1(i,j)*(ONE-T1(i,j))+S1(i,j)*q3*

(q2-T1(i,j))/(q2+T1(i,j)))

Aa(i,j)=C(i,j)/(A(i,j)*Aa(i-1,j)+B(i,j))

Bb(i,j)= (F(i,j)-A(i,j)*Bb(i-1,j))/

(A(i,j)*Aa(i-1,j)+B(i,j))

END DO

**** VON NEUMANN BOUNDARY CONDITIONS ****

T2(m,j)=Bb(m-1,j)/(ONE-Aa(m-1,j))

**** FINAL RECONSTRUCTION OF THE CONCENTRATION

PROFILE OVER X DIRECTION ****

DO i=1,m-1

T2(m i,j)=Aa(m-i,j)*T2(m-i+1,j)+Bb(m-i,j)

END DO

END DO

Chemical oscillations are considered as spatial averages Tav and Sav of configurations
provided by bro(ce)________.dat respectively, in which every point (i, j) of the
grid is associated with a value of concentration for the two species, T3(i,j) and
S3(i,j). The resulting code is

Tav = 0

Sav = 0

DO i = 2,m-1

DO j = 2,m-1

Tav = Tav + T3(i,j)

cxiii
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Sav = Sav + S3(i,j)

END DO

END DO

Tav = Tav/npoints

Sav = Sav/npoints

0.38 Initial conditions

The concentration functions describing the initial conditions are

c01 =

{

0.8, 0 < θ < 0.5

c1(ss), elsewhere.
(167)

c02 =

[

c2(ss) +
θ

8πf

]

× 1.3 (168)

where θ is the polar coordinate angle and f the oregonator kinetic parameter. The
polar coordinate is defined, respect to the center of the grid (mid,mid) as

arctan

[

(j −mid)

(i −mid)

]

(169)

and the Fortran 90 translation is

DO i=1,m

DO j=1,m

IF((i.GT.mid).AND.(j.GT.mid)) THEN

ratio=(j-mid)/(i-mid)

theta=ATAN(ratio)

ELSE IF((i.LT.mid).AND.(j.GT.mid))

THEN

ratio=(j-mid)/(i-mid)

theta=ATAN(ratio)+PG

ELSE IF((i.LT.mid).AND.(j.LT.mid)) THEN

ratio=(j-mid)/(i-mid)

theta=ATAN(ratio)+PG

ELSE IF((i.GT.mid).AND.(j.LT.mid))

THEN

ratio=(j-mid)/(i-mid)

theta=ATAN(ratio)+TWO*PG

END IF

T1(i,j) =ss

IF((theta.GE.ZERO).AND.(theta.LE.HALF))

T1(i,j)=T1 DEFAULT VALUE

T1(mid,mid)=ss

S1(i,j) =ss+theta*ONE/(EIGHT*PG*f)

S1(mid,mid)=ss

END DO

END DO
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0.39 Molecular Dynamics Simulations

In this section we report the force field parameters used in our simulations, in
order to predict the diffusion coefficients of intermediate species Ce3+ and HBrO2

participating to Belousov–Zhabotinsky reaction.

0.39.1 Ce
3+ MD input parameters

INTERACTION PARAMETERS:

The input Lennard Jones functional were introduced

in the sigma-epsilon notation

Lennard-Jones parameters: sigma (angstrom)

O H Ce

O 3.1655000 0.0000000 0.0000000

H 0.0000000 0.0000000 0.0000000

Ce 0.0000000 0.0000000 0.0000000

Lennard-Jones parameters: epsilon (kJ mol-1)

O H Ce

O 0.6500000 0.0000000 0.0000000

H 0.0000000 0.0000000 0.0000000

Ce 0.0000000 0.0000000 0.0000000

Additional potential functions where introduced

for some pairs

The overall number of additional functions is: 1

In particular they are: 1 Buckingham interaction

Added Buckingham parameters: A (kJ mol-1)

O H Ce

O 0.0000000E+00 0.0000000E+00 1.0040000E+06

H 0.0000000E+00 0.0000000E+00 0.0000000E+00

Ce 1.0040000E+06 0.0000000E+00 0.0000000E+00

Added Buckingham parameters: B (1/angstrom)

O H Ce

O 0.0000000E+00 0.0000000E+00 3.5000000E+00

H 0.0000000E+00 0.0000000E+00 0.0000000E+00

Ce 3.5000000E+00 0.0000000E+00 0.0000000E+00

Added Buckingham parameters: C (kJ mol-1 angstrom^6)

O H Ce

O 0.0000000E+00 0.0000000E+00 3.6280000E+04

H 0.0000000E+00 0.0000000E+00 0.0000000E+00

Ce 3.6280000E+04 0.0000000E+00 0.0000000E+00

Partial charges on atoms (Coulomb):
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O H Ce

-0.7300000 0.3650000 3.0000000

0.39.2 HBrO2 MD input parameters

INTERACTION PARAMETERS:

the input Lennard Jones functional were introduced

in the sigma-epsilon notation

Lennard-Jones parameters: sigma (angstrom)

O H O Br OH HO

O 3.1506000 0.0000000 3.0552000 3.5530000 3.1075500 0.0000000

H 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

O 3.0552000 0.0000000 2.9598000 3.4576000 3.0121500 0.0000000

Br 3.5530000 0.0000000 3.4576000 3.9554000 3.5099500 0.0000000

OH 3.1075500 0.0000000 3.0121500 3.5099500 3.0645000 0.0000000

HO 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Lennard-Jones parameters: epsilon (kJ mol-1)

O H O Br OH HO

O 0.6361960 0.0000000 0.7477885 0.9230902 0.7485004 0.0000000

H 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

O 0.7477885 0.0000000 0.8789550 1.0850056 0.8797917 0.0000000

Br 0.9230902 0.0000000 1.0850056 1.3393600 1.0860385 0.0000000

OH 0.7485004 0.0000000 0.8797917 1.0860385 0.8806292 0.0000000

HO 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Partial charges on atoms (Coulomb):

O H O Br OH HO

-0.8340000 0.4170000 -0.2930000 0.3720000 -0.4360000 0.3570000

S t r e t c h i n g P o t e n t i a l :

U = 1/2*k_2(r - r_0)^2 + 1/3*k_3(r - r_0)^3 + 1/4*k_4(r - r_0)^4

n. stretchings = 3

1 atom 1 = 1 atom 2 = 2

r_0 = 1.80000 (Angstroem)

k_2 = 2418.38190 (kJ/mol/A^2)

k_3 = 0.00000 (kJ/mol/A^3)

k_4 = 0.00000 (kJ/mol/A^4)

2 atom 1 = 2 atom 2 = 3

r_0 = 1.86600 (Angstroem)

k_2 = 1985.60120 (kJ/mol/A^2)

k_3 = 0.00000 (kJ/mol/A^3)

k_4 = 0.00000 (kJ/mol/A^4)

3 atom 1 = 3 atom 2 = 4

r_0 = 0.97400 (Angstroem)

k_2 = 3093.92160 (kJ/mol/A^2)

k_3 = 0.00000 (kJ/mol/A^3)

k_4 = 0.00000 (kJ/mol/A^4)

B e n d i n g P o t e n t i a l :
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U = 1/2*k_2(A - A_0)^2 + 1/3*k_3(A - A_0)^3 + 1/4*k_4(A - A_0)^4

n. bendings = 2

1 atom 1 = 1 atom 2 = 2 atom 3 = 3

A_0 = 1.77325 (Radians) 101.60 (Degrees)

k_2 = 352.83765 (kJ/mol/rad^2)

k_3 = 0.00000 (kJ/mol/rad^3)

k_4 = 0.00000 (kJ/mol/rad^4)

2 atom 1 = 2 atom 2 = 3 atom 3 = 4

A_0 = 1.77325 (Radians) 101.60 (Degrees)

k_2 = 352.83765 (kJ/mol/rad^2)

k_3 = 0.00000 (kJ/mol/rad^3)

k_4 = 0.00000 (kJ/mol/rad^4)

D i h e d r a l P o t e n t i a l :

U = A*[1+cos(m*phi-delta)]

n. dihedrals = 1

A = 20.92750 (kJ/mol)

phi = 3.14159 (Radians) 180.00 (Degrees)

m = 2.00000

0.39.3 The mean square displacement

We consider a discrete physical system composed only by a single particle ran-
domly moving in a unidimensional box of lenght L. In this case the mean square
displacement is not a function of the time but a vector of j temporal components
ranging from 0 to n − 1 (for simplicity we consider n = 5 temporal instants and
j = 0, . . . ,n − 1 = 4 temporal steps (j = δt)):

MSD =~r2(t0, . . . , tn−1)

=
(

〈

r2 (t0)
〉

, . . . ,
〈

r2 (tn−1)
〉

) (170)

where the j thcomponent of the vector is given by

〈

r2 (j )
〉

=
1

n − j

n−j
∑

k=1

[x(k + j )− x(k)]2 (171)

and 1
n−j

is a factor for the average over the number of configurations within the
sum.
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Let now calculate from 171 the components of ~r2(t0, . . . , tn−1) vector:

〈

r2 (0)
〉

=
1

5− 0

5−0
∑

k=1

[x(k + 0)− x(k)]2 = 0

〈

r2 (1)
〉

=
1

5− 1

5−1
∑

k=1

[x(k + 1)− x(k)]2 =

=
1

4

{

[x(2)− x(1)]2 + [x(3)− x(2)]2 +

+ [x(4)− x(3)]2 + [x(5)− x(4)]2
}

〈

r2 (2)
〉

=
1

5− 2

5−2
∑

k=1

[x(k + 2)− x(k)]2 =

=
1

3

{

[x(3)− x(1)]2 + [x(4)− x(2)]2 +

+ [x(5)− x(3)]2
}

(172)

〈

r2 (3)
〉

=
1

5− 3

5−3
∑

k=1

[x(k + 3)− x(k)]2 =

=
1

2

{

[x(4)− x(1)]2 + [x(5)− x(2)]2
}

〈

r2 (4)
〉

=
1

5− 4

5−4
∑

k=1

[x(k + 4)− x(k)]2 =

=
1

1

{

[x(5)− x(1)]2
}

The translation into an opportune Fortran 90 code is quite simple.

DO i=1,n

READ(10,*) x(i)

IF (i>1) THEN

IF (x(i)-x(i-1) > L/2) THEN

! periodic boundary conditions for a simulation box

! of length L centered in 0: - L/2 < x < + L/2

jump = jump - L

ELSE IF (x(i)-x(i-1)< -L/2) THEN

jump = jump + L

END IF

xn(i)=x(i)+jump

ELSE

xn(i) = x(i)

END IF

WRITE(30,100) x(i), jump, xn(i)

100 FORMAT (1x, f16.7, 1x, f16.7, 1x, f16.7)

END DO
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DO j=0,n-1

r2 = 0.0d0

DO k=1,n-j

r=xn(k+j)-xn(k)

r2=r2 + r*r

END DO

!*******************************

!MEAN SQUARE DISPLACEMENT

r2 = r2/(n-j)

!*******************************

write (20,110) j, r2

110 format(1x, i6, 1x, f12.5)

END DO
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