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AbstrAct - Here we suggest a least absolute shrinkage and selection operator (LASSO) 
approach to estimate the marker effects for genomic selection using the least angle regression (LARS) 
algorithm, modified to include a cross–validation step to define the best subset of markers to involve 
in the model. �he LASSO-LARS was tested on simulated data which consisted of �,86� individuals 
and 6,000 SNPs. �he last generations of this dataset were the selection candidates. Using only� animals 
from generations prior to the candidates, three approaches to splitting the population into training 
and validation sets for cross-validation were evaluated. �urthermore, different sizes of the validation 
sample were tested. Moreover, BLUP and Bay�esian methods were carried out for comparison. �he 
most reliable cross-validation method was the random splitting of overall population with a validation 
sample size of �0% of the reference population. �he accuracy� of the G�BVs (correlation with true 
breeding values) in the candidate population obtained by� LASSO-LARS was 0.89 with 1�6 e�planatory� 
SNPs. �his value was higher then those obtained by� using BLUP and Bay�esian methods, which were 
0.7� and 0.84 respectively�. It was concluded that LASSO-LARS approach is a good alternative way� to 
estimate markers effects for genomic selection.
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Introduction – Meuwissen et al. (2001) proposed a method to estimate breeding values by� using 
a genome-wide dense map of markers, which they� termed genomic selection. �hey� used two way�s to 
estimate the marker effects, BLUP and Bay�esian approaches, and obtained high levels of accuracy�. An 
alternative method to estimate the SNP effects would be to use of least absolute shrinkage and selection 
operator (LASSO) approach (�hibshirani, 1996). �his operator includes in the model only� a subset of 
e�planatory� variables, fitting to zero those which do not improve predictability�. �he main issue with 
the LASSO approach is how to best choose of the subset of variables, in this case the number of SNPs. 
In this paper we suggest a LASSO approach to estimate the marker effects for genomic selection using 
least angle regression (LARS; �fron et al., 2004) algorithm, modified to include a cross–validation step 
to define the best size of the subset of SNPs. Different approaches for selecting cross- validation sets 
were compared. �he LASSO approach was also compared with the BLUP and Bay�esian approaches on 
the same simulated dataset.

Material and methods – �he simulated data came from the XII Q�L-MAS Workshop 2008, 
Uppsala (http��//www.computationalgenetics.se/Q�LMAS08/Q�LMAS/DA�A.html). �his dataset 
consisted of �,86� individuals from seven generations. �here were 6,000 loci evenly� distributed 
over si� chromosomes, with 0.1 cM between markers. �he first four generations (4,66� individuals) 
and the last three generations (1,200 individuals) were the reference and candidate population 
respectively�. �here were 48 Q�Ls distributed on the genome of which 2 with additive effect; 2 with 
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epistatic effect and 44 with effects randomly sampled from a gamma distribution (Lund et al., 
2009). The QTLs were not among the 6,000 loci. The genotypic information consisted of bi-allelic 
markers (e.g., SNPs). 

The allelic substitution effects of the SNPs were estimated by a LASSO approach. It minimizes the 
residual sum of squares constraining the sum of absolute values of the SNP effects (Tibshirani, 1996). 
The constraint allows some estimated SNP effects to be exactly zero.

The LASSO problem was solved by using a modified version of the LARS algorithm (Efron et al., 
2004). In the classical LARS procedure, the estimates of the effects are obtained in successive iterations, 
for each iteration the marker (currently out of the model) with the highest absolute correlation between 
genotypes and current residuals is added to the model. To obtain LASSO solutions, the LARS procedure 
was modified so that either addition or subtraction of one marker to the model might occur. One marker 
was subtracted when disagreed the sign of its effect with the sign of the correlation between genotypes 
and residuals (Efron et al., 2004). Only the markers inside the model had nonzero effects. 

The problem of choosing the best constraint values was dealt with, here, as the selection of the best 
subset size of explanatory SNPs to retain in the final model. Thus a cross-validation approach using 
random sub-sampling replication (Kohavi, 1995) was performed. In each replication the reference 
population was randomly split in two samples: training sample (T; to estimate the SNP effects); 
validation sample (V; to validate the results obtained by T). Then the LARS procedure was carried 
out on T. For each LARS iteration, the genomic estimated breeding values of the validation sample 
(GEBVV) were calculated as product between the current vector of the effects estimated on T and the 
matrix of the genotypes of V. When the correlation between GEBVV and the phenotypes of V reached 
the maximum the LARS procedure was stopped and the number of SNPs in the model was retained as 
best subset size for that replication. We evaluated three different approaches to splitting the data into 
training and validation sets. First, individuals were allocated by random splitting of overall population 
(RAN). Second, individuals assigned to V belonged to the last generation of the reference population 
only (WFAM). Finally, entire families of the last generation were assigned to V (BFAM). Furthermore, 
different sizes of V (T) were tested, 5% (95%), 10% (90%) and 20% (80%) for each approach. The V size 
of 50% was tested for RAN only. For each trial (splitting approach x V size) 1,000 replications were 
performed. For each trial, mean and standard deviation of the SNP subset sizes overall replications 
were calculated. Then the LARS procedure was performed on the whole reference population. In this 
case, for each iteration the current vector of effects was used to calculate the GEBVs in the candidate 
population. Then the accuracy of these GEBVs was calculated as the correlation between GEBVs and 
true breeding values (TBVs). The regression coefficient of TBVs on GEBVs for each LARS iteration 
was also determined. The accuracy values corresponding to the number of active SNPs equalling the 
mean of marker subset sizes of each cross-validation trial were used to compare them.

We compared the accuracy of GEBV using prediction of SNP effects from the LASSO-LARS with 
GEBV calculated from SNP effects predicted by a BLUP approach and the BayesA methods as 
described by Meuwissen et al. (2001).

Results and conclusions – Table 1 shows means and standard deviation of the markers subset 
sizes from 1,000 random sub-sampling replications for each cross-validation trial. For each subset 
size Table 1 shows the corresponding GEBV accuracy in the candidate population. The subset 
markers size ranged from 184 for BFAM-10% to 220 for WFAM-10%. In general the GEBV were 
high, with only small difference in accuracy between methods. The GEBV accuracy ranged from 
0.8810 to 0.8941 for WFAM-10% and RAN-50%, respectively (Table 1). RAN-50% was the way to 
best select the subset size of explanatory SNPs to retain in the final model, because it provided 
the highest level of accuracy and the lowest standard deviation value, hence a higher reliability. 
Furthermore, the RAN method might be applied even in cases where the structure of the population 
might be unknown or not homogenous as in simulated data. 
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The candidate population GEBV accuracy corresponding to the average subset size of RAN-
�0% sampling was compared with the accuracy obtained by using BLUP and BayesA approaches 
(Table 2). The accuracy obtained by LASSO-LARS e�ceeded that of BLUP and BayesA by about 
20% and 7% respectively. Table 2 also shows the regression of TBV on GEBV. The differences 
between estimated values of such coefficient and the target value of 1 were 14.8% higher for 
LASSO-LARS and 1�.2% and 8.�% lower for BLUP and BayesA respectively. Therefore the 
LASSO-LARS GEBV underestimates the true breeding values to small e�tent.  However, it is 
important to point out that some of the QTLs had simulated epistatic action, and our LASSO-
LARS does not account for this.  

Our results demonstrate that LASSO-
LARS can potentially estimate QTL effects 
from dense SNP data more accurately 
than BLUP and BayesA, leading to higher 
accuracies of GEBV for genomic selection. 
Unlike BLUP and BayesA, a feature of 
LASSO-LARS is that some of the SNP 
effects are set to zero. Given the very 
large amount of SNP data now available, 
this could be desirable since it allows the 
selection of a small subset of the markers 
which are predictive for a particular trait.
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Table 1.  Means and standard deviation (s.d.) of the best marker subset sizes from 
1,000 replications and the corresponding GEBV accuracy {r(tbv,gebv)} in 
the candidate population for the three random sampling methods and four 
validation sample (V) sizes.

V size
RAN WFAM BFAM

mean (s.d.) r(tbv,gebv) mean (s.d.) r(tbv,gebv) mean (s.d.) r(tbv,gebv)

5% 1�5 (108) 0.8�21 207 (111) 0.8�07 153 (112) 0.8�40

10% 200 (85) 0.8�15 220 (�6) 0.8810 184 (100) 0.8�30

20% 1�5 (58) 0.8�21 216 (62) 0.8878 1�7 (73) 0.8�21

50% 156 (32) 0.8�41

RAN: individual random sampling overall population; WFAM: individual random sampling in the last generation only; 
BFAM: across families sampling in the last generation only.

Table 2.  Accuracy of selection (r), regression 
coefficient (b) of TBV on GEBV.

r(tbv,gebv) b(tbv,gebv)

BLUP 0.7477 0.8676

BayesA 0.835� 0.�155

LASSO-LARS 0.8�41 1.1481
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