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Abstract 

Test day records for milk yield of 57,390 first
lactation Canadian Holsteins were analyzed
with a linear model that included the fixed
effects of herd-test date and days in milk (DIM)
interval nested within age and calving season.
Residuals from this model were analyzed as a
new variable and fitted with a five parameter
model, fourth-order Legendre polynomials,
with linear, quadratic and cubic spline models
with three knots. The fit of the models was
rather poor, with about 30%-40% of the curves
showing an adjusted R-square lower than 0.20
across all models. Results underline a great dif-
ficulty in modelling individual deviations
around the mean curve for milk yield. However,
the Ali and Schaeffer (5 parameter) model and
the fourth-order Legendre polynomials were
able to detect two basic shapes of individual
deviations among the mean curve. Quadratic
and, especially, cubic spline functions had bet-
ter fitting performances but a poor predictive
ability due to their great flexibility that results
in an abrupt change of the estimated curve
when data are missing.  Parametric and orthog-
onal polynomials seem to be robust and afford-
able under this standpoint. 

Introduction

Random regression models (RRM) are cur-
rently used in the prediction of breeding values
and in the estimation of variance components
for milk production traits of dairy cattle in sev-

eral countries. Direct modeling of test day
(TD) records instead of 305-d yields allows the
shape of the lactation curve to be modelled
with subsequently more precise adjustment for
temporary environmental effects, avoidance of
extended records for culled cows or lactations
in progress, and evaluation of lactation persis-
tency (Jamrozik and Schaeffer, 1997).

In the basic structure of a RRM, the fixed
part includes effects peculiar to all cows on the
same test day and effects specific to cows on a
given test day, such as pregnant or diseased,
plus a factor accounting for the yield level on a
specific day in milk (Ptak and Schaeffer, 1993)
whereas individual lactation curves are fitted
by random regression coefficients (Jamrozik
and Schaeffer, 1997; Schaeffer and Dekkers,
1994). This feature of RRM allows for the pre-
diction of breeding values and the estimation
of (co)variance functions throughout the
whole lactation.

Mean lactation curves are usually estimated
on a large number of records and are charac-
terized by quite regular patterns.  As a conse-
quence the use of either mathematical func-
tions or fixed intervals of days in milk will gen-
erally lead to the same results (Schaeffer,
2004). On the contrary, the small number of
records and a high sensitivity to outliers
makes the choice of the function used to fit
individual curves rather cumbersome.  The
evaluation of functions to fit individual effects
(genetic and permanent environmental) is
usually based on: i) fit diagnostics such as
Akaike’s or Bayesian Information Criterion
(Lopez-Romero and Carabano, 2003; Liu et al.,
2006); ii) predictive ability of the model (Pool
and Meuwissen, 2000); and iii) mathematical
features such as correlations among parame-
ters, and scale of parameters (Misztal, 2006).
Parametric functions specifically conceived to
model lactation curves, such as the Wilmink
(WIL) (1987) or the Ali and Schaeffer (AS)
(1987) models, have been generally aban-
doned because estimated (co)variance matri-
ces usually show very high correlations
between random regression coefficients which
can hinder the estimation process (Schaeffer,
2004).  Legendre orthogonal polynomials (LP)
(Kirkpatrick et al., 1990) are used to model a
variety of curves for variances and covari-
ances, and several papers have reported their
advantages in comparison with more tradition-
al models (Pool and Meuwissen, 2000; Lopez-
Romero and Carabano, 2003; Odegard et al.,
2003; Strabel et al., 2005). However, LP usually
yield very large estimates of variances at the
beginning and at the end of lactation that tend
to increase with the order of the polynomials
(Lopez-Romero and Carabano, 2003). This

seems to be a characteristic of polynomial
covariates, which has also been observed in
modeling growth curves for beef cattle (Meyer,
2005). Recently, cubic splines (CSPL) have
been proposed to provide extra flexibility in fit-
ting lactation curves (White et al., 1999;
Silvestre et al., 2005; Misztal, 2006). Splines
are a type of segmented regression in which
the curve is divided into different segments of
the dependent variable, joined at points named
knots, each fitted with different polynomials
(Guo and White, 2005). Problems in using
CSPL are the increase of computational com-
plexity and the optimization of the number and
placement of knots.

The shift towards more flexible functions
able to explain the most variation in the obser-
vations is necessarily accompanied by a sensi-
ble increase in the number of possible shapes
of individual lactation curves detected. As a
consequence, it may become difficult to dis-
criminate variations that can be ascribed to
genetic or permanent environmental causes,
and that have scientific and technical rele-
vance, from random perturbations. Moreover, a
high flexibility of a function allows for model-
ing all the variations among individual pat-
terns but may compromise the predictive
power of the model. The evaluation of the abil-
ity of a mathematical function to adequately fit
the data together with the generation of mean-
ingful results represents a critical point in
finding a suitable RRM.  In this work, this abil-
ity is investigated at the phenotypic level by a
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fixed regression analysis of individual devia-
tions around the mean curves for milk yield of
first lactation Canadian Holsteins using some
of the functions proposed to fit random effects
in RRM for milk production traits in cattle. 

Materials and methods

Data were 496,745 TD records for milk yield
of 57,390 first lactation Canadian Holsteins of
Ontario. Data were edited based on the num-
ber of TD records per cow (>7), calving year
(>1997), days in milk (DIM) (between 5 and
305), age at calving (between 22 and 31
months), milk yield (between 1.5 and 90 kg),
DIM at first test (<50 d) and number of records
within a herd test date (>11).  In order to avoid
all possible influence on the estimated individ-
ual curves that may arise form the function
chosen to fit the animal effect in RRM, a two-
step approach was followed. Data were ana-
lyzed with a linear model including fixed fac-
tors recently proposed for Canadian Holsteins
(Liu et al., 2006):

Y = HTD + DIM*SEA*AGE + e       [1]
where Y = test day milk yield; 
HTD = fixed effect of herd test date class
(33,977);
DIM*SEA*AGE = fixed effect of DIM interval
(60 intervals of 5 days each) nested within
calving season (1=April-September,
2=October-March) and age at calving (10
classes from 22 to 31 months) for a total of
1200 levels.

The term DIM*SEA*AGE of model [1] fits
the average lactation curve for cows calving at
the same age and in the same season (Druet et
al., 2005; Jamrozik et al., 2002).    

Residuals of model [1]¸ which can be
approximately considered as the result of
genetic, permanent environmental and meas-
urement error effects were stored as a new
variable (Z). Patterns of Z for each individual
cow were fitted separately with the following
fixed regression models:
1) Ali and Schaeffer regression (AS) (Ali and
Schaeffer, 1987)
Zt= a + b(t/340) + c(t/340)2 + d[log(340/t)] +

f [log(340/t)]2

[2]
2) A fourth-order Legendre orthogonal polyno-
mials (LP4) (Kirkpatrick et al., 1990)

Zt = α0* P0 + α1* P1 +  α2* P2 + α3* P3 +
α4* P4

[3]
where functions of time (Pj) were calculated
according to Schaeffer (2004).

3) A linear spline regression model (LSPL)

(Guo and White, 2005)

Zt= a + b(t) +

[4]
4) A quadratic spline regression model

(QSPL) (Guo and White, 2005)

Zt= a + b(t) + c(t)2 + 

[5]

5) A cubic spline regression model (CSPL)
(Guo and White, 2005)

Zt= a + b(t) + c(t)2 + d(t)3 + 

[6]

In all functions, t refers to DIM at the test; a,
b, c, d, f and αi are parameters to be estimated,
and k is the number of knots in the splines.  AS
and LP4 functions have been selected in order
to compare differences in model flexibility due
to the degree of correlation among parameters.
Moreover, cubic splines were compared with
splines of lower order.  In fact cubic splines are
the preferred functions for milk production
traits in RRM both for the fixed (Druet et al.,
2003; 2005) and random (White et al., 1999;
Silvestre et al., 2005) curves. However, lower
order splines may offer a good compromise
between model complexity and plausibility of
results (Meyer, 2005).  

A preliminary issue in fitting splines is the
number and location of knots. Actually, few
guidelines are available.  Some authors sug-
gest that the numbers of knots should be as
large as possible, especially when splines are
used to model fixed average curves (Druet et
al., 2005; Silvestre et al., 2005), and placed at
points of maximum concentration of records
(Misztal, 2006). Other authors argued that
fewer knots tend to yield smoother curves,
even though together with a less detailed local
fit (Meyer 2005). In the present paper the
choice of number and locations of knots was
performed using a two-step procedure. First,
the average Z curve was fitted with the differ-
ent types of splines using a non linear estima-
tion procedure where knot positions are con-
sidered additional independent variables
(Fadel, 2004). The number of knots (k) was set
to three for all the three types of splines
because larger values (four and five) resulted
in convergence problems. Estimated positions

were at 32, 64 and 240 DIM respectively and
were then used in fixed regressions for model-
ing individual curves. Also in this case, no sub-
stantial differences in adjusted R-squared val-
ues obtained by fitting splines with three, four
or five knots were observed, probably due to
the homogeneous distribution of data across
days in milk (on average of 1639 records per
day in milk, with a standard deviation of 79 per
day in milk).  

Goodness of fit was assessed by examining
the adjusted R-square (ADJ-R2) and curves
were classified according to five levels of ADJ-
R2 (<0.20, from 0.20 to 0.40, from 0.40 to 0.60,
from 0.60 to 0.80, >0.80).  Moreover, different
models were compared on the basis of their
ability to predict missing records by using the
mean square error of predictions of missing
observations (MSEP), calculated as

MSEPi =  

where each Z predicted value (Ẑi) is obtained
by deleting the i-th record from all the n lacta-
tions of the complete data set, estimating the
regression function from the remaining
records, and then using the fitted regression
function to obtain the predicted value of the
omitted records (Neter et al., 1996). In the
present study, eight subsets of missing records
were generated deleting one test per lactation
in turn.

Results and discussion

Average values of Z along the lactation tend
to remain quite close to zero (Figure 1), indi-
cating an acceptable fit of the mean lactation
curves with DIM intervals (Druet et al., 2003),
apart from a perturbation that occurs within
the first 50 days of lactation (that actually cor-
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Figure 1. Lactation pattern of individual
deviations (Z) around the mean lactation
curve values averaged for all animals.
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responds to the location of the first record).
The variance of Z along the lactation indicated
the variability among animal Z curves (Figure
2). Maximum variances were reached around
50 days from parturition (Pool and Meuwissen,
1999; 2000). Differences among shapes were
related to the stage of lactation, as evidenced
by the continuous trend over time, although
the role of random fluctuations between indi-
vidual cows should not be neglected. 

The functions AS and LP4 were theoretically
able to describe 25 types of curves on the basis
of combination of signs of the estimated
parameters (Macciotta et al., 2005). About 90%
of individual Z patterns were classified by the
AS function into two main shapes (Figure 3),
characterized by an opposite succession of cur-
vatures across lactation that corresponds to an
opposite combination of parameter signs.

The function LP4 resulted in a balanced dis-
tribution of curves among classes of different
combination of parameter signs (curves were
uniformly distributed among all 32 theoretical
shapes, with a frequency ranging from 0.01 to
0.05). However, each of these shapes can be
regarded as a subclass, i.e. the result of a spe-
cific deformation, of the two basic patterns
detected by the AS function. Parametric func-
tions and orthogonal polynomials were able to
model differences among individual shapes
related to the stage of lactation. However, LP4
showed a greater ability to fit random varia-
tions that can be ascribed to the lower degree
of correlation among parameters in compari-
son with AS. A more accurate description of
random variations was expected when using
spline functions, although an a priori classifi-
cation of shapes on the basis of parameter
signs can not be realised due to their specific
mathematical features.

The fitting of Z was rather poor (Table 1),
with about 30-40% of curves showing an ADJ-
R2 lower than 0.20 in all the models.
Differences between the functions can be
highlighted by considering both the distribu-
tions of fits among ADJ-R2 classes and the
magnitude of standard deviation of residuals
of the different models (Table 2). An increase
in the number of curves showing an ADJ-
R2>0.80 can be observed with the quadratic
and cubic splines, with the CSPL having almost
double the number in comparison with AS and
LP4 (Table 1). There was a parallel reduction
in the standard deviation of residuals (Table
2). The specific ability of CSPL to fit patterns
characterised by marked oscillations can be
clearly observed in Figures 4a and 4b where
examples of individual curves fitted and actual
data points for Z are reported. In particular,
Figure 4a refers to an individual curve that has

been well fitted only by the CSPL (ADJ-
R2>0.90), whereas Figure 4b shows a curve
that has been adequately fitted by all models.
CSPL shows a tendency to produce very large
estimates of Z at the extremes of the trajectory.
In any case when the magnitude of individual
deviations becomes rather high, i.e. in more
than 40% of cases in this work, the cubic spline
was no longer able to fit the pattern, as evi-
denced by Figure 4c where a curve poorly fitted
by all models (ADJ-R2<0.20) is shown.

The comparison between the predictive
ability of the different models is summarized
in Table 3. Poor results can be observed in the
prediction of records at the beginning and at
the end of the lactation trajectory, with
extremely high values of MSEP for quadratic
and cubic splines. In general all three orders
of splines showed higher values of MSEP in
comparison with the other two functions.
Such a marked contrast between fitting per-
formances, higher in splines than in AS and
LP4 models, and predictive ability could be
explained with the great flexibility of spline
functions. These models were able to follow
closely individual fluctuations and, therefore,
when some data are missing, the shape of the
estimated curve could change markedly. An
example of the effect of data missing in the
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Figure 2. Lactation pattern of variance of
individual deviations (Z) around the mean
lactation curve.

Figure 3. (a) Most frequent average pattern
(about 48% of curves) of individual devia-
tions (Z) around the mean lactation curve
Z by DIM. (b) Second most frequent aver-
age pattern (about 43% of curves) of indi-
vidual deviations (Z) around the mean lac-
tation curve Z by DIM.

Table 1. Absolute and relative (below, in italics) frequencies of individual Z curve fits
among different classes of adjusted R2.

ADJ-R2 class Model                                                
AS LP4 LSPL                QSPL                  CSPL

<0.20 19,816 20,266 20,438               19,095                 17,776
0.34 0.35 0.37                   0.33                     0.31

0.20-0.40 7786 8011 8049                  6653                    4907
0.14 0.14 0.14                   0.12                     0.09

0.40-0.60 9492 9383 9322                  8219                    6505
0.16 0.16 0.16                   0.14                     0.11

0.60-0.80 10,912 10,703 10,738               10,437                  9,068
0.20 0.19 0.19                   0.18                     0.16

>0.80 9384 9027 8843                12,986                 19,134
0.16 0.16 0.14                   0.23                     0.33

ADJ-R2, ajusted R-square; AS, Ali and Schaeffer regression; LP4, fourth-order Legendre polynomials; LSPL, linear spline; QSPL, quad-
ratic spline; CSPL, cubic spline.

Table 2. Standard deviation of residuals
(kg) of different models used to fit the
variable Z.

Variable Milk

AS residuals 1.70
LP4 residuals 1.71
LSPL residuals 1.72
QSPL residuals 1.46
CSPL residuals 1.17

AS, Ali and Schaeffer regression; LP4, fourth-order Legendre
polynomials; LSPL, linear spline; QSPL, quadratic spline; CSPL,
cubic spline.
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shape of an estimated individual curve by AS,
LP4 and CSPL is reported in Figure 5. Curves
estimated using all eight available records or
seven (the third is missing) were very similar
in the case of AS and LP4 functions (for LP4
the two curves are almost the same) (Figures
5a and 5b), whereas a marked change of
shape occurs for the CSPL (Figure 5c).

Conclusions

Flexible functions are preferred to fit the
great variability of individual shapes.  On the
other hand, the ability to recognise a continu-
ous and somewhat regular pattern is essential
for a consistent interpretation of results in
terms of genetic and permanent environmen-
tal effects. Most previous investigations on
RRM have recommended patterns and func-
tions characterised by a high flexibility, such
as orthogonal polynomials of high order or
cubic splines, as more suitable models.  

The present study, developed at the pheno-
typic level, highlights the difficulty to ade-
quately model individual patterns around the
mean curve for milk yield, due to a large vari-
ability of shapes among cows. Functions such
as the Ali and Schaeffer model and fourth-
order Legendre polynomials were able to
reduce the wide range of shapes into two basic
forms, even if there were differences in the
ability to follow random fluctuations. Although
the goodness of fit was in general rather poor
for all models considered, a certain superiority
of the quadratic and, especially, cubic spline
functions was observed. These results are in
agreement with the suggestions of some
authors to use non-parametric regressions as
sub-models in RRM.  However, the greater fit-
ting performance of cubic splines was offset by
a poor predictive ability due to the great flexi-
bility that results in an abrupt change of the
estimated curve when some data was missing.
Parametric and orthogonal polynomials seem
to be more robust and affordable under this
criterion. 
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