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We investigate the singular boundary value problem Au / u-’ 0 in D, u 0 on OD, where
3’ > 0. For 7 > 1, we find the estimate

lu(x) bo62/(n+l)(x)l <
where b0 depends on 7 only, 6(x) denotes the distance from x to OD and/3 is a suitable
constant. For 3’ > 0, we prove that the function u(+7)/2 is concave whenever D is convex.
A similar result is well known for the equation Au + up 0, with 0 _<p _< 1. Forp 0, p
and 3’ _> we prove convexity sharpness results.
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1. INTRODUCTION

Let N> and let D C RN be a bounded smooth domain. In [1-3,5], the
problem Au up in D, u(x) --. +oe as x OD is investigated. It is proved
that such a problem, for p > 1, has a unique positive solution u(x).
Moreover, for p > 3 there exists a constant/3 > 0 such that

.(x)
2/(1-P)(x) </36(x) in D, (1.1)
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where a0 is a constant depending onp only and (x) denotes the distance
from x to OD [1,3,5].

In [6,13] it is proved that the problem

Au+uP--0 inD, u-0 on0D, (1.2)

for p < 0 has a unique positive solution u(x) continuous up to the
boundary OD. In the same papers it is also proved that, forp < 1, there
exist positive constants A, A such that

/62/(1-P) (x) <_ (X) <_ A62/(1-P) (x).

In Section 2 of the present paper we shall prove that, for p < -1 there
exists/3 > 0 such that

u(x)
82/(1-P)(x) < t6(P+I)/(P-1)(X) in D, (1.3)

where b0 is a constant depending on p only. We emphasize that the
constants a0 in (1.1) and b0 in (1.3) are independent ofthe geometry ofthe
domainD and even ofthe dimension N. We also find a boundary estimate
for the case p 1.
Now, consider problem (1.2) with 0 <p < 1. It is well known that this

problem has a positive solution u(x). Such a solution is not concave even
in the radial case. Indeed, if u u(r) then the corresponding equation
reads as

(rN-1 ut) - rN-1 up O,

which implies that (rN-1 u’) < 0 and u’(r) < 0 in (0, R]. Since u(R) 0, we
have

N-1u" (R) + u’ (R) 0, (1.4)

whence, u"(R) > 0. This shows that u(r) is not concave near r R.
It is known [9,10] that if u(x) is a solution of problem (1.2)

with 0 <p < in a convex domain D then, the function v u(l-p)/2 is
concave in D.
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Ifp 1, instead of problem (1.2) we consider the following

Au+Alu=0 inD, u=0 on0D,

where A1 is the first eigenvalue of D. If u is the (positive) correspond-
ing eigenfunction then, v= log u is concave whenever D is convex
(see [9-11]).

In [9, p. 122] it is written that if u(x) is a solution to (1.2) in a convex
domain D then the function

V(X) S-(p+l)/2 ds

is a good candidate to be concave. As recalled above, this fact is known-to
be true for 0 _< p < 1. In Section 3 ofthe present paper we shall prove that
the statement in above is also true forp < 0. Furthermore, we shall find
the following sharpness results. Let u(x) be a solution of (1.2) and let
e > 0. Then:

(1) if p-0, the function V--’U1/2+e is not concave in some convex
domain;

(2) ifp 1, the function v u is not concave in some convex domain;
(3) if p <-1, the function V"-U

(1-p)/2+e is not concave even in the
radial case.

2. BOUNDARY BEHAVlOUR

In this section the domain D is assumed to be bounded, smooth and
satisfying a uniform interior and exterior sphere condition. For 7 > 1, we
consider the following problem

Au+u-7=0 inD, u=0 on OD. (2.1)

LEMMA 2.1 Ifu(x) is apositive solution toproblem (2.1) with "7 > 1, then

lim
u(x) [("7 + 1): ]

1/(+1)

where 5(x) denotes the distancefrom x to OD.
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Proof Let R > 0. Consider first the case of D B(R), a ball with
radius R. The corresponding (radial) solution z z(r) satisfies, for
0<r<R,

N-1z" z’ + z-’ O, z’(O) O, z(R) 0. (2.2)

Multiplying (2.2) by z’ we get

z"z + z-z < 0.

After integration over (0, r) we find

The latter inequality implies

zt > z(1-,)/2 (2.3)

Insertion of (2.3) into Eq. (2.2) yields

N-l( 211/2z(1-’)/2+z-’<O’r
whence

I z(+’)/2 + < 0.
r

Let e > 0. Since z(r) 0 as r R, there exists r, < R such that

z"+ z-(1- e/2) < 0 in (r,,R).

Since f(r) < 0, from this inequality we find

z"z’ + z-z’ e/2) > 0



ELLIPTIC SINGULAR PROBLEMS 317

and

(z’()) (z’(r,))
2 2

e/2 [zl_.(r) zl_7(re)] > 0.
1-7

For some r0 > re, we also have

(z’(r))2 e Z1
2

> -7(r) VrE(ro, R)
7-1

or

z(7_l)/2(r)zt(r)_(l_6.)l/2(, 2, 1/1/2
Integration over (r, R) yields

z(r) > (1 e)l/(,+_)L2(’-[(’+ 1)211)
1/(7+1)

(R- r)2/(’+1) Vr (ro, R).

(2.4)

Now consider the annulus D B(R, ). Let w w(r) be a solution to
problem (2.1) in B(R, R). We have, for R < r < R,

N-1w" + w’ + w- O, w(R) O, w() O. (2.5)

Ifr is a point in (R, R) where wt(rl) O, from (2.5) we find, for R < r < r,

(w,(r))2 fr, 2 wl-’(r) wl-f(rl)(N- 1) 7(w’(t)) dt+
2 7-1

(2.6)

By (2.5) we also find

/r tN-lw-’(t) dt <w’(r) r-- w-’ (t) dt.
RN-1
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Using the latter inequality together with de l’pital rule we find

lim (’7-1)f(1/t)(w’(t))2 dt
rR

r-1 f’ w-’(t) dt
lim

w’ !r) < lim RN

Using de l’(3pital rule once more we get

(9’- 1) ff(1/t)(w’(t))2 dt rv-1 w(r)
lim lim 0.- w-() -< --w’()

Recall that w(r) 0 as r R and that, by (2.6), w’(r) -+ oe as r - R. If
the integral of (w’)2 over (0, rl) is finite then we cannot apply de
l’pital rule, but in this case, the limit is trivial. As a consequence of
this estimate, (2.6) yields, for a given e > 0,

(w’(r))
< w-(r) Vr (,r).

2 7-1
Integrating over (R, r) with r < &, one finds

7+1w(7+1)/2<(2)1/27-1 (1 + e)l/2(r- R),

or

w(r) < (1-I-)1/(7+1) F2(’c--ir(’r+ 1):1
1/(7+1)

(r-R)2/(+1). (2.7)

Recall that D has a uniform interior and exterior sphere condition.
Take a point P E OD. We may assume that P (R, 0,..., 0), that D is
contained in the annulus B(R, R) with center in (2R, 0,..., 0) and R
large, and that D contains the ball B(R) with center in (0,..., 0). Note
that B(R, R) and B(R) are tangent to OD in P. If u(x) is the solution
of problem (2.1) in D, if w(x) is the solution in the annulus B(R,[) and
if z(x) is the solution in B then, by the comparison principle, we have

z(x) <_ .(x) <_ w(x) Vx .
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Let 0 < r < R. If we take a point x (r, 0,..., 0) then, by using (2.4)
and (2.7) it follows that

(1 ) 1/(7+1) [(")/+ 1):]
1/(3’+1)

1/(7+1)

< u(x) < (1 + )2/(7+1)l(")
Since e is arbitrary, the lemma follows.

THEOREM 2.2 If U(X) is a positive solution to problem (2.1) with "7 > 1,
then there exists > 0 such that

+ 1):.]
’/(7+)

(2/(7+1)(X) i < fl(7-1)/(7+l)(x) VX E D,

where 6(x) denotes the distancefrom x to OD.

Proof Following [5], put

W(x) bo52/(7+l)(x) + fitS(x),

with

and 0 </3 will be fixed later. Writing instead of 8(x), one finds

2 62/(9,+1)_ flSiWi bo 18i q-
7+1

Since 6i6i: and -AS= (N- 1)K= H, K being the mean curvature of
the level surfaces of 6(x), we find

AW b-76-27/(7+ 1) -Jr- b0
2

H8(1-7)/@+1) + fill. (2.8)
7+1
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On the other hand, by applying Taylor expansion to the function

f(t) (bo5/(+) + t)-one finds

We claim that, for 5(x) _< 5o small and/3 large, we have

_q,b--l/35- + 3’(7 +1)b--r-z/32ts-z/(.r+
2

2
< b0 Hi5(1-3’)/(3’+1) +/3H.

7+1
(2.10)

Indeed, let us rewrite (2.10) as

’T I_bo _+_/(,.y _+_ i)5(,-I)/(,+I)]b-’r-2
-y 2

</5b-’- q- bo H(52/(’+1) q-- H5."7+1

The left hand side can be made negative for 5(x) < 5o by choosing

/55.r_)/(.+1) b____o (2 11)7+1"

Now, decrease 5o and increase/3 until the right hand side is positive. This
is possible because, by the smoothness ofD, H is bounded near OD. The
claim is proved.
By (2.8)-(2.10) it follows that

AW+W-’r<0 on{xD:5(x)<50}.

Obviously, W(x) u(x) on OD. Increase/3 and decrease 5o according to
(2.11) until we have W(x)> u(x) for 5(x)=5o. Observe that this is
possible because of Lemma 2.1.
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Hence, by the comparison principle for elliptic equations [7, Theorem
9.2] we find

u(x) < bo62/(7+l)(x) -+- (2.12)

for all x E D with 6(x) <_ 60.
To complete the proof of the theorem, let

W(x)

with bo and/3 as before. We find

-AW bff’6-2’/(7+1) + b0
2 H6(1-’)/(’7+1)

"7+1
(2.13)

By applying Taylor expansion to the function

f(t) (b0t52/(’+1) t)-
one finds

We claim that, for 6(x) <_ 60 small and/3 large we have

2b-’)’-lfl6-1 > b0 Ht(1-’y)/(’+I) 3H. (2.15)

Indeed, inequality (2.15) can be written as

The claim follows easily.
By (2.13)-(2.15) it follows that

AW+W-’>0 on{xED:6(x)<60}.
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If necessary, increase/3 and decrease 60 until we have W(x)< u(x) for
6(x) 0.
Again by the comparison principle we find

> (2.16)

for all x D with (x) < 0.
The constants/3 and 0 in (2.12)and (2.16)can be taken with the same

values. Therefore,

u(x)
2/(7+1) (X) < 3(’-1/(’+1 (x),

for all x E D such that 6(x) < 60. Increasing/3 again, the theorem follows.

By using Theorem 2.2 one finds easily that the gradient of u(x) is
unbounded near the boundary of D. For 3’ 1, Theorem 2.2 fails. Now
we give a direct estimate of the gradient in this case, improving a result
of[13].

Consider the following problem:

Au+p(x)u-1=0 inD, u=0 on0D, (2.17)

where D is a domain satisfying an interior sphere condition and p(x) is a
smooth function satisfying

0 < pl <_ p(x). (2.18)

PROPOSITION 2.3 If u(x) is a solution to problem (2.17) with p(x)
satisfying (2.18) then the gradient ofu(x) is unbounded in eachpoint ofOD.

Proof Let z z(r) be the solution of the following problem:

N- lztz" + pl z- =0, O < r < R, z’(O) =O, z(R) =O. (2.19)

By (2.19) we find (rN-lzt) < 0, whence z’(r) < 0 in (0, R).

Multiplying by f, Eq. (2.19) implies

ZttZ + plz-lz < O.
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Integrating on (0, r) we find

(z’) + Pl log z- < 0,

whence,

(zz’)2 < 2plz2(r)logz(0)

The latter inequality implies that

lim zz O.
r-+R

Let ro E (R/2, R) such that

_zzl <
pR

forr0<r<R.4(N-1)

Using Eq. (2.19) once more we find, on (ro, R)

zz p <- p <
z r z \--47r 2z

Since z < 0, from the latter inequality we find

ZttZ Pl Z

2 Z

Integration over (ro, r) yields

(z’(r))2 (z’(ro)) :z > Pl log

Finally, we find that

z(ro)
in (r0, R)-z’(r) > log z-7- (2.20)



324 S. BERHANU et al.

Now consider problem (2.17) in D. We claim that the interior
derivative of the solution u approaches +ec as x OD. Indeed, for

Po E OD, consider a ball B C D and tangent to OD at Po. Let z be the
solution of problem (2.19) in such a ball. Since Pl <_ p(x), one finds

Az + p(x)z-1 >_ 0 in B.

By the comparison principle [7, Theorem 9.2] between the last inequality
and Eq. (2.17) one finds that u(x) > z(x) in B. As a consequence, if P is a
point in B close to P0 we have

u(P) u( 0) > z( 0)

Using the last inequality together with (2.20), the proposition follows.

3. CONVEXITY

In this section, D C ]N is assumed to be bounded, smooth and convex.
Let u(x) be a positive solution to the problem

Au+u-’-0 inD, u-0 on0D, (3.1)

with 0 < 7. We want to prove that the function v-/,/(1+,,/)/2 is concave.
Using Eq. (3.1), we find

[11- 1+.7] v(x)=0 onOD. (3.2)Av- 71Vv12 + in D,
v +7 2

We first show that the function

Q(x) 7 iVvl2 +
1+7

(3.3)

is positive in D. This fact is trivial for -y _< 1. Let us prove it for < 7.
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LEMMA 3.1 Ifu(x)isapositivesolutiontoproblem(3.1)with’y> 1,andif
v u(1+’)/2, then thefunction Q(x) defined as in (3.3) is positive in D.

Proof We have

,),2
Q(x)=

2

with

2

It suffices to prove that, when < 7, P(x) < O.
For e > 0, consider the solution u(x) to the problem

Au+u-’=0 inD, u=e onOD.

The corresponding function

P(x) IVul2 u’-
2

satisfies

P Ukblk l’l-’Y1"l

Note that the summation convention over repeated indices is used. This
equation together with Schwarz inequality yield

(Pi- b/-TUi)2 (Zgkblki) 2 IVUl2UkiUki,

from which it follows that

Pi- 2u-’rui
Pi -+- u-2"r.UkiUki

iX7ul 2

Here and in the sequel we often write U instead of Uxi. Similarly for Pi.
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Using this estimate as well as Eq. (3.1) we find

AP + 2u-Tui- Pi
17ul2 ei >_ O.

By the classical maximum principle, P attains its maximum value
either when Vu 0 or on the boundary ofD. Since D is convex, Hopf’s
boundary lemma prevents P from having its maximum value on OD
(see [14]). Hence,

ul-7 M-74-< <0,
-7- 1-7

where M, denotes the maximumvalue ofu(x) u,(x). The lemma follows
as eO.

For discussing the concavity ofsolutions to Eq. (3.2), we use Korevaar
function [9,11]

C(x,y) 2v((x + y)/2) v(x) v(y), x,y e D. (3.4)

The function v(x) is concave in D if and only if C(x, y) > 0 in D D.

PROPOSITION 3.2 If v(x) is a positive solution to problem (3.2) then the

function C(x, y) defined as in (3.4), cannot have a negative minimum in D.

Proof By Lemma 3.1, the function at the right hand side of Eq. (3.2) is
negative. Moreover, such a function is increasing with respect to v. The
proof follows easily by [9, Theorem 3.13, p. 116]. See also [8,11].

To get the positiveness of C(x, y) on the boundary ofD D, we prove
the following

LEMMA 3.3 If V(X) & a positive solution to problem (3.2) and ify E OD,
then thefunction

(x) 2v(z) v(x), with z (x + y)/2

is non-negative in D.
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Proof Ifx E OD, we have b(x) 2v(z) > 0. Ifx E D, by computation we
find

v V(z) V(x), x Xv(z) Xv(x).

Using (3.2), the latter equation yields

2v(z) + + v-(- (Alvv(x) +

with A (1 "y)/(1 + "y) and B (1 + ,)/2. Using (3.5), this equation can
be rewritten as

(A]7v(z)]2 B)/k/ + ai)i
2v(z)v(x) + (3.6)

with suitable smooth functions ai. By Lemma 3.1, the coefficient ofb in

(3.6) is positive. Hence, by the classical maximum principle, we infer that
b(x) attains its minimum value on the boundary of D. The lemma is

proved.

COROLLARY 3.4 If v(x) is a positive solution to problem (3.2), then the

function C(x, y) defined as in (3.4) is non-negative on D ;.

Proof It follows from Proposition 3.2 and Lemma 3.3.

THEOREM 3.5 If V(X) & a positive solution to problem (3.2) & a convex

domain D then it is strictly concave in D.

Proof By (3.2) and Lemma 3.1, the function w -v satisfies

Xw- % (AlVwl + B) > 0,
w

with A (1 7)/(1 + 7) and B (1 + "),)/2. By Corollary 3.4, w is convex.
Moreover, w w(Al7wl2 + B)-1 is convex. By a theorem of Korevaar
and Lewis [12], we conclude that the Hessian of v has a constant rank in
D. Now, v attains its maximum in D on a compact subset Kc D. Iris well
known in this case [4] that in any neighborhood U of K, there is a point
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P E Uwhere the Hessian ofvis strictly negative. It follows that vis strictly
concave in D.

COROLLARY 3.6 If U(X) is a positive solution to problem (3.1) then it

attains its maximum value in D at a single point.

Now we prove some sharpness results on convexity.
1. LetD c ]Nbe a convex domain, and let u(x) be a positive solution to

the problem

Au+l=0 inD, u=0 on0D. (3.7)

We recall that the function

v(x) u

is concave in D [9,10]. We prove that the exponent 1/2 is sharp.
Let N= 2, and let D be the triangle with vertex (- /x/-, 0), (1 /x/, 0)

and (0, 1). The function

u(x, y)
y rl(1 y)2 3x2|=+

solves problem (3.7) in this domain. Let b(y) 4u(0, y). We have

qS(y) y(1 y).

Ofcourse, the function is concave in (0, 1). If a > 1/2, (b(y)) is not
concave near y 1.

IfN> 2, one can obtain the result in above by using the function

hi(X) XN [---(1 XN)2

N- il
2. Let u > 0 be a solution of the problem

At,/+ A1 l,t 0 in D, u 0 on OD.
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Such a function is the first eigenfunction ofD. We know that v log u is
concave whenever D is convex.

Is there any e > 0 such that v u is concave for all convex domains?
The answer is negative, as one can see by the following example. Let
N-- 2, and let

D-{0<r<a, 0<0<

Here r and 0 are polar coordinates, m is an integer and a is the first zero of
the mth Bessel function. The first eigenfunction ofD is

u(x, y) Jm(r) sin(toO),

Jm(r) being the mth Bessel function. It is known that Jm(r) behaves like r
as r 0. Hence, we must take e _< 1/m if we want the function u to be
concave. Since m can be choosen arbitrarily large, the result follows.

3. Let z(x) be a solution of the problem

Az+z-l=0 inB, z=0 on0B, (3.8)

where B is a ball. By Theorem 3.5, z(x) is concave. Let us show that, given
e > 0, the function v z1/(1-) is not concave near OB. Indeed,

Z-- 1l-e, VZ (1
/Xz (1 )v-/Xv (1 )v--I IX7vl 2,

Substituting into Eq. (3.8), we find

vl-ZZmv_ ev-2lVvl2 (3.9)

Since
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and since, by (2.20), ]Vv] as x OB, the right hand side of (3.9)
becomes positive near the boudary of B. As a consequence, Av > 0 near
OB and therefore, v cannot be concave on B.

Similarly, one can show that, if z(x) is a solution of the problem

Az+z-’=0 inB, z=0 on0B,

with 7 > then, for any e > 0, the function v- z(l+’)/2+e is not concave
near OB.
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