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Removal of the Continuum of X-Ray Spectra
Using Morphological Operators

Antonio Brunetti

Abstract—In energy dispersive X-ray fluorescence analysis,
the estimation and removal of the continuum on which the
X-ray spectrum is superimposed is a primary requirement. The
algorithms commonly used are either complex, or in the case
of, e.g., neural network algorithms, computation-intensive. They
usually require strong constraints and/or hypotheses on the data
or the shape of the continuum. Moreover, if the continuum
amplitude is comparable to or bigger than the peak amplitudes,
some of these algorithms can lose peaks. A new approach to con-
tinuum removal based on mathematical morphology is proposed
here. The new algorithm permits fast continuum elimination
without peak deterioration. Other than a rough estimate on the
widths of the peaks, the new method does not require additional
information about the spectrum. The method can also be applied
without modification to background elimination from gamma ray
spectra. This new method is described and results obtained from
real and simulated spectra are discussed and evaluated.

Index Terms—Continuum removal, morphological operators,
spectroscopy, X-ray spectra analysis.

I. INTRODUCTION

QUANTITATIVE spectrum analysis requires techniques
for extracting information about the peaks, such as
position, energy, amplitude, and width, as accurately as

possible. The first step toward this goal is continuum removal.
Several algorithms have been reported in the literature and
the most common ones are described by Thomsenet al. [1],
Gerasimov [2], Maxwellet al. [3], and a complete review
can be found in [4]. The first of these performs continuum
removal using two models based on second- and third-order
splines. The polynomial coefficients are calculated using pre-
viously established points localized at the minimums placed
on either side of the peaks. Of course this method requires
a priori estimates of peak position and requires also two
general parameters: the full-width at half-maximum (FWHM)
of the peaks and the noise level in the spectrum. The results
reported in [1] are very good, but the method shows a strong
dependence on the FWHM parameter.

The Gerasimov method is a five-step recursive filter based
on a previously developed filter [5] with stabilization im-
provements. It requires knowledge of two spectral parameters:
the FWHM of the peaks and an empirical parameter which
Gerasimov denotes by The latter is chosen empirically
between zero and one, depending on the FWHM values;
must be large for wide peaks and small for sharp ones. This
method is superior to others in that peak positions are not
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required. For good continuum removal more than 30 iterations
are generally required.

The algorithm of Maxwellet al. is based on Schamber’s
top-hat filter [6]. It is a zero-area digital filter that does not
make assumptions about the continuum, except to suppose that
it changes more slowly than the peaks. Gerasimov [7] suggests
that it can be used when the peak forms are not gaussian. We
have used it on some spectra, but the quality of continuum
removal appears lower than in other methods.

The algorithm proposed here is based on mathematical mor-
phology. It permits one to relax the constraints on continuum
and peak shape. It requires just about the same assumptions as
the filter developed by Maxwell, but with superior filtering
performance. For the sake of completeness, a comparison
with one of the previously described filters will be reported.
Maxwell’s filter would be the best of the candidates for
a comparison with ours, but considering the quality of the
filtering operation it is better to compare our morphological
filter (MF) with the Gerasimov filter (GF), because the latter is,
both as to its performance and as to the constraints it requires,
the nearest to MF.

II. M ATHEMATICAL MORPHOLOGY

Mathematical morphology was developed in 1964 by Math-
eron and Serra as a nonlinear approach to image processing
[8]. In this field it has shown robust performance in noise
cancellation while conserving signal characteristics. It can
be thought of as an interaction of a signal set with one or
more other sets, called structural elements, containing shape
information. This interaction changes the original data to a new
form which is intended to be more expressive for the user. An
MF is a local operator defined in terms of intersection, union,
difference, max, and min. It is easy to apply morphological
operators to one-dimensional signals such as spectral data.
Such applications to electromedical signals can be found in
[9] and [10]. Because the signals of interest here are one-
dimensional, the discussion will be restricted to that case.
See [8] for a complete treatment of mathematical morphology.
The morphological language is based on two basic operations:
dilation and erosion.

A. Erosion

Let be the signal data and the structural data. Then
erosion can be written as

for (1)

0018–9499/98$10.00 1998 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UnissResearch

https://core.ac.uk/display/11691225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2282 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 5, OCTOBER 1998
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(b)

(c)

Fig. 1. (a) Sinusoidal curve with positive and negative amplitude gaussian
pulses; (b) signal after opening operation; and (c) signal after opening and
closing operations. In (c), flat zones corresponding to some peaks (hence
distortion with respect to the original sinusoidal shape) are clearly visible.

where running from zero to indexes the spectral
data of length and running from zero to indexes
structural data of length

B. Dilation

This is the complement of the erosion operation. Using the
notation of the previous case

for (2)

Performing an erosion followed by a dilation provides a new
operator, the opening, while an erosion after a dilation builds
a closing operator. The opening operation cancels small com-
ponents of the signal and smooths internal contours. Closing
magnifies little components and smooths external contours.
These operators can be used for continuum removal as shown
in the example of Fig. 1. Fig. 1(a) represents a sinusoidal curve
with positive and negative gaussian peaks. Let the structural

element be a horizontal segment More precisely, let the
structural element be given with zero intensities, i.e.,
for The width of the structural element is
taken as the base width of the gaussian peaks. If an opening
operation is performed on the signal, the positive impulses with
base narrower than will be cancelled, as seen in Fig. 1(b).
Subtracting the filtered data from the original data will extract
the positive peaks. Next, if a closing operator is applied to the
filtered data, the negative impulses narrower thanwill be
cancelled as indicated in Fig. 1(c). Note the distortion of the
sinusoidal shape in Fig. 1(c) due to the structural element’s
horizontal slope. In general, using structural elements with
different shapes or sizes will produce different distortions in
both amplitude and shape. But, the distortion being local,
it will be possible to partially eliminate it by interpolation,
as is explained later. In principle, the interpolation could be
performed with a specially shaped structural element. For
example, in the case of Fig. 1(c), a sloping segment with
varying slope could be used as the structural element to
perform a linear interpolation. In this way, changing the
structural element, it is possible to accomplish interpolation
to any order.

III. M ETHODS

Since X-ray and gamma-ray spectra do not contain negative
peaks, for continuum removal only the opening is required.
One possible difficulty is that the FWHM changes with energy.
The GF uses a fixed FWHM value, chosen as the largest in the
spectrum under study. The MF, instead, permits one to change
easily, during the run, the size of the structural elements as the
channel, i.e., energy, changes. In this way it is possible to tune
it to every FWHM. This can be relevant if one hasa priori
knowledge of the spectrum. In fact, small structural elements
follow the continuum better than big ones, thus permitting
more efficient noise removal. The best structural element for
spectrum filtering is the segment with zero amplitude values
because it does not distort the amplitude values of the data.
The width of the segment can be decided according to Fig. 2,
which shows the patterns that may be found after an opening
operation. The left side is a schematic representation of a peak
superimposed on four different continuum shapes, the central
column reports application of a segment shorter than the peak
base, and the column on right shows the effect of a segment
wider than the peak base. These patterns are formed by the
intersection of the two extremes of the structural element with
the data shape: the narrower the structural element is compared
to the peak base, the more of the peak remains in the modified
signal. This holds also for the continuum without peaks. In any
case, the result of this kind of structural element application
is a pedestal superimposed on the continuum. So, if one has
a rapidly variable continuum, false peaks could be detected,
but they can be eliminated by calculation of the area over the
peak. In fact, if the peak is not a true one, the area will be very
small and it can be canceled in the final filtered data. Moreover,
these false signals will be found only if one has both a wide
structural element and a nasty, i.e., rapidly varying, continuum.
After the application of the structural element, and after
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Fig. 2. Effects of the application of a segmental structural element to
spectra. Background slopes here have been chosen larger than usual for
clarity of representation. Left column, principal cases of background and peak
superposition; central column, structural element narrower than peak pedestal;
and right column, structural element wider than peak pedestal.

subtracting the resulting estimate of the continuum from the
original signal, as described above, a raw filtering is obtained
but with peak amplitudes somewhat reduced. The errors are
amplitude dependent, and they will be high for very small
peaks (say less than 100 counts). These errors can be corrected
by interpolation under the peaks. This operation requires the
estimation of both of the extremes of the peak. Estimates of
these extremes are obtained using the structural element action
again. First, the type of peak pedestal, classified as in Fig. 2,
must be determined. This can be easily done by observing the
values of the points neighboring and external to the pedestal;
in the case of the central column in Fig. 2 the minimum points
or slope changes must be found. This can be done using again
the structural element action. In fact, in real data, between
adjacent channels, there is little oscillation. In the low, i.e.,
continuum, part of the spectrum, the structural element will
cancel it, producing little flat zones. These will be external to
peak area and thus can be used as extremes points. The cases
in the right column can be subdivided in three categories:

• values at points near the pedestal smaller than the pedestal
value;

• values at points near the pedestal smaller than the pedestal
value on the left, but larger on the right, or vice versa;

• values at points near the pedestal larger than the pedestal
value.

The cases in the second category use, as the first interpolat-
ing point, the last pedestal point on the high side and, as the

second interpolating point, the location of the minimum. The
minimum is located using the same technique as for the central
column cases. So long as the width of the structural element
is reasonable, i.e., not much bigger than the FWHM, peaks
from the first and third categories generally do not require
correction because near such peaks the continuum is usually
changing relatively slowly and the error is small. But the
previous techniques can be used if needed.

Once the extreme points of the peak are determined, a linear
or higher order interpolation can be performed.

In our experience, if the spectrum has isolated or short
tail peaks, a linear interpolation has always worked well. To
the contrary, if the spectrum presents large overlapping peaks
structures, then the assumption that the continuum is varying
slower than what is in this case a group of the peaks is no
longer true. So, in this case it is better to use an interpolation
of order higher than one. However, in general, if a small ampli-
tude peak is near to stronger neighboring peaks and a precise
estimate is required, it is better to use higher order interpola-
tion. If the peaks have long tails, the interpolation method does
not always work well. This is not due to the order of interpola-
tion, or at least this is not principally, but fundamentally to the
method of choosing the extremes points, which can produce a
cut of the tail. This happens only when a tail is superimposed
upon another peak. In this paper, where the principal purpose
is to demonstrate the effectiveness of our method, only linear
interpolation is used and the problem of long tail peaks is
neglected. Regarding the action of the MF on other peak
shapes, such as the lorentzian, it will be much the same.

After this general discussion one practical point must be un-
derlined: until now, statistics permitting, this filtering method
has never lost peaks. That cannot be said of other methods. In
regards to the structural element, it is preferable, in accordance
with the above discussion, to choose its width to approximately
match the FWHM.

IV. A LGORITHM

From the previous paragraph, the following algorithm can
be extracted.

1) Estimate the base width of the peaks.
2) Choose the width of the structural element segment

based on the results of Step 1).
3) Open the data using the structural element.
4) Linearly interpolate with the techniques described in the

previous paragraph (or other techniques.)
5) Subtract the result of the previous step from the original

data.
6) Eliminate false peaks and noise by area estimation.

The first and second steps determine the structural element.
The choice of width is important, but, as can be seen by
examining Fig. 2, no very great precision is needed. Care must
be taken to choose the structural element width shorter than the
characteristic length of variations in the continuum. Here, the
continuum is intended to mean the slowly varying continuum
which one observes by studying the entire data set and is
not intended to include rapidly varying noise fluctuations, for
example random errors varying from channel to channel.
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(a)

(b)

Fig. 3. Example of MF applied to a fluorescence spectrum: (a) original data (semilog scale) and (b) background removal using the MF (linear scale with
the highest amplitude peak attenuate by a factor of 0.2 for clearer visual presentation). The sample is a palladium powder. However, other peaks are also
present, due to collimator and X-ray tube anode contamination. Pb, Cu, Zn, and Ca characteristic lines are visible.

In Step 3) the algorithm executes the row filtering of the
spectrum. The outcome of this step is a continuum with various
superimposed pedestals. These pedestals are eliminated in
Step 4).

Step 5) leaves the estimated peaks with a lots of false peaks
and noise fluctuations. The false peaks can be eliminated by
finding the maximum of every zone and calculating the area.
Then each area value is compared to a gaussian peak with the
same FWHM and peak amplitude as the presumed peak. If
the estimated area is considerably less then the simulated area
then the peak is considered to be a false peak; otherwise, it
is accepted as a true peak. Before this step it is convenient
to eliminate the noise. This operation could be performed
by the false peak detection procedure, but as explained next,

the algorithm will be faster if a different procedure is used.
In fact, the noise removal can be performed by a zero-
amplitude segment covering exactly three channels. This is
effective in eliminating the rapidly fluctuating noise which
arises from random differences in counts from one channel
to the next. The filtering is performed using both opening
and closing operations. Using a structural element wider than
three elements will strengthen the filtering operation, extending
it to fluctuations regarding more than two channels, but the
drawback is that the high parts of true peaks will be cut
off. The effect of the three-element noise filter on the peaks
depends generally on the amplitude and FWHM of the peaks.
For example, for a gaussian peak which an amplitude of 10 000
counts and a FWHM of ten channels, the variation of the area
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(a)

(b)

(c)

Fig. 4. Simulated spectrum. The peak amplitudes are always smaller than the background: (a) original spectrum (solid line). The continuum contribution is
reported by the dotted line; (b) filtered by GF (solid line) and original peaks (dotted line); and (c) filtered by MF (solid line) and original peaks (dotted line).
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TABLE I
SIMULATED GAUSSIAN PEAKS SUPERIMPOSED UPON THEBACKGROUND AS EXTRACTED BY GF

FROM THE FLUORESCENCESPECTRUM OF FIG. 3. THE AMPLITUDES ARE EXPRESSED INCOUNT UNITS

of the peak is less ten counts over an area of 10counts. If the
FWHM goes down to four channels, the variation of the area
is about 40 counts over 400 000 counts. For low amplitude
peaks the error is practically zero.

The use of a three-coefficients structural element is therefore
suggested for first noise removal, leaving further noise removal
to the false peak detection procedure.

V. TEST DATA

Actually, when examining an X-ray spectrum, the location
of a true peak may sometimes be used to calculate the expected
position of some related peak, for example using This
circumstance does not hold for gamma ray spectra. Since one
of the desiderata for the MF filter was that it could be applied
to every kind of spectrum, it seems fair to test it in a situation
where noa priori information on peak positions is available.

The simulated data (Fig. 4) were constructed by adding
the continuum spectrum extracted by GF from Fig. 3(a) to
a set of gaussian peaks with different intensities and equal
FWHM of 16 channels. With this choice of continuum, the
MF method should have no advantage with respect to the GF.
The position of the peaks is quasi-random. The positions of the
peaks are not, however, totally random because, in the interests
of checking the results of MF on partially superimposed peaks,
two peaks were placed on channels 500 and 520 [see Table I
and Fig. 4(a)]. Note that the peak amplitudes are smaller than
the continuum and, in some cases, the peaks are not visually
identifiable [see Fig. 4(a)]. Thus, the simulated data presents
the sort of situation where extraction methods are required.

The continuum can be eliminated by eye when the peaks are
easily distinguishable.

VI. RESULTS

Fig. 3 examines the fluorescence spectrum of a Palladium
powder sample, acquired by a HPGe detector. In Fig. 3(a) the
original data are shown, while in Fig. 3(b) the morphologically
filtered data are shown. A structural element 60 points wide
(7.5 times the FWHM) was used together with the inter-
polation method described in Section III. The filter’s action
and continuum removal are good. This example is included
here to show the effect of the filter on genuine spectral data,
but it does not allow careful study of how well the filter
conserves the shape and amplitude of peaks. In Fig. 4(a)–(c),
original simulated spectrum, GF element spectrum, and MF
spectrum, respectively, are reported. In Table I the positions
and intensities of the original peaks are reported, together
with continuum/peak ratios and amplitude values extracted
using GF and MF. GF found seven peaks plus two spikes
corresponding to two other peak positions. MF extracted all ten
peaks, considering the peak around the channel 500 as double
because it is clearly larger than others. In the GF results the
two adjunctive peaks (around 500 and 800 channels) appear
only as two spikes which could be interpreted, if the original
position of the peaks were unknown, as errors. In regards to
the amplitude values extracted when the peak is found, GF is a
little better than MF, but, once again, MF did not lose peaks.
Moreover, using MF, once a peak’s position is determined,
then a more precise estimate of amplitude might be obtained
by using a higher order interpolation.
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VII. CONCLUSIONS

In this paper a new algorithm for removing continuum
from X-ray and gamma-ray spectra is proposed. The algorithm
is based on mathematical morphology. The techniques of
mathematical morphology can be used to accomplish simple
continuum removal. This filter is fast because it does not
require the iterations which are common in other filters found
in the literature. It is also versatile because it is easy to change
the characteristics of the morphological operations according
to the channel, i.e., energy. In this way variations of the
measurement system’s resolution can be taken into account.
Such adjustments are not so easy to realize in the other
algorithms and may not be possible at all. The performance
of the MF has been tested on real and simulated spectra
and compared to a good filtering method described in the
literature. As a test case a very nasty simulated spectrum,
with continuum bigger than peak amplitudes, was used. For
this test case the superior performance of the MF over the
reference method was verified. It must be stressed, once
again, that in practice the morphological method has never
lost a peak, and this is not necessarily true for the others
algorithms. As a drawback, in particular cases, false peaks
can be detected. Measuring the area under the false peak,
they can be removed. For precise estimation of the amplitudes
and shapes of the peaks, interpolation after the filtering is
required. Linear interpolation using the algorithm described
in Section III is useful in obtaining more precise estimates of
the peak amplitudes. However, our choice can and should be
adopted for all small amplitude peaks. The actual version of the
algorithm, with linear interpolation, works well with isolated

peaks or groups of peaks overlapping in a small region. When
these conditions are not satisfied by spectrum errors in the
amplitude area estimations will be made. We are currently
studying how to improve the performance of the algorithm in
these circumstances.
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