FUNGICIDAL ACTIVITY OF SOME o-NITROPHENYL-HYDRAZONES

MICHELE PALOMBA, GIORGIO PINTORE, GIANPIERO BOATTO, BATTISTINA ASPRONI, RICCARDO CERRI (*), AMEDEO PAU, GIOVANNI ANTONIO FARRIS (**)

Istituto di Analitica Farmaceutica, Università degli studi di Sassari, Via Muroni 23, 07100 Sassari

(**) Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, sez. Microbiologia, University of Sassari.

Summary — The antimycotic activity of 16 o-nitrophenylhydrazones against strains of Hansenula anomala, Saccharomyces cerevisiae, Candida parapsylosis, and Cryptococcus albidus was tested. All 16 compounds inhibited growth of the yeast strains. The inhibitory activity of the 4 methyl-derivatives substituted on the aromatic nucleus was particularly significant.

INTRODUCTION

The activity of nitrophenylhydrazones as inhibitors of the growth of some pathogenic microorganisms in plants has already been described^{1,2}. More recently, other Authors³ reported the effective fungicidal activity of o-derivatives of phenylpyridylamines with general formula (A), which are compounds similar to the o- nitrophenylhydrazones prepared by us (B).

These findings encouraged us to prepare and screen a series of 16 new o-nitrophenylhydrazones of aldehydes and aliphatic ketones for antimycotic activity.

These assays (worked out at the Dipartimento di

Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, sez. Microbiologia, University of Sassari) provided some interesting results. All the prepared onitrophenylhydrazones assayed at concentrations ranging between 50 and 400 μ g/ml showed inhibitory activity. Compounds 2, 6, 10 and 12 (Table I) were particularly active, being able to inhibit growing colonies at concentrations lower than 50 μ g/ml.

A correlation between structure and inhibitory activity can be hypothesized. The linear chains R_2 (see Table I) were more active than the corresponding branched ones. Concerning the substituent X of the aromatic nucleus, the best pharmacological effects were obtained when CH₃ was present, whereas when Cl was present compounds were inactive.

CHEMISTRY

All products used in the tests were synthesized as shown in Scheme 1, starting from 4-substituted onitroanilines (C) which were transformed into hydrazines (D) and condensed with aldehydes and ketones to obtain the corresponding derivatives.

Yields were generally good. The prepared compounds are listed in Table 1. For all the unknown compounds the spectroscopic and mass data useful for their characterization are reported in Table II.

 $R_1 = H; R_2 = (CH_2)_2 - CH_3, (CH_2)_3 - CH_3$ $R_1 = CH_3; R_2 = CH_2 - CH_3, (CH_2)_2 - CH_3$

^(*) To whom correspondence should be addressed

TABLE I - List of the prepared compounds

N°	X	R ₁	R ₂	yeld %	p.f. °C
1	Н	Н	-(CH ₂) ₂ -CH ₃	81	59-60
2	CH ₃	Н	-(CH ₂) ₂ -CH ₃	81	68-69
3	CI	н	-(CH ₂) ₂ -CH ₃	74	63-64
4	OCH ₃	Н	-(CH ₂) ₂ -CH ₃	78	102-103
5(4)	н	Н	-(CH ₂) ₃ -CH ₃	74	39-40
6	CH₃	Н	-(CH ₂) ₃ -CH ₃	79	57-58
7	CI	Н	-(CH ₂) ₃ -CH ₃	82	71-72
8	OCH ₃	Н	-(CH ₂) ₃ -CH ₃	85	70-71
9 ⁽⁹⁾	Н	CH ₃	-CH ₂ -CH ₃	78	73
1000	CH₃	CH ₃	-CH ₂ -CH ₃	93	81-82
1100	CI	CH ₃	-CH ₂ -CH ₃	74	70-71
12	OCH ₃	CH ₃	-CH ₂ -CH ₃	72	75 . 76
13(6)	Н	CH ₃	$-(CH_2)_2-CH_3$	83	51-52
14	CH ₃	CH3	-(CH ₂) ₂ -CH ₃	64	33
150	CI	CH ₃	-(CH ₂) ₂ -CH ₃	76	82-83
16	OCH ₃	CH3	-{CH ₂ }2-CH3	68	54-55

Reference numbers are given for compounds already reported in the literature.

FUNGICIDAL ACTIVITY

The compounds were tested for inhibition of the growth of the pathogenic strains: 1) 201 Hansenula anomala 2) 1090 Saccharomyces cerevisiae 3) 2813 Candida parapsylosis 4) 3053 Cryptococcus albidus.

All strains were obtained from the Dipartimento di Scienze Agrarie e Biotecnologie Agro-Alimentari, sez. Microbiologia, University of Sassari.

Solutions of the products to be assayed were prepared in eight different concentrations (50, 100, 150, 200, 250, 300, 350 and 400 μ g/ml). GYEP culture medium was used for fungal growth.

Blank and inhibition tests with a 50 μ g/ml concentration of miconazole were also carried out, counting the Colony Forming Units (CFU) 48 h after having inoculated the culture medium. The results are shown in Tables III, IV, V and VI. They give the CFU expressed as exponential notations for each compound at each concentration (μ g/ml). The data are summarized in Table VII.

At the maximum dose (400 μ g/ml), the formation of yeast colonies was strongly inhibited. The growth reduction factor was calculated as follows:

$$\frac{(CFU-comp.)-(CFU+comp.)}{(CFU-comp.)}$$

It was over 99.9% in almost all cases.

Table VII shows the concentrations in μ g/ml which caused growth inhibition in the strains tested, giving a result between $0 \div 10^2$ CFU, compared with 10^9 in the blank test. Two (6 and 10) of the most active compounds were tested at concentrations between 5 and 25 µg/ml. The results are reported in Table VIII. Both

TABLE II - Physical and spectrometric properties of the new compounds

Comp.	Formula	M.W.	GC-MS M*/z	IR (cm ⁻¹) -NH C=N -NO ₂	¹ HNMR (ð) CDCla
1	C10H13N3O2	207.2	Compatible	330018301500 1340	1.00 (t, H, -CH ₃); 1.80 (m, 2H -CH ₂ - <u>CH₃)</u> ; CH ₃); 2.37 (q, 2H - <u>CH</u> ₂ -CH ₂ -CH ₃); 7.33 (m, 5H, 4H arom. +1H methylenic); 10.70 (s, 1H, NH)
2	C11H15N3O2	221.2	Compatible	330016301500 1330	1.00 (t, H, -CH3); 1.52 (m, 2H -CH3-CH3); 2.28 (s, 3H Ar-CH3); 2.33 (q, 2H, -CH3-CH3-CH3); 7.38 (m, 4H, 3H arom. +1H methylenic); 10.64 (s, 1H NH)
3	C10H12N3O2CI	241.7	Compatible	330016301500 1330	1.00 (t, 3H, -CH ₃); 1.61 (m, 2H, -CH ₂ -CH ₂ -CH ₃); 2.34 (q, 2H, - <u>CH₂-CH₂-CH₂-CH₂); 7.37-8.13 (m, 4H, 3H arom. +1H methylenic); 10.86 (s, 1H, NH)</u>
4	C11H15N3O3	237.2	Compatible	328516301500 1320	0.99 (t, H, -CH ₃); 1.59 (m, 2H -CH ₂ - <u>CH₂-CH₃); 2.32</u> (q, 2H, - <u>CH₂-CH₂-CH₃);</u> 3.79 (s, 3H, Ar-OCH ₃); 7.15-7.79 (m, 4H, 3H arom. +1H methylenic); 10.66 (s, 1H, NH)
6	C12H17N3O2	235.3	Compatible	3300-1630-1510 1330	0.94 (t, 3H, -CH ₂); 1.41 (m, 2H, -CH ₂ -); 1.55 (m, 2H, -CH ₂ -); 2.28 (s, 3H Ar- CH ₂);2.35 (q, 2H -CH ₂); 7.34 (m, 4H, 3H arom. +1H methylanic); 10.84 (s, 1H,NH)
7	C11H14N3O2CI	255.7	Compatible	330016201500 1330	0.94 (I, 3H, -CH ₂); 1.41 (m, 2H, -CH ₂ -); 1.56 (m, 2H, -CH ₂ -); 2.37 (q, 2H, - CH ₂); 7.37-8,13 (m, 4H, 3H arom. +1H methylenic); 10.88 (s, 1H, NH)
8	C12H17N3O3	251.3	Compatible	3290-1625-1495 1325	0.93 (t, H, -CH ₃); 1.40 (m, 2H, -CH ₂ -); 1.55 (m, 2H, -CH ₂ -); 2.33 (q, 2H, - CH ₂ -) 3.79 (s, 3H, Ar-OCH ₃); 7.18-7.78 (m, 4H, 3H arom. +1H methylenic); 10.66 (s, 1H, NH)
12	C ₁₁ H ₁₅ N ₃ O ₃	237.2	Compatible	331516201510 1335	1.16 (I, H, -CH ₂); 1.98 (s, 3H, CH ₂); 2.39 (q, 2H, - <u>CH</u> ₂ -CH ₂ -CH ₂); 3.81 (s, 3H, Ar-OCH ₂); 7.17-7.88 (m, 3H, arom.); 10.61 (s, 1H, NH)
14	C12H17N3O2	235.3	Compatible	3300-1630-1500 1330	0.99 (t, H, -CH ₃); 1.84 (m, 2H -CH ₂ -CH ₂); 1.98 (s, 3H, CH ₃); 2.29 (s, 3H Ar-CH ₃); 2.35 (t, 2H - <u>CH</u> 2-CH2-CH3); 7,30-7.92 (m, 3H arom.); 10.59 (s, 1H, NH)
16	C ₁₂ H ₁₇ N ₃ O ₃	251,3	Compatible	331016301500 1335	0.96 (I, 3H, -CH ₃); 1.63 (m, 2H, -CH ₂ -CH ₃); 1.97 (s, 3H CH ₃);2.34 (l, 2H - <u>CH</u> ₂ -CH ₂ -CH ₃); 3.80 (s, 3H, Ar-OCH ₃); 7.17-7.84 (m, 3H, arom.); 10.60 (s, 1H, NH)

the second s	the second s		the second s				ويستعد والمناجر المندوا الترا		
COMPO)UND 1 (I	R = H)	1						
YEASTS	[CONCE	NTRATIONS	(µa/mi)			
	Ö	50	100	150	200	250	300	350	400
201	4.10 ⁹	2.10 ⁹	2.10 ⁹	2.10	0	0	0	0	0
1090	6.10 ⁹	4.109	8.10 ⁸	4.104	6,10 ³	0	0	0	0
2813	6.10 ⁹	2.10 ⁸	810'	4.10	0	0	0	0	. 0
3053	2.109	4.10 ³	0	0	0	0	0	0	0
COMPO	DUND 2 (1	R = CH ₃)	ž	, 			· · · ·		·
YEASTS				CONCE	INTRATIONS	i (µg/ml)			N
	0	50	100	150	200	250	300	350	400
201	4.10 ⁹	4.10 ⁴	6.10	0	0	0	0	0	0.
1090	6.10 ⁹	2.10 ⁸	6.10 ⁵	4.10 ²	2.10	0	0	0	0
2813	6.10 ⁹	6.10 ³	4.10 ²	6.10 ²	0	0	0	0	0
3053	2.109	2.107	6.10 ³	2.10 ²	0	0	0	0	0
COMPO	DUND 3 (I	R = Cl)				÷.	•		
YEASTS				CONCE	NTRATIONS	, (im/gu) (Im/			
	0	50	100	150	200	250	300	350	400
201	4.10 ⁹	6.10 ⁶	4.10 ⁶	8.10 ²	6.10 ²	0	0	0	0
1090	6.10 ⁹	4.10 ⁹	4.10 ⁹	6.10 ⁵	6.10 ⁵	4.10 ⁵	6.104	2.104	8.10 ³
2813	6.10 ⁹	6.107	4.10 ⁷	6.10 ²	2.10 ²	6.10 ²	8.10	6.10	4.10
3053	2.109	6.10 ³	4.10	2.10	0	0	0	0	0
COMPO	DUND 4 ($R = OCH_3$)						
YEASTS				CONCE	NTRATIONS	6 (µg/ml)			
	0	50	100	150	200	250	300	350	400
201	4.10 ⁹	4.10	4.10	0	0	0	0	0	0
1090	6.10 ⁹	4.109	4,107	6.104	2.10 ³	8.10 ²	6.10	0	0
2813	6.109	4.109	2.10 ⁹	4.10 ³	4.10 ²	4.10	0	0	0
3053	2.109	6.104	2.10 ²	0	0	0	0	0	0

TABLE IV - Growth inhibitory activity of compounds 5, 6, 7 and 8

NH-N=CH-(CH2)3-CH3

COMPOL	JND 5 (R	= H)							
YEASTS	[CONCE	NTRATIONS	(ug/ml)			
	0	50	100	150	200	250	300	350	400
201	10 ⁹	10 ⁹	104	10 ²	10 ²	10 ²	10 ²	10 ²	10
1090	10 ⁹	108	10 ⁵	10 ³	10 ³	10 ³	10 ³	10 ³	10 ³
2813	109	109	10'	104	-10 ⁴	104	104	10 ²	10 ²
3053	10 ⁹	10 ⁹	105	10 ⁸	107	10 ⁵	10 ⁵	10 ⁵	10 ³
COMPO	UND 6 (R	= CH ₃)							
YEASTS				CONCE	INTRATIONS	i (µg/mi)			
	0	50	100	150	200	250	300	350	400
201	10 ⁹	0	0	0	0	0	0	0	Q
1090	10 ⁹	10 ³	0	0	0	0	0	0	0
2813	10 ⁹	104	10 ²	0	0 .	0	0	0	0
3053	109	10 ³	0	0	0	0	0	0	0
COMPO	UND 7 (R	= CI)							
YEASTS				CONCE	NTRATIONS	i (μg/ml)			
	0	50	100	150	200	250		350	400
201	10 ⁹	<u> 10° </u>	10 ⁸	10 ⁸	10'	10°	10 ⁸	10 ⁵	10⁴
1090	10 ⁹	10 ⁹	10°	10 ⁶	10°	10°	10 ⁵	104	10 ³
2813	10°	10°	10 ⁹	10'	10 ⁵	10°	105	10 ⁴	10 ²
3053	109	10 ⁹	10 ⁹	10 ⁸	10 ⁸	105	10 ⁵	10 ⁵	10 ⁵
COMPO	UND 8 (R	$= OCH_3)$				•			
YEASTS				CONCE	ENTRATIONS	i (µg/ml)			
	0	50	100	150	200	250	300	350	400
201	105	10'	10 ³	10 ³	103	102	<u>10²</u>	10 ²	0
1090	109	10 ⁹	10 ⁵	104	104	104	10 ² .	102	0
2813	109	10 ⁵	10 ²	10 ²	10 ²	0	0	0	0
3053	109	10 ⁵	104	104	103	10 ²	10 ²	10 ²	0

TABLE V - Growth inhibitory activity of compounds 9, 10, 11 and 12

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	_			_		_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COMPC	DUND 9	(R = H)							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	YEASTS				CONCE	TRATION	S (µg/ml)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	50	100	150	200	250	300	350	400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	10 ⁹	105	10 ³	10 ³	10 ²	10	10	10	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1090	10 ^ª	10 ⁵	10 ³	10 ³	10 ³	10 ²	10 ²	10 ²	10 ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2813	109	10 ⁵	10 ⁵	10 ²	10 ²	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3053	10 ⁹	10 ⁹	10 ⁹	10 ⁹	107	10 ⁵	10 ³	10 ²	0
YEASTS CONCENTRATIONS ($\mu g/ml$) 0 50 100 150 200 250 300 350 400 201 10^3 0<	COMPC	DUND 10	0 (R = Cl	H ₃)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	YEASTS				CONCE	NTRATION	S (µg/ml)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	50	100	150	200	250	300	350	400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	10 ⁹	0	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1090	10 ⁹	10 ³	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2813	10 ⁹	10 ⁴	10 ²	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3053	10 ⁸	10 ³	0	0	0	0	0	0	0
YEASTS CONCENTRATIONS ($\mu g/ml$) 0 50 100 150 200 250 300 350 400 201 10 ³ 10 ³ 10 ³ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁴ 10 ³ 10 ³ 10 ³ 1090 10 ⁹ 10 ⁹ 10 ⁵ 10 ⁴ 10 ³ 10 ³ 10 ³ 10 ³ 2813 10 ⁹ 10 ⁶ 10 ⁴ 10 ³ 10 ² <	COMPC	DUND 1	1 (R = Cl)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	YEASTS				CONCE	NTRATION	S (µg/ml)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	50	100	150	200	250	300	350	400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	10 ⁹	10 ⁹	10 ⁸	10 ⁵	10 ⁵	10 ⁵	104	103	103
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1090	10 ⁹	109	105	104	104	10 ³	10 ³	10 ³	10 ³
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2813	10°	10 ⁵	104	10 ³	103	10 ²	10 ²	10 ²	10 ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3053	10°	10*	10°	10'	10'	105	105	103	10 ⁵
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	COMPO	DUND 1	2 (R = 0	CH₃)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	YEASTS				CONCE	NTRATION	S (µg/ml)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	0.	50	100	150	200	250	300	350	400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	109	<u>10</u> ⁴	10 ²	10 ²	10 ²	10 ²	10 ²	10 ²	10 ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1090	109	10 ⁹	104	10 ²					
3053 10^3 10^4 10^3 10^2 10^2 10^2 10^2 10^2 10 10	2813	10 ⁹	10 ⁶	10 ²	10 ²	10 ²	0	0	0	0
	3053	109	104	103	10 ²	10 ²	10 ²	10 ²	10	10

TABLE VI - Growth inhibitory activity of compounds 13, 14, 15 and 16

CH3 NH-N=C-(CH2)3-CH3 R NO2									
1)				л А					
		CONCE	NTRATION	IS (μg/ml)					

COMPC	UND 1	3(R = H)							
VEASTS				CONCE	TRATION	S (un/ml)	4	L.,	
	0	50	100	150	200	250	300	350	400
201	10 ⁹	10 ⁹	108	105	104	103	102	102	102
1090	10 ⁹	10 ⁹	10'	10'	104	104	10 ³	103	10 ³
2813	10 ⁹	105	104	104	104	104	104	10 ²	10
3053	10 ⁹	109	10 ⁹	108	10'	107	10 ⁵	105	104
COMPO	DUND 1	4(R = CH	13)				•		
YEASTS				CONCE	NTRATION	S (µg/mi)		·	
	0	50	100	150	200	250	300	350	400
201	109	104	101	10 ³	10 ²	10 ²	10 ²	10 ²	10 ²
1090	10 ⁹	10 ⁵	10 ⁶	105	10 ³	10 ³	10 ²	10 ²	10 ²
2813	10 ⁹	105	103	10 ³	10 ²	10 ²	10 ²	10 ²	10 ²
3053	109	107	10	10 ²	10 ²	10 ²	10 ²	10 ²	10
COMPO	DUND 1	5 (R = C)						
YEASTS				CONCE	NTRATION	S (µg/ml)	1	and a second	
	0	50	100	150	200	250	300	350	400
201	109	109	108	108	106	10 ⁶	104	104	104
1090	109	10 ⁹	10 ⁹	105	107	10 ⁸	105	10 ⁵	104
2813	10 ⁵	109	10 ⁸	108	10'	104	104	0	0
3053	109	109	105	105	10	103	10 ⁻³	10 ²	10 ²
COMPO	DUND 1	6 (R = 0	CH₃)						
YEASTS				CONCE	NTRATION	S (µg/ml)			
	0	50	100	150	200	250	300	350	400
201	10 ⁹	109	10 ⁸	108	10'	105	105	10 ⁵	105
1090	109	109	109	108	10'	10 ⁵	10 ⁸	10 ³	10 ²
2813	10 ⁹	109	10 ⁸	108	105	10 ⁵	10 ³	10 ²	10 ²
3053	109	108	10 ⁵	. 10 ⁶	105	10 ³	10 ³	103	10 ³

TABLE VII - Concentrations of compounds tested (µg/ml) producing less than 10² CFU after 48 h

Compounds	Yeasts tested							
· · · · · · · · · · · · · · · · · · ·	201 Hans. an.	3053 Sacc. cer.	2813 Cand. par.	1090 Crypt. alb				
1	100	100	150	250				
2	100	150	100	150				
3	200	100	150	>400				
4	100	100	200	250				
5	150	>400	350	>400				
6	<50	100	100	100				
7	>400	>400	400	>400				
8	250	300	100	250				
9	200	250	150	350				
10	<50	100	100	100				
11	>400	>400	250	>400				
12	100	150	100	150				
13	300	>400	350	>400				
14	200	300	200	150				
15	>400	>400	350	350				
16	>400	400	350	>400				
Miconazole	<50	<50	<50	<50				

TABLE VIII - Growth inhibitory activity of compounds 6 and 10 at concentrations of 5-25 μ g/ml

COMPOLIND 6								
YEASTS	CONCENTRATIONS (µg/ml)							
	0	5	15	25				
201	3.10 ⁹	2.10	8.10'	3.104				
1090	5.10 ⁹	6.10 ⁹	3.10	2.10 ³				
2813	2.10 ⁹	5.10 ⁶	3.10 ⁶	6.10 ³				
3053	2.10 ⁹	3.10 ⁹	6.10 ⁸	7.10 ⁵				
COMPO	DUND 10)						
YEASTS	CO	NCENTRA	TIONS (µg/	'mi)				
	0	5	15	25				
201	3.109	2.10 ⁶	4.10 ⁴	Ő				
1090	5.10 ⁹	5.10 ⁵	6.10 ⁵	2.10 ⁵				
2813	2.10 ⁹	3.10 ⁸	2.10'	3.10 ⁶				
3053	2.10 ⁹	6.10 ⁶	3.10 ⁵	7.104				
MICON	AZOLE		1					
YEASTS	CO	NCENTRA	TIONS (µg/	mi)				
	0	5	15	25				
201	0	0	0	Ō				
1090	0	0	0	0				
2813	0	0	0	0				
3053	0	0	0	0				

they have a CH₃ in 4 on the aromatic nucleus and a linear alkyl chain of 4 or 5 C atoms on hydrazone N; the best results were shown by compound 6 (CH₃ in 4 and linear chains of 5C).

It is probable that these substituents play an essential role in crossing the cell membranes of the yeasts, as confirmed by the relatively higher resistance to inhibition of *Saccharomyces cerevisiae* strain) 1090 which has thicker membranes than the other strains tested.

Future research will assess any other effects produced by longer (and therefore more lipophilic) alkyl chains inserted in the position 4 of the aromatic system. Our research will be extended to include inhibitory activity against bacterial strains pathogenic for human beings.

CHEMICAL EXPERIMENTAL SECTION

PREPARATION OF O-NITROPHENYLHYDRAZINES

The reaction was performed in alcohol bath at a temperature between -5 °C and 0 °C using 0.3 moles of the appropriate onitroaniline suspended in concentrated HCl (Scheme 1). The cooled suspension was slowly added with NaNO₂ solution (20 g in 60 ml of H₂O). Following, a SnCl₂.2H₂O in HCl solution (125 g in 115 ml of conc. HCl) was dropped.

The resulting crude product was filtered under vacuum, washed with cold H_2O , and dissolved in boiling H_2O . To the filtered warm solution CH₃COONa was added. The precipitated o-nitrophenylhydrazine was filtered and dried. For each compound yield was about 60-65%.

PREPARATION OF O-NITROPHENYLHYDRAZONES

A solution of the appropriate o-nitrophenylhydrazine in ethanol (w/v 1:5-1:10) was added with 1-2 drops of conc. HCl and a stoichiometric quantity, plus a 10% excess, of the appropriate ketone or purified aldehyde. The hydrazone crystallized directly from the cooled alcohol solution and was recovered by filtration.

The products were analyzed by TLC and melting point determined using a Kofler apparatus. Molecular structures were assigned by IR spectroscopy ¹H-NMR and confirmed by GS-MS analysis (see Table 2).

MICROBIOLOGICAL EXPERIMENTAL SECTION

The following yeasts were used: strain 1090 of Saccharomyces cerevisiae, strain 201 of Hansenula anomala, strain 2813 of Candida parapsylosis, strain 3053 of Cryptococcus albidus. All

strains were obtained from the Dipartimento di Scienze Ambientali-Agrarie e Biotecnologie Agro.-Alimentari, sez. Microbiologia, University of Sassari.

GYEP culture medium (2% glucose, 0.5% yeast extract, 1% bacteriological peptone, 2% agar, in aqueous solution) was sterilized at 115°C for 30 min. Mother solutions of onitrophenylhydrazones in ethanol at a concentration of 10 mg/ml were prepared and added to the GYEP in order to obtain concentrations of 50, 100, 150, 200, 250, 300, 350, 400 µg/ml of o-phenylhydrazones. The solutions were then placed in Petri dishes and inoculated with eight different concentrations (10-10⁻⁸) of appropriate precultures of yeast strain. Precultures of the yeast strains were grown in liquid GYEP (as above but without the agar). The same procedure was used for comparison with miconazole at a single concentration of 50 μ g/ml. A blank test was also carried out, using the same culture medium without the addition of the tested compounds. Colony Forming Unit (CFU) counts were made after 48 h. The results are shown in Tables III, IV, V, and VI and summarized in Table VII.

ACKNOWLEDGMENTS

We kindly appreciate Ms. Luisanna Lecis and Ms. Carla Sotgiu for their collaboration.

REFERENCES

- (¹) Kururay Co. Ltd., Jpn. Kokai Tokio, 80, 118, 434 (1980) C.A. 94 191702d (1981).
- (2) M. PODOVA, J. ZEMEK, M. VALENT, K. LINEK, P. DEMES, Acta Univ. Carolinae, 30, 547 (1986).
- (3) G. MASSOLINI, M.L. CARMELLINO, M. KITSOS, A. BARUFFINI, Il Farmaco, 48, 503 (1993).
- (4) R. CERRI, G. BOATTO, A. PAU, F. SPARATORE, P. MANCA, *Il Farmaco Ed. Sci.*, 43, 113 (1988).
- (⁵) H. BAUER, E. STRAUSS, Ber., 65, 308 (1932).
- (6) Z. J. VEJEDELEK, Chem. Listy, 51, 1338 (1957) C.A. 51, 17874i (1957).
- (7) R. CERRI, G. BOATTO, A. PAU, F. SPARATORE, L. CIMA, M. CARRARA, M. SATTA, *Il Farmaco, 46,* 369 (1991).
- (8) L. SANSEBASTIANO, L. MOSTI, G. MENOZZI, P. SCHENONE, O. MURATORE, A. PETTA, E. DEBBIA, A. PESCE SCHITO, G. C. SCHITO, *II Farmaco*, 48, 335 (1993).

Received July 15, 1995; accepted July 31, 1995.