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Abstract

A model able to predict missing test day data for milk, fat and protein yields on the basis of few recorded tests

was proposed, based on the partial least squares (PLS) regression technique, a multivariate method that is able

to solve problems related to high collinearity among predictors. A data set of 1731 lactations of Sarda breed dairy

Goats was split into two data sets, one for model estimation and the other for the evaluation of PLS prediction

capability. Eight scenarios of simplified recording schemes for fat and protein yields were simulated. Correlations

among predicted and observed test day yields were quite high (from 0·50 to 0·88 and from 0·53 to 0·96 for fat

and protein yields, respectively, in the different scenarios). Results highlight great flexibility and accuracy of this

multivariate technique.
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Introduction
The future development of supervised recording plans for
milk production traits of small ruminants farmed in semi
extensive conditions has to cope with two opposite require-
ments. First, an increase of the number of recorded animals
is needed to enhance the impact of breeding programs for
dairy sheep and goats. Such an increase necessarily
implies a reduction of the number of recorded tests per lac-
tation in order to contain selection costs (Bouloc et al.,
1991; Giaccone et al., 1996; Gonzalo et al., 2003). On the
other hand, the availability of a minimum number of tests
along lactation still remains a fundamental requisite both to
guarantee the efficiency of selection schemes and to direct
management decisions. Moreover, being almost all of
sheep and goat milk destined to cheese processing, it is of
great importance the knowledge of the evolution along the
lactation of fat and protein yields.

These two opposite requirements can be reconciled by a
suitable mathematical model able to predict with a sufficient
accuracy missing tests on the basis of a few tests actually
recorded. Several methods able to predict test day (TD)
yields with reasonable accuracies have been proposed for
dairy cattle, mainly based on multiple-trait and test day
models (Schaeffer and Jamrozik, 1996; Pool and
Meuwissen 1999; Mayeres et al., 2004; Vasconcelos et al.,
2004). Time series analysis and neural network approaches
have been specifically tested for dairy sheep (Kominakis
et al., 2002; Macciotta et al., 2002). However, the economic

relevance of official milk recording in dairy species justifies
further research on predictive methods.

In this paper, the capability of the partial least-squares
regression (PLS) to predict missing tests in simplified record-
ing schemes for small ruminants is checked. The PLS, orig-
inally developed in the computational chemistry context
(Hoeskuldsson, 1988), has become an established tool for
modelling linear relations between multivariate measure-
ments. It is particularly useful when a set dependent variables
has to be predicted from a set of independent variables highly
correlated. The PLS overcomes the multicollinearity problems
by combining features of principal components analysis
(PCA) and multiple regression (Abdi, 2003).

Material and methods
Data
Data were test day records of milk production traits of 1731
Sarda goats, recorded by the Italian Association of Animal
Breeders in the period 1989 to 2001. Each animal had five
records for milk (MILK1 to MILK5), fat (FAT1 to FAT5) and
protein (PROT1 to PROT5) yields arranged in a multivariate
setting. Raw means of the traits considered for each test
are reported in Table 1. The data set was split into two sub
sets: an estimation data set (EDS) that consisted of 1000
goats, which was used for model estimation; a validation
data set (VDS), made by the remaining 731 goats, which
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was used for making predictions by using the model esti-
mated with the EDS records.

The PLS model
The most simple and intuitive method to predict values of m
dependent variables Y ¼ (y1, y2, . . ., ym) on the basis of
values of p independent variables (predictors) X ¼ (x1, x2,
. . ., xp) is the multivariate multiple regression of Y on X.
However, in cases of multicollinearity, i.e. when he indepen-
dent variables are highly correlated among them
(Draper and Smith, 1981), the resulting inflation of par-
ameter variance compromises the predictive capability of
the model. This is just the case of this study, where both Y
and X are TD yields of milk, fat and protein recorded at
different time distance among lactation: it is well known that
both correlations between yields of milk, fat and protein on
a given test day and correlations of yields on consecutive
days are generally high (Schaeffer and Jamrozik, 1996).

PLS is a quite recent statistical tool able to handle multivari-
ate regression models characterized by high collinearity
among predictors (Geladi and Kowlaski, 1986). It develops a
biased regression in order to stabilize the parameter esti-
mates that lead to a more reliable prediction. At this aim the
predictor data matrix X is compressed into a set of A latent
variables or factors ta ¼ Xra (a ¼ 1, 2,. . .,A) with relative
weights ra determined such as to maximize the covariance
between factor scores ta and the corresponding factors of the
dependent variables ua ¼ Yqa, subject to some normalization
and orthogonality conditions. Specifically, the following
conditions control the PLS solutions: (1) maximization of
covariance of score vectors ta and ua; (2) normalization of
weights ra, i.e. ra,ra ¼ 1; (3) normalization of weights qa, i.e.
qa,qa ¼ 1; (4) orthogonality of t scores, i.e. ti,tj ¼ 0 for i – j.

The matrix of latent factors extracted from X, T ¼ (t1, t2, . . .,
tA) is then used for predicting values of latent factors
extracted from Y, U ¼ (u1, u2, . . ., uA)

U ¼ BT

Finally, the values of Y are calculated by back transforming
the latent factors of Y, i.e.

Y ¼ BTQ0

where Q is the matrix of the loadings of factors extracted
from Y.

In brief, PLS extracts from the independent (X) and depen-
dent (Y) variables a number of orthogonal latent variables
that account for most of the variation of original variables.
Therefore, PLS is similar to the regression on principal com-
ponents (PC), that is the more commonly used method to
overcome multicollinearity problems. However, unlike
regression on PC, where the problem of choosing an opti-
mum subset of predictor remains, PLS finds latent variables
able to maximize the goodness of fit of the regression of
factor scores of Y on factor scores of X (De Jong, 1993).

In the present study, the predictive capability of the PLS
method has been tested in several scenarios that mimic
simplified recording plans that differ from one another
because of the number of available and missing tests
(Table 2). Moreover, a comparison between predictions
obtained by PLS and by regression on PC has been
performed.

Tests selected as available are included in the X matrix of
predictor variables, whereas missing tests are included in
the Y matrix of variables to be predicted.

The adequacy of the PLS and of the regression of PC
models for all the plans considered has been assessed by
examining Pearson’s correlations between predicted (Yp)
and observed (Yo) values of dependent variables. More-
over, accuracy and precision of PLS predictions have been
separately evaluated. Accuracy measures how closely
predicted values are to the observed values whereas pre-
cision measures how closely individual model predicted
values are within each others (Tedeschi, 2006). Conse-
quently, inaccuracy (or bias) refers to the systematic

Table 2 Scenarios of missing test day considered in the present study (asterisks indicate tests available, blanks tests to be
predicted)

Test day Plan 1 Plan 2 Plan 3 Plan 4

Milk Fat Protein Milk Fat Protein Milk Fat Protein Milk Fat Protein

1 * * * * * * * * * *
2 * * * * * * * *
3 * * * * * *
4 * * * * * *
5 * * * * * * * *

Plan 5 Plan 6 Plan 7 Plan 8

1 * * * * * * * * *
2 * * * * * *
3 * * *
4 * * *
5 * * * * * *

Table 1 Means and standard deviation for milk, fat and protein test
day yields (g/day)

MILK 1 MILK 2 MILK 3 MILK 4 MILK 5

Mean 1640 1540 1350 1270 1050
s.d. 830 810 670 590 570

FAT 1 FAT 2 FAT 3 FAT 4 FAT 5
Mean 80 80 70 60 50
s.d. 40 40 30 30 30

PROT 1 PROT 2 PROT 3 PROT 4 PROT 5
Mean 70 60 60 50 40
s.d. 30 30 20 20 20
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deviation from the truth, whereas imprecision (or uncer-
tainty) indicates a magnitude of the scatter about the pre-
dicted means. Accuracy can be distinguished from precision
by partitioning the different sources of variation of the mean
square errors of predictions (MSEP) (Theil, 1961). Two
different partitions are possible (see Appendix). The first
one consists of three terms that may be interpreted as error
in central tendency (UM), error due to unequal variation
(US) and error due to incomplete covariation (UC), whereas
the three terms of the second partition represent error in
central tendency (UM), error due to the linear regression of
predicted on observed values (UR), and random errors, i.e.
unexplained variance that cannot be accounted for by the
linear regression (UD). The different terms are usually
express as a percentage of the total MSEP.

Results and discussion
Results reported in Tables 3 and 4 are examples that illus-
trates the rationale of the PLS method and the essential
steps of model estimation. They refer to the plans 3 and 7
of Table 2, that differ from one another because of the num-
ber of available milk tests (all for plan 3 and only MILK2 and
MILK5 for plan 7). Latent factors are extracted in succes-
sion both from dependent and independent variables. The
optimum number of factors is determined with a cross
validation method by comparing the root of the predictive
residual sum of squares (PRESS), measured in standard
deviation units and averaged for all variables to be

Table 4 Calculation steps of the partial least squares (PLS) method
with cross-validation for plan 7 of Table 2

Cross-validation

No. of PLS
factors PRESS

Comparison
significance

0 1·544 ,0·0001
1 0·947 ,0·0001
2 0·911 0·662
3 0·896 0·640
4 0·897 0·025
5 0·892 1·000

Minimum root mean PRESS 0·892
Minimizing number of factor 5
Smallest number of factors with P . 0·1 2

Percent variation accounted for

Factors Responses

Retained factors Current Total Current Total

1 63·906 63·906 52·690 52·690
2 17·034 80·940 2·125 54·815

Table 5 Pearson correlations between observed and predicted
values for fat, protein and milk yield in all the considered plans
obtained with the partial least squares (PLS) and regression on
principal components (PC) (below in italics) methods

Plan

Test 1 2 3 4 5 6 7 8

FAT

1 0·86 0·61
0·73 0·62

2 0·86 0·86 0·64 0·75
0·81 0·79 0·53 0·73

3 0·84 0·84 0·84 0·75 0·69 0·79
0·76 0·79 0·77 0·76 0·66 0·77

4 0·88 0·89 0·88 0·69 0·71 0·78
0·68 0·86 0·84 0·69 0·70 0·79

5 0·84 0·86 0·50 0·61
0·63 0·84 0·48 0·76

PROTEIN

1 0·98 0·65
0·82 0·65

2 0·96 0·98 0·67 0·80
0·90 0·85 0·60 0·79

3 0·98 0·97 0·96 0·80 0·69 0·84
0·85 0·86 0·73 0·80 0·67 0·85

4 0·96 0·96 0·96 0·65 0·73 0·78
0·56 0·92 0·89 0·67 0·66 0·78

5 0·95 0·98 0·53 0·69
0·69 0·92 0·52 0·76

MILK

1 0·70
0·66

2 0·66 0·79
0·57 0·78

3 0·80 0·67 0·87
0·82 0·65 0·83

4 0·71 0·72 0·80
0·74 0·70 0·79

5 0·58 0·72
0·57 0·73

Table 3 Calculation steps of the partial least squares (PLS) method
with cross-validation for plan 3 of Table 2

Cross-validation

No. of PLS
factors PRESS Comparison significance

0 1·612 ,0·0001
1 0·906 ,0·0001
2 0·831 ,0·0001
3 0·702 ,0·0001
4 0·617 0·0700
5 0·618 ,0·0001
6 0·610 ,0·0001
7 0·605 ,0·0001
8 0·595 0·3800
9 0·594 1·0000

Minimum root mean PRESS 0·594
Minimizing number of factor 9
Smallest number of factors with P . 0·1 8

Percent variation accounted for

Independent
variables

Dependent
variables

Retained
factors Current Total Current Total

1 63·074 63·074 59·165 59·165
2 13·160 76·234 7·937 66·203
3 5·032 81·267 8·428 74·631
4 3·710 84·976 6·511 81·141
5 2·330 87·305 2·840 83·981
6 1·420 88·725 1·562 85·543
7 8·486 97·211 0·164 85·707
8 1·202 98·413 0·304 86·012
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predicted. The factor extraction process stops when a
minimum value of PRESS is reached. However, the model
with the minimum value of the PRESS statistic may not be
significantly better than a previous one with fewer factors.
Consequently, for each model, the significance level of a
test of whether it is different from the one with the lowest
PRESS is given. Finally, is retained the model that mini-
mizes both the PRESS and the number of factors. Thus, for
plan 3 (Table 3), although the minimum value of the PRESS
is reached when nine factors are extracted, this value is not
statistically different from the one with eight factors, and the
latter is therefore retained. The variance explained
increases together with the number of extracted factors,
both for dependent and independent variables: with eight
factors, the PLS model is able to explain about the 98% and
86% of the variance of independent and dependent vari-
ables, respectively.

Table 4 reports PLS model statistics for the plan 7: five fac-
tors are extracted but only two are retained with a 81% and
55% of variance explained for independent and dependent
variables, respectively. In this case, fewer predictors

available results in a reduction of both the number of factors
retained and the magnitude of explained variances.

Table 5 reports Pearson correlations between observed and
predicted values in all the considered plans obtained by the
PLS and PC (in italics) models. The criteria used to choose
the number of PCs to retain for the prediction step was a
sum of their eigen values higher than 80% of the variance
of original variables. Results highlight a good predictive abil-
ity of the PLS method, in most of cases higher than that of
the regression on PC. The difference between the two
methods is particularly evident for plans where the number
of predictors is higher (i.e. plans 1–5). Actually, this is an
expected result because PLS is a prediction method that is
particularly suitable for cases in which predictors are many
and highly collinear (Naes and Martens, 1985). For all the
three traits, best results are obtained when available tests
are regularly spread across lactation stages. Correlations
are of the same order of those obtained in dairy cattle with
other prediction methods (Schaeffer and Jamrozik, 1996;
Macciotta et al., 2002; Mayeres et al., 2004; Vasconcelos
et al., 2004).

Table 6 Sources of variation of the mean square errors of predictions (MSEP) of the partial least squares (PLS) and regression on principal
component (PC) (below in italics) in different plans for FAT3, PROTEIN3 and MILK3

Plan

1 2 4 5 6 8

Source FAT 3

Mean bias (UM) (%) 0·39 2·40 3·81 2·15 0·02 1·64
26·99 28·65 27·42 25·15 22·33 26·98

Unequal variances (US) (%) 0·22 2·68 0·08 34·88 18·12 18·67
35·19 33·11 35·02 44·99 39·81 36·32

Incomplete (co) variation (UC) (%) 97·38 94·92 96·10 62·97 81·86 79·70
37·82 38·24 37·56 29·86 37·86 37·70

Systematic or slope bias (UR) (%) 5·39 1·50 5·51 5·06 0·04 0·90
9·04 9·18 9·37 14·96 6·23 9·89

Random errors (UD) (%) 92·22 96·10 90·68 92·79 99·84 97·47
63·97 62·17 63·21 59·88 71·44 63·13

PROTEIN 3

Mean bias (UM) (%) 0·98 2·02 0·00 11·01 3·40 11·97
41·98 43·72 34·98 34·93 30·76 38·44

Unequal variances (US) (%) 1·15 6·80 1·54 42·47 26·75 32·41
33·18 30·87 27·70 45·22 39·39 42·20

Incomplete (co) variation (UC) (%) 97·87 91·18 98·45 46·51 69·85 55·62
24·84 25·36 37·32 19·85 29·85 19·37

Systematic or slope bias (UR) (%) 0·01 1·90 0·11 12·91 0·97 9·72
15·05 14·16 4·68 20·66 7·91 21·91

Random errors (UD) (%) 99·01 96·08 99·89 76·08 95·63 78·31
42·97 42·07 60·33 44·41 61·33 39·65

MILK 3

Mean bias (UM) (%) 7·01 0·95 14·00
34·95 28·58 37·41

Unequal variances (US) (%) 36·23 18·61 35·26
42·55 34·97 37·04

Incomplete (co) variation (UC) (%) 56·76 80·44 50·73
22·51 36·44 25·54

Systematic or slope bias (UR) (%) 9·09 0·00 13·62
19·44 4·49 13·14

Random errors (UD) (%) 83·90 99·04 72·37
45·61 66·93 46·45

Note that UM þ US þ UC ¼ UM þ UR þ UD ¼ 100%.
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From a technical point of view, particularly relevant are
results concerning the two milk components. As expected,
values are quite high for the first four plans (about 0·86 and
0·97 for fat and protein yields, respectively), where milk test
day records were available for all the tests. Moreover, it is
worth noticing that in all plans correlations tend to remain the
same even when the number of available tests of fat and pro-
tein yields decreases (from 3 to 2). Finally, better results
have been obtained for protein yield then for fat yield in all
plans, thus confirming the higher predictability of this trait
(Macciotta et al., 2002; Vasconcelos et al., 2004).

The analysis of the prediction error, obtained by partitioning
the MSEP in different sources of variation, gives further indi-
cations on the predictive capability of the two models con-
sidered. As an example, Table 6 reports results of MSEP
decomposition for MILK3, FAT3 and PROTEIN3 in all plans
where these variables are predicted.

By and large, all methods aimed at solving the problem of
multicollinearity among predictors result in biased
regression. However, in the PLS method component of
MSEP related to the inaccuracy (the mean bias, the
inequality of variances and the systematic or slope bias) are
of minimum importance (0 to 5%) whereas a marked predo-
minance of the random component (in most cases larger
than 90%), measured by the random error (UD) and by
the incomplete covariance (UC), can be observed for all the
three traits. Similar results have been obtained also in the
other plans (not reported for brevity).

On the other hand, results of the MSEP analysis for the
regression on PC highlight a relevant quota of the com-
ponents related to prediction inaccuracy, such as means
bias or slope bias (Table 6).

The incidence of random variation in the MSEP of PLS pre-
dictions could be due, apart from measurement error, to
sources of variation of TD records that have not been prop-
erly accounted for in this work. Actually, in order to build a
data set as larger as possible, goats of different parities,
flocks, months of lambing, number of kids have been con-
sidered. A stratification of data according to these factors
would probably result in more precise estimates.

Conclusions
Results of the present study highlight that the PLS method,
developed to maintain a good predictive power of multivari-
ate regression and to correct at the same time for high colli-
nearity among predictors, can be usefully applied to predict
missing tests for milk production traits in individual lacta-
tions on the basis of a few tests recorded. The application
of PLS models in some scenarios extracted from an archive
of 1731 Sarda goats and characterised by different number
and distributions of missing tests revealed the great flexi-
bility and accuracy of this multivariate technique. The PLS
technique seems therefore suitable for dairy small rumi-
nants, where lactations with few and irregularly located TD
records, especially for fat and protein contents, are often
found. Such a situation is likely to become more widespread
in the future for the diffusion of simplified milk recording
schemes.
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Appendix
The mean square error of prediction (MSEP) is the most common
and reliable measure of adequacy of mathematical models used for
the prediction of a variable Y. It is defined as:

MSEP ¼
Pn

i¼1 Ypi 2 Yoi

� �2

n

where Ypi and Yoi are the i th predicted and observed value of Y,
Theil (1961) has introduced methods of analysis of the different
sources of variation of MSEP in order to distinguish accuracy and
precision of a model of a given MSEP. Two readily interpretable
partitions are possible.

MSEP ¼ ðYP 2 Yo Þ2 þ ðsP 2 so Þ2 þ 2ð12 r ÞsosP ð1Þ

MSEP ¼ ðYP 2 Yo Þ2 þ s2o ð12 bÞ2 þ ð12 r 2Þs2P ð2Þ
where So

2 and SP
2 (So and SP) indicate the variances (standard devi-

ations) associated with observed and model predicted values of Y

respectively; r is the coefficient of correlations; b is the slope of the
linear regression of Yp on Yo.

The terms of equations [1] and [2] are usually divided by the total
MSEP to obtain the five proportions of MSEP (Tedeschi, 2006):

Proportion Formula Description

UM
Yp2Yo

� �

MSEP

2

Mean bias

US
sp2soð Þ2
MSEP Unequal variances

UC
2ð12r ÞsosP

MSEP Incomplete (co)variation

UR
s2o ð12bÞ2
MSEP Systematic or slope bias

UD
ð12r 2Þs2p
MSEP Random error

Note that UM þ US þ UC ¼ UM þ UR þ UD ¼ 1.
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