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We analyse the transient spatio-temporal chaos that we observe in the Belousov±Zhabotinsky reaction

performed in a closed unstirred batch reactor by recurrence quanti®cation analysis (RQA). We characterize the
chaotic transient by measuring the Lyapunov exponent and the Kaplan±Yorke dimension. The latter shows the
fractality of the attractor. The importance of the coupling between hydrodynamics and kinetics for the onset of
chaos is also shown.

1 Introduction

The oscillatory behaviour of chemical and biochemical sys-
tems is well understood and many theoretical and experi-
mental works have been done in this ®eld.1,2 The Belousov±
Zhabotinsky (BZ) reaction3 represents the most widely stu-
died nonlinear chemical system. In perfectly stirred open
systems a great variety of dynamical behaviours are
observed.4,5 As parameters (i.e. reagent concentration and=or
residence times) are varied, the system can switch through
di�erent dynamical regimes. Each behaviour corresponds to
an attractor in the phase space and the system ` jumps ' from
one attractor to the other: these jumps are known as
bifurcations.5

Moreover, it is well established that closed chemical sys-
tems can exhibit various dynamic regimes in spite of the fact
that the system will reach thermodynamic equilibrium.
Transient behaviour may be sustained for signi®cant periods
of time, and the chemical mixture can be considered to
evolve in consecutive di�erent pseudo-steady states by
spontaneous transitions. Therefore, with some special con-
siderations it is possible to study the dynamic states and the
relative transition scenarios also for closed chemical systems.
Not only simple oscillations but also bistability and chaotic
behaviour can take place in a closed BZ system.6±8 Sensi-
tivity to initial conditions has been pointed out in such
systems at transient conditions both theoretically and
experimentally.9±12 Transient scenarios in the BZ system
have also been the object of investigation.6,13 For example,
Wacker et al. showed the existence of a transient spatio-
temporal chaos for a reaction di�usion system.14 In 1980,
Nagashima proved the existence of a chaotic state for the
well-stirred and temperature-controlled batch BZ reaction
under nitrogen.15 Wang et al. showed experimental evidence
of successive transient period doubling and torus oscillations
to transient chaos in a closed well-mixed BZ system.16

We focus our attention on a closed unstirred BZ system,
where not only simple oscillations but also aperiodic beha-
viours take place. Using suitable initial concentrations of
reagents, this system shows various dynamic regimes despite
the inevitable continuous drift to ultimate thermodynamic
equilibrium. We proved that the aperiodic pattern shows

evidence of sensitivity to initial conditions, which is con-
sidered to be the major feature of chaos.9 We also showed
that, during the chemical evolution, the system sponta-
neously gives the following sequence of dynamic behaviour
before reaching equilibrium: period-1!quasi-period-
icity! chaos!quasi-periodicity! period-1. Two transition
scenarios were observed: at the onset of chaos and at its
end. One appeared as the mirror image of the other.17,18 The
sequence of the ®rst two bifurcations is known as the
Ruelle±Takens±Newhouse (RTN) scenario.4,18 The last two
bifurcations are described as the inverse RTN scenario. The
sequence of attractors in the phase space that corresponds to
each dynamical behaviour is: limit cycle! torus! strange
attractor! torus! limit cycle. Clearly during the chemical
evolution of the reaction the system spans the whole para-
meter space by successive bifurcations so that in reality the
topology of the phase space is ever changing. For example,
to the periodic regime there will correspond not a limit cycle
but a slowly winding spiral. We also showed that the
medium viscosity is a bifurcation parameter of the unstirred
BZ system; a chaotic attractor appears or disappears when
the polyethylene glycol concentration (i.e. the solution
viscosity) decreases or increases.19

In other words the chaos appears as a result of the interplay
between kinetics, di�usion and convection. Similar results were
obtained when we modi®ed the viscosity of the solution with
non-ionic-micelle-forming surfactants.20 We also observed that
temperature is a bifurcation parameter of the closed unstirred
BZ reaction.21

In this paper in order to quantify transient chaos we apply
the recurrence quanti®cation analysis (RQA).22±25 We
demonstrated that, in a short time interval, the evolution can
be considered pseudo-stationary and we can apply the pool
chemical approximation: for a given interval of time the
reagent concentrations are considered constant and so the
system lies on an attractor. This approximation implies that we
can look at the system as a coarse-grained succession of
dynamical behavioursÐi.e. the topology of the phase space
does not change continuously but by discrete leaps between
well-de®ned attractors. Here we introduce the basics of
recurrence quanti®cation analysis and we outline the features
of the chaotic region for an unstirred BZ system.
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2 Experimental

2.1 Recurrence quanti®cation analysis

Recurrence quanti®cation analysis was ®rst introduced as a set
of analyses that quantify the structure appearing in a recur-
rence plot (RP). Webber and Zbilut applied it to the study of
nonstationary data sets particularly in the area of physiol-
ogy22±24 and Trulla et al.24 used it to identify transition points
in nonstationary data sets. RPs were introduced by Eckmann,
Kamphorst and Ruelle26 in a 1987 paper as a graphical tool for
measuring the time constancy of dynamical systems. To obtain
the RP of an experimental time series Y� (y1 , y2 ,...,yN) one
applies the delay-coordinate reconstruction of the unobserved
multidimensional phase space. At a particular time delay t and
an embedding dimension de , the resultant trajectory in Rde is

X � �x1;x2; . . . ;xm� �1�
where m�Nÿ (deÿ 1)t and

xj � �yj; yj�t; yj�2t; . . . ; yj��deÿ1�t� �2�
for j� 1, 2, . . . ,m. By the Takens27 theorem, the topology of
this multidimensional phase space is equivalent to that of the
real unknown phase space underlying the observed dynamics.
Recurrence plots are based upon mutual distances between
points on a trajectory. An m�m recurrence matrix is de®ned
as

R�i; j� � D�xi;xj� �3�
where D(xi , xj) is the maximum norm between points, defined
as

max
14 k4 de

kxi��kÿ1�t ÿ xj��kÿ1�tk �4�

We choose to use this norm and not the Euclidean norm be-
cause it is less sensitive to the embedding dimension used.28

Then a cut-off radius r is chosen and points lying within it will
be black coloured, while the others will be white. Again an
m�m thresholded recurrence matrix is generated

T�i; j� � 1 if 0 < D�xi; xj� < r
0 otherwise

n
�5�

To perform RQA on a recurrence plot one computes sta-
tistical values acting directly on the thresholded recurrence
matrix T [eqn. (4)]. We are interested particularly in four of
these quanti®ers: The percent recurrence (rec) is the percentage
of points darkened in the RP above the diagonalÐi.e., given s

the number of 1s in T, then rec� 100� (s=m2ÿm). Usually
periodic dynamics have higher rec values than aperiodic
dynamics. The percent determinism (determ) is the percentage of
recurrent points that form lines parallel to the main diagonal.
Lines consist of two or more (sl) points that are diagonally
adjacent with no intervening blank space; thus determ�
100� (sl=m

2ÿm). It is clear that this quanti®er measures how
an RP is `organized '. During a transition, rec is more a�ected
than determ. We then introduce a new variable: ratio

� determ=rec� sl=s: it addresses nonstationarity characteristics
in RP and increases substantially during a transition and settles
down when a quasi-steady state is achieved. Finally, entropy

measures the Shannon entropy of the diagonal line segment
distribution; in general it is high within periodic windows (large
diversity in diagonal line lengths) but low within chaotic win-
dows (small diversity in diagonal line lengths).
The ®fth and ®nal RQA statistic is called div: it is the reci-

procal of the longest line length found in the computation of
determ. According to Eckmann, Kamphorst and Ruelle it is
directly related to the largest Lyapunov exponent: in a periodic
signal, lines tend to be very long so that div is small. On the
other hand, high values of div are indicative of chaotic beha-
viour. RQA has been applied to nonstationary simulated and

experimentally observed systems by taking subsets of the time
series and calculating the cited quanti®ers. These subsets are
called ` epochs '. Successive subsets displace each other by a
quantity called displacement so that the intersection among
them is not null. Then rec, determ, ratio, entropy and div are
plotted against the point (start) in the time series where an
epoch begins. Transitions between di�erent dynamical regimes
are observed by studying the features of these plots.

2.2 Reagents and apparatus

All experiments were performed isothermally at 25 �C in a
batch reactor (spectrophotometer cuvette, 1� 1� 4 cm3). A
thermostat has been used in order to keep the temperature
constant in the cuvette. The dynamics were monitored by the
solution absorbance at 320 nm using quartz UV grade spec-
trophotometer cuvettes. A double beam spectrophotometer
(Varian, series 634) was used. All chemicals were of analytical
quality and were used without further puri®cation. The fol-
lowing concentrations of reactant stock solutions were used:
Ce(SO4)2 0.004 M, malonic acid 0.30 M, KBrO3 0.09 M; each
stock solution was 1 M H2SO4 . The oscillator was started by
mixing equal quantities of reactants in a ¯ask. The solution
was stirred for 3 min with a 1 cm length Te¯on-coated mag-
netic stirrer, at a constant high stirring rate, and was then
poured into the cuvette until the sample reached the top, when
measurement of the signal began. The cross sectional area of
the spectrophotometer light beam was 30 mm2. The volume
spanned by the beam was 300 mm3 (7.5% of the total volume)
and was located 2 cm away from the liquid±air interface, 1 cm
away from the bottom of the cuvette and about 0.4 cm away
from the sides. The spectrophotometer was connected to an
IBM compatible PC for data acquisition by an analog to
digital board converter with a 16 bit resolution. The absor-
bance was recorded with a ts� 0.5 s sampling time. Time series
points were recorded and stored in the computer for data
analysis. Recurrence quanti®cation analysis and time series
analysis were applied in order to characterize the signal. Two
software packages were used: RQA5229 and TISEAN.30,32

3 Results and discussion

A 5 h acquisition was divided in to epochs of 2800 points (ca.
230 2000) and ratio, div, entropy and determ values were calcu-
lated for each epoch. The whole time series were analysed
using a displacement of 100 points. A time delay of 38, an
embedding dimension of 5 and a cut-o� radius of 6 were used.
In Fig. 1 the transition from the periodic regime to chaos and
from chaos to periodicity is clearly observed by the sudden
change in all the quanti®ers. The chaotic region lies in the
interval 2000±15 000 points (1000±7500 s). In this region
determ is low and div is high. At a ®rst analysis of the div

values, it seems that the chaotic interval could be divided into
three regions: two with higher Lyapunov exponents and one
with a lower one. For the sake of clarity we introduce the
concept of chaoticity of a time interval: it is the measure of
orbit divergency in the reconstructed attractor. The higher the
Lyapunov exponent (or any quanti®er related to it), the higher
is the chaoticity of that interval. In Fig. 1 it seems that the
chaoticity of the aperiodic region rises at the beginning, then
decreases in the middle of the interval, then increases again and
®nally goes down until the behaviour turns to periodic. We
isolated the interval 2000±15 000 and performed a ®ner
recurrence analysis taking epochs of 3600, 3200, 2800, 2400,
2000, 1600 and 1200 points. It is meaningless to use shorter
epochs because the study would be made on little pieces of
dynamic evolution and we could not catch enough points for
good statistics. Moreover, as shown in Fig. 2, the structure of
the chaotic zone is fully unfolded using epochs of 1200 to 2000
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points. We do not analyse longer epochs because we could lose
information by studying intervals that can no longer be
approximated as pseudo-stationary. This re®nement clearly
shows the emergence of a more complex structure of the
chaotic transient. We can distinguish windows of higher Lya-
punov exponents (higher div values in regions a and b) between
regions of lower ones (region z). It is worth noting that the
zone z is shorter when we use shorter epochs than when we use
longer ones; it is simply because when we use long epochs we
span regions with di�erent dynamical behaviours and their
statistical weights in¯uence the values of div. As the behaviour
of div does not change a lot using epochs shorter than 2000
points, it is reasonable to assume that those points lie on the
same chaotic attractor and the system jumps from one to the
other by successive bifurcations.
Given this approximation, we can calculate the correlation

dimension of each attractor: as suggested by Kaplan and Glass

we calculate rec in an interval for increasing values of the cut-
o� radius. The slope of the linear region in the rec versus radius
plot (Fig. 3) is de®ned as the correlation dimension of that data
set.33 We took 12 epochs of 2000 points with a displacement of
1000 points and calculated the correlation dimension of the
reconstructed attractor in each interval. The behaviour of the
estimated dimension [Fig. 4(a)] mimics exactly that of div.
Furthermore, with a time series analysis software (TISEAN),
we calculated the Kaplan±Yorke dimension of the attractor by
estimating the spectrum of Lyapunov exponents.34 As for the
correlation dimension, the Kaplan±Yorke dimension char-
acterizes the fractality of an attractor. As can be seen in Fig.
4(b), the Kaplan±Yorke dimension behaves exactly like the
correlation dimension, giving further proof that every attractor

Fig. 2 (a) The 6500 s evolution of the chaotic region. Lower panels
show div values calculated using epochs of 3600 (b), 3200 (c), 2800 (d),
2400 (e), 2000 (f), 1600 (g) and 1200 (h) points. In these, a and b denote
regions that have highest div values and z, the region with lower div.
The extension and qualitative features of these regions remain almost
the same in the last three panels.

Fig. 1 Spectrophotometric signal (top panel) and RQA quanti®ers
(lower four panels). Epochs of 2800 points and a displacement of 100
points were used. The chaotic region lies between the two vertical
dotted lines as evidenced by abrupt change in the four RQA statistics.
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has a di�erent behaviour. Another proof of this trend is given
by the asymptotic value of the highest Lyapunov exponent of
each epoch [Fig. 4(c)]. Similar results are obtained on a sample
of 10 acquisitions performed with the same experimental
conditions.
In previous works we suggested and proved that the cou-

pling of nonlinear chemical kinetics, di�usion and convection
is responsible for the observed transition to chaos in the BZ
reaction in a batch unstirred reactor. We observed that
internal and external parameters such as medium viscosity
and temperature a�ect the dynamical evolution of the reac-
tion. In particular, in conditions of high viscosity19 or low
temperature,21 the chaotic transient disappears and the evo-
lution is fully periodic. The periodic evolution has been well
studied by means of fast fourier transforms;18 it has been
observed that, because of reagent consumption, it shows a
regular decrease in time both of frequencies and of amplitude.
We expected the chaotic evolution to follow such a trend: in
fact the intensity of convection should be stronger when
higher concentration gradients are created by the local non-
linear kinetics. Thus the intensity of the coupling between
kinetics and hydrodynamics is expected to decrease regularly
in time with the oscillation amplitudeÐi.e. the reagent con-
centration. Moreover, because the chaotic behaviour is rela-
ted to this coupling, we expected a regular trend for the
chaoticity evolution of the system. In contrast, the results
described above prove that the intensity of the coupling fol-
lows a complex irregular behaviour: all the invariant measures
of the successive attractors of the system change without
regularity. The system dynamics jumps between attractors
with di�erent chaoticity. It is obvious that, in addition to the
reagent concentration, other parameters a�ect the intensity of
the coupling between kinetics and hydrodynamics. The cou-
pling is also in¯uenced by the exothermicity of the reaction
(density gradients due to thermal gradients cause the onset of
convection), which depends locally on the distribution of
chemical species and their ratio. In numerical simulations it is
observed that, during the periodic evolution of the reaction,
the ratio between the intermediates varies periodically too. On
the other hand, when the oscillations are aperiodic, the ratio
changes irregularly as a consequence of the underlying chaotic
dynamics.
Our hypothesis is that an important bifurcation parameter is

the reagent ratio: it should be responsible not only for the
onset of chaos during the evolution of the BZ reaction, but
also for the observed transition between attractors of di�erent

chaoticity. Preliminary observations show that, when we vary
the ratio of the initial reagent concentrations, the reaction
evolves in a di�erent way. After a critical value of this ratio,
the initial periodic evolution disappears and the chaotic
behaviour lasts for longer time intervals.

4 Conclusion

Our work con®rms that a transition to chaos occurs when the
Belousov±Zhabotinsky reaction is performed in a closed
unstirred batch reactor. Furthermore we prove that the chaotic
transient can be characterized, and information about the
basin of attraction and its time evolution (during the drift to
equilibrium of the reaction) can be obtained by a recurrence
quanti®cation analysis of experimental time series. Our ana-
lysis strengthens our previous hypothesis that the coupling of
hydrodynamics to nonlinear kinetics is responsible for the
onset of chaos. The techniques used in this work should be a
useful tool in the study of the features of the Belousov±
Zhabotinsky reaction when performed in di�erent experi-
mental conditions.

Fig. 4 (a) Correlation dimension versus epoch in the chaotic re-
gion. The error bars come from the error in the interpolation of the
linear region (Fig. 3). (b) Kaplan±Yorke dimension versus epoch in
the chaotic region; the behaviour is similar to that found in (a) for
the correlation dimension. (c) Highest Lyapunov exponent versus
epoch in the chaotic region; qualitatively we ®nd the same beha-
viour as the correlation dimension (a) and the Kaplan±Yorke
dimension (b).

Fig. 3 Plot of rec versus radius for the interval 2000±4000. The slope
of the linear part of this graph (0.97519�0.005 908) gives the corre-
lation dimension for that interval. Similar plots are obtained for the 12
epochs into which the chaotic region was divided.
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