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The transition to spatial-temporal complexity exhibited by spiral waves under the effect of
gravitational field in the Belousov–Zhabotinsky reaction is numerically studied on the basis of spiral
tip dynamics. Successive transformations in tip trajectories are characterized as a function of the
hydrodynamical parameter and attributed to a Ruelle–Takens–Newhouse scenario to chaos. The
analysis describes the emergence of complexity in terms of the interplay between the evolution of
the velocity field and concentration waves. In particular, �i� by mapping the tip motion in relation
to some hydrodynamical pseudopotentials, the general mechanism by which the velocity field
affects the tip trajectory is pointed out, and, �ii� by comparing the dynamical evolutions of local and
mean properties associated with the inhomogeneous structures and to the velocity field, a surprising
correlation is found. The results suggest that the reaction-diffusion-convection �RDC� coupling
addresses the system to some general regimes, whose nature is imposed by the hydrodynamical
contribution. More generally, RDC coupling would be formalized as the phenomenon that governs
the system and drives it to chaos. © 2009 American Institute of Physics. �DOI: 10.1063/1.3050356�

I. INTRODUCTION

In the past decades, pattern formation in active media
has been a target of thorough studies. In particular, dynamics
associated with spiral-like structures, resulting from charac-
teristic properties of traveling waves, are remarkable ex-
amples of self-organization in excitable media.1–4 Among
them, one of the most well known is the Belousov–
Zhabotisky �BZ� reaction.5 It represents the typical nonlinear
oscillating reaction in homogeneous phase, characterized by
the alternation of two main processes by which a catalyst
�typically cerium�IV� salts or ferroin� varies its oxidation
state among n+ and �n−1�+.

The study of spiral waves in chemical systems has been
traditionally carried out on gel matrices in order to bring the
dynamics back to the simplified reaction-diffusion problem
�RD systems�.6 Within this description, the system is mod-
eled by a set of partial differential equations �PDEs�, in
which the kinetic functions, describing the chemistry, are
coupled with the diffusive terms of the main species in-
volved in the oscillating development of the reaction. A more
general approach to the problem cannot neglect the influence
exerted by the gravitational field on RD instabilities. Specifi-

cally, the onset of convective motions induced by the pres-
ence of density gradients and self-sustained flows arising
from a reaction-diffusion-convection �RDC� coupling have
to be considered. To this end, hydrodynamic equations are
coupled to the RD PDEs: a set of nondimensional equations
is derived taking into account gradients of density only as-
cribed to concentration inhomogeneities and controlled by a
nondimensional parameter, the Grashof number, which deter-
mines the contribution of a particular species to convective
motions.

By means of numerical studies, it has been extensively
verified how the coupling between kinetic and transport phe-
nomena in the BZ reaction can determine the formation of
characteristic patterns7–9 and how the development of insta-
bilities associated with the hydrodynamics of the system
would result in a transition to chemical chaos.10–12 In particu-
lar, experimental observations coupled with theoretical
results13–17 demonstrate that natural convection can deform
or even break spiral waves resulting into spatiotemporal
chaos.

The time evolutions of a spiral wave could be followed
in terms of the pattern its tip traces out. Transitions from
simple rigid rotations around a small circular core to a qua-
siperiodic motion �typically along epicycle and meandering
patterns� occur in tip trajectories as some parameters con-
nected to the excitability of the system are varied.18 In this
paper, we present the influence of the convection on the spi-
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ral wave properties in the BZ reaction through the analysis of
the tip dynamics as a function of one hydrodynamical param-
eter: the Grashof number. The development to spatiotempo-
ral chaos for rotating spiral waves is underlined by complex
dynamics occurring in tip trajectories, culminating into a mo-
tion reminiscent of a random walk as the Grashof number is
increased. Fast Fourier transforms �FFTs� and a topological
analysis of minima and maxima of the stream function
��x ,y , t� �Sec. II A� are used to characterize, respectively,
the Hopf bifurcations marking the passages from periodic to
chaotic evolutions and the velocity field influence on spiral
structures. There emerges a general mechanism by which the
tip trajectory is related to transportation, distortions, and dis-
ruptions on spiral wave, induced by the velocity field. Evo-
lutions of tip properties are also useful in highlighting the
mutual correlation between the inhomogeneous structures
and the velocity field arising for a suitable range of Grashof
number values. The feature is specifically studied by com-
paring the following time series: �i� local dynamical proper-
ties �field velocity at each point visited by the tip during its
evolution, vtip�t�, versus tip velocity vtip�; �ii� evolution in
time of properties averaged in space ����x ,y , t�� versus
�ci�x ,y , t���.

II. MODEL

In this section, we present the model used to describe the
system dynamics and the method of analysis through which
we could point out the features of the transition to spatial-
temporal chaos.

A. RDC equations

Consider a two dimensional �x̂ , ŷ� vertical slab, in which
the gravitational field is directed along the ŷ vertical axis. A
set of PDEs to be solved by means of numerical integration
over a square grid �100�100 points� is derived as in Ref. 10
by coupling the RD system to convection by the Navier–
Stokes equations governing the velocity field in the slab. The
set of PDEs formulated in the Boussinesq approximation19

and written in the vorticity-stream function ��-�� form is
conveniently nondimensionalized by using the time scale to

=21 s �Oregonator time unit� and a space scale x0

=0.06 cm.10 Since it has been demonstrated that thermal
gradients are negligible with respect to the concentration gra-
dient for the onset of convection,9,20,21 the hydrodynamic
equations are formulated in the isothermal hypothesis. The
resulting model is
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where ki�c1 ,c2� are the kinetic functions which describe the
oscillating behavior of the chemical species c1 and c2 within
the Oregonator model:22

k1�c1,c2� =
dc1

dt
=

1

�

c1�1 − c1� + fc2

q − c1

q + c2
� , �6�

k2�c1,c2� =
dc2

dt
= c1 − c2. �7�

The parameter values and the initial conditions are the
same as in Ref. 10. For the sake of clarity in the discussion,
we would like to stress the importance of the Grashof num-
bers and of the stream function.

• Gri=gx0
3��i /�i�

2 is the Grashof number for the ith spe-
cies �g is the gravitational acceleration �980 cm /s2�
and ��i /�i is the density variation due to the change of
the concentration of the ith species with respect to a
reference value c0i�. This number is the control param-
eter chosen to follow the transition to chaos. It repre-
sents the intensity of convection only ascribed to iso-
thermal density changes and is related to the
hydrodynamic instability, giving the balance between
momentum and viscosity forces acting in the system. In
our simulations, the Grashof numbers for the two spe-
cies are equal to each other.

• Formally, the stream function ��x ,y , t� is defined as the
imaginary part of a complex potential, but, as shown in
Eqs. �4� and �5�, it could usefully be treated as a sort of
velocity potential: by the ��x ,y , t� values at two differ-
ent points, the associated velocity vector can be ori-
ented and the flux through a line connecting the two
points derived. Moreover, from Eq. �3� the relation ex-
isting between the curvature of the stream function
along each direction and the vorticity � can be noticed:
in this way minima and maxima of ��x ,y , t� are related
to regions of maximum intensity of fluid rotation and
with vortex nature �given by the orientation of the vor-
ticity z component� in those points.

The system of Eqs. �1�–�5� is solved numerically using
the alternating direction finite difference method imposing
no-slip boundary conditions for the fluid velocity and no-flux
boundary conditions for chemical concentrations at the walls
of the slab.

B. Analysis methods

In the first approach, the analysis points out the influence
of the onset of convection on the spiral geometry and on the
patterns described by the dynamics of the spiral tip. The tip
position is analytically defined as the point of the spatial
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domain where the cross product between the gradient vectors
of the two species describing the kinetics, c1 and c2, is
maximal:23

��c1 � �c2�xtip,ytip
= sup���c1 � �c2�i,j ∀ i, j
 , �8�

where i , j are the integer coordinates of the solving grid.
The tip dynamics is described by its coordinates, xtip�t�

= �xtip�t� ,ytip�t��, the velocity, vtip�t�= �utip�t� ,vtip�t��, and the
distance from the origin, dtip�t�= �xtip�t��. When a significant
coupling of the RD system with convection occurs, the defi-
nition given in Eq. �8� loses its unambiguous meaning due to
distortions and possible breaks of the spiral wave. To identify
the tip position, we scan the set of points derived from Eq.
�8� considering the following additional assumptions:

�1� The tip belongs to the main arm of the spiral. By main
arm, we mean the greater part of the wave in the system
which conducts the general time evolution of the struc-
ture. The lifetime of the “islands” of concentration pro-
duced by the spiral breakdown is short, hinting that
their role in the spiral evolution can be ignored.

�2� Continuity to the position of the spiral tip in the previ-
ous time step. Apart from the time intervals during
which spiral breaks, the tip traces a continuous line
and, at each time step, it has a high probability to be
found close to its previous position.

�3� Contiguity to the ��x ,y , t� minimum closer to the spi-
ral. As we will show below �Sec. III A�, the ��x ,y , t�
minima exert an attracting effect on the tip, driving its
evolution. In this way, ��x ,y , t� minima are useful in
detecting the tip position in the presence of spiral dis-
tortions and breaks.

These assumptions allow a reproducibility in almost 99% of
cases, even for complex situations in which it is also very
hard to refer to the structures as spirals.

The largest Lyapunov exponent has been calculated us-
ing the Kantz algorithm from TISEAN package.24,25 The algo-
rithm looks for exponential perturbation growth by imple-
menting the formula

S��,m,t� =�ln� 1

Un
	

sn��Un

�sn+t − sn�+t���
n

, �9�

where sn� represents a return point in the phase space close to
the point sn visited previously by the system; m is the em-
bedding dimension and Un the neighborhood with diameter
�. The maximal Lyapunov exponent � is given by the slope
of the pencil derived by S�� ,m , t� for different m, where it
exhibits a linear increase, identical for each m.

III. RESULTS AND DISCUSSION

A. Topological analysis

The exploration of the tip dynamics as a function of the
hydrodynamical parameter, the Grashof number, is carried
out on the basis of the methods described in Sec. II B and of
a topological analysis by which tip position is mapped in
relation to ��x ,y , t� minima and maxima.

1. Gri=0.0

The system corresponds to a simple RD model. In this
regime the hydrodynamic influence on spiral structures is
absent: any distortions or breakdowns can be detected. The
spiral tip localization reflects the traditional definition in Eq.
�8�. Following the trace of the points, it is observed that the
initial setting of parameters places the system in a quasiperi-
odic starting condition as revealed by the main incommen-
surable frequencies, �1=0.747 O.F.U. �Oregonator frequen-
cies units� and �2=1.071 O.F.U., found by the FFT analysis
of the time series �Fig. 1�. The nature of the dynamics ob-
served is not surprising, since it is very close to what was
found in Ref. 23 by varying the f parameter in a simple RD
system. This regime is protracted for a range of values of the
Grashof number up to 5.5, during which the tip dynamics
and spiral structures do not appreciably suffer from the weak
hydrodynamical field. In this first quasiperiodic domain, the
characteristic frequencies differ in a negligible way from
what is found for Gri=0.0, with a decreasing trend in the
absolute value of the main frequency and the entire dynamics
close to a simple RD picture.

FIG. 1. Trajectory of spiral tip and FFT of its temporal evolution for qua-
siperiodic regime related to the simple RD problem �Gri=0.0�. The two
incommensurable frequencies are �1=0.747 O.F.U. and �2=1.071 O.F.U.
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2. Gri=5.5

The spirals are distorted by the velocity field but not yet
subject to any breaking phenomena. Within these hydrody-
namic conditions, the rising of the disturbing action of the
field, whose destructive power will be shown for higher val-
ues of the Grashof number �Fig. 2�, can be recognized. The
dynamics shown by the tip motion in this regime is periodic.
The tip follows a trajectory which approximates a closed
cycle with a main frequency equal to 0.396 O.F.U. The trans-
formation in the pattern type is concomitant with the emer-
gence of an effective coupling between chemical and trans-
port phenomena that produces characteristic RDC structures.
The reduction in the absolute value of the main frequency
�0.747–0.396� is associated with the hydrodynamical resis-
tance, which cannot be neglected anymore �Fig. 3�.

3. Gri=9.8

For values of Gri ranging between 9.8 and 12.1, the be-
havior exhibited by the spiral tip presents a degree of com-
plexity which grows as Gri increases. It can be shown that
the tip trajectory is connected to the following general
mechanism �Fig. 4�: the presence of a minimum in the
��x ,y , t� �in Fig. 4 plotted as contour level lines and indi-
cated with solid arrows� acts as a sort of attracting potential,
which “drives” the tip motion. This feature is related to the
characteristics of the fluid in ��x ,y , t� minima. They repre-
sent the regions of high rotationality with negative vorticity
able to accommodate spiral geometry and orient its evolu-
tion. The emergence of a maximum in the ��x ,y , t� function
�dashed arrows in Fig. 4� causes the structure to break. It is
interesting to point out how the spiral responds to the de-
forming and destructive action of the ��x ,y , t� maximum
through an elastic dynamics: it flexes itself along the direc-
tion traced by ��x ,y , t� maximum; the resulting tip trajectory
in the absence of ��x ,y , t� minima describes the same route
as the maximum evolution. Also, these qualitative observa-

tions can be explained on the basis of the stream function
features discussed in Sec. II A. In particular, ��x ,y , t�
maxima represent vortex regions with positive vorticity and
velocity field oriented in opposition to the spiral develop-
ment, causing its disrupture.

FIG. 2. �Color� Structural effect of velocity field in the spiral shape: Gri

=0.0, the structure is unaffected by convective forcing; Gri=6.0, the wave is
distorted; Gri=9.8, the velocity field is able to cause the break of the spiral
structure.

FIG. 3. Trajectory of spiral tip and FFT of its temporal evolution for the
periodic regime �Gri=6.0�. The main frequency is �1=0.396 O.F.U.

FIG. 4. �Color� Snapshots of the time evolution of ��x ,y , t� minima �solid
line� and maxima �dashed line�. The mechanism describes transport, distor-
tion, and break of the spiral by fluid motion, determining the tip dynamics.
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The mechanism involved in distortions, breaks, and
transportation of the spiral structures, found for all of the
hydrodynamical conditions considered, allows us to identify
the type of action exerted by ��x ,y , t� minima and maxima
on the wave.

Figure 5 presents graphically what the previous consid-
erations implicate. We show the absolute values of ��x ,y , t�
related to its minimum and/or maximum regions at some
instants defining a complete cycle of the tip trajectory. The
temporal evolution of these two pseudopotentials involves an
alternation of two moments: the ��x ,y , t� maximum and the
��x ,y , t� minimum drifts. The figure, including the temporal
dimension, reports a unique representation of the two drifts,
hiding this dynamical feature. On the other hand, it stresses
some spatial features, showing how the minimum drift �the
one moving along the vector s�maximum= �15,43�→ �53,48��
has a spatial development less prolonged than the maximum
drift �which follows a displacement along s�minimum= �79,16�
→ �37,38��, even taking a shorter time �6�104 time steps
versus 17�104�. At each time step, a comparison between
the tip position and the ��x ,y , t� maximum location outlines
a delay due to the mechanism discussed above, while
��x ,y , t� minimum coordinates perform a complete overlap
with the tip position during the complete evolution. The spa-
tial distribution coming out as the sum of the two pseudopo-
tential drifts traces a path in good agreement with the tip
trajectory �dashed green line�, as underlined by their projec-
tion. Figure 5 is useful in concluding that the pattern of tip
dynamics could be effectively described as a combination of
hydrodynamic processes that take place in the neighborhood
of the spiral, namely, in terms of their spatial-temporal de-
velopments.

The Fourier transform of dtip�t� �Fig. 6� points out the
presence of a Hopf bifurcation, detected by the emergence of
a new frequency ��2=0.549�, whose ratio to the main one
�seen for Gri=5.5� is an irrational number, and their har-
monic combinations.

4. Gri=12.1

The tip trajectory can be referred to as a chaotic regime.
The convective forcing determines a limiting hydrodynami-

cal condition with respect to the persistence of spiral-like
waves: the structures are broken in many residuals and are
strongly distorted �Fig. 2�. The tip dynamics is fitted to the
evolution of the hydrodynamical pseudopotentials as dis-
cussed before �Fig. 7�. An increased complexity, attributable
to the presence of several residuals of spirals as well as to the
coexistence of multiple minima and maxima of ��x ,y , t�,
hinders a detailed study.

What follows from the analysis is a tip trajectory remi-
niscent of a random walk �Fig. 9�, resulting in an aperiodic
temporal series. Both the analysis of the maximum Lyapunov
exponent, calculated as reported in Sec. III B �which presents
a positive value equal to 0.2413	0.0082 �Fig. 8��, and the
Fourier transform �which evidences a spectrum with infinite
frequencies and has major contribution at low values �Fig.
9�� clearly reveal the chaotic character of the dynamics.

From the discussed results, it could be stated that the
analysis carried out represents a powerful tool to characterize
the nature of the transition to spatial-temporal chaos, en-
abling us to attribute it to the Ruelle-Takens-Newhouse
�RTN� scenario.
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FIG. 5. �Color� Spatial-temporal evolutions of ��x ,y� minima and maxima,
reported as absolute values �see Sec. III A�. The trajectory described by the
evolution of the two pseudopotentials reflects the tip pattern �line with
points�.

FIG. 6. Trajectory of spiral tip and FFT of its temporal evolution for the
quasiperiodic regime �Gri=9.8�. a=6�2−7�1, b=�1+1 /2�1.
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B. The role of the RDC coupling

The previous topological analysis reveals how the tip
study presents an intrinsic utility to describe the convective
influence on spiral structures by the action of some pseudo-
potentials. We should consider the mutual influence deter-
mined by the dynamical feedback between the concentration
inhomogeneities and the velocity field, generated by their
interaction with the gravitational field.

The study of tip properties is useful also in characteriz-
ing this self-sustained mechanism and mutual correlation as-
sociated with it. We compare the time series reporting �i� the
scalar values of the velocity field in the points visited by the
tip during its time evolution at fixed Grashof number �vtip�t��
and �ii� the velocity of the tip, vtip�t�, calculated from the
time series dtip�t� �see Sec. II B� as

dtip�ti+1� − dtip�ti�

t

, �10�

where 
t=10−1 is the Oregonator time unit.
In particular, the analysis is carried on FFTs of these

series and reiterated for all of the stable regimes accessible to
the tip dynamics as the controlling parameter �Gri� is in-
creased.

In Fig. 10 an example of this sort of comparison con-
cerns the quasiperiodic regime found for Gri=9.8. Two fun-
damental aspects are relevant: �i� there is complete overlap-
ping of the two forms and �ii� the frequencies evidenced are
the same as found in the FFT analysis of the time tip dis-
placement �see Sec. III A�. The repetitivity of this coherence
for each hydrodynamic window explored and the recurrence
in the specific values characterizing the regimes and the criti-
cal points allow us to extrapolate the strong correlation be-
tween the evolution of the velocity field, the tip behavior,
and its velocity as a general property of the system.

The investigation could be extended to the time evolu-
tion of mean properties by considering the average of con-
centration ci�x ,y , t� and the stream function ��x ,y , t� over
the spatial domain �indicated as �ci�x ,y , t�� and ���x ,y , t���.
Figure 11 describes the paths to chaos exhibited by the two
observables when the Grashof number is varied; also in this

FIG. 7. �Color� Example of structural complexity associated with the emer-
gence of multiple ��x ,y , t� minima �indicated by the dashed arrows�, driving
the spiral residuals.

FIG. 8. �Color� Computation of the maximum exponent by the Kantz algo-
rithm. The value of �=0.2413	0.0082 is obtained by the linear regression
of the curves for m=5–7 in the zone between two and five iterations.

FIG. 9. Trajectory of spiral tip and FFT of its temporal evolution for chaotic
regime �Gri=12.1�.
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case a significant overlap in critical points of the bifurcation
route and in characteristic frequencies defining each regime
�see Table I� is found.

A detailed overview of the discussed behaviors is sum-
marized in Table I. A part for a Grashof number ranging
between 0.0 and 5.5 ��ci�x ,y , t�� is periodic while dtip�t� is
quasiperiodic, even with the same first main frequency�, a
strict congruence in the temporal evolutions involves all
properties. The mismatch within this range underlines the
indifference of tip dynamics and of �ci�x ,y , t�� to the velocity
field. In other words a real RDC coupling cannot be recog-
nized for a Grashof number ranging between 0.0 and 5.5:
quasiperiodicity of tip trajectory and the periodicity of
�ci�x ,y , t�� are to be referred to the simple RD system.

It is surprising how the dynamical evolution of local
properties and mean properties are close to the scenario to
chemical chaos observed for the same system in our previous
numerical work.10 This coherence suggests the following
considerations,

�1� The coupling of the chemistry of the system with the
phenomena of mass transport can be considered as a
dominant feature; it justifies the emergence of the same
characteristic values for each dynamical profile under
which the system is studied: chemical and/or hydrody-
namical, either in spatial-averaged or in local proper-
ties. All of the dynamical features are ascribable to gen-
eral regimes imposed to the system by the Grashof
number.

FIG. 10. �Color� Comparison between FFT of the time series of the velocity
field considered in each point visited by the tip during its evolution and the
tip velocity.

FIG. 11. �Color� FFT comparison be-
tween �ci�x ,y , t�� and ���x ,y , t�� in the
evolution to chaos as Gri is increased.
Critical points and emerging frequen-
cies are superimposed.

TABLE I. Dynamical regimes and main values characterizing the evolution
of the dynamical and mean properties studied.

Gri Properties Regimes Characteristic values

0.0�Gri�5.5 dtip�t� Quasiperiodic �1=0.747, �2=1.071
�ci�x ,y , t�� Periodic �1=0.742
���x ,y , t�� Periodic �1=0.742

5.5�Gri�9.8 dtip�t� Periodic �1=0.396
�ci�x ,y , t�� Periodic �1=0.396
���x ,y , t�� Periodic �1=0.396

9.8�Gri�12.1 dtip�t� Quasiperiodic �1=0.396, �2=0.549
�ci�x ,y , t�� Quasiperiodic �1=0.396, �2=0.549
���x ,y , t�� Quasiperiodic �1=0.396, �2=0.549

Gri
12.1 dtip�t� Chaotic �=0.2413
�ci�x ,y , t�� Chaotic �=0.0189
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�2� The coupling RDC determines the transition to chaotic
dynamics for each characteristic. The general validity
of this feature is given by the definite way by which
each characteristic undergoes a chaotic regime, follow-
ing a RTN scenario, as the Grashof number is in-
creased. The nature of the route is mainly determined
by the hydrodynamical contribution.

IV. CONCLUSIONS

The evolution of spiral waves within the BZ reaction
under the effect of the gravitational field is studied numeri-
cally. To describe the transition to the spatiotemporal chaos
observed numerically an analysis of the bifurcations occur-
ring in spiral tip dynamics is carried out. In particular, tip
trajectories as a function of the Grashof number are explored
and characterized by FFT analysis of series reporting tip po-
sitions in time. The method allows a direct classification of
the path to chaos as a RTN scenario, the bifurcation points
being Gri=5.5, Gri=9.8, and Gri=12.5 �respectively for the
first subcritical Hopf bifurcation and the second and third
supercritical Hopf bifurcations�. The nature of the transition
is analogous to the route to chemical chaos observed in Ref.
10 for the same system. The influence of the velocity field on
spiral waves is outlined by studying the stream function
properties. Specifically, by mapping the tip evolution in re-
lation to the stream function dynamics, it has been shown
how ��x ,y , t� minima can locate the tip in the presence of
convective flows: they act as attractive potentials that, in the
absence of ��x ,y , t� maxima, drive the tip motion. On the
other side, ��x ,y , t� maxima present distortion and destruc-
tive power to which the spiral wave responds in an elastic
way, until breaking. More importantly, this comparison high-
lights how the combined action of ��x ,y , t� minima and
maxima fits the global tip trajectory. The general mechanism
of transportation, distortions, and breaks by which the
��x ,y , t� minima and maxima exert their effect helps us un-
derstand bifurcations and regimes occurring in tip dynamics
as ��x ,y , t� complexity increases. Besides describing con-
vective influence on spiral structures, the tip analysis is also
useful in studying the dynamical feedback existing between
the inhomogeneous structures and the velocity field. As a
matter of fact, the correlation between the two observables
has been first pointed out by comparing the tip velocity and
the velocity field in the positions visited by the tip in its
evolution. The same investigation is extended to the dynami-
cal behavior of mean properties ��ci�x ,y , t�� and ���x ,y , t���.
Coinciding regimes and characteristic values emerge from
two analyses. More generally, the given coherence permits us
to conclude that �i� when a strong RDC coupling occurs, it
dominates the evolution of the system, so that any dynamical
property could be addressed to the stationary state imposed
by the hydrodynamical control parameter and �ii� the RDC
coupling is the potential source of transition to chaotic dy-
namics by a route determined by the hydrodynamical contri-
bution.
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