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Abstract

The similarities between systems of living entities and
systems of concurrent processes may support biological ex-
periments in silico. Process calculi offer a formal frame-
work to describe biological systems, as well as to analyse
their behaviour, both from a qualitative and a quantitative
point of view. A couple of little examples help us in showing
how this can be done. We mainly focus our attention on the
qualitative and quantitative aspects of the considered bio-
logical systems, and briefly illustrate which kinds of analy-
sis are possible. We use a known stochastic calculus for the
first example. We then present some statistics collected by
repeatedly running the specification, that turn out to agree
with those obtained by experiments in vivo. Our second ex-
ample motivates a richer calculus. Its stochastic extension
requires a non trivial machinery to faithfully reflect the real
dynamic behaviour of biological systems.

1 Introduction

The recent, often astonishing developments in biology
have produced a huge amount of data on the structure of
living matter; consider for example the success of the hu-
man genome project. Less instead is known on the versatile
biological functions that cells and their components display.

So in the last years we have seen a shift from structure to
functionality, and the growth of the so-called -omics disci-
plines within biology. These study particular components of
cells in terms of their structure and functions. The branch
devoted to investigating how genes interact is referred to
as genomics. Most genes, the basic bricks of life, essen-
tially encode proteins and gene expression corresponds to
the production of the encoded protein, in a manner not suf-
ficiently clear yet. Proteomics studies the proteins encoded
by any gene and the description of their functions. Indeed,
the interaction between proteins is the basic machinery driv-
ing cell working. Further substances, namely metabolites

are involved in the chemistry of cells, and studied within
metabolomics. Equally important is transcriptomics, that
investigates how some interactions can produce gene muta-
tion or transcription. All the above disciplines witness the
development of a new paradigm, that moves from the clas-
sical reductionist approach to a system level understanding
of life. It is called systems biology [24].

Mapping the human genome would be impossible with-
out computers, algorithms and syntax to model structures:
it has been crucial representing DNA as a formal language
over a four character alphabet and using search and match-
ing algorithms over strings. Much in the same way, com-
puter science appears to be essential for understanding the
behaviour of living organisms: passing from structure to
functions amounts to equipping syntax with semantics. We
claim then that programming language techniques and tools
can be used to model, analyse and simulate the dynamic be-
haviour of biological systems. More generally, we advocate
a convergence between computer science and life science,
calling for a paradigm shift also on the computer science
side, or at least for a fruitful cross-fertilization between the
two disciplines.

The pioneering work by Regev, Silverman and Shapiro
[41] brought out the similarities between distributed, con-
current, mobile computer systems (when non ambigu-
ous, just systems, for short) and biological systems,
e.g. metabolic networks, gene regulatory networks, sig-
nalling pathways. Biological systems are made up of mil-
lions of biological components that are active simultane-
ously and that can interact to cooperate towards a common
goal. Furthermore, the interactions between components
are mainly binary and can occur only if the partners are cor-
rectly located (e.g. they are near enough, no membrane is
dividing them, the affinity or propensity to interaction is suf-
ficiently high). Finally, the actual interactions may change
the future behaviour of the whole system even if they oc-
cur locally. All these features describe distributed, concur-
rent, mobile computer systems as well, except maybe for
these artificial systems have a smaller number of compo-
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nents. There are various process calculi, e.g. [29, 23, 30, 5]
that specify the form and the dynamic behaviour of systems,
and that allow for analysing them. We claim that they will
turn useful in the biological applicative domain.

Process calculi describe a system in terms of the actions
its components, called processes, can perform. A few op-
erators combine processes to yield a system, actually a pro-
cess itself. Among them, parallel composition is peculiar:
the processes in parallel can act independently and asyn-
chronously so changing their state, but two of them can
also synchronise and exchange a message, when one per-
forms an output action and the other a matching input ac-
tion. Each operator of the calculus comes equipped with
rules governing its dynamics. These rules have a logical
flavour and define inductively the semantics of the calculus.
The semantics formally describe the possible behaviour of
a system and is often represented through a directed graph,
called a transition system. Indeed a transition is deduced
within a logical theory and says how a system moves from
one configuration to the next one. The paths along a transi-
tion system model then the computations of the system.

Based on the above shallow presentation, we can put for-
ward the abstraction principle that we implement to model
biological systems, assuming to work at a molecular level:

• molecules are abstracted as processes;

• the actual interactions between molecules are repre-
sented by communications;

• the affinity of interaction between molecules is mod-
elled through the communication capabilities of the
processes representing the interacting molecules;

• the changes on the behaviour of the biological system
following an interaction are rendered by corresponding
modifications on the overall process, induced by the
communication preformed.

A major challenge in describing biological systems is
that their temporal/spatial behaviour is heavily affected by
quantities representing chemical and physical parameters,
like concentration, temperature etc. One cannot there-
fore avoid integrating qualitative and quantitative aspects
of process behaviour. The literature has many propos-
als, mainly on markovian and stochastic process algebras
[19, 21, 22, 10, 2, 3, 34].

Once modelled a biological systems as a process, one
can start analysing it by studying the behaviour of the spec-
ification. In other words, one performs a “virtual” experi-
ment in silico. There are two different ways one can follow.

The first approach is the classical one exploited in the
stochastic process algebras field. It consists of first deriv-
ing a continuous time Markov chain out of the transition
system of the specification. Then one carries out stationary
analysis relying on standard mathematical tools. This kind

of approach helps in estimating the time and the probabil-
ity of bio-chemical reactions in biological systems in their
steady state.

Our personal experience 1 is that the size of the Markov
chains grows very fast, namely exponentially with the size
of the biological system under analysis, due to the so-called
state explosion problem, typical of process algebras. More
powerful techniques are in order, to overcome the limitation
on the biological systems practically analyzable.

The second way, namely transient analysis, resembles
more closely the way biologists make their experiments. It
requires to interpret process calculi as real programming
languages and to endow them with a stochastic run-time
support so to obtain simulators (often based on the stochas-
tic π-calculus [37, 33]). Several computations are then run,
representing each a single virtual experiment that simulates
the behaviour of the biological system in hand. The com-
putations are inspected to collect the relevant information
about, e.g. the occurrences of selected communications or
synchronizations, i.e. of reactions. The classical statistical
analysis then applies. Promising results have been obtained
with this approach, on some interesting biological systems
[6, 38, 41, 26]. Most of the simulators used have been de-
veloped especially to be applied in the biological domain.
A crucial point is that they exploit the Gillespie algorithm
[16, 17], that allows to numerically simulate the time evo-
lution of a chemically reacting system, taking into account
the randomness in chemical systems. This algorithm is well
founded because it is based on the same premise underlying
the chemical master equation [18].

This paper is organized as follows. Section 2 reports on
VICE, a virtual cell whose behaviour is in surprising accor-
dance with that of (portions of) real prokariotes. With the
help of a simple example, in Section 3 we illustrate the for-
mal means needed to model complex formation, a crucial
biological event. In both cases, we discuss how quantitative
reasoning can be carried on the specifications and which
measures can be obtained from them. Related work and
some conclusions follow.

2 Specifying metabolic pathways

We anticipated in the Introduction that our knowledge on
the genes within living organisms is dramatically increasing
during the last years, while the dynamics of genes and pro-
teins inside the cellular molecular machinery is still largely
unknown [24]. Also, nowadays there are no experimen-
tal techniques able to track the dynamics of the complete
metabolome of a cell. Our approach to this major problem
of contemporary biology is representing all the known re-

1This happens with relatively small examples we worked out, mainly
by hand, within our own stochastic version of BioAmbients.
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Figure 1. A fragment of the Glycolysis Pathway. The enzyme codes are from [15].

lationships between the elements in a metabolome in silico,
so building up a sort of a virtual cell [28, 27].

Indeed two of us modelled a whole living organism,
called VICE, which seems to behave in silico as a simpli-
fied “real” prokaryote [6]. Surprisingly, the experimental
results obtained are in accordance with those obtained by
experiments in vivo.

We worked together with a team of biologists, who care-
fully designed this hypotetic organism, and kept it as simple
as possible. Indeed, even elementary biological entities, like
bacteria, have a complexity extremely high, so making their
simulation huge, or even computationally unfeasible. The
starting point has been [31] that proposes a basic prokaryote
genome, by eliminating duplicated genes and other redun-
dancies from the smallest known bacterial genomes. Our
co-workers further refined this proposal and obtained a very
reduced prokaryote-like genome, which only contains 180
different genes.

Then the specification phase started, with an extended
version of the π-calculus. We described the bio-chemical
reactants involved in the most basic metabolic pathways of
this hypotetic organism: in other words, we did not fully
specify a pathway, but only how the species involved in it
change their state by effect of a reaction. At a first stage, we
focussed our attention merely on the behavioural aspects of
the reactants involved, disregarding the quantitative aspects.
Yet, running our simplified, theoretical, qualitative descrip-
tion the molecular machinery helped biologists to tune their
choice of genes, showing that two were missing. We then
used the enhanced aspects of our calculus to determine re-
action rates, so to link each transition to a measurable bio-
logical parameter.

This phase eventually ended up with a hypotetical
genome of VICE, rich enough for expressing a sufficiently

large sub-set of the metabolic pathways that every living
cell has. This genome got a formal specification, executable
in silico. We could then start experimenting on a whole
prokaryote, admittedly extremely simple and placed in an
optimal environment. This makes the difference with other
specifications that consider parts, rather than a whole “liv-
ing” entity.

Even though VICE is equipped with the means for cell
reproduction, we did not specify these activities. This is
because our primary goal was to test whether VICE in in-
terphase was able to “survive” in a “normal” environment,
with enough water and essential nutrients, shaped so to di-
lute or remove all the potentially toxic catabolites, and to
ban completely competition and other stressing factors.

We now intuitively show how the bio-chemical aspects
of a living cell can be specified with the π-calculus. Actu-
ally, we used an enhanced version of this calculus [11, 8],
in particular to express stochastic information of process be-
haviour, along the lines of [32]. We assume the reader has
some basic knowledge on process calculi, and we briefly
sketch below the fundamentals; a more detailed survey can
be found in [11], especially on the enhanced operational se-
mantics approach.

Molecules are represented as concurrent processes
P1, . . . , Pn put in parallel, and written as P1 | . . . |Pn. Each
process can perform input/output actions on given channels.
The basic mechanism of communication allows processes
to exchange information, flowing from the sender to the
receiver, along a channel the two partners share. The in-
put/output actions can be sequentially composed with the
“.” operator. Finally, a process P1 + P2 can evolve either
as P1 or as P2, and the choice will be driven according to
a probabilistic distribution. Typically, the input/output ac-
tions will be associated with a given rate, that contributes to
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the definition of the rate at which a whole system of con-
current processes, i.e. of molecues, changes its state under
a reaction. We shall come on this issue later on.

We now consider a fragment of the Glycolysis pathway,
which has been extensively studied in the literature; this ex-
ample has been taken from [6], to which we refer the in-
terested reader for more details. We depict this pathway in
Figure 1, where metabolites have their IUPAC names, and
the labels on the arrows stand for the enzymes catalysing
the reaction; we use here the enzyme code given in [15].

The metabolite β-D-fructose-1-6BP splits giving
Dihydroxyacetone phosphate and D-Glyceraldehyde 3-
phosphate, in presence of mg023, namely the enzyme
fructose-bisphosphate aldolase. In turn, Dihydroxyacetone
phosphate can produce D-Glyceraldehyde 3-phosphate,
when catalysed by the enzyme mg431, namely triose
phosphate isomerase. Additionally, the metabolite
D-Glyceraldehyde 3-phosphate can behave in two fur-
ther, mutually exclusive manners, becoming either the
metabolite 1,3-Bisphospho-D-glycerate via mg301 (glyc-
eraldehyde 3-phosphate dehydrogenase), or 2-deoxyribose
5-phosphate via mg050 (2-deoxyribose-5-phosphate al-
dolase). All the reactions considered above are reversible,
e.g. the aldol condensation produces the metabolite
β-D-Fructose 1,6-bisphospathe from Dihydroxyacetone
phosphate and D-Glyceraldehyde 3-phosphate, exploiting
mg023.

We specify the behaviour of each reactant in isolation
as a process, and interpret bio-chemical reactions by pro-
cess communications. We thus leave to the basic feature of
the calculus, i.e. to communication the task of coordinating
the overall behaviour of a net of molecules, following the
paradigm of “cells as computations” put forward by Regev
and Shapiro [40]. Unlike the original presentation in [41],
we here use channels to model catalysing enzymes. As we
will see in a while, this choice helps us in collecting statis-
tics on the trend of the considered pathways.

The specification of the metabolites D-Glyceraldehyde
3-phosphate and Dihydroxyacetone phosphate follows (as
usual, we omit the inactive process 0 in trailing position).

D-Glyceraldehyde 3-phosphate =

τmg301.1,3-Bisphospho-D-glycerate1 +

τmg431.Dihydroxyacetone phosphate +

τmg050.2-Deoxyribose-5-phosphate +

mg023(x).β-D-fructose-1-6bP

Dihydroxyacetone phosphate =

τmg431.D-Glyceraldehyde 3-phosphate + mg023〈a〉

As said above, the two reactants undergo an aldol conden-
sation in presence of the enzyme mg023. In our specifica-
tion, one process offers the output mg023〈a〉 on the channel

associated with the enzyme fructose-bisphosphate aldolase,
i.e. mg023; the other process is ready to input on the same
channel, through the action mg023(x). When in parallel,
the two constitute a process P , that perform a synchroniza-
tion and give rise to the transition of Figure 2.

The reader has certainly noticed that the label of the
arrow carries more information than usual. This is the
point where the enhanced semantics of [11] plays a role.
Indeed, the label records where the communication took
place, i.e. the enzyme involved, which were the partners
involved and which their role: the one at the left of the op-
erator |, identified by tag ||0, sent a message, the one at the
right received it, at position ||1. Clearly, in the general case
we will have a sequence of tags ||0, ||1 prefixing inputs and
outputs, and this sequence is mechanically generated by the
rules governing the enhanced semantics of the π-calculus.
Below, we shall sketch how this information enables us to
derive the rates of transitions.

In the specification above there is also a non standard us-
age of the internal move τ , that here carries the additional
information about which enzyme, e.g. mg050, catalysed the
reaction that permitted D-Glyceraldehyde 3-phosphate to
become 2-Deoxyribose-5-phosphate in isolation.

The other metabolites depicted in Figure 1 are specified
as follows.

β-D-Fructose-1-6 bP =

τmg215.β-D-Fructose 6P +

τmg023. (Dihydroxyacetone phosphate |

D-Glyceraldehyde 3-phosphate)

1,3-Bisphospho-D-glycerate =

τmg301.D-Glyceraldehyde 3-phosphate +

τmg300.3-Phospho-D-glycerate

2-Phospho-D-glycerate =

τmg430.3-Phospho-D-glycerate +

τmg407.Phosphoenolpyruvate

Once the whole set of reactants has been specified, we
can start our virtual experiment. The initial state will con-
tain the selected quantity of reactants, put in parallel with
each other and with the wanted number of nutrients to rep-
resent the living environment. Then the experiment begins,
and consists of a computation, i.e. a sequence of transitions,
starting from the initial state. A comment on the rates of the
transitions is now in order.

Recall that all the transitions outgoing from a given pro-
cess can be mechanically deduced using the logical rules
specifying the enhanced semantics, i.e. by mechanically
proving the existence of the transitions. The application of
the rules, in particular those involving the parallel combina-
tor, gives rise to the labels of the transitions. We exploit the
information contained in these labels to derive the rates of
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P = (D-Glyceraldehyde 3-phosphate | Dihydroxyacetone phosphate)
〈||0mg023〈a〉,||1mg023(x)〉
−−−−−−−−−−−−−−−−→ 0 | (β-D-fructose 1-6bP)

Figure 2. A syncronization modelling aldol condensation.

each transition. Roughly, a label contains either the chan-
nel on which a communication occurred, i.e. the enzyme
catalysing the corresponding reaction, or a silent action, in-
dexed by an enzyme, besides strings of tags ||0, ||1. This
is a natural choice, because our goal was to test whether
VICE could “survive”, and therefore we studied the overall
flux of its pathways, through the so-called control strength
of the enzymes involved in reactions. Intuitively, it repre-
sents the impact of enzyme activity: the greater the control
strength, the more perturbated is the flux when the enzyme
in inhibited [12, 13].

To do that, we first assigned “basic” reaction rates, called
basal rates to “basic transitions”, i.e. to firing pairs of
matching output/input, or firing an internal action. These
basal rates depend on the chemical and physical properties
of the molecules involved in a specific reaction. To tune
them, we used here the constants KM of the “Michaelis-
Menten” kinetics [14, 20]. To model the control strength,
we had to take care also of the difference between near-
equilibrium and non-equilibrium reactions. For the first, the
rates of a reaction and of its reverse are close, while differ
greatly for the second kind of reactions.

As a second step in assigning rates to the transitions
of the whole system we took into account the concen-
tration of the other reactants in the virtual solution and
of the nutrients therein. A very rough estimate of this
concentration is computed by looking at the strings of
||0 and ||1 present in a transition label. E.g. consider
||1||0〈||0mg023〈a〉, ||1mg023(x)〉, that labels a transition
corresponding to an aldol condensation (see Figure 2, where
only the basic transition was displayed). From the label, we
can deduce that the process P performed the transitions, and
that it was in parallel with two unknown processes X (at
position ||0) and Y (at position ||1||1) in the following way:
X | (P | Y ). Indeed, the strings over ||0, ||1 represent the
syntactic context in which the basic transition occurs. Fol-
lowing [32, 11], we compute the actual rate of a transition of
the whole system by applying a suitable sequence of opera-
tions on its basal rate. We inductively traverse the syntactic
context: the sequence of the tags and the enzyme involved
in the transition determine the operations to perform. As a
matter of fact, this is a very rough implementation of the
Gillespie algorithm [16], that proposes an exact numerical
calculation to stochastically simulate the time evolution of

a chemical system.
Eventually, the transitions that leave a given state are la-

belled by their rate and by the enzyme catalysing the cor-
responding reaction. One of them is chosen, accordingly to
the exponential distribution2 defined so far, and applied to
perform the next computation step, leading to a new state.

Now we can see our computations as virtual experi-
ments, and start collecting statistical data, in our case on
the usage of enzymes. First of all we checked our virtual
cell was using all the pathways chosen. This showed that
VICE endowes sufficient components in its genome. We also
made sure that all these components were involved in some
simulation runs, and so all of them are necessary.

We carried on these tests varying the concentration of
metabolites, in particular sugars. We also experimented
on different time intervals of the observation, simply rep-
resented by the number of transitions in computations.

Our main experiment compared some aspects of the be-
haviour of VICE with that of real prokaryotes acting in vivo
under similar circumstances [20]. In particular, we inves-
tigated the glycolysis, on which the literature has a huge
quantity of biological data. A first analysis showed that the
distribution of the metabolites along this pathway of VICE

significantly matches with those of real organisms reported
in the literature. To our surprise, the diagrams showing the
trend of VICE glycolysis almost overlap the real one; see
Figure 3, taken from [6].

3 Membranes and enzime inhibition

In the previous section we showed how (an enhanced
version of) the π-calculus can be used to formally describe
metabolic pathways, and how quantitative reasoning can be
carried out over the specifications so obtained. Running a
simple example, we now present some recent developments
in the application of process calculi to biological modelling.

The process calculi proposed for representing the dy-
namics of biological systems can roughly be classified

2An exponential distribution with rate r is a function F (t) = 1−e
−rt,

where t is the time parameter. The value of F (t) is smaller than 1 and
limt→∞ F (t) = 1. The parameter r determines the slope of the curve F :
the greater r, the faster F (t) approaches 1. The probability of performing
an action with parameter r within time x is F (x) = 1 − e

−rx, so r

determines the time, Δt, needed to have a probability near to 1.
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(a) (b)

1 mg111 5 mg300 9 pyruvate dehydrogenase complex
2 mg215 6 mg430 10 mg299
3 mg023 7 mg407 11 mg357
4 mg031 8 mg216

(c)

Figure 3. The trend of VICE glycolysis (a) towards the real one (b). Table (c) shows the correspondence between
indexes on x-axis and enzymes. Their codes are in [15].

depending on their interpretation of a crucial biological
event: complex formation. In the π-calculus, where names
can be communicated in interactions, complex formation
corresponds to the act of sending a private name, and
the generated complex is just the parallel composition of
the processes sharing the communicated name. Other
calculi (e.g. BioAmbients [39], Brane Calculi [4], Beta-
binders [35]) provide explicit means to model enclosing
surfaces of entities, with a natural visual representation of
complexes.

In Beta-binders processes are encapsulated into boxes,
that mimic biological membranes, and have interaction
sites, that resemble biological motifs where, e.g. biologi-
cal molecules can bind together. This allows for a simple
representation of biochemical reactions: in order for two
proteins to interact, they have to undergo into physical con-
tact through their motifs. In Beta-binders, the correspond-
ing boxes establish a channel where the two proteins can
exchange information. The backbone, i.e. the biological
structure of complexes, is wrapped inside a box. It is speci-
fied as a π-calculus process, extended with a few additional
primitives to manipulate interaction sites, i.e. for exposing a
new site, or making a pre-existent site unavailable, or mak-
ing a hidden site available again. Beta-binders was intro-
duced building on the intuition that the communication ca-
pabilities of processes should be made more flexible than in
the existing calculi. Indeed, a complex formation is spec-
ified in these calculi through a user-driven coordination of
the synchronizations between the corresponding processes.
This mechanism appears to be too rigid for either abstract-
ing from unknown details or for predicting evolutionary be-

haviours. For this reason in Beta-binders sites are actually
typed, and interactions between boxes depend on site types,
unlike in the π-calculus, where names are used instead. In
particular, interaction between boxes depends on the affin-
ity of their motifs, which is denoted as a function α of the
relevant site types. We do not detail function α, because it
depends on the particular applicative scenario, but for ex-
ample a similar notion is used in the field of drug discov-
ery [25]. Also, the semantics rules that drive the behaviour
of Beta-binders boxes comprise rules for either joining or
splitting boxes.

Below, we comment on the representation of competitive
inhibition [1] in a quantitative extension of Beta-binders. A
competitive inhibitor is a molecule that occupies a catalytic
site because of its similarity to the substrate. When occupy-
ing the site, the inhibitor prevents the normal substrate from
binding and being catalysed. Operationally, competitive in-
hibitors bind reversibly to the active site. The following
Michaelis-Menten equation states the generalised scheme
for enzyme-catalysed production of a product P from the
substrate S:

E + S �
KES

K
−1

ES

ES ⇀KP E + P (1)

This equation 3 comprises four reactions. The first shows
that the enzyme E can bind to S with constant rate KES and
form the complex ES:

E + S ⇀KES ES. (2)

3The symbol + in chemistry denotes the simultaneous presence of the
molecules in the summation, rather than non-deterministic choice between
teo processes, as done in the previous section.
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The reaction can then be reversed with constant rate K−1
ES

:

E + S ↼K
−1

ES

ES. (3)

Alternatively, the enzyme E can catalyse the reaction trans-
forming the substrate S into the product P with constant
rate KP :

ES ⇀KP E + P. (4)

We specify each reactant as a distinct box that executes in
parallel with the others. For example, the chemical sce-
nario E +S in (2) is graphically rendered as follows, where
the leftmost box corresponds to E, and the other one to
S: within the boxes the π-calculus processes QE and QS

model the internal structure of E and S, namely their back-
bones.

QE

ΔE

QS

ΔS

The reaction (2) is modeled as the joining of the boxes
for the enzyme E and the substrate S, with associated rate
α(ΔE , ΔS) = KES . The Beta-binders semantics of join-
ing is such that the system in the above picture can perform
a computation step and transform into a system composed
by a single box.

As in the previous section, computation steps, i.e. reac-
tions, are denoted by B

r
−→B′, and the real number r records

the rate at which the transition occurs to be used in resolving
race conditions. For computing the execution probability r

for each possible molecular interaction, we use the Gille-
spie’s algorithm [37, 33]. This probability depends on the
basal rate r′ and the number of the motifs which could have
generated the same molecular collision. In our example, let
the number of boxes for E be N1, and those for S be N2;
then the overall rate r will be r′×N1×N2. The rules of the
operational semantics of Beta-binders collect the relevant
information while deducing the transitions for the current
configuration of the system. Differently than in the previous
section, we give a very specific format to the labels of tran-
sitions and some non trivial computations may be needed to
determine inductively the rates while, e.g. putting two com-
plexes in parallel.

Graphically we represent the transition modelling the re-
action (2) as follows:

QE

ΔE

QS

ΔS

α(ΔE ,ΔS)
−−−−−−−→ QE |QS

Δh
E Δh

S

where the rightmost box corresponds to the complex ES

in the Michaelis-Menten equation. Therein, the two back-
bones QE and QS are put in touch (composed in parallel),
and the motifs ΔE and ΔS are hidden (written Δh

E and Δh
S ,

respectively). The value α(ΔE ,ΔS) labelling the transition

α(ΔE,ΔS)
−−−−−−−→ is the specific basal rate of the enzyme-substrate
reaction.

To model the reversed reaction as given in (3), the box
that represents the complex ES is split with dissociation
rate α(Δh

E , Δh
S) = K−1

ES
.

QE |QS

Δh
E Δh

S

α(Δh

E
,Δh

S
)

−−−−−−−→ QE

ΔE

QS

ΔS

Finally, consider the reaction in (4). This equation ap-
proximates the real biological phenomenon, that consists of
a sequence of internal modifications. These change S into
P so allowing the complex to split. Although we did not
specify the backbones QE and QS in full detail, it was men-
tioned that they are essentially π-calculus processes possi-
bly made up of several parallel sub-processes and able to
interact the one with the other. In this respect, the sequence
of biological internal modifications that induce the trans-
formation of S into P , are rendered as a sequence of in-
teractions among the parallel sub-components of QE | QS .
Summarizing, the specification of the reaction (4) is:

QE |QS

Δh
E Δh

S

−→+
QE |QP

Δh
E Δh

P

α(Δh

E
,Δh

S
)

−−−−−−−→ QE

ΔE

QP

ΔP

where −→+ stays for one or more computation steps. Note
that the steps of the backbone are not labelled. This is
because the Michaelis-Menten equation only provides the
overall reaction constant rate KP , abstracting from the phis-
cal phenomena that transform S in P . Indeed, the complex
ES goes through a structural rearrangement (e.g. oxidation)
becoming EP and then the complex is broken producing
the product P and freeing the enzyme E. Beta-binders
carefully models structure rearrangement through one or
more interactions between the internal processes QE and
QS [36]. Unfortunately, classic Michaelis-Menten schema
does not provide us with information about the rates of the
reactions that modify the internal structure of complexes
like ES. Rather than looking inside the specific reaction
and deriving the needed rates, we followed the classical
approach to stochastic simulation and we abstracted away
from internal modifications.

We now extend the above specification, taking advantage
of the compositional nature of process calculi. Consider the
following extension of the Michaelis-Menten equation (1):

IE +S �
KEI

K
−1

EI

I +E +S �
KES

K
−1

ES

I +ES ⇀KP I +E +P

(5)
This last equation uses an inhibitor I that can bind to the

enzyme E so preventing the interaction between enzyme
and substrate:

IE + S ↼KEI I + E + S. (6)
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This reaction can be reversed with constant rate K−1
EI

:

IE + S ⇀K
−1

EI I + E + S (7)

The Beta-binders corresponding to (5) is obtained by just
adding the enzyme-substrate model with yet another box
playing as the inhibitor I .

QI

ΔI

QE

ΔE

QS

ΔS

Equation (6) is rendered by a joining with rate
α(ΔE , ΔI) = KEI , while the corresponding of equa-
tion (7) is driven by a splitting rule with rate α(Δh

E , Δh
I ) =

K−1
EI

:

QI

ΔI

QE

ΔE

QS

ΔS

α(ΔE ,ΔI)
−−−−−−→ QI |QE

Δh
I Δh

E

QS

ΔS

QI |QE

Δh
I Δh

E

QS

ΔS

α(Δh

E
,Δh

I
)

−−−−−−−→ QI

ΔI

QE

ΔE

QS

ΔS

Of course, the Beta-binders specification of (5) re-
quires no modifications in the representation of the enzyme-
substrate model for (1). Indeed, the inhibitor plays no
role in the reactions already specified and corresponding to
equation (1).

The competitive inhibition specified above is quite in-
teresting from the quantitative point of view. Suppose that
KEI � KES and that K−1

EI << KES . Then the formation
of complexes EI and ES have similar probabilities, while
the dissociation speed K−1

EI of EI is very low. So the total
reaction speed slows down. In this case the concentration
of molecules involved in the reaction plays a crucial role in
understanding the global phenomenon.

In order to investigate this kind of situations, a simulator
is currently under development at Trento University. The
simulator resolves race conditions, as the one between the
enzyme-substrate reaction and the enzyme-inhibitor reac-
tion, using Gillespie First Reaction methods [16]. Roughly
speaking the simulator takes the current configuration B

of the Beta-binders specification and iterates the following
three steps. The simulator

1. computes the set {B
r1−→B1, . . . , B

rn−→Bn} of all the
transitions outgoing from B;

2. chooses the next configuration Bi following the
stochastic simulation algorithm of [16]; actually, the
transition that is allowed to happen is the one with the
highest execution probability ri;

3. updates B with Bi; note that molecular concentrations
are modified so that new stochastic rates have to be de-
termined again in the next computation step, and will
be different from the current ones.

We have some initial simulations on toy examples, as the
one we have presented, that follow the predictions of the
chemical master equation. This make us confident that
Beta-binders models are consistent with real biological sys-
tems under analysis.

Note that the implementation strictly mimicks the se-
mantics of the calculus represented by the transition rela-
tion

r
−→, as the operational semantics specifies the machine

implementation, thus making it easy to develop prototypes.
This is a pleasent property while computer scientist are
about implementing requirements from the biologists, who
often add new or different functionalities to their models.

4 Concluding remarks

The recent progress of molecular biology has made it
possible the detailed description of the components that
constitute living systems, notably genes and proteins, as
isolated entities. Biological molecules do not live alone.
Rather, they participate in very complex networks that are
involved in the maintenance as well as the differentiation
of cellular systems (consider, e.g. regulatory networks for
gene expression). The new challenge is then scaling up
from molecular biology to systems biology, and understand-
ing how these individual components integrate to take part
into complex systems, and how they function, evolve, and
interact together.

We claim that computer science will play a central role
in these fashinating investigations. Molecular biologists al-
ready use information technology to process, analyse, com-
pare and share scientific knowledge. It is “easy” for a scien-
tist to study a chosen sequence, archiving, editing it, com-
paring it with other sequences, and analyzing its various
properties. The use of widely distributed databases is now
common in the scientific community. The next step is to
extend this approach for studying metabolic networks, sig-
nalling pathways, regulatory circuits or even a complete,
entire integrated cell. The goal is to combine experimental
data with advanced formal theories from computer science
to design formal languages for the specification of interact-
ing molecular entities.

The added value for systems biology in joining the pro-
cess algebra approach is given by the abstraction mecha-
nisms that computer scientists have been developed for con-
current systems over the last 30 years [40]. A living entity
can therefore be described at different levels of detail, in an
incremental fashion, by refining a specification till the very
basic biochemical description.
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Besides abstraction, the main feature to be exploited in
systems biology is compositionality. It allows to fix the
building blocks of systems and to enlarge models by com-
position without changing the description of the subsys-
tems already available. As exemplified in the paper, the
underlying idea is to see biomolecular systems as a set of
elementary components from which complex entities are
constructed. New features can then be freely added, as
shown at the end of the previous section. Several calculi are
based on these considerations. Among them, the biochem-
ical stochastic π-calculus[41], BioAmbients [39], CCS-R
[9] and the κ-calculus [7], to cite only a few.

Another crucial extension concerns a manageable repre-
sentation and treatment of quantitative information. This is
of paramount importance, because not only understanding
complex biological systems is simply impossible without
measuring the parameters that affect their behaviour, but
also simulating simple living entities in silico gives very
little information when quantitative measures are not suffi-
ciently accurate. Indeed, a formal quantitative foundation
of biology requires deep extensions of the available pro-
cess algebras to take care of such aspects like real time,
temperature, pressure, threshold, etc. A first, little step
towards these more structured extensions is offered by a
few stochastic process algebras, among which the biochem-
ical stochastic π-calculus, or variants of BioAmbients and
Beta-binders, that essentially implement a stochastic simu-
lation algorithm, based on the Gillespie’s one. These exten-
sions allow for transient analysis, but also the more standard
stationary analysis based on markovian processes requires
more powerful tools than the available ones to be efficiently
carried on.

As a concluding remark, we note that there is an emer-
gent line of research, aiming at defining calculi directly in-
spired by biology. BioAmbients [39], Brane calculi [4] and
Beta-binders themselves follow this guideline, and appear
to be better suited to modeling, analysing and simulating
living systems.

Whether the bio-mimetic approach can further inspire
and enhance our comprehension of how computer artificial
systems can be modeled, designed and implemented is a
long term, visionary challenge.
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