Collection des données	
Diffractomètre 4 cercles	$\theta_{\rm max} = 21^{\circ}$
Syntex Nicolet P2 ₁	$h = -12 \rightarrow 12$
Balayage $\theta - 2\theta$	$k = 0 \rightarrow 9$
Correction d'absorption:	$l = 0 \rightarrow 24$
néant	3 réflexions de référence
2488 réflexions mesurées	mesurées toutes les 50
2488 réflexions	réflexions
indépendantes	variation d'intensité:
1155 réflexions observées	< 0,1%
$[I>2\sigma(I)]$	
Affinement	
Affinement basé sur les F	$(\Delta/\sigma)_{\rm max} = 0.48$
R = 0,056	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0,042	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$
S = 2.02	Correction d'extinction

1155 réflexions

175 paramètres

finés

 $w = 1/\sigma^2(F)$

Les paramètres x, y, z des

atomes d'hydrogène af-

 $\Delta \rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3}$ Correction d'extinction: néant
Facteurs de diffusion de International Tables for X-ray Crystallography (1974, Tome IV)

Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotropes équivalents (Ų)

$B_{\text{éq}} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	B _{ėa}
S	0,4375 (1)	0,1101 (2)	0,65617 (7)	4,02
N(1)	0,3873 (4)	-0,1499 (6)	0,5430 (2)	2,94
C(2)	0,3521 (5)	0,0305 (7)	0,5742 (2)	2,83
N(3)	0,2392 (4)	0,1369 (6)	0,5327 (2)	3,04
C(4)	0,1582 (5)	0,0769 (8)	0,4634 (2)	3,04
C(5)	0,1466 (5)	-0,1958 (8)	0,3603 (2)	3,01
C(6)	0,2029 (5)	-0,3751 (8)	0,3395 (3)	3,28
C(7)	0,3149 (5)	-0,4873 (8)	0,3866 (3)	3,22
O(8)	0,3663 (3)	-0,3974 (5)	0,4568 (2)	3,17
C(9)	0,3159 (5)	0,2171 (7)	0,4758 (3)	2,67
C(10)	0,2046 (4)	-0,1136 (8)	0,4326 (2)	2,75
O(40)	0,0575 (4)	0,1860 (5)	0,4346 (2)	4,66
C(50)	0,0294 (6)	-0,086 (1)	0,3073 (3)	4,45
O(70)	0,3706 (4)	-0,6472 (5)	0,3743 (2)	4,12
C(100)	-0,1946 (7)	0,432 (1)	0,3389 (4)	5,25
O(110)	-0,1494 (4)	0,4929 (6)	0,4146 (2)	4,47

Tableau 2. Paramètres géométriques (Å, °)

SC(2)	1,639 (5)	C(5)—C(10)	1,429 (6)
N(1) - C(2)	1,367 (5)	C(5)—C(50)	1,498 (7)
N(1)-C(9)	1,352 (5)	C(6)—C(7)	1,425 (6)
N(3) - C(2)	1,364 (5)	C(7)—O(8)	1,404 (5)
N(3) - C(4)	1,401 (5)	C(7)-O(70)	1,198 (5)
C(4) - O(40)	1,214 (5)	O(8)—C(9)	1,330 (5)
C(4) - C(10)	1,452 (6)	C(9) - C(10)	1,359 (5)
C(5)C(6)	1,355 (6)	C(100)-O(110)	1,414 (7)
C(2) - N(1) - C(9)	122,4 (4)	C(5)-C(6)-C(7)	123,4 (5)
N(1) - C(2) - S	122,2 (3)	O(70) - C(7) - C(6)	128,7 (5)
N(3) - C(2) - S	122,8 (4)	O(70) - C(7) - O(8)	116,0 (4)
N(1) - C(2) - N(3)	114,9 (4)	C(6) - C(7) - O(8)	115,2 (4)
C(2) - N(3) - C(4)	126,3 (4)	C(9) - O(8) - C(7)	121,4 (4)
O(40) - C(4) - N(3)	118,2 (5)	O(8) - C(9) - N(1)	112,3 (4)
O(40) - C(4) - C(10)	126,1 (4)	O(8) - C(9) - C(10)	123,6 (4)
N(3) - C(4) - C(10)	115.7 (4)	N(1) - C(9) - C(10)	124,1 (5)
C(6) - C(5) - C(10)	118.2 (4)	C(9) - C(10) - C(5)	118,0 (5)
C(6) - C(5) - C(50)	120.2 (5)	C(9) - C(10) - C(4)	116,5 (4)
C(10) - C(5) - C(50)	121,6 (5)	C(5) - C(10) - C(4)	125,5 (4)

Enregistrement des intensités: toutes les intensités on été corrigées des effets de Lorentz et de polarisation. La structure a

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved été résolue à l'aide des méthodes directes (MULTAN88; Debaerdemaeker *et al.*, 1988). L'affinement des paramètres x, y, z, B pour les atomes non-hydrogènes et x, y, z pour les atomes d'hydrogène, a été effectué à l'aide du programme ORXFLS (Busing, 1971). Les dessins de la structure ont été obtenus à l'aide du programme ORTEPII (Johnson, 1976). Les angles dièdres ont été calculés à l'aide du programme BEST PLANES (Ito & Sugawara, 1983).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances et angles des atomes d'hydrogène, des plans moyens et des angles de torsion ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 71241: 12 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: PA1040]

Références

- Busing, W. R. (1971). Acta Cryst. A27, 683-684.
- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et Louvain, Belgique.
- Ito, T. & Sugawara, Y. (1983). Best Plane Program, 3ème Révision. The Institute of Physical and Chemical Research, Wako-Shi, Saitama 351, Japon.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Ridi, M. (1950). Gazz. Chim. Ital. 80, 121-128.
- Tomas, A., Nguyen-Huy, D., Viossat, B., Esanu, A. & Rolland, A. (1993). Acta Cryst. C49 626-628.

Acta Cryst. (1994). C50, 271-274

Synthesis and Structure of *trans*-1,2,3-Tris(3-thenoyl)cyclopropane

ANTONIO SABA

Dipartimento di Chimica, Università di Sassari, Via Vienna 2, I-7100 Sassari, Italy

(Received 12 May 1993; accepted 18 August 1993)

Abstract

The title cyclopropane derivative, $C_{18}H_{12}O_3S_3$, was synthesized and its structure investigated by single-crystal X-ray diffraction and spectroscopic methods. This structure analysis addresses the problem of spontaneously resolved helical stereoisomerism. The temperature-dependent ¹H NMR spectrum shows a relevant barrier to rotation about the CO-thiophene bonds, with $\Delta G_{423} \simeq 89$ (21) kJ mol⁻¹.

Comment

Recently, a convenient synthesis of 1,2,3-tris(aroyl)cyclopropanes (1) by the one-step cyclotrimerization of 2bromoacetylarenes and heteroarenes was reported (Saba, 1990). The uniquivocal steric course of the reaction, with regard to the 1,2-*trans* substitution in the cyclopropane ring of (1), has been derived by crystal structure analysis and confirmed by NMR analysis.

We report herein the synthesis and structure determination of *trans*-1,2,3-tris(3-thenoyl)cyclopropane (2), which presents an unusual case of spontaneously resolved helical stereoisomerism. The configuration of one of the enantiomers is resolved by the present structure analysis. Moreover, the temperature-dependent ¹H NMR spectra in Me₂SO confirm the hindered rotation around the bonds between the carbonyl and thienyl groups at room temperature.

Fig. 1 shows a molecule of the title compound and its numbering scheme. The assumed enantiomer is that with the lowest R values, R = 0.054 and wR = 0.067, while the opposite enantiomer gives R = 0.058 and wR = 0.072. The orientations of the carbonyl groups with respect to cyclopropane are defined by the torsion angles O1-C5-C6-C8 19(1), O2-C9-C7-C6 -17(1) and O3-C14-C8-C7 $-31(1)^\circ$; the torsion angles about the CO-thiophene bonds are O1-C5-C4-C3 172.4(9), O2-C9-C10-C13 -162.0(9) and O3- $C14-C15-C16 - 179.5(7)^{\circ}$. The S1, S2 and S3 heterocyclic rings are inclined at dihedral angles of 80.7 (5), 61.9 (6) and 54.8 (7)°, respectively, to the C6-C7—C8 plane. The dihedral angles between the carbonyl planes and the linked thiophene rings are 6.1(3), 16.8(3)and 1.3 (4)° for the rings containing S1, S2 and S3, respectively.

Fig. 2 shows the ¹H NMR (300 MHz) spectra of (2) in deuterated Me₂SO at various temperatures. As the sample was warmed, an upfield shift of two extra deshielded signals, due to single protons near sulfur in the thiophene rings, was observed. The signals exhibited by the neighbouring protons at 7.70 (*dd*), 7.57 (*m*) and 7.60 (*m*), 7.47 (*dd*) p.p.m. collapse to two singlets at 7.64 and

Fig. 1. ORTEP (Johnson, 1965) view of the molecule in its assumed absolute configuration showing the atomic numbering scheme. Ellipsoids are at the 50% probability level.

Fig. 2. Temperature-dependent ¹H (300 MHz) NMR spectrum of the aromatic protons.

7.52 p.p.m., respectively, at 528 K through a coalescence temperature of ca 423 K. The free-energy value at this temperature (ΔG_{423}) was calculated (Abraham, Fischer & Loftus, 1988) to be *ca* 88.8 (21.2) kJ mol⁻¹. With respect to the cyclopropane protons, no temperature dependence of the shift in signals was observed.

Cu $K\alpha$ radiation

Cell parameters from 10

 $0.30\,\times\,0.05\,\times\,0.02$ mm

 $\lambda = 1.5418 \text{ Å}$

reflections

 $\theta = 23.2 - 26.5^{\circ}$

T = 296 K

Colourless

 $R_{\rm int} = 0.051$

 $k = 0 \rightarrow 23$

 $l = 0 \rightarrow 6$

 $\theta_{\rm max} = 60.1^{\circ}$ $h = -16 \rightarrow 16$

3 standard reflections

reflections

monitored every 150

intensity variation: none

Needles

 μ = 4.221 mm⁻¹

Experimental

Crystal data

C₁₈H₁₂O₃S₃ $M_r = 372.47$ Orthorhombic $Pna2_1$ a = 14.645 (2) Å b = 20.891 (5) Å c = 5.404 (2) Å V = 1653.3 (8) Å³ Z = 4 $D_x = 1.496 \text{ Mg m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer ω -2 θ scans Absorption correction: empirical (azimuthal scan) $T_{\rm min} = 0.84, \ T_{\rm max} = 1.00$ 2852 measured reflections 1490 independent reflections 1032 observed reflections $[I > 3\sigma(I)]$

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.054	$\Delta \rho_{\rm min}$ = -0.29 e Å ⁻³
wR = 0.067	Atomic scattering factors
S = 1.96	from International Tables
1032 reflections	for X-ray Crystallogra-
190 parameters	phy [1974, Vol. IV, Tables
All H-atom parameters	2.2A and 2.3.1 (C, O, S)
refined	and 2.2C (H)]
$w = 4F_o^2/\sigma^2(F_o^2)$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	ν	z	U_{ea}	C9—C10—C
S1	0.5514 (2)	0.5878 (1)	0.7909	0.081(1)	C9-C10-C
S2	0.1723 (2)	0.2283 (1)	1.1851 (9)	0.082(1)	C11-C10-0
S3†	0.0616 (4)	0.7070 (2)	0.851 (1)	0.051 (2)	C10-C11-0
S23†	-0.0010 (10)	0.7044 (3)	1.162 (2)	0.061 (2)	S2-C12-C
01	0.2744 (4)	0.5592 (3)	1.274 (1)	0.059 (2)	S2-C13-C
02	0.2486 (5)	0.3956 (3)	0.595 (1)	0.055 (3)	O3-C14-C
03	0.0720 (4)	0.5013 (3)	1.286(1)	0.057 (3)	C8-C14-C
ČI	0.4521 (6)	0.6108 (4)	1.157 (2)	0.057 (3)	C8-C14-C
C2	0.5363 (6)	0.6263 (4)	1.066 (2)	0.040 (3)	O3-C14-C
C3	0.4449 (6)	0.5539 (4)	0.796 (2)	0.041 (3)	O3-C14-C
C4	0.3976 (5)	0.5700 (3)	1.003 (2)	0.039 (2)	C15-C14-0
C5	0.3066 (6)	0.5469 (4)	1.073 (2)	0.034 (2)	C14-C15-0
C6	0.2564 (5)	0.5072 (3)	0.890 (2)	0.040 (3)	C14-C15-0
C7	0.2176 (5)	0.4445 (3)	0.983 (2)	0.047 (3)	, C14-C15-0
-					

C8	0.1559 (5)	0.4971 (3)	0.906 (2)	0.045 (3)
C9	0.2298 (5)	0.3884 (4)	0.814 (2)	0.058 (3)
C10	0.2208 (6)	0.3225 (3)	0.921 (2)	0.069 (4)
C11	0.2499 (5)	0.2680 (4)	0.794 (2)	0.056 (3)
C12	0.2303 (7)	0.2126 (4)	0.914 (2)	0.044 (3)
C13	0.1780 (6)	0.3084 (4)	1.138 (2)	0.071 (6)
C14	0.0987 (5)	0.5301 (4)	1.102 (2)	0.039 (5)
C15	0.0727 (4)	0.5972 (2)	1.055(1)	0.045 (2)
C16	0.1017 (5)	0.6292 (2)	0.850(1)	0.044
C17	0.0041 (8)	0.6990 (3)	1.129 (2)	0.026 (4)
C18	0.0122 (8)	0.6370 (3)	1.236 (2)	0.071 (6)
C25	0.0727	0.5972	1.0552	0.045
C26	0.0160 (10)	0.6240 (3)	1.225 (2)	0.022 (6)
C27	0.0690 (10)	0.7045 (3)	0.905 (3)	0.040 (10)
C28	0.1090 (10)	0.6437 (4)	0.852 (3)	0.070 (10)

[†] S3 (C15-C18) and S23 (C25-C28) are two alternative conformations of the ring (see text).

Table 2. Selected geometric parameters (Å, °)

S1-C2	1.70(1)	C10-C13	1.36(1)
\$1-C3	1.713 (9)	C11-C12	1.36(1)
S2-C12	1.72(1)	C14—C15	1.47 (0)
O1-C5	1.21 (1)	C14-C25	1.474 (8)
02	1 22 (1)	C15-C16	1.362 (8)
02 - 07	1.22(1)	C15-C18	1.56(1)
03-014	1.23(1)	C15_C16	1.30(1)
01-02	1.37(1)	C13 - C20	1.50(1)
C1-C4	1.43 (1)	C15-C28	1.50(1)
C3—C4	1.36(1)	C16-C25	1.363 (5)
C4–C5	1.47 (1)	C16—C27	1.671 (9)
C5-C6	1.49 (1)	C17—C18	1.42 (1)
C6-C7	1.51(1)	C17-C26	1.66 (1)
C6-C8	1.49(1)	C17-C27	1.54(1)
C7_C8	1 48 (1)	C18-C25	1.56(1)
C7 C0	1.50(1)	C25_C26	1 36 (1)
$C_1 = C_2$	1.50(1)	$C_{25} = C_{20}$	1.56 (1)
C8-C14	1.52 (1)	C23-C28	1.30(1)
C9-C10	1.50(1)	$C_{27} - C_{28}$	1.45(1)
C10-C11	1.40(1)		
$C^{2}-S^{1}-C^{3}$	93.6 (4)	C16-C15-C26	122.6 (7)
	92.1(4)	C16-C15-C18	115 2 (6)
$C_{12} = 32 = C_{13}$	115 7 (9)	C15 C16 C28	123(2)
12 - 1 - 14	115.7 (6)	C15 - C16 - C28	123(2)
S1 - C2 - C1	108.6 (7)	C15-C10-C2/	103.2 (4)
S1-C3-C4	112.0 (6)	C15-C16-C25	0.0 (2)
C1-C4-C3	110.0 (8)	C27—C16—C28	37 (2)
C3-C4-C5	126.5 (8)	C25-C16-C28	123 (2)
C1-C4-C5	123.5 (7)	C25-C16-C27	103.2 (4)
01-C5-C4	121.0 (8)	C26-C17-C27	104.5 (6)
C4 - C5 - C6	117.5 (7)	C18-C17-C27	109.6 (7)
01 - 05 - 06	121 5 (9)	C18 - C17 - C26	5.8 (3)
$C_{5} C_{6} C_{9}$	122.0 (7)	C15-C18-C17	106.1.(5)
$C_{1} = C_{0} = C_{0}$	1166(6)	C17 C18 C26	143 (2)
0-00-07	110.0 (0)	C17 - C18 - C20	106 1 (5)
C/-C6-C8	59.2 (5)	C17 - C18 - C25	100.1 (3)
C6–C7–C9	115.5 (6)	C15-C18-C26	41 (2)
C6-C7-C8	59.6 (4)	C15-C18-C25	0.0 (2)
C8-C7-C9	118.8 (6)	C25-C18-C26	41 (2)
C6-C8-C7	61.2 (5)	C16-C25-C18	115.2 (4)
C7-C8-C14	118.5 (6)	C15-C25-C18	129 (8)
C6-C8-C14	121.5 (7)	C14-C25-C18	123.1 (4)
$0^{2} - 0^{2} - 0^{7}$	121 4 (9)	C14 - C25 - C16	121.7 (4)
C_{7} C0 C10	118 3 (6)	C14C25C15	99.9 (4)
$C_{1} = C_{2} = C_{10}$	120 4 (9)	C19 C25 C28	107.6 (6)
02 - 09 - 010	120.4 (0)	C10 - C25 - C26	70(5)
C9-C10-C13	124.8 (8)	C18 - C25 - C26	1.9 (3)
C9-C10-C11	122.2 (6)	C16-C25-C28	10.0 (5)
C11-C10-C13	112.8 (9)	C16-C25-C26	122.6 (5)
C10-C11-C12	113.3 (7)	C15—C25—C28	45 (4)
S2-C12-C11	110.3 (8)	C15-C25-C26	133 (3)
S2-C13-C10	111.4 (6)	C14-C25-C28	128.7 (5)
03 - C14 - C8	121.3 (8)	C14-C25-C26	115.7 (4)
$C_{8} - C_{14} - C_{25}$	117.1 (6)	$C_{26} - C_{25} - C_{28}$	115.3 (7)
$C_{0} = C_{14} = C_{25}$	117.0 (6)	C18_C26_C25	131 (2)
02 - 014 - 015	1216(7)	$C10^{-1}C20^{-1}C25$	104 0 (5)
03 - 014 - 023	121.0(7)	C17 - C20 - C23	21 (7)
03-014-015	121.0 (8)	C1/-C20-C18	JI (2)
C15-C14-C25	0.0 (2)	015-026-025	0.0 (2)
C14—C15—C28	128.7 (6)	C15-C26-C18	131 (2)
C14-C15-C26	115.7 (5)	C15—C26—C17	104.0 (5)
; C14—C15—C25	80.1 (4)	C16-C27-C17	104.2 (6)

C14—C15—C18	123.1 (5)	C17C27C28	110.1 (9)
C14-C15-C16	121.8 (5)	C16-C27-C28	7.8 (4)
C26-C15-C28	115.3 (8)	C25-C28-C27	105.8 (6)
C25-C15-C28	135 (4)	C16-C28-C27	135 (2)
C25-C15-C26	47 (3)	C16-C28-C25	47 (2)
C18-C15-C28	107.6 (7)	C15-C28-C27	105.9 (6)
C18-C15-C26	7.9 (5)	C15-C28-C25	0.0 (2)
C18-C15-C25	51 (7)	C15-C28-C16	47 (2)
C16-C15-C28	10.0 (5)		

All reagents and solvents were of reagent grade and used without further purification. (2) was obtained as colourless needles, m.p. 469-470 K (crystallized from isobutyl methyl ketone) in 91% yield by treatment of 10 mmol of 3-(bromoacetyl)thiophene (McDowell & Greenwood, 1965) with 6 mmol of K₂CO₃ in DMF at room temperature for 6 h, water quenching, neutralization with 10% HCl and filtration. Analysis: calculated for C₁₈H₁₂O₃S₃ C 58.03, H 3.22, S 25.82%; found C 58.32, H 3.11, S 25.56%.

¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of (2) were recorded on a Varian VXR-300 spectrometer, with CDCl₃ or Me₂SO as solvents and TMS (tetramethylsilane) as the internal standard. ¹H NMR (CDCl₃, 300 MHz) δ : 8.42 (1H, dd, J = 1.2, 3 Hz), 8.14 (2H, dd, J = 1.2, 3 Hz), 7.68 (1H, dd, J = 1.2, 5.1 Hz), 7.54 (2H, dd, J = 1.2, 5.1 Hz), 7.38 (1H, dd, J = 1.2, 5.1 Hz), 7.28 (2H, dd, J = 3, 5.1 Hz), 4.04 (1H, t, J = 5.7 Hz), 3.58 (2H, d, J = 5.7 Hz). ¹³C NMR (CDCl₃, 75 MHz): 189.7, 186.7, 141.8, 141.6, 134.2, 132.9, 126.9, 126.8, 126.7, 126.6, 36.6, 30.9.

Intensity data were corrected for Lorentz and polarization effects. H atoms were included in the structure-factor calculations in idealized positions (C-H = 0.95 Å), and were assigned isotropic displacement parameters 20% greater than the U_{eq} value of the atom to which they were bonded. Because the S3-thiophene ring in the molecule is disordered, the C4S fivemembered rigid-body rings were generated based on the average geometry of the other two thiophene rings, which were located from difference Fourier maps and refined by full-matrix least squares. The rigid-body rings were refined isotropically with populations of 0.65 (1) for the ring containing S3 and 0.35 (1) for the ring containing S23. H atoms were not included for the rigid-body rings owing to problems with disorder in the refinements. Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1985). Molecular graphics: ORTEP (Johnson, 1965). Anomalous-scattering coefficients were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71592 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI1065]

References

- Abraham, R. J., Fischer, J. & Loftus, P. (1988). Introduction to NMR Spectroscopy, p. 196. New York: John Wiley.
- Gilmore, J. C. (1984). J. Appl. Cryst. 17, 42-46.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- McDowell, D. W. M. & Greenwood, T. D. (1965). J. Heterocycl. Chem. 2, 44-48.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
 - Saba, A. (1990). J. Chem. Res. (S), pp. 288-289.

Acta Cryst. (1994). C50, 274-276

Structure of a Model for the Aranorosin Nucleus

R. CURTIS HALTIWANGER AND DRAKE S. EGGLESTON

SmithKline Beecham Pharmaceuticals, Box 1539 UW2950, King of Prussia, PA 19406, USA

ANDREW MCKILLOP, R. J. K. TAYLOR AND R. J. WATSON

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, England

NORMAN LEWIS

SmithKline Beecham Pharmaceuticals, Leigh, Tonbridge, Kent TN11 9AN, England

(Received 5 May 1993; accepted 31 August 1993)

Abstract

The structure of a synthetic model system, 2-hydroxy-6,7;9,10-cis,cis-diepoxy-1-oxaspiro[4.5]decan-8-one, $C_9H_{10}O_5$, for the spirocyclic headgroup of the natural product aranorosin has been determined and shown to possess the natural product stereochemistry. Two crystallographically independent molecules cocrystallize in a centrosymmetric space group. The syn arrangement of the diepoxides and the lactol O atom about the cyclohexanone ring has been confirmed in both molecules. The cyclohexanone ring adopts a boat conformation with the carbonyl O atom anti to the lactol O atom.

Comment

The recently isolated natural product aranorosin (1) displays antibiotic, antifungal and antitumor properties (Roy, Mukhopadhyay, Reddy, Desikan, Rupp & Ganguli, 1988; Felhaber, Kogler, Mukhopadhyay, Vijayakumar, Roy, Rupp & Ganguli, 1988; Felhaber, Kogler, Mukhopadhyay, Vijayakumar & Ganguli, 1988). The novel spirocyclic cyclohexanone diepoxide moiety of this molecule provides a particularly challenging synthetic target. This challenge, as well as the biological properties of aranorosin (1), have stimulated interest in its synthesis (Rama Rao, Gurjar & Sharma, 1991) and a highly stereoselective route to the model aranorosin nucleus (2) has

> Acta Crystallographica Section C ISSN 0108-2701 ©1994