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Effect of normalisation on detection
of differentially expressed genes
in cDNA microarray  data analysis
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ABSTRACT: Four different normalisation techniques were applied for the corrections of fluorescence data gen-
erated by a cDNA microarray experiment. Correction for inaccurate signals and possible bias induced by fluores-
cence intensity, background intensity and dye effect were used in different combinations. Results of the present
study highlight a pronounced role for the normalisation techniques in the absolute number of genes different
expressed and a low concordance between different methods. Moreover, a significant effect of the dependent vari-
able used, mean or median fluorescence intensity, was observed.
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INTRODUCTION - cDNA microarrays allow for the monitoring of the expression of many genes in parallel,
providing substantially more information in comparison with standard molecular techniques where one or few
genes at time are investigated. Use of cDNA microarrays in animal science is continuously increasing, due to their
great potential to study the level of expression of thousand of genes in relation to environmental and physiological
challenges. Obviously, the usefulness of these tools is based on the reliability of results. The generation of gene
expression raw data is straightforward and quite easy to do. On the contrary there is not a consensus on method-
ology for the statistical analysis of fluorescence-intensity data (Do and Choi, 2006; Barbacioru et al., 2006). In par-
ticular, a large number of procedures for preliminary normalization and transformation of data have been proposed.
However, the relative impact of these methods on the detection of gene expression level remains to be assessed. Aim
of this work is to compare the effects of four different data correction methods and of their combinations in the
detection of differentially expressed genes on a prototype data set.

MATERIAL AND METHODS - Data and experimental design. A reduced data set was extracted from the
Stanford Microarray Database (http://microarray-pubs.stanford.edu/androgencluster). Raw data were fluorescence
intensities of mRNA from human prostate carcinoma cell line (LNCaP) treted with two types and seven doses of
human androgen. In the original experiment (Bebermeier et al., 2006), mRMA from androgen treated LNCaP cells
was reverse-transcribed and fluorescently labeled with the Cy5 dye and compared directly on the same microarray
to that from control cells (treated with ethanol alone) labeled with the Cy3 dye. Furthermore, the Cy5-labeled
cDNAs were co-hybridized with a Cy3-labeled common reference mRNA pooled from several immortalized cell lines
and normal genital skin fibroblasts (Holterhus et al., 2003).
Normalization methods. A first correction aimed to eliminate inaccurate signals. The technique suggested by Tran
et al. (2002), and based on the correlation between mean and median signal intensities was used: spots that had a
mean/median ratio <0.85 were removed from the dataset. The second correction dealt with the background sub-
traction that is advisable when the washing leaves a portion of the array covered by a high background signal.
However, the simple subtraction of background intensity can lead to missing log intensity, especially when the
expression levels are low. In this paper, the smoothing function proposed by Edwards (2002) was used. The back-
ground corrected signals may still have a systematic dependence on fluorescent intensity. To remove this bias, a
robust local non parametric regression (LOWESS) was used (Cleveland, 1979). Finally, the competitive hybridiza-
tion with the two dyes could result in a systematic bias due to differences in the efficiency of labeling. The most
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direct approach to remove this bias is to center the data such that the mean value of each intensity measure is zero.
Constructing residuals from a simple linear mixed model that included dye as fixed effect and array, array*dye as
random effects is a simple way to achieve this goal. All the above described procedures were used to correct both
mean and median foreground intensities of each spot according to the combinations reported in table 1.

Statistical analysis. The detection of differentially expressed genes was carried out by analyzing normalized data
with a gene-specific mixed model (Wolfinger et al., 2001) that included the fixed effects of  treatment and dye and
the random effect of the array. A gene was assumed to be differentially expressed if it had a fold change greater
than 1.5 and a p-value lower than 0.05. Moreover, the statistical significance of the treatment effect was also test-
ed by using the Bonferroni test, in order to account for multiple comparison.

RESULTS AND CONCLUSIONS - The effect of the correction plan adopted was clearly evident (Table 2),
with an obvious increase of the number of detected genes as the number of corrections decreases. The correction for
the dye effect seemed to have a lower impact in comparison with the other two normalisation techniques.

Together with the absolute number of genes detected, also a remarkable change in the identity of genes can be
observed between different correction plans (Table 3). Actually, the frequency of genes commonly detected in dif-
ferent plans ranges from 0.01 to 0.85. Moreover, although the same plan generally resulted in a similar number of
differentially expressed genes regardless of whether the mean or median fluorescence intensity was used (table 2),
large differences were observed in the identity of loci detected. For example, 71% of genes were in common with
plan 4 when using both the variable, whereas the percentage decreased to 25% when all the corrections were
applied, i.e. plan 1. Finally, a relevant effect of the type of statistical test can be observed, with an abrupt reduction
of the number of detected genes (>80%) with the more conservative correction.
Research on statistical techniques used to analyse data generated by cDNA microarrays experiments has usually
focused on the optimisation of models for the detection of differentially expressed genes. Results of the present
study highlight a pronounced effect of the normalisation technique used. Moreover, a significant effect of the
dependent variable used, mean or median fluorescence intensity, was observed. However, the issue about the most
appropriate set of normalisation techniques cannot be addressed, being strictly dependent on the specific data
structure. The most intuitive choice to use all the possible corrections does not seem to be an advisable option
because a not specifically required correction may add serious bias to the results (Qin et al., 2004).

Table 1. Different plans of correction techniques used for data normalization.

Plan Techniques

1 All
2 All except the correction for inaccurate signal
3 All except the correction for the dye effect
4 All except the correction for fluorescence intensity

Table 2. Number of differentially expressed  genes detected in the different plans using
unadjusted and Bonferroni adjusted pairwise comparisons.

Plan Mean Median

Unadjusted P Bonferroni adjusted P Unadjusted P Bonferroni adjusted P

1 1338 60 1390 77
2 2324 140 2326 125
3 1467 97 1597 121
4 2474 412 2394 428
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Table 3. Absolute (and relative) frequencies of differentially expressed genes common-
ly detected by different correction plans.

Plan Mean Median

Unadjusted P Bonferroni adjusted P Unadjusted P Bonferroni adjusted P

1*2 371 (0.28) 4 (0.07) 404 (0.29) 0 (0)
1*3 1138 (0.85) 46 (0.77) 1184 (0.85) 62 (0.80)
1*4 575 (0.43) 8 (0.13) 558 (0.40) 12 (0.16)
2*3 396 (0.27) 3 (0.03) 463 (0.29) 1 (0.01)
2*4 686 (0.29) 15 (0.11) 640 (0.27) 9 (0.07)
3*4 599 (0.41) 10 (0.10) 640 (0.40) 9 (0.07)


