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Abstract 

 

This dissertation shows the usefulness of molecular markers in highlighting some crucial 

aspects of the population and social structure of mammals. Specifically, my study is focused 

on two species: wild boar (Sus scrofa) and wolf (Canis lupus). Because of their keystone role in 

the natural ecosystems, the knowledge of their biology and population dynamics is of 

paramount importance for the management and conservation of the large mammals’ 

communities in Italy. 

First I give a picture of the genetic status of the wild boar in Europe. Then the genetic 

structure is analysed at a finer scale, with particular attention to relationships: within wild boar 

social groups and within litters. Within groups the predicted matrilineal social structure was 

not confirmed, as a low degree of genetic relatedness was observed within groups. While 

within litters multiple paternity, previously detected in European wild boars, is confirmed 

revealing that polyandry can become common in some populations.  

Then, after the definition of an epirical method in assesing non-invasive samples quality, 

the genetic structure of a wolf population in a portion of the Italian Apennines was 

investigated through a six years period. Autosomal and Y-linked microsatellites were 

employed, thus allowing non-biased reconstruction of genetic patterns within and among wolf 

packs identifying low levels of gene-flow among adiacent packs, cryptic genetic structure and 

an higher variability in the male lineage than in females. 
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Riassunto 

 

Questa tesi mostra l’utilità dei marcatori molecolari nello studio di alcuni aspetti cruciali 

della popolazione e della struttura sociale dei mammiferi. In particolare sono stati investigati il 

cinghiale (Sus scrofa) ed il lupo (Canis lupus).  

In primo luogo si è definito il quadro dello stato genetico del cinghiale in Europa. In 

seguito la struttura genetica è stata analizzata ad una scala più fine, concentrandosi in particola 

modo sulle relazioni di parentela all’interno dei gruppi sociali e delle cucciolate. Lo studio della 

struttura sociale del cinghiale è stato condotto integrando I dati genetici con i dati spaziali della 

popolazione toscana oggetto di studio. La previsione di una struttura sociale matriarcale non è 

stata confermata dai dati, infatti, si è riscontrato un basso grado di parentela fra gli individui 

appartenenti alla stessa unità sociale. L’alto ricambio osservato all’interno della popolazione, 

principalmente dovuto ad un’alta mortalità dovuta a caccia e bracconaggio, sembra essere la 

causa principale dello scostamento dall’atteso.  

Nella stessa popolazione è stata testata la presenza di multipaternità all’interno delle 

cucciolate. Sono state analizzate dodici famiglie, costituite da scrofe incinte, abbattute durante 

la stagione venatoria, e dai rispettivi feti. La multipaternità, precedentemente riscontrata in 

popolazioni di cinghiale europeo, è stata rilevata anche nella popolazione in esame, rivelando 

come la poliandria possa diventare comune in alcune popolazioni.  

Dopodichè, una volta definito un protocollo d’analisi che permettesse l’utilizzo 

affidabile di campioni noninvasivi, si è proceduto a ricostruire la struttura genetica di una 

popolazione di lupo appenninico in un arco di tempo di sei anni. Tale analisi è stata condotta 

mediante l’utilizzo di microsatelliti autosomici e localizzati sul cromosoma sessuale Y, in modo 

da ottenere un quadro storico delle relazioni tra branchi, o all’interno di un branco, che non 

fosse influenzato dai meccanismi di trasmissione parentale e da possibili diversi pattern di 

dispersione fra sessi. Si è dunque osservato un basso flusso genico tra branchi adiacenti con 

conseguente strutturazione genetica ed una variabilità all’interno della linea maschile che si 

discosta dal monomorfismo riportato per la linea materna nella specie. 
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Introduction 

 

This thesis consists of four main parts dealing with the importance of the use of 

molecular markers in highlighting some crucial aspects of the population and social structure 

in two mammalian species: the wild boar (Sus scrofa) and the wolf (Canis lupus). In the First part 

I draw a picture of the genetic status of the wild boar in Europe. In the Second part I analyze 

the genetic structure at a finer scale, with particular attention to relationships within wild boar 

social groups and within litters. In the Third part I point out the reliability of noninvasive DNA 

wolf samples, which I used in the Fourth part to track individuals in a population and to 

reconstruct fine-scale genetic population structure using differently inherited molecular 

markers. 

The first half of this dissertation is centerend aroud Sus scrofa species and the factors 

influencing its gene dynamics at a wide geographic scale. 

The wild boar is a typical r-strategist showing high ecological adaptability, opportunistic 

feeding and very high reproductive potential (Boitani et al. 1995; Fernandez-Llario and 

Mateos-Quesada 1998; Geisser and Reyer 2005). We can therefore suppose that after the last 

glaciation the wild boar easily recolonized Central and Northern European forests, thus 

reaching an almost continuous and stable distribution modified only by seasonal variations 

(Jedrzejewska et al. 1997; Bieber and Ruf 2005). However, the population went through a 

demographic decline in the fist part of the XX century (Apollonio et al. 1988; Oliver et al. 

1993), followed by a complete recovery and increase in density throughout Europe after the 

Second World War (Sáez-Royuela and Tellería 1986; Feichtner 1998; Danilkin 2001). 

Togheter with the characteristics the species itself (e.g. dispersal rates) and the landscape 

(e.g. geographical barriers) (Avise 2004), this expansion-contraction pattern is likely to have 

strongly affected levels and patterns of genetic variation across the species range. The aim of 

the First Part (Chapter I) of this study was to investigate which forces shaped the genetic 

structure in the European wild boar and their total effect on nowadays populations. With this 

purpose I investigted both the effects of natural and anthropogenic factors, taking into 

account the extensive human manipulation that game and domestic species are subject to. I 

used a large set of molecular data in order to distinguish and estimate the effects of different 

processes.  

As regards natural events I investigated if post-glacial dispersal patterns are still 

detectable in the present European wild boars and the possible effect of more recent 
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demographic events (i.e. the contraction-expansion of the population in the last century) on its 

genetic diversity. Thus, first I addressed the human influence investigating if divergent pig 

genomes, which were subjected to strong selective and likely drift effects during and after 

domestication, could have introgressed into the wild boar genome due to local hybridization 

between the two forms. The fenomenon can occur in areas where pigs are reared in semi-wild 

conditions (e.g. in Bulgaria and Sardinia, Apollonio et al. 1988; Genov et al. 1991), as well as in 

other regions (e.g. Central Italy) where pigs were occasionally crossed with wild boars in 

captivity, and hybrids were released for hunting purposes (Randi et al. 1989). In addition, I 

checked if the genetic variation in some wild boar populations has been affected also by 

artificial long-distance migrations associated to uncontrolled and rarely documented restocking 

plans over the last 50 years. Restocking could have modified the genetic variation both by 

contributing to the recent demographic expansion and by mixing genetic pools belonging to 

different subspecies or diverging populations. For example, wild boars from Central Europe 

are reported to have been repeatedly introduced into Italy (Apollonio et al. 1988; Olivier et al. 

1993). The genetic impact of such events in some areas is controversial, with authors 

suggesting either massive (Randi 2005) or limited (Vernesi et al. 2003) introgression.  

All the above mentioned processes have potentially left a signature in the present-day 

wild boar genetic variation. I used mitochondrial and nuclear markers (microsatellites) to test 

whether they did or not, and which was their respective contribution. 

After having investigated the driving forces sharing genetic variation at a wide scale, in 

the Second Part I focused on a wild boar population in Central Italy (Tuscany), studying the 

effects of spatial and social organization.  

The social organization of wild boar is centered around philopatric adult females, which 

are facultative cooperative breeders. The basic social unit was reported to be a matrilineal 

group, with one or more related sows, and one or more cohorts of offspring (Briedermann 

1986). After weaning, most females stay with their mothers, and only about 20% of yearling 

females leave the natal group and disperse while the others are likely to reproduce while still 

joining their mother social group (Kaminski et al. 2005). However, genealogical relationships 

in female groups have been poorly investigated thus far and deviations from this commonly 

accepted scheme have been rarely documented (see Gabor et al. 1999). 

Female wild boars typically maintain long-term fidelity to relatively small home ranges 

(Spitz and Janeau 1990), and a high percentage of adjacent females exhibit overlapping home 

ranges (Boitani et al. 1994). Accordingly, one would expect overlapping home ranges to reflect 
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a common female lineage, and genetic relatedness to be inversely correlated with the spatial 

distance between individuals. 

The reproductive features of the species, as well as its breeding system, are likely to 

affect the genetic structure in a population, influencing both the size and the composition of 

social groups and the duration of inter-individual associations. In addition, the organization of 

wild boar groups can vary temporally, with splitting into subgroups and merging of subgroups 

occurring frequently in a population (Gabor et al. 1999; Kaminski et al. 2005). Importantly, 

however, the role of demographic and extrinsic factors (e.g. hunting), possibly affecting both 

the composition and the stability of social groups, has not been systematically investigated.  

The primary objective of Chapter II was to evaluate the nature of wild boar 

associations in relation to the genetic relatedness among individuals. I first verified the 

correlation between geographic and genetic distance among individuals in a population, and 

then considered the spatial behavior of social units in relation to their composition and the 

intra-group degree of relatedness. Specifically, I addressed the following questions: Is the 

geographic distance between individuals inversely correlated to their genetic relatedness? Is 

genetic relatedness higher for individuals belonging to the same social unit than for individuals 

belonging to different social units? And, are all adult females in a social group close relatives 

(mother-offspring or full-sisters)? 

While Chapter III aims at verifying the occurrence of multiple paternity in the Central 

Italian population under study. Multiple paternity is known to occur in the domestic pig 

(Aguillera-Reyes et al 2006), where it usually leads to an increased litter size (Xue et al. 1998), 

and it has been recently discovered also in a Portuguese wild boar population (Delgado et al. 

2008). In this chapter I investigated the occurrence and frequency of multiple paternity. Then 

I compared results obtained for the Italian population with those of Delgado et al. (2008) with 

the purpose of understanding if differences are present.  

 

The second half of this dissertation deals with the study of population structure and 

social biology in the wolf (Canis lupus). 

The conservation of wolf natural populations represents a priority in several European 

countries, where the species is endangered or was, in the recent past, severely threatened 

(Promberger and Schröder 1993). The Italian wolf population suffered a strong persecution 

until 1971, when wolf hunting was forbidden and poison baits banned. In 1976 the species 

obtained the fully protected status and from then on the population recovered.   
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In Italy, killing wolves is illegal, so the only tissue samples available are those belonging 

to wolf carcasses accidentaly found in the field (death caused by vehicle collision or illegal 

culling). It is very difficult to obtain samples from live wolves, because of their elusiveness that 

make uneasy to capture wild individuals. For this reason the main source of information on 

the population is noninvasive sampling and monitoring. Samples like faeces, hairs, urine, 

haematic residuals, etc. were proved to represent a valuable source of DNA for genetic 

analyses (for a review Morin and Woodruff 1996; Piggott and Taylor 2003). Those kind of 

source samples can be used, with the employment of species-specific markers that minimize 

the risk of mistyping due to contaminations, for a wide range of analyses according to the 

purpose of the investigation. Noninvasive collected samples can be used in the investigation 

of the matrilineal component of a populationby the analysis of mitochondrial DNA, that is 

present in both sexes, shared by more than one individual and inherited only from the mother, 

(e.g. Valière et al. 2003). The same samples can be used for the investigation of the patriline in 

the population by the analysis of chromosome Y-linked markers (e.g. Eriksson et al. 2006), 

present only in the male component of the population, inherited from father to son and 

shared by more individuals. The use of noninvasive sampling also allows to identify single 

individuals with the use of biparentally inherited autosomal markers (i.e. microsatellites, that 

can provide a unique genotype for each individual in the population (Adams and Waits 2007). 

However some pitfalls on noninvasive samples were pointed out (Taberlet et al. 1996; 

Kohn and Wayne 1997). The use of very small or degraded DNA samples for PCR-based 

genetic analyses, apart from being extremely sensitive to any source of contamination, might 

be accompanied by the occurrence of stochastically-generated errors, thus leading to 

inconsistent results (Goossens et al. 1998; Taberlet et al. 1999). To overcome this limitation, 

some methods were proposed, aimed at reaching a fixed reliability threshold by replicating 

amplifications several times. The required number of replications was defined either from a 

priori generalised error probabilities (Navidi et al. 1992; Taberlet et al. 1996) or from 

maximum-likelihood estimates of genotype reliability, computed from individual dropout rate 

and allele frequencies (Miller et al. 2002).  

In the Third part (Chapter IV)of this dissertation I contributed to develop an approach 

for achieving a reliable data set of wolf genotypes from multiple sources of DNA, including 

both tissue from carcasses and noninvasively collected samples. This method relies on the 

relationship between sample quality and amplification outcome, which is ultimately related to 

the occurrence of typing errors (allelic dropout, false alleles). After DNA extraction, templates 

are amplified once at each locus and a conservative rating system (Q-score) is adopted to 

define the quality of single-locus amplifications. A significant relationship was found between 
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quality scores and error rate., thus allowing to predict the chance a genotype has of being 

affected by errors on the basis of its Q-score. Genotypes not reaching a satisfactory 

confidence level can either be replicated to become reliable or excluded from the data set. 

Despite the possible decrease in overall yield, this method could provide a good compromise 

between accuracy in genotyping and effectiveness in screening large data sets for long-term or 

large-scale population surveys. However, to achieve complete and reliable data sets, replicated 

amplifications are necessary for those samples and loci providing poor results. 

In the Fourth part of this dissertation, after the definition of the methodological 

approach, I was able to investigate the genetic structure of a wolf population in a portion of 

the northern Apennines, where wolves and wild ungulates reached high densities and no 

natural or artificial barrier limited wolf dispersal. 

The use of highly polymorphic microsatellite loci and the development of individual-

based statistical methods (Cornuet et al. 1999; Pritchard et al. 2000; Beerli and Felsenstein 

2001; Wilson and Rannala 2003; Paetkau et al. 2004) have contributed to improve the 

resolution power of genetic analysis, thus allowing the uneven partitioning of genetic diversity 

to be detected at a finer spatial scale (see Pearse and Crandall 2004). As a consequence, several 

genetic investigations have revealed cryptic barriers to gene flow among subpopulations or 

social units, highlighting previously unsuspected levels of local genetic differentiation (Taylor 

et al. 1997; Coltman et al. 2003; Fredsted et al. 2005; Swanson et al. 2005). In referring several 

cases in which the local divergence exceeded the regional divergence in mammals, Storz 

(1999) observed that the genetic differentiation among adjacent social groups or spatially 

defined breeding units may represent an important microevolutionary force in mammalian 

populations. 

As discussed above genetic diversity in a population is strongly influenced by the 

breeding system and the dispersal patterns, which, in turn, depend on age and sex of 

dispersers (Chesser 1991a; 1991b). Most social mammals show polygynous mating and female 

philopatry (Clutton-Brock 1989) and such philopatry generates a sex-biased spatial genetic 

structure (Purdue et al. 2000; Spong et al. 2002; Coltman et al. 2003; Nussey et al. 2005). In 

addition, dispersal is often age-biased. However, only the proportion of successful dispersal 

mediates gene flow in a population. Therefore, all factors affecting rate and pattern of 

dispersal, on the one hand, and sex and age of dispersing individuals, on the other, can 

potentially modify the extent of spatial genetic differentiation within the population.  

Wolf social structure relies on social units (packs), which are basically composed of a 

breeding pair and their offspring, but can be joined by members of previous litters and, 
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occasionally, by unrelated individuals (see Mech and Boitani 2003). Packs originate from the 

encounter and mating of two dispersing individuals, which are usually unrelated (Smith et al. 

1997). The new pair establishes its own territory in an area undefended by other wolves. The 

chance a pair has to start a family is inversely proportional to the degree of saturation of 

suitable areas (Packard 2003). Once a pack has settled in its own territory, the stability of the 

family unit is largely dependent on the fate of the breeding pair (Brainerd et al. 2008). 

In Chapter V I focused on the fine genetic structure within the free-living wolf 

population inhabiting the province of Arezzo. Specifically, implementing a noninvasive 

genotyping strategy, I investigated whether any substantial geographic structuring was present, 

observing the relatedness within and among neighbouring packs at increasing geographic 

distances. Finally, as the noninvasive sampling method allowed to obtain multiple locations 

for one individual, I investigated which proportion of wolves in the population had 

frequented more than one area, where a pack lives, within the Province territory.  

However the species behaviour is not the only force shaping genetic variability within a 

population. The Italian wolf population suffered a strong persecution that, during the period 

1950-1970, led to a very low number of individuals throughout the peninsula (Cagnolaro et al. 

1974) and their presence was extremely restricted to a few areas of the Apennine mountains. 

From then on, the wolf population recovered in Italy and is still growing in size and 

recolonizing its historical range (Boitani 2003).  

As consequence of its history, the Italian wolf shows the effect of a severe bottleneck 

which, in association with its prolonged isolation, led to genetic erosion (Lucchini et al. 2004). 

In fact, a single mitochondrial haplotype was found in the whole Italian wolf population 

(Wayne et al. 1992, Vilà et al. 1997, Vila et al. 1999, Randi et al. 2000). On the contrary, 

nuclear markers revealed a less severe reduction in genetic diversity, with a remarkable 

reduction in heterozygosity only in the recently re-established alpine wolf population, while in 

the Apennines the population showed only a slightly lower variability with respect to other 

European populations (Scandura et al. 2001, Lucchini et al. 2004, Fabbri et al. 2007). 

In Chapter VI I aimed at integrating the knowledge acquired in the former chapter by 

implementing biparental data with Y-linked markers (microsatellites). Specifically, I 

investigated the spatial and temporal distribution of Y haplotypes in the male lineage of the 

Arezzo population, checking if male gene flow is somehow constrained within the study area. 

Furthermore, I reconstructed the patriline in an intensively studied wolf pack over a four-year 

period. This study revealed for the first time that, unlike maternally-inherited mtDNA 
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markers, male-specific Y-chromosome markers show a  relevant level of variation even at a 

limited geographic scale. 
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Abstract

The European wild boar is an important game species, subjected to local extinctions and
translocations in the past, and currently enormously and worryingly expanding in some
areas where management is urgently required. Understanding the relative roles of ancient
and recent events in shaping the genetic structure of this species is therefore not only an
interesting scientific issue, but it represents also the basis for addressing future
management strategies. In addition, several pig breeds descend from the European wild
boar, but the geographical location of the domestication area(s) and the possible introgression
of pig genomes into wild populations are still open questions. Here, we analysed the genetic
variation in different wild boar populations in Europe. Ten polymorphic microsatellites
were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of
145 individuals. Some samples from different pig breeds were also analysed. Our results,
which were obtained considering also 612 published mtDNA sequences, suggest that (i)
most populations are similarly differentiated, but the major discontinuity is found along
the Alps; (ii) except for the Italian populations, European wild boars show the signature of
a postglacial demographic expansion; (iii) Italian populations seem to preserve a high
proportion of preglaciation diversity; (iv) the demographic decline which occurred in some
areas in the last few centuries did not produce a noticeable reduction of genetic variation;
(v) signs of human-mediated gene flow among populations are weak, although in some
regions the effects of translocations are detectable and a low degree of pig introgression
can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not
supported by our data, which in turn confirm that Central European wild boar might have
represented an important source for domestic breeds. We can therefore conclude that recent
human activities had a limited effect on the wild boar genetic structure. It follows that areas
with high variation and differentiation represent natural reservoirs of genetic diversity to
be protected avoiding translocations. In this context controlling some populations by hunting
is not expected to affect significantly genetic variation in this species.

Keywords: genetic diversity, microsatellites, mtDNA, phylogeography, population expansion, 
Sus scrofa
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Introduction

Present-day levels and patterns of genetic variation are
strongly affected by the characteristics of a species (e.g.
dispersal rates), the landscape (e.g. geographical barriers),
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but also by different specific events that occurred in the
past (Avise 2004). For example, the genetic impact of the
last glaciation was relevant to several species (Hewitt
2000), but many other processes with a potential effect on
the genetic variation certainly occurred since then. This is
especially true for game and domestic species because of
extensive human manipulation. In this study, we focused
on several European populations of wild boar (Sus scrofa),
whose genetic variation patterns have been possibly
affected by both domestication and hunting/management
activities. We used a large set of molecular data in order to
distinguish and estimate the effects of different processes
that occurred at different timescales. In addition, this data
set enabled us to test a specific hypothesis regarding the
domestication of the species in Europe.

The Eurasian wild boar is one of the most widely distrib-
uted terrestrial mammals. Its geographical range, excluding
recent introductions, extends from Western Europe and
Northern Africa to Japan. Possibly originated in Southeastern
Asia, where the highest numbers of wild pig taxa are
observed (Lucchini et al. 2005), S. scrofa can be now subdivided
into at least two major genetic clades roughly corresponding
in the domestic form to European and Asian pigs (Giuffra
et al. 2000; Okumura et al. 2001; Alves et al. 2003; Larson
et al. 2005). The separation of these two clades can be dated
back to between 0.5 and 0.9 million years ago, suggesting
at least two independent domestication events (Giuffra et al.
2000; Kijas & Anderson 2001; Alves et al. 2003). Subspecies
are usually classified into four major groups, with the
European wild boar corresponding to the so-called ‘Western
races’ group (Oliver et al. 1993).

The quaternary climatic oscillations, and in particular
the last glaciation and the subsequent warm period, produced
remarkable consequences on the levels and patterns of
genetic variation in several species (Taberlet et al. 1998;
Hewitt 2000; Petit et al. 2003; Hofreiter et al. 2004). As regards
the European wild boar, however, at least four additional
processes related to human activities have occurred ever
since: the domestication in the Neolithic; a severe bottleneck
in different areas in the last few centuries; a demographic
expansion in the last 50 years; several more or less uncon-
trolled introductions of individuals, which also occurred in
the last decades, to restock areas where wild boar was
extinct or present at low density.

Postglaciation dispersal

The model initially proposed for the population dynamics
of several species during the last glaciation (i.e. one or more
southern refugia and postglacial re-expansion towards
northern areas) is probably too simplistic for some taxa
(see for example Magri et al. 2006). However, the current
distribution of the wild boar and its dispersal and
reproductive potential suggest that the genetic variation in

this species should be initially investigated with this model
in mind. In fact, as the wild boar is being only sporadically
observed in northern areas like central and northern taiga
(Briedermann 1990; Danilkin 2001), its presence in Central
and Northern Europe during the last Ice Age, when the
permafrost almost isolated Iberia, Italy, and the Balkans
(Hewitt 2000), seems unlikely. In addition, unlike for example
other ungulate species, the wild boar shows the typical
attributes of r-strategists: high ecological adaptability,
opportunistic feeding, and very high reproductive potential
(Boitani et al. 1995; Fernandez-Llario & Mateos-Quesada
1998; Geisser & Reyer 2005). We can therefore suppose that
after the last glaciation, the wild boar easily recolonized
Central and Northern European forests, thus reaching an
almost continuous and stable distribution modified only
by seasonal variations (Jedrzejewska et al. 1997; Bieber &
Ruf 2005).

Domestication and hybridization with pigs

Direct consequences on the wild populations during the
domestication process are expected to be limited, but recent
effects related to the co-existence of domestic and wild
forms should be considered. In some areas, pigs are reared
in semi-wild conditions (e.g. in Bulgaria and Sardinia,
Apollonio et al. 1988; Genov et al. 1991) and crossbreeding
with the wild form is possible. Furthermore, in other regions
(e.g. Central Italy), pigs were occasionally crossed with
wild boars in captivity, and hybrids were released for
hunting purposes (Randi et al. 1989; I. Boschi, unpublished
report). Therefore, divergent pig genomes, which were
subjected to strong selective and likely drift effects during
and after the domestication, could have introgressed into
the wild boar genetic variation.

Overhunting and demographic decline

In the last few centuries, loss of habitat and overhunting
drove the wild boar to extinction in some European regions
such as the British Isles, Scandinavia, and several Italian
and Western Russian areas (Apollonio et al. 1988; Oliver et al.
1993). A demographic decline was documented in many
other countries, and yet the genetic effects of this event,
when analysed in a few geographically restricted areas,
were surprisingly not evident (Vernesi et al. 2003).

Recent expansion

After the Second World War, the density and geographical
distribution of the wild boar have increased almost
everywhere in Europe (Sáez-Royuela & Tellería 1986;
Feichtner 1998; Danilkin 2001) as a consequence of several
factors whose relative weight is uncertain. These factors
are: global warming, changes in agricultural practices,
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setting up of artificial feeding sites, reduced numbers of
predators, increase of mast seeding of beech, and restocking
(Bieber & Ruf 2005; Geisser & Reyer 2005). Growth rates of
wild boar populations have been so high in some areas that
damages to agricultural cultivations and natural ecosystems
are frequently reported (Singer et al. 1984; Welander 2000;
Schley & Roper 2003; Geisser & Reyer 2004).

Translocations

The genetic variation in some wild boar populations has
possibly been affected also by artificial long-distance
migrations associated to uncontrolled and rarely documented
restocking plans over the last 50 years. Restocking could
have modified the genetic variation both by contributing to
the recent demographic expansion and by mixing genetic
pools belonging to different subspecies or differentiated
populations. For example, wild boars from Central Europe
were repeatedly introduced into Italy (Apollonio et al.
1988). The genetic impact of such events in some areas is
controversial, with authors suggesting either massive
(Randi 2005) or limited (Vernesi et al. 2003) introgression.
It is noteworthy that two opposite wild boar management
policies, none of which considering the conservation of
genetic biodiversity as a priority, are often suggested by
local authorities: eradication, which is meant to remove
the problems from cultivated areas, and restocking, in
order to preserve traditional forms of ‘social’ hunting
practices.

All the five processes above have potentially left a signa-
ture in the present-day wild boar genetic variation. We
used mitochondrial and nuclear markers to test whether
they did or not, and which was the possible role of each of
them. Considering the wild boar as a model, the results we
obtained are also valuable for a better reconstruction of the
historical events that affected other species. Therefore, our
results have important and more general implications for
the development of management and conservation plans
of game species.

Finally, we also addressed a topic which is not directly
related to the wild boar genetic structure, and yet it is rel-
evant to the understanding of the origin and the number
of independent domestication events in this species.
Archaeological evidences suggest that, like many other
domestic animals, European pigs were domesticated in the
Near East and selected breeds were subsequently introduced
into Europe by Neolithic farmers (Epstein & Bichard
1984). However, two in loco domestication processes, one
in Central Europe and the other in Italy, were recently
hypothesized on the basis of the analysis of mitochondrial
DNA sequences (Larson et al. 2005). This hypothesis,
which is relevant also for the management of local breeds
and the conservation of pig diversity, was tested using the
same large data set.

Materials and methods

Sampling and DNA isolation

Hair, skin, skeletal muscle, or ear tissue from 252 wild
boars were collected in 15 different sampling areas across
Europe (Fig. 1) and stored in 95% ethanol at –20 °C. Sample
abbreviations used later in the text are specified in Fig. 1.
Additionally, 67 Italian domestic pigs from five historical
breeds were sampled for comparison: Cinta Senese (coded
Pig 1), Sarda (Pig 2), Calabrese (Pig 3), Casertana (Pig 4)
and Nera Siciliana (Pig 5). Five commercial pigs (Large
White, Pig 6) were also sampled. All the wild boar sampling
areas in Italy, possibly with the exclusion of the Castel
Porziano Presidential Reserve, and certainly at different
degrees, had been subjected to occasional restocking with
unknown genetic effects. The samples from four localities
(IFlo, IMrp, ICpr and HDif) had already been used in a
previous study (Vernesi et al. 2003). Total genomic DNA
was extracted by using commercial kits (QIAGEN) or the
standard phenol–chloroform method (Sambrook et al. 1989),
followed by concentration in Microcon-30 columns (Amicon),
and kept at –20 °C.

Mitochondrial DNA sequencing

Almost the entire control region (CR) was amplified by
polymerase chain reaction (PCR) using two primers
developed by Alves et al. (2003) (Ss.L-Dloop 5′-CGCCATCA-
GCACCCAAAGCT3′ and Ss.Hext-Dloop 5′-ATTTTGGGA-
GGTTATTGTGTTGTA3′) anchoring at positions 16569 and
1128 of the complete pig mitochondrial DNA (mtDNA)
genome (GenBank Accession no. AF034253;  Lin et al. 1999).
Reactions were performed in an Applied Biosystems 2420
thermal cycler, with amplification conditions set at 35
cycles of 92 °C for 1 min, 62 °C for 1 min and 72 °C for 1 min,
followed by a final extension step at 72 °C for 10 min. PCR
products were purified by Exo/SAP digestion and a 411-bp
fragment, including the hypervariable extended termination
associated sequences (ETAS) domain (Sbisà et al. 1997),
was directly sequenced using the forward primer SS.L-
Dloop and the BigDye Terminator kit version 3.1 (Applied
Biosystems). This region was also selected to maximize the
size of possible alignments including already published
GenBank sequences. Fragments were finally purified
in columns loaded with Sephadex G-50 and run in an
ABI PRISM 3100 Avant automatic sequencer (Applied
Biosystems). Ambiguous positions were verified by re-
sequencing the target region with the internal reverse primer
Ss.Hint-Dloop (5′-TGGGCGATTTTAGGTGAGATGGT3′),
mapping at position 465 of the pig mtDNA. Sequences
were obtained for a subsample of 145 wild boars (between
8 and 12 per sampling location) and 47 domestic pigs from
the Italian historical breeds (Pig 1 to Pig 5). Commercial
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pigs (Pig 6) were not analysed at this marker because of
the large amount of data already available in GenBank.

Microsatellite genotyping

A panel of 10 polymorphic microsatellites was selected
for the analysis: S026, S215, S355, SW72, SW461,
SW857, SW1492, SW2021, SW2496, and SW2532 (details at
www.thearkdb.org). Five of them (S026, S215, S355, SW72,
and SW857) are in the set recommended by the Food and
Agriculture Organization (FAO) to analyse pig diversity
(Barker et al. 1998), and the rest had been successfully used
to study genetic relationships among some European wild
boar populations (Vernesi et al. 2003). This set was used to

genotype all the sampled wild boars and 40 pigs which
were raised in wild boar sampling areas (Tuscany and
Sardinia). Each PCR was performed in a 10-μL reaction
volume, containing 3 μL of DNA solution, 0.5 U of Taq DNA
polymerase (Euroclone), 1× PCR buffer (Euroclone), 2.5 mm
MgCl2, 100 μm of each dNTP and 2 pmol of each primer.
The forward primer of each pair was labelled with an ABI
fluorescent dye (6-FAM, HEX or TET). The amplification
profile was set up with an initial step of denaturation at
95 °C for 3 min, followed by 35 cycles of 92 °C for 45 s, Ta
(54–60 °C) for 45 s, and 72 °C for 30 s. A further extension
step of 72 °C for 10 min concluded the reaction.

PCR-amplified microsatellite alleles were sized using
capillary electrophoresis ABI PRISM automatic sequencers

Fig. 1 Geographical locations of wild
boar samples. In (a), pie charts represent
proportions of each of the three main
mtDNA clades (E1, E2 and A) in each
sampling area. In (b), pie charts indicate
proportions of membership of each sampled
population to the four clusters inferred by
structure analysis 2 (see text for details).
The following abbreviations are used: IAre
(Arezzo, Italy), IFor (Forì, Italy), ISie (Siena,
Italy), ISal (Salerno, Italy), IFlo (Florence,
Italy), IMrp (Maremma Regional Park,
Italy), ISrp (San Rossore Regional Park,
Italy), ICpr (Castel Porziano Presidential
Reserve, Italy), ISar (Sardinia, Italy), IGor
(Gorizia, Italy), SCot (El Coto, Spain),
FHam (Haute Marne, France), ADif (Austria,
different areas), PDif (Poland, different
areas), HDif (Hungary, different areas).
Subspecies indications on the map are after
Groves (1981) and Apollonio et al. (1988).
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and internal ROX-500 size standard (Applied Biosystems).
The genemapper software (Applied Biosystems) was used
to analyse electrophoretic data.

Genotypes were obtained for all the 252 sampled wild
boars, for a subsample of two historical Italian breeds
(Pig 1 and Pig 2), and for the Italian commercial pigs (Pig 6).

Mitochondrial DNA data analysis

A total of 192 novel mtDNA CR sequences (411 bp) were
obtained (GenBank Accession nos: EU362409–EU362600)
and aligned with 612 sequences available in GenBank
(Ursing & Arnason 1998; Lin et al. 1999; Giuffra et al. 2000;
Kijas & Andersson 2001; Okumura et al. 2001; Kim et al.
2002; Randi et al. 2002; Alves et al. 2003; Yang et al. 2003;
Gongora et al. 2004; Larson et al. 2005; Fang & Andersson
2006; Fang et al. 2006) using the function clustal w
(Thompson et al. 1994) implemented in mega 3.0 (Nei &
Kumar 2000) and adjusted by eye. Overall, the aligned
sequences corresponded to 1065 individual pigs from all
over the world (including 231 European wild boars).
Haplotypes were collapsed from the entire data set using
collapse version 1.2 (D. Posada, available at http://
darwin.uvigo.es), setting deletions as fifth state.

Number of different haplotypes, haplotype (h) and
nucleotide (π) diversity, and the mean number of pairwise
nucleotide differences between haplotypes (k) were com-
puted using the software arlequin version 3.01 (Excoffier
et al. 2005). Allelic richness [AR(r)] for each sampled
population was calculated from haplotype frequencies
using the rarefaction method proposed by El Mousadik
& Petit (1996) with the software rarefac (R. Petit,
www.pierroton.inra.fr/genetics/labo/Software/Rarefac/
index.html). The rarefaction size r was set to the smallest
sample size among the groups included in the analysis.

A median-joining (MJ) network of haplotypes (Bandelt
et al. 1999) was created with the software network 4.1.0.9
(Fluxus Technology), using equal weights for all the
mutations and setting the parameter ε to zero, in order to
restrict the choice of feasible links in the final network. This
approach is especially useful in reconstructing genealogies
among closely related taxa, for example, for interpopulation
analysis (Bandelt et al. 1999). Distributions of pairwise
nucleotide differences between haplotypes (mismatch
distributions), which are informative on the recent demo-
graphic history of a population (Slatkin & Hudson 1991;
Rogers & Harpending 1992), were analysed in wild boar
and pig populations according to the sudden expansion
model as implemented by arlequin. The age of the expan-
sion was estimated using a generalized nonlinear least-square
method, which is based on the minimization of the sum of
squared deviations between the observed and the expected
mismatch distributions (Schneider & Excoffier 1999). Con-
fidence intervals are obtained using a parametric bootstrap

approach based on 1000 simulated samples (Schneider
& Excoffier 1999). Finally, Tajima’s D (Tajima 1989) and
Fu’s FS (Fu 1997) were used to test the null hypothesis
of demographic stability, under the common assumption
(Avise 1995) that the mtDNA control region can be used as
a marker of demographic processes, even though natural
selection (mainly at linked regions) cannot be excluded
(Ballard & Kreitman 1995). The significance of these statistics
was evaluated with 1000 simulated samples as implemented
in arlequin.

Microsatellite data analysis

In order to evaluate the levels of genetic variability in the
sampled populations, observed and expected (unbiased
gene diversity, Nei 1987) heterozygosities were computed
with genetix version 4.05 (Belkhir et al. 2001). In addition,
allelic richness and private allelic richness were calculated
per population using hp-rare (Kalinowski 2005), setting
rarefaction according to the smallest sample size in each
computation. The possible effect of demographic bottle-
necks on the microsatellite variation was tested using the
method implemented in the software bottleneck version 1.2
(www.montpellier.inra.fr/URLB/bottleneck/bottleneck.html)
(Cornuet & Luikart 1996). The test was performed under
three alternative models of microsatellite evolution:
the infinite allele model (IAM), the stepwise-mutation
model (SMM) and the two-phased model (TPM, set with
10% IAM and 90% SMM). Following the authors’ sug-
gestions, the Wilcoxon test was used to test the overall
differences between the expected heterozygosity and the
heterozygosity predicted from the number of alleles.

Deviations from Hardy–Weinberg equilibrium (HWE)
were tested for each population and each locus using the
Markov chain method proposed by Guo & Thompson (1992),
implemented in the software genepop version 3.4 (Raymond
& Rousset 1995). Parameters of the Markov chain expressed
as dememorizations/batches/iterations were 10 000/100/
5000. The significance level was modified for multiple test-
ing across populations and across loci using the sequential
Bonferroni correction (Holm 1979). Deviation from linkage
equilibrium (LE) was tested for each pair of loci in each
population (810 tests in total) using the log-likelihood ratio
approach as implemented in the software fstat (Goudet
2001) and a sequential Bonferroni correction (Holm 1979).
The minimum significance level for the sequential Bonferroni
correction should be set to 0.05/810, when the tests are
independent, and to higher values when they are not. To
avoid excessive rejections of the linkage disequilibrium
hypotheses due to nonindependent LE tests, we set the
threshold at 0.05/180, that is, we considered the number
of loci times the number of populations, as the effective
number of independent tests. This choice did not affect our
conclusions, since LE was the rule for our microsatellite
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markers. We used micro-checker version 2.2.3 (Van
Oosterhout et al. 2004) to detect signs of the possible
occurrence of null alleles, that is, homozygote excess evenly
distributed among homozygote size classes at one locus.

In order to evaluate levels of genetic heterogeneity among
sampling areas, Weir and Cockerham’s estimator of FST
(Weir & Cockerham 1984) was computed using the program
genetix. Significant deviations from zero were tested over
1000 permutations. Molecular distances between alleles
and corresponding indices such as RST (Slatkin 1995) were
not used for the analysis of microsatellites to avoid unpre-
dictable results due to probable multiple-step mutations.
FST values were also used to test the relationship between
genetic and geographical distances, using the Mantel test
(Mantel 1967) as implemented in arlequin version 3.01
(Excoffier et al. 2005).

Pairwise genetic distances between sampling areas were
calculated by the program populations version 1.2.28
(Langella 2002). A neighbour-joining (NJ) tree of populations,
based on the DA distance (Nei et al. 1983), was used to
represent the relationships among groups. A consensus tree
was obtained by bootstrapping (1000 replicates) distance
values over loci.

A Bayesian cluster analysis was carried out using the
method implemented in structure version 2.1 (Pritchard
et al. 2000). We first explored which value of K (number of
clusters) maximized the likelihood of the data [P(D|K)].
Simulations were performed by replicating 10 runs for each
value of K comprised between 1 and 20, with the following
settings: admixture model (initial α = 1.0), no population
information, correlated allele frequencies, burn-in length:
20 000, Markov chain Monte Carlo (MCMC) length: 1 000 000.
Selected burn-in and MCMC lengths allowed the con-
vergence of the chain. All other parameters were set at their
default values. The results were then used to evaluate the
most likely partition of our data set, adopting the method pro-
posed by Evanno et al. (2005), which relies on the second
order rate of change of the likelihood function with respect
to K. Once defined the most reliable value of K, the genetic
contribution of each inferred cluster to the predefined
populations as well as to each individual was investigated.

The Bayesian analysis was also used to study the behaviour
of each predefined population when the data set was split
into a variable number of clusters, starting from K = 2 up to
the most reliable value of K. For each K, the run providing
the highest value of ln [P(D)] was used. In this descriptive
analysis, original groups were assigned to different clades
when their composition can be unquestionably assigned to
one of the inferred groups. Clearly, this analysis as well as
all the tree-based representations implies that early splits
(i.e. splits obtained at small K values) can be used to identify
the most relevant partitions.

Following the approach introduced by Sacks et al. (2004),
we also considered the partition which better subdivided

the wild boar populations by virtue of their geographical
locations. The value of the ‘geographical index’ (i.e. the
average geographical distance between individual loca-
tions within clusters divided by the average pairwise
distance irrespective of clusters, Sacks et al. 2004), which can
be computed for each K, is expected to be close to 1 when
genetic clusters do not correspond to geographical groups,
and lower when each of the K inferred groups includes
adjacent populations. When the geographical index stops
to decrease for increasing values of K, the geographically
meaningful number of groups is reached (Sacks et al. 2004).

Results

Mitochondrial DNA variation

A total of 192 mitochondrial CR sequences (411 nucleotides)
were analysed: 98 from Italian wild boars, 47 from wild
boars sampled in five other European countries, from Spain
to Poland, and 47 from five Italian pig breeds. In total, 26
haplotypes (14 of which had never been detected before)
and 31 segregating sites (28 substitutions and 3 indels)
were identified (see Table S1, Supplementary materials).
Different estimates of mitochondrial variability in each
population are shown in Table 1. Sample sizes are quite small,
and a large variation is expected, and actually observed,
across populations at a single locus. However, once we
pool the samples into three major groups — wild boars
from Italy, wild boars from Europe excluding Italy, and
pigs — a clear pattern emerges: genetic diversity in Italy is
similar to, or larger than variation observed when several
European countries are jointly considered, while pigs show
only slightly lower levels of diversity (see Table 1). Sixteen
out of 20 haplotypes observed in wild boars are detected
in Italy and only seven in the rest of Europe. Of the 28
segregating sites observed in the wild populations, just one
is monomorphic in Italy, and 22 in Europe when Italy is
not considered. The expectations of these two measures of
variation are affected by the sample size, which is clearly
larger in the Italian group. But the pattern does not change
much when allelic richness, haplotype and nucleotide
diversity (i.e. statistics whose expectations are not affected
by sample size) are considered (see Table 1).

The high diversity observed in Italian wild boars is due
to private mutations and haplotypes, which are mainly
related to the exclusive presence in Italy of the three major
Sus scrofa mtDNA lineages: E1, E2, and A (see Fig. 1a and 2).
The codes for these clades were introduced by Giuffra et al.
(2000) and correspond to clades D1, D4 and D2, respectively,
in Larson et al. (2005). Clades E1 and A are widely distributed,
respectively, in Europe and eastern Asia, while E2 is a
second European mtDNA lineage, separated from E1 by
five fixed transitions. E2 haplotypes are not observed
outside Italy.
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The sequences in our data set were then aligned with 612
S. scrofa sequences available in GenBank and corresponding
to European wild boars and pig breeds. In the overall data
set, composed of 804 sequences, a total of 114 different
haplotypes (coded as H1–H114) were identified. A complete
list of sequences and corresponding haplotypes used in the
present study is reported in Table S2, Supplementary
material. Of the 70 haplotypes observed in European S. scrofa
(n = 646 individuals), those with the highest frequency
and the widest geographical distribution are H22 (137
individuals), H23 (64) and H29 (42), all of which belong to
clade E1 and are shared by wild and domestic individuals
(see the network in Fig. 2, singletons are not represented).
Of the haplotypes classified in the clade E2, H11 (18) and
H12 (13) are the most frequent and are both found in four
sampling localities in continental Italy. The two most fre-
quent haplotypes of clades E1 and E2 had been already
found in a few Italian museum specimens (dating late
18th–early 19th century) analysed by Larson et al. (2005).

The Asian clade (clade A) is present in European pig breeds
and also in a few wild individuals. In Italy, this clade is
observed only in three wild boars from Southern Italy
(ISal), all sharing the same haplotype H15. This sequence is
not uncommon in European pig breeds (see Fig. 2), and was
probably transferred to the wild through hybridization
events deliberately induced between domestic breeds and
Italian wild boar stocks reared in captivity. The haplotype
H15 was excluded from further analyses on account of
its belonging to a divergent and exotic clade. The genetic
variation observed in ISal and overall in Italy when H15
is excluded is also reported in Table 1: the previously
described general pattern does not change. None of the
pig samples, including those from the five Italian breeds
analysed in this study, shows E2 haplotypes (see Table S1).

The mismatch analysis was initially performed on the two
groups of samples which were most clearly differentiated
at mtDNA sequences according to the presence/absence of
clade E2: Italy and Europe excluding Italy. The distributions

Table 1 Genetic variability observed in mtDNA control region sequences (411 bp) in European wild boar populations and in five Italian
pig breeds. Values in round brackets correspond to analyses performed excluding the Asian H15 haplotypes (see text). Rarefaction sizes
used to compute the allelic richness for each wild boar population and for major groupings are reported in square brackets next to the
estimated value

Population
No. of 
sequences

No. of different 
haplotypes

Allelic 
richness

No. of 
polymorphic sites

Haplotype 
diversity (h)

Nucleotide 
diversity (π)

IAre 8 4 3.00 [8] 12 0.821 0.013
IFor 10 3 1.98 [8] 5  0.711 0.007
ISie 8 1 0.00 [8] 0  0.000 0.000
ISal 10 6 (5) 4.36 [8] 

(4.00[7])
20 (14)  0.889 

(0.905)
0.021 
(0.013)

IFlo 10 4 2.78 [8] 11 0.778 0.008
IMrp 11 2 0.99 [8] 9 0.436 0.010
ISrp 10 2 0.80 [8] 9 0.200 0.004
ICpr 10 3 1.80 [8] 2 0.600 0.002
ISar 12 7 4.31 [8] 15 0.864 0.007
IGor 9 1 0.00 [8] 0 0.000 0.000
SCot 9 1 0.00 [8] 0 0.000 0.000
FHam 10 2 0.80 [8] 1 0.200 0.000
ADif 10 4 2.60 [8] 5 0.711 0.006
PDif 8 2 1.00 [8] 2 0.571 0.003
HDif 10 2 0.98 [8] 2 0.356 0.002
WB Italy 98 16 (15) 10.94 [47] 

(10.21 [7])
27 (21) 0.874 

(0.866)
0.013 
(0.012)

WB Europe (non-Italy) 47 7 6.00 [47] 6 0.829 0.005
WB overall 145 20 (19) 13.08 [47] 

(12.47 [47])
28 (22) 0.902 

(0.898)
0.011 
(0.010)

Pig 1 10 2 0.78 [5] 2 0.356 0.002
Pig 2 5 3 2.00 [5] 4 0.800 0.005
Pig 3 6 2 0.83 [5] 2 0.333 0.002
Pig 4 11 2 0.88 [5] 1 0.436 0.001
Pig 5 15 5 1.90 [5] 5 0.705 0.005
DP overall 47 10 9.00 [47] 8 0.827 0.005

WB, wild boar; DP, domestic pig.
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obtained either including or leaving out the GenBank
sequences (which were possibly affected by non-random
sampling) are almost identical. Therefore, only the results
obtained with the larger data set are presented. The mismatch
distribution in European wild boars (n = 109) is smooth
and unimodal (Fig. 3a), as expected in the case of a past
demographic expansion. The Fu’s neutrality test supports
the expansion hypothesis (FS = –8.25, P < 0.01), whereas
the Tajima’s D is negative but not significant (D = –0.84,
P = 0.22). The estimated expansion age is 1.36 mutational
units (95% CI = 0.58–1.91). On the contrary, the shape of
the distribution is clearly ragged and multimodal when
the Italian samples are analysed, and the neutrality tests
are not significant (Fig. 3b; n = 116; D = 0.95, P = 0.86;
FS = –0.004, P = 0.56).

The possibility that the clades E1 and E2 observed in
Italy simply correspond to two different populations
which recently mixed was considered by performing
separate mismatch analyses on these clades. According to
the results (Fig. 3c, d), the pattern of E1 variation in Italy
is not the same as in Europe, since the mismatch distribu-
tions have different shapes and the neutrality tests provide
different results (n = 78; D = –0.73, P = 0.23; FS = –2.30,
P = 0.17). The mismatch distribution of the Italian clade
E2 is unimodal (Fig. 3d), but Tajima’s D and Fu’s FS are
far from significance (n = 38; D = –0.11, P = 0.48; FS = –0.88,
P = 0.26).

Finally, the mismatch distribution was computed for two
groups of pig samples, the first including all the European
breeds (still excluding the Asian clade) and the second
including the Italian breeds only. As regards the former

group (European breeds, Fig. 3e), the shape is very similar,
although centred at slightly different pairwise difference
values, to the distribution observed in the European wild
boar (Fig. 3a). Again, neutrality tests point at a demographic
expansion (n = 305; D = –1.54, P < 0.05; FS = –26.2, P < 0.001),
and the estimated expansion age is 0.85 mutational units
(95% CI: 0.38–1.12). As regards the latter group (Italian
breeds, Fig. 3f), the shape of the distribution is very different
from that observed in the Italian wild boar. It partially
resembles the European pig breeds distribution (although
unusually flat in the central classes), whereas neutrality
tests point at a different pattern of genetic variation and
do not support the expansion hypothesis (n = 47; D = 0.06,
P = 0.57; FS = –2.40, P = 0.13).

Genetic variation at microsatellite loci

Between 7 (S026 and S215) and 22 (SW2496) alleles per locus
are found across the 292 genotyped individuals. Mean
levels of heterozygosity (Table 2) are moderate, averaging
0.57 (SD = 0.05) in the 15 wild boar populations and 0.62
(SD = 0.11) in three pig breeds. Average levels of both
heterozygosity and allelic richness are relatively homo-
geneous across wild boar populations, ranging between
0.47 and 0.62 and between 2.6 and 3.5, respectively. Genetic
variation is similar or slightly higher in the joined Italian
samples than in the pooled European group (Table 2). An
influence on this pattern of individuals from ISal introgressed
with Asian pig genomes can be probably excluded. In fact,
most populations show higher levels of genetic variation
than ISal (Table 2). As regards single populations, Sardinian

Fig. 2 Median-joining network (Bandelt
et al. 1999) based on the joint mtDNA data
set (original and published sequences).
Only haplotypes with a frequency ≥ 2 in the
data set were included. Circles indicate
sequences observed in wild boar (white) or
domestic pig (black) individuals. Size of
circles is proportional to the haplotype
frequency. Gray diamonds are median
vectors, that is haplotypes not observed in
the data. Solid branches connecting circles
represent single nucleotide changes; lines
fragmented by i by dashes indicate i inferred
changes.
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Fig. 3 Mismatch distributions based on
pairwise site differences between sequences.
(a) European wild boars (excluding Italy);
(b) Italian wild boars, all haplotypes; (c)
Italian wild boars, clade E1 only; (d) Italian
wild boars, clade E2 only; (e) European
domestic pigs, clade E1 only; (f) Italian
domestic pigs. The expected curve (solid
line) was obtained from simulated values
computed from the data under the model of
demographic expansion. Haplotypes of the
Asian clade (A) were excluded from the
analysis.

Table 2 Genetic variability detected at microsatellite loci in European wild boar and pig populations. Expected heterozygosity was
calculated as gene diversity (Nei 1987). Allelic richness and private allelic richness were calculated with rarefaction set at 14 genes for each
population and at 76 genes for groups analyses. Pig 6 was excluded from this analysis for its low sample size

Population N
Average expected 
heterozygosity

Average observed 
heterozygosity

Average allelic 
richness

Average private 
allelic richness

IAre 10 0.53 0.51 3.84 0.01
IFor 10 0.61 0.59 4.18 0.09
ISie 10 0.62 0.61 3.95 0.10
ISal 10 0.55 0.47 3.56 0.02
IFlo 20 0.62 0.57 4.19 0.13
IMrp 11 0.49 0.45 3.63 0.04
ISrp 15 0.51 0.47 3.04 0.00
ICpr 19 0.54 0.52 3.67 0.01
ISar 41 0.61 0.50 4.27 0.54
IGor 19 0.47 0.47 3.10 0.08
SCot 15 0.60 0.59 3.82 0.26
FHam 20 0.58 0.57 3.88 0.17
ADif 13 0.62 0.55 4.27 0.05
PDif 19 0.61 0.59 3.84 0.07
HDif 20 0.61 0.59 4.45 0.14
WB Italy 165 0.65 0.51 7.96 1.43
WB Europe (non-Italy) 87 0.66 0.58 7.54 1.02
WB overall 252 0.66 0.53 8.44 3.18
Pig 1 22 0.51 0.47 3.31 0.20
Pig 2 13 0.61 0.57 4.26 0.44
Pig 6 5 0.73 0.61 — —
DP overall 40 0.62 0.52 6.85 1.21

WB, wild boar; DP, domestic pig.
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wild boars (ISar) and Sardinian pigs (Pig2) show higher
levels of allelic diversity and the highest proportions of
private alleles. The lowest values of diversity are found in
Northeastern Italy (IGor) and in the enclosed population in
San Rossore Regional Park (ISrp).

Averaging across loci, observed heterozygosity is slightly
smaller than expected under HWE in all populations. In
the locus-by-locus analysis, the number of significant tests
after Bonferroni correction is six (out of 180): one in a pig
sample (where substructuring, inbreeding, or selection
are likely), one in Florence (where translocations are
documented, historically and genetically, Vernesi et al. 2003),
and two each in the probably heterogeneous samples from
Poland and Sardinia. Deviations from linkage equilibrium
are significant only in 26 pairwise tests (out of 810), concen-
trated in the pig and the Polish samples. The possible
presence of null alleles, tested separately for each locus and
each population with micro-checker, is limited (13 signi-
ficant results), randomly distributed across loci, and mainly
concentrated again in the Sardinian and the pig samples.

The bottleneck test fails to identify the genetic signature
of a demographic decline, no matter the model of micro-
satellite evolution selected for this analysis. The relative
excess of heterozygosity expected in bottlenecked popula-
tions (Cornuet & Luikart 1996) is not observed either in the
single-locus analysis or in the Wilcoxon test combining the
results for the different loci. In contrast, a general deficiency
of heterozygosity is found in some populations, but this
result is not always consistent across the different mutation
models.

Genetic differentiation among populations

The genetic divergence between populations was analysed
using the multilocus microsatellite data set. The overall FST
values are relatively high and significant (0.14 and 0.15,
excluding and including domestic pigs, respectively; P < 0.001
in both cases). Genetic differentiation due to differences
between wild and domestic groups is significant but very
limited (FCT = 0.030, P = 0.01). In the wild boar, pairwise
FST values range between 0.00 and 0.31 across Europe
(including Italy) and are comparable to those observed
between wild boar and domestic pig samples (range
0.10–0.25). Most pairwise values are similar to each other
and similar to the global FST, which is in agreement with
a moderately structured tree of populations with short
(and moderately supported) internal branches (Fig. 4). No
significant correlation was detected between genetic and
geographical distances (Mantel test: r = 0.153; P = 0.19).

When the population structure is analysed with the
Bayesian method implemented in the program structure,
some levels of partitioning in geographically meaningful
groups clearly emerge. In the following, we will consider
two different partitions which are identified by means of

the likelihood (structure analysis 1) and the ‘geographical
index’ (structure analysis 2) approaches. The more rigorous
likelihood approach identifies 15 clusters (Fig. 5). Accordingly,
a detailed analysis of the relationship between inferred
clusters and original populations is provided. The ‘geo-
graphical index’ approach identifies four clusters and could
thus be regarded as a synthetic representation of the major
geographical groups.

Structure analysis 1: likelihood-based partition 
(Table 3 and Fig. 6)

The large number of clusters and the contribution of each
population to each inferred cluster confirm the relatively
large genetic divergence between most of the samples. All
the populations from Central-Southern Italy, with the
exception of IMrp, have major components in the same

Fig. 4 Neighbour-joining tree based on the Nei’s et al. (1983)
distance (DA) between populations computed on microsatellite
data. Bootstrap support at internodes is shown if > 50%.

Fig. 5 Posterior probability of the data {ln [P(D|K)]} and values of
ΔK (Evanno et al. 2005) as a function of K (number of clusters), as
resulting from the simulations in structure (structure analysis 1).
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three inferred clusters (8, 10 and 15, see Table 3). IMrp has
one major component in cluster 13, poorly shared by all the
other samples. Sardinian and northeastern Italian samples
have almost ‘private’ components, namely clusters 2 and 6,
and cluster 9, respectively. Of the European populations,
the Spanish and the French samples correspond to private
clusters 5 and 3, respectively, while Hungarian, Polish and
Austrian wild boars share three cluster components (1, 4,
and 11). No one of the wild boar populations shows a

relevant proportion of any of the three clusters associated
to domestic pigs, although the analysis conducted on an
individual basis reveals some levels of admixture. Provided
that the three pig samples have a cumulative proportion of
clusters 7, 12, and 14, comprised between 78% and 91%,
and that the homologous proportion in wild boar populations
averages 6%, we arbitrarily classified single wild boars
having a cumulative proportion of these clusters > 18%
(three times the ‘background’ proportion observed in

Fig. 6 Diagram showing how populations
split into the clusters inferred by the program
structure as the value of K increases.
Populations are referred to as: A, IAre; B,
IFor; C, ISie; D, ISal; E, IFlo; F, IMrp; G, ISrp;
H, ICpr; I, ISar; J, IGor; K, SCot; L, FHam; M,
ADif; N, PDif; O, HDif; P, Pig 1; Q, Pig 2; R,
Pig 3. Splitting of one population or a group
of populations into multiple exclusive clusters
is indicated by an asterisk. Reticulations
indicate that the attribution of some original
groups is not consistent across all K values;
dashed lines indicate likely solutions, based
on clustering at lower K values.

Table 3 Partition of the 18 sampled populations into the 15 clusters inferred by the program structure (structure analysis 1). This was the
most supported value of K, obtained by simulated data assuming the admixture model and ignoring population information (10 replicated
runs, each with 1 000 000 iterations of data collection after a burn-in of 20 000 iterations). Proportions higher than 0.1 are in bold. Letter codes
used in Fig. 6 are reported

Code Pop N

Inferred clusters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A IAre 10 0.057 0.020 0.016 0.018 0.058 0.015 0.050 0.019 0.006 0.370 0.019 0.020 0.016 0.029 0.286
B IFor 10 0.040 0.009 0.039 0.019 0.028 0.011 0.015 0.075 0.005 0.328 0.008 0.019 0.096 0.044 0.265
C ISie 10 0.020 0.007 0.010 0.036 0.050 0.025 0.010 0.082 0.013 0.331 0.013 0.007 0.030 0.014 0.353
D ISal 10 0.024 0.013 0.029 0.009 0.012 0.017 0.010 0.257 0.019 0.245 0.011 0.010 0.060 0.007 0.276
E IFlo 20 0.036 0.012 0.017 0.051 0.010 0.016 0.014 0.048 0.013 0.333 0.038 0.056 0.041 0.021 0.295
F IMrp 11 0.016 0.009 0.015 0.007 0.014 0.036 0.014 0.064 0.038 0.057 0.007 0.011 0.652 0.009 0.052
G ISrp 15 0.009 0.006 0.009 0.004 0.007 0.009 0.008 0.862 0.006 0.025 0.005 0.007 0.010 0.007 0.027
H ICpr 19 0.048 0.015 0.012 0.013 0.015 0.080 0.033 0.083 0.030 0.251 0.009 0.020 0.043 0.041 0.308
I ISar 41 0.020 0.529 0.013 0.010 0.015 0.232 0.016 0.021 0.031 0.011 0.034 0.027 0.013 0.018 0.011
J IGor 19 0.011 0.007 0.005 0.006 0.019 0.009 0.010 0.005 0.893 0.005 0.006 0.005 0.006 0.006 0.006
K SCot 15 0.015 0.014 0.013 0.015 0.802 0.008 0.007 0.054 0.008 0.012 0.012 0.010 0.012 0.005 0.013
L FHam 20 0.020 0.010 0.702 0.030 0.029 0.015 0.016 0.010 0.009 0.009 0.011 0.055 0.036 0.037 0.010
M ADif 13 0.181 0.020 0.055 0.178 0.040 0.012 0.032 0.016 0.034 0.019 0.196 0.035 0.133 0.029 0.022
N PDif 19 0.115 0.012 0.020 0.363 0.061 0.012 0.008 0.022 0.031 0.010 0.294 0.007 0.015 0.019 0.011
O HDif 20 0.549 0.016 0.044 0.010 0.026 0.017 0.030 0.037 0.093 0.031 0.033 0.019 0.029 0.034 0.031
P Pig 1 22 0.013 0.011 0.011 0.011 0.007 0.006 0.015 0.011 0.012 0.014 0.014 0.063 0.009 0.790 0.014
Q Pig 2 13 0.013 0.009 0.007 0.006 0.005 0.009 0.597 0.007 0.009 0.009 0.006 0.289 0.007 0.017 0.009
R Pig 3 5 0.013 0.009 0.021 0.036 0.038 0.012 0.129 0.010 0.007 0.019 0.023 0.643 0.009 0.013 0.018
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wild boars across Europe) as hybrids. Indeed, the higher
similarity between these individuals and the pigs could be
possibly explained by introgression and not by common
ancestry. Using this threshold, 7% and 9% of the wild boars
in Italy and in Europe excluding Italy, respectively, seem to
have genomes affected by pig introgression. In Sardinia,
only two specimens (5%) fell into this category, but their
pig contribution is very high (> 80%). According to the
same approach, about 7% of wild boar individuals collected
in Italy seems to be affected by introgression of Eastern
European wild boar genomes.

The results of the Bayesian analysis obtained with different
numbers of inferred groups are summarized hierarchically
in Fig. 5. By progressively increasing the number K of com-
ponents, from K = 1 up to K = 15 (the X-axis in the diagram),
we analysed the partition of each original group into the
K-inferred clusters, thus identifying decreasingly important
subgroups of samples. Each branch in the figure represents
a group inferred at the corresponding K value, while nodes
represent the progressive splits of inferred groups when
K increases. Original groups were assigned to the branches
of the diagram (i.e. to the inferred groups) when their
composition was mostly associated to a single inferred
group. The most basal split, for K = 2, does not separate the
domestic and the wild forms as expected: one group
actually includes wild boars from Central-Southern Italy
and France as well as domestic pigs, whereas the wild boar
populations from Sardinia and Northeastern Italy group
with the rest of the European populations. For K = 3,
Central-Southern Italian wild boar populations are separated
from pigs, unlike the French one which still groups with
the domestic breeds. The Sardinian population is the first
original population to emerge separately with a nonshared
inferred group, at K = 4. The following four steps are some-
what confused because of the French and the Hungarian
populations’ ups and downs in the diagram branches. This
erratic pattern produces the reticulations between K = 5
and K = 8, which can be, however, easily resolved by con-
sidering the earlier assignments of these two populations
(see dashed lines in the diagram). Like in previous analyses,
the next splits support the divergence of the Northeastern
Italian sample (IGor = 5), the clustering of all Central-
Southern Italian populations (subdivided into three
components only for K > 10), and the grouping of most of
the other European populations (which starts to split for
K > 7). Interestingly, the French population is the last group
which separates from the domestic pig (only for K > 7).

Structure analysis 2: geographically based partitions 
(Fig. 1b)

This analysis allows for a map-based representation of a
reduced number of genetically homogeneous, geographically
related groups (see Fig. 1b). It can also be regarded as a

zoom of the diagram in Fig. 6 for K = 4. All populations
from Central-Southern Italy have major components in
cluster I, with a cumulative contribution by other clusters
in all cases < 30%. Similarly, the Sardinian samples are
assigned to the almost ‘private’ cluster II. Cluster III
corresponds to the major genetic component in the rest of
the European populations, with the exception of the French
sample where the cluster IV prevails. Cluster IV represents
the domestic pigs (90% of individual pigs have an assignment
probability to this cluster of ≥ 80%). This result is not to be
taken as an evidence of pig introgression in France, since
in the more accurate structure analysis 1 (see above),
none of the French individuals was identified as hybrid.
Instead, it supports the hypothesis of a higher-than-average
genetic relationship between domestic pigs and French
wild boars (see also Figs 4 and 6). When compared with the
distribution of the mtDNA clades (see Fig. 1a), the results
of this analysis confirm the remarkable divergence between
European and Central-Southern Italian wild boars. They
additionally suggest that, notwithstanding the frequency
of the typical Italian mtDNA clade (E2), large contribu-
tions of exotic gene pools can be excluded in all Italian
populations.

Discussion

By the analysis of one mitochondrial and 10 independent
nuclear markers in wild boars collected across Europe, we
evaluated the possible contribution of different natural and
human-related processes in shaping the present genetic
diversity of the species in the old continent. The role of past
wide-scale events, like range and size fluctuations occurring
during the last glacial and postglacial periods, are pointed
to as the main force leading to the observed levels of
differentiation in Europe. In addition, the comparison of
the genetic diversity of wild and domestic pigs is compatible
with the idea of a domestication centre in Central Europe,
but it does not provide support to the hypothesis of an
independent domestication in the Italian peninsula.

Postglacial dispersal

Our comparative analysis of wild boar control region
sequences shows the signature of a past demographic
expansion, which could well have followed the range
contraction occurring in Europe during the last glaciation.
Assuming a sudden expansion model, this event can be
dated back to approximately 1.36 mutational units in the
past. This figure is obviously imprecise, because of stochastic
variations in the coalescent and the sampling processes,
and its conversion into years appears even more difficult.
At least a fivefold range of variation can be found in the
per-site/per-year mutation rates which have been used in
several studies on the hypervariable mtDNA control region
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in mammals. For the analysis of ungulates in particular,
Randi et al. (1998) suggested a range between 4% and 8%
sequence divergence per site per million years, while
Birungi & Arctander (2000) suggested an interval between
10% and 20%. Accordingly, if we consider only the errors
associated to the calibration, the expansion age of the wild
boar should be dated back to between 16 000 bp and 80 000
bp. Several authors argued for a mutation rate closer to the
upper limit of these intervals (e.g. Bradley et al. 1996 and
Kim et al. 2002 opted for a 15% rate), and we therefore
believe that the molecular data we analysed support the
hypothesis of a demographic expansion of the wild boar
following the last glaciation. Interestingly, the age of the
expansion estimated from the similarly unimodal mismatch
distribution in the European domestic pig data set (Fig. 3e)
is about 40% younger, that is, 10 000 years ago using a
20% rate. Considering the errors associated to these estimates,
also for the reason that the method assumes a single
demographic event, these data appear consistent with a
pig Neolithic expansion associated to the domestication
process, or they might actually correspond to a sort of average
that keeps also the signs of the postglaciation expansion
of their wild ancestors.

Two additional results support the hypothesis that the
pattern of genetic diversity in the European wild boar was
shaped by the last postglacial colonization event from one
or more southern refugia. First, the divergence between
European samples outside Italy is similar in different com-
parisons, and no correlation is observed between genetic
and geographical distances. This finding is not consistent
with a stable equilibrium between drift and migration (i.e.
under isolation by distance), while it is expected in case of
a rapid colonization and a simultaneous demographic
expansion from a common source population. Second, the
mitochondrial variation in Italy is not compatible with a
demographic expansion, and both mtDNA and nuclear
markers show a similar or even higher level of variation
in Italy than in the rest of the European regions jointly
analysed. This result is remarkable at the mtDNA: two
major clades, E1 and E2, separated by at least 50 000 years,
are observed in Italy, whereas only E1 is found elsewhere.
The simplest explanation for this pattern seems to be the
process of contraction into southern refugia and the following
re-expansion towards northern areas. The recent finding
(Larson et al. 2007) that E2 haplotypes were present in the
present-day Croatia about 11 000 years ago is not unex-
pected under this view, considering that Northern Adriatic
was not submerged during the last glaciation (Van Andel
1989). According to this scenario, Italian diversity represents
a large fraction of the wild boar preglaciation diversity,
which was then preserved without any major impact by
subsequent demographic processes. Different hypotheses
about the location of source refugia appear equally likely:
it could be Italy itself, with the loss of rare E2 haplotypes

during the colonization, or some other southern areas in
Europe, or a combination of these two. Actually, the Italian
peninsula seems to have played for several species a minor
role in the recolonization processes than the Iberian and
Balkan peninsulas, probably on account of the Alps being
a greater physical barrier to the dispersal of individuals
(Hewitt 2000). A wider sampling in Iberia and in the Balkans
will be necessary to identify which refugium area contributed
most to the present gene pool of the European wild boar.
Similarly, more locations throughout Europe should be
screened for the presence of E2 haplotypes, as to exclude
that they occur outside Italy at low frequency.

Domestication and hybridization with domestic pigs

Wild boars and domestic pigs share the most common
mtDNA haplotypes and microsatellite alleles, and the
population tree (Fig. 4) only weakly resolves the two groups.
Also the Bayesian clustering analysis confirms that wild
and domestic forms are not more divergent than other
pairs of wild boar populations. It seems therefore that the
differentiation from the wild boar during the domestication,
remarkable at morphological traits and thus probably also
at their genetic determinants, was not accompanied by a
strong founder effect. As already suggested in relation to
other domestication events which implied a long co-existence
between the domestic and the wild forms (e.g. dog and
cattle), occasional and/or deliberate hybridizations could
have played a role in reducing their genetic divergence
(Vilà et al. 2005; Beja-Pereira et al. 2006). A fraction between
5% and 10% of the wild boar individuals we analysed shows
the effects of pig introgression, but the global contribution
of pig genomes in the wild populations is clearly lower (as
supported by the population analysis). Remarkably, we
even found wild boar individuals in Southern Italy with
Asian pig mtDNA, usually observed in some ameliorated
European breeds crossbred with Asian pigs (Giuffra et al.
2000). This evidence is consistent with the observation
by Fang et al. (2006), who assayed an approximately 10-
fold lower frequency of Asian haplotypes in wild boar
populations than in domestic breeds in Europe (3% vs.
30%). This result supports the view that some levels of
hybridization between wild boars and domestic pigs
occurred in the past and possibly still occur today.

Domestication: the origin of European breeds

The similarity between European pig breeds and wild
boars, when considered in connection with the finding that
Middle Eastern mtDNA lineages are not observed in
European pig breeds (Larson et al. 2005), unequivocally
suggests that modern breeds in Europe descend from local
wild populations. Additionally, the population tree and
the Bayesian inference of population clustering based on
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nuclear markers indicate that the wild boar population to
be most closely related to the pig is located in northern
France. This result is compatible with the hypothesis of
Larson et al. (2005, 2007) based on modern and ancient
mtDNA sequences, whereby Central Europe was an
important domestication centre. A second domestication
centre for the European breeds was actually proposed by
Larson et al. (2005) to be located in Southern Europe, and
more specifically in mainland Italy. This hypothesis,
although intriguing, was supported only by two museum
Sardinian specimens with possible feral origin showing E2
mtDNA sequences. Similarly, Larson et al. (2007) found two
Bronze Age Sardinian individuals morphologically classified
as ‘domestic/feral’ showing E2 sequences, although all
ancient Italian samples firmly attributed to domestic
pigs had European E1 haplotypes. In our analysis at both
mtDNA and nuclear markers, we do not find any specific
relationship between Italian pigs and Italian wild boars,
and no E2 haplotype is found in the 47 pigs belonging to
the five local breeds we analysed. Although the pattern of
genetic variation in the Italian breeds suggests a different
demographic history from that of other European breeds
(no signs of demographic expansion are detected), our data
seem to exclude an independent domestication event in
Italy, or, at least, that pigs possibly domesticated in Italy
have left descendants in modern breeds.

Overhunting and demographic decline

The genetic impact of the demographic decline that affected
several wild boar populations in Europe during the last
two centuries seems to be extremely limited, if any.

In general, the level of genetic variations at the mtDNA
sequences in the whole data set is within the range observed
in other ungulate populations (Vernesi et al. 2002; Feulner
et al. 2004; Randi et al. 2004). The average microsatellite
heterozygosity (0.66) is only slightly lower than the average
value observed in 14 non-endangered species (0.70) and
much higher than the average value of 0.41 found across 14
threatened taxa (Frankham et al. 2004). The genetic variation,
as expected in nonpanmictic species, is lower within single
localities, with large differences between samples especially
at the mtDNA region. This is probably a consequence of the
increase of drift effects due to the smaller effective population
sizes at this marker, and possibly this is also related to
our small sample sizes. We note however that the levels
of variation are relatively high almost everywhere, also
within samples, with only two restricted groups in as many
regional parks (ISrp and IMrp) and one sample with an
acknowledged history of recent recolonization (IGor),
having very low variation both at mitochondrial and
microsatellite loci.

More specifically, the mismatch analysis and two neutrality
tests applied to mtDNA sequences are all indicative of

either stability or expansion, and a specific method
developed to identify a bottleneck using microsatellite
markers does not reveal the deviation expected in case of
demographic decline. In other words, both the levels and
the patterns of diversity observed at mtDNA sequences
and microsatellites are consistent with the idea that the
population size and distribution range contractions did not
affect the overall genetic variability.

Recent expansions and translocations

The possibility to detect the genetic effects of the rapid
growth occurred in the last 50 years in several regions is
questionable. Provided that a few generations of expansion
are not sufficient to accumulate enough mutations in the
gene genealogy, to capture statistically the reduced drift
effects which are typical of this process is very difficult.
However, it is interesting to note that a first attempt to
identify these effects using an approximate Bayesian
computation (ABC) approach (Beaumont et al. 2002), which
can be used to model complex demographic processes,
suggests that a large growth rate occurred in the last 10–20
generations and was larger in Central Italy than anywhere
else in Europe (results not shown). Therefore a tentative
conclusion would be that Italy still preserves the preglaciation
diversity, which was not severely affected by the decline
occurred from the Middle Ages until the end of World
War II, and was recently frozen by the modern expansion.

As for the translocation events, it was suggested that
poorly documented and usually uncontrolled restocking
plans drastically affected genetic variation in Central and
Southern Italy, and also speeded up the recent expansion
process (Randi 2005; Apollonio et al. in press). Since trans-
locations were carried out using also animals from Central
Europe, this might have artificially contributed to the higher
genetic variation observed in Italy. However, in agreement
with Vernesi et al. (2003), we can exclude a major impact of
such human-mediated migrations. If this phenomenon
were extensive, we would have observed (i) the clustering
of some Central and Southern Italian samples with some
Central European groups; (ii) the presence of inferred
clusters (in the Bayesian analysis) shared by some Central
and Southern Italian and Central European groups; (iii) a
large proportion of individuals from Central and Southern
Italy assigned to other European populations. None of these
predictions is met by our genetic analyses, and only a
limited fraction (7%) of individuals sampled in Italy have
significant proportions of their genomes that can be related
to wild boar populations abroad. In addition, the plausible
hypothesis that the native boars in Italy had E2 haplotypes,
while E1 haplotypes were introduced by recent translocations
of wild boars from Central Europe is contradicted by the
fact that the variation patterns of E1 sequences in Italy and
in the rest of Europe are different. We therefore conclude
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that restocking from Central Europe had a limited genetic
impact and an accordingly a marginal role in the recovery
of the Italian population.

Conclusions and management implications

In conclusion, the most important event in shaping the
observed pattern of diversity seems to have been the last
glaciation, which was followed by a sudden demographic
and spatial expansion from one or more southern refugia.
The genetic signature of more recent processes, which were
mostly related to human activities, can be detected but it
appears marginal. Clearly, a wider sampling of European
populations, including several locations in the Iberian
Peninsula and in the Balkans, is necessary to better clarify
postglacial dynamics. However, our data point to a single
area of discontinuity which corresponds to the Alps.
Wild boars sampled south of this chain show, indeed,
higher levels of overall genetic variation, a private mtDNA
haplogroup and endemic diversity at microsatellite loci.

The wild boar is a rather invasive species, with a relevant
impact on biodiversity, agriculture and livestock, and it is
also of large interest for hunters. Therefore, it is important
to consider the implications of our results for the manage-
ment of this species. We believe that (i) Italian populations
represent a reservoir of genetic diversity in Europe which
should be preserved; for example, following the arguments
in Petit et al. (1998), in the eventual case of extinction of the
wild boar in Italy, the reduction of nuclear allelic richness
would be about twice as much as in the case of the simul-
taneous extinction in five other European regions (11%
compared to 6%), and a high divergent mtDNA clade would
be lost; however, since almost all the Italian groups are
genetically very similar, and even documented demographic
reductions did not affect significantly the genetic variation,
hunting is still recommended to reduce the population size
in some areas; (ii) animals should not be translocated from
one European region to another, especially across the Alps;
even though the level of differentiation is probably not
enough to maintain the current subdivision into subspecies,
some level of local adaptation is expected and should not
be compromised by hybridization; accidental escapes
from wild boar farms should also be prevented for the same
reason; (iii) artificial crossbreeding with domestic pigs
should be avoided and genetic controls in wild boar farms
should be enforced. A different matter are those situations
where the genetic exchange between wild and domestic
pigs has a historical background, due to the long-lasting
practice to rear pigs in a natural state (e.g. in Sardinia).
In these cases, the present genetic identity of the wild
population is influenced by the prolonged gene flow
between the two forms, and thus, in absence of significant
introgressions from other areas, they can be referred to as
a joint evolutionary unit.
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(Gorizia, Italy), SCot (El Coto, Spain), FHam (Haute Marne,
France), ADif (Austria, different areas), PDif (Poland, different
areas), HDif (Hungary, different areas). The following abbreviations

are used for domestic pig breeds: Pig 1 (Cinta Senese), Pig 2 (Sarda),
Pig 3 (Calabrese), Pig 4 (Casertana) and Pig 5 (Nera Siciliana).

Table S2 List of the 804 Sus scrofa mitochondrial control region
sequences downloaded from GenBank or obtained by the authors
which were used in the study.

This material is available as part of the online article from:
http://www.blackwell-synergy.com/doi/abs/
10.1111/j.1365-294X.2008.03703.x
(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the
content or functionality of any supplementary materials supplied
by the authors. Any queries (other than missing material) should
be directed to the corresponding author for the article.

39 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-294X.2008.03703.x


 

 

 

 

 

 

SSEECCOONNDD  PPAARRTT  

 

Social structure in a wild boar population  

 

 

 

 

 

 

 

 

 

 

 

40 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

41 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

CHAPTER II 

 

Non-kin association in wild boar social units 

 

 

 

 

 

 

 

 

 

 

42 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

43 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

 

 

Non-kin association in wild boar social units 

 

 

Laura IACOLINA, Massimo SCANDURA, Paolo BONGI and Marco APOLLONIO 

 

Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via Muroni 

25, I-07100 Sassari, Italy. 

 

 

Submitted to Journal of Mammalogy 

 

 

 

 

 

44 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

45 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

ABSTRACT 

We investigated the social organization of wild boar (Sus scrofa) using genetic and spatial data 

from a study population in Tuscany, Italy. In total 120 wild boars of different sexes and age 

classes were captured and monitored from 2002 to 2006. All of them were genetically analysed 

by using 10 polymorphic microsatellites (He = 0.693, k = 6.6) and a matrix of pairwise 

relatedness was calculated. In addition, a reference sample of fully related individuals was 

created by genotyping 11 sows and their foetuses (n = 56). Spatial data were gathered for 65 

animals which had been fitted with either radiocollars or ear transmitters. Sixteen social units 

were identified by capture data and confirmed by observations and telemetry. A correlation 

between inter-individual spatial distance and relatedness was observed only in summer-early 

autumn and seemed to be associated to the presence of piglets. The prediction of 

matrilinearity in wild boar social units was not confirmed, as a high proportion of unrelated 

boars was observed within groups. Aggregations of unrelated adult sows (with their litter) and 

unrelated yearlings were detected in the study population. The high turn-over rate of the 

population due to human-caused mortality seems to be the main factor responsible for this 

altered social structure. Accordingly, the observed social organization would turn out from 

grouping of unrelated survivors, that is promoted by the need to cope with predation risk by 

wolves. 

 

Keywords: genetic relatedness, microsatellites, social structure, Sus scrofa, wild boar. 
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INTRODUCTION 

Gene dynamics within a population are strongly influenced by breeding system, social 

structure and dispersal patterns (Apollonio and Hartl 1993, Chepko-Sade and Tang Halpin 

1987, Storz 1999). Polygynous breeding and female philopatry are the rule in mammals, and a 

huge variation can be observed in their social structures, ranging from primarily solitary to 

highly social ones (Eisenberg and Kleiman 1983). Social systems may also differ from 

population to population, as a response to different ecological constraints and management 

practices (Lott 1991, Pope 1998). In any case, this variation has a profound impact on the 

genetic features of populations (Dobson 1998, Storz 1999). Conversely, the study of the 

genetic structure of a population at a fine scale can prove helpful in describing its social 

organization (Sugg et al. 1996). In particular, the knowledge of the genetic relationships 

between individuals in a population can disclose hidden social interactions which are 

important to fully understand the behavioural ecology of the species (e.g. non-kin based 

cooperation, Blundell et al. 2004).  

The application of molecular techniques provides a tool to establish kin relationships 

within a population, thus enabling one to test multiple hypotheses in relation to the spatial and 

social organization of the species under study. Molecular data have revealed close spatial 

associations among kin in several mammal species, including Florida black bear (Ursus 

americanus floridanus, Moyer et al. 2006), raccoon (Procyon lotor, Ratnayeke et al. 2002), grey 

mouse lemur (Microcebus murinus, Wimmer et al. 2002) and African lion (Panthera leo, Spong and 

Creel 2004). However, the hypothesis that relatedness influences the spatial organization was 

not always confirmed, like in the studies on snowshoe hare (Lepus americanus, Burton and 

Krebs 2003), white-tailed deer (Odocoileus virginianus, Comer et al. 2005), and bobcat (Lynx rufus, 

Janečka et al. 2006).  

The wild boar, Sus scrofa, is an important wildlife species, in both economical and 

ecological terms. Its widespread recovery across Europe during the last 50 years has raised 

concerns about the management of this species, which is considered a pest by some and a 

resource by others. Effective management strategies should take into account several aspects 

of this species' biology, its social behaviour being one of the most important.  

The social organization of wild boar is centered around philopatric adult females, which are 

facultative cooperative breeders. According to Briedermann (1986), the basic social unit is a 

matrilineal group, with one or more related sows, and one or more cohorts of offspring. After 

weaning, most females stay with their mothers, and only about 20% of yearling females leave 
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the natal group and disperse (Kaminski et al. 2005). Once yearling females have achieved the 

appropriate growth condition, they are likely to reproduce while still in the social group with 

their mother (Kaminski et al. 2005). However, genealogical relationships in female groups 

have been poorly investigated thus far and deviations from this commonly accepted scheme 

have been rarely documented (see Gabor et al. 1999). 

Female wild boars typically maintain long-term fidelity to relatively small home ranges 

(Spitz and Janeau 1990), and a high percentage of adjacent females exhibit overlapping home 

ranges (Boitani et al. 1994). Accordingly, one would expect overlapping home ranges to reflect 

a common female lineage, and genetic relatedness should be inversely correlated with the 

spatial distance between individuals. 

In comparison to other ungulates, wild boar are characterized by several peculiarities 

such as very high reproductive output (3-6 piglets per litter), early reproduction in females, 

and a weak mother-offspring bond (Carranza 1996, Cousse et al. 1994, Kaminski et al. 2005). 

These features obviously affect their social structure, influencing both the size and the 

composition of social groups, and the duration of inter-individual associations. In addition, 

the organization of wild boar groups can vary temporally, with fissions into subgroups and 

fusions of subgroups occurring frequently in a population (Gabor et al. 1999, Kaminski et al. 

2005). Importantly, however, the role of demographic and extrinsic factors (e.g. hunting) 

possibly affecting both the composition and the stability of social groups has not been 

systematically investigated.  

The primary objective of this study was to evaluate the nature of wild boar associations in 

relation to the genetic relatedness among individuals. We first verified the correlation between 

geographic and genetic distance among individuals in a population, and then considered the 

spatial behavior of social units in relation to their composition and the intra-group degree of 

relatedness. Specifically, we addressed the following questions: Is the geographic distance 

between individuals inversely correlated to their genetic relatedness? Is genetic relatedness 

higher for individuals belonging to the same social unit than for individuals belonging to 

different social units? And, are all individuals in a social group relatives? 

 

MATERIALS AND METHODS 

Study area. – The study was carried out in the Alpe di Catenaia, a 12,000-ha 

mountainous area along the Apennines in Tuscany, Italy (43°48' N, 11°49' E). The area 

includes a natural reserve (2730 ha) and nearby zones which are open to hunting (Fig. 1). 
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Elevation ranges from 490 to 1414 m a.s.l. in the Alpe di Catenaia, and the climate is 

temperate, with hot and dry summers, and cold, rainy winters. Most of the study area (85%) is 

covered by forests, while the remaining 15% consists of scrubland, cultivated areas, orchard, 

vineyard, olive grove and human settlements. The only other wild ungulate species in the area 

was roe deer (Capreolus capreolus), and wolves (Canis lupus) were the only predators. Also, wild 

boar represented the staple prey item for wolves in this area (Mattioli et al. 1995, Mattioli et al. 

2004), and a wolf pack of 5–6 individuals established its territory and maintained a presence in 

the area throughout the study period.  

The wild boar is a game species which is intensively hunted in Tuscany. Outside the 

protected area of the natural reserve, wild boars are managed by local hunters. Drive hunts 

with dogs are conducted from September to January, when 300-900 animals are legally killed 

in the area each year. 

Animal captures, radiotracking and group definition. – This study was carried out from spring 

2002 to winter 2005/2006. Wild boars were captured by cage traps baited with maize , except 

in February-March, when they were captured using a vertical drop net. Cage traps allowed for 

the simultaneous capture of up to 9 individuals per capture event. Animals were sexed and 

classified into one of 3 age classes: piglets (from birth to about 12 months; hereinafter referred 

to as PGL), yearlings (12 to 24 months old; YRL) or adults (>24 months; AD). Upon capture 

individuals were blindfolded, fitted with ear tags (Allflex, Northfield, Minnesota), weighed, 

measured, and aged by teeth eruption and wear patterns (Bridermann 1986). Zoletil® (10 ml / 

10 kg) was used to immobilize relatively large animals (≥35 kg). Hair samples for genetic 

analyses were collected and stored in plastic envelopes at –20°C. Sixty-five wild boars were 

radiocollared. Thirty-one animals (≥ 30 kg) were fitted with TXV-10 radiocollars (Televilt, 

Lindesberg, Sweden), twenty-four animals (< 30 kg) were fitted with TXP-R ear transmitters 

(Televilt). Both types of transmitters ranged on 151 MHz. The procedures we used in this 

work conform to all relevant Italian wildlife and animal welfare legislation. 

We calculated the locations of radiocollared animals by triangulation from three 

different reference points (White and Garrott 1990). We collected a minimum of 8 

locations/animal/month (range 8 to 14). Locations were distributed uniformly over the day 

(discontinuous telemetry, Swihart and Slade 1985), with consecutive positions separated by ≥ 

12 hours. We plotted all locations onto a 1:10,000 digital map of the study area. We estimated 

the accuracy of locations by locating test transmitters which had been placed in different 

habitats within the study area (Harris et al. 1990). Error for positions was in the range of ± 

100 m for fair signals within the study area.  
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Genetic analysis. – One hundred and twenty captured wild boars were sampled for hair 

(n = 99) or tissue (n = 21) for genetic analyses. The 21 tissue samples were obtained from 

marked animals killed by hunters, or animals found dead in the study area. We also collected 

tissue reference samples from 11 pregnant sows killed during the hunting season and their 

fetuses (from 4 to 6 per female). Total genomic DNA was extracted using GenElute 

Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich, St.Louis, Missouri) for tissue 

samples and Instagene Matrix (Bio-Rad, Hercules, California) for hair samples and kept at –

20°C. 

All individual animals were typed by a panel of 10 polymorphic microsatellites selected 

for the analysis: s090, s155, sw24, sw122, sw461, sw2021, sw2492, sw2496, sw2532 and IGF1 

(details at http://www.thearkdb.org). Each polymerase chain reaction (PCR) was performed 

in a 10-µL reaction volume, containing 3 µL of DNA solution, 0.5 U of Taq DNA polymerase 

(Euroclone), 1 x PCR buffer (Euroclone), 2.5 mM MgCl2, 100 µM of each dNTP and 2 pmol 

of each primer. The forward primer of each pair was labelled with an ABI fluorescent dye (6-

FAM, HEX or TET). The amplification profile was set up with an initial step of denaturation 

at 95 °C for 3 min, followed by 35 cycles of 92 °C for 45 s, Ta (52-65°C) for 45 s, and 72 °C 

for 30 s. A further extension step of 72 °C for 10 min concluded the reaction. PCR-amplified 

microsatellite alleles were sized using capillary electrophoresis in an ABI PRISM 3100-Avant 

automatic sequencer (Applied Biosystems, Foster City, California). The GENEMAPPER 

software (Applied Biosystems) was used to analyse electrophoretic data. 

Data analysis. – Software program RANGES 6 (Kenward et al. 2003) was used to 

estimate monthly home ranges based on the 95% minimum convex polygon (MCP) method 

(Southwood 1966). MCP home range was preferred over the Kernel method because of the 

limited number of fixes available for animals each month (Kernohan et al. 2001). However, in 

calculating home range centroids from fix locations, the Kernel method was preferred over 

alternative methods (harmonic or arithmetic mean), because it relies on locations density.  

Individual wild boar were partitioned into social units according to capture data, which 

were subsequently confirmed by observations and telemetry. We assumed that individuals 

captured together in the same trap or moving together when caught in the nets were part of a 

social unit. We took into account only those associations which were confirmed by visual 

observations or telemetry data during the first month following the animals’ capture. In order 

to confirm subsequent groupings, we evaluated the concurrence and the distribution of 

locations of each pair of individuals over one month. Accordingly, we assumed that 2 

individual wild boar were associated in a social unit during a specific month when >50% of 
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their locations during a 2 hr time period were closer than 500 m. The occurrence and 

composition of each social unit was checked each month from July 2002 to February 2006. 

However, only data referred to the period April 2003 – March 2005 were used in our 

calculations, since this was the time span during which we had a fairly large sample. Fix 

distributions and home range overlaps were visualized in ARCVIEW GIS 3.2 (ESRI, Redlands, 

California). 

We evaluated the level of genetic variability of the population based on observed 

heterozygosity (Ho) and expected heterozygosities (He), which were estimated by GENALEX 6 

(Peakall and Smouse, 2005). GENEPOP 3.2 (Raymond and Rousset 1995) was used to estimate 

FIS (inbreeding coefficient, ranging between -1 and 1) and to test loci for Hardy-Weinberg 

(HWE) and linkage equilibrium (LE). The sequential Bonferroni correction was applied to 

correct significance thresholds in case of multiple tests (Rice 1989).  

We used GENALEX to calculate a matrix of pairwise relatedness for all the sampled 

individuals in the population. As coefficient of relatedness, we chose the unbiased rxy statistics 

introduced by Queller and Goodnight (1989). Pairwise rxy values range from –1 to +1, with 

zero indicating the relatedness in a random draw of alleles from the population. Theoretically, 

in a randomly mating population a relatedness value of 0.5 is expected for parent-offspring 

and full siblings. Actually, deviations from such expectation are common and this value may 

vary considerably (Queller and Goodnight 1989). The relatedness matrix was calculated for 

the data set including all available genotypes (n = 120). In addition, we obtained an empirical 

data set of fully related individuals (parent-offspring and full-sibs), by genotyping 11 sows 

killed during the hunting season, together with their foetuses (4-6 per sow, n = 56). The 

distribution of rxy values of these ‘true’ family groups (n = 163 comparisons) was used as 

reference.  

Our a priori prediction was that the geographic distance between individuals in the 

population would be inversely proportional to their genetic distance, based on the idea that 

closely related animals would either belong to the same social unit or occupy home ranges in 

relatively closer proximity than more distantly related animals. We tested this hypothesis by 

estimating the correlation between pairwise relatedness values and spatial distances between 

the home range centroids in our sample of radiotagged animals (n = 65). In order to account 

for the lack of independence among pairwise values, we performed a Mantel test for matrix 

correspondence in GENALEX, testing significance of the correlation coefficient by 9,999 

random permutations (Smouse et al. 1986), and applied Bonferroni correction. Because piglets 

typically move in close association with their mothers during their first year of life 
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(Bridermann 1986), the inclusion of piglets in this analysis may obscure the effect of 

relatedness in the post-weaning establishment of individual home ranges. Therefore, the 

Mantel test was repeated after removing from the matrix all the comparisons which included 

piglets. 

Moreover, we assessed the degree of relatedness between all the members of each social unit 

identified by field data. Accordingly, we classified each pairwise interaction over a monitored 

period into either "group", when the two individuals joined the same social unit for at least 

one month, or "non-group", when the two individuals were never detected in the same social 

unit. We compared the two corresponding relatedness distributions between each other and to 

the reference sample, in order to evaluate the deviation from a state of full-relatedness (i.e. 

from a theoretic rxy value of 0.5). Finally, we explored levels of relatedness within groups 

including adult females, by comparing PGL-FAD, YRL-FAD, and FAD-FAD associations 

with those within reference families (sows + foetuses). Likewise, we evaluated the possible 

composition of groups of subadults by comparing the relatedness in YRL-YRL associations 

with those obtained for PGL-PGL, and for the reference true siblings (fetuses from the same 

sow). Two-sample randomization tests (10,000 iterations) were used in POPTOOLS 2.7.5 

(Hood 2006) to test for differences between means. Descriptive statistics and graphs were 

performed using SPSS v. 13.0 (SPSS Inc.). 

We finally used the program KINGROUP 2 (Konovalov et al. 2004) to test different hypotheses 

regarding the relationship between pairs of adult females. The program uses a simulation 

routine to calculate a ratio between the likelihoods associated to two specific alternative 

hypothesis (e.g. full-sibs versus unrelated). Using allele frequencies in the real population, 

KINGROUP generates simulated distributions of rxy for each of the kinship categories 

corresponding to the null hypothesis (e.g. full-sibs) and the primary hypothesis (e.g. unrelated). 

From these distributions, it calculates the confidence threshold of the likelihood ratio (i.e. the 

values needed to reject the null hypothesis). This method allowed to confidently assess kinship 

between sows in a group.  

 

RESULTS 

Sample composition and spatial data. – We captured a total of 120 wild boars, 65 of which were 

fitted with radiotransmitters and radiotracked between 2002 and 2006. A total of 16 social 

units were identified in our sample on the basis of capture and spatial associations. Mortality 

from hunting and poaching was high and caused 86% of the deaths of our study animals. 

Annual mortality amounted to 47% for adults, 75% for yearlings and 48% for piglets 
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(mortality in the first two months of life was not considered because very young piglets could 

not be radiotagged). Consequently, each single wild boar was monitored for an average of 8.6 

months. 

In the two-year period (April 2003 – March 2005), the average monthly locations of each 

radiocollared individual were 8.3 (± 2.3 SD) and a total of 4,546 radiolocations were obtained.  

The composition of our sample in the first year (2003) differed markedly from that in the 

second year (2004), especially in relation to the proportion of juveniles, which dropped from 

an average of 50% of the sample in 2003 to only 8% in 2004. Because of this difference we 

treated the 2 years separately in the statistical analysis. Monthly home ranges differed between 

years as well, averaging 187.1 ha (209.6 SD, standard deviation) in 2003 and 50.7 ha (65.1 SD) 

in 2004. Similarly, the mean overlap between home ranges was twice as high in 2003 

compared to 2004 (30.0% vs. 15.6%). Descriptive data of the temporal (monthly) variation in 

the sample composition and spatial behaviour are shown in Figure 2.  

Genetic variation. – A total of 66 different alleles were found at the analysed loci (min 3, 

max 12 per locus, k = 6.6). Average Ho and He were similar, amounting respectively to 0.688 

and 0.693. The overall FIS in the population was very close to zero (0.006). The population did 

not show any significant deviation from HWE, both at single loci and overall (Fisher's 

method, P = 0.377), while linkage disequilibrium resulted only for three (out of 45) loci 

combinations (sw2532-sw2496, s090-sw2496, sw122-sw2532). However, each of these 

markers was mapped in a different chromosome, so that physical linkage could be excluded. 

Accordingly, in the statistical analyses, we assumed that alleles at different loci were 

independent. 

The coefficient of relatedness in our sample of 120 wild boars averaged -0.010 (± 

0.209 SD). The reference sample represented by 11 sows and their litters (foetuses) provided a 

mean relatedness of 0.599 (± 0.130 SD), slightly higher than the value of 0.5 which is 

theoretically expected for comparisons between first-degree relatives (parent-offspring and 

full-sibs).  

Relatedness, spatial patterns and social units. – The correlation between spatial distance and 

genetic relatedness, as resulting from the Mantel test, fluctuated during the study period (Table 

1), proving significantly negative only in summer and autumn (July-October) 2003. This could 

be related to the piglets' presence, given that no correlation was observed in 2004 when the 

sample composition was biased towards subadults and adults (Fig. 2). Moreover, the repetition 
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of this analysis without piglets resulted in a complete lack of significance during the 2-year 

study period.  

The hypothesis that individuals belonging to the same social unit were more related than non-

associated individuals was confirmed. The randomization test showed a significantly higher 

relatedness among individuals of the same social unit (P<0.001), although the width of the 

range suggests that unrelated individuals can group together (Fig. 3). In fact, intra-group 

comparisons differed from the reference sample (P<0.001), thus suggesting a deviation from 

the full-relatedness hypothesis. 

As regards the type of association within putative matrilineal social units, YRL-FAD 

associations showed the highest levels of relatedness, followed by PGL-FAD and FAD-FAD 

(Fig. 4). The relatedness between adult females in a group was significantly lower than the 

relatedness observed in YRL-FAD (P=0.017) and PGL-FAD (P=0.026) associations, but each 

of them significantly differs from the distribution observed in the reference families (all 

P<0.001). Similarly, pairs of yearlings (YRL-YRL) showed a low average level of relatedness 

when compared to PGL-PGL associations and to control sibling pairs (Fig. 5), thus deviating 

from the expectation of sibship. The average relatedness of FAD-FAD dyads was equal to 

0.082 ± 0.155 (mean ± SD). The likelihood analysis with KINGROUP allowed to confidently 

exclude that 5 out of 9 pairs were represented by close relatives (rxy ranging between -0.212 

and 0.140). Indeed, for all of them, the null hypotheses of full-sibs, half-sibs and parent-

offspring could be rejected at a 95% confidence. Three pairs were found in association for less 

than 3 months (usually because of the death or signal loss of one female in the pair), while the 

other two dyads had resulted together for as long as 6 consecutive months. 

 

DISCUSSION 

Here we combined genetic and radiotelemetry data with the aim to test different hypotheses in 

relation to the wild boar social structure.  

Even in species with low behavioural plasticity, the social organization tends to vary under 

different ecological conditions (Lott 1991). Based on what was previously known for the 

behaviors of wild boar, we would expect social units in a population to be composed of 

relatives, and social units would have a higher chance of being surrounded by related than 

unrelated individuals. Because wild boar are social and only adult males are solitary, the overall 

spatial segregation among individuals can be predicted to correlate with genetic relatedness.  

We observed a negative correlation between geographic distance (i.e. distance between 

home-range centroids) and genetic relatedness only in summer and early autumn, i.e. during 

the period between parturition and weaning of juvenile wild boar. Based on previous studies 
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(Kaminski et al. 2005), this is also the period when the social affinity in groups is stronger, a 

common pattern for suids in general (Byers 1983, Somers et al. 1995). A remarkable difference 

was observed between years. In 2003 relatedness correlated significantly with distance in the 

period July – October only, whereas no correlation was observed during the following year. 

The most obvious explanation for the observed correlation in 2003 is that this pattern resulted 

from the higher number of piglets in social units at that time of the year, when they were 

strongly associated with their mothers. Such a difference could thus be related to the very 

small number of piglets in our samples during 2004 (Fig. 2), due to a low capture success. Yet, 

besides the role of piglets, we cannot exclude that the observed difference was caused by other 

ecological factors (e.g. food availability, climate, etc.). 

The overall weak and temporarily limited correlation between genetic and spatial 

distance does not fit a model of social structure where relatives tend to stay close even though 

they occasionally belong to different groups. A similar pattern was found in white-tailed deer 

(Comer et al. 2005), where the observed weak correlation between genetic relatedness and 

spatial association in does contradicted the 'rose-petal' hypothesis of social organization in this 

species (Porter et al. 1991). Comer at al. (2005) considered this apparent contradiction as a 

possible effect of heavy harvesting, as suggested by the altered age structure in the female 

population, that could have limited the occurrence of persistent and cohesive social groups. 

Hunting could also help explain the pattern observed in our study population, as suggested by 

the relatedness analyses within social units. 

Individuals in a group resulted to be more related than individuals that were never found in 

association. This result agrees with the expectation of matrilineal social units, although the 

divergence from the reference families suggests that low-related or unrelated individuals could 

also be found in association. When we evaluated the intra-group relatedness with respect to 

the age class of individuals, we obtained unexpected results. In particular, in 5 out of 9 cases, 

adult sows joining the same social unit were neither sisters, half-sisters nor mother-daughter. 

Furthermore, for each age class combination that we took into consideration, the range of 

relatedness values suggested the simultaneous presence of unrelated and fully related 

individuals. Thus, contrary to common expectation, associations of both unrelated adult sows 

and unrelated yearlings were frequent in our study population. The higher level of relatedness 

shown by the YRL-FAD with respect to FAD-FAD dyads (Fig. 4) suggested that the 

individuals remaining in association with adult females after their first year of age usually were 

the offspring of adult females in the group. The high number of piglets in a group implied that 

multiple litters of different sows were often associated. This could easily explain the low 

relatedness of PGL-FAD dyads when compared to the control mother-offspring groups. 
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The occurrence of non-kin associations within groups was reported for feral pigs in 

Texas (Emlen 1997, Gabor et al. 1999) but has never been demonstrated for European free-

living wild boars. Temporal associations of unrelated individuals can be accounted for by the 

possible benefits deriving from group living, beyond the fitness consequences of a kin-based 

cooperative behaviour (Griffin and West 2002). For instance, group living represents an 

effective anti-predator strategy (Hamilton 1971). Wolves are the most important natural 

predators of wild boar in Europe, where they basically select for young boars (Jędrzejewski et 

al. 2000, Mattioli et al. 1995). Adult wild boar are less vulnerable to wolf predation and benefit 

from group living less than young individuals (Mattioli et al. 1995). This could be a key factor 

explaining the solitary life of adult males. On the contrary, adult females also have to warrant 

protection for their litter. Therefore they might be urged by the presence of predators to join a 

group of other females, regardless of kinship. This could well be the case in our study area, 

where a wolf pack was stably present during data collection and it mainly relied on wild boar 

as a prey species (Apollonio and Mattioli 2006).  

In ungulates, grouping as a response to predation risk is quite common, especially 

when predators use cooperative hunting techniques (Creel and Winnie 2005, FitzGibbon 

1990, Lingle 2001). When prey groups mob predators as an anti-predator strategy, individuals 

have a higher chance to avoid predation when they form larger groups. This is for instance the 

behaviour adopted by mule deer against coyote attacks (Lingle 2001). Wild boar groups 

include adult sows, which, in presence of piglets, can react aggressively against predators 

(Heck and Raschke 1980). 

Also human activities are likely to influence the social structure of wild boars. Hunting 

was shown to affect both the social and spatial behaviour of wild boar, increasing social 

affinity (Kaminski et al. 2005) and inducing a variation of home range size, as well as 

temporary departures from traditional resting sites (Baubet et al. 1998, Maillard and Fournier 

1995, Sodeikat and Pohlmeyer 2002). These effects are more evident when drive hunting is 

practiced, as occurs in the surroundings of the Alpe di Catenaia protected area, as revealed by 

a parallel study on roe deer spatial patterns in the same area (Bongi et al. 2007).  

The study wild boar population was indeed characterized by an overall high mortality 

rate, mostly due to hunting and poaching (86% of deaths in our sample). Such losses modified 

the size and the composition of social units and, as a consequence, non-kin associations might 

have been formed so as to replace dead individuals and maintain the advantages of group 

living. This explanation would entail a high turn-over and a dynamic composition of social 

units, where the loss of one or more relatives is compensated by the acceptance of unrelated 
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individuals to the group. This process may be enhanced by the high proportion of sows killed 

during the hunting season in the study area (in a bag of 2648 kills, 31% were represented by 

subadult or adult sows, unpubl. data). In fact, unlike in other European countries (e.g. 

Germany), the Italian legislation allows hunters to kill adult sows.  

In addition to the above mentioned explanations, an average similarity which is lower 

than expected within a social unit can also be a consequence of multiple paternity. Indeed, 

when piglets in a litter have different fathers (i.e. they are half-sibs), the overall intra-litter 

relatedness will be lower than when they are full-sibs (i.e. a single father). The effect can be 

more pronounced when it involves different cohorts within the same social unit. However, 

observations of sows breeding with several males are poorly documented (Barrett 1978). In a 

recent study, Delgado et al. (2008) confirmed that this phenomenon may occur at low 

frequencies, detecting limited signs of multiple paternity in a wild boar population in Portugal. 

A preliminary study suggests that this is the case also in our study population (Iacolina et al. in 

prep.). 

Our results suggest that interactions between kin do not play an exclusive role in wild 

boar sociality. The matrilineal structure of social units in this species may thus exhibit 

exceptions under certain conditions. In our study area, the weak correlation between genetic 

relatedness and spatial distance, and the occurrence of unrelated adult females within a group 

suggest a frequent deviation from matrilinearity. We believe that the rearrangements of wild 

boar social groups were likely due to the combination of high human-caused mortality, and 

constant exposure to predation risk.  

Further studies are warranted to investigate the temporal and spatial dynamics of non-

kin associations, their occurrence under different conditions (e.g. hunting vs. non-hunting 

areas) and the role of predators as a driving force in promoting the group formation in wild 

boar. Finally, the presence of unrelated individual wild boar in a social unit opens a series of 

questions regarding the possible fitness benefits associated to cooperative breeding in this 

species.  
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TABLE 1. – Temporal variation (per month, April 2003 – March 2005) in the correlation between 
geographic distance and relatedness (Mantel test) in wild boars in the Alpe di Catenaia. Significant 
correlations, evaluated over 9,999 random permutations, are in bold (P < 0.00213; Bonferroni 
correction). a) Correlations computed including piglets, b) correlations computed excluding piglets.  

a) 

 

b) 

J F M A M J J A S O N D
R 0.241 0.306 0.367 0.395 0.292 0.352 0.508 -0.010 -0.113
p 0.068 0.085 0.037 0.023 0.075 0.047 0.014 0.522 0.436
R -0.150 -0.016 -0.031 0.025 -0.004 0.172 0.017 -0.009 -0.005 -0.117 -0.093 -0.180
p 0.436 0.536 0.437 0.360 0.543 0.039 0.355 0.532 0.548 0.190 0.284 0.190
R 0.145 0.225 0.225
p 0.249 0.221 0.215
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J F M A M J J A S O N D
R -0.070 0.009 -0.155 -0.235 -0.219 -0.260 -0.329 -0.167 -0.114
p 0.252 0.513 0.058 0.001 0.001 0.000 0.000 0.014 0.110
R -0.075 -0.052 -0.011 -0.050 -0.011 -0.166 -0.134 -0.076 -0.043 -0.005 -0.177 0.019
p 0.208 0.261 0.436 0.222 0.420 0.009 0.028 0.141 0.274 0.409 0.080 0.518
R -0.026 -0.154 0.403
p 0.376 0.299 0.128
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FIG. 1. – Study area in the Alpe di Catenaia, Arezzo, Italy. Borders of the natural reserve (hatched line) 
and location of cage traps used to capture wild boars (asterisks) are shown.  
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FIG. 2. – Sample variation and its spatial behaviour during the study period (April 2003 – March 2005) 

in the Alpe di Catenaia wild boar population: a) sample size; b) sample composition (AD - adults, YRL 

- yearlings, PGL - piglets); c) home range size; d) home range overlap. Home range size is shown as the 

mean (± SD) of all individual home ranges calculated by the MCP method using 95% of fix locations. 

Home range overlap refers to the average percentage of all pairwise overlaps between monthly 

individual home ranges. 
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FIG. 3. – Relatedness estimated distributions a) between wild boars joining the same social unit 
('Group'; n = 215 comparisons) and moving separately in the study area ('Non-group'; n = 1598); b) 
within wild boar social units for different age class associations. PGL – piglet, YRL – yearling, FAD – 
adult female. As refence, relatedness observed in 11 sow-foetuses families (n = 163) is reported. c) 
intra-class within wild boar social units (PGL – piglet, YRL – yearling). As reference, relatedness 
observed between littermates (foetuses, n = 118 comparisosn) is reported.P-values refer to two-sample 
randomization tests for differences between means (n = 10,000 iterations). 

 

a) 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

c) 

 

 

 

 

 

 

 

p<0.001 

P=0.01

P=0.02 P=0.233 

1.00 

0.50 

0.00 

-0.50 

P<0.001 P<0.001 
1.00 

0.50 

0.00 

-0.50 

P<0.001 

P<0.001 P<0.001 
1.00 

0.50 

 

0.00 

-0.50 

 

 

62 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

LITERATURE CITED 

APOLLONIO, M., AND G. B. HARTL 1993. Are biochemical-genetic variation and mating system 

related in large mammals? Acta Theriologica Suppl.2:175-185. 

APOLLONIO, M., AND L. MATTIOLI. 2006. The wolf in the Arezzo province, Italy. Editrice Le 

Balze, Montepulciano, Italy. 

BARRETT, R. H. 1978. The feral hog at Dye Creek Ranch, California. Hilgardia 46:283-355. 

BAUBET, E., S. BRANDT, AND C. TOUZEAU. 1998. Effet de la chasse sur les stratégies 

d'occupation de l'espace des sangliers (Sus scrofa). Analyses préliminaires. Gibier Faune Sauvage 

15:655-658. 

BLUNDELL, G.M., M. BEN-DAVID, P. GROVES, R. T. BOWYER, AND E. GEFFEN. 2004 Kinship 

and sociality in coastal river otters: are they related? Behavioural Ecology 15(5):705-714. 

BOITANI, L., L. MATTEI, D. NONIS, AND F. CORSI. 1994. Spatial and activity patterns of wild 

boars in Tuscany, Italy. Journal of Mammalogy 75:600-612. 

BONGI, P., S. GRIGNOLIO, S. CIUTI, AND M. APOLLONIO. 2007. Influence of hunting with 

dogs on roe deer spatial behaviour: differential responses according to sex and age classes. 

Hystrix, Italian Journal of Mammalogy (N.S.) 1, Suppl. 2007:238.  

BRIEDERMANN, L. 1986. Schwartzwild. Neumann-Neudamm ed. Berlin, Germany. 

BURTON, C., AND C. J. KREBS. 2003. Influence of relatedness on snowshoe hare spacing 

behavior. Journal of Mammalogy 84:1100-1111. 

BYERS, J. 1983. Social interactions of juvenile collared peccaries, Tayassu tajacu (Mammalia: 

Artiodactyla). Journal of Zoology, London 201:83-96. 

CARRANZA, J. 1996. Sexual selection for male body mass and the evolution of litter size in 

mammals. American Naturalist 148:81-100. 

CHEPKO-SADE, B. D., AND Z. TANG HALPIN (EDS.). 1987. Mammalian dispersal patterns: the 

effects of social structure on population genetics. The University of Chicago Press, Chicago, 

Illinois, USA. 

63 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



COMER, C. E., J. C. KILGO, G. J. D'ANGELO, T.C. GLENN, AND K. V. MILLER. 2005. Fine-scale 

genetic structure and social organization in female white-tailed deer. Journal of Wildlife 

Management 69:332-344. 

COUSSE, S., F. SPITZ, M. HEWISON, AND G. JANEAU. 1994. Use of space by juveniles in 

relation to their postnatal range, mother, and siblings: an example in the wild boar, Sus scrofa L. 

Canadian Journal of Zoology 72:1691-1694. 

CREEL, S., AND J. A. WINNIE. 2005. Responses of elk herd size to fine-scale spatial and 

temporal variation in the risk of predation by wolves. Animal Behaviour 69:1181-1189. 

DELGADO, R., P. FERNÁNDEZ-LLARIO, M. AZEVEDO, A. BEJA-PEREIRA, AND P. SANTOS. In 

press. Paternity assessment in free-ranging wild boar (Sus scrofa) – Are littermates full-sibs? 

Mammalian Biology. 

DOBSON, F.S. 1998. Social structure and gene dynamics in mammals. Journal of Mammalogy 

79:667-670. 

EISENBERG, J. F., AND D. G. KLEIMAN. 1983. Advances in the study of mammalian behavior. 

Special Publication, The American Society of Mammalogists, 7:1-753.  

EMLEN, S.T. 1997. Predicting family dynamics in social vertebrates. In Behavioural Ecology 

(Krebs, J.R. and Davies, N.B., eds), pp. 228–253, Blackwell Scientific. 

FITZGIBBON, C. D. 1990. Mixed-species grouping in Thomson's and Grant's gazelles: the 

antipredator benefits. Animal Behaviour 39:1116-1126. 

GABOR, T. M., E. C. HELLGREN, R. A. VAN DEN BUSSCHE, AND N. J. SILVY. 1999. 

Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid 

environment. Journal of Zoology 247:311-322. 

GRIFFIN, A. S., AND S. A. WEST. 2002. Kin selection: fact and fiction. Trends in Ecology and 

Evolution 17:15-21. 

HAMILTON, W. D. 1971. Geometry of the selfish herd. Journal of Theoretical Biology 31:295-

311. 

HARRIS, S., W. J. CRESSWELL, P. G. FORDE, W. J. TREWHELLA, T. WOOLLARD, AND S. WRAY. 

1990. Home-range analysis using radio-tracking data - a review of problems and techniques 

particularly as applied to the study of mammals. Mammal Review 20:97-123. 

64 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



HECK, L., AND G. RASCHKE. 1980. Die Wildsauen: Naturgeschichte, Ökologie, Hege und Jagd. 

Verlag Paul Parey, Hamburg, Germany. 

HOOD, G. M. 2006. PopTools version 2.7.5. Available on the internet. URL 

http://www.cse.csiro.au/poptools 

JANEČKA, J. E., T. L. BLANKENSHIP, D. H. HIRTH, M. E. TEWES, C. W. KILPATRICK, AND L. I. 

GRASSMAN JR. 2006. Kinship and social structure of bobcats (Lynx rufus) inferred from 

microsatellite and radio-telemetry data. Journal of Zoology 269(4):494-501. 

JĘDRZEJEWSKI, W., B. JĘDRZEJEWSKA, H. OKARMA, K. SCHMIDT, K. ZUB, AND M. MUSIANI. 

2000. Prey selection and predation by wolves in Białowieża primeval forest, Poland. Journal of 

Mammalogy 81(1): 197-212. 

KAMINSKI, G., S. BRANDT, E. BAUBET, AND C. BAUDOIN. 2005. Life-history patterns in female 

wild boars (Sus scrofa): mother-daughter postweaning associations. Canadian Journal of 

Zoology 83:474-480. 

KENWARD, S. E., A. B. SOUTH, AND S. S. WALLS. 2003. Ranges6 v. 1.2: for the analysis of 

tracking and location data. Anatrack Ltd. Wareham, UK.  

KERNOHAN, B. J., R. A. GITZEN, AND J. J. MILLSPAUGH. 2001. Analysis of animal space use 

and movements. Pp. 126-168 in Radio tracking and animal populations (J. J. Millspaugh and J. 

M. Marzluff, eds.). Academic Press, California, USA. 

KONOVALOV, D.A., C. MANNING, AND M.T., HENSHAW. 2004. KINGROUP: a program for 

kinship reconstruction and kin group assignments using genetic markers. Molecular Ecology 

Notes 4:779-782.  

LINGLE, S. 2001. Anti-predator strategies and grouping patterns in white-tailed deer and mule 

deer. 

Ethology 107:295-314. 

LOTT, D. F. 1991. Intraspecific variation in the social systems of vertebrates. Cambridge 

University Press, Cambridge. 

MAILLARD, D. AND P. FOURNIER. 1995. Effects of shooting with hounds on size of resting 

range of wild boar /Sus scrofa L.) groups in mediterranean habitat, Ibex, Journal of Mountain 

Ecology 3:102-107.  

65 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



MATTIOLI, L., M. APOLLONIO, V. MAZZARONE AND E. CENTOFANTI. 1995. Wolf food habits 

and wild ungulate availability in the Foreste Casentinesi National Park; Italy. Acta Theriologica 

40:387–402. 

MATTIOLI, L., C. CAPITANI, E. AVANZINELLI, I. BERTELLI, A. GAZZOLA, M. APOLLONIO. 

2004. Predation by wolves (Canis lupus) on roe deer (Capreolus capreolus) in north-eastern 

Apennine, Italy. Journal of Zoology, London, 2004. 264: p. 249-258. 

MOYER, M. A., J. W. MCCOWN, T. H. EASON, AND M. K. OLI. 2006. Does genetic relatedness 

influence space use pattern? A test on Florida black bears. Journal of Mammalogy 87:255-261.  

PEAKALL, R., AND P. E. SMOUSE. 2005. GenAlEx 6: Genetic Analysis in Excel. Population 

genetic software for teaching and research. Australian National University, Canberra, 

Australia. 

POPE, T. R. 1998. Effects of demographic change on group kin structure and gene dynamics 

of red howling monkey populations. Journal of Mammalogy 79:692-712. 

PORTER, W. F., N. E. MATHEWS, H. B. UNDERWOOD, R. W. SAGE, AND D. F. BEHREND. 1991. 

Social organization in deer: implications for localized management. Environmental 

Management 15:809-814. 

QUELLER, D. C., AND K. F. GOODNIGHT. 1989. Estimating relatedness using genetic markers. 

Evolution 43:258-275.  

RATNAYEKE, S., G. A. TUSKAN, AND M. R. PELTON. 2002. Genetic relatedness and female 

spatial organization in a solitary carnivore, the raccoon, Procyon lotor. Molecular Ecology 

11:1115-1124. 

RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (version 1.2): population genetics 

software for exact tests and ecumenicism. Journal of Heredity 86:248-249. 

RICE, WR. 1989. Analyzing tables of statistical tests. Evolution 43:223-225. 

SMOUSE, P. E., J. C. LONG, AND R. R. SOKAL. 1986. Multiple regression and correlation 

extensions of the Mantel test of matrix correspondence. Systematics Zoology 35:627-632. 

SODEIKAT, G., AND K. POHLMAYER. 2002. Temporary home range modifications of wild boar 

family groups (Sus scrofa L.) caused by drive hunts in Lower Saxony (Germany). Zeitschrift für 

Jagdwissenschaft. 48:161-166. 

66 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



SOMERS, M. J., A. E. RASA, AND B. L. PENZHORN. 1995. Group structure and social behaviour 

of warthogs, Phacochoerus aethiopicus. Acta Theriologica 40:257-281. 

SOUTHWOOD , T. R. E. 1966. Ecological Methods. Methuen Ed. London, UK. 

SPONG, G., S. CREEL. 2004. Effects of kinship on territorial conflicts among groups of lions, 

Panthera leo. Behavioural Ecology and Sociobiology 55:325-331. 

STORZ, J. F. 1999. Genetic consequences of mammalian social structure. Journal of 

Mammalogy 80:553-569. 

SUGG, D. W., R. K. CHESSER, F. S. DOBSON, AND J. L. HOOGLAN. 1996. Population genetics 

meets behavioral ecology. Trends in Ecology and Evolution 11:338-342. 

SWIHART, R. K., AND N. A. SLADE. 1985. Testing for independence of observation in animal 

movements. Ecology 66(4):1176-1184. 

WIMMER, B., D. TAUZT, AND P. M. KAPPELER. 2002. The genetic population structure of the 

gray mouse lemur (Microcebus murinus), a basal primate from Madagascar. Behavioral Ecology 

and Sociobiology 52:166-175.  

67 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

CHAPTER III 

 

High frequency of multiple fathering in Italian wild boar litters. 

 

 

 

 

 

 

 

 

 

 

68 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

69 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

 

 

High frequency of multiple fathering in Italian wild boar litters. 

 

Laura IACOLINA, Massimo SCANDURA, Nadia CAPPAI and Marco APOLLONIO 

 

Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via Muroni 

25, I-07100 Sassari, Italy. 

 

Manuscript 

 

 

 

 

 

70 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

71 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

ABSTRACT 

We documented the occurence of multipe paternity (MP) in a free ranging wild boar (Sus 

scrofa) population under heavy hunting pressure in Tuscany, Italy. Twelve families, constituted 

by a pregnant sow killed during the hunting season and her fetuses, were genetically analysed 

using ten polymorphic microsatellites. MP was inferred for six (50%) of the twelve analysed 

litters, both by studying Mendelian inheritance of alleles and by using a likelihood-based 

algorithm in the software COLONY. Multiple fathering involved litters of both adult and 

subadult sows. Our results confirm a previous evidence of MP in European wild boars, but 

they reveal that polyandry can become common in some populations. These new insights 

suggest that the emblematic ecological plasticity of the wild boar has a correspondence on its 

reproductive biology. We discussed mechanisms that can promote multiple mating in wild 

boar, with special reference to male-male competition and female (precopulatory and 

postcopulatory) mate choice. Our arguments prompt to study male spatial behavior during the 

mating season, to disclose mechanisms regulating male access to female groups during the 

estrus, together with a consideration of the possible role of strong hunting pressure.   

 

Keywords: mating systems, microsatellites, multiple paternity, Sus scrofa, wild boar. 
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INTRODUCTION 

Different breeding strategies are found in mammals, going from monogamy to 

extreme polygamy, and most of them involve little paternal care of offspring (Clutton-Brock 

1991). Because females are the sex investing most in reproduction, they are more choosy and 

may decide to mate with more than one male, if this behaviour entails fitness benefits (Trivers 

1972). On the other side, males are expected to maximize their matings but also to adopt pre- 

and post-copulatory strategies to prevent their partner from mating with other males, in order 

to keep their own reproductive success high. However, Isvaran and Clutton-Brock (2007) 

observed that in mammals, independently from the adopted breeding system, extra-group 

paternity is quite common. Even species that exhibit a monogamous behaviour can reveal the 

occurrence of extra-pair mating and litters can be sired by multiple males (Carmichael et al. 

2007; Clutton-Brock and Isvaran 2006; Crawford et al. 2008; Nielsen and Nielsen 2007; Sorin 

2004). Recently, several studies disclosed the occurrence of multiple paternity (MP) in 

mammalian species with different social behaviour, such as beaver (Castor canadensis, Crawford 

et al 2008), racoon (Procyon lotor, Nielsen and Nielsen 2007), arctic fox (Alopex lagopus, 

Carmichael et al 2007), white-tailed deer (Odocoileus virginianus, DeYoung et al. 2002, Sorin 

2004) and pronghorn antelope (Antilocapra americana, Carling et al. 2003). This was interpreted 

by the authors in terms of evolutionary benefits, as species with high levels of polyandry were 

found to have significantly lower rates of early reproductive failure and a larger litter size 

(Stockley 2003). 

The wild boar (Sus scrofa), when compared to other ungulates, is characterized by high 

reproductive performances. Sows can give birth to up to 10 piglets and can reproduce at the 

age of 8-9 months (Briedermann 1986). Matriarchal social groups are constituted by one or 

more adult females followed by one or more cohorts of their offspring (Kaminski et al. 2005). 

It was reported that sows in a group are facultative cooperative breeders, that can synchronise 

their estrus and mate with solitary adult males, joining the social groups during the breeding 

season (Dardaillon 1988). Estrus in a female last for 1.8 days on average (Henry 1968) and 

matings in a group are usually completed within 8 days (Briedermann 1986). Nevertheless, a 

temporal shift of the estrus may be observed in different social groups of the same area 

(Briedermann 1986). In October-November adult males begin to search actively for receptive 

females, and, after reaching a group of estrus sows, they start a courtship behaviour described 

in detail by Beuerle (1975). At this occasion more males can be interested in the same group of 

females, giving rise to competitive interactions. Depending on the level of dominance that is 

established during these interactions, one single or more than one male can mate with the 
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receptive females (Briedermann 1986). In the wild boar, each female can mate up to 4-5 times 

during the 2-days estrus period (Briedermann 1986), less than observed in the domestic pig 

(Xue et al. 1998). Therefore, even though it is difficult to document it by direct observation, 

one cannot exclude that different males can mate with the same female during the breeding 

season. Therefore, this species is a suitable candidate for MP.  

In agreement with this expectation, Aguilera-Reyes et al. (2006) showed MP to occur 

in the domestic form, proving that swine litters can be sired by up to 3 males. They 

investigated the reproductive success of three male pigs (two different pure-bred and one 

hybrid) after their successive mating with 18 sows. They found that the hybrid was the most 

successful male (i.e. sired most of the offspring), as it was preferentially chosen by females. 

Aguilera-Reyes et al. (2006) speculated that females favoured the male with the better genetic 

quality and that its high reproductive success could be explained in terms of female cryptic 

choice. Interestingly, they remarked the possible role of female-female contacts (e.g. pseudo-

mating) in determining the final fertilization success. Similar behavioural strategies and cryptic 

selection are likely to occur in the wild form too, as proved by Delgado et al (2008), who 

recently found MP to occur in a wild boar population in Portugal. In their study population, 

MP does not seem to be common as only one litter out of nine showed signs of MP, 

suggesting that mate-guarding by the dominant male could result effective in preventing MP.  

In a hunted wild boar population, in central Italy, we recently found an unexpected 

low degree of relatedness within social units (Iacolina et al. subm.). As main possible 

explanation we pointed to the high mortality rate, mostly due to hunting (Iacolina et al. 

subm.), that does not only affect the demographic structure of the population, but even the 

social system. Besides the presence of unrelated sows in some social units, we also found low 

levels of relatedness between piglet and subadults, that had been captured together or found in 

association during the study. We argued that the occurrence of MP in the population could be 

explored as a possible factor influencing kinship within groups. If confirmed, this 

interpretation would lead to new insights on the wild boar reproductive biology. 

Our goal in the present study was to prove the occurrence of MP in the wild boar 

study population of Alpe di Catenaia, Tuscany, Italy. We then discussed the meaning of this 

behaviour with respect to the demographic features of the population and to the ecological 

constraints of the area.   
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MATERIALS AND METHODS 

Study area. – Samples were collected in the Alpe di Catenaia, a 12,000-ha mountainous 

area along the Apennines in Tuscany, Italy (43°48' N, 11°49' E). Only the central part of the 

area is protected (2730 ha), while the nearby zones are open to hunting. Elevation ranges from 

490 to 1414 m a.s.l.. Climate is temperate, with hot and dry summers, and cold rainy winters. 

Most of the study area (85%) is covered by woods, while the remaining 15% consists of 

scrubland, cultivated areas, orchard, vineyard, olive grove and human settlements. The only 

other wild ungulate species in the area is roe deer (Capreolus capreolus). The wolf (Canis lupus) is 

the main natural predator of wild boars, that here represent the staple of its diet (Mattioli et al. 

1995, Mattioli et al. 2004). 

The wild boar is a game species which is intensively hunted in Tuscany. Outside the 

protected area wild boars are managed by local hunters, who carry out drive hunts with dogs 

from September to January. Approximately 600-1500 animals are legally killed every year in 

the area. 

Sample collection. – Samples had been collected in the period 2002-2007. Pregnant sows 

were examined by field necropsy. Each sow was weighted (dressed weight) and her age 

assessed according to teeth eruption and wear patterns (Bridermann 1986). Uteri were 

removed and stored until veterinary exam. Then fetuses were carefully extracted from each 

uterus, washed and a sample of each of them, such as a sample of the uterus itself, was stored 

in 96% ethanol until DNA extraction. 

For the analysis, we randomly selected twelve pregnant sows, that were analysed with 

their litters (from 4 to 6 fetuses per female, n = 61, Table 1). Four females were adults (> 24 

months) and eight were yearlings (12-24 months). The mean body weight was 71.7 ± 10.5 Kg 

for adult females and 55.5 ± 8.0 Kg for yearlings (overall mean 60.9 ± 11.6). The number of 

fetuses per litter was on average 5.1 ± 0.8 (4.7 ± 1.0 for adult and 5.2 ± 0.7 for yearling 

females). 

 Genetic analysis. – Total genomic DNA was extracted from tissue samples by using 

Sigma commercial kit GenElute Mammalian Genomic DNA miniprep (Sigma-Aldrich, 

St.Louis, Missouri). 

All the individuals were typed by a panel of 10 polymorphic microsatellites: s090, s155, 

sw24, sw122, sw461, sw2021, sw2492, sw2496, sw2532 and IGF1 (details at 

http://www.thearkdb.org). Each locus mapped in a different chromosome, so that physical 

linkage could be excluded. Accordingly, in the statistical analyses, we assumed the 
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independence of alleles among loci. Each polymerase chain reaction (PCR) was performed in 

a 10-µL reaction volume, containing 3 µL of DNA solution, 0.5 U of Taq DNA polymerase 

(Euroclone, Siziano, Italy), 1 x PCR buffer (Euroclone), 2.5 mM MgCl2, 100 µM of each 

dNTP and 2 pmol of each primer. The forward primer of each pair was labelled with an ABI 

fluorescent dye (6-FAM, HEX or TET). The amplification profile was set up with an initial 

step of denaturation at 95 °C for 3 min, followed by 35 cycles of 92 °C for 45 s, Ta (52-65°C) 

for 45 s, and 72 °C for 30 s. A further extension step of 72 °C for 10 min concluded the 

reaction. PCR-amplified microsatellite alleles were sized using capillary electrophoresis in an 

ABI PRISM 3100-Avant automatic sequencer (Applied Biosystems, Foster City, California). 

The GENEMAPPER software (Applied Biosystems) was used to analyse electrophoretic data, 

that were systematically double checked. 

All fetuses were sexed. When visual inspection was insufficient to establish their 

gender with certainty, molecular sex identification was performed by co-amplifying a SRY 

gene fragment (used primers: 5'-CATTGTGTGGTCTCGTGATC-3' and 5'-

AGTCTCTGTGCCTCCTCGAA-3', Richard et al. 1994) and a portion of the mitochondrial 

cytochrome B gene (L14841 and H15149, Kocher et al. 1989) as positive PCR control. 

Data analysis. – In order to evaluate the level of genetic variability of the population, 

observed (Ho) and expected heterozigosity (He) were estimated by MSTOOLS 3 (Park 2001) 

analysing samples together with a larger dataset of the same population (120 samples used for 

a previous study, Iacolina et al. subm.). GENEPOP 4.0 (Raymond and Rousset 1995) was used 

to estimate FIS and to test loci for Hardy-Weinberg equilibrium (HWE). 

The minimum number of fathers actually required to explain genotypes within a litter, 

whose mother was known, was calculated following two different methods. The first is based 

on simple Mendelian inheritance of codominant microsatellite alleles, whereby offspring 

inherit one allele per locus from each parent. In fact, we visually created a pool of non-

maternal alleles for each locus and determined how many fathers were required (at minimum) 

to explain the littermates genotypes. We conservatively interpreted as evidence of MP in a 

litter the case in which two or more loci contained overnumeral non-maternal alleles. The 

occurrence of >2 non-maternal alleles at a single locus was instead interpreted as possibly due 

to a germ-line mutation (if confirmed after a replicated genotyping).  

The second approach to detect evidences of MP relies on the use of COLONY 1.2 

(Wang 2004), a Fortran program implementing a maximum likelihood method to assign 

individuals sampled from a single generation of a population into full-sib families nested 

within half-sib families (colonies) using genetic data (codominant genetic markers). For the 
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analysis we used as population allele frequencies those obtained for the extended data set (n = 

193) and set the rate of both allelic drop out and other typing errors at each locus at the value 

of 0.02. After the first run the alleles supporting multiple siring or highlighted by the program 

as potentially mistyped were re-checked for trivial errors (typing, interpretation, etc.) and 

independently genotyped once again together with control samples. Finally, inconsistencies 

which could neither be attributed to genotyping errors nor to MP were interpreted as 

mutations. In order to check consistency across runs, COLONY analyses were repeated 10 

times with different seeding numbers, but leaving all other settings unmodified. In addition, 

we verified the potential effect of error rate by replicating COLONY analyses with different 

rates of allelic dropout and of other typing errors, according to the range reported in the 

literature for analysis of high-quality DNA samples (from 0.00 to 0.10, Baker et al. 2004; 

Hoffman and Amos 2005; Pompanon et al. 2005). 

 

RESULTS 

Variability in the selected set of markers was verified in the population. A total of 76 

different alleles were found (4-12 alleles per locus, k = 7.1). Average Ho and He were similar, 

amounting to 0.687 and 0.699 respectively. The overall FIS in the population was 0.016 and the 

population showed an overall slightly significant deviation from HWE (χ2 = 34.6, df = 20, P = 

0.022), apparently due to a single locus (sw1492, P =0.001). Proportion of missing data 

amounted to 1.4%. 

Minimum numbers of fathers required to explain offspring genotypes within a litter 

are shown in Table 2. Genetic data (number of different non-maternal alleles per locus) could 

support a number of different possible mating configurations, but the most parsimonious 

solution, consisting in the smallest number of possible fathers for each litter, was considered. 

It reveals that at least in 6 out of 12 families one father was not sufficient to explain the 

observed littermates’ genotypes. 

Results of COLONY analysis were consistent across replications. In fact, according to 

all COLONY runs, six litters were represented by a single group of full-sibs (i.e. one father), five 

litters were composed each by two nested groups of full-sibs within a cluster of half-sibs (i.e. 

two fathers), and in one case three groups of full-sibs were detected (i.e. three fathers, Table 

2). Results of the analysis were consistent even in presence of higher rates of genotyping 

errors. The outcome was indeed identical up to an error rate of 0.08. When accounting for an 
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error rate of 0.10 the number of monogamous families increased from six to eight, but MP 

was still required to explain genotypes of the remaining four litters.  

MP cases detected by COLONY matched with those resulting from Mendelian 

inheritance analysis. Cases of single and multiple siring had the same frequency in adult and 

yearling females (2 MPs out of 4 in adult and 4 MPs out of 8 in yearling sows). Furthermore, 

age (in month) and body weight of the mothers showed no appreciable effect on MP, as well 

as litter size (Mann-Whitney U-tests: age: U = 15.0, P = 0.617; body weight: U = 11.5, P = 

0.297; litter size: U = 16.0, P = 0.733).   

Considering the whole dataset a single possible mutation case, involving a fetus that 

did not show any maternal allele at a single locus, has been found, resulting in a mutation rate 

of 0.0016 gametes per generation. This is obviously a minimum rate, as mutations that do not 

result in the lack of a maternal allele, as well as mutations in the paternal line, would have not 

been detected. Finally, no evidence of null alleles was found at any of the ten microsatellites in 

the analysed families. 

 

DISCUSSION 

Multiple paternity was found at high frequency in the Alpe di Catenaia wild boar 

population in central Italy. Six out of twelve litters (50%) proved to have been sired by more 

than one boar. Considering that in our study MP was detected by a parsimony approach (e.g. 

two fathers with similar genotypes might have been interpreted as one single father), the actual 

degree of polyandry shown by females in the population can be still higher. On the other 

hand, we considered the possibility to have introduced an opposite bias if, by chance, we had 

selected a sample of large-sized litters, thus maximizing the chance to detect MP. However, 

our sample did not deviate from a sample of 96 uteri collected during the hunting season 

2007-2008 in the same area (litter size averaging 4.96 ± 1.11, Cappai et al. 2008). 

The high rate of MP we observed in the Alpe di Catenaia population is in agreement 

with the low degree of relatedness that we observed within social groups in the area (Iacolina 

et al. subm). Actually, if females in a group are fertilized by more than one male, wild boar 

social units will show a complex pattern of kin relationships and an average relatedness lower 

than expected, even though maintaining their matrilineal social organization. The combined 

effect of MP and high hunting mortality can thus easily explain the observed pattern.  
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MP frequency in our study is higher than that recently reported by Delgado et al. 

(2008) for a Portuguese wild boar population (Alentejo), where one litter out of nine showed 

genetic evidences of multiple fathering. Considering the limited sample size, this difference 

could be due to a different age bias in the two samples. Actually, the Alentejo sample showed 

a higher proportion of adult females, heavier and with a larger litter size, than those included 

in the present study (Table 3). Provided that adult sows in good physical conditions are more 

productive than subadults (Fonseca et al. 2004) and have more experience, we would expect 

that they are more effective in maximizing benefits of multiple mating. However, the observed 

difference in MP frequency between the two samples is opposite to this prediction, seemingly 

ruling out a possible effect of age. In addition, in our study, MP occurred at the same rate in 

adult and subadult females' litters. This clue suggest that multiple mating by females is not age-

dependent, althought our limited sample size prompts for further investigations. 

As the likelihood to mate with multiple males depends on the encounter rate, one 

could expect an effect of the population density. Both the Italian and the Portuguese 

populations are object of high hunting pressure performed with the same method (drive hunts 

with dogs). Assuming the hunting bag as proportional to population abundance (being boars 

hunted ad libitum in both areas), the two populations show similar wild boar densities (Table 

3), yet a difference in the environmental productivity (mediterranean vs. temperate habitats). 

This may suggest that female mating strategy in the population is also not density-dependent. 

However, a possible source of variability may be due to different spatial behaviour due to 

enviromental differences (e.g. distribution of food resources) that can affect the mate 

encounter rate in a population.  

MP depends on the breeding strategies adopted by sexes, which are aimed at 

maximizing their respective fitness. According to Briedermann (1986) the wild boar mating 

system is fundamentally polygynic, where dominance is established among competing males 

and matings are monopolized by the dominant male, who guards estrus females, chasing away 

competitors. In species where such tending behavior is adopted by males during the breeding 

season, the occurrence of multiple mating depends on the likelihood a male has to 

sistematically chase away all competitors during the female's fertile period. According to the 

"displacement hypothesis", invoked by Sorin (2004) to explain MP in white-tailed deer, MP 

occurs when a low-rank male approaches and mates with a female, and is followed by a high-

rank dominant male that chace him and subsequently copulates with the same female. Each of 

them can father her offspring, thus determining MP. An alternative hypothesis ("sneaking 

hypothesis") implies that while a tending male is engaged in chasing away a competitor, a third 

male can profit by his inattention and mate with the female. Mate guarding, rank-based 
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displacement and sneaking by subordinate males are commonly found in cervids (Endo and 

Doi 2002, Sorin 2004), and are also reported in suids (Somers et al. 1995). Multiple paternity 

can, however, be favoured by a different mating strategy. If estrus is asynchronous among 

female groups and the costs of serching for a mate is not high, some males can maximize their 

reproductive success by roaming in search of estrus females, renouncing to any active mate 

defense. This spatial behavior would imply different males to have access to the same females 

during their estrus, thus allowing MP to occur ("roaming hypothesis"). 

These hypotheses are not mutually exclusive, as the corresponding behaviors can 

represent alternative male mating strategies. The chance a male has to guard effectively his 

mate (or a group of potential mates) depends on his physical status and attitude (e.g. age, body 

size, body condition, aggressiveness, etc.), but also on the duration of the estrus period. In 

wild boar, a sow is receptive for approximately 48 hours (Henry 1968), a relatively long time in 

comparison with other ungulates (e.g. 12-24 hours in cervids, Clutton-Brock et al. 1982, Knox 

et al. 1988, Wong and Parker 1988). Sows in a group tend to synchronise their estrus, but, 

altogether, the presence of estrus females in a group can last for as long as one week 

(Briedermann 1986). Consequently, a male should spend a considerable amount of energy to 

prevent a previously inseminated female from extra-pair copulations and this effort would be 

magnified to defend a group of females. It can be argued that only adult boars in good body 

conditions are able to monopolize access to a group of females. In addition, higher the 

number of potential mates for each fertilizable female in the population, higher is expected to 

be the cost associated to mate guarding by males (DeYoung et al. 2002). The commonly 

practised hunting methods (i.e. drive hunt with dogs) usually do not cause a strong distortion 

of the population structure, as they lead to random culling (Massolo and Mazzoni della Stella 

2006). In Alpe di Catenaia, according to hunting bag data, approximately 20% of the males are 

adult (> 2 years), with an approximate ratio of 1 adult male : 3.2 females (M. Apollonio, 

unpubl. data), similar to the ratio observed in Spanish wild boar populations (1 : 2.7-3.2, 

Fernandez-Llario and Mateos-Quesada 2003). At this level of male-male competition,  mate 

guarding can become a costly strategy. Moreover, as matings occur during the hunting period, 

a dominant boar can be removed (killed or chased) during his stay with a group of females, 

leaving the occasion to mate to other males. 

Up till now we considered the decisional status of male wild boars, but the role of 

females should not be overlooked. Multiple paternity is predicted to be beneficial also to 

females, which are expected to promote polyandry for a variety of reasons (Wolff and 

Macdonald 2004). First, by making uncertain paternity of their offspring, females can reduce 

the risk of infanticide. Second, they can simply accept approaching males, in order to avoid 
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sexual harassment. Third, multiple mating can represent a defence against male infertility and 

genetic incompatibility, increasing the chance to be fertilized by compatible sperms (Zeh and 

Zeh 2001). Fourth, females can enhance genetic diversity in the litter, increasing the chance 

that at least some offspring will survive. Fifth, their goal could be to provide "good genes" to 

their offspring, through mechanisms of cryptic mate choice or sperm competition (Carling et 

al. 2003). Wolff and Macdonald (2004), reviewing cases of multi-male mating in mammals, 

concluded that the first hypothesis (i.e. paternity confusion) seems to be supported in most 

species. On the other hand, multiple mating was found to be associated with higher 

intrauterine survival and larger litter size in the domestic pig (Waller and Bilkei 2002), 

suggesting a direct benefit for females enabling MP. The existence of cryptic mate choice by 

females was suggested by Aguilera-Reyes et al. (2006) to interpret multiple siring in dometic 

pig litters. They obtained evidences of female behavioral preference for the male (a hybrid) 

who turned out to have the highest fertilization success. Similar mechanisms can occur also in 

the wild form, as suggested by Delgado et al. (2008).  

Our findings provide new insights into the mating system of free-ranging wild boar 

populations. Further studies are warranted to investigate within- and between-sexes 

interactions during the breeding period, in order to understand the evolutionary advantages of 

promiscuity and MP in this species. Finally, possible effects of the overlap between hunting 

and mating periods should be carefully investigated.  

 

ACKNOWLEDGEMENTS 

We thank A. Cossu for his help in laboratory analysis; E. Donaggio, E. Bertolotto, P. 

Bongi and the wild boars teams Bobi 1, Pipistrello, 1° Squadra Catenaia, Calbenzano-

Vogognano, Caprese-Sovaggio, Monna-Ponte alla Piera, and O.P.N. for helping us in 

collecting samples. We are also in debt with S. Ciuti for discussion of results and for his 

comments to the manuscript. The study was financed by Regione Toscana, Provincia 

d'Arezzo, which also provided logistical support and by the Ministero dell'Università e della 

Ricerca (MIUR PRIN 2005). L. Iacolina benefited from a fellowship sponsored by Sardegna 

Resorts s.r.l. 

81 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

TABLE 1 - Lists of the wild boar pregnant sows and litters (fetuses) sampled in Alpe di Catenaia, Italy, 
and analysed for multiple paternity. 

Sow Month of death Estimated age Age class Full weight (Kg)
Litter 
size 

Litter 
composition

F01 November 2002 19-20 months Sub-Adult 50 4 1F+3M 
F02 January 2004 5-7 years Adult 66 4 3F+1M 
F03 January 2006 3-4 years Adult 70 6 4F+2M 
F04 January 2006 3-4 years Adult 87 4 3F+1M 
F05 January 2006 15-16 months Sub-Adult 44 6 3F+3M 
F06 December 2006 22-24 months Sub-Adult 48 6 6M 
F07 January 2007 22-24 months Sub-Adult 68 6 1F+5M 
F08 December 2006 > 10 years Adult 64 5 3F+2M 
F09 December 2006 19-20 months Sub-Adult 58 5 2F+3M 
F10 December 2006 22-24 months Sub-Adult 55 5 2F+3M 
F11 December 2006 22-24 months Sub-Adult 58 5 2F+3M 
F12 December 2006 22-24 months Sub-Adult 63 5 2F+3M 
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TABLE 2. - Evidence of multiple paternity in wild boar litters in the Alpe di Catenaia population 
(Tuscany, Italy). Number of non-maternal alleles detected at each microsatellite locus within wild boar 
litters and the minimum number of fathers required to explain littermates' genotypes are reported. The 
estimated number of fathers corresponds to the number of full-sibs groups detected by maximum 
likelihood analysis in COLONY within each litter. Data supporting MP are highlighted in bold. 

Litter Mother 

sw
14

92
 

sw
12

2 

s0
90

 

sw
25

32
 

sw
46

1 

IG
F

1 

sw
20

21
 

sw
24

96
 

sw
24

 

s1
55

 Minimum nr. 
of fathers 

Estimated 
nr. of fathers 
(COLONY) 

Litter 1 F01 1 1 1 1 1 2 2 2 1 2 1 1 

Litter 2 F02 2 1 2 3 1 2 3 1 2 1 2 2 

Litter 3 F03 1 1 2 1 2 2 2 1 2 2 1 1 

Litter 4 F04 1 1 2 1 2 2 1 2 2 2 1 1 

Litter 5 F05 2 3 2 2 3 2 2 3 2 1 2 2 

Litter 6 F06 1 2 1 2 3 2 3 2 2 1 2 2 

Litter 7 F07 1 1 2 1 1 2 2 2 2 2 1 1 

Litter 8 F08 3 3 3 2 3 2 1 3 3 1 2 2 

Litter 9 F09 2 2 2 2 1 2 2 2 2 1 1 1 

Litter 10 F10 1 2 2 1 1 2 2 2 2 2 1 1 

Litter 11 F11 3 1 1 2 2 2 2 4 3 1 2 3 

Litter 12 F12 2 3 2 2 1 3 2 3 2 1 2 2 
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TABLE 3. - Comparison between general features and sample composition of the investigated Alpe di 
Catenaia population (Italy, this study) and the Alentejo population (Portugal, Delgado et al. 2008). 
Data of average litter size and hunting bag in the Alentejo population are reported respectively in 
Fonseca et al. 2004 (§) and Fernadez-Llario et al. 2003 (°). Hunting bags are calculated as cumulative 
average of two consecutive hunting seasons in Alpe di Catenaia, and as average of 17 hunts in the same 
hunting season in Alentejo.  

 Population 

 
Litter size 
( ±SD) 

Hunting bag 
(boars/100ha, 

±SD) 

Annual rain 
fall (mm) 

Bioclimatic zone

Alpe di 
Catenaia 
(Italy) 

4.8 ± 1.2 9.6 ± 1.3 800 - 1300 temperate 

Alentejo 
(Portugal) 

4.4 ± 1.7 (§) 9.5 ± 8.6 (°) 500 - 700 mediterranean 

 Sample 

 
Litter size 
( ±SD) % of adult sows 

Sows' weight 
( ±SD) MP frequency 

Alpe di 
Catenaia 
(Italy) 

5.1 ± 0.8 33% (4/12) 60.9 ± 11.6 50% (6/12) 

Alentejo 
(Portugal) 

5.6 ± 0.7 89% (8/9) 76.1 ± 16.6 11% (1/9) 
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FIG. 1- Study area in the Alpe di Catenaia, Arezzo, Italy. The natural reserve (dark grey) and 
surrounding hunting areas (light grey). Main villages and rivers are shown. 
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Abstract

Wildlife management and conservation take advantage of the possibility to study free-living populations by
collecting and analysing noninvasive samples. Nevertheless, the commonly adopted approaches, aimed at
preventing results being affected by genotyping errors, considerably limit the applicability of noninvasive
genotyping. An empirical approach is presented for achieving a reliable data set of wolf (Canis lupus)
genotypes from multiple sources of DNA collected in a monitored population. This method relies on the
relationship between sample quality and amplification outcome, which is ultimately related to the occur-
rence of typing errors (allelic dropout, false alleles). After DNA extraction, templates are amplified once at
each locus and a conservative rating system (Q-score) is adopted to define the quality of single-locus
amplifications. A significant relationship was found between quality scores and error rate (ER) (r2=0.982).
Thus it was possible to predict the chance a genotype has of being affected by errors on the basis of its
Q-score. Genotypes not reaching a satisfactory confidence level can either be replicated to become reliable
or excluded from the data set. Accordingly, in the present case study, 48–73% of all single-locus and 51–
53% of all multilocus (ML) genotypes reached a sufficient (99 and 95%, respectively) reliability level after a
single amplification per locus. Despite the possible decrease in overall yield, this method could provide a
good compromise between accuracy in genotyping and effectiveness in screening large data sets for long-
term or large-scale population surveys. However, to achieve complete and reliable data sets, replicated
amplifications are necessary for those samples and loci providing poor results.

Introduction

The recourse to genetic approaches in wildlife and
conservation biology has increased in the last
years, especially after that previously disregarded
materials – like faeces, hairs, urine, haematic
residuals, etc. – were proved to represent a valu-
able source of DNA for genetic analyses (for a
review Morin and Woodruff 1996; Piggott and
Taylor 2003). The most important implication to
their use is the possibility to collect biological
information ‘‘noninvasively’’, i.e. without a

detectable impact on the population under study.
Shortly after the announcement of the availability
of this new tool for population studies, besides the
praises of noninvasive genotyping being sung,
some pitfalls were pointed out (Taberlet et al.
1996; Kohn and Wayne 1997). It was revealed that
the use of very small or degraded DNA samples
for PCR-based genetic analyses, apart from being
extremely sensitive to any source of contamina-
tion, might be accompanied by the occurrence of
stochastically-generated errors, thus leading to
inconsistent results (Goossens et al. 1998; Taberlet

Conservation Genetics (2006) 7:813–823 � Springer 2006
DOI 10.1007/s10592-005-9106-5
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et al. 1999). Scoring errors may arise from the
amplification failure of one of the two alleles at a
heterozygous locus (‘‘allelic dropout’’) or from the
amplification of erroneously generated alleles
(‘‘false alleles’’), either due to stochastic events
during PCR or to the amplification of concurrent
unspecific DNA templates. Consequently, both
false homozygous and false heterozygous geno-
types may be generated. To overcome this limita-
tion, some methods were proposed, aimed at
reaching a fixed reliability threshold by replicating
amplifications several times. The required number
of replications was defined either from a priori
generalised error probabilities (Navidi et al. 1992;
Taberlet et al. 1996) or from maximum-likelihood
estimates of genotype reliability, computed from
individual dropout rate and allele frequencies
(Miller et al. 2002). Great variation was observed
both in amplification success and in the frequency
of genotyping errors, depending on species stud-
ied, source of DNA, and laboratory protocols and
facilities (Piggott and Taylor 2003; Broquet and
Petit 2004). Therefore, it was suggested, when
planning a noninvasive genetic survey, to precede
it with a pilot study aimed at evaluating the
amplification success and at carefully estimating
ER for the employed combination of sample types,
molecular markers, and DNA protocols (Taberlet
and Luikart 1999; Broquet and Petit 2004). Nev-
ertheless, some relevant aspects have been pointed
out. First, a huge variability in DNA abundance
and quality can exist among samples (Gagneux
et al. 1997; Goossens et al. 1998; Morin et al.
2001; Miller et al. 2002), determined by several
factors like number of hair follicles used for DNA
isolation (Goossens et al. 1998; Paetkau 2003),
sampling season (Lucchini et al. 2002; Maudet
et al. 2004), as well as time elapsing between
sample deposition, collection and analysis (Sloane
et al. 2000). This variation is particularly evident
when different sources of DNA (faeces, hairs, etc.)
are employed. Second, a few ‘‘problematic’’ sam-
ples may negatively affect the estimation of ER,
when calculated across all samples and loci (Sloane
et al. 2000; Parsons 2001; Hedmark et al. 2004;
Scandura 2005); this effect is stronger if the esti-
mation relies on a limited number of samples.
Third, relying on theoretical models based on the
worst-case scenario (i.e. 100% allelic dropout –
Taberlet et al. 1996), to define the required num-
ber of replicates assuring that all genotypes are

correct at a 99% confidence level, leads to a
magnification of the effort (time, consumables and
required DNA) often exceeding the actual need
(Sloane et al. 2000; Miller et al. 2002).

Considering that the suitability of noninvasive
samples for DNA-based population surveys largely
depends on the effort required to achieve confident
data (Paetkau 2003), a procedure based on a
sample-by-sample evaluation seems to be more
effective, when a large variance in sample reliability
is expected. Such evaluation can precede micro-
satellite genotyping and pass through an accurate
quantification of each DNA sample (Goossens
et al. 1998; Morin et al. 2001), but this step is costly
(both in terms of money and of depleted DNA
solution) and problematic at limiting conditions
(few template molecules). Alternatively, a post-
amplification screening based on preliminary
amplifications with one (or more) of the most ro-
bust microsatellite markers in the set in use (Sloane
et al. 2000) or consisting in the scrutiny of single-
locus (SL) genotypes can lead to discard low-
quality samples and to prevent the occurrence of
genotyping errors (Paetkau 2003).

We constructed a large data set, represented by
the results of single-tube amplifications of wolf
(Canis lupus) DNA performed at 10 microsatellite
loci during a DNA-based population survey.
Samples had been obtained either from wolf car-
casses or by noninvasive collection. At this point,
according to the literature, we expected a non-
negligible proportion of those genotypes was
affected by errors (dropouts or false alleles). In
that case, such an amount of molecular data would
not be suitable to study the genetic structure of the
wolf population. Hence, we managed to scrutinise
the quality of the collected information, by esti-
mating the proportion of erroneous genotypes in a
subset of the available data. In order to avoid any
sampling bias, ER was estimated by performing a
random selection of sample/marker pairs from the
complete data set and replicating their PCRs until
a high-confidence genotype was obtained. More-
over, since the yield of a PCR is dependent on the
quality and quantity of the provided DNA tem-
plate (Golenberg et al. 1996), we expected that the
outcome of microsatellite amplifications could be
used to judge the quality of templates as well as to
predict their sensitiveness to genotyping errors.

Therefore, the main aim of the study was to
develop a straightforward empirical procedure to
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select a posteriori reliable genotypes in a data set
and discard those reaching an inadequate confi-
dence level. In addition, we evaluated whether
genotype reliability could be assessed on the basis
of amplification profiles, verifying the relationship
between amplification outcome and genotyping
ER. Finally, we explored data quality in the ori-
ginal data set, describing the effect of different
factors possibly affecting sample reliability.

Materials and methods

Sample collection

Noninvasive samples were collected from 1998 to
2004 during a long-term survey on a wolf popula-
tion in Italy. As sources of DNA for the analysis,
three kinds of samples were used: scats, shed hairs,
and blood spots on the snow. Most noninvasive
samples were collected in winter while tracking
wolves in snow. In this season, samples were sup-
posed to be more suitable for genetic analysis, as
regards freshness andDNA preservation. Only fresh
faecal samples were collected (usually<3 days old).
Indeed, in winter most samples were collected fol-
lowing wolf tracks in snow within 24–72 h after a
snowfall. In summer, scats become rapidly dry, thus
wet (fresh) excrements were collected in absence of
precipitations. Once a scat was collected, a portion
of it was carefully removed and stored in a poly-
propylene collection tube containing 95% ethanol.
Hairs were gathered from the substrate (snow, soil,
barbed wire, etc.) using a plastic bag turned inside-
out, in order to avoid any manipulation. They were
collected individually or pooled together, depending
on the grouping pattern observed by the collector.
Blood stains were exclusively found on snow; their
collection, storage conditions and DNA extraction
methods were described in a previous study (Scan-
dura 2005). Subsequently, all samples were trans-
ferred to the laboratory where they were stored at
)18 �C until analysis. All processed samples, at the
moment of their collection, were attributed to wolf
on the basis of morphology and association with
wolf signs (e.g. tracks).

A total of 464 noninvasively collected samples
was analysed, made up of 272 scats, 157 shed hairs
and 35 blood spots. Additional samples were rep-
resented by plucked hairs or skeletal muscle from

34 wolf carcasses recovered in the study area
between 1991 and 2004.

DNA extraction and typing

DNA was extracted from faecal samples using
either the GeneClean for Ancient DNA kit
(BIO101 Inc.) or the QIAamp DNA stool kit
(Qiagen), following the manufacturers’ instruc-
tions. DNA isolation from hair follicles relied on
Chelex-100 resin (Biorad) according to Walsh
et al. (1991). A pre-screening of hair samples was
conducted, during which hairs were individually
scrutinised under a magnifying glass. Up to 10
hairs carrying visible follicles were used per single
extraction. Whenever possible, 8–10 hairs were
used in a volume of 200 ll. Alternatively, volume
was proportionally reduced to a minimum of 60 ll
for a single hair. Forceps and tweezers were always
alcohol-flamed before handling a new sample.
DNA from diluted blood samples was isolated
from 200 ll of melted blood–snow mixture using
the QIAamp DNA Blood kit (Qiagen) and
suspended in a variable volume, depending on the
estimated initial dilution (Scandura 2005).

Ten microsatellites including dinucleotides
(109, 123, 204, 250 and 377 – Ostrander et al.
1993; 1995), and tetranucleotides (FH2004,
FH2054, FH2137, FH2158 and FH2175 – Fran-
cisco et al. 1996), derived from the domestic dog,
were selected for wolf genotyping. Allele sizes of
loci ranged from 110 to 320 bp.

Amplifications were performed in 10 ll reac-
tion volume containing 3 ll of template, 0.5 U of
Euro Taq DNA polymerase (EuroClone), 10 mM
Tris–HCl, 50 mM KCl, 3 mM MgCl2, 0.1 mg/ml
BSA, 100 lM of each dNTP and 2 pmol of each
primer. The PCR profile was set up with an initial
denaturation step at 95 �C for 3 min, followed by
35 cycles of amplification consisting in 40 s at
92 �C, 40 s at the established annealing tempera-
ture (55–58 �C), and 30 s at 72 �C. A final 10-min
extension step at 72 �C was added. One primer of
each pair was end-labelled with fluorescent ABI
dyes (6-FAM, TET and HEX). The outcome of
each amplification was verified by running 5 ll of
each PCR product on 2% agarose gel containing
ethidium bromide. A 100 bp DNA ladder (MBI
Fermentas) was included in each run, as reference
for fragment size and band intensity. If the
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expected product was observed in the gel, 1 ll of
PCR solution was loaded into a well of a 96-well
tray, previously filled with 12 ll formamide and
0.4 ll GS-500 ROX size standard (Applied Bio-
systems). Thereafter, alleles were sized by capillary
electrophoresis on an ABI PRISM 3100-Avant
automatic sequencer and allele lengths were
determined by the GENEMAPPER software (Applied
Biosystems).

In order to avoid cross-contamination among
DNA samples during extraction and PCR, some
precautions were taken: all reactions were per-
formed in a laminar flow hood, aerosol-resistant
pipette tips were used and pre- and post-PCR
experiments were carried out in separate rooms. In
all cases, the occurrence of contamination events
was monitored by including negative controls in
each PCR experiment. Finally, any amplification in
which contamination was suspected, was discarded.

Quality assessment

The quality control procedure relied on the attri-
bution of a quality score (Q-score) to every
SL-genotype, referred to the outcome of two
intermediate steps of the analysis. Single-locus
scores were then averaged over loci to provide a
multilocus score, expression of the overall quality
of the ML-genotype. The assigned scores referred
to: (i) amplification quality (PCR score) and (ii)
microsatellite profile quality (SEQ score). After
running PCR products on agarose gel, the pattern
of each sample run was evaluated on an UV-light
transilluminator and a score (PCR score) was
assigned, considering band intensity, sharpness,
and ‘‘cleanness’’ (absence of nonspecific products)
(Figure 1a). The second check concerned the
quality of the microsatellite profile, evaluated
considering peak shape and height, together with
the presence and conformation of shadow peaks
(Figure 1b). In this case too, a score (SEQ score)
was attributed to the sample. Both PCR and SEQ
scores decreased with the better quality of the
genotype, ranging between 1 (very good) and 4
(bad). Since score attribution is subjective, in order
to make it conservative, the evaluation was always
carried out by the same person (M.S.). A specific
database was constructed, reporting for each
SL-genotype the history of repetitions and the
codified quality of the relative amplifications.

Estimate of ER

Two hundred sample/locus combinations were
drawn from the data set including all samples
typed at a minimum of three of the 10 microsat-
ellites used for individual recognition. Single-locus
amplifications were carried out for each selected
DNA sample until a ‘‘consensus genotype’’ was
obtained. Consensus SL-genotype for a given
sample was defined, that supported by at least two
replicates for heterozygotes (each allele scored
twice) and by three replicates for homozygotes
(three identical homozygous profiles). All PCR
repetitions carried out for each sample/locus
combination concurred in estimating ER. Two
classes of genotyping errors were estimated
according to Broquet and Petit (2004). The rate of
allelic dropout (ADO) was calculated as the
number of positive amplifications involving the
loss of one allele divided by the overall number of
positive amplifications attributed to heterozygous
individuals (according to the corresponding
consensus genotypes). Similarly, the rate of false
alleles (FA) was estimated as the number of PCRs
in which false alleles occurred, divided by the
overall number of positive amplifications (irre-
spective of whether they corresponded to homo-
zygous or heterozygous genotypes). Overall ER
was estimated as the number of detected
SL-genotypes differing from the respective con-
sensus genotype divided by the total number of
scored SL-genotypes. The effects of genotype
quality and microsatellite length on ER were
tested using its arcsine-square-root transformation
to meet the assumption of normality (Sokal and
Rohlf, 1995). In the former case, the error rate was
estimated, as reported above, for each Q-score
class irrespectively of the nature of samples and
markers used, and a model was developed by
regression analysis with the aim to predict the
reliability of a genotype on the basis of its assigned
Q-score. Microsatellite size and ER were tested for
correlation by using the median allele size of each
marker in the data set.

To summarise, the analysis proceeded as
follows: (1) all DNA samples underwent PCR
amplifications under standard conditions at all loci
(if no product was detectable at one locus, the
PCR was repeated up to 3 times), (2) PCR prod-
ucts and microsatellite profiles were checked for
quality and rated, (3) 200 sample/locus pairs,
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representing all loci and sample types, were
randomly selected from the data set, (4) for each of
them PCRs were replicated until a consensus
genotype was yielded, (5) ER was estimated for the
replicated data set and referred to sample type,
locus and Q-score.

Exploration of data quality

Once the dependence of ER on genotype data
quality had been verified, the effect of sample and
microsatellite features on the latter was investi-
gated, by exploring the complete data set. For

Figure 1. Examples of Q-score attribution to (a) microsatellite amplification and (b) peak detection steps in noninvasive genotyping of
wild wolves. ST – 100 bp DNA ladder size standard.
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calculations, the following nominal variables were
taken into account: source of DNA (tissue, hairs,
scat, diluted blood), collection period (cold sea-
son = Nov–Apr; warm season = May–Oct),
microsatellite type (di- or tetra-nucleotide) and
locus length (<190 or >190 bp). Variation in Q-
score was previously examined in relation to each
single variable using contingency tables and testing
departures from a random distribution by v2 test
for goodness of fit (Sokal and Rohlf 1995). Vari-
ables showing a remarkable effect on genotype
quality were tested for inclusion in a multi-facto-
rial model by ordinal logistic regression analysis.
Similarly, multilocus quality scores per sample
were examined, in order to verify their dependence
on sample quality and to evaluate their relation to
the overall number of scored loci, a relevant vari-
able in noninvasive population surveys. Statistical
calculations were performed using SPSS version
13.0 (SPSS Inc.).

Results

Genotype quality and ER

The complete data set was composed by 238
noninvasive samples (141 faecal, 73 shed-hair and
24 diluted blood samples) and 31 genotyped wolf
carcasses (17 tissues and 14 plucked hairs), which
were successfully typed at, on average, 7.0 micro-
satellites (SD=2.2). For 162 replicated sample/
locus pairs (93 different samples) among those
selected for the analysis, corresponding to a total
of 446 amplifications, a consensus genotype was
obtained (Table 1). The difference respect to the
planned 200 replicated combinations was due to
the exhaustion of some DNA samples (mostly
hairs) before reaching a consensus genotype. Of
the performed PCRs, 313 (70%) concerned

heterozygous and 133 (30%) homozygous states.
Errors occurred in 3.6% of the amplifications and
were either due to amplification failure of one
allele at a heterozygous locus (undetectable at
homozygous loci) or associated with the appear-
ance of falsely generated alleles. Specifically, rates
of allelic dropout and false alleles were estimated
at 2.9 and 1.6%, respectively. With respect to
sample type, faecal samples showed the highest
average frequency of dropout (5.6%), whereas
hairs had the highest average FA rate (3.6%), as
reported in Table 1.

Quality scores assigned to the outcome of each
amplification ranged between 2 and 7. ER in-
creased from 1.0%, for amplifications with a score
of 2, up to 12.5% for bad amplifications (Q-score
‡6). No error was detected in the few (n = 3)
amplifications with score 7. No correlation was
found between ER and the median allele length at
each locus (r=0.155, n=10, P=0.67.). As shown
in Figure 2, a significant linear relationship was
observed between quality score and ER (r2=0.982,
df=3, F=162.36, P=0.001). The observed
regression represents a model which allows to
predict the risk of producing erroneous genotypes
on the basis of data quality.

Single-locus genotype quality and reliability

Subsequently, the model was implemented to
explore the complete data set, in order to deter-
mine overall levels of reliability. Out of 1840
SL-genotypes, 1349 (73%) were expected to be
correct with ‡95% confidence, on the basis of
their associated Q-score (Figure 3), and 889
(48%) of them with a ‡99% confidence. Of the
remaining genotypes, 731 (40%) could reach, on
the basis of the prediction, the latter reliability
threshold after a single replication, which
confirmed the first result.

Table 1. Composition of the replicated data set and estimated error rates

Sample class

(number of samples)

Number of

selected sample/

locus items

Total number

of PCRs

Number of

detected

genotyping errors

Number of

detected allelic

dropout (%)

Number of

detected false

alleles (%)

Faeces (50) 61 169 11 7 (5.6) 4 (2.4)

Hairs (15) 23 55 2 0 (0.0) 2 (3.6)

Diluted blood (21) 66 188 2 2 (1.8) 0 (0.0)

Tissue (7) 12 34 1 0 (0.0) 1 (2.9)

Total (93) 162 446 16 9 (2.9) 7 (1.6)
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SL-genotype quality varied greatly in relation
to sample type and to the size class of the used
markers (Table 2). Instead, no effect of sampling
season and microsatellite composition was
detected. Among samples, tissues collected from
wolf carcasses and blood spots occasionally found
on snow revealed the best performance in terms of
reliability (92% and 88% of genotypes, respec-
tively, having a Q-score above the 95% reliability
threshold). No model based on logistic regression
analysis was able to confidently predict for a given
sample the probability of producing a reliable

genotype at a specific locus, relying merely on
sample features and used marker (data not
shown).

Multilocus genotype quality and reliability

With regard to ML-genotypes, mean Q-score was
3.1 (SD=0.8), ranging between 2.0 and 5.8. Once
again a relevant variation was observed among
sample classes (single classification ANOVA,
F=12.694, df=3, P<0.001), as shown in
Figure 4. Blood spots performed significantly
better than hairs (t-test, t=)3.716, df=62.3,
P<0.001) and faecal samples (t-test, t=7.073,
df=49.6, P<0.001), while the two latter classes
differed from each other (t-test, t=3.321, df=217,
P<0.01). On the contrary, the difference in
Q-scores between collection periods was negligible
both referring to all samples (t-test, t=0.884,
df=258, P=0.38) and to faecal samples only
(t-test, t=)0.001, df=135, P=0.99). Further-
more, Q-score was highly correlated with the
number of scored loci per sample (r=)0.522,
n=260, P<0.001). If low-quality SL-genotypes
are excluded from the database, out of 269 typed
samples, 143 (53%) and 138 (51%) ML-genotypes
were confidently typed at five or more loci, refer-
ring respectively to the 95 and 99% reliability
thresholds. Five was considered the minimum
number of markers needed for population inven-
tories or for similar uses at the heterozygosity level
observed in the study. The reduction in overall
yield following quality check differed among
sample classes and was higher for scats ()34%)
and plucked-hairs ()25%) and minimum for blood
spots ()3%). Altogether, half of the extracted
DNA samples failed to amplify at the tested
microsatellite loci, and half of those giving positive
amplifications failed to produce a reliable ML-
genotype. In brief, one processed sample out of
four produced a reliable microsatellite genotype by
a single-tube approach.

Discussion

Main goal of the present study was to demonstrate
that the reliability of a genotype could be predicted
from the outcome of the relative amplifications. In
other words, the probability a genotype has of
being affected by errors could be a posteriori
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estimated on the basis of its quality. However, this
is only feasible by applying a rigorous and strictly
conservative protocol to assess the quality of each
single-locus amplification. The empirical approach
we used, based on the qualitative evaluation of two
steps in the production of a genotype (PCR
products and microsatellite profile), allowed us to
estimate the probability of errors associated with a
specific genotype, by referring to a linear model
developed from the data set at hand. In this case,
after the first round of positive amplifications,
further replications could be avoided for 48–73%
of the successfully processed samples, depending
on the reliability threshold adopted. The remain-
ing genotypes could either be discarded or con-
firmed by additional replicates (i.e. multiple-tube
approach).

The rationale behind our study is that we find it
extremely wasteful to ignore the huge variance in
sample quality, treating from the beginning all
DNA samples like the worst one, as the multiple-
tube approach actually does. Indeed, hairs can
provide variable amounts of DNA (Higuchi et al.
1988; Gagneux et al. 1997; Goossens et al. 1998;
Morin et al. 2001) and huge differences in DNA
quality and quantity can be found in faecal sam-
ples, depending on their freshness and composi-
tion, as well as on microclimatic conditions

(Lucchini et al. 2002; Murphy et al. 2003; Maudet
et al. 2004). Hairs used in the present study had
different origins, as they might result from follicle
atrophy and passive release (moulting), or they
may be actively plucked either by the owner itself,
by other wolves in the pack or by contact with
objects like barbed wire, bushes, tree trunks, etc.
In addition to this, differences in follicle size and in
the number of follicles included in each extraction
contribute to the high variability in sample quality.
As a result of this variation, it could not be worth
analysing some samples and, whenever possible, it
is convenient to concentrate the effort in geno-
typing only good-quality samples. Evidently, the
earlier the step at which poor error-prone samples
are discarded, the greater the benefit deriving from
their exclusion to the trade-off of the study.
However, a qualitative evaluation of collected
samples prior to analysing them is problematic.
Hairs may be checked for follicle presence and
condition (Taberlet et al. 1997; Woods et al. 1999;
Triant et al. 2004), and even the number of folli-
cles may be an indicator of DNA quality (Goos-
sens et al. 1998; Paetkau 2003). More complex is
the screening of faeces, as time of deposition is
difficult to assess and many environmental factors
can affect their condition. Once collected, faecal
DNA status depends on storing conditions and

Table 2. Contingency tables showing the effect of sample and microsatellite features on SL-genotype quality (Q-score) in the complete
data set (n=1840)

Q-score Total number of genotypes (%) v2 df P

2 3 4 5 6 7 8

Sample type

Diluted blood 162 42 19 4 3 0 1 231 (12%) 157.1 18 0.000

Faeces 299 223 153 99 40 8 2 824 (45%)

Hairs 314 164 83 52 13 1 0 627 (34%)

Tissue 114 31 8 3 1 1 0 158 (9%)

Sampling period

May–Oct 106 62 30 25 9 2 0 234 (13%) 3.9 6 0.687

Nov–Apr 783 398 233 133 48 8 3 1606 (87%)

Microsatellite size

Short (<190 bp) 609 328 182 87 35 5 2 1248 (68%) 17.5 6 0.008

Long (>190 bp) 280 132 81 71 22 5 1 592 (32%)

Microsatellite type

Dinucleotide 529 297 172 88 34 5 1 1126 (61%) 8.8 6 0.185

Tetranucleotide 360 163 91 70 23 5 2 714 (39%)

Total 889 460 263 158 57 10 3 1840 (100%)

Microsatellite loci were pooled in relation to allele size and repeat motif. Short (110–190 bp) markers included 109, 123, 250, 377,
FH2054 and FH2137, whereas long (190–310 bp) markers included 204, FH2004, FH2158 and FH2175. Additional information on the
adopted groupings are described in the text.
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laboratory procedures, which in this case should
be homogenous among samples. Nevertheless, at
this step, it is almost impossible for a laboratory
technician to assess sample quality. Due to these
difficulties the only way to differentiate samples by
quality is after DNA isolation, or even after the
first amplification. Pre-amplification (Constable
et al. 2001; Morin et al. 2001) and post-amplifi-
cation (Sloane et al. 2000; Paetkau 2003) screening

methods proved effective in excluding poor sam-
ples from further analyses, affording a consider-
able saving in the overall effort.

In the present study, we indirectly evaluated
sample quality from the outcome of each single
amplification, and, more notably, we used the
latter as a predictor of typing reliability. Our
model was based on a random selection of single-
locus amplifications of different samples, in order
to avoid the bias originating when using full
ML-genotypes of a limited number of samples.
Dropout events and the occurrence of false alleles
were considered in the calculation of ER. For both
sources of error, observed rates were in the range
reported for mammal hairs and faeces (see Table 1
in Broquet and Petit 2004), but were relatively low
if compared to previous data on noninvasive
genotyping of wolf populations (Lucchini et al.
2002; Creel et al. 2003). The marked regression we
obtained allowed us to estimate the confidence
associated with all other genotypes in the data set,
and thus to evaluate for which of them replications
were needed. This was done on a locus-by-locus
basis, as it was not possible to achieve a multilocus
estimation of ER by combining single-locus val-
ues, due to their lack of independence. In fact, a
sample producing an erroneous genotype at one
locus has a higher chance to be incorrectly typed
with a second marker (sample quality effect). The
effect of the length of amplified regions on geno-
type reliability revealed somehow contradictory.
Allele size seemed to do not affect directly ER, but
short (<190 bp) microsatellites produced more
high-quality genotypes than larger markers
(>190 bp).

We averaged the Q-score over loci to obtain an
overall estimate of ML-genotype quality per
sample, that was less affected, than a single-locus
estimate, by the bias due to differences in perfor-
mance of the markers in use. This index proved
largely dependent on the class of noninvasive
samples used: blood residuals performed better
than hairs, which in turn were more reliable than
faeces. On the contrary, no effect of the sampling
season was detected. However, a large proportion
of samples (87%) was collected in winter and some
classes were exclusively (blood spots) or preva-
lently (hairs) collected on the snow. Therefore,
only the performance of faecal DNA was actually
comparable between seasons, but even in this case
differences in average Q-score were not significant,
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Figure 4. Boxplots of multilocus Q-scores attributed to geno-
types in relation to (a) sample type and (b) collection period.
Significant pairwise differences are reported (t-test for inde-
pendent samples). Outliers are represented by dots.
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unlike what was elsewhere observed (Lucchini
et al. 2002). Multilocus Q-score was highly corre-
lated with the number of typed loci, demonstrating
that a high sample quality enhances the chance to
perform successful and reliable amplifications.
After quality check, the number of samples pro-
viding a reliable genotype at 5 or more loci was
found to amount to just one forth of all processed
samples. This does not mean that the remaining
samples should inevitably be culled, but that for
them replicated amplifications are necessary for
reaching an acceptable confidence level.

Since the method we present is based on sub-
jective criteria, researchers engaged in long-time or
large-scale population surveys based on noninva-
sive genotyping and interested in using this meth-
od should perform a pilot study, in order to
develop a model that best fit the quality of their
data. In these cases, we propose the following
procedure: (i) DNA samples are extracted and
PCR-amplified at different concentrations with
one or more robust microsatellite markers (ii)
samples successfully amplifying at these loci are
typed once with the complete set of microsatellites;
(iii) amplification outcome is checked according to
its quality and consequently rated; (iv) a sub-
sample of sample/locus combinations is randomly
chosen from the data set and used to accurately
estimate the ER by replicating each amplification;
(v) the relationship between genotype quality and
ER is studied by regression analysis; (vi) the reli-
ability threshold is defined according to the final
use of molecular data and employed to explore the
complete data set; (vii) PCR replications are finally
carried out for samples not reaching the fixed
reliability threshold until a consensus genotype,
based on a sufficient number of replications (see
Miller et al. 2002), is achieved. Exploration of data
quality could benefit from the use of specific soft-
wares, like GIMLET (Valière 2002) and MICRO-

CHECKER (Van Oosterhout et al. 2004), helping in
the identification of scoring errors, or like DNAMIX

(Beecham 2004) useful to identify unintentional
cross-sample contaminations. Once the reliability
of a ML-genotype has been estimated, there exists
a further source of information which can increase
its confidence level: data redundancy. As noticed
by Paetkau (2003), the evidence that several sam-
ples in a data set share the same ML-genotype and
that the corresponding pairwise match probabili-
ties (Woods et al. 1999) are sufficiently low (i.e.

<0.01) is highly indicative of the reliability of the
matching genotype. On the other hand, it could
happen that two samples match all alleles but one
or two. In this cases, mismatches should be looked
on suspiciously, as they could have originated
from undetected errors (e.g. dropout); such dif-
ferences have to be confirmed by replicated PCRs.

In the proposed approach, the first amplifica-
tion is decisive and therefore the maximum effort
should be concentrated at this step. It follows that
when limited amounts of template are available,
instead of diluting DNA in a greater volume suf-
ficient for multiple PCR repetitions, the template
should be concentrated in order to maximize suc-
cess probabilities and to assure the best perfor-
mance in the initial round of PCRs. This is
particularly important to make samples such as
single hairs or diluted blood spots scorable by a
sufficient number of microsatellite markers (Pae-
tkau 2003; Scandura 2005). Moreover, even the
choice and the number of scored loci is important
(Taberlet and Luikart 1999).

In long-term DNA-based population surveys,
the effort should be properly balanced in order to
assure a sufficient level of data reliability maxi-
mising at the same time the number of processed
samples (and not vice versa). It should be stressed
that target level of reliability should be established
according to the objectives of the research. We
believe that the above-reported approach could
help in creating large microsatellite-based data sets
for noninvasive surveys of free-living populations.
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ABSTRACT 

We investigated local gene flow in a high-density wolf (Canis lupus) population of the Italian 

Apennines, where no effective barrier to wolf dispersal were present. From 1998 to 2004 we 

examined wolf carcasses and non-invasively collected samples, focusing our effort on three 

mountain districts, separated by two main rivers, where wolf packs showed a high stability. 

With the use of nine autosomal microsatellites we successfully genotyped 177 samples 

providing with the identification of 74 wolves, which were genetically sexed. Resampling rate 

of non-invasively sampled individuals was low in the population, but three males were present 

for as long as 5-6 consecutive years. Genetic relatedness steeply decreased when it was 

calculated for wolves sampled in neighbouring mountain areas, suggesting that interpack 

migration at a limited distance scale is infrequent in the population. In addition, pedigree 

reconstruction in an intensively monitored pack over a four year period revealed that no 

individual born in this pack was sampled in other pack territories in the following years. The 

detected low gene flow resulted in a remarkable genetic structuring, confirmed by bayesian 

analysis. We associate these results to mortality patterns and a high long-distance dispersal 

rates. Overall, the present study suggests the existence of cryptic genetic structure in the 

Apennine wolf population and highlights the importance of studying social patterns and 

population dynamics to sustain wolf conservation in Italy. 

 

Keywords: Canis lupus, wolf, autosomal microsatellites, genetic structure, migration, gene flow  
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INTRODUCTION 

Due to their generally low Ne/N (i.e. effective population size / census size) ratio, 

wolf (Canis lupus) populations, are sensitive to the detrimental genetic implications that usually 

follow a bottleneck. Loss of genetic variability and high inbreeding have been observed in 

isolated bottlenecked populations (Liberg 2005). 

However, recent studies proved that wolves prevent the risk of genetic deterioration 

and inbreeding depression by mechanisms of incest avoidance and social structuring varying in 

dependence of ecological constraints. On one hand, it was confirmed by several genetic 

investigations that wolves tend to mate with unrelated partners (Smith et al. 1997, Vonholdt et 

al. 2008). On the other hand, both dispersal patterns and social mechanisms (adoption of 

unfamiliar individuals, splitting, merging or budding of packs), can continuously modify the 

partition of individuals into social units, promoting the encounter of unrelated wolves 

(Lucchini et al. 2002, Grewal et al. 2004, Jedrzejewski et al. 2005, Vonholdt et al. 2008). In 

addition, fitness advantages by heterozygote individuals were shown to constrain the 

inbreeding level of isolated populations (Bensch et al. 2006). 

Many recent studies have contradicted the previously accepted idea depicting a wolf 

pack as a social unit constituted by a breeding pair and their offspring of one or more litters 

(Mech 1970), revealing more complex structures that may result from a variety of dynamic 

processes (Mech & Boitani 2003). For instance, the occurrence of non-breeding adults that are 

not relatives of the breeding pair seems to be not a rare event in wolf packs, especially in 

exploited populations affected by high mortality rates (Grewal et al. 2004, Jedrzejewski et al. 

2005). Indeed, mortality is one of the most important determinants of dynamism in the social 

structure of a population, especially if it affects breeders (Brainerd et al. 2008). 

More controversial is the nature of dispersal in wolf populations, with respect to the 

distance travelled by wolves and to a possible bias between sexes. Dispersing wolves can cover 

more than 1000 kilometers (Wabakken et al. 2007), but the proportion of long-range 

dispersers becoming successful breeders seems to change a lot among areas (Kojola et al. 

2006). Whether the attitude toward long-range dispersal is selected in wolves is debatable, as 

isolated populations with frequent short-range interpack dispersal are able to maintain their 

levels of heterozygosity and inbreeding over time (Vohnoldt et al. 2008). 

No agreement exists on whether dispersal patterns in wolves are sex biased. Field data 

on radio-collared wolves show slight or no difference in dispersal attitudes between sexes 
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(Mech 1987; Gese and Mech 1991; Kojola et al. 2006), whereas male-biased dispersal is 

suggested by genetic investigations carried out in North America and Europe (Lehman et al. 

1992, Seddon et al. 2005, Fabbri et al. 2007, Vonholdt et al. 2008).  

In a saturated population, the constitution of a new pack is expected to be quite rare, 

while more frequent should be the recruitment of alien individuals by existing packs. The 

latter case may take place by the adoption of a non-breeding member or by the replacement of 

a breeder (after its death or by its usurpation). Accordingly, high mortality rates would 

promote turnover of individuals within packs and increase the frequency of splitting and 

merging processes. This scenario implies that the exchange of genes at a local scale would 

favour a genetic homogenization in the population. 

In this study, we investigated the genetic structure of a wolf population in Italy at a 

local scale. The study population had rapidly recovered after a bottleneck (in the period 1960-

1970), and at the beginning of the 2000s appeared to have been saturated by a number of 

close packs, occupying the main mountain areas (Apollonio et al. 2004; Capitani et al. 2006). 

No meaningful natural or artificial barrier to wolf dispersal exists in the area. Yet wolves are 

protected by the national law, high levels of induced mortality, mainly due to poaching and 

traffic accidents, are reported.  

Under these conditions, migration of individuals at a limited geographic scale should 

be favoured and a high genetic homogeneity is expected to arise in the population. Therefore, 

we specifically tested the following predictions: i) individual movements to close pack 

territories are frequent as result of short-range dispersal, pack splitting and merging/adoption 

processes, ii) genetic relatedness is high between neighbouring packs and slowly decreases 

with distance, and iii) no substantial genetic structuring can be found in the population. 

 

METHODS 

Study area and wolf population - The study was conducted in a mountainous district, 

covering approximately 3000 km2, in the province of Arezzo, in central Italy. Major 

mountains, rarely exceeding 1500 m a.s.l., are protected by a national park (Foreste Casentinesi 

N.P.) and five natural reserves, and are mostly covered by forests. Villages are concentrated in 

lowlands and along the main valleys formed by the Arno and the Tevere rivers (Fig. 1). The 

area harbours an abundant and diverse community of wild ungulates, comprising wild boar Sus 

scrofa and roe deer Capreolus capreolus, which are ubiquitous, and red deer Cervus elaphus, fallow 

deer Dama dama, and mouflon Ovis orientalis musimon, whose presence is more limited. Here, 
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the recovery of the wolf population started in the 1980s. Wolves rapidly spread over the area, 

occupying the main ridges. In the 1990s, several packs had established their territories in the 

national park (Apollonio et al. 2004), where they fed mostly on wild ungulates (Mattioli et al. 

1995; 2004). Starting from 1998, several packs were ascertained to have occupied all major 

mountains and some surrounding hilly zones in the province. 

The local wolf population was monitored continuously from January 1998 to 

December 2004. No wolf was captured, tagged or radio-collared. Data on population 

dynamics and spatial distribution (approximate location of pack territories and homesites) 

were achieved by direct observations, wolf-howling and snow-tracking (see Gazzola et al. 

2002, Apollonio et al. 2004, Capitani 2005). Nine to twelve different packs (on average 10.3 ± 

1.2) were annually counted in the province of Arezzo. Pack size was between 2 and 8, 

averaging 4.0 ± 0.6 (mean ± sd) in winter. An overall winter density of 2.3 wolves per 100 

km2 and an average distance of 11.1 ± 1.8 km between neighbouring pack rendezvous were 

estimated in the area (Capitani et al. 2006). High pack productivity and high fidelity to summer 

rendezvous sites were ascertained during the study period (Capitani 2005). 

Sample collection and DNA extraction - Opportunistic sampling was conducted in the 

study area during the period 1998-2004. Sample collection was focused in three mountain 

districts (A to C), where wolf presence was stable at the beginning of the study, and in a few 

peripheral areas, where more recently wolf packs had settled their own territories (Fig. 1). 

Tissue, hairs, scats and blood residuals in snow were used as sources of genomic DNA. 

Muscle, skin or hair samples were taken from wolf carcasses discovered within the study area. 

Nine of them predated the beginning of the study, and had been collected by the staff of the 

provincial administration in the period 1991-1998. Fresh (< 1 week) faecal samples were 

collected in wolf areas, mostly along tracks in snow, and stored in polypropylene tubes filled 

with 96% ethanol. Shed hairs were stored dry in plastic or paper envelopes. Blood residuals 

were found along wolf tracks in snow and collected as described elsewhere (Scandura 2005). 

Whenever possible, all samples were kept cold immediately after their collection and then 

stored at –18 °C until analysis. 

The Chelex-method (Walsh et al. 1991) was employed to isolate DNA from one to ten 

follicles per hair sample. The QIAamp Tissue and Stool kits (Qiagen) were used to extract 

DNA from tissues or blood and excremental samples, respectively. Suppliers’ protocols were 

followed in all cases, except for melted blood/snow mixtures (see Scandura 2005). Precautions 

were taken to minimise the contamination risk of low-copy DNA samples. DNA isolation and 

amplification were performed in separate rooms. PCRs were prepared in a dedicated laminar 
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flow hood and the workspace sterilized before each preparation. Blank extractions were 

conducted to monitor possible contaminations. Negative (no DNA) and positive controls 

were included in each PCR tray. 

Microsatellite genotyping and genotype reliability - Nine canine autosomal microsatellites, 

including five dinucleotides (cxx.109, cxx.123, cxx.204, cxx.250 from Ostrander et al. 1993, 

and cxx.377 from Ostrander et al. 1995), and four tetranucleotides (FH2004, FH2054, 

FH2137 and FH2175 from Francisco et al. 1996), were selected for wolf genotyping (Table 1). 

One primer in each pair was end-labelled with fluorescent dyes (Applied Biosystems). Details 

of the amplification protocols are reported in Scandura et al. (2005). The presence of 

amplification products was detected on 2% agarose gel. Successful PCRs were run on an ABI 

PRISM 3100-Avant automatic sequencer and allele lengths were subsequently determined 

using the GENEMAPPER v. 3.2 software (Applied Biosystems). 

Genotyping errors are likely to occur in all dataset, especially in those including poor 

DNA samples, and, depending on their frequency, they can affect the outcome of the 

performed analyses and the consequent biological conclusions (Pompanon et al. 2005). A 

preliminary investigation on a partial wolf dataset revealed a limited error rate (up to 5.6% 

allelic dropout and up to 3.6% false alleles, depending on the sample class, Scandura et al. 

2006). With the aim to prevent the occurrence of genotyping errors in the final dataset, a 

specific multi-step protocol was developed, also considering that both high- and low-quality 

DNA samples were used.  

1) All samples were genotyped once (one positive PCR per locus) following the 

approach described in Scandura et al. (2006). A quality score (Q-score) was attributed to each 

single-locus genotype on the basis of the amplification profile. The corresponding expected 

error rate (ER) was then estimated using the regression function in Scandura et al. (2006) and 

the expected multilocus reliability was computed as 1-Π ERi. Only genotypes showing an 

expected reliability higher than 0.5 were retained, while low-quality genotypes were discarded. 

2) The retained (uncorrected) genotypes were used to perform the assignment test for 

species determination (see below). Indeed, as confirmed by simulated data (data not shown), a 

limited error rate, i.e. < 10%, is likely to do not affect significantly the outcome of this kind of 

analysis. Samples that were not confidently assigned to wolves were excluded form futher 

analyses. 

3) The wolf (uncorrected) genotypes were compared eachother by the software 

GIMLET (Valière 2002) in order to identify groups of identical genotypes. 
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4) At this step, unique genotypes were evaluated for reliability. Each single genotype 

was considered reliable if at least one of the following cases occurred: i) it was obtained from a 

tissue sample, ii) two or more samples shared this genotype and the corresponding match 

probability for siblings (Woods et al. 1999) was <0.01, iii) it was confirmed by at least two 

independent replicates if heterozygote and four independent replicates if homozygote. 

5) Due to the possible correction of some genotype during step 4, all reliable 

genotypes were run once again in GIMLET checking for correspondence and a new 

(corrected) set of unique genotypes was obtained. 

6) Finally, we used the software MICRO-CHECKER (Van Oosterhout et al. 2004) to 

detect possible biases in the data, which might be due to trivial typographic errors, scoring 

errors or null alleles.  

Species identification - Two other canids are sympatric with wolves in the study area: the 

domestic dog and the red fox (Vulpes vulpes). Consequently, species identification was 

necessary for all genotypes deriving from noninvasive samples. In order to discriminate 

among wolf, dog and fox, uncertain genotypes were compared to those of 30 wolves 

(carcasses recovered over 10 years within the study area), 20 dogs (including different races 

and mongrels), and 5 red foxes. Genetic discrimination is posssible due to allele differences at 

the typed microsatellites (non-overlapping allelic ranges are observed at some loci between 

wolf/dog and red fox). The statistical approach for the correct attribution of an uncertain 

genotype relied on a Bayesian clustering method, implemented in the software STRUCTURE 

version 2.1 (Pritchard et al. 2000). The program was run (100,000 iterations as burn-in period 

and 100,000 iterations for data collection) assuming three populations (K = 3). For each 

uncertain genotype a probability (q) was estimated to be assigned to each inferred cluster, on 

the basis of the allelic similarity with the reference samples. Since wolves and dogs can 

crossbreed in nature (Vilà and Wayne 1999), the admixture model was assumed. Therefore 

genotypes were either probabilistically assigned to one population or shared by two of them in 

case of admixed ancestry. In this calculation, genotypes were attributed to the local wolf 

population if the probability of assignment to the corresponding cluster was q[wolf] ≥ 0.95. 

Sex determination - Sex determination of non-invasively sampled individuals and non-

sexed wolf carcasses was carried out by a canid-specific amplification of the DBX/DBY 

region, according to Seddon (2005). Conditions of the multiplexed PCR matched those for 

microsatellites, except for primer concentration (0.15 µM for DBX, 0.10 µM for DBY) and 

amplification profile (40 cycles of touchdown with annealing at 60-50 °C). PCR products were 

then electrophoresed on a 2% agarose gel containing ethidium bromide for visual detection. 
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Each set of reactions included a male control (Y-positive), a female control (Y-negative) and a 

blank (no template). 

Statistical analysis - Genetic diversity in the population was evaluated using all available 

wolf genotypes and calculating mean number of alleles per locus (k), expected unbiased (He; 

Nei 1978) and observed heterozygosity (Ho). GENETIX v. 4.02 (Belkhir et al. 2001) was used 

to calculate the per-locus and overall FIS (Weir and Cockerham 1984) in the population and 

to test their significance over 10,000 permutations of alleles throughout the data set. 

Departures from Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE) were 

tested using GENEPOP 4 (Raymond and Rousset 1995) and applying sequential Bonferroni 

corrections to account for multiple tests (Sokal and Rohlf 1995). 

Due to the fact that: i) no pedigree information was available from other sources (e.g. 

sighting of marked animals), ii) sampling in the area was not exaustive (i.e. a low proportion of 

putative parents was sampled for most wolves) and iii) allele frequency estimates relying on 

dead animals might not be representative of the population (due to a possible bias in the 

proportion of immigrants or satellites), accurate parentage assignment could not be performed 

and we could not define the composition of social units yearly present in the area. Therefore, 

indirect methods were used to test our predictions. 

First, we looked at resampling data with the aim to verify the occurrence of the same 

wolf in more than one pack territory in different years. Resampling rate was calculated and the 

distribution of distances among different locations of the same individual was evaluated. 

Second, we used pairwise genetic relatedness to study how the signal of coancestry can 

change with distance. As estimator of genetic relatedness the Queller & Goodnight's (1989) 

pairwise relatedness R was calculated from genotype data in GENALEX v. 6 (Paekall and 

Smouse 2005). 

This analysis was restricted to individuals sampled during the period 2000-2003 in 

three mountain areas separated by two main rivers (A, B and C in Fig. 1, schematic view in 

Fig. 2). Presence of one or two wolf packs was monitored They represent a good model, since 

in each area at least two adjacent packs were present during this period. 

Field activities conducted every year in these areas allowed to monitor wolf presence 

and to locate packs' rendezvous sites. During census activity, every detected rendezvous was 

attributed to a hypothetical pack, whose size and reproductive status (presence/absence of a 

litter) was assessed from summer howl records (field techniques and methods are described in 

Capitani et al. 2006). According to pack locations provided by wolf-howling surveys, the 
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genotyped individuals were partitioned into 'putative' social units. The affiliation of each given 

individual to a social unit was then obtained by looking for the rendezvous site resulting the 

closest to the geographic centre of all his sampling locations in a year (up to a maximum of 6 

km distance). A 6-km cutoff was adopted according to the average interpack distance 

observed in the study area (11.1 ± 1.8 km, Capitani et al. 2006). In so doing we assumed that 

pack territories were stable during the year, as suggested by the general consistency between 

wolf-howling (summer) and snow-tracking (winter) data. 

Once individual affiliations to social units were established, pairwise relatedness values 

were computed for the following combinations (Fig. 2): 1) within the same unit (WU), 2) 

between units in the same area (BU-SA), 3) between units in neighbouring areas (BU-NA), 4) 

between units in distant areas (BU-DA). In order to avoid the confounding effect of temporal 

stratification in our data, this analysis was performed on an annual basis (i.e. only pairs of 

wolves that had been sampled in the study area during the same year were considered). A total 

of 21 packs-year were considered for this computation. 

Differences between the means of the distributions obtained for each distance class 

were tested for significance by a randomization test (Manly 1991), using a Monte Carlo 

simulation to obtain by permutations a distribution of 1000 values of the difference between 

means, to which the real difference was compared.  

Third, we studied the possibility that individuals had dispersed from a central and 

stable pack to the surrounding packs in the province. The Alpe di Catenaia (AC) pack (Fig. 1) 

was intensively monitored during the study and the position of its rendez-vous site was nearly 

the same in the years 2000-2003. Kinship was inferred, using the program CERVUS v. 3 

(Marshall et al. 1998, Kalinowski et al. 2007), among all individuals that were found in this 

period at a distance < 6 km from the rendez-vous site. Pack composition derived from genetic 

data was corroborated by the known association of genotypes along winter trails in snow. 

Once determined the wolves representing the AC breeding pair, we looked among all 

genotypes sampled in the following years outside the AC territory which was compatible to be 

an offspring of that pair. This possibility was tested by mismatch analysis in CERVUS and on 

the basis of the relatedness coefficient R.  

Fourth, the occurrence of migrants within the study area was studied by an assignment 

test, that was performed by a bayesian clustering analysis in the software STRUCTURE v. 2.1 

(Pritchard et al 2000). The program estimates the log likelihood, Pr (X|K), i.e., the probability 

of the data associated to a certain number of subpopulations (K). Values of K comprised 

between 2 and 10 were tested, considering that 10 was the average number of packs detected 
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yearly in the area. Convergence was obtained by 100,000 replications following a burn-in 

period of 100,000 iterations (admixture model, alpha = 1, correlated allele frequencies). Five 

runs were performed for each value of K to verify consistency of results. The number of 

consistent genetic groups in our sample (i.e. the optimal value of K) was inferred from results 

of simulations, following the method used by Garner et al. (2004). The contribution of each of 

these inferred groups to single individuals sampled in one area was used to evaluate their 

status as "resident" or "immigrant". Resident wolves were animals that shared a high 

percentage (> 80%) of membership to the genetic cluster being the most frequent in the area 

where they were sampled. Immigrats were wolves that had > 80% membership to a cluster 

which was the most common elsewhere (i.e. the sampling area was other than the area of 

origin). This analysis was aimed at identifying possible migration events at a limited geographic 

scale, and therefore it was restricted to the three areas (A, B and C in Fig. 1) for which we had 

more data, using all genotypes collected in the period 2000-2003. Such an approach was 

reported to be a robust method to detect immigration, when populations not included in the 

sample could have genetically contributed to the composition of the individuals under study 

(Manel et al. 2002, Spencer & Hampton 2005). 

 

RESULTS 

Wolf genotyping and genetic diversity - Four-hundred-ninety-eight samples were processed, 

30 of which corresponded to wolf carcasses recovered in the period 1991-2004. After culling 

non-invasive samples that failed to amplify or produced low-quality amplifications, a total of 

177 multilocus genotypes was obtained. MICRO-CHECKER did not detect any bias in our 

dataset, that could be attributed to errors in allele scoring, allelic dropout or null alleles. The 

scored genotypes were attributed to 86 different individuals (Psib = 6.7×10-5-2.1×10-2). 

Among them, the bayesian cluster analysis revealed 4 foxes and 8 dogs, each with a confidence 

of assignement >95%. By contrary, all other 44 uncertain genotypes were attributed to wolves, 

but two of them showed signs of a possible event of hybridization with dogs in their ancestry 

(P[wolf] < 95%,).  

Molecular gender determination allowed to establish that 36 individuals were males 

and 31 were females (for 7 the sex could not be assessed). Among the recovered carcasses, age 

was determined for 23 individuals, most of which resulted pups or yearlings (17/23 = 74%). 

A total of 55 alleles was observed at the nine loci (3-9 per locus), while average Ho and 

He across loci equalled 0.647 and 0.660, respectively. No significant difference was detected 
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between heterozygosity values calculated for carcasses and noninvasive samples over loci 

(paired t-test, p > 0.05), suggesting that allelic dropout was not a concern in our dataset. The 

population deviated from HWE (Fisher’s method, p = 0.0021), but this was not due to 

inbreeding (FIS = 0.0199, p > 0.10). Six pairs of loci (out of 36) showed a significant 

association at the genotypic level (linkage disequilibrium), but none of them was located on 

the same chromosome. Violation of both HWE and LE are likely to be consequence of 

population structuring, by virtue of the simultaneous occurrence of different rare alleles in 

different subpopulations (or social units).  

Resampling - Each genotype deriving from non-invasive sampling was obtained on 

average from the analysis of 2.4 samples. However, one each two individuals was sampled just 

once (Tab. 1 and Fig. 3a). Referring to individuals that were sampled at least twice, 

approximately 80% of all resampling events occurred at a distance < 6 km from the first 

sampling site, without differences between sexes (Fig. 3b). With respect to the geographical 

partition in Fig. 1, just a single wolf (male W58) was sampled in more than one area, since he 

was found in area B during 2002 and in C during 2003 and 2004. 

Only three individuals, all males, were sampled over a period longer than 3 years (W11, 

W18 and W19). Male W11 was non-invasively monitored over a period of six consecutive 

years (the entire study period), in the same area frequented for three consecutive years (2001, 

2002 and 2003) by female W38 (see. Tab. 1). According to CERVUS analysis and to pairwise 

relatedness values, W11 and W38 were compatible with representing the parental pair of the 

AC pack durig this . 

Genetic relatedness - As expected, relatedness decreased with distance in the population 

(Fig. 4). In intra-pack comparisons (WU, n = 68), relatedness averaged 0.310 ± 0.042 (mean ± 

standard error), but it decreased to 0.133 ± 0.034 between packs of the same area (BU-SA, n = 

74). Pairwise relatedness dropped to average values of 0.011 ± 0.018 when individuals sampled 

in neighbouring areas were considered and it was negative (-0.124 ± 0.023, BU-NA, n = 220) 

for comparisons between distant areas. The observed differences in mean relatedness between 

classes were all significant (randomization test, P < 0.01 for all comparisons). Hence, the 

signal of relatedness was lost very early moving away from a pack. 

Migration analysis and assignment test - Six individuals in our sample were likely to have 

been sired by the breeding pair W11-W38 (Fig. 5). Five of them had been sampled, between 

2000 and 2003, within a radius of 6 km from the AC pack rendezvous site, while the other one 

(W48) was a yearling that was found dead in December 2002 at 13 km distance. This wolf had 
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been shot and was found at the side of a provincial road, thus leading to argue that a post-

mortem translocation had occurred. In addition his finding place was not included in any wolf 

territory. No other wolf sampled after year 2000 in the study area was consistent with having 

originated from the AC pack. 

The bayesian assignment test allowed to evaluate possible migrations of single 

individuals in the population. The partition with K = 3 received the highest support from 

simulations (Tab. 2), and the contribution of the three inferred groups to the genetic 

composition of wolves sampled in the three areas is shown in Fig. 5. Individuals in aerea A 

had on average 88% membership to cluster I, wolves in area B showed 75% membership to 

cluster III and those in area C had 64% membership to cluster II.  

A total of 32 wolves out of 47 (68%) were classified as resident, i.e. they were sampled 

while staying in the area of their most likely origin. Four wolves turned out to be immigrants 

and all of them seemingly had dispersed from area A. Two of them were sampled in area B 

and two in area C. Three immigrants were females. According to the previous result, no 

wolves from area B was found in the neighbouring areas.  

 

DISCUSSION 

In the present study, we considered an area central to the present wolf's range in the 

Italian peninsula, where the species fully recovered after its historical bottleneck that occurred 

in the '60-70s (Cagnolaro et al. 1974). By 1998 the local population was monitored and a high 

pack density was detected in mountain areas, where suitable territories appeared saturated by 

packs (Apollonio & Mattioli 2006). In fact, no remarkable rearrangement of pack territories 

was recorded during the monitoring period, inter-pack distances were roughly constant, and a 

high fidelity to summer homesites was noticed (Capitani 2005, Capitani et al. 2006). The 

present study provides evidence of limited gene flow in these areas. Accordingly, in absence of 

radio-tracking data on wolf movements in Italy, genetic data suggest the existence of a cryptic 

genetic structure at a small geographic scale. 

Temporal and spatial patterns, inferred by non-invasive resampling of genotyped 

individuals in the population, suggest that immigration of individuals into neighbouring packs 

is infrequent. Once genotyped for the first time, an individual had a high chance 

(approximately 80%), if resampled, to be found in the same area (i.e. pack territory). But half 

the wolves have not been found again after their first sampling event. This low recapture rate 

can be associated to both high mortality and high dispersal rate, provided that most mortality 
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events are usually undetected and wolves leaving the natal pack may easily emigrate out of the 

study area.   

In agreement with resampling data, no evidence of short-term dispersal from the AC 

pack was detected during the period 2000-2003. During this period, the rendezvous site of this 

pack was constantly detected in the same small valley (Capitani et al. 2006) and a pair of 

individuals (male W11 and female W38) was repeatedly sampled in the pack range. Parentage 

analysis confirmed them to represent the breeding pair of the pack. Although six wolves in 

our sample were likely offspring of this pair, each of them was found during the course of one 

single year and all but one were sampled in the AC range only. The exception is represented 

by W48, who was killed at the periphery of the AC pack territory, but we suspect that it had 

been killed in the AC area and translocated after his death. Therefore, despite of its position 

and apparent stability, a low short-range migration rate can be deduced for the members of 

this pack. 

As expected, genetic relatedness decreased with distance. Although two rivers 

separated areas A, B and C (Figg. 1 and 2), they cannot represent effective barriers to wolf 

dispersal. Nevertheless, while wolves of different packs in the same area showed a moderate 

degree of relatedness, mean R dropped immediately to zero when it was calculated across 

neighbouring areas. 

The level of genetic differentiation among the three areas that comes out from 

bayesian analysis confirms the existence of constraints to local gene flow, with the two main 

valleys representing areas of genetic discontinuity. Nonetheless four potential cases of recent 

migration among areas were detected in the population. In all cases area A acted as source 

area. 

On the basis of previous data obtained for North America (Vonholdt et al. 2008), we 

predicted that a population with the characteristics observed in our study area in the 

Apennines (i.e. clumped and quite stable pack territories) should show high levels of genetic 

homogeneity, as consequence of frequent interpack migration. This prediction was not 

confirmed by our study. 

In Yellowstone, a number of different mechanisms like pack fission, pack merging and 

adoption of dispersers promotes breeding between unrelated adult wolves, allowing to retain 

genetic variability over time (Vonholdt et al. 2008). However, such social dynamics accounting 

for inbreeding avoidance were observed in an isolated recovered wolf population (i.e. 

Yellowstone), where the risks associated with dispersing to reach the closest populations is 
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very high because of the absence of suitable habitat corridors. In Italian Apennines, on the 

contrary, wolves can find a continuum of suitable habitats and natural corridors that can 

render long-range dispersal an effetcive strategy. The most striking evidence in favour of this 

hypothesis is the natural recolonization of the western Alps (Valière et al. 2003; Fabbri et al. 

2007). 

The maintenance of a remarkable degree of structuring in the population can be 

consequence of pack stability. Despite mortality rate is not negligible in the area, it seems to be 

mostly in charge of young individuals (Capitani 2005). If the loss of a breeder is not frequent 

in the population, breeding pairs can reproduce for several years and, if undisturbed, they can 

retain the same homesites and the same territories from year to year, as suggested by the 

analysis of summer locations of pack choral responses to acoustic stimulations (Capitani et al. 

2006). This is what we actually observed in the AC pack. 

Fine-scale genetic data agree with evidences obtained at a higher spatial scale in Italy. 

The limited short-range interpack dispersal observed by us in a mountain region in Tuscany 

reinforces the idea that an opposite trend occurs in the Italian population. In addition to some 

occasional reports (e.g. Boitani 1992; Ciucci et al. 2005), indeed, genetic data obtained by 

Fabbri et al. (2007) for the Italian population revealed that multiple events of long-range 

dispersal could explain the genetic diversity observed in the recently recolonized Alpine 

population. Actually, long range dispersal is common in wolves and is particularly frequent 

among young age classes, which can disperse over hundreds of kilometers (Mech & Boitani 

2003). Dispersal distances may be very high particularly in expanding populations, like 

observed in France (Valière et al. 2003) and in Sweden (Vilà et al. 2002; Wabakken et al. 2007). 

In Finland, both radiotelemetry and genetic data revealed that long-distance migrants 

represent a high proportion of dispersing individuals, being the average dispersal distance was 

close to 100 km (Aspi et al. 2006, Kojola et al. 2006).  

With respect to this hypothesis, mountain areas like that monitored by us in the 

Arezzo province are likely to represent sources supplying with migrants to the recolonization 

of peripheral sink areas. This interpretation can explain the ongoing expansion pattern of 

wolves in central Italy, where wolves are colonizing peripheral hilly areas and lowlands, after 

having fully recolonized mountain areas. 

Overall, these results suggest the existence of a cryptic genetic structure in the 

Apennine wolf population, which can result from a combination of demographic and dispersal 

patterns, like stability of breeding pairs and the tendency to replace a breeder loss with 

individuals coming from far away (i.e. long-range dispersers).  
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Moreover, the present study suggests that the reconstruction of genealogies within a 

population can provide valuable insight into the dynamics influencing both genetic an social 

patterns in this species. The knowledge of these patterns, if supported by future studies, is of 

paramount importance for the conservation of this carnivore in Italy. 
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TABLE 1. – Sampled genotypes through years, identified by individual ID, sex and number of 
sampling events (N). Shadows define the minimum period of presence of the wolf in the area. 
Numbers in circles indicate the number of sampling events in a single month. Death of 
monitored individuals is indicated by “X” and corresponds to the finding of its carcass. For 
these individuals, additional information concerning cause of death and age are reported. 
Geographic areas where wolves were sampled refer to those in Fig. 1.  

Genotype Sex N 1998 1999 2000 2001 2002 2003 2004 Area Info

W18 M 6 A
W23 M 1 A injured by vehicle collision and recovered by CFS

W29 F 1 A
W20 - 1 A
W32 M 2 A
W33 F 8 A
W34 M 3 A
W35 F 2 A
W40 M 1 A cub (3-4 months), driven

W42 M 1 A
W43 - 1 A
W44 M 5 A
W10 M 1 B 2-3 years old, killed by snare

W11 M 10 B
W21 F 3 B
W27 M 1 B
W26 F 1 B > 1 year old, shot

W37 F 1 B
W38 F 5 B
W39 F 1 B
W45 M 15 B
W46 M 7 B
W50 F 3 B
W48 M 1 B yearling (1-2 years), shot

W60 F 1 B
W66 - 1 B
W74 F 1 B cub (8 months), shot

W12 F 1 B 3-4 years old, black fur, shot

W25 M 1 B > 1 year old, shot

W53 M 1 B
W54 F 2 B
W55 M 3 B
W65 F 1 B cub (6-7 months), driven

W71 - 1 B
W73 M 1 B
W31 M 7 C
W14 M 1 C
W15 - 1 C
W19 M 7 C
W47 F 1 C
W28 F 3 C
W30 F 2 C cub (< 1 year), shot

W36 F 2 C cub (< 1 year), poisoned

W41 M 1 C cub (5-6 months), driven

W49 F 1 C cub (7-8 months), unknown cause of death

W51 F 5 C
W52 M 1 C cub (7-8 months), unknown cause of death

W56 F 1 C
W58 M 8 C, B
W57 M 3 C
W70 M 1 C
W68 M 1 C
W69 F 1 C
W72 M 1 C driven?

W13 F 1 yearling (1-2 years), shot

W16 M 1
W17 F 1
W22 M 1 cub (< 1 year), driven?

W24 - 1
W67 M 1 cub (< 1 year), unknown cause of death

W61 M 1 cub (5-6 months), shot

W59 M 1 > 1 year old, driven?

W62 F 1
W63 M 1 > 5 years old, shot

W64 F 2

x

x

x

x

x

x
x
x

x

x
x

x

x

x

x

x
x

x

x

x

x

x
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TABLE 2. Mean likelihood obtained with the software STRUCTURE (Pritchard et al. 2000) for 
simulations with different values of K (i.e. number of inferred homogeneous clusters) and 
mean values of ∆lnP(D) = lnP(D)k+1 – lnP(D)k. 

 lnP(D) ∆lnP(D) 
K Mean SD Mean SD
1 -1091.3 1.6   
2 -1041.8 7.4 49.5 7.4
3 -958.1 10.9 83.7 14.3
4 -902.7 5.5 55.4 8.7
5 -930.2 9.4 -27.4 13.1
6 -947.1 17.0 -17.0 21.2
7 -966.1 50.3 -26.1 64.5
8 -959.0 12.1 14.3 59.9
9 -980.4 23.4 -21.4 23.4
10 -988.3 57.5 -7.9 57.2
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FIG. 1. – Simplified map showing the distribution of typed samples (filled squares and stars) in 

the province of Arezzo (Italy). Circles represent approximate pack locations (6-km buffers 

around summer pack locations of 2002-2003). Protected areas are in dark grey. At the bottom 

right: the partition into three areas (A, B, and C) separated by the two main rivers. 
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Fig. 2. – Scheme reproducing the situation within the rectangle in Fig. 1, which the 

relatedness analysis refers to. Four classes of distance used for comparisons among sampled 

wolves are shown: within social units (WU), between units in the same area (BU-SA),  

between units in neighbouring areas (BU-NA)and between distant ares (BUDA). Rounded 

squares represent units, separeted into the tree areas (A, B and C) by the two main rivers 

(Arno and Tevere). 
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FIG. 3. – Resampling of individual wolves in the study area. a) Percentage distribution 

of the sampling frequency. b) Percentage distribution of classes of resampling distance (data 

divided by sex are shown). 

 

0%

10%

20%

30%

40%

50%

60%

1 2−3 4−5 6−7 8−9 ≥10

Sampling frequency

Pe
rc

en
ta

ge
 o

f c
as

es

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-6 6-12 12-18 18-24 >24

Distance class (km)

Pe
rc

en
ta

ge
 o

f c
as

es

Total
Male
Female

 

 

131 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

FIG. 4. – Variation in the pairwise genetic relatedness between wolves belonging to 

different distance classes (see Fig. 2). Significance of the difference between mean values were 

obtained by randomization tests. 
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FIG. 5. – Proportions of membership to the three clusters resulting from the cluster 

analysis in Structure are reported for wolves sampled in areas A, B and C in the period 2000-

2003. The asterisk identify the genotypes identified as migrants, and represented in the map 

below. The box included in the map reports the reconstructed genealogy (only sampled 

individuals) in the AC pack and the wolf W48, born in this pack and recovered dead at the 

periphery of the pack territory. 
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ABSTRACT 

We investigated the genetic variability within the male lineage in a free ranging wolf (Canis 

lupus) population in central Italy. From 1998 to 2004 we examined wolf carcasses and non-

invasively collected samples such as scats, hairs and diluted blood spots. Thirty-one samples, 

resulting to be male according to autopsy or molecular sexing, were amplified at four Y-

chromosome microsatellite loci. Two markers were polymorphic and identified four different 

haplotypes. The detected variation is remarkable, if we consider the limited scale of the 

monitored area and especially if compared with the absence of variation in the maternally-

inherited markers (i.e. mitochondrial DNA). Spatio-temporal distribution of the four 

haplotypes in the area suggested an influence of the recolonization pattern, which is likely 

based on long-range dispersal of individuals. We also specifically investigated the patriline 

within a pack over a four year periods identifying the replacement of the breeding male by a 

new unrelated individual, confirming the trend already observed in this species. 

 

Keywords: Canis lupus, wolf, Y-chromosome, microsatellites, genetic variability, gene flow. 
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INTRODUCTION 

The conservation of wolf (Canis lupus) natural populations represents a priority in 

several European countries, where the species is endangered or was, in the recent past, 

severely threatened (Promberger and Schröder 1993). The Italian wolf population suffered a 

strong persecution until 1971, when wolf hunting was forbidden and poison baits banned. 

This change in attitude was completed in 1976 when the species obtained the fully protected 

status. However, during the period 1950-1970 the number of wolves throughout the peninsula 

was very low (Cagnolaro et al. 1974) and their presence was extremely restricted to a few areas 

of the Apennine mountains. From then on, the wolf population recovered in Italy and is still 

growing in size and recolonizing its historical range.  

As consequence of its history, the Italian wolf shows in the mitochondrial line the 

effect of a severe bottleneck, which, in association with its prolonged isolation, led to genetic 

erosion (Lucchini et al. 2004). A single mitochondrial haplotype was found in the whole Italian 

wolf population (Wayne et al. 1992, Vilà et al. 1997, Vila et al. 1999, Randi et al. 2000). On the 

contrary, nuclear markers revealed a less severe reduction in genetic diversity, with remarkable 

reduction in heterozygosity only in the recently re-established Alpine wolf population, while 

the Apennines population showed only a slightly lower variability with respect to other 

European populations (Scandura et al. 2001, Lucchini et al. 2004, Fabbri et al. 2007). 

Actual knowledge on the Italian wolf population is based on matrilineal 

(mitochondrial) and bi-parental (autosomic) markers but nothing is known about paternal 

inherited markers, possibly biasing the picture of population structure and history. Males and 

females do not play symmetrical roles in structuring populations, as strong asymmetries 

between sexes may affect dispersal and breeding strategies (Greenwood 1980). Y chromosome 

markers have been widely used in humans and other primates (Tosi et al. 2000, Hammer et al. 

2003, Eriksson et al. 2006, Douadi et al. 2007, Kawamoto et al. 2008). The use of paternal 

inherited markers in mammals has increased in the past ten years, and it is mainly related to 

studies on recolonization, sex-biased dispersal rates and phylogeography (Van Hooft et al. 

2002, Meadows et al. 2006, Yannic et al. 2008).  

In wolf those kind of markers was recentently used to investigate the recolonization 

patterns that led to the population recovery in Scandinavia, giving an idea of the contribution 

of each sex in the recolonization event, as well as of the gene flow among adiacent countries 

(Sundqvist et al. 2001). Combining the use of differently inherited markers, former studies 

have proved the presence of sex-bias in gene flow in the North American populations. 
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Musiani et al. (2007) reconstructed the relationships between packs with different behaviours 

(migratory vs. non-migratory) and natal habitat (tundra/taiga vs. boreal coniferous forest). Vilà 

et al. (2003) showed the hybridization patterns between a female wolf and a male dog in 

Scandinavia. The combination of paternal, maternal and bi-parentaly inherited markers has 

also been used to reconstruct population structure and kin relationships within and among 

packs in a North American population (Grewal et al. 2004). 

In the present study, we focused on the fine genetic structure within a free-living wolf 

population in Italy, by integrating previous biparental data with Y-linked markers. Specifically, 

we investigated the spatial discontinuity in the distribution of genetic variation in the male 

lineage, checking whether gene flow is somehow limited over short distances and even in 

absence of physical barriers. Furthermore, we reconstructed the patriline in a wolf pack over a 

four-year period. 

 

METHODS 

Study area and wolf population - The study was conducted in the province of Arezzo 

(central Italy) in the mountainous district that covers approximately 3000 km2. Major 

mountains, rarely exceeding 1500 m a.s.l., are protected by a national park (Foreste Casentinesi 

N.P.) and five natural reserves. Villages are concentrated in lowlands and along the main 

valleys formed by the Arno and the Tevere rivers. Within the study area the community of 

wild ungulates is abundant and diverse, comprising wild boar (Sus scrofa), roe deer (Capreolus 

capreolus), red deer (Cervus elaphus), fallow deer (Dama dama), and mouflon (Ovis orientalis 

musimon). In the province of Arezzo the wolf population started to recover in the 1980s. 

Wolves rapidly spread over the area, occupying the main ridges. About ten years later, several 

packs had established their territories in the national park (Apollonio et al. 2004), where they 

fed mostly on wild ungulates (Mattioli et al. 1995; 2004). At present, wolf presence covers all 

major mountains and protected areas. 

The local wolf population was monitored from 1998 to 2004. Data on population 

dynamics and spatial distribution (approximate location of pack territories and homesites) 

were estimated by direct observations, wolf-howling and snow-tracking (for details on the 

field methodology see Gazzola et al. 2002, Apollonio et al. 2004, Capitani 2005). Packs were 

annually counted (range 9-12, average 10.3 ± 1.2) within the province of Arezzo territory, with 

pack size comprised between 2 and 8, averaging 4.0 ± 0.6 (mean ± sd) in winter. An overall 

winter density of 2.3 wolves per 100 km2 was estimated in the area. 
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The average distance between adjacent packs, calculated as the mean of all pairwise 

distances between rendezvous sites of contiguous packs, amounted to 11.1 ± 1.8 km during 

the study (see Capitani et al. 2006). High productivity and high fidelity to summer rendezvous 

sites were ascertained in local packs in the study area (Capitani 2005). In 2003-2004 two 

additional packs were detected for the first time, expanding the area of wolf presence, and 

they both produced a litter in summer 2003. 

Sample collection and DNA extraction - Opportunistic sampling was conducted in the 

study area during the period 1998-2004. Sample collection was concentrated in mountain 

districts where 2 or more packs were present. Non-invasive samples (hairs, scats and blood 

residuals in snow) were used as sources of genomic DNA, muscle, or skin samples were 

collected only from wolf carcasses discovered within the study area (for collection methods 

see Scandura et al. in prep.).  

The Chelex-method (Walsh et al. 1991) was employed to isolate DNA from one to ten 

hair follicles per sample. The QIAamp Tissue and Stool kits (Qiagen, Hamburg, Germany) 

were used to extract DNA from tissues or blood and excremental samples, respectively. 

Suppliers’ protocols were followed in all cases, except for melted blood/snow mixtures (see 

Scandura 2005). 

Sex determination - According to Seddon (2005) sex determination was carried out by a 

canid-specific amplification of two intronic regions of the sexual chromosomes of canids, one 

each in the DBY gene (DBY7) and the DBX gene (DBX6). A multiplexed PCR was used, as 

specified for microsatellites, except for primer concentration (0.15 µM for DBX6, 0.10 µM for 

DBY7) and amplification profile (40 cycles of touchdown with annealing at 60-50 °C). PCR 

products were visualised on a 2% agarose gel containing ethidium bromide for visual 

detection. Male templates produced two bands (249 bp and 118 bp), whereas in females only 

the DBX 249-bp fragment was amplified. Each set of reactions included a male control (Y-

positive), a female control (Y-negative) and a blank (no template). 

Y-linked microsatellite genotyping - Samples which provided reliable genotyping at 

autosomal loci (see Scandura et al. 2006 for evaluation of reliability and description of 

autosomal microsatellite amplification) and resulted to be male according to autopsy or 

molecular sexing (N=31) were amplified at four Y-chromosome microsatellite loci: MS34A, 

MS34B, MS41A and MS41B (Sundqvist et al. 2001). Amplifications were performed in 10 µl 

reaction mix containing 3 µl of template, 0.5 U of EuroTaq DNA polymerase (EuroClone, 

città, stato), 10 mM Tris-HCl, 50 mM KCl, 3 mM MgCl2, 0.1 mg/mL BSA (Promega, città, 

stato), 100 µM of each dNTP and 2 pmol of each primer (the forward one was labelled with 
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an ABI dye). The amplification profile was set up with an initial step of denaturation at 95 °C 

for 3 min, followed by 40 cycles of 92 °C for 40 s, Ta (touchdown 72-65 °C) for 45 s, and 72 

°C for 30 s. A further extension step of 72 °C for 10 min concluded the reaction. One PCR 

blank was included in each set of amplifications, for contamination checking, as well as a 

positive control, for correct amplification checking. Successful PCRs were run on an ABI 

PRISM 3130 automatic sequencer and allele lengths were subsequently determined using the 

PEAK SCANNER v. 1.0 software (Applied Biosystems Foster City, California).  

Y-DNA variation - Level of polymorphism at Y-chromosome microsatellites was 

evaluated with respect to the number of different alleles and to allele frequencies. 

Furthermore, alleles at multiple loci were combined to construct haplotypes. Temporal and 

geographical distribution of haplotypes in the territory of the province of Arezzo was 

evaluated in MapInfo Professional 8.0 (Mapinfo Corporation). As samples included in this 

study had been previously genotyped with a set of 9 autosomal microsatellites (see Scandura et 

al. in prep.). We were able to combine data obtained with autosomal and Y-linked markers. 

On this way, we performed a parentage analysis to assess the kinship relationships between 

individuals in the Alpe di Catenaia pack, which was intensively monitored during the study. 

Parentage in this pack was assessed using the software CERVUS 3.0 (Marshall et al. 1998, 

Kalinowski et al. 2007), accounting, for each individual, for the likelihood of inherintance of 

each allele in its genotype from a panel of potential parents. In this analysis, temporal 

constrains (e.g. data of birth or death, if known) were used to restrict the number of potential 

parents. Finally, the resulting pedigree of all sampled individuals in Alpe di Catenaia was 

evaluated for consistency with Y microsatellite data. 

 

RESULTS 

According to Scandura et al. (in prep.), with the use of 9 polymorphic microsatellite 

autosomal loci, we successfully genotyped 177 samples that identified 86 different individuals 

within the study area in the period 1998-2004. Of them, 4 resulted to be foxes and 8 dogs, the 

remaining 74 being attributed to wolves (assignment probability > 95%). The 31 male samples 

resulting from the analysis of autosomal loci were further investigated here, those samples 

resulting to belong to the same individual were considered only once (Y-genotypes considered 

N=26). 

Among Y chromosome loci, locus MS41A was monomorphic for allele 206, while 

MS41B presented irregular motif repeats and so they were excluded. The two loci remaining 
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were polymorphic with three alleles each (Fig. 1) and yielded four different haplotypes (Fig. 2). 

The temporal occurrence of haplotypes is shown in fig. 3. The dominant haplotype (H1) was 

present throughout the study period in different areas; the second most common, H2, firstly 

appeared in 2002 and was present in the province until the end of the monitoring; while H3 

(two individuals) and H4 (one individual) belonged to wolves found dead that were sampled 

for the first (and last) time the same year of their death. 

The structure of the Alpe di Catenaia pack has been investigated since 2000. 

Combining field and genetic data, we were able to reconstruct relationships among pack 

members. Genealogy within the pack is shown in fig. 4. In the period 2000-2003 the breeding 

pair was stably composed by female W38 and male W11 (which presented haplotype H1); in 

2004 an unrelated individual (W58), carrying H2 haplotype, replaced the breeding male, 

mating with the same female W38, as supported by parentage analysis in CERVUS.  

 

DISCUSSION 

In this study, we examined the variability in the male lineage in a Central Italian wolf 

population. We found a relevant level of polymorphism at two markers linked to the Y 

chromosome. Each of them showed three different alleles and four different haplotypes were 

found in our samples. Such amount of variation, detected at a limited geographic scale, is 

significant if compared to the absolute lack of variation observed in the mitochondrial DNA 

of the Italian wolf population (Vilà et al. 1999; Randi et al. 2000). This result has two possible 

explanations: 1) the bottleneck experienced by the Italian wolf population was less dramatic in 

the male than in the female fraction; 2) the presence of multiple alleles at Y microsatellites is a 

consequence of genetic introgression from the domestic dog. 

Under the former hypothesis, many (at least four) male lineages and only one matriline 

would have been present in the surviving wolves during the demographic minimum, that 

occurred between 1960 and 1970 (Cagnolaro et al. 1974).  

A similar pattern has been observed by Sundqvist et al. (2001) in Scandinavia, where 

they found two different Y-haplotypes occurring in a 16-year period after the wolf 

recolonization, while a single mitochondrial haplotype was present in the same population 

(Ellegren et al. 1996). The variability found in Scandinavia is lower than that of other 

Northern countries, like Russia and Baltic states, but consistent with the observed number of 

alleles in the population at autosomal loci (Ellegren et al. 1996), involving a minimum of three 

founders (two males and a female) (Sundqvist et al. 2001). 

148 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



Wolves and domestic dogs can hybridize (Vilà and Wayne 1999) and the origin of 

multiple Y haplotypes could be associated to introgressive hybridization between the two 

animals. Evidences of hybridization have been found in Italy at a not negligible frequency 

(Verardi et al. 2006) and suspect hybrids had been sampled also in the Arezzo province 

(Scandura et al. in prep.). So this hypothesis cannot be ruled out. However, the presence of 

signs of hybridization only in male uniparental markers (and not in mtDNA) would contradict 

the idea that the chance of mating between a male wolf and a bitch is higher than the opposite 

pairing case (Vilà and Wayne 1999).  

We found that the most frequent haplotype (H1) was shared by all the analyzed 

samples throughout the study area in the first four years of monitoring (1998-2001), and, only 

afterwards, we recorded the appearance of three new haplotypes. The increased number of 

haplotypes that we observed is probably caused by the immigration of wolves dispersing from 

other regions. This is likely related with the ongoing expansion of the wolf population in Italy. 

During last century wolves were confined into restricted areas of central-southern Italy but 

they are actually recovering throughout their historic range, reaching saturation levels in some 

areas like the one under study. The recolonization pattern could have brought in the study 

area Y-haplotypes previously confined into other parts of the peninsula.  

Long-range dispersal is likely to be bidirectional and we should thus assume that some 

individuals immigrated yearly into the study population and that some of them may have been 

successfully integrated into local packs (Mech and Boitani 2003). Adopted individuals are 

favoured in replacing a member of the breeding pair, due to the general attitude towards 

outbreeding observed in the species (Smith et al. 1997). In fact, these intruders are potential 

carriers of novel alleles thus they could contribute to constrain inbreeding at low levels in the 

population. This process can help explain the prolonged maintenance of the genetic 

differentiation among local packs. In this study we reconstructed the genealogy of an 

intensively monitored pack. We found that the originary breeding pair (♂ W11 + ♀ W38) 

remained stable and successfully reproduced since 2000 until 2003. Then, few months after 

the last sampling of the breeding male (carrying H1 haplotype), we detected the presence of a 

new unrelated male (W58, carrying H2 haplotype) first recorded in the eastern part of the 

study area the year before. W58 replaced the breeding male in the pack as a pup was identified 

as descendant from him and female W38 in 2004. Replacement of the male member of the 

breeding pair by an unrelated individual is reported to be frequent in wolf populations 

(Vonholdt et al. 2008). 
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This study demonstrates that a new class of paternally inherited molecular markers, 

that has been  neglected in previous studies on Italian wolves, can instead be useful to 

investigate social dynamics and male-specific dispersal patterns, as well as to give support to 

the reconstruction of genealogies in wild wolf populations. 

Our results prompt to check Y-haplotype variability across the whole Italian 

population, to get an idea of the overall level of diversity and to produce a complete map of 

the haplotype distribution throughout the peninsula. Particularly interesting would be the 

analysis of the recolonized alpine population, which will allow to comprehend the relative 

contribution of the two sexes in promoting the range expansion in the Alps.    

In conclusion, we believe that future genetic surveys on the Italian wolf population, 

even those based on a non-invasive sampling strategy, should largely benefit from the addition 

of uniparental Y-linked microsatellites to the commonly used sets of autosomal markers. 
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FIG. 1. – Alleles per locus and frequencies at two microsatellites Y-linked loci. 
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FIG. 2. – Y chromosome haplotypes found in the population and allele sizes. 
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FIG. 3. – Y chromosome haplotypes distribution through years and areas of the Arezzo 

Province (protected areas are shadowed). Differences in the number of reported haplotypes 

are due to obsillations in the occurrence of male sampling through years. 
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FIG. 4. – Reconstruction of Alpe di Catenaia wolf pack’s genealogy in the time span 

2000-2004. 
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Conclusions 

 

The data collected in this study allowed me to get new insight into the population 

genetic structure, at different spatial scale, of two wild species, wild boar (Sus scrofa) and wolf 

(Canis lupus), using molecular markers. 

In the First part (Chapter I), by the analysis of one mitochondrial and 10 independent 

nuclear markers in wild boars collected across Europe, I evaluated the possible contribution of 

different natural and human-related processes in shaping the present genetic diversity of the 

species in the old continent. The role of past wide-scale events, like range and size fluctuations 

occurring during the last glacial and postglacial periods, are pointed to as the main force 

leading to the observed levels of differentiation in Europe. 

The most important event in shaping the observed pattern of diversity seems to have 

been the last glaciation, which was followed by a sudden demographic and spatial expansion 

from one or more southern refugia. The comparative analysis of wild boar control region 

sequences shows the occurrence of an exclusive mtDNA lineage in peninsular Italy and the 

signature of a past demographic expansion, which could well have followed the range 

contraction occurring in Europe during the last glaciation. 

The genetic signature of more recent processes, which were mostly related to human 

activities, can be detected but it appears marginal. Data point to a single area of discontinuity 

which corresponds to the Alps. Wild boars sampled south of this chain show, indeed, higher 

levels of overall genetic variation, a private mtDNA haplogroup and endemic diversity at 

microsatellite loci. 

After having investigated the driving forces shaping genetic variation at a wide scale, I 

focused on a wild boar population in Central Italy (Tuscany), studying the effects of spatial 

and social organization (Second part).  

In Chapter II, I explored relatedness within social groups in Alpe di Catenaia. I found a 

correlation between inter-individual spatial distance and genetic relatedness only in summer-

early autumn and it seemed to be associated to the presence of piglets. The prediction of 

matrilinearity in wild boar social units was not confirmed, as a low degree of relatedness was 

observed within groups. Aggregations of unrelated adult sows (with their litter) were detected 

in the study population. The high hunting pressure also help explain the pattern observed in 

our study. The study wild boar population was indeed characterized by an overall high 
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mortality rate, mostly due to hunting and poaching (86% of deaths in our sample). The 

resulting high turn-over could have affected the distribution of genes in the population, 

accounting for the observed deviation from the expected pattern. Accordingly, I argue that the 

observed social organization would turn out from grouping of unrelated survivors, that is 

promoted by the presence of wolves in the area. The advantages of group living in presence of 

predators can indeed be safeguarded by joining groups of conspecifics, irrespectively from 

their degree of relatedness. 

Another possible explanation to the low degree of relatedness within groups could be 

multiple paternity, investigated in Chapter III. Multiple paternity was found at high frequency 

in the Alpe di Catenaia wild boar population. Six out of twelve litters (50%) proved to have 

been sired by more than one boar. Considering that in our study multiple paternity was 

detected by a parsimony approach (e.g. two fathers with similar genotypes might have been 

interpreted as one single father), the actual degree of polyandry shown by females in the 

population can be still higher. On the other hand, we excluded the risk to have introduced an 

opposite bias, possibly due to a selection of large-sized litters in our sample, thus maximizing 

the chance to detect multiple paternity. 

Multiple paternity frequency in our study is higher than that recently reported by 

Delgado et al. (2008) for a Portuguese wild boar population (Alentejo). An effect of an age 

difference in the samples of females used in the two investigations was ruled out, as multiple 

paternity interested both adult and subadult females’ litters without apparent differences. 

Analogously, no effect of body mass on multiple paternity frequency was observed.  

As the likelihood to mate with multiple males depends on the encounter rate, one could 

expect an effect of the population density. Assuming the hunting bag as proportional to 

population abundance, the two populations show similar wild boar densities (Fernadez-Llario 

et al. 2003). This also suggests that female mating strategy in the population is not density-

dependent. 

I therefore concluded that multiple paternity is likely to be related to other (ecological, 

demographic, etc.) factors influencing the breeding strategy adopted by sexes, which are aimed 

at maximizing their respective fitness. Further investigations on within- and between-sexes 

interactions during the breeding period are warranted, in order to understand the evolutionary 

advantages of promiscuity and multiple paternity in this species. 

The second half of this dissertation deals with the social organization and patterns of 

population assembly in the wolf.  

158 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



First I contributed to develop a methodological approach for achieving a reliable data 

set of genotypes from multiple sources of DNA collected in a monitored population (Third 

part). This method relies on the relationship between sample quality and amplification 

outcome, which is ultimately related to the occurrence of genotyping errors (allelic dropout, 

false alleles). Genotypes not reaching a satisfactory confidence level can either be replicated to 

become reliable or excluded from the data set. 

After the definition of the analisys protocol, in the  Fourth part, I analysed samples 

collected in an area central to the present Italian wolf’s range, investigating the fine-scale 

genetic structuring within an area showing high pack densities and local saturation (Apollonio 

& Mattioli 2006). In Chapter V, I collected genetic data on the wolf population inhabiting the 

province of Arezzo, using a combination of biparentaly inherited autosomal markers and a 

non-invasive sampling strategy. This genetic investigation revealed no remarkable sign of gene 

flow among neighbouring packs and a consequent appreciable differentiation between close 

geographic areas, even in absence of physical barrier to wolf dispersal. I thus rejected the 

hypothesis of frequent interpack migration observed in the Yellowstone wolf population 

(Vonholdt et al. 2008), while supporting the idea that in the Italian population long-range 

dispersal is the key factor maintaining the genetic diversity, as alredy suggested to interpret the 

recent wolf recolonization of the Alps (Fabbri et al. 2007). 

This second hypothesis is even supported by the use of paternally inherited markers. In 

Chapter VI, indeed, I used two microsatellites located in the Y chromosome on the same 

sample that I had previously analyzed with biparental markers. This investigation revealed the 

presence in the study area of a single Y haplotype (H1) till 2002 and the sudden appearance 

since then that of three new haplotypes, that in some areas replaced the former one. 

Foreign unrelated individuals are favoured in replacing a member of the breeding pair, 

due to the general attitude towards outbreeding observed in this species (Smith et al. 1997). 

This process has been observed in the Alpe di Catenaia (AC) pack. During the period 2000-

2003, the rendezvous site of this pack was constantly detected in the same small valley 

(Capitani et al. 2006) and a pair of individuals (male W11 and female W38) was repeatedly 

sampled in the pack range. Parentage analysis performed in Chapter V confirmed them to 

represent the breeding pair of the pack. Six wolves in our sample were likely offspring of this 

pair, and each of them was found during the course of one single year in the Alpe di Catenaia 

range only or in its proximity. Then, in 2003, the presence in the AC pack of a new unrelated 

male (W58), carrying a different Y-haplotype (H2), was detected and he was likely to have 

replaced the former breeding male, as a pup born in 2004 was identified as daughter of the 
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pair W58-W38. The pedigree reconstruction reported in Chapter V is in agreement with the 

transmission of Y-linked markers in the AC pack, as presented in Chapter VI.  

Despite of its central position and apparent stability, the Alpe di Catenaia pack during 

the study period did not represent a source of migrants that joined neighbouring packs. Thus, 

if mortality did not account for this result, the only possible deduction is that animals 

dispersed out of the study area. 

Analogously, the appearence of previously undetected haplotypes in the Arezzo 

population can be justified by the arrival of long-range dispersers coming from other areas of 

the wolf range in the peninsula.     

Overall, these results suggest the existence of a cryptic genetic structure in the Apennine 

wolf population, which can result from a combination of demographic and dispersal patterns, 

like stability of breeding pairs and the tendency to replace a breeder loss with individuals 

coming from far away (long-range dispersers). This knowledge, if supported by future studies, 

is of paramount importance for the conservation of this carnivore in Italy. 

160 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

References 

 

Apollonio M., Mattioli L. (eds.) (2006) Il lupo in provincia di Arezzo. Editrice Le Balze, 

Montepulciano, Italy.  

Capitani C., et al. (2006) Selection of rendezvous sites and reuse of pup raising areas 

among wolves Canis lupus of north-eastern Apennines, Italy. Acta Theriologica 51: 395-404. 

Delgado R., Fernández-Llario P., Azevedo M., Beja-Pereira A., Santos P. (2008) 

Paternity assessment in free-ranging wild boar (Sus scrofa) – Are littermates full-sibs? 

Mammalian Biology 73: 169-176. 

Fabbri E., et al. (2007) From the Apennines to the Alps: colonization genetics of the 

naturally expanding Italian wolf (Canis lupus) population. Molecular Ecology 16: 1661-1671. 

Fernandez-Llario P., Mateos-Quesada P., Silvério A., Santos P. (2003) Habitat effects 

and shooting techniques on two wild boar (Sus scrofa) populations in Spain and Portugal. 

Zeitschrift Jagdwissenschaft 49: 120-129. 

Smith D., et al. (1997) Is incest common in gray wolf packs? Behavioral Ecology 8: 384-

391. 

Vonholdt B.M., et al. (2008) The genealogy and genetic viability of reintroduced 

Yellowstone grey wolves. Molecular Ecology 17: 252-274. 

 

161 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

 

AAKKNNOOWWLLEEDDGGEEMMEENNTTSS  

162 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

163 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

This work was financially supported by the 

Sardinia Resort S.r.l. 

who gave me the opportunity to perform this research. 

Here I owe my debt of gratitude to my financial supporter. 

Thank you 

164 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

165 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 

 

 

 

 

Questo lavoro è stato possibile grazie ai finanziamenti 

erogati da 

Ministero dell’Istruzione, dell’Università e della 

Ricerca 

Provincia d’Arezzo 

Regione Toscana  

Sardinia Resort S.r.l. 

Ringrazio in particolare Dr. P. Banti, Dr. G. Chianucci, 

Dr. P. Pedone e Dr. L. Mattioli. 

 

166 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 
Per cominciare una premessa, sapete bene che non sono brava con le parole, quindi 

sappiate sin d’ora che il mio affetto e la mia gratitudine vanno ben oltre quel che riuscirò a 
mettere nero su bianco. 

Innanzitutto vorrei ringraziare il prof. Apollonio per avermi dato questa possibilità. 

Un grazie di cuore va a Massimo, per la sua guida, la sua pazienza, gli insegnamenti e la 
pazzia!!! Senza il suo aiuto e sostegno tutto questo non sarebbe stato possibile. Ringrazio 
anche le sue bimbe per l’allegria e gli aneddoti che hanno reso più leggeri questi tre anni. 

Altro grazie sentito va a Simone per tutte le volte che mi è venuto in soccorso, i suoi 
insegnamenti ed i preziosi commenti su tutto il lavoro svolto ma non solo! 

E poi come dimenticare tutti gli amici che hanno condiviso con me gioie e dolori di 
questo dottorato?! Un abbraccio alle mie mitiche Bialowieza girls che sono sempre importanti 
compagne di viaggio (in senso lato oltre che letterale): Silvia, Sara ed Anna. Voglio ringraziare 
Francesca D.B., Daria, Tiziana, Antonio, PierFrancesco, Pasquella, Amalia, Nicoletta, Kristina, 
Giovanni, Mario, Marco e tutto lo “staff”(siete troppi per mettere tutti i nomi, ma voi sapete 
benissimo chi siete!) del laboratorio di genetica per l’aiuto, la competenza, le chiacchere e 
l’amicizia. E poi ci sono Francesca, Rossana ed Emiliana che dai luoghi più disparati sono 
sempre state presenti. Nonché gli amici che ora dividono con me la pressione di questo 
periodo: Alberto, Paolo M., Paolo B., Valentina e Ivan. Ragazzi, ce la possiamo fare!!! 

Ovviamente un ringraziamento va a tutti quelli che mi hanno aiutato (e ospitato) per le 
raccolte dati ma non solo. Tutti i membri di questo grande gruppo con le sue varie sedi 
distaccate: Emanuela, Elisa, Barbara (meravigliosa compagna di stanza), la piccola Nadia (che 
ormai avrà il telefono fuso per tutte le volte che l’ho chiamata in cerca di aiuto), super Andrea 
e lo Sgrigno (grazie ragazzi per i consigli, il sostegno e la simpatia), Fabiella, Roberta e Stefano, 
tutti i cacciatori per la loro collaborazione (in modo particolare l’URCA). Ma anche Siriano ed 
Elena per aver svolto, ognuno a proprio modo, ruoli fondamentali in questo mio percorso. 

Non posso dimenticare anche gli amici che nel corso del tempo hanno preso altre strade 
ma che tanto mi hanno aiutato: Claudia e Fabio. E coloro che pur non facendo parte di questo 
“universo parallelo” sono da anni amici insostituibili: Martina, Maggie e Gisella, ma anche 
Edith, Arika, Roser, Paola, Manuela, Daniela, Vania e Mary che in un arco spazio-temporale 
molto ampio sono stati al mio fianco in mille modi. Grazie a tutti voi! 

Ma sopra ogni cosa voglio ringraziare la mia famiglia. I miei genitori, mia sorella e 
Francesco D., il mio compagno di vita Francesco per tutte le volte che hanno riso con me, 
raccolto i cocci del mio umore e calmato o sopportato i miei nervi. Lo so, vi ho messo tutti a 
dura prova, ma voi siete sempre rimasti al mio fianco e questo non ha prezzo!! Grazie! Grazie!! 
Grazie!!! 

167 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Laura Iacolina 
Dipartimento di Zoologia e Genetica Evoluzionistica 

Via Muroni 25 
I-07100 Sassari 

Italy 
e-mail: liacolina@uniss.it 

Tel.: +39(0)79228628 
Fax: +39(0)79228665 

168 
Laura Iacolina "The use of genetic markers in the study of social structure in mammals: wolf and wild boar as case studies" 
Tesi di dottorato in Biologia Ambientale, Università degli Studi di Sassari




