O17 Synthesis and D₂-like Binding Affinity of New Derivatives of N3-[(1ethyltetrahydro-1H-2-pyrrolyl)methyl]-4,5-dihydrobenzo[g]indole-3carboxamide and Related Compounds.

G.A. Pinna^a, M.A. Pirisi^a, G. Chelucci^b, J.M. Mussinu^a, G. Murineddu^a, E. Maciocco^c

^aDipartimento Farmaco-Chimico-Tossicologico, Università di Sassari, Via Muroni 23, 07100 Sassari, Italy ^bDipartimento di Chimica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy ^cDipartimento di Biologia Sperimentale, Università di Cagliari, Via Palabanda 12, 09123 Cagliari, Italy

Dopamine receptors can be divided into two major families: the D_1 -like and D_2 -like receptors based on their pharmacological profiles and coupling with the enzyme adenylate cyclase.¹ Molecular cloning techniques have shown that the D_1 -like family is further divided into D_1 and D_5 receptors, both of which activate adenylate cyclase, while the D_2 -like family is divided into D_2 , D_3 and D_4 receptors, which either inhibit cyclic adenosine monophosophate (cAMP) production or are not coupled to adenylate cyclase.² Psychotic disorders, such as schizophrenia, seem to be characterized by an overactivity of dopaminesecreting neurons in the 'limbic brain', rich in D_2 -like receptors.³ From a pharmacological point of view D_2 receptor antagonist have been shown to treat these diseases effectively; however, a long term treatment is associated with the induction of disabling side effects such as extrapyramidal syndrome (EPS) and irreversible tardive dyskinesia. The therapeutic benefit of D_2 antagonists in treating psychotics disorders has been fully accepted with the discovery of more effective antipsychotic drugs characterized by minimal induction of extrapyramidal effects (atypical antipsychotic).³ Therefore the synthesis of novel antipsychotic with a better pharmacological profile remains a primary goal in the research for the therapy of psychoses.³

In previous papers^{4a,b} we have reported the syntheses and structure-activity relationships of a series of 5-phenyl-3-pyrrole carboxamide and related 4,5-dihydrobenzo[g]indole-3-carboxamide analogues whose most representative terms were **1a** and **2a** respectively.

Encouraged by these results we carried out several modifications of 2a. A first objective of this study was to seek correlations between the electronic and hydrophobic properties of the benzene and pyrrole substituents as well as to evaluate the bioisosteric replacement CH₂/S in the ethylenic bridge with a view to determining those physicochemical parameters which contribute to D₂-like binding affinity. Moreover, the spatial arrangement of the two aryl/heteroaryl rings of 2a would be expected to influence bioactivity profoundly; thus the preparation of 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[b]pyrrole analogues was also contemplated and their biological evaluation should permit some understanding of the importance of the relative positions of the aryl/heteroaryl rings.

The synthesis of the new benzo[g]indole-3-carboxamide derivatives and related compounds, **2b-k** and their *in vitro* binding to the dopamine D_2 -like receptors are reported.

4a. Pinna, G.A.; Curzu, M.M.; Sechi, M.; Chelucci, G.; Maciocco, E. Il Farmaco, 1999, 54, 542-550.

^{1.} Kebaian, J.W.; Calne, D.B. Nature, 1979, 277, 93-96.

^{2.} Civelli, 0.; Bunzow, J.R.; Grandy, D.K. Ann. Rev. Pharmacol. Toxicol. 1993, 32, 281-307.

^{3.} Jaber, M.; Robinson, S.W.; Missale, C.; Caron, M.G. Neuropharmacology 1996, 35, 1503-1519.

b. Pinna, G.A.; Curzu, M.M.; Sechi, M.; Chelucci, G.; Vianello, P.; Maciocco, E. Il Farmaco, 1998, 53, 684-869.