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In mechanical treatment carried out by ball milling, powder particles are subjected to repeated
high-energy mechanical loads which induce heavy plastic deformations together with fracturing and
cold-welding events. Owing to the continuous defect accumulation and interface renewal, both
structural and chemical transformations occur. The nature and the rate of such transformations have
been shown to depend on variables, such as impact velocity and collision frequency that depend, in
turn, on the whole dynamics of the system. The characterization of the ball dynamics under different
impact conditions is then to be considered a necessary step in order to gain a satisfactory control of
the experimental set up. In this paper we investigate the motion of a ball in a milling device. Since
the ball motion is governed by impulsive forces acting during each collision, no analytical
expression for the complete ball trajectory can be obtained. In addition, mechanical systems
exhibiting impacts are strongly nonlinear due to sudden changes of velocities at the instant of
impact. Many different types of periodic and chaotic impact motions exist indeed even for simple
systems with external periodic excitation forces. We present results of the analysis on the ball

trajectory, obtained from a suitable numerical model, under growing degree of impact elasticity. A
route to high dimensional chaos is obtained. Crisis and attractors merging are also fol2ti12©
American Institute of Physics[DOI: 10.1063/1.1484016

Mechanochemistry is a branch of solid state physical
chemistry dealing with the effects of mechanical energy
storage, on the various properties of solid phases. In par-
ticular, mechanical energy is stored as excess energy in
point and extended defects which induce local distortions
of the ordered crystalline lattice determining deep modi-
fications of the material properties as well as an increase
of the chemical reactivity. In spite of its modern applica-
tions in materials science the capability of mechanical
energy to induce chemical reactions is well recognized
since ancient times-? However, mechanochemistry was
actually forgotten from the Middle Age onwards and only
at the beginning of the 19th century W. Ostwald attracted
the attention of the scientific community on it® Since
then, the field of research on mechanochemical phenom-
ena greatly developed. Starting from the end of the 1960s
ball milling in particular became a popular procedure in
powder metallurgy to synthesize materials with novel
properties.* After about 30 years, however, many initial
expectations on possible industrial application of me-
chanical treatment have been disappointed. Different
reasons have been invoked to explain such a situation.

Among the others, the scarce knowledge of the dynamics
of ball milling devices, where milling bodies undergo a
huge number of collisions during the processing. Under
such conditions, indeed, any experimental measurement
of the exact number of impacts and of the energy trans-
ferred to powders at collisions is greatly hindered. It be-
comes therefore impossible to relate the degree of struc-
tural evolution to the mechanical energy dissipated,
maybe the most important macroscopic parameter used
to characterize the yield of a mechanochemical reaction.
Any information on the dynamics of milling bodies is
then extremely valuable in order to quantitatively de-
scribe and rationalize the kinetic features of mechanically
induced transformations. Preliminary investigations have
already shown the possible occurrence of chaotic regimes
during milling treatments.®’ On the other hand, model-
ing results and experimental evidences demonstrate the
occurrence of regular dynamical regimes allowing for the
direct measurement of both the average collision fre-
quency and impact energy’ It becomes therefore impor-
tant to study the transition from periodic to chaotic re-
gimes in order to understand when and why transition
takes place, so as to avoid it. Experimentalists are indeed
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permit the full control of experimental parameters.
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I. INTRODUCTION T T T T
0 T/4 172 37/4
Mechanochemical processing of powders by ball milling \Z R R .
(BM) is an attracting synthetic route for the production of
novel materials under nonequilibrium conditichslsually > ~ .
carried out inside batch reactors, the mechanical treatmen
consists in a succession of impact events during which pow-
der particles trapped between two colliding surfaces experi-
ence high rates of plastic deformatifhThe microstructural
refinement and the defect storage processes increase tr
chemical reactivity to such a level that unusual behaviors
arise with the formation of metastable structufes®In a
sense, the mechanical energy transferred by the grinding
balls to the powders in the course of the processing plays ¢
role similar to other forms of energy more commonly em-
ployed to induce physical and chemical transformations. ~
However, the difficulty in quantifying and controlling the
dynamical variables greatly hindered a better understanding
of the complex phenomenology observed in a millingriG. 1. Typical course of the Spex Mill. The vial motion is shown on the
procesé. Mechanically induced phase transformations are invertical (X;Z) and on the equatorial(;Y) planes. The main component is
fact sensitive to the main parameters of the mechanical trea® harmpnic swing occuring over a shallow arc on the vertical plane. As
. . [ shown in the lower graph, a synchronous additional movement makes the
ment. Not only the kinetic energy of the milling balls, de- .. " " nd its barycenter on the: ) plane.
terming the load exerted on the powder and then the degree
of plastic deformation, but also the powder charge, the col-
lision frequency and the mill geometry affect the feasibility
and the rate of a given transformatith'® Further progress
requires a reliable evaluation of the main parameters of th
mechanical treatment and the detailed characterization of t
dynamics of milling regime3!’ A contribution along these
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In the present contribution, the analysis is pursued fur-
her and extended to all the possible impact conditions. The
%egree of impact elasticity is gradually changed and used as
ifurcation parameter. The related ball dynamics changes
correspondingly, showing more and more complex features

lines of inquiry has been recently given by Cocco and . . . .
co-workersi8-20 They set up an experimental methodology as the impact conditions move from completely inelastic to
X completely elastic. In the following, the model of the ball—

providing the accurate measurement of both the collision fre-'. S .
! ) . . vial system is briefly outlined.
guency and the impact velocity for milling runs carried out
with a single ball subject to nearly plastic collisions. In such
a context, evidences of Fh_e occurrence of chaotic be.haworﬁ_ MODEL OUTLINE
in the course of a ball milling process were also proviéfed.
The maximum Lyapunov exponent, having a positive value, The Spex Mixer/Mill model 8000 is the most diffuse
was indeed evaluated from an experimentally determine®M device for mechanochemical activation of powders. A
temporal series of sequential collisions. In spite of the posmechanical arm, mounted on an eccentric fulcrum and con-
sible sources of experimental errors, the experimental findrected to an electrical engine, moves the vial, a cylindrical
ings clearly pointed out that the ball-vial dynamics is chaoticcontainer 5.8 cm in height and 3.8 cm in diameter, along a
when elastic collisions take place. complex three-dimensional course. The main component of
The experimental findings concerning the collision en-the vial motion is an angular harmonic displacement on the
ergy and frequency, collected under nearly inelastic impactertical plane coupled with a synchronous rotation on the
conditions, were then used as a guideline for the developequatorial plane, as shown in Fig. 1. In a mill equipped with
ment of a computer modeling of the ball motithThe pic-  a suitable three-phase asynchronous motor, the vial can move
ture that emerged from the numerical simulation of the ballwith a frequency ranging between 14.6 and 22.5'Hzhe
dynamics closely supports the experimental results, providvial motion results from the combination of synchronous ro-
ing estimates in complete agreement with experimentally actotranslations with reference to a fixed frame of Cartesian
cessible quantities. Ascertained in this way, the reliability ofaxes. Two Cartesian reference systems, shown in Fig. 2, are
the model and the numerical simulations have been used tgsed. The inertial one, of coordinateX;¥;Z), is centered
explore the ball dynamics in conditions where a direct ex-on the eccentric fulcrum, while the second, noninertial one of
perimental evaluation of the milling parameters is not pos<coordinates X;y;z) has its origin coincident with the vial
sible. baricenter and moves with it. The periodic displacement of
A preliminary investigation has been already performedthe mechanical arm on the vertical plane and the rotation on
under completely elastic impact conditions. Suitable nonlindits own axis,R, are described by the following equations:
ear dyna_mics anal_ysis proved that the ball undergqes an hy- 6= 0, cos(wt+ 5), 1)
perchaotic dynamics characterized by three positive expo-
nents in the Lyapunov spectrum. a=apSin(wt+ ), 2
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+ Z the geometrical constraints discussed below, the equations
define the possible volume that the ball can explore in the
course of its displacement inside the moving vial.

L The effective volume available inside the vial for a ball

with a diameter equal to 12.4 mm is defined by the following

geometrical constraints on the noninertial ball center coordi-

y4
nates Ky, ;Yp;Zp):
R —2.28<x,<2.28 cm, (yi+z3)Y?<1.28 cm. (5)

] When an equality is satisfied, a collision occurs and the com-
ponents of the ball velocity vector change. In particular, the
component of the noninertial reference system velocity per-
pendicular to the surface of impact is reversed and scaled

> with a restitution coefficienf, according to the following

O, X equation:

vi=—fu;, (6)

wherev; andv; are, respectively, the initial and the final
values of the velocity component. According to its usual
definition, the restitution coefficient assumes values in the
interval between 0 and 1. In the present work, the restitution
coefficientf is gradually changed and the time series of non-
—a_ inertial ball coordinates, resulting from the numerical solu-
O X tion of the equations of motion, are analyzed in order to
characterize the ball dynamic behavior. The restitution coef-
ficientf is therefore used as bifurcation parameter. The equa-
tions of motion of vial and ball are numerically integrated
y with a time stepst equal to 10° s.
v The equations of the first set above are integrated when
Y the ball moves freely inside the vial in order to update the
FIG. 2. Inertial (X;Y;Z) and noninertial X;y;z) reference frames used to ball position. The position of the ball relative to the container
represent the vial motion. The vial, centered at the or@inof the latter, is  walls is then checked with the second equation set. When
also depicted. It oscillates on both th¥;Z) and (X;Y) planes with ar/2 conditions for impact between ball and container walls are
ng‘rzzpdéﬁzzﬁgift;ip;f%?:fotfh&: '3%”?;32%?2;222 antandO, . satisﬁe_d, the first d_eriv_ative of the (_aquations is employed to
determine the relative impact velocity.
The ball motion is obviously studied with reference to
) ) the vial displacement. Being ruled by the impulsive forces
where 6, and «q are the amplitudes of the angular motions, gperating during the impact events, it only can be reproduced
w=2mv, vis the frequency of the motion, anflis a phase  giep-hy-step by numerical calculations. Between two succes-
factor dependent on the initial conditions. As evident fromgjye collisions, the ball motion is uniform rectilinear, since

Fig. 2, the angle®) and « have a phase difference equal 10 the gravity is neglected, and the course of the ball is de-
m/2. The maximum angular amplitude® and a, corre-  geriped by the conventional Verlet algoritih:
spond to 15°, while the mechanical arR, is 10 cm long.

The motion of any point of coordinatesx;f/;z) and r(t+8t)=2r(t)—r(t—8t)+a(t)t?,
(X;Y;2), in the noninertial and inertial reference systems, _
respectively, is described by the following sets of equations: v(t)=[r(t+ay)—r(t=av)]/2ét,

X= (X cosa+Y sina) cosd+(z+R) siné, wherer is the position vector, is the velocity vectora is
_ the acceleration vectot,is the time, andst the time step of
Y=—Xxsina+y cosa, (3) integration. It is worth noting that, in the present case, accel-

eration is always absent since gravity is neglected. According

Z=—(Xcosa+ysina)sinfd+(z+R) cosb, . ’ o
( atysina) ( ) to the simulation scheme adopted, when a collision takes

and place at a particular time step, the velocity is immediately
x= (X cosf—Z sinf) cosa— Y sina, inverted, its value being updated in the subsequent time step.

It stems, therefore, that the collision event is limited to a

y=(Xcosf—Zsin6) sina+Y cose, (4)  single time step. Consequently, collision duration is equal to

the time step adopted. Because of this, the value of the time
step was chosen in order to provide a collision duration in
Such equation sets allow for the reconstruction of the threerough agreement with data obtained from both the Hertzian
dimensional trajectory of any point of the vial. Together with theory of impact and experimental measuremé&hts.An

z=Xsinf+ZcosH—R.
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FIG. 3. Collision frequencN averaged as a function of restitution coeffi-
cientf. 0,02t
0,011
improvement of the numerical model is certainly possible in x(t+7) 0.00 |
order to reproduce in detail the dynamics of single impacts ’
and valuable work has been already done in this dire¢fion. 2001t
Basic results on the system dynamical behavior, however, are ’
not affected by the degree of accuracy with which a single .0,02f
impact event is simulated.

-0’0-8,03 -0,02-0,01 0,00 0,01 0,02 0,03
{b) x(f)
I1l. DATA ANALYSIS
FIG. 4. Temporal series corresponding to the displacement along the non-
For each value of the restitution coefficiehta data set inertial x axis for a restitution coefficient value equal to 0.13. Inversions at

of six dynamica| variables, consisting in the time series ofthe maximum displacement points correspond to collisions occurring on the
ball coordinates (x(t),y(t),z(t)) and velocities (X(t), vial basega). Reconstructed attractor corresponding to a limit cyble
y(t),z(t)), was generated by numerical solution of the equa-
tions of motion. Lowerscriptsk) are disregarded for the
sake of simplicity. The length of the time series used forplete ball trajectories can be obtained. However, the ball dis-
analyses is adapted to the main features of the ball dynamicplacement as a function of the time can be followed step-by-
Longer series are generally needed to satisfactorily charastep by numerical modeling.
terize the more complex regimes arising for values of the Standard embedding techniques have been used to re-
restitution coefficient larger than 0.3. Time series are, how<onstruct the appropriate phase space for the ball dynamics,
ever, always longer than {®oints, corresponding to $&.  for each time series analyzed, from the original time series
Nonlinear dynamics analyses were performed on the datand its time delayed copies. Each time series can be regarded
sets downsampled by a factor of 10. The sampling periods a sequence of observatiofs=s(x,)} performed with
effectively used is then equal to 19s, still allowing for a  some measurement function, whegeis defined in discrete
satisfactory representation of the ball trajectory. Initial tran-time t=nAt by maps of the form
sients of variable length have also been observed. In each _

Xn+1_f(xn)- (7)
case, the system was allowed to settle down on the attractor
and reach a stationary state and the initial data skipped) delayed reconstruction im dimensions is then formed by
Analyses were then performed on data sets, suitably dowrihe vectors
sampled, and reduced, consisting of a minimum of1%* = (S (1) S (-2 rr+- G n) 1) ®)

oints.
P The numbem of elements is referred to as the embedding
dimension and the time is the so-called time delay, some

1IV. COMPUTATIONAL METHODS integer multiple of the sampling periots. Since the num-

ber of embedding vectors is only— (m—1)7 whenN sca-

lar measurements are available, the dynamics is said to be
The impossibility to make a continuous flow, i.e., a set ofembedded in am-dimensional phase space. When a proper

differential equations for the vial—ball system, induced us tochoice of the time delay and of the embedding dimension is

reconstruct the attractor and to evaluate the Lyapunov expanade, the underlying assumption is that the invariants of the

nents from the time series obtained by numerical modellingsystem dynamics are the same in both the actual and the

The ball motion is governed by impulsive forces acting dur-reconstructed phase spaéés> According to generally ac-

ing each collision, and no analytical expression for the comeepted procedures, the time deldys have been calculated

A. Attractor reconstruction
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FIG. 5. Fast Fourier transform for the displacement along the noningréials for a restitution coefficient value equal to Q2. Fast Fourier transform for

the displacement along the noninertialaxis for a restitution coefficient value equal to @t2. Reconstructed attractor for variable (c). Reconstructed

attractor fory variable. In this case the fundamental frequency is equal to 29.14 Hz. The first period doubling has the same value of the fundamental frequency
for the x axis. (d)

from the first minimum of the average mutual information by chaotic behaviors. The rate of divergence is measured by
function, which evaluates the amount of bits of informationa characteristic quantity referred to as Lyapunov exponent.
shared between two data sets over a range of time delays aadtually, even in the case of a single dynamic variable time
provides adjacent delay coordinates with a minimum ofseries, a spectrum of Lyapunov exponef®.E) can be
redundancy” The embedding dimensiom, also critical to  evaluated. The total number of exponents depends on the
get a satisfactory reconstruction, has been computed from @gimension of the phase space in which the dynamics is em-
global false-nearest-neighbors analysis evaluating the digedded. In the case of am-dimensional phase spaca,
tance between neighboring trajectories at successively highegapunov exponents\j=\,=---=\,) are defined. Each
dimensions?® The uniqueness theorem about the solutions ofne of then Lyapunov exponents defined for a system with
autonomous differential equations guarantees, indeed, that Regrees of freedom reflects the orbital stability along a
overlap of the orbit with itself is possible in the original proper direction. In particular, the system behavior will be-
phase spac¥.*®False neighbors are therefore detected wheome more and more chaotic as the number of positive
trajectories overlapping in am-dimensional space are dis- | yapunov exponents increases. The largest ane, deter-
tinguished in amm; , ;-dimensional one. As increases, the mines the degree of chaoticity and then the timescale on
total percentage of false neighbors decreases and the proRghich the dynamics becomes unpredictable. Various meth-
embedding dimensiom is chosen where the percentage ap-,gs have been developed to evaluate the EE-43All of
proaches zero. Under such circumstances, the attractor is Uflem consider the trajectory defined by the reconstructed at-
folded and remains unfolded in higher dimensions. All theyaotor as a fiducial trajectory. The SLE calculation is based
numerical calculaﬁtlgns have been performed by using th@, he study of trajectories originating from points nearby
TISEAN package®™ the fiducial trajectory considered as distinct initial conditions
along the fiducial trajectory itself. Therefore, an approximate
reconstruction of the unknown dynamitds performed in

It is well known that chaotic systems displays a sensitivethe neighborhood of the fiducial trajectory. In the present
dependence on initial conditions. Such a property is reflectegaper, the Sano and Sawada algorithi**has been used.
on the time evolution of infinitesimally close trajectories Basically, it estimates the local Jacobians which rule the
which tend to diverge when the system dynamics is governedrowth of infinitesimal perturbations. The routine employed

B. Spectrum of Lyapunov exponents
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g 0.006F
E-t . . - . .
5 0,004 - the reactor, which makes the ball travel in opposite directions
along the vial axis, while damping is connected to the elas-
0,002} 2914 ticity of impacts and, then, to the dissipation of kinetic en-
ﬂ i L ergy taking place at egch coII_|S|on event. Keeping constant
0.000 bttt L) i the frequency of the vial motion and changing the impact
(©) 0 20 40 60 . 80 100 elasticity degree through a restitution coefficient corre-

Frequency , Hz . .
sponds, therefore, to change the “damping capacity” of the

FIG. 6. Reconstructed attractor from the temporal series obtained from the oscillator. The dynamics of such a system can be studied on
variable when the restitution coefficient is equal to 0.@9 Temporal series different levels. On a “coarser” one. a simple quantity can
corresponding to the displacement along the noninexteatis for a restitu- be ch th f ,t to ch terize the d
tion coefficient value equal to 0.2®). Fast Fourier transform for the dis- € C_ osen as . € reierence parameter 1o characterize the dy-
placement along the noninertial axis for a restitution coefficient value Namical behavior of the whole system. In the present work,
equal to 0.290). the frequencyN, of impacts on the vial bases, i.e., the num-
ber of impacts that occurred on the vial bases in a second,
has been chosen. An obvious increase in the impact fre-
uency is expected at increasing the restitution coeffidient

Nd then the impact elasticity. The trend observed is, how-

in TISEAN constructs a global nonlinear model and evalu-
ates its local Jacobians by derivatives. The Jacobians are th

galtfgfg tgcg'ﬁ_?;in;:;%g:sg} 3';;3 gel};?]sefr:gr)rlu;;;h; ever, very different from a gradual, monotonous one. As
9 pace. kseq shown in Fig. 3, the collision frequendy undergoes two

;)fv\ll_y?punovf epr:mrﬁnt; Irz]rr:?det Srlt_rlinﬂr]r?] a“r;pltlicaglor, e\ée?sudden changes. Under inelastic impact conditions, the col-
ew steps, of a oram=oe orthonormalization procedurgq;., frequency is simply twice the milling frequency, equal
gives the Lyapunov exponents in descending order.

to 14.58 Hz, pointing out a considerable regularity in the ball
displacement. When the restitution coefficiénts 0.4, the
collison frequency reaches a maximum. Wherns 0.8 a

A ball inside the cylindrical mechanochemical reactorsudden collision frequency jump occurs, addnoves from
under operation is nothing but a particular kind of forced-39.78 to 55.7 Hz. When 0s9f<1.0 a second sudden jump
and-damped oscillator. Forcing is assured by the motion obccurs; the frequency reaches the value of 138.08 Hz. These

V. RESULTS AND DISCUSSION
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FIQ. 8. Reconstructed attractor fror'n'the t.emporal series obtained from the 145 for both thex andy coordinates are shown in Figs(ch
variable when the restitution coefficient is equal to (B8 Reconstructed . .
attractor from the temporal series starting from different set of initial con-and 8d), respectively. The occurrence of thé! frequencies
ditions obtained from the variable when the restitution coefficient is equal IS particularly evident on Fig.(8). Actually, even if the fre-
to 0.3 (b). quencies observed in the range €£2<0.29 suggest a
period-doubling cascade route to ch&bi,is not possible to
exclude that the route to chaos consists, instead, in a scaling
results strongly support the occurrence of a disorderedatio sequence for a period adding sequefiathen the res-
dynamics On a “finer” level, nonlinear dynamics analytical titution coefficient reaches the valife=0.29 a chaotic be-
tools have been used to fully characterize the ball dynamickavior appears, characterized by a single positive Lyapunov
and the nature of the transitions observed in the collisiorexponent equal to 0.0029 % The attractor, reconstructed by
frequency at increasing the restitution coefficiéntUnder  the x coordinate, is shown Fig.(8). It is interesting to note
inelastic impact conditions, i.e., at values of the restitutionthat, at first sight, the system dynamics appears periodic.
coefficient in the interval 08f=<0.28, only periodic orbits Both the temporal series and the FFT of theoordinate,
are observed. Temporal series of theoordinate are strictly reported in Figs. @) and 6c), point out the occurrence of
similar to the periodic one, obtained for a restitution coeffi-strictly periodic oscillations, dominated by a single funda-
cient value equal to 0.13, reported in Figay# Correspond- mental frequency and its harmonics. Nevertheless, the analy-
ingly, the attractor, shown in Fig.(d) and reconstructed by sis of the temporal series of tiyeandz coordinates reveals
using a time delay of 1.7410 2 s, is a limit cycle. As the aperiodic patterns and broadband FFT spectra, although the
value of the bifurcation parametdr, increases in the interval fundamental frequencies are still the dominant ones, as evi-
between 0.0 and 0.28, the system is subjected to somethirdgnt from Figs. 7a) and 1b). The analysis of chaotic mo-
similar to a period doubling sequence, as revealed by th&ons does not benefit much from power spectra, even if they
appearance of frequencies fran® up tor/2?. However, the are useful tools for the visualization of periodic and quasi-
added frequencies can not always be easily detected by angeriodic phenomena and for their separation from chaotic
lyzing the time series of the coordinate only, since a strong time evolutions. In the present case, the strong dominant
dominant frequency is present. For example, the plot of thérequency orx coordinate hides the chaotic dynamics of the
amplitude spectral density as a function of the frequencysystem. With reference to this, it is worth noticing the
reported in Fig. &) for thex coordinate when the restitution strength of the Takens theorethin fact, the reconstructed
coefficient is equal to 0.2, reveals only th& frequencies. attractors fromx andy coordinates both display the strange-
Nevertheless, the corresponding fast Fourier transfeiAT) ness property typical of chaotic attractors, although the dy-
of they coordinate, quoted in Fig.(B), points out the occur- namics of thex coordinate seems to be periodic. Two posi-
rence of thev/4 frequencies also. The reconstructed attractive Lyapunov exponents appear when the restitution
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0,03 tween two different regions of the phase space. Such a dy-
namic behavior is shown in Fig.(&® for a value of the res-
0,021 titution coefficient equal tof=0.5. The reconstructed
attractor for thex coordinate is shown, instead, in Figh®
0,01 The intermittent behavior keeps until the restitution coeffi-
S D 0.0 | cient' re:\aches the yglufa= 1, correqundipg to completely
> elastic impact conditions. As shown in Fig. 10, the attractor
- splits into two symmetric attractors. This attractor is respon-
’ sible for a hyper-chaotic trajectory as already discussed in a
0,02f previous papefAs evident from Fig. 11, the system dynam-
ics is so sensitive that two orbits originating from very simi-
-0.03 : : s - s lar initial conditions become distinguishable after less than
-0,03-0,02-0,01 0,00 0,01 0,02 0,03 015 s.

x(1)

FIG. 10. Symmetric attractors obtained from tkevariable starting from  \/| CONCLUDING REMARKS
different sets of initial conditionéf =1 elastic condition

According to previous findings, the nonlinear dynamics

analyses on the ball trajectories prove the complex nature of
coefficient assumes a value equal to 0.3, proving the estalthe ball dynamics in a milling device. When the restitution
lishment of a high-dimensional chaos. The reconstructed atoefficientf is gradually changed in the interval between 0
tractor is depicted in Fig.(@). As a matter of fact, the com- and 1, the system dynamics correspondingly changes, under-
plexity of the dynamics inherent to this particular value of going subsequent transitions to chaos. Due to the symmetry
the bifurcation parameter is not evident from Figa)8In-  of the system, two chaotic attractors are initially detectable
deed, the symmetric properties of the system give rise to a the phase space. Further increasing of the bifurcation pa-
different attractor that can be reconstructed starting from aameter leads the system to hyperchaotic behavior character-
different set of initial conditions. As evident from Fig(l$, ized by an intermittent switching between two different ba-
the new attractor is perfectly symmetric to the one in Fig.sins in the phase space. The strong dependence of the ball
8(a). Increasing further the restitution coefficient leads to amotion on a bifurcation parameter such as the restitution
crisis at the critical valuef(,=0.4).*® In the present case, the coefficient underlines therefore the fundamental importance
sudden discontinuous change in the features of the chaotaf the powder charge to control the collision elasticity and
attractor generally expected in a crisis scenario consists ithen the actual milling conditions. Work is in progress to
the merging of the two attractors in Figs@@Band &b) to  deepen our insight into the detailed nature of intermittency
form a new chaotic attractor. Before of the critical value, theand dynamical transitions. So far, we hope that our contribu-
basins of the two attractors are separated by a basin bountlen could be useful to clarify the dynamics of the ball inside
ary. Asf is increased, the two attractors enlarged and at théhe Spex Mill and to favor further progress in the field of
critical valuef both of them simultaneously touch the basin mechanochemistry.
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