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Hyperchaotic qualities of the ball motion in a ball milling device
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Ball collisions in milling devices are governed by complex dynamics ruled by impredictable
impulsive forces. In this paper, nonlinear dynamics techniques are employed to analyze the time
series describing the trajectory of a milling ball in an empty container obtained from a numerical
model. The attractor underlying the system dynamics was reconstructed by the time delay method.
In order to characterize the system dynamics the calculation of the spectrum of Lyapunov exponents
was performed. Six Lyapunov exponents, divided into two terns with opposite sign, were obtained.
The detection of the positive tern demonstrates the occurrence of the hyperchaotic qualities of the
ball motion. A fractal Lyapunov dimension, equal to 5.62, was also obtained confirming the strange
features of the attractor. @999 American Institute of Physids$$1054-150(09)00101-9

The synthesis of metastable phases and new materials links with the intensity of the mechanical treatment still have
often requires severe processing conditions. Techniques to be clarified. The major difficulty is represented by the
based on heavy mechanical deformation of solid mixtures complexity of the milling dynamics preventing, for a long
have reached a stage of considerable development in the time, any accurate measurement of the fundamental milling
field of materials science. Due to its commercial possibili- parameters such as collision frequency and velocity.
ties and to the unusual physical phenomena involved, A satisfactory, even if partial, solution to the problem
powder processing by ball milling still arouses both tech- was recently accomplished as a result of our efforts. An ex-
nological and scientific interest. Energy is transferred perimental methodology and a modelistic approach were de-
from the milling tools to the entrapped powder, which is  veloped and employed to characterize milling experiments
subject to heavy mechanical loads and undergoes con- performed with a single milling ball and a variable powder
tinuous defect accumulation and an ultimate limit of sta- charge. The former is based on the use of a piezoelectric
bility is achieved. Diffusion and mass transport phenom-  shock sensor to detect the ball-vial collisions coupled with a
ena occur through the continuously developed fresh magnetic vial position survey system to locate the vial at the
surfaces. The phase transformation and its rate are inti- impact instants, whilst the latter is based on numerical
mately linked to the energy transfer of the collision event.  techniques:®
The efficiency of the transfer depends, in turn, on the Due to the cushioning effect of the powder entrapped
degree of elasticity of the collision, which also affects the between the ball and the container, the powder amount
general features of the milling dynamics. As the elasticity ~ strongly affected the elasticity degree of the ball-vial colli-
increases, the milling dynamics change from periodic to  sions. Therefore, depending on the powder load, the milling
aperiodic. This behavior can be suitably characterized regime progressively changed from plastic to elastic, and we
with the help of nonlinear dynamical analyses. In this attempted to simulate it by using a restitution coefficient
paper, a milling system was modeled and the trajectory changing, respectively, from 0 to 1.
of a single ball colliding elastically inside the milling con- At a low elasticity degree, impacts were observed to
tainer was numerically simulated. Nonlinear dynamics occur with a high periodicity, allowing for an accurate ex-
analyses showed that elastic impact conditions determine perimental evaluation of the frequency and the velocity of
the occurrence of a hyper-chaotic behavior. the collisions. A regular and periodic ball trajectory also re-
sulted from the numerical simulation. The experimental ap-
proach and the numerical calculations sustained each other.
. INTRODUCTION Full details are reported elsewhére.
o . , Besides the valuable support to the experimental meth-

Ball milling processes and high energy mechanical treatqo|0qy the modeling approach offered a deeper insight into
ments (Mechanical Alloying and Mechanical Milling, MA  {he milling dynamics, allowing one to extend the investiga-
and MM) have became the common method of synthesizingjon, from plastic to elastic impact conditions. Indeed, by de-
far from equilibrium structures, such as amorphous alloyg;easing the powder charge, the ball motion gradually lost its
and nanostructured matgrlélé. MA  processes have (oqlarity, the impact frequency increased, and, finally, at the
branched out into different fields of Material Science. HOW-pighest degrees of elasticity, the motion became aperiodic. In
ever, fgng%mental problems in quantifying the MA procesShese conditions the milling parameters, mostly the impact
still exist>" Mechanistic aspects of the process and the'rvelocity, were no longer experimentally measurable. Under
these circumstances, numerical calculations supplied a ball
dCorresponding author; electronic mail: rustici@ssmain.uniss.it trajectory of high complexity.
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The ball trajectory can be regarded as a complex time

series characterized by apparent randomness. In the present 0 T/4 72 3T/
paper, the time series was analyzed by nonlinear dynamics : gz

techniques in order to point out the occurrence of chaotic /éj: {} }
behavior and to better characterize the link between period-

icity loss and impact quality.

“Chaos” and “chaotic” are distinguishing terms used
to describe the aperiodic and apparently random time behav- X
ior of a deterministic system with a small number of degrees
of freedom’® The time evolution of a deterministic physical

system is often described according to a set of ordinary dif- | !
. . [ Tx x
ferential equation$ODE),
v Y
du(t)
gr = Fu(t),w), (1) j I
FIG. 1. Typical course of the Spex Mill. The vial motion is shown on the

h is th | dti vertical (X;Z) and on the equatorial;Y) planes. The main component is
wheret Is the elapsed time aryd are one or more parameters a harmonic swing occurring over a shallow arc on the vertical plane. As

on which the system behavior depends. Thdimensional shown in the lower graph, a synchronous additional movement makes the

space of the state vectougt) = (u(t),u,(t), ... ,u,(t)) is vial rotate around its barycenter on th¥;{) plane.

called phase space. In this space, the time evolutigh

describes the trajectory or orbit of motion. Depending on the

linearity or nonlinearity of the vector fiel&#(u), the system swings a cylindrical container, 5.8 cm high and 3.8 cm in

is said to be linear or nonlinear. The mathemathical comdiameter, along a three-dimensional course with a frequency

plexity of nonlinear systems can be partially overcome byvariable between 14.6 and 22.5 Hz. The main component of

resorting to the study of the qualitative aspects of the dynamthe vial motion is an angular harmonic displacement on the

ics, corresponding to the topological properties of the phaseertical plane coupled with a sincronous rotation on the

space trajectory(t) ast—. In the case of dissipative sys- equatorial plane. A sketch of the vial motion is shown in Fig.

tems the orbitu(t) asymptotically converges to a subset of 1.

the phase space with its own geometry and dimension, The model starts with the analytical description of the

strictly less than the phase space one. Such a subset is callgidl motion. With reference to this, the dynamics of the sys-

the attractor of the system. tem vial-ball was reproduced by a computer simulation. The
In the case of a chaotic system, the attractor has verfrequency of the vial motion was=18.3 Hz. A single ball,

complex geometric features mirroring the apparently randonhaving a diameter of 1.24 cm, was considered.

time evolution. Often a noninteger attractor dimension re-

sults. A similar fractal object is referred to as a strange at-

tractor. 1. The analytical equations of the vial motion

The fundamental property of a chaotic dynamical system  1pa vial motion can be described as a combination of

is its sensitivity to the initial conditions. Small differences in synchronous rototranslations with reference to a fixed frame
the initial conditions lead to an exponential divergence of theof Cartesian axes.

related trajectories in the phase space. A formal account of

! | | . Two Cartesian reference systems are considered: an in-
this property can be obtained by introducing the Lyapunovyia| one, of co-ordinatesx( Y:Z), centered on the fulcrum

exponent$. These express the average rates with which thes e mechanical arm, and a second, noninertial one of co-
traject(_)rles_ exppnentlally diverge or converge along eac_h o dinates &y:2), moving with the vial and with the origin
then directions in the phase space. Any system possessing ghincident with its baricenter. The two reference systems are
least one positive Lyapunov exponent is defined as chaotiG gy in Fig. 2. The continuous and periodic angular dis-
If more than a single positive Lyapunov exponent is fo””d’placement of the mechanical ar(that is, of the distance

the system is defined as hyperchaotic. _ _vectorR) is described by the following equation:
Together with Lyapunov exponents, fractal dimensions,

which characterize the distribution of the attractor points in 6= 6o COS wt+ ), (2

the ph%siﬁlspace, have emerged as useful classifiers of chagfjgere 8, is the amplitude of the angular motiom=27v

motion.™ _ _ _ _ and v is the frequency of the motions is a phase factor

Nonlinear dynamics analysis techniques are suitable fogependent on the initial conditions. The oscillation of the

the problem at hand. mechanical arm around its own axis of an anglegenerat-
ing the oscillation of the vial in theX;Y) plane, is ruled by

Il. RESULTS AND DISCUSSION an analogous equation:

A. The model a=agSin(wt+9). (©)]

We refer to a Spex Mixer/Mill mod. 8000. An electrical The angles and a have a phase difference equaltf®. 6,
engine communicates the motion to a mechanical arnand«g correspond to 15°, whil® is equal to 10 cm.
mounted in an eccentric fulcrum. The mechanical arm  The following sets of equations:
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FIG. 3. The upper diagram shows the vial and the cefteof the vial base.

The dots in the diagram below are the experimentally determined co-
ordinates ofC on the three planes during a complete cycle. The continuous
Y line shows the displacement € as calculated by the model. Notice the
different scale in the axes of the three diagrams. The difference in the
maximum displacement along theaxis arises because the model does not

FIG. 2. Inertial X;Y;Z) and noninertial X;y;z) reference frames used to take into consideration the effects of the retaining spring of the clamp

represent the vial motion. The vial, centered at the originoDthe latter, is assembly.

also depicted. It oscillates on both th¥;Z) and (X;Y) planes with am/2
phase differenceR represents the distance between the pointar@ Q, ,

corresponding to the origins of the two reference frames. . . .
P g g set equal to 10° s, in order to have a collision duration
equal to the time step and roughly in agreement with data

X=(xcosa+Yysina)cosh+(z+R)sing,

obtained from the Hertzian theory of impdét
The ball motion will be uniform rectilinear if external

Y=—Xxsina+y cose, (4)  forces are absent. This is always the case, except for the

Z=—(Xxcosa+sina)sinf+ (z+ R)cos¥,

and
X=(Xcosf—Zsinf)cosa—Y sina,
y=(Xcosf—Zsin#)sina+Y cose, (5)

z=Xsinf+Zcosf—R,

describe the displacement of a point with co-ordinates
(x;y;2) and (X;Y;Z), in the noninertial and inertial refer-
ence systems, as a function of the time. Consequently, the
motion of any point of the vial is analytically known. Given

a point of co-ordinatesx{y;z) belonging to the vial, it is
possible to follow its three-dimensional trajectory by apply-
ing the equations se@). The inertial co-ordinates of the
center of a vial basis during a whole vial cycle are compared
to the experimental ones in Fig. 3.

The components of the velocity can be obtained by per-
forming a simple time derivative of the previous sets of
equations. A further derivation gives the components of the
acceleration. Both the velocity and acceleration components
values are quoted in Fig. 4.

2. The reconstruction of the ball motion

The ball motion is governed by the impulsive forces act-
ing during each collision, and no analytical expression for

the complete ball trajectory can be obtained. However, thé:e

Velocity (ms-1)

Acceleration (m s )

impact events. Between two following collisions, the course
of the ball was described by the following Taylor algorithms:

300

150

-150+

-300}

s

0,00 002 004 006 008
Time (s), ¢

0,10

IG. 4. Velocity (upper patternand acceleratiorilower patterji compo-
nts, on the three orthogonal axes, of the vial motion, obtained from the

ball displacement as a_funCtion O_f the time can be fOIIOWe(fnodel. Continuous, dotted and broken lines refer toXh¥ and Z compo-
step-by-step by numerical modeling. The time s&pwas nents, respectively.
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FIG. 5. Projection ba 1 sball course on thexy) plane. For a 1.24 cm
diameter ball, the vial has an effective length of 4.56 cm. Therefore colli-
sions at the opposite vial bases occux&t2.28 cm andk=—2.28 cm.

FIG. 6. The ball displacement along the noninertialxis. Inversions at the
maximum displacement points correspond to collisions occurring on the vial
bases. The other trajectory inversions and irregularities are due to rebounds
on the cylindrical side.

Xplt+ 8) = Xp(1) + 0y, (1) B,

Yp(t+ 6t)=Yb(t)+va(t) ot, (6) cording to the embedding theorem and the delay vector
method®1°which will be described later on in the paper, any
Zp(t+ ) =Zp(1) T vz, (1) o, component or scalar function of the state vector can be used

whereX,(t), Yp(t) andZ,(t) are the ball center co-ordinates to.obtan_q |nformat|oq on the geometry of thg attr_act_or. on
and vy (1), vy (1) and v, (t) are the components of the this basis, the ball displacement along the vial axis, i.e., the
by’ b b

ML D" " L X(t) variable, was chosen in order to characterize the ball
velocity in the inertial reference system. The noninertial ball (©)

. ) o . motion.
center co-ordinates( ;yy ;z,) were confined inside a region The data set was downsampled by a factor of 10 result-
of space corresponding to the effective volume available fo[

e . . _-Ing in an effective sampling period of 16 s. Although the
IhetﬁalL'nlflde i.he walr.]_Trk]]ecrje];ore, .the g}eometrlc?l cor:j;tt_ramt ampling period is 10 times longer than the time step used to
0 the ball motion, which determine the Impact cond Ior‘S’numerically solve the equations of motion, it allows a good
are the following:

reproduction of the features of the ball trajectory. The initial
—2.28<x,<2.28 cm, (yi+z)¥><1.28 cm. (7) transient of 1000 data was skipped to let the system settle
down on the attractor and reach the stationary state. As a
result, the analysis was performed on a data set consisting of
5% 10* points. A sketch of the trajectory(t) is shown in

At each step, the inertial reference frame
(Xp(1);Yp(t);Z,(t)) co-ordinates of the ball were updated.
From that, the non|r_1ert|a| reference  frame Fig. 6 as a function of the time With reference to the vial
(Xp(1);¥5(1):25(1)) ball co-ordinates were calculated. The ;o o apsolute maxima and minima in the plot indicate the
collisions were considered as completely elastic and, at eacz{écdrrence of impacts between the ball and the vial bases
impact, the velocity vector was modified: the component OfAsymmetries and secondary maxima and minima can rea-.
the noniner.tial reference_ system velocity perpendicular to th'gonably be attributed to head-on impacts and near-collisions
surface .Of Impact was simply reversed. . taking place on the vial cylindrical wall.

In Fig. 5 a ball trajector 1 s long was projected on the
(x;y) plane. It is possible to appreciate the disordered mo-
tion of the ball together with the inversion points of its trav- ;. power spectrum
eling due to the collisions with the container walls. As evi-
dent from Fig. 4, the acceleration experienced by the ball The amplitude and power spectra of the time series were
was generally one order of magnitude greater than the graalculated on 2=32768 data. A Fast Fourier Transform
ity and this, together with the shortness of the ball mean freéFFT) algorithm was used. The data are shown in Fig. 7. The
path, enabled us to consider the gravity acceleration as negmplitude spectrum presented in Figa)7shows a distribu-
ligible when compared to the acceleration imparted by thdion of discrete frequencies superimposed on a broad con-

vial. tinuous band. The most intense peak at 18.3 Hz corresponds
to the experimental frequency of the vial course.
B. Data analysis Features in the range between 33.5 and 45 Hz emerges,

but any detailed assignment is prevented by the complexity
A time series of 5.k 10° co-ordinates was generated by of the system dynamics. The power spectrum, quoted in Fig.
the numerical solution of equations of motion, correspondingz(b), exhibits a slow featureless decay. However, both sto-
to a ball trajectory of 5.1 s. A data set consisting of sixchastic and chaotic systems could display such Fourier spec-
variables was created; the ball co-ordinate@),y(t),z(t))  tra, and then no evidence can be drawn about the occurrence
and the velocities (t),y(t),z(t)) were obtained. To sim- of chaotic behavior. To characterize such a behavior, further
plify the notation, the lowerscriptd] were disregarded. Ac- investigation in the appropriate phase space is necessary.
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FIG. 8. The percentage of false neighbors using23 as determined by the
102 average mutual information. As evident from the inset, the percentage drops
to zero atm=6 which can be identified as the real embedding dimension
10 Mg .
10}
[
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(W)
1070F not so large as to prevent the statistical independencg of
102} andx;,t and the consequent complete uncorrelation of the
vectors{y;}. On the contrary, whefl is too small, the em-
10"“0 500 1000 1500 2000 bedding vectors will cluster in the embedding space around a
o 1 . L
Frequency (Hz) 45° line passing through the origin, because of the nearly

same numerical values of all the components.

FIG. 7. Amplitude(a) and powerb) spectra as obtained by FFT analyses on According to Fraser and Swinné@lhe time delay was

the time series. chosen in correspondence to the first minimum of the aver-
age mutual information functioh(T), which is a kind of
nonlinear correlation function of the data de¢}. A time

2. Attractor reconstruction delay T=23 was obtained.

As previously mentioned, the attractor will be recon- All the numerical calculations were performed using the

7
structed by applying the delay vector method. Let us conSSPW packqgé. o m L
sider the data set asx)=x(t=t,+iT< where i The choice of the embedding dimensiwris also critical

=1,2,... N, N=50000 being the number of samples angto get a good reconstruction. The uniqueness theorem about
T<=10"* s the sampling period. According to the delay vec-the solutions of autonomous differential equations guaran-
tor method, the trajectory in an-dimensional phase space is tees that no overlap of the orbit with itself is possible in the

reconstructed by the consecutiredimensional vectors, original phase spaceThe same must be required to the re-
constructed trajectory in the embedding space. The smallest

Y1= (X1, X147, X1 4275 + - - X1+ (m-1)T), m value allowing for the unfolding of the reconstructed tra-
®) jectory identifies the proper embedding dimensiog. If m

is smaller tharmg, orbit overlapping occurs due to the pro-

jection of the trajectory in a space with a too low dimension.

Then, points move closer in the embedding space and be-

Yr= (Xe Xeam Xeom - o Xesm-1)7), come false neighbors. Two nearest neighb®isl) y; and
wherem is an integer number called embedding dimensioryiNN are false nearest neighbors if they are nearest neighbors
and T is some integer multiple of the sampling peridd in dimensionm but not in dimensionm+1. Therefore it
called time delay. The number of reconstructed vectass becomes possible to identify the proper embedding dimen-
chosen in order to satisty+ (m—1)T=<N. Thus the dynam- sionmg by calculating the percentage of false nearest neigh-
ics is said to be embedded innadimensional phase space. bors increasing step by step the embedding dimensidh
The underlying assumption is that the geometry and the dyMoving from m to m+1 will sequentially remove folding
namics of the trajectory obtained in this way are the same asffects and the corresponding percentage of false neighbors
the geometry and dynamics of the trajectory in the actualvill decrease. When the number of false neighbors drops to
phase space of the system. In particular, the invariants of theero, the attractor is unfolded and remains unfolded in higher
system dynamics are the safé!* This assumption is dimensions. Consequently, the proper embedding dimension
verified when a proper choice of the time delay and of them is identified as the embedding dimension for which the
embedding dimension is mad. percentage of false nearest neighbors drops to zero.
The time delayT should be large enough to make the In Fig. 8 the percentage of false neighbors versus in-

consecutive components and x; .1 of the reconstructed creasing values ofn is reported. The inset points out a
vectors{y;} independent. However, the time delay should beproper embedding dimensiang=6.

Vo= (X2, X247, X242+ - - - Xo4(m=1)T)»
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300 eratorf, mapping the reconstructed attractggs ;=1(y,), is
unknown. The various methods proposed to evaluate the
200} Z ) . .
Lyapunov exponents®-2*mainly differ from one another in
100} the way to cope with this problem. However, all of them
@ . consider the trajectory defined by the reconstructed attractor
= i (8) as a fiducial trajectory. The information necessary to the
-100- SLE calculation is extracted by following the behavior of
nearby trajectoriegtrajectories arising from points nearby
-200 the fiducial trajectory which are considered as initial condi-
300 , ‘ , ‘ , tions). In order to reach this goal, in the neighborhood of the
-300 -200  -100 0 100 200 300 fiducial trajectory an approximate reconstruction of the un-

x(2) (104 m) known dynamicd has to be performed.

In the present paper, the Browet al. algorithm{%2425
was used. It approximates the dynamfidsy polynomials of
degree9, with p>1.

An additional problem is related to the unknown number
A bidimensional projection of the reconstructed attractorof degrees of freedonicorresponding to the number of

on the plane X(t),x(t+23)) is shown in Fig. 9. Lyapunov exponenjsin fact, the embedding dimensiong
of the reconstructed attractor will be, in general, larger than

or equal to the unknown number of degrees of freedim
This arises because of the nonlinear relationships linking the

In order to draw a conclusion about the chaotic nature 0f‘ea| trajectoryu(t) and the reconstructed Or{gi}_ Conse-
the dynamiCS it is necessary to calculate the SpeCtrum Qiuent'y, aworking procedure is needed to Obta_irfrom the
Lyapunov exponentéSLE). A brief outline of the procedure  time series. Subsequently it will be possible to calculate the
is given below. values of thed, Lyapunov exponents.

Consider a system af degrees of freedom for which the The method used to calculate the number of dynamical
evolution equation(1) is known. Next, consider the points degrees of freedond, , is based on the evaluation of the
inside a hypersphere of initial states centered on some Po"ﬂfercentage of local false nearest neighBdis.explores the
Up on the attractor. Leg(up) be the sphere radius. In gen- |oca| structure of the phase space to check if a local dimen-
eral, as time goes on, the flixstretches the sphere in one or gjon |ess thamg is able to capture the evolution of the orbits

more directions, contracting it in others. As a result, at theyg they move on the attractor. Consider the attractor recon-
time t the sphere will be distorted in a hyperellips¢whose  gircted in a working space with dimensidf=mg to guar-

vqlume will contract to zero for a dissipative systewith n  5ntee its complete unfolding. Chosing a painon it, define
principal axesey(t), a neighborhood by specifying the number of neighbgsof
e(t)=e(ug) Mt k=12 .. n. (9)  the pointy;. The evolution of theNg points after a time step
is provided by a local polynomial map ind -dimensional
subspace of thdy,~dimensional space. The dimensidn is
. ) e(t) sequentially increased until the percentage of bad predictions
A(Ug)=lim  lim f'nm’ k=12,...n, (10 pecomes independent froth and insensitive to neighbors
te ello) =0 0 numberNg . This condition identifies the propel dimen-
where the notation emphasizes thgug)’s dependence on sion.
the initial stateuy. The average Lyapunov exponents are ob-  The percentage of bad predictions versus the local di-
tained by averaging over all the pointg belonging to the mension for different values of neighbok&; is plotted in
trajectory. The resulting Lyapunov exponents se{#\, Fig. 10. A local dimension ofl, =6 is clearly identified by
= ...=1\,), is referred to as the spectrum of Lyapunov ex-the convergence of the different curves. It can be noticed that
ponents. For am degrees of freedom system there are the coincidence between thig value and themg is fortu-
Lyapunov exponents, each one reflecting the orbital stabilitytous, while the correspondence with the degrees of freedom
along a proper direction. The system behavior will becomeof the system indicates that all of them active. The same
more chaotic at increasing the number of positive Lyapunovesults are obtained by evaluating the local false neighbors
exponents. The largest ong;, is the main one responsible reading the data backward in time, confirmidg=6 as the
for determining the chaoticity of motion. Its value directly local dimension.
reflects the degree of chaos and then the timescale on which It is now possible to calculate the values of the six
its dynamics becomes impredictable. Lyapunov exponent¥:?42°For each pair of initial locations,
The SLE calculation needs to know how the sphere ione of them being on the fiducial trajectory, the behavior of
distorted and hence to know the flé&x However, when only  two nearby trajectories is followed fdr steps of the sam-
the time series of one dynamical variable is known, the fluxpling time forward. The average Lyapunov exponents were
is obviously unknown. Even if the attractor is made availableobtained by averaging over 5000 initial locations.
by the reconstruction method, no information about the un-  In Fig. 11 the plot of the average local Lyapunov expo-
derlying dynamics is available—actually the dynamical op-nents\, versus the number of stefs forward from each

FIG. 9. Projection of the reconstructed attractor on the plang{, 1), with
a time delay ofT =23, is shown.

3. Spectrum of Lyapunov exponents

The n local Lyapunov exponents are then obtained as
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e nw plan and York&2® suggested that the spectrum of Lyapunov
g e N, = 60 exponents can be used to evaluate the fractal dimension.
B —a—N, = 80 They defined
S —v—N, =100 :
s Zl-1Nk
e =it (12)
;; |)\j+l|
& where D is called the Lyapunov dimensiofor Kaplan
g * Yorke dimension and j is such that=}_,\ >0 and
5 /'X_._._._._.—.—.—.—-. =1*1\<0. D, is a quite good numerical estimate of the
: fractal dimension of the attractor.

34567 8 9101112131415
Local dimension. From the Lyapunov exponent values quoted above, a
ocal dimension, &, noninteger Lyapunov dimensioR, =5.62+0.36 (j=5) is

FIG. 10. The percentage of bad predictions as a function of local dimensio@Ptained, showing that the attractor has high dimensional

d, and number of neighborlly. The previously determine@=23 was  fractal qualities.
used. The curves convergedit=6. A same result is obtained if the local

false neighbors are evaluated by examining the data backwards in time. IIl. CONCLUDING REMARKS

Nonlinear analyses on the ball trajectories in milling de-

initial location on the attractor is shown. From the spectrum?iC€S demonstrate the hyper-chaotic nature of the system dy-
of Lyapunov exponents dt=1024 it results thah;=0.49  Namics studied here. Indeed, when previous findings are also
+0.05, A,=0.29+0.05, \3=0.15+0.04, \,=—0.02 taken into consideration, both the powder transformation and

+0.007, Ag=—0.31=0.01, A= —0.97+0.03, in inverse the mechanical action of the milling tools are characterized
units of Tg=10"* s. By carrying out the calculation back- by chaotic features. On one hand, the occurrence of intimate

ward in time, the same results were obtained with a reversi2ndom mixing of macroscopically separated substances has
sign. Thus, the Lyapunov exponents divide into terns of valbeen related to the repetition of the elemental deterministic
ues with opposite sign. According to the conventional nota€vents such as ball milling collisiori5.0n the other hand, __
tion, the spectral signature is-(+,+,—,—,—). The occur- mechanical alloying has been represented as a nonequilib-
rence of three Lyapunov exponents allows us to claim th&lUm process taking place in an open system in which the
hyperchaotic nature of the system under examination. Moregffects of the self organization of dissipative structures have
over, as expected in the case of a dissipative sy4etne been modeled by resorting to a fractal appro&ch. time

sum of the Lyapunov exponenEE_l)\kz —0.37+0.18 is  Series of sequential collisions experimentally observed in the
negative. It is possible to observe that no zero Lyapunoy€d course of a MA process was also investigated by Rustici
exponent was obtained. The last observation confirms th&tt & The analyses performed gave evidence for the occur-
the dynamics of the system vial-ball can not be generated bifnce of chaotic behavior.

a continuous flow, i.e., by a set of differential equatiBi$. As a consequence a pattern emerges from which it is
possible to conclude that chaos occurs at different levels of

the ball milling techniques.
4. Lyapunov dimension _ Different_ powder loads, affecting the elasticity condi-
) _ ) tions of the impacts, also affect the fundamental features of
There is a close relationship between the LyapunOvne pall motion. Therefore, it may be of interest to throw
spectrum of a chaotic attractor and its fractal dimension. Katight on the influence of the powder charge on the chaotic
qualities of the milling process. Further work in this direc-
tion is in progress.
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