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Hyperchaotic qualities of the ball motion in a ball milling device
C. Caravati, F. Delogu, G. Cocco, and M. Rusticia)

Dipartimento di Chimica, Universita` di Sassari, Via Vienna 2, I-07100 Sassari, Italy
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Ball collisions in milling devices are governed by complex dynamics ruled by impredictable
impulsive forces. In this paper, nonlinear dynamics techniques are employed to analyze the time
series describing the trajectory of a milling ball in an empty container obtained from a numerical
model. The attractor underlying the system dynamics was reconstructed by the time delay method.
In order to characterize the system dynamics the calculation of the spectrum of Lyapunov exponents
was performed. Six Lyapunov exponents, divided into two terns with opposite sign, were obtained.
The detection of the positive tern demonstrates the occurrence of the hyperchaotic qualities of the
ball motion. A fractal Lyapunov dimension, equal to 5.62, was also obtained confirming the strange
features of the attractor. ©1999 American Institute of Physics.@S1054-1500~99!00101-9#
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The synthesis of metastable phases and new materia
often requires severe processing conditions. Technique
based on heavy mechanical deformation of solid mixtures
have reached a stage of considerable development in th
field of materials science. Due to its commercial possibili-
ties and to the unusual physical phenomena involved
powder processing by ball milling still arouses both tech-
nological and scientific interest. Energy is transferred
from the milling tools to the entrapped powder, which is
subject to heavy mechanical loads and undergoes con
tinuous defect accumulation and an ultimate limit of sta-
bility is achieved. Diffusion and mass transport phenom-
ena occur through the continuously developed fresh
surfaces. The phase transformation and its rate are inti-
mately linked to the energy transfer of the collision event.
The efficiency of the transfer depends, in turn, on the
degree of elasticity of the collision, which also affects the
general features of the milling dynamics. As the elasticity
increases, the milling dynamics change from periodic to
aperiodic. This behavior can be suitably characterized
with the help of nonlinear dynamical analyses. In this
paper, a milling system was modeled and the trajectory
of a single ball colliding elastically inside the milling con-
tainer was numerically simulated. Nonlinear dynamics
analyses showed that elastic impact conditions determine
the occurrence of a hyper-chaotic behavior.

I. INTRODUCTION

Ball milling processes and high energy mechanical tre
ments ~Mechanical Alloying and Mechanical Milling, MA
and MM! have became the common method of synthesiz
far from equilibrium structures, such as amorphous allo
and nanostructured materials.1,2 MA processes have
branched out into different fields of Material Science. Ho
ever, fundamental problems in quantifying the MA proce
still exist.3,4 Mechanistic aspects of the process and th
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links with the intensity of the mechanical treatment still ha
to be clarified. The major difficulty is represented by t
complexity of the milling dynamics preventing, for a lon
time, any accurate measurement of the fundamental mil
parameters such as collision frequency and velocity.

A satisfactory, even if partial, solution to the proble
was recently accomplished as a result of our efforts. An
perimental methodology and a modelistic approach were
veloped and employed to characterize milling experime
performed with a single milling ball and a variable powd
charge. The former is based on the use of a piezoelec
shock sensor to detect the ball–vial collisions coupled wit
magnetic vial position survey system to locate the vial at
impact instants, whilst the latter is based on numeri
techniques.5,6

Due to the cushioning effect of the powder entrapp
between the ball and the container, the powder amo
strongly affected the elasticity degree of the ball–vial co
sions. Therefore, depending on the powder load, the mill
regime progressively changed from plastic to elastic, and
attempted to simulate it by using a restitution coefficie
changing, respectively, from 0 to 1.

At a low elasticity degree, impacts were observed
occur with a high periodicity, allowing for an accurate e
perimental evaluation of the frequency and the velocity
the collisions. A regular and periodic ball trajectory also r
sulted from the numerical simulation. The experimental a
proach and the numerical calculations sustained each o
Full details are reported elsewhere.6

Besides the valuable support to the experimental me
odology, the modeling approach offered a deeper insight
the milling dynamics, allowing one to extend the investig
tion from plastic to elastic impact conditions. Indeed, by d
creasing the powder charge, the ball motion gradually los
regularity, the impact frequency increased, and, finally, at
highest degrees of elasticity, the motion became aperiodic
these conditions the milling parameters, mostly the imp
velocity, were no longer experimentally measurable. Un
these circumstances, numerical calculations supplied a
trajectory of high complexity.
© 1999 American Institute of Physics
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The ball trajectory can be regarded as a complex t
series characterized by apparent randomness. In the pr
paper, the time series was analyzed by nonlinear dynam
techniques in order to point out the occurrence of cha
behavior and to better characterize the link between per
icity loss and impact quality.

‘‘Chaos’’ and ‘‘chaotic’’ are distinguishing terms use
to describe the aperiodic and apparently random time be
ior of a deterministic system with a small number of degre
of freedom.7,8 The time evolution of a deterministic physic
system is often described according to a set of ordinary
ferential equations~ODE!,

du~ t !

dt
5F~u~ t !,m!, ~1!

wheret is the elapsed time andm are one or more paramete
on which the system behavior depends. Then-dimensional
space of the state vectorsu(t)5(u1(t),u2(t), . . . ,un(t)) is
called phase space. In this space, the time evolutionu(t)
describes the trajectory or orbit of motion. Depending on
linearity or nonlinearity of the vector fieldF(u), the system
is said to be linear or nonlinear. The mathemathical co
plexity of nonlinear systems can be partially overcome
resorting to the study of the qualitative aspects of the dyn
ics, corresponding to the topological properties of the ph
space trajectoryu(t) ast→`. In the case of dissipative sys
tems the orbitu(t) asymptotically converges to a subset
the phase space with its own geometry and dimens
strictly less than the phase space one. Such a subset is c
the attractor of the system.

In the case of a chaotic system, the attractor has v
complex geometric features mirroring the apparently rand
time evolution. Often a noninteger attractor dimension
sults. A similar fractal object is referred to as a strange
tractor.

The fundamental property of a chaotic dynamical syst
is its sensitivity to the initial conditions. Small differences
the initial conditions lead to an exponential divergence of
related trajectories in the phase space. A formal accoun
this property can be obtained by introducing the Lyapun
exponents.8 These express the average rates with which
trajectories exponentially diverge or converge along each
then directions in the phase space. Any system possessin
least one positive Lyapunov exponent is defined as cha
If more than a single positive Lyapunov exponent is foun
the system is defined as hyperchaotic.

Together with Lyapunov exponents, fractal dimensio
which characterize the distribution of the attractor points
the phase space, have emerged as useful classifiers of ch
motion.9–11

Nonlinear dynamics analysis techniques are suitable
the problem at hand.

II. RESULTS AND DISCUSSION

A. The model

We refer to a Spex Mixer/Mill mod. 8000. An electrica
engine communicates the motion to a mechanical a
mounted in an eccentric fulcrum. The mechanical a
Downloaded 07 Jul 2004 to 193.205.8.73. Redistribution subject to AIP lice
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swings a cylindrical container, 5.8 cm high and 3.8 cm
diameter, along a three-dimensional course with a freque
variable between 14.6 and 22.5 Hz. The main componen
the vial motion is an angular harmonic displacement on
vertical plane coupled with a sincronous rotation on t
equatorial plane. A sketch of the vial motion is shown in F
1.

The model starts with the analytical description of t
vial motion. With reference to this, the dynamics of the sy
tem vial–ball was reproduced by a computer simulation. T
frequency of the vial motion wasn518.3 Hz. A single ball,
having a diameter of 1.24 cm, was considered.

1. The analytical equations of the vial motion

The vial motion can be described as a combination
synchronous rototranslations with reference to a fixed fra
of Cartesian axes.

Two Cartesian reference systems are considered: an
ertial one, of co-ordinates (X;Y;Z), centered on the fulcrum
of the mechanical arm, and a second, noninertial one of
ordinates (x;y;z), moving with the vial and with the origin
coincident with its baricenter. The two reference systems
shown in Fig. 2. The continuous and periodic angular d
placement of the mechanical arm~that is, of the distance
vectorR! is described by the following equation:

u5u0 cos~vt1d!, ~2!

whereu0 is the amplitude of the angular motion,v52pn
and n is the frequency of the motion.d is a phase factor
dependent on the initial conditions. The oscillation of t
mechanical arm around its own axis of an anglea, generat-
ing the oscillation of the vial in the (X;Y) plane, is ruled by
an analogous equation:

a5a0 sin~vt1d!. ~3!

The anglesu anda have a phase difference equal top/2. u0

anda0 correspond to 15°, whileR is equal to 10 cm.
The following sets of equations:

FIG. 1. Typical course of the Spex Mill. The vial motion is shown on t
vertical (X;Z) and on the equatorial (X;Y) planes. The main component i
a harmonic swing occurring over a shallow arc on the vertical plane.
shown in the lower graph, a synchronous additional movement makes
vial rotate around its barycenter on the (X;Y) plane.
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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X5~x cosa1y sina!cosu1~z1R!sinu,

Y52x sina1y cosa, ~4!

Z52~x cosa1sina!sinu1~z1R!cosu,

and

x5~X cosu2Z sinu!cosa2Y sina,

y5~X cosu2Z sinu!sina1Y cosa, ~5!

z5X sinu1Z cosu2R,

describe the displacement of a point with co-ordina
(x;y;z) and (X;Y;Z), in the noninertial and inertial refer
ence systems, as a function of the time. Consequently,
motion of any point of the vial is analytically known. Give
a point of co-ordinates (x;y;z) belonging to the vial, it is
possible to follow its three-dimensional trajectory by app
ing the equations set~4!. The inertial co-ordinates of the
center of a vial basis during a whole vial cycle are compa
to the experimental ones in Fig. 3.

The components of the velocity can be obtained by p
forming a simple time derivative of the previous sets
equations. A further derivation gives the components of
acceleration. Both the velocity and acceleration compone
values are quoted in Fig. 4.

2. The reconstruction of the ball motion

The ball motion is governed by the impulsive forces a
ing during each collision, and no analytical expression
the complete ball trajectory can be obtained. However,
ball displacement as a function of the time can be follow
step-by-step by numerical modeling. The time stepdt was

FIG. 2. Inertial (X;Y;Z) and noninertial (x;y;z) reference frames used t
represent the vial motion. The vial, centered at the origin OII of the latter, is
also depicted. It oscillates on both the (X;Z) and (X;Y) planes with ap/2
phase difference.R represents the distance between the points OI and OII ,
corresponding to the origins of the two reference frames.
Downloaded 07 Jul 2004 to 193.205.8.73. Redistribution subject to AIP lice
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set equal to 1025 s, in order to have a collision duratio
equal to the time step and roughly in agreement with d
obtained from the Hertzian theory of impact.12,13

The ball motion will be uniform rectilinear if externa
forces are absent. This is always the case, except for
impact events. Between two following collisions, the cour
of the ball was described by the following Taylor algorithm

FIG. 3. The upper diagram shows the vial and the center,C, of the vial base.
The dots in the diagram below are the experimentally determined
ordinates ofC on the three planes during a complete cycle. The continu
line shows the displacement ofC as calculated by the model. Notice th
different scale in the axes of the three diagrams. The difference in
maximum displacement along theY axis arises because the model does n
take into consideration the effects of the retaining spring of the cla
assembly.

FIG. 4. Velocity ~upper pattern! and acceleration~lower pattern! compo-
nents, on the three orthogonal axes, of the vial motion, obtained from
model. Continuous, dotted and broken lines refer to theX, Y andZ compo-
nents, respectively.
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Xb~ t1dt !5Xb~ t !1vXb
~ t ! dt,

Yb~ t1dt !5Yb~ t !1vYb
~ t ! dt, ~6!

Zb~ t1dt !5Zb~ t !1vZb
~ t ! dt,

whereXb(t), Yb(t) andZb(t) are the ball center co-ordinate
and vXb

(t), vYb
(t) and vZb

(t) are the components of th
velocity in the inertial reference system. The noninertial b
center co-ordinates (xb ;yb ;zb) were confined inside a regio
of space corresponding to the effective volume available
the ball inside the vial. Therefore, the geometrical constra
to the ball motion, which determine the impact condition
are the following:

22.28,xb,2.28 cm, ~yb
21zb

2!1/2,1.28 cm. ~7!

At each step, the inertial reference fram
(Xb(t);Yb(t);Zb(t)) co-ordinates of the ball were update
From that, the noninertial reference fram
(xb(t);yb(t);zb(t)) ball co-ordinates were calculated. Th
collisions were considered as completely elastic and, at e
impact, the velocity vector was modified: the component
the noninertial reference system velocity perpendicular to
surface of impact was simply reversed.

In Fig. 5 a ball trajectory 1 s long was projected on th
(x;y) plane. It is possible to appreciate the disordered m
tion of the ball together with the inversion points of its tra
eling due to the collisions with the container walls. As e
dent from Fig. 4, the acceleration experienced by the
was generally one order of magnitude greater than the g
ity and this, together with the shortness of the ball mean f
path, enabled us to consider the gravity acceleration as
ligible when compared to the acceleration imparted by
vial.

B. Data analysis

A time series of 5.13105 co-ordinates was generated b
the numerical solution of equations of motion, correspond
to a ball trajectory of 5.1 s. A data set consisting of s
variables was created; the ball co-ordinates (x(t),y(t),z(t))
and the velocities (ẋ(t),ẏ(t),ż(t)) were obtained. To sim-
plify the notation, the lowerscripts (b) were disregarded. Ac

FIG. 5. Projection of a 1 s ball course on the (x;y) plane. For a 1.24 cm
diameter ball, the vial has an effective length of 4.56 cm. Therefore c
sions at the opposite vial bases occur atx52.28 cm andx522.28 cm.
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cording to the embedding theorem and the delay vec
method,8,10 which will be described later on in the paper, an
component or scalar function of the state vector can be u
to obtain information on the geometry of the attractor. O
this basis, the ball displacement along the vial axis, i.e.,
x(t) variable, was chosen in order to characterize the b
motion.

The data set was downsampled by a factor of 10 res
ing in an effective sampling period of 1024 s. Although the
sampling period is 10 times longer than the time step use
numerically solve the equations of motion, it allows a go
reproduction of the features of the ball trajectory. The init
transient of 1000 data was skipped to let the system se
down on the attractor and reach the stationary state. A
result, the analysis was performed on a data set consistin
53104 points. A sketch of the trajectoryx(t) is shown in
Fig. 6 as a function of the timet. With reference to the vial
axis, the absolute maxima and minima in the plot indicate
occurrence of impacts between the ball and the vial ba
Asymmetries and secondary maxima and minima can
sonably be attributed to head-on impacts and near-collis
taking place on the vial cylindrical wall.

1. Power spectrum

The amplitude and power spectra of the time series w
calculated on 215532768 data. A Fast Fourier Transform
~FFT! algorithm was used. The data are shown in Fig. 7. T
amplitude spectrum presented in Fig. 7~a! shows a distribu-
tion of discrete frequencies superimposed on a broad c
tinuous band. The most intense peak at 18.3 Hz correspo
to the experimental frequency of the vial course.

Features in the range between 33.5 and 45 Hz emer
but any detailed assignment is prevented by the comple
of the system dynamics. The power spectrum, quoted in
7~b!, exhibits a slow featureless decay. However, both s
chastic and chaotic systems could display such Fourier s
tra, and then no evidence can be drawn about the occurr
of chaotic behavior. To characterize such a behavior, furt
investigation in the appropriate phase space is necessar

i-
FIG. 6. The ball displacement along the noninertialx axis. Inversions at the
maximum displacement points correspond to collisions occurring on the
bases. The other trajectory inversions and irregularities are due to rebo
on the cylindrical side.
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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2. Attractor reconstruction

As previously mentioned, the attractor will be reco
structed by applying the delay vector method. Let us c
sider the data set as$xi%5x(t5t01 i TS) where i
51,2, . . . ,N, N550000 being the number of samples a
TS51024 s the sampling period. According to the delay ve
tor method, the trajectory in anm-dimensional phase space
reconstructed by the consecutivem-dimensional vectors,

y15~x1 ,x11T ,x112T , . . . ,x11~m21!T!,

y25~x2 ,x21T ,x212T , . . . ,x21~m21!T!, ~8!

A

yr5~xr ,xr 1T ,xr 12T , . . . ,xr 1~m21!T!,

wherem is an integer number called embedding dimens
and T is some integer multiple of the sampling periodTS

called time delay. The number of reconstructed vectorsr is
chosen in order to satisfyr 1(m21)T<N. Thus the dynam-
ics is said to be embedded in am-dimensional phase spac
The underlying assumption is that the geometry and the
namics of the trajectory obtained in this way are the sam
the geometry and dynamics of the trajectory in the act
phase space of the system. In particular, the invariants o
system dynamics are the same.8–11,14 This assumption is
verified when a proper choice of the time delay and of
embedding dimension is made.15

The time delayT should be large enough to make th
consecutive componentsxj and xj 1T of the reconstructed
vectors$yi% independent. However, the time delay should

FIG. 7. Amplitude~a! and power~b! spectra as obtained by FFT analyses
the time series.
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not so large as to prevent the statistical independence oxj

and xj 1T and the consequent complete uncorrelation of
vectors$yi%. On the contrary, whenT is too small, the em-
bedding vectors will cluster in the embedding space aroun
45° line passing through the origin, because of the nea
same numerical values of all the components.

According to Fraser and Swinney,16 the time delay was
chosen in correspondence to the first minimum of the av
age mutual information functionI (T), which is a kind of
nonlinear correlation function of the data set$xi%. A time
delayT523 was obtained.

All the numerical calculations were performed using t
cspW package.17

The choice of the embedding dimensionm is also critical
to get a good reconstruction. The uniqueness theorem a
the solutions of autonomous differential equations guar
tees that no overlap of the orbit with itself is possible in t
original phase space.8 The same must be required to the r
constructed trajectory in the embedding space. The sma
m value allowing for the unfolding of the reconstructed tr
jectory identifies the proper embedding dimensionmE . If m
is smaller thanmE , orbit overlapping occurs due to the pro
jection of the trajectory in a space with a too low dimensio
Then, points move closer in the embedding space and
come false neighbors. Two nearest neighbors~NN! yi and
yi

NN are false nearest neighbors if they are nearest neigh
in dimensionm but not in dimensionm11. Therefore it
becomes possible to identify the proper embedding dim
sionmE by calculating the percentage of false nearest nei
bors increasing step by step the embedding dimensionm.18

Moving from m to m11 will sequentially remove folding
effects and the corresponding percentage of false neigh
will decrease. When the number of false neighbors drop
zero, the attractor is unfolded and remains unfolded in hig
dimensions. Consequently, the proper embedding dimen
mE is identified as the embedding dimension for which t
percentage of false nearest neighbors drops to zero.

In Fig. 8 the percentage of false neighbors versus
creasing values ofm is reported. The inset points out
proper embedding dimensionmE56.

FIG. 8. The percentage of false neighbors usingT523 as determined by the
average mutual information. As evident from the inset, the percentage d
to zero atm56 which can be identified as the real embedding dimens
mE .
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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A bidimensional projection of the reconstructed attrac
on the plane (x(t),x(t123)) is shown in Fig. 9.

3. Spectrum of Lyapunov exponents

In order to draw a conclusion about the chaotic nature
the dynamics it is necessary to calculate the spectrum
Lyapunov exponents~SLE!. A brief outline of the procedure
is given below.

Consider a system ofn degrees of freedom for which th
evolution equation~1! is known. Next, consider the point
inside a hypersphere of initial states centered on some p
u0 on the attractor. Lete(u0) be the sphere radius. In gen
eral, as time goes on, the fluxF stretches the sphere in one
more directions, contracting it in others. As a result, at
time t the sphere will be distorted in a hyperellipsoid~whose
volume will contract to zero for a dissipative system! with n
principal axesek(t),

ek~ t !.e~u0! elk~u0! t, k51,2,. . . ,n. ~9!

The n local Lyapunov exponents are then obtained as

lk~u0!5 lim
t→`

lim
e~u0!→0

1

t
ln

ek~ t !

e~u0!
, k51,2, . . . ,n, ~10!

where the notation emphasizes thelk(u0)’s dependence on
the initial stateu0. The average Lyapunov exponents are o
tained by averaging over all the pointsu0 belonging to the
trajectory. The resulting Lyapunov exponents set (l1>l2

> . . . >ln), is referred to as the spectrum of Lyapunov e
ponents. For ann degrees of freedom system there aren
Lyapunov exponents, each one reflecting the orbital stab
along a proper direction. The system behavior will beco
more chaotic at increasing the number of positive Lyapun
exponents. The largest one,l1, is the main one responsibl
for determining the chaoticity of motion. Its value direct
reflects the degree of chaos and then the timescale on w
its dynamics becomes impredictable.

The SLE calculation needs to know how the sphere
distorted and hence to know the fluxF. However, when only
the time series of one dynamical variable is known, the fl
is obviously unknown. Even if the attractor is made availa
by the reconstruction method, no information about the
derlying dynamics is available—actually the dynamical o

FIG. 9. Projection of the reconstructed attractor on the plane (xi ,xi 1T), with
a time delay ofT523, is shown.
Downloaded 07 Jul 2004 to 193.205.8.73. Redistribution subject to AIP lice
r

f
of

int

e

-

-

ty
e
v

ich

s

x
e
-
-

eratorf, mapping the reconstructed attractorsyn115f(yn), is
unknown. The various methods proposed to evaluate
Lyapunov exponents9,19–24mainly differ from one another in
the way to cope with this problem. However, all of the
consider the trajectory defined by the reconstructed attra
~8! as a fiducial trajectory. The information necessary to
SLE calculation is extracted by following the behavior
nearby trajectories~trajectories arising from points nearb
the fiducial trajectory which are considered as initial con
tions!. In order to reach this goal, in the neighborhood of t
fiducial trajectory an approximate reconstruction of the u
known dynamicsf has to be performed.

In the present paper, the Brownet al. algorithm10,24,25

was used. It approximates the dynamicsf by polynomials of
degreesp, with p.1.

An additional problem is related to the unknown numb
of degrees of freedom~corresponding to the number o
Lyapunov exponents!. In fact, the embedding dimensionmE

of the reconstructed attractor will be, in general, larger th
or equal to the unknown number of degrees of freedomdL .
This arises because of the nonlinear relationships linking
real trajectoryu(t) and the reconstructed one$yi%. Conse-
quently, a working procedure is needed to obtaindL from the
time series. Subsequently it will be possible to calculate
values of thedL Lyapunov exponents.

The method used to calculate the number of dynam
degrees of freedom,dL , is based on the evaluation of th
percentage of local false nearest neighbors.25 It explores the
local structure of the phase space to check if a local dim
sion less thanmE is able to capture the evolution of the orbi
as they move on the attractor. Consider the attractor rec
structed in a working space with dimensiondW>mE to guar-
antee its complete unfolding. Chosing a pointyi on it, define
a neighborhood by specifying the number of neighborsNB of
the pointyi . The evolution of theNB points after a time step
is provided by a local polynomial map in adL-dimensional
subspace of thedW-dimensional space. The dimensiondL is
sequentially increased until the percentage of bad predict
becomes independent fromdL and insensitive to neighbor
numberNB . This condition identifies the properdL dimen-
sion.

The percentage of bad predictions versus the local
mension for different values of neighborsNB is plotted in
Fig. 10. A local dimension ofdL56 is clearly identified by
the convergence of the different curves. It can be noticed
the coincidence between thedL value and themE is fortu-
itous, while the correspondence with the degrees of freed
of the system indicates that all of them active. The sa
results are obtained by evaluating the local false neighb
reading the data backward in time, confirmingdL56 as the
local dimension.

It is now possible to calculate the values of the s
Lyapunov exponents.10,24,25For each pair of initial locations
one of them being on the fiducial trajectory, the behavior
two nearby trajectories is followed forG steps of the sam-
pling time forward. The average Lyapunov exponents w
obtained by averaging over 5000 initial locations.

In Fig. 11 the plot of the average local Lyapunov exp
nentslk versus the number of stepsG forward from each
nse or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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initial location on the attractor is shown. From the spectr
of Lyapunov exponents atG51024 it results thatl150.49
60.05, l250.2960.05, l350.1560.04, l4520.02
60.007, l5520.3160.01, l6520.9760.03, in inverse
units of TS51024 s. By carrying out the calculation back
ward in time, the same results were obtained with a reve
sign. Thus, the Lyapunov exponents divide into terns of v
ues with opposite sign. According to the conventional no
tion, the spectral signature is (1,1,1,2,2,2). The occur-
rence of three Lyapunov exponents allows us to claim
hyperchaotic nature of the system under examination. Mo
over, as expected in the case of a dissipative system,7,8 the
sum of the Lyapunov exponents(k51

6 lk520.3760.18 is
negative. It is possible to observe that no zero Lyapun
exponent was obtained. The last observation confirms
the dynamics of the system vial-ball can not be generated
a continuous flow, i.e., by a set of differential equations.8,10

4. Lyapunov dimension

There is a close relationship between the Lyapun
spectrum of a chaotic attractor and its fractal dimension.

FIG. 10. The percentage of bad predictions as a function of local dimen
dL and number of neighborsNB . The previously determinedT523 was
used. The curves converge atdL56. A same result is obtained if the loca
false neighbors are evaluated by examining the data backwards in tim

FIG. 11. Lyapunov exponent trends as a function of the number of st
Each point was obtained by averaging over 5000 locations along the a
tor. At G51024 the exponents arel150.4960.05, l250.2960.05, l3

50.1560.04, l4520.0260.007,l5520.3160.01, l6520.9760.03 in
inverse units ofTS51024 s.
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plan and Yorke8,26 suggested that the spectrum of Lyapun
exponents can be used to evaluate the fractal dimens
They defined

DL5 j 1
(k51

j lk

ul j 11u
, ~11!

where DL is called the Lyapunov dimension~or Kaplan
Yorke dimension! and j is such that (k51

j lk.0 and
(k51

j 11lk,0. DL is a quite good numerical estimate of th
fractal dimension of the attractor.

From the Lyapunov exponent values quoted above
noninteger Lyapunov dimensionDL55.6260.36 (j 55) is
obtained, showing that the attractor has high dimensio
fractal qualities.

III. CONCLUDING REMARKS

Nonlinear analyses on the ball trajectories in milling d
vices demonstrate the hyper-chaotic nature of the system
namics studied here. Indeed, when previous findings are
taken into consideration, both the powder transformation
the mechanical action of the milling tools are characteriz
by chaotic features. On one hand, the occurrence of intim
random mixing of macroscopically separated substances
been related to the repetition of the elemental determini
events such as ball milling collisions.27 On the other hand,
mechanical alloying has been represented as a nonequ
rium process taking place in an open system in which
effects of the self organization of dissipative structures h
been modeled by resorting to a fractal approach.28 A time
series of sequential collisions experimentally observed in
real course of a MA process was also investigated by Rus
et al.29 The analyses performed gave evidence for the occ
rence of chaotic behavior.

As a consequence a pattern emerges from which i
possible to conclude that chaos occurs at different levels
the ball milling techniques.

Different powder loads, affecting the elasticity cond
tions of the impacts, also affect the fundamental features
the ball motion. Therefore, it may be of interest to thro
light on the influence of the powder charge on the chao
qualities of the milling process. Further work in this dire
tion is in progress.
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