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Application of the Wolf method for the evaluation of Coulombic
interactions to complex condensed matter systems: Aluminosilicates
and water

Pierfranco Demontis, Silvano Spanu, and Giuseppe B. Suffritti?
Dipartimento di Chimica, Universitai Sassari, Via Vienna 2, 1-07100 Sassari, Italy
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The application of the method recently proposed by Véolél. [J. Chem. Phys110, 8254(1999]

for the evaluation of Coulombic energy in condensed state systems by spherically truncated,
pairwiser ~1 summation is verified for liquid water and anhydrous and hydrated aluminosilicates.
Criteria for the estimation of the optimum values for the truncation radius and the damping
parameter are discussed. By several examples it is verified that the new method is computationally
more efficient than the traditional Ewald summations. For the considered systems the performances
of the new method are good, provided that the truncation radius and the damping parameter are
carefully chosen. ©2001 American Institute of Physic§DOI: 10.1063/1.1364638

I. INTRODUCTION consists of silicon, aluminum, oxygen, and exchangeable cat-
ions. The crystalline framework is built up by corner sharing
In condensed matter calculations and simulations, one ofQ, tetrahedrain which theT sites are occupied by either
the most frequently occurring problems is the evaluation okilicon or aluminun giving rise to a rather complex but
the Coulomb potential, involving the slowly convergent:  precisely repetitive atomic network with regular cavities
summation. This problem has received considerable attentigoined by channels in which guest molecules of appropriate
throughout the last century, starting from the proposal of thesize can be accommodated. These void interior spaces can
Ewald method, which made the calculation feasible for any admit water, many gases, larger molecules, and catioss
periodic system and has long been the most used for evaladly metallic which compensate for the charge deficit due to
ating energies, forces, and stresses in the simulation of ligthe aluminum/silicon substitution. Although the method pro-
uids and solids. The Ewald method assumes that the consigosed in Ref. 2 is simple to implement in energy minimiza-
ered system is periodic, and its application to liquids or intion or molecular dynamicéVID)’ computer codes, the cri-
general to disordered systems has long been critiéizedit ~ teria for the choice of the involved parameters had to be
would create unphysical correlations, but even its applicatiomefined for systems with special features like, for instance,
to crystals could be questionable. Indeed, although in prinnoncubic unit cells. It will be shown that not only is it pos-
ciple fully converged Ewald sums yield the correct limiting sible to find out general empirical criteria for the estimation
value of the Coulombic energy, in practice the direct spacef the best parameter values, but also the new method im-
sums are usually evaluated by including all the charges of aroves the efficiency of the computations without requiring,
suitable number of replicas of the simulated system. In mosfor the considered systems, any substantial change in their
cases the system is contained in a parallelepiped, or in size. Before describing particular applications the main fea-
space-filling three-dimensional cétiever possessing spheri- tures of the new method will be briefly recalled.
cal symmetry, and the reciprocal space sums run over a
more or less large r!umber of reC|procaI cells which in the”' THEORY AND MODEL
whole are not spherically symmetricidee Eq.(6) below].
On the other hand, Coulomb potential does show spherica. The pairwise, spherically truncated  r~
symmetry, as interactions between charges are central forces. agar Wolf et al,2 “the key observation is that the prob-

. . 2
Recently, a long article was published by Wetfal:” where  |omg encountered in determining the Coulomb energy by

a comprehensive and deep analysis of the problem is resyir yyise, spherically truncated * summation are a direct
ported, and a new method using just a spherically truncatedyynsequence of the fact that the system summed over is prac-

. . 71 . . ra
pairwiser ~~ summation is proposed and verified for a few yjca)1y never neutral.” Then the authors proceed to develop
classical ionic systems, namely NaCl and MgO in crystallineo new method by the following steps.

and liquid phase. In the present paper the application of this (i) Neutralization of the net charge of the system con-
method to the simulation of complex systems containingined in a sphere with raditR, .

charged particles, in particular anhydrous and hydrated mi-
croporous aluminosilicateamely zeolitesand liquid wa-
ter, which are currently studied by our research grofifs
considered. The chemical composition of zeofifessually

1 sum

It is shown that the total Coulombic energy might be-
come convergent to the Madelung enefgg limit value) if

only a charge-neutralizing potential associated with the net
system charge is subtracted from the total energy. This
charge-neutralizing potential is evaluated by considering that
dElectronic mail: pino@uniss.it the charges necessary to neutralize the actual net charge con-
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tained in a sphere with radiu], are always located within where erfc is the complementary error functienjs a pa-

the surface shell of thicknegb| aroundR., given that|b|  rameter to be optimized, and the other quantities are defined

represents the nearest-neighbor distance between ions of agbove. This expression is surprisingly simple and involves

posite charge. Therefore, by supposing ffidt<R. it is as-  only a direct pair summation over the distances with cutoff

sumed that the entire neutralizing charge is localieralctly  radiusR; and constant terms. For comparison, we recall the

at the system surface B . Ewald summations which, using the same symbols as in Eq.
The charge-neutralization term can be written as fol-(5), read

lows: 18 & & aigerfd(a|r; +n-L|)
Mad_ L idj erfcla|ri; +n-
Eneutr(R )~ EEN: inQi(_Rc) - EEN: EN: 4iq; (1) Em? T2 Z:l J'Zl n§=:O ( |rij +n°L| )
ot 2e =1 Rc 253 = R o | N 2
(rjj—Re) a 5 T )
because the net charge within the spherical truncation shell is FE; 97 3v izl aifi
given by " 0 o
2 exp( —k“/4a”)
N V2T e k. ®
Agi(R)= 2 g )
(rﬂj;a& In Eqg. (6), neglecting the symbols defined previously, the

L o . vectorn=(n,,ny,n,) denotes the three-dimensionally peri-
Like in Ref. 2 it is important to note that the tefjeri needs ;. images of the simulation box of sides= (L,,L,,L,)

to be included so Fhat the_ true total charge in the sphericallyq s 5 reciprocal space vector. If the cell does not have
truncated volume is obtained. orthogonal sides the dot produtl is to be intended as a

(i) The “shifted Coulomb pair potential.” After some gonarajized one giving the correct cell translations in Carte-
algebra, it is shown that the direct sum truncateRaminus  gjan coordinates. In the first term, fo=0 must bej#i. The

the neutralizing potential is equivalent to the pairwise sum Offunction Q(K) is the so-called charge structure factor, given
“shifted” Coulomb pair potentialalgh(rij):

by
1 1) g9 . |4 N N
VE(r ) =qiq | —— = | =~ |im {2 3 . .
i) q'ql(rij R, 1y rij'L“RC[ ™ ® Q<k>=(j21 qj expmk-r,»)])(iZl gjexd —i(krpl|. (7
from which a sort of “self term" is subtracted. In E), I'ij  The third term in Eq(6), resulting from the reciprocal space

is the distance between the iansndj bearing the charges part of the Ewald sums fok=0, is denoted as a “dipolar
andgq; , respectively. The second form WE(r;;) is conve-  term and in most caseg@nd also in this workis neglected,
nient in order to evaluate the appropriate derivatives whempeacause it is zero by symmetry or very small. Usually, the
computing the forces, the stresses, etc. Indeed Ref. 2 for  gimyjation box dimensions and the valueaére assumed as
more detaily in order to obtain correct results, derivatives large so as to ensure that the first term of the Ewald summa-
must be evaluated prior to taking the limit. The resultingtions converges even far=0, so that the sums run over all
expression for the total Coulomb energy is the ions of the simulation box alone. In this case, the terms
1 N 1 N not containingR. in Eq. (5) are of the same analytical form
E{\(/l)?d(Rc)~52 _ 2 VS r.j)_ﬁz g?>, (4  as the first two terms in E¢(6), but in Eq.(5) only the
=1 j#i(rjj<Rc) ci=1 interionic distances;; <R are considered. As shown in Sec.
whereN is the total number of ions of the system. Using thisV Of Ref. 2, the first double summation in Eqg. (5) is numeri-
approximation of the Madelung energy, for sufficiently |argecally very close to the first real-space term of the Ewald sum
R. a convergence toward the limiting value is achieved,for the same system and the same damping parametsut
which is reasonable but not yet satisfactory. including all the_ ions of the simulation bdsee als_(_) Table
(iii ) The “damped, charge-neutralized Coulomb pair po_II). The ev_aluz_itlon of the forces _and ot_her quant|t|e§ related
tential.” In order to improve the convergence and make itf0 the derivatives of the potential, which are required for
close to that of the Ewald sum, a damping is applied to thé&nergy m|n|m|z_at|on or molecu!ar dynamics simulations, is
charge-neutralized Coulomb potentialin“analogy to the —Performed starting from Ed5) with the above recalled pre-
trick applied[...] to derive the Ewald sutras it is written in  Scription of taking the limit forr;; — R, after computing the

Ref. 2. The final formula is given by derivatives(see Ref. 2 for details
N
EMaY(R )~ EE 0;q; erfo(ari;) B. Derivation when the spherical truncation volume
ot AT 24 j#i(fr<Ro) i exceeds the simulation box

One of the most interesting features of the new method
is the possibility of using values of.Rarger than one half of
the minimum cell sideln Ref. 2 this statement is implicit

N but, as it might appear paradoxical, it deserves treatment in
_(erfo(aRc) L@ )z 2 (5) detail, also because it allows, in practice, one to achieve
2R, 2] & g remarkable computer efficiency improvements. Obviously,

— lim
rinRc

{qiqj erfo(arij)])

rij
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other formulas of the Wolf methofEqgs. (3)—(5)], a simple
trick can be applied. Since the subsystem containingMhe
charges is neutral and it is completely included in the trun-
cation sphere, Ed8) can be rewritten in the following form:

M N—M N
AQi(Rc):Zl s Zl ;= 21 q; ©)
. (rilj<RC) (rijj<RC)

which is identical to Eq(2). Obviously, this derivation holds
for any shape of the simulation box. Therefore, the Wolf
method can be applied evenR{>d,,/2. Indeed, we veri-
fied numerically that the Coulombic energy is practically the
same(within very small error bounds due to the different
number of neutralizing charges that are shifted to the spheri-
cal truncation surfagein the whole interval ifd,;//2<R.
<Rpmax: WhereR o is one half of the largest diagonal of the
FIG. 1. Two-dimensional representation of the situation when the sphericasimulation box, whatever its shape may (see also Table
_truncation volume exceeds the simulation_box. The_ system is all .containeﬁ)_ In the cas&R.= R, WhenR, becomes the radius of the
in the rectangle, and the charges to be included in the evaluation of the . i . . .
Madelung energy are those at a distance less Rafiom the center of the sphere C|rcumscrlb|ng the simulation box, f’i” the ions of the
rectangle. The subsystem contained between the broken(iint® shaded ~ System are included, so that the system is neutral, and the
region must be neutral. If it is not so, the broken lines are supposed to be{;omputed Coulom[energyis exactly the same as the direct
slightly deforme_d(letting their ends unchanggeh order to make the sub- part of the Ewald sumét is easily shown that in this case
system neutral in any case. .. . .
the neutralizing potential is zexoHowever, forces and
stressesare not the same, because the direct part of the
Ewald sums shows a discontinuityrgt=R., while the new
for crystals and liquids, when assumiiy>d,/2, where shifted potential does ndsee Sec. VB of Ref.)2 Using
d i is the smallest simulation box side, the minimum imageforces and stresses as derived by the Wolf method ensures
convention and the periodic boundary conditions are reIhat corrects results are obtained. Moreover, it should be re-

tained. Leti be an ion which, following the minimum image marked that in this case the symmetry of the system is no
convention, is at the center of the simulation box. Referringnore spherical, so that tHercesandstresseslerived by the

to Fig. 1, where a schematic two-dimensional representatiod/olf method should be influenced by the shape of the simu-
of a rectangular simulation box is reported, the choice ofation box, by assuming its translational symmetry. How-
Rc>dmi/2 corresponds to include in the evaluation of the€Ver, this result, at least farystals turns into aradvantage
Coulombic energy all the point charges contained both in th&specially if the unit cells are large. Indeed, a spherical trun-
rectangle and in the circle, by excluding those not containegation which does not includes at least one full crystallo-
in the rectangle. If the total net charge is not zero, one ca@raphic cell cannot account for the translational symmetry of
evaluate the charge neutralization energy as follows. Firsthe crystal itself, so that a simulation box made of adjacent
one can seledl point Charges contained between the brokerﬂnit cells should include at least elght cells to adopt a trun-
lines in F|g 1, or, in generaL between arbitrary lines Con-Cation Sphere embedding at least one full unit cell without
necting the intersections between the rectangle and the circlégaching the simulation cell boundaries. On the other hand, if
so that this subsystem is neutral. In three dimensions, thedge unit cell is as large as the ones of some systems consid-
lines become surfaces with the same properties; the rectangied in this papefsides of about 2 ni using R.= Rpax

and the circle become a para||e|epiped and a Sphere, respéﬁomd allow one to take into account the translational sym-
tively. Then, if it is assumed, as was previously the case, thahetry of a crystal by adopting a relatively small simulation
the entire neutralizing charge is localizegactlyat the sys- bOX, resulting in a large reduction of CPU time and storage
tem surface aR., or better at that portion of the surface requirements. As reported in the following, these findings

which is included in the simulation box, the neutralization were carefully and successfully verified. A similar approach
energy can be evaluated by again using €, but in this ~ can be followed to derive another more extensive and inter-

case the net chargkq;(R,) is given by esting property of the Wolf method, which is reported in Sec.
VIII of Ref. 2: “Our method is particularly powerful for the

d

min

N-M simulation of interfacial systems, such as bicrystals, free sur-
Agi(Re) = 21 o] (8)  faces, and liquid-vapor interfaces.” Indeed, the treatment is
(rijj;RC) the same except for avoiding the minimum image convention

across the interfaces. In conclusighe Wolf method allows
because only thBl—M charges exceeding the above-definedturning the long-ranged Coulomb interactions into spheri-
neutral subsystem are to be considered. In order to recoveally symmetric, relatively short-ranged effective potential
the exact form of Eq(1), which is necessary to derive the functions, like, for instance, the Lennard-Jones ones

Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 114, No. 18, 8 May 2001 Evaluation of Coulombic interactions 7983

C. Evaluation and optimization of the parameters method in such cases had to be checked. Therefore, we un-
ddertake an extended investigation for different systems and
different simulation boxes in order to find the correct value
of |b|, which entails an estimate of the cutoff radius. Among
distance |b|, since it must obey the conditioR.>|b|. _zeolites, we gonsidered silicalite, an .aII-siIica zeolite show-
Therefore the most general criteria to choose the approprial gy a noncubic unit cellsee the previous textanhydrous

values of these parameters should be found. In Ref. 2, th eolite Ca A? whose unit cell is cubic but with a not well-
' e 5éefined value ofb|, and scolecité? which not only contains

new method was tested for NaCl and MgO in different states ~,, ™" ° . .
Cé" cations in a noncubic cell, but also water molecules.

(crystal, disordered solid, and liqyidnd at different tem- lecite | wral fib lit hich h h I
peratures, and, overall, satisfactory results were achieved f&co ecite IS a natural lbrous zeolite, which has channels run-
ning along thec direction formed by eight-membered rings

l.;a<R.<2.5a, wherea is the(cubic crystallographic cell ; X . o )

; ; f (Si, Al)O, tetrahedra. The unit cell is monoclinic, with
de, and for 1.5=a=0.8A, ded thataR,~2.3. By ° 4
side, and for « provided 'hata . Y —0.65222nm, b=1.896 78 nm, c=0.98398 nm, andg

considering the actual interionic distands in the two sys- L .
g i y =109.97°, containing 60 framework atorf#0 O, 12 Si, and

tems, it appears tha&.>|b| is in practice satisfied foR, 8 Al) and 4 charge compensating Cimns ocoupying crys-

=5|b|. Therefore, for systems withb| shorter than in NaCl all hically ordered sites in the ch s Th |
and in MgO,R;. could be smaller. This happens for instance allograpnically ordered sites in the channeis. hree mol-
ecules of water for each catigar 12 molecules per unit cell

for water (b|~0.1nm) and for Si@ polymorphs, including . . o

zeolites (b|~0.16nm), entailing R.~0.5nm and R are present in the channels in ordered positions and are
~0.81m respectively’ These valuecs are smaller thacn OnI"gnked to the cations by electrostatic forces and to the frame-
half of the usual simulation box dimensions adopted for MDWork by hydrogen bonds, so that diffusion is hindered at

simulations for both kinds of systems, so that they could @™ temperature. Finally, liquid water was simulated by
remain unchanged if the new method is used. Howeveﬂj's'ng a model recently developed by our research droup

while for liquid water a cubic simulation box is almost the including the electric field gradient at the position of each

rule, often unit cells of zeolites are not cubic and have dif-OXYgen atom, which requwes cons'lderable computer re-
ferent cell sides, so that there is no “natural” value Ry sources. The characteristics of the simulated systems and of

and its right value, as small as possible to limit computa-the simulations are collected in Table I. In particular, in or-

tional effort, but sufficiently large to ensure convergence der to check the dependence of the result&pmnd on the

must be found. As a first test, we tried to apply the newdlmensmns of the system and to find the optimum vale,of

method to silicalit® which at room temperature shows a ;or sH:jczhtg] ?ndthzeohte I(i/zliDAb the §t|rr:1u_lgt|onsf were per-
monoclinic (but with 8=90.67°) relatively flat cell so that ormed both for the usua oxdith sides of approxi-

the simulation box is usually made of two crystallographicrnatEIy 2-2.5 nmand_ for Iarger boxesvynh sides of ab_out
cells superimposed along with dimensions 2.0076 4-5 nm. Most of the interaction potentials devgloped in our
x 1.9926x 2.6802 nm, including 576 atoms. Its framework laboratory for zeolites and watéalways assuming that all

structure comprises two different channel systems, each déhe particles bear electric chargese reported or referenced
fined by ten-membered rings of SiQetrahedra. Straight in Ref. 4; the only not yet published parameters are those of

channels with an elliptical cross section of approximatelythe C&"—water potential functions, which are of the form

0.57-0.52 nm are parallel to the crystallographic dxand

sinusoidal channels with nearly circular cross section of 0.54 Va0 F)=
nm run along the crystallographic axdsThe resulting inter-

sections are elongated cavities up to 0.9 nm in diameter. For Ccao H

R.=0.9963 nm(one half of theshortestside, a value which =z (10
should be sufficiently large according to the above-

mentioned argumenjisthe comparison of the new method where qc, is the nominal charge of G&(2e), qo
results with those of Ewald seemed to be satisfactory. How= —0.659 6@, andqy=0.329 8%. The values of the param-
ever, the optimum value af had to be found. In other cases eters are: Ac,o=2.598<10°kImol L, Acyy=1.2026

the meaning of the minimum interionic distarité becomes X 10°kJmol %, beag=0.351nmY;  begy=0.679nm %;
unclear. An example is anhydrous zeolite Cd Ahe pore  Cc,o=15.91kImolinm 2  Ccay=8.16 kImol *nm 2
system of A-type zeolites could be schematically represente@ihe general behavior of the Coulombic energy obtained by
by a cubic array of nearly spherical cavities cage$ inter-  the Wolf method using Ed5) may be investigated by evalu-
connected through eight-membered oxygen ritvgisdows ating the derivative of the Madelung energy with respect to
with free aperture about 0.43 nm when not blocked by aa:

cation. The diameter of the cages is about 1.12 nm, and in

Ca A zeolite the CH cations are located near their surface. Eq- 1 . D 202

The C&" cations neutralize an electron excess arising from go 772\ &4 2R, 90; exp(— a"Rc)

the presence of Al atoms instead of Si in Ji®trahedra but N

spread among several Al, Si, and O atoms of the framework

which are not chemically bound to the catigtiseir distance B ;1
from the cation is in the range 0.23-0.31 yrso that a

definite value ofib| is lacking, and the validity of the new where we note that the sums oyemow include the value

The parameters required for applying the Wolf metho
[see Eq.(2)] are the cutoff radiufk. and the damping pa-
rametera. The cutoff radius depends in turn on the interionic

Odcadlo, H

41eg r

+ Acao, HEXN —bcao, H)

N
2 g exp—a’r)-2 qff, (1D
j(rij<Re) i=1
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TABLE I. Characteristics of the systems considered in this work.

Unit cell dimensions Simulation box dimensions Number of
System (nm and dey (nm and dey atoms
Silicalite a=2.0107 Silicalite(2 celly a=2.0107 576
(monoclinig
b=1.9879 b=1.9879
c=1.3369 c=2.6738
B=90.67 £=90.67
Silicalite (12 celly a=4.0152 3656
b=3.9852
c=4.0203
B=90.67
Zeolite Ca A a=2.4555 Zeolite Ca A1 cell a=2.4555 624
(cubio)
Zeolite Ca A(8 cells a=4.9110 4992
Scolecite a=0.65222 Scolecité6 cells a=1.956 66 600
(monoclinig
b=1.896 78 b=1.896 78
c=0.98398 c=1.967 92
£=109.97 5=109.97
Water a=2.1752 1029
(cubig (343 molecules

=j. The first term is identically zero if the system is neutral,grows so that the slope of the Madelung energy maintains
and in general it is much smaller than the others; the thirdhe zero value, because this energy becomes constant. In
term is always negative, so that for large valuesypivhen  other words, the curve representing the Ewald sums results
the second term also becomes negligible, the slope of theeaches a plateau and the corresponding Coulomb energy can
Madelung energy versusis negative. For small values ef  be assumed as the limiting value of the Madelung energy.
usually (an exception is liquid water, see the followjnifpe
first term is negative and the second one is positive, becausi. CALCULATIONS, RESULTS, AND DISCUSSION
'tgg;gtnrllcern:ﬁ;rﬁi t;aen?c?glgﬁigfsgfnp:ilﬁzrzhear&iraergvgroStf]r We evaluated first the Madelung energies for the experi-
number of nearest neighbors is at least four. and for Sl’Jfﬁﬁ]ental strgctures of silicalit€1x 1% 2 and .ZQXS unit

) . X . >~ cells), zeolite Ca A(1xX1X1 and 2<2X2 unit cell9, sco-
ciently small values ofr the Gaussian functions in the f'rSt,Iecite (3x1x2 unit celly, and water(343 molecules in a

and s_econd_ Ferms approach unity. Thu_s itis likely that the'r(:ubic box in order to check the convergence of the values of
sum is positive and larger than the third term, so that th

slope of the Madelung energy is positive. Therefore, it is%.he energies obtained by Ewald and Wolf methods depend-

. ing on the values ofr and onR;. The cutoff radiusk,; was
ﬁjxnpgeZr?gr;?/atsrtz:/viria%\gi):ni%auovr?l?hee O;tﬁ(:?i:ﬁl]zd?f- theset equal to one half of themallestand of thelargestcell
: ) ' o . i h ignifi ly diff f i lls. More-
direct space Ewald sums in E() are limited to the simu- Sides(when significantly differentfor noncubic cells. More

. . . over, in all cases we also performed a simulation With
lation box, that 1S, the .terms Wltm&O. are neglected, as equal to the radius of the sphere circumscribing the MD box
usual when the simulation box is sufficiently large, the de

vati ith . f the Madel | ‘(see Table | for more details about the considered systems
rivative with respect tax ot the Madelung energy as evaiu- Figure 2 illustrates an example of the Coulomb energy trend
ated using Ewald sums is given by

as a function of the damping parameterevaluated from the

gEMad 1 [N N - N ) Ewald method and Wolf method for different valuesRy.
g o E 2 0igj exp(— @ rij)_z di The data refer to zeolite Ca A, the most critical system
o o i=1)=1 =1 . .
among those considered in the present study, because of the
2 exp( — k2/4a?) undefined but possibly large value [df], which would re-
+ Vgo — 5 QK. (120 quire a largeR, for a correct application of the Wolf method.

Figure Za) shows the results for the smaller simulation box

The first and second terms in E(L2) are similar to the (one crystallographic cellwhile in Fig. 2b) the ones for the
correspondingsecond and third, respectiveélterms of Eq. larger simulation boxeight crystallographic cellsare re-

(11) and it is easily shown that their behavior too is similar. ported. It is important to remark that in both cases the trend
Therefore, we usually expect that for small valuesapthe  expected on the basis of the arguments reported in Sec. I C,
contribution of the third term being negligible, the slope of in particular about Eqs(11) and (12), is observed. Indeed,
the Madelung energy is positive and decreases until ifor very small values ofa the Coulomb energy resulting
reaches zero. However, for larger valuesadhe third term,  from the Ewald sums does not converge to the correct value,
representing the contribution of the reciprocal space sumdut as« is increased the curve reaches a plateau and the
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[e) FIG. 3. Minimum value of the damping parametetin nm %) ensuring the
§ -6204 correct convergence of the Coulomb energy both for Ewald sums and the
3 530+ - "“"#.ﬁ__\ Wolf method for the systems considered in this work as a functiondyf;1/
~ ) (in nm™Y), whered,, is the smallest simulation box side. Black square:
3 -6401 zeolite Ca A(8 cells; black triangle:silicalit 12 cell9; gray square: zeolite
B 6501 Ca A (1 cell); gray triangle:silicalite(1 cell); circle: water; diamond: sco-
c lecite.
W 6601 @
Q
£ -6701
o) T T T
= 0 -1 -1 -t . . . . . .
3 b0 2x100 310 increasinga yielded by the Wolf method is practically inde-
© a(nm’) pendent oR.. This trend is to be expected because, follow-

FIG. 2. Total Coulomb energy per crystallographic unit cell for zeolite Ca A ing the arguments of Sec. Il C, EQ1.1), the limit value of the

(in MJ/mol) as a function of the damping parametefin nm™1) contained derivative of the Madelung energy for I_ar@és indepen_dent
in Eq. (5), for different evaluation method&wald: continuous lines; Wolf:  Of R.. We stress that the above-described behavior is shown

broken lineg and for different values of the cutoff radif . (a): One unit by all the considered systems, so that a general rule may be
cell; dashed Iin_e:RC=_dmin/2=1.228 nm; dotted line:Rc=(y3/2)din guessedthere is always an optimum value of ay., for
=2.127 nm.(b) Eight unit cells; dashed lindR-=d,;/2=2.455 nm; dotted .
line: Re = (/3/2)dmin=4.254 nm. which not only the results of the two methods are close to-
gether but also both of them yield the correct Coulomb en-
ergy value (which can be evaluated by the full converged
corresponding Coulomb energy can be assumed as the linkwald sum for largea), provided that R is sufficiently
iting value of the Madelung energy. This trend was observedarge, in order to satisfy the condition & |b|. Becausex
for all the considered systems, but the valuexdbr which ~ must be as small as possibte,..; should correspond to the
the Coulomb energy becomes constant, or the position of thknee in the Ewald results curve. It remained to find another
“knee” in the curve, depends on the dimensions of the simu~ule relating a5 to Some characteristic of the system, in
lation box. An exception is water, which shows a very smallorder to avoid the evaluation of Coulomb energy veraus
variation of the Coulomb energy obtained by both methodsurves in each case. By comparing the results reported in
even for very small values of the damping parameter. Thistigs. 2a) and 2b), and the corresponding trends for the
effect is caused by the peculiar characteristics of watersmaller and larger simulation boxes of silicalfteot shown,
which is a structured molecular hydrogen bonded liquid. In-it appeared that,.s;decreased by increasing the dimensions
deed, the distribution of the charges surrounding oxygen andf the simulation boxegdependently of R Therefore, we
hydrogen atoms is different from that of an ionic material orattempted to plot the values @fy,.; against the inverse of
an aluminosilicate, and a detailed inspection of the actuadome measure of the simulation box dimensions. It was
structure of the first neighbors molecular shell is sufficient tofound that the best results were obtained by considetirg
ascertain that the derivative of the Madelung energy, giversmallest side of the simulation hokhe results are shown in
by Eq.(12), is close to zero for any value. Before discuss- Fig. 3, where it appears that for all the considered systems
ing the dependence of the Ewald energy curve on the simuhe dependence @f,.5;0n 1M, whered,,, is the smallest
lation box dimensions, the results of the Wolf method will besimulation box side, was represented very well by a straight
illustrated. Referring again to Fig. 2, f®®.=d/2 (d is the line. The best reproduction of the Ewald results was obtained
cubic cell side and for small values o the Coulomb en-  for apes= 4/dmin, Within an error of a few percent. We did
ergies are closer to the limiting value than the ones derivedot succeed in showing that this result can be derived ana-
from the Ewald sums. They increase slightly for increasingytically from Eq. (11). However, it is easy, though a bit
a, reaching a maximum approximately in correspondenceedious, to verify that for a perfect rock salt structure crystal,
with the knee of the Ewald sums curve. For higher values oissuming a cubic box of sidd=d,,=10b|, a=4/d,
a the Coulomb energies yielded by the Wolf method de-=2/(5|b|), andR.=5|b|, Eg.(11) yields a value very close
crease monotonically diverging from the limiting value of to zero as a result of the sum of relatively large mutually
the Ewald sums, as expected on the basis of the discussion cénceling terms. On the basis of these findings, we per-
the behavior of Eq(11). For the smaller simulation box this formed a series of test MD simulations in tN&E ensemble
effect is greater than for the larger simulation box. Howeverpof the considered systenisee Table)l The systems were all
for a given system, the decrease of the Coulomb energies faquilibrated at a nominal temperature of 300 K and the pro-
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TABLE Il. Results of MD simulations for the systems considered in this work. By “direct Coulomb energy” we mean for the Ewald method the real space
sums; for the Wolf method the first double sums in E5). Direct and total Coulomb energies are per crystallographic unit tfelisvater per simulation

box). The CPU time includes the contribution of short-range interactions, and its value is relative to the one necessary for the simulations with the Ewald
method. For the larger systems the CPU time relative to the corresponding smaller systems is also(regmatedtheses

Damping Cutoff Direct Total
Number Method parameter  radius Coulomb Coulomb Percent Relative
of (E=Ewald) a Rc energy energy Pressure rms total CPU
System simulation (W=Wolf) (nm™Y (nm) (MJ/mol) (MJ/mol) (MPa) energy time
Silicalite 1 E 2.0 —273.452 —363.634 30 0.4810 % 1.00
(2 cell 2 w 2.0 0.994  —273.267 —363.765 162 0.1810°2 0.73
3 W 2.0 1.340 —273.399 —363.705 38 0.3510 4 0.75
4 w 2.0 1.948 —273.412 —363.713 51 0.4210°* 0.96
Silicalite 5 E 1.006 —318.387 —363.809 122 0.15810° 4 1.0020.8
(12 cellg 6 W 1.006 1.988 —318.189 —363.705 4 0.1x10 4 0.6914.5
7 w 1.006 3.483 —318.357 —363.778 24 0.1810™4 0.8517.9
8 W 2.0 1.948  —273.334 —363.447 52 0.6310°° 0.6814.1)
9 w 1.006 0.994  —313.929 —365.685 100 0.2810°2 0.5411.2
10 W 2.012 0.994 —272.766 —363.746 3 0.9810 4 0.5411.2
11 w 1.006 1.340 —317.651 —364.761 —1468 0.3&% 103 0.5711.9
12 W 1.492 1.340 —296.242 —363.746 0 0.3x1072 0.5711.9
Zeolite Ca A 13 E 1.629 —483.729 —621.864 —1397 0.1%x 10! 1.00
(1 cell) 14 w 1.629 1.228 —483.173 —621.613 —1138 0.3410°3 0.53
15 W 1.629 2.127  —483.829 —622.094 —1264 0.3%10°® 0.91
Zeolite Ca A 16 E 0.814 —552.753 —621.721 —1455 0.4% 102 1.0071.4
(8 cells 17 w 0.814 2.455 552,131 —621.366 —1492 0.1%x 10! 0.6950.0
18 W 0.814 4.254  —552.633 —621.721 —1439 0.3%10°2 0.8562.5
19 w 1.629 2,127 —482.943 —621.204 —1291 0.4510°! 0.6345.0
20 w 0.814 1.228 —544.586 —623.562 —4905 0.3% 10 2 0.54(38.5
21 w 1.629 1.228 —483.019 —621.565 —1477 0.2410°3 0.54(38.5
Scolecite 22 E 21 —51.8204 —70.947 —699 0.21 1.00
(6 celly 23 W 2.1 0.984 —51.7279 —70.889 —940 0.23 0.26
24 w 21 1.866 —51.7765 —70.909 —829 0.12 0.32
Water 25 E 1.839 —155.141 —187.302 648 0.6810°° 1.00
(liquid) 26 w 1.839 1.088 —154.962 —187.401 872 0.2810 2 0.37
27 w 1.839 1.884 —155.145 —187.418 677 0.8810°° 0.39

duction trajectory was TGsteps long, corresponding to 10 ps larger systems were carried out f&, equal to the radius of
for the anhydrous zeolites and to 5 ps for scolecite and watethe sphere circumscribing ttsenallersimulation box and for
This time proved to be sufficient for the estimation of thethe value ofa corresponding to the smaller simulation box,
guantities we were interested in: average Madelung energiy order to compare the results of systems with the truncation
and contribution of the “direct sum” for both Ewald and sphere completely embedded in the simulation box with
Wolf methods, the total energy conservation, expressed ahose of corresponding neutral simulation boxes completely
rms percent variation, and, finally, the ratio of the CPU timecontained in the truncation sphere with the saRe(simu-
required for the calculation using the two methods. More-lations 8 and 19 to be compared with simulations 4 and 15,
over, the average structures and the vibrational spectra werespectively. The Ewald method should yield the same re-
evaluated following standard procedutsse Ref. 3, and ref- sults for the same systems with different simulation boxes.
erences therejn The most relevant results are collected in Therefore, their actual differences can be considered as an
Table Il, where the simulations are numbered in order tantrinsic numerical erronwhich in the following discussion is
make the discussion easier. First, it was assumed/d,,;, assumed as a measure of the goodness of the re§ualts.
and, in order to check the dependence of the resultRgn instance, the relative difference between the total Coulomb
the simulations were repeated by increasing the valug.of energy for the smaller and larger simulation boxes of sili-
from d,;/2 to the radius of the sphere circumscribing thecalite (simulations 1 and 5, respectivelsnd of zeolite Ca A
simulation box(simulations 2, 4, 6, 7, 14, 15, 17, 18, 23, 24, (simulations 13 and 16, respectivelys about 102%.

26, and 27. As evidenced in Sec. IIB, when assumiRg  Therefore we consider “satisfactory” all the total Coulomb
>dmi/2, the minimum image convention and the periodicenergies obtained by simulations performed using the Wolf
boundary conditions were retained. For the smaller simulamethod yielding differences within 16% from the ones
tion box of silicalite, the simulation was performed also by evaluated by the Ewald method for the same system, and
assumingR. equal to thelargest cell side (simulation 3.  “not quite satisfactory” (although possibly acceptabléhe
Moreover, for silicalite and zeolite Ca A, simulations of the others. It is clearly shown that for the above-considered
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simulations, to be compared with simulations 1, 5, 13, 16, 23;sed, and a value &.<d,,y/2 could be sufficient to ensure
and 25, which were performed using the Ewald summationsa correct simulation. A recent example is reported in Ref. 11,
the two methods yield practically the same values of theyhere the screening behaviors of molten and gaseous NaCl
Coulomb energy(within about 10%), both for the total are studied by assuminB.=a/3, a being the side of the
one and the “direct” contribution, which for the Wolf cubic simulation box. By performing simulations 9 and 11
method is to be intended as the first double sumin(Bgas  (for silicalite), and 20(for zeolite Ca A we verified that
remarked previously. This is true also for the smaller simu-maintaining the value of which is the best for the larger
lation box of zeolite Ca A withR.=d,/2. The general simulation boxes leads to results which are not fully satisfac-
trend of the structural results, which for crystals include thetory (in the above-specified meaningndeed, in these cases
distribution of the atomic coordinatggaking into account the interactions of each charged particle are ciR.atso that

the symmetry of the systerhand the corresponding aver- the value ofa cannot be correlated with the dimensions of
ages, while for water consist of radial distribution functionsthe simulation box. Instead, it should be relatedRg, by

and average molecular dimensions, is similar for the twaconsidering an effective simulation box of side=2R, and,
methods. For water the results are practically indistinguishtherefore = 2/R; . The results of simulations 10, 12, and 21
able whereas for crystals, in spite of the built-in translationakhow that this choice considerably improves the perfor-
symmetry of the Ewald sums, the Wolf method yields moremances. The computational efficiency of the two methods
symmetric and ordered structures in all the considered casean be compared by considering the relative CPU time
(except for the smaller simulation box of silicalite wil, ~ needed for the calculations, besides the consideration of the
=dmi/2). This is not surprising, because, as remarked irmuch simpler form of the algorithm required by the Wolf
Sec. |, the Wolf method retains the spherical symmetry ofmethod. In the Ewald method, the real space summations are
the Coulomb potential, while Ewald sums do not. Thereforeperformed over all the charged particles of the simulation
the Wolf method should be more suitable, not only for lig- box, and after the reciprocal space sum is to be added up.
uids and disordered systems, but, almost paradoxically, alsgsually, in order to obtain the maximum efficiency, it is
for crystals. The simulation runs were too short for a reliablesuggested to choose a valueméntailing a roughly equiva-
evaluation of the pressure, which is the most critical quantityjent CPU time consumption for each kind of sums; in prac-
for the Wolf method. This problem was evidenced in thetice, for the considered systemsshould be of the order of
original papet where a corrective term was also derived forg.3 nm %, and this value was used in our previous works
liquids. However, its value for watef—5.3 MP3, is not  [Refs. 3 and 4 but no relevant difference in computer time
sufficient to completely reduce the gap between the valuegas recorded for smaller values @f because the simulation
obtained by the two methods, although for the larger value ohoxes are sufficiently large to allow including a relatively
R. the difference is less than 5%, an encouraging result. Amall number of points in the reciprocal space sums even for
more irregular trend is observed for crystals, where differrelatively large values o. In the Wolf method, the summa-
ences of the order of 100 MPa among the computed presions involve the real space only, so that it is expected to be
sures of each system are found. We note in passing that thgster. The actual CPU time consumption relative to the
large negative values for zeolite Ca A is to be expected, aBwald method performances on a HP K-460 computer
this structure in its equilibrium state is hydrated, while for equipped with four processors are reported in Table Il. The
scolecite it is caused probably by a water—zeolite potential\/olf method always appears more efficient, and the com-
which is too deep and, indeed, is under revision. The vibraputer time is reduced by a factor spanning from about 0.9
tional spectra evaluated using the two methods are very simifor R, corresponding to the radius of the circumscribing
lar; in particular, the ones obtained with the Wolf method forsphere in silicalite to about 0.3(for scolecite, where the
the smaller systems are practically the same as the corr@otential model for the included wafdnvolves the gradient
sponding spectra resulting from the Ewald method for theof the electric field, which requires large computer resources
larger systems, when available. In summary, it appears thdbr the evaluation of the reciprocal space part of the Ewald
the Wolf method applied even to the smaller simulationsums) In Table II, for the larger simulation boxes, the com-
boxes, which correspond to the usually adopted ones for Mputer time relative to Ewald method calculations of the cor-
calculations, are sufficiently large to yield results reasonablyesponding smaller simulation boxes is also reported.N‘he
close to the ones obtained by the Ewald method, especially ibw for computer timg(whereN is the number of charged

R, corresponds to the radius of the sphere circumscribing thparticleg is not exactly obeyed because we report the total
simulation box. In particular, the results for the smaller simu-CPU time, including the evaluation of short-range forces,
lation box of zeolite Ca A show that the conditi®>|b| is  input—output operations, and some statistical calculations.
satisfied even foR.=d,;/2. Therefore, it can be assumed For simulations withR.<d;,/2, the efficiency could be im-
that in this casgb| is of the order of 0.2 nm, or that it proved by using neighbor lists Nevertheless, using the
corresponds to the largest of the nearest-neighbor distancimger simulation boxes, if not necessary, appears to demand
(about 0.23 nm between particles of opposite charge, intoo much computer time. The rms deviation of the total en-
spite of the fact that the involved iorithe charge compen- ergy, which is an index of the accuracy of the calculations, is
sating C&" cations and the oxygen atoms of the framework also reported for each simulation in Table II. It is about of
do not completely neutralize each other. In some cases, fahe same order of magnitude for the two methods, without a
instance when long-range distribution functions or diffusivedefinite trend, so that the same value of the time step may be
properties are to be studied, large simulation boxes must besed for both methods.
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IV. CONCLUSIONS tions in condensed matter simulations not only for purely
ionic substances but also for complex systems containing

cates and water using the Wolf method for the evaluation Of:harged pgrtigles like anhydrous and hydrated aluminosili-
Coulombic interactions may be drawn from the presentcates and liquid W:_;\ter, prowdeq that the mvolvgd paramgters
study. are chosen foIIovymg some crlterlg thaF we tried to derive.

(i) The conditionR.>|b| (in practiceR,=5b]) is rea- We shall apply this method extensively in the future, an.d.we
sonably satisfied ifib| corresponds to the largest of the wish to recommend its use as computationally more efficient

nearest-neighbor distances between particles of opposi?end physically more meaningful than the Ewald method.

charge. Therefore, simulation boxes witly,;,=2R.=10 b|

(whered,,, is the smallest simulation box sidare suffi-
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