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In this second paper the authors study the transport properties of the lattice-gas cellular automaton
presented in Paper I �J. Chem. Phys. 126, 194709 �2007�� to model adsorption and dynamics of
particles in a lattice of confining cells. Their work shows how a surprisingly simple parallel rule
applied to a static network of cells joined by links set in space and time can generate a wide range
of dynamical behaviors. In their model the cells are the elementary constituent objects of the
network. They are a portion of space structured in sites which are energetically different. Each cell
can accommodate a given maximum number of particles, and each pair of neighboring cells can
exchange at most one particle at a time. The predictions of the model are in qualitative agreement
with both experimental observations and molecular dynamics simulation results. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2721547�

I. INTRODUCTION

Molecular motions in microporous materials cover a
wide range of time scales: from bond vibrations at the fem-
tosecond level to long-range diffusion at the microsecond or
longer time scale depending on the specific conditions at
which the phenomenon occurs.1 Theoretically, phenomena
with the fastest motions are studied by different methods,
including first principles molecular dynamics2 and classical
molecular dynamics simulations.3 These studies provide in-
sight into the atomistic structure and interactions with the
adsorbed molecules of the microporous framework. Other
events, at slower time scales, such as ionic exchange or long-
range diffusion are rarely suitable for studies with current
classical molecular dynamics simulations as they span scales
that are at least of an order of magnitude larger than the
largest studies to date �hundreds of nanoseconds�.4 The in-
vestigation of these phenomena, even using models based on
simple effective pairwise atom-atom potentials are still too
computationally costly. Because most of the practical appli-
cations of these materials involve shape selective catalysis
and separation processes, a field where the transport proper-
ties of adsorbed molecules play a central role, a question
arises: what are the fundamental interactions that control the
dependence of diffusion in microporous materials and can
they be represented in a coarse grained fashion able to repro-
duce the main feature of the transport phenomena on very
long time scale at very long distances? This motivates the
search for a further simplification of the atomistic models of
micropores, to reach a simpler description of the effective
interactions such that they can be easily computed and at the
same time able to capture the essential features of the real
physical systems.5–8 In the paper immediately preceding, de-

noted as Paper I, we describe in detail a lattice-gas cellular
automaton �LGCA� able to model the properties of species
bounded to an adsorbent’s surface mainly focusing on the
structural equilibrium properties of the model. In the follow-
ing article we report the results concerning the dynamical
properties that can be studied from the model. In short, our
LGCA represents the connected channels and cages of a real
microporous material as a lattice of communicating cells that
can contain and exchange a fixed number of guest molecules.
Each cell has the unit size � and an appropriate number of
energetically different adsorption sites: exit sites available to
particle transfer and inner sites not available. This, along
with the instantaneous number of molecules inside, deter-
mines the number of accessible states in each cell. In each
cell the actual dynamic state �including its tendency to par-
ticle transfer� will be determined by the energies of its occu-
pied sites according to a local Monte Carlo sampling scheme
on the allowed states. In a previous paper9 we have shown
that a properly designed LGCA captures the essential physics
of molecules confined to porous solids. The remainder of this
paper is organized as follows: in Sec. II we report the results
of the simulations, while in Sec. III we conclude by summa-
rizing the present results and by remarking on the applicabil-
ity of our approach for modeling other host-guest diffusion
systems.

II. RESULTS OF THE SIMULATIONS

We mapped on our LGCA model an Linde Type A �LTA�
zeolite, the ZK4, a framework which satisfies the topology
requirements of the model illustrated here.10 This system
consists in a simple cubic lattice of nearly spherical cavities
with an internal radius of �5.7 Å connected to six neighbor-
ing cavities by nearly circular windows of �4.2 Å in diam-
eter. We assume that each cavity can host a maximum of K
=16 particles. These cavities are represented in our model by
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means of cells, each containing �=6 exit sites with adsorp-
tion
energy −�ex, which are available to particle transfers, and
K−� inner sites with adsorption energy −�in, which are not
available to such transfers. Where not explicitly indicated, in
this work all the simulations were performed on a cubic grid
of 163 cells. In this case study we assigned the same �dimen-
sioned� values of site energies and temperatures as those em-
ployed by Bhide and Yashonath in their lattice-gas model
study11,12 in order to compare directly with their work our
diffusivity curves. Therefore we set the energy parameters as
�ex=10 kJ/mol and �in=20 kJ/mol. If not specified, we set
the coefficient �0 of the propagation probability, which rules
the frequency of intercell transfers �see Eq. �14� of Paper I
for further details�, as �0=1.

In each computer simulation, starting from a random dis-
tribution of particles, after 20 000 time steps of equilibration
we observed the evolution of the system during a time inter-
val ranging from 105 to 108 time steps, depending on the
statistical accuracy required to compute the averages of in-
terest. The data at temperature T→� are obtained from
simulations with �ex=�in.

A. Diffusion coefficients

In our simulations we computed the different diffusivi-
ties which are of most common interest in the study of the
intercell migration in microporous systems.

The self-diffusion coefficient, which measures the diffu-
sive motion of a single particle, can be computed from its
mean-squared displacement at long times through

Ds =
1

2d
lim
t→�

d

dt
��ri�t� − ri�0��2� , �1�

where ri�t� is the position of a tagged particle �i.e., the cell it
occupies� at time t, and d is the dimensionality of the lattice.

The single-particle random walk is ideal �i.e., Markov-
ian� if the probability of a particle to migrate from a cell to a
neighboring one is independent of the previous history of the
particle. In such a case, this probability equals 1 /�mrt, where
�mrt is the mean residence time �in units of time steps� of a
particle inside a cell. We indicate the diffusivity associated to
such a random walk as the ideal diffusivity D0

D0 =
�2

�

1

2d�mrt
, �2�

where � is the distance between two neighboring cells, and �
is the duration of a time step. Introducing �n� as the loading
�average number of particles per cell�, �ex as the relative
particle density per exit site, and �0 and A as fixed kinetic
parameters �see Paper I and our previous work9 for details
about the calculation of these quantities�, one obtains the
following general expression for D0:

D0 =
�2

�

1

2d

��ex

�n�
�1 − �ex��0Ae−��ex, �3�

where �=1/kBT, with kB the Boltzmann constant. Details
about the calculation of D0 can be found in the Appendix.

If averaging over a long trajectory Ds is found to con-
verge to D0, then the particle migration is unaffected by
memory effects.

The collective diffusivity Dc �often used in the zeolite
literature�13 measures the diffusive motion of the collective
coordinate �i=1

N ri �which is N times the coordinate of the
center of mass� by taking its slope at long times,

Dc =
1

2dN
lim
t→�

d

dt	
�
i=1

N

�ri�t� − ri�0���2� . �4�

The right hand side of Eq. �4� contains the correlations
among all particles in the system at all instants of time. De-
pending on the particular randomization algorithm em-
ployed, correlations among different particles can be intro-
duced. This in turn will give a collective diffusivity different
from the self-diffusivity.

Dc contains all the above mentioned time correlations
relative to each single particle, plus the correlations between
the displacements of each pair of particles at equal and dif-
ferent times, therefore we can express Dc as14

Dc = Ds + Dcorr, �5�

where Dcorr contains all the time correlations between differ-
ent particles. If, averaging over a long observation time, the
positive and negative contributions to Dcorr cancel each other,
then Dcorr becomes negligible so that Dc converges to Ds and
we can say that the random walks of different particles are
uncorrelated.

Finally the chemical diffusion coefficient Dchem �some-
times reported as the transport diffusivity� measures the
transport of mass and the decay of density fluctuations in the
system, and it is related to the collective diffusivity by15

Dchem =
�n�

�n2� − �n�2Dc =
�n�
	2 Dc, �6�

where the quantity �n� /	2 �i.e., the reciprocal of the reduced
variance, see Paper I� is called the thermodynamic factor.

A useful quantity in the discussion of the diffusion prop-
erties of the model is the accessibility 
n, defined for a cell
of occupancy n�1 as the equilibrium probability of an exit
site to be occupied, divided by the occupancy �i.e., the num-
ber of particles in the cell� n. The probability 
n is indepen-
dent of the loading �n� and measures the tendency of a par-
ticle to reach an exit site according to the number of particles
which occupy the same host cell. It can be expressed as


n =
1

n�
�

nex=0

�

nexPeq�nex
n� , �7�

where Peq�nex 
n� has been defined in Eq. �5� of Paper I as the
conditional probability of a cell to have nex filled exit sites
given that its occupancy is n. The average accessibility reads
�
n�=�ex/ �n�. We plotted 
n versus n for several tempera-
tures in Fig. 1. Because the inner sites are the most binding,
at finite T the accessibility of the exit sites will increase with
n.

At T=300 K, for low values of n the probability of a
particle to reach an exit site is very low and increases little
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with increasing the occupancy. Instead, it increases rapidly
when n� �K−�� because in such cases at least n− �K−�� exit
sites must be occupied. In the limit of maximum occupancy
n=K the cell is saturated, and obviously we have 

n
n=K

=1/K independent of temperature.
Increasing the temperature, 
n becomes less occupancy

sensitive and in the limit of T→� �which is equivalent to the
case of �ex=�in� the accessibility is constant at 1 /K, because
the sites are all equivalent.

The particular randomization operation adopted in this
work �see Paper I� destroys the time correlations in the ran-
dom walk of each single particle. This has two important
consequences on the diffusivity.

• The self-diffusivity Ds approximates well the self-
diffusivity of an uncorrelated random walk D0. This can
be seen in the good overlapping of the profiles of Ds

and D0 versus �n� for various temperatures, as shown in
Fig. 2.

• As a consequence of this fact, if correlations among
different particles exist they are instantaneous, that is,
relative to the same time step. In our simulations we

found Dc�Ds, therefore we say that under these condi-
tions the correlations between the random walks of dif-
ferent particles are negligible and in Eq. �5� Dcorr�0.
This can be seen in Fig. 3, where a good superposition
of the self- and collective mean-squared displacements
�MSD� is shown.

In Fig. 4 several profiles of �a� Ds, �inset of �b�� Dc, and
�b� Dchem are shown. We illustrate the obtained trends in the
following.

1. Self-diffusivity

In Fig. 4�a� the behavior of Ds versus loading is reported
for various temperatures. Changes in temperature lead to dif-
ferent profiles of the self-diffusivity, corresponding to the I,

FIG. 1. Accessibility 
n vs the occupancy n for various temperatures.

FIG. 2. Self-diffusivity �white circles� obtained from simulations at various
temperatures, plotted together with D0 obtained through direct measure-
ments of the mean residence time �crosses, see Eq. �2�� and through Eq. �3�
�solid line�.

FIG. 3. Mean-squared displacement �MSD� of the self-coordinate ri �see Eq.
�1�� and of the collective coordinate �i=1

N ri �see Eq. �4��.

FIG. 4. �a� Self-diffusion coefficients for various loadings and temperatures,
plotted together for a direct comparison. �b� Chemical diffusion coefficients
obtained from the collective diffusivity Dc �shown in the inset� and the
thermodynamic factor using Eq. �6�. T=300 K �squares�, T=460 K �black
circles�, T=600 K �up triangles�, T=1300 K �down triangles�, T=2500 K
�diamonds�, and T→� K �white circles�.
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II, IV, and V types observed by Kärger and Ruthven16 �see
Fig. 5� in the pulsed field gradient-NMR �PFG-NMR� mea-
surements of intracrystalline self-diffusion coefficient de-
pending on sorbate concentration.

We define as event 1 the event in which a particle
reaches an exit site during randomization, and as event 2 the
event in which two adjacent exit sites are simultaneously
occupied during propagation. The probabilities of events 1
and 2 increase as the average accessibility �
n� of the exit
sites increases. If by increasing the loading �n� they increase
in different ways, then in general the resulting diffusivity
trend will not be linear. With this in mind we proceed to
describe the trends reported in Fig. 4�a� in detail.

�i� Let us consider first the self-diffusivity trend at T
=300 K �black squares�. From low to intermediate
loading the curve shows the increasinglike behavior
of type V, as reproduced by the model of Tunca and
Ford,17 because in this range of loadings the probabil-
ity of event 1 increases more rapidly than the prob-
ability of event 2. Further increases of �n� will cause
the diffusivity Ds to increase until it reaches a maxi-
mum. At this point, the probabilities of events 1 and 2
are balanced: if we remove a small number of par-
ticles from the system the diffusivity will decrease
due to a decrease of the probability of event 1; instead
if we add a few particles the diffusivity will decrease
because the average accessibility will become large
enough to enhance the probability of event 2. There-
fore, at intermediate-high loadings the diffusivity
trend is of type IV �Ds reaches a maximum and then

decreases to zero�. It should be noted that at T
=300 K the behavior of Ds versus �n� is qualitatively
analogous to the trend obtained by us18 and by Dub-
beldam et al.19 in molecular dynamics �MD� simula-
tions of diffusion of methane in ZK4, and by Coppens
and Iyengar8 through dynamic Monte Carlo simula-
tions of diffusion on a lattice with multiple types of
sites.

�ii� The same considerations are valid for the self-
diffusivity trends at T=460 and 600 K. Since the self-
diffusion is ruled by event 1 at low loadings, and by
event 2 at high loadings, for a fixed value of �n� an
increase of the temperature will cause Ds to increase
considerably if �n� is low, while if �n� is high then Ds

will slightly decrease. In order to see a more detailed
picture of the effect of the temperature on the diffu-
sivity at constant loading, in Fig. 6 curves of diffusiv-
ity versus temperature are shown for �n�=5 and 13
�the loading which corresponds to the maximum dif-
fusivity falls between these two loadings�. Not only
the response of Ds to an increase of temperature is
opposite from low to high loadings, but one can also
see from the trends of Fig. 4�a� and from the diffusiv-
ity scales of Fig. 6 that the Ds becomes less tempera-
ture sensitive when the system goes toward saturation,
a situation at which the properties of the model be-
come independent of temperature.

�iii� Further increases of temperature will change the dif-
fusion profile. From T=600 K to T=2500 K the
trends change from the type discussed before to the
type I of Fig. 5, passing through the type II at T
=1300 K, where the probabilities of events 1 and 2
are balanced for low loadings. At high temperature,
say T=2500 K, the system behaves in a way very
similar to the case of T→�, at which Ds decreases
linearly with �n� because the sites are all equivalent,
so that the accessibility is constant with n �see Fig. 1�
and the only effect controlling the migration process
is mutual exclusion.

The diffusivity of type III is proper for a situation in
which the balance between the probability of event 1 and the

FIG. 5. The five different profiles of self-diffusivity vs loading observed by
Kärger and Ruthven �Ref. 16�.

FIG. 6. Self-diffusivity Ds and collective diffusivity Dc �insets� vs the absolute temperature T from T=100 K to T=10 000 K. In �a� the loading is �n�=5 and
in �b� it is �n�=13 �see text for details�.
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probability of event 2 persists for a loading interval around
the loading of highest self-diffusivity. This diffusive behavior
cannot be reproduced if �ex ,�in are held fixed. In order to
provide the aforementioned balance which gives a Ds trend
of type III, one has to refine on the model in such a way to
allow the introduction of an explicit dependence of the en-
ergy parameters on some local observables �e.g., the occu-
pancy n�, and then model this dependence to obtain the re-
quested balance. On the other hand, this choice is reasonable
since in real systems it is not uncommon for the energy of
adsorption sites to be dependent on whether the neighboring
sites are occupied,20 and in principle this situation can be
reproduced introducing occupancy-dependent adsorption en-
ergies, treated as adjustable parameters or obtained by means
of a coarse graining of the interactions in a cell with a de-
tailed arrangement of the adsorption sites.

One can see by direct comparison that the Ds trends
presented in Fig. 4�a� of this work are similar to the trends
found by Bhide et al. �see Fig. 5 of Ref. 12� in the study of
diffusion of interacting particles in a lattice with two non-
equivalent sites, although these two models are quite differ-
ent. Indeed, traditional Monte Carlo lattice gases are used to
study the random walk of particles between neighboring po-
sitions in a fully detailed lattice of adsorption sites; on the
contrary in our model the diffusion process is a random walk
of particles from cell to cell, where each cell contains a num-
ber of adsorption sites without a fully defined spatial ar-
rangement. Even working with noninteracting particles and
neglecting the intracell motion time scale, the distinction be-
tween exit and inner sites is sufficient to reproduce an effect
of confinement, giving rise to Ds profiles which are typical of
confined systems. Moreover the LGCA algorithm, with its
parallel nature, is easier to implement in a parallel machine
than a traditional kinetic Monte Carlo procedure.

2. Chemical diffusion coefficient

The chemical diffusion coefficient Dchem �see Eq. �6� and
Fig. 4�b�� is given by the product of the collective diffusivity
Dc �see Eq. �4� and the inset of Fig. 4�b�; in our case Dc

�Ds� times the thermodynamic factor �defined as the recip-
rocal of the reduced variance; see Paper I and Ref. 9 for
further details�.

At infinite temperature the reduced variance �see Paper
I� and Dc respond to an increase of density exactly in the
same way �i.e., they are both linearly decreasing with �n��.
This results in a Dchem constant with loading.

This balance between fluctuations and diffusive proper-
ties is broken when the difference in binding ability of the
two types of site becomes non-negligible. Lowerings of tem-
perature will reduce the density fluctuations, and the Dchem

profile will show two distinct diffusive regimes:21 low diffu-
sivity for low loadings and high diffusivity for high loadings.
Similarly to the case of Ds, increasing the temperature the
difference between ��ex and ��in will become less relevant
and Dchem will change less with temperature. For high tem-
peratures Dchem will increase almost linearly with �n�, with a
slope decreasing with T until it reaches the above discussed
profile at T→�.

At constant loading the trend of Dchem with respect to T
is similar to Ds �see Fig. 6�. The difference is that, while Ds

is very temperature sensitive at low loadings but less sensi-
tive at high loadings, Dchem is very temperature sensitive for
both low and high loadings.

The use of the randomization rule described in Paper I
allows the random walks of the particles to be treated, with a
good approximation, as independent Markov processes.
Time correlations in the self-motion and between different
particles are so weak that all of the diffusivities Ds, Dc, and
Dchem scale linearly with �0.

B. Local density

To supplement the picture of the migration process given
in the previous section, we study the change in time of the
local density. We explore the following:

• the mean lifetime of the occupancy n, defined �in units
of time steps� as the average number of consecutive
time steps during which a cell persists in the occupancy
n;

• the time-autocorrelation function of the fluctuations of
the occupation number,22

C�t� = �
n�0�
n�t�� , �8�

where 
n�t�=n�t�− �n�. Because C�t� with �0=1 relaxes very
fast toward equilibrium, in order to clearly see the details of
the relaxation process in this section we report results for
�0=0.1. Indeed the effect of this choice is a homogeneous
slowing down of the intercell migration process which does
not influence the equilibrium properties of the lattice.

1. Mean lifetime

Particles going in and out of a cell will vary the cell
occupancy.

In Fig. 7 curves of the mean lifetime �MLT� are shown
for a relatively low temperature, T=300 K, and for infinite
temperature. For each loading, data are plotted only for the
most probable occupancies �i.e., we choose the occupancies
n such that feq�n��10−3�.

• Observing the behavior of this function for T=300 K
�Fig. 7�, we note how a non-negligible difference be-
tween ��ex and ��in introduces a separation in the mean
lifetime of different occupancies, causing the curves to
cover several orders of magnitude on the time axis. �i�
For low and intermediate loadings, the less filled cells
live longer because they host all or almost all of the
particles in the inner sites, therefore the particle trans-
fers are little frequent and so the variations of the lowest
occupancies. �ii� If the loading increases, then �
n� will
increase, therefore the transfers will become more fre-
quent and this will reduce the MLT of all the occupan-
cies. Moreover, the mean lifetimes will be less sensitive
to n. It is worth noting that this is the same kind of
behavior shown by the MLT of the occupancies in the 

cages in MD simulations of diffusion of methane in
ZK4 �see Fig. 6 of Ref. 23�. This confirms that our
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LGCA approach effectively captures the essential fea-
tures of the process of diffusion in zeolites. �iii� For the
highest loadings �e.g., �n�=15 in Fig. 7�, the more filled
cells will release particles slightly more slowly because
almost all of the exit sites will be occupied, therefore
the mean lifetimes of the most occupied cells will be
slightly longer.

• The separation in MLT of cells with different occupan-
cies becomes less evident by increasing the tempera-
ture. In the limit of T→� �see Fig. 7� the sites are all
equivalent, therefore the mean lifetimes are all of the
same order of magnitude, and the MLT curves are more

symmetrical when compared to the case of diffusion in
the presence of the energy effects discussed in the pre-
vious point.

2. Time autocorrelation of density fluctuations

The study of the function C�t� defined in Eq. �8� pro-
vides informations about how the local density fluctuations
relax in time toward equilibrium.

In Figs. 8�a�–8�c� the normalized time-autocorrelation
function C�t� /C�0� is reported. The best fit of C�t� /C�0� is
provided by a double exponential function

C�t�/C�0� � A1e−t�/�1 + A2e−t�/�2, �9�

where t�= t /� is the time expressed in units of time steps,
while A1,2 and �1,2 are fitting parameters. As can be seen in
Fig. 8�c�, a simple exponential decay is inappropriate to fit
the simulation data.

The relaxation of the density autocorrelation is reported
at low temperature �T=300 K� in Fig. 8�a� and at very high
temperature �T→�� in Fig. 8�b�. If the temperature is low,
the relaxation is different for different loadings; in particular,
at high �n� the function C�t� /C�0� goes to zero more rapidly
than at low �n�. This feature is also exhibited by the autocor-
relation of density fluctuations computed in MD simulations
�see Fig. 8 of Ref. 23�. When the temperature is increased,
the relaxations at different loadings become similar. This can
be seen from Fig. 9, where the quantity 1 /�rel is shown for
various loadings and temperatures. �rel is the instantaneous
relaxation time, defined as the time employed by the fit of
C�t� /C�0� to reach 1/e of its initial value. As the temperature
becomes very large, the relaxation becomes independent of
temperature, as well as the chemical diffusion coefficient.
This behavior supports the observations we have made in the
previous section about the separation of the mean lifetimes:
the local density relaxes in time in a way dependent on the
degree of inhomogeneity of the lattice, which becomes im-
portant at low temperature.

As can be seen from the proportionality between 1/�rel

and Dchem shown in Fig. 9, the decay of the density fluctua-
tions controls the transport of density in the lattice. It should
be noted that the behavior of the dynamical property C�t� is
strictly connected with the particular form of the evolution
algorithm employed. Even if different evolution algorithms,

FIG. 7. Curves of the mean lifetime of a cell as a function of the occupancy
at T=300 K and T→�. Each curve corresponds to a particular loading.
�n�=1 �squares�, �n�=3 �circles�, �n�=5 �up triangles�, �n�=7 �down tri-
angles�, �n�=9 �diamond�, �n�=11 �left triangles�, �n�=13 �right triangles�,
and �n�=15 �crosses�. For each loading, data are plotted only for the most
probable occupancies �i.e., the occupancies appearing with a probability
�10−3�.

FIG. 8. Normalized time-autocorrelation function C�t� /C�0� for various loadings at �a� T=300 K and �b� T→�. In �c�, C�t� /C�0� for �n�=9 at T=300 K is
shown: simulation data, single exponential fit, and double exponential fit.

194710-6 Demontis, Pazzona, and Suffritti J. Chem. Phys. 126, 194710 �2007�

Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



provided they satisfy the microscopic reversibility, sample
the same points in the configuration space, the way the den-
sity fluctuations decay toward equilibrium can be different
from rule to rule. A particular form of the probabilities
R�s→sR� and pP in the randomization and propagation algo-
rithms can be preferred to another one on the basis of the
likeness of the obtained relaxation with the relaxation of the
physical process the model attempts to mimic. Therefore,
further simulations and analyses are required to study the
behavior of C�t� with different evolution rules; this will be
the subject of a forthcoming paper.

III. CONCLUSIONS

In this paper we gave a reductionistic description of a
zeolitic framework. It is presented as a static network of cells
�cages� each other connected by a fixed number of links ac-
cording to a cubic symmetry. Evolution rules were ad hoc
introduced to simulate the diffusion of particles in tight con-
finement: each cell can host a limited number of particles,
and a parallel rule connects neighboring cells in such a way
that two adjacent cells can exchange at most one particle in
one time step. The low temperature enhances the difference
in probability of occupation of two different kinds of site
inside of each cell. We analyzed the coverage-temperature
dependence of self-, collective, and chemical diffusivities,
mean lifetime of a cell in a particular occupancy, and the
decay of local density fluctuations. The choice of an evolu-
tion rule destroying the time correlations in the particle mi-
gration process causes the self- and the collective diffusivi-
ties to be similar to the self-diffusivity of an uncorrelated
random walk. At very high temperature the lattice is homo-
geneous, then the diffusion is governed only by mutual ex-
clusion. Therefore self- and collective diffusivities decrease
linearly with loading and different occupancies show mean
lifetimes of the same order of magnitude, while chemical
diffusion coefficient and time relaxation of the local density
fluctuations are independent of loading. Lowering the tem-
perature, mutual exclusion, and energy effects add together
to give a nontrivial loading dependence of diffusivities, mean
lifetimes, and local density relaxation. In particular, self-
diffusivitiy profiles are in agreement to four of the five types

of self-diffusivity observed by Kärger and Ruthven16 in PFG-
NMR experiments, and for low temperatures the profiles of
self-diffusion, mean lifetimes, and relaxation times of den-
sity fluctuations are in qualitative agreement with MD simu-
lations of methane in ZK4.18,19,23

In conclusion our model captures effectively the phe-
nomenology of the diffusion in tight confinement of weakly
interacting species by means of a cellular structure evolving
in time with a fast, parallel rule allowing to study systems for
space-time scales larger than conventional simulations. Pres-
ently we are working to extend the results discussed herein
to take into account the action of local guest-guest interac-
tions that we will address in a forthcoming publication.24

Further study is essential to find out how widely applicable
the LGCA illustrated in these papers is to transport problems
in other host-guest systems with a topology different from
the simple cubic presented here.

We note that our LGCA is quite general and can be
easily extended to other research areas where the considered
system can be represented as a network of interacting struc-
tured cells that can exchange information according to a set
of local rules.
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APPENDIX: IDEAL DIFFUSIVITY

In order to compute the inverse mean residence time
�mrt

−1 , which �since �mrt is expressed in units of time step� is
the probability of a particle to migrate from a cell to a neigh-
boring one during one time step, we have to find the follow-
ing:

�i� the probability of a particle to reach any one of the �
exit sites in its host cell, which reads ��ex/ �n�;

�ii� the conditional probability of a particle to be able to
migrate to the corresponding neighboring cell, given
that it reached an exit site during randomization; this
is the probability of the adjacent exit site to be unoc-
cupied times the probability of the jumping particle to
overcome the barrier for intercell migration, i.e.,
�1−�ex��0Ae−��ex where �0 and A are constant param-
eters �see Paper I�.

Therefore

�mrt
−1 =

��ex

�n�
�1 − �ex��0Ae−��ex, �A1�

which can be introduced in Eq. �2� to obtain Eq. �3�.
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