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The thermodynamic and transport properties of diffusing species in microporous materials are
strongly influenced by their interactions with the confining framework, which provide the energy
landscape for the transport process. The simple topology and the cellular nature of the « cages of
a ZK4 zeolite suggest that it is appropriate to apply to the study of the problem of diffusion in tight
confinement a time-space discrete model such as a lattice-gas cellular automaton (LGCA). In this
paper we investigate the properties of an equilibrium LGCA constituted by a constant number of
noninteracting identical particles, distributed among a fixed number of identical cells arranged in a
three-dimensional cubic network and performing a synchronous random walk at constant
temperature. Each cell of this network is characterized by a finite number of two types of adsorption
sites: the exit sites available to particle transfer and the inner sites not available to such transfers. We
represent the particle-framework interactions by assuming a differentiation in binding energy of the
two types of sites. This leads to a strong dependence of equilibrium and transport properties on
loading and temperature. The evolution rule of our LGCA model is constituted by two operations
(randomization, in which the number of particles which will be able to try a jump to neighboring
cells is determined, and propagation, in which the allowed jumps are performed), each one applied
synchronously to all of the cells. The authors study the equilibrium distribution of states and the
adsorption isotherm of the model under various conditions of loading and temperature. In
connection with the differentiation in energy between exit and inner sites, the adsorption isotherm
is described by a conventional Langmuir isotherm at high temperature and by a dual-site Langmuir
isotherm at low temperature, while a first order diffuse phase transition takes place at very low
temperature. © 2007 American Institute of Physics. [DOI: 10.1063/1.2721546]

l. INTRODUCTION the molecule itself. In addition, the number of the adsorbed
molecules in each of the channels and cages will deeply
modify diffusion by both chemical and steric effects. The
above remarks inspire a coarse-grained description of the
internal void space of a material:’ the channels and cages
connected to one another define a system of communicating
cells that can contain and exchange a limited number of
guest particles. Moreover, this constraint can cause a sharp
separation on the time scales involved in the diffusion pro-
cess: intracell motion (short times) and intercell migration
(long times).® When the time scale of the intracell motion is
negligible with respect to the time scale of the intercell mi-
gration, the physical process of diffusion can be conveniently
represented as a discretized process in which at each time
step particles jump from one cell into a neighboring cell.
Therefore, at each time step, the only quantity to be deter-

Microporous materials such as zeolites have found many
different uses in many different areas of application ranging
from catalysis to molecular sieving.1 An important subject
where researchers in this field have focused their attention is
the mobility of molecules adsorbed on the inner surface of
the micropore. The physics of this phenomenon is influenced
by the nature of the particle-framework interactions® which
provide the energy landscape for the transport process and
therefore influences the aptitude of a particle to migrate from
pore to pore. As a consequence geometric effects as pore size
and pore shape along with connectivity and tortuosity should
be recognized among the factors playing a major role. De-
spite a significant experimental and theoretical research ef-
fort, many of the diverse physical phenomena associated
with diffusion in tight confinement, such as heterogeneous

catalysis, biological transport, percolation, and even a dra-
matic change of the phase diagram,3 are still far from being
understood.* Tn essence, the diffusivity of a guest molecule
will depend on the size and the shape of the channels and
cages of the internal pores, related to the size and shape of
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mined is the number of particles that leave each cell and
entering into the neighboring ones. This suggests that when
reduced to its essential constituents the system can be repre-
sented in space as a set of structured lattice points (cells)
evolving in time according to well defined rules. Following
these lines we recently developed7 a simple cellular
automaton®” evolving in time through a two-step rule. Fo-
cusing on a cell at a particular time step, (i) we find out how
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many particles will be able to try a jump into the neighboring
cells, and next (ii) we perform the allowed jumps. In this
way we naturally construct a chain of states corresponding to
a trajectory in configuration space, where on the long run the
different states emerge with the statistical weights given by
the Boltzmann distribution. The ability of a particle to try a
jump is conditioned by its ability to occupy an exit site, i.e.,
a site connecting the host cell to a neighboring cell. In a cell,
the exit sites differ from the inner sites (which are not con-
nected to neighboring cells) in binding energy. A differentia-
tion among several types of adsorption sites, mutually differ-
ing in adsorption energy, has been shown to be a feature of
most nanoporous materials, '™ giving rise to a strong de-
pendence of both equilibrium and transport properties on
loading and temperature.7"4_16 For example, experimental
evidences'’ have shown that in NaY zeolite benzene mol-
ecules appear to occupy two types of sites, cationic sites on
the walls of the supercage and less favorable window sites in
apertures between adjacent supercages, a behavior consistent
with results from molecular dynamics simulations.'®

Our model can be classified as a lattice-gas cellular au-
tomaton (LGCA) and in its first applications we are studying
cases where mutual interactions between adparticles are neg-
ligible with respect to the interactions with the framework.
The realistic mechanism adopted to model the elementary
changes in the cage occupancy allows a dynamical interpre-
tation of our LGCA simulation results. Our probabilistic
model differs by traditional kinetic Monte-Carlo'® (KMC)
approaches in that the model is parallel, that is, all of the
cells are updated simultaneously at each time step. Despite
this important difference, our approach shares with the KMC
method the general idea that the local properties (such as the
number of molecules in each cell, diffusion barrier, and pres-
ence of other nearby molecules) determine the direction the
molecule will diffuse. All of the significant physical proper-
ties are represented by a small set of parameters which rule
both the tendency of molecules to migrate and the time-space
correlations. The evolution algorithm is fast; therefore the
model, with opportune tuning of parameters, can be used to
simulate diffusion of weakly interacting particles in large
microporous systems for long time scales.

In the present paper we will focus on the structural equi-
librium properties of the model. In the paper that follows,
denoted as Paper II, we report the dynamical properties that
can be studied from the model.

II. STRUCTURE OF THE MODEL
A. The model

Our model consists of N identical, distinguishable par-
ticles diffusing in a d-dimensional hypercubic lattice £ of
M=L? cells with periodic boundary conditions. The loading
(n) of the system is defined as the average number of par-
ticles per cell, (n)=N/M.

Each cell is labeled by the coordinates of its center, r,
and can exchange particles with its w=2d nearest-
neighboring cells labeled as
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rsr+\e, i=1,...,v,

where ey, ...,e,, are orthogonal unit vectors satisfying e;,,
=-e;, i=1,...,d and \ is the fixed distance between centers
of adjacent cells.

The system evolves in discrete time steps of arbitrary
duration 7. Each cell, say, r, contains K= v distinguishable
sites labeled as (r,i), i=1,...,K. We assume that a site can
accommodate only one particle. This implies an exclusion
principle so that the site (r,i) has only two states coded by
the Boolean variable s,(r,7)=1,0 if the site is occupied or
not, at time ¢, respectively. Therefore K is the maximum
number of particles that can be contained in one cell.

We call the configuration of cell r at time ¢ the set of
instantaneous states of its sites, i.e., s(r,f)={s,(r,0)}-; k-
The K sites of each cell are not equivalent. We specify that in
each cell r, (a) the sites (r,i), i=1,...,v are exit sites,
which are available to particle transfers; (b) the sites (r,i),
i=v+1,...,K are inner sites, which are not available to par-
ticle transfers.

The exit sites connect the cell with its first-neighboring
cells in the following way: for each i €[1,v], the exit site
(r,i) points toward the direction of the neighboring cell r'
and is connected to the site (r',i+d) (the sum i+d is a sum
modulo 2d). Given the Boolean nature of the s;’s, at each
time step at most one particle can migrate from one of these
adjacent sites to the other one. This is equivalent to impose a
geometrical restriction and plays the role of a constraint on
the particle traffic.

We indicate as

K
n(rvt)zzsi(r’t)s (1)
i=1
and
nex(r’t) = E si(r’t)’ (2)
i=1

respectively, the occupancy (local density number) and the
exit site occupancy (number of occupied exit sites) of the cell
r at time t. The inner site occupancy is obviously defined as
Nip=n—"Negy.

When referring to a cell with configuration s instead of
referring to the variables r, ¢ we shall use the notations n(s)
and n.,(s) to denote the quantities in Egs. (1) and (2).

We differentiate the statistical weight of the two kinds of
site by assigning them a different energy (lattice gases with
two nonequivalent sites were extensively studied by Chvoj et
al.,15 Tarasenko et al.,16 and by Bhide et al® through KMC
simulations). We denote —&., the energy of an exit site and
—&;, the energy of an inner site.

As a result of the choice e, # ¢;,, different configura-
tions are differently weighted depending on the temperature
T. Nontrivially loading dependent diffusion profiles will
emerge as a consequence of the fact that the temperature
controls the accessibility of the exit sites, therefore influenc-
ing the frequency of transfers.

Although inside of a cell all the K sites are distinguish-
able, in our coarse-grained approach the cell interior is not
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FIG. 1. (a) Sketch of the unit vectors of the lattice. In (b) and (c) two
representations of a unit cell with v=6, K=16 are reported: (b) three-
dimensional sketch and (c) string representation. In (b) gray numbered cubes
represent exit sites, while the sphere represents the ensemble of inner sites.
Assigned numbers establish the correspondence between exit sites in the
three-dimensional (3D) sketch (gray cubes) and in the string representation
(gray squares). The topology of exit sites in one cell is the same as the
topology of the cells in the entire system; therefore it must be specified. The
inner sites are distinguishable, but their spatial arrangement is ignored (this
is why we employ a sphere for their 3D representation and white numbered
squares in the string). In (d) two connected cells, named r and r+\e,, are
represented. As can be seen, site 2 of cell r communicates with site 5 of cell
r+A\e,. The two cells can exchange particles using only these two connected
sites. Since each site cannot host more than one particle, two adjacent cells
can exchange at most one particle at time. This represents a constraint on
the particle traffic.

detailed as a lattice except in the exit sites, which must have
a well specified topology in order to define the connections
among cells while the spatial arrangement of the inner sites
is ignored (see Fig. 1). As a consequence of this assumption,
the spatial position of each particle is defined as the position
of its host cell in the lattice.

Moreover, we choose to fotally neglect the time scale
relative to intracell motion and to treat the particles inside of
each cell as indistinguishable.

The physical process generated by our model is a simul-
taneous intercell random walk of all the guest particles, and
the properties of this random walk are strongly influenced by
the differentiation of the energies in the site, the temperature,
and the loading.

B. The Hamiltonian

We suppose that the system is placed in a large heat bath
at temperature 7. Therefore in our model, the diffusing par-
ticles (which are equivalent and structureless, and have con-
stant kinetic energy at constant temperature) perform a ran-
dom walk in the canonical ensemble.

In a cell the occupied site i has potential energy —eg;
—g;, if it is an exit or inner site, respectively. Thus the
Hamiltonian of a cell, say, r, having the configuration s is
defined at time ¢ as

—Eexo
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H(I‘,t) == Sexnex(rat) - 8innin(r’l‘) = H(nex»n) . (3)

As we have done for the quantities n, n.,, and n;, in Sec.
IT A, when referring to a particular configuration, say, s, we
shall use the notation H(s) to indicate the Hamiltonian of
Eq. (3).

The Hamiltonian of the entire system at time 7 is a sum
of the local Hamiltonians, Hy (t)=2, . -H(r,1).

Given that ny,=n—n.,, it results from Eq. (3) that the pair
of observables n.,, n defines a particular energy level of the
cell. We indicate such a level as (n.,n), and its degeneracy
as Mney,n) =(n:x)(n[::x) [where we assumed that the quantity
(Z) is null for a <b], that is the number of possible configu-
rations having n., occupied exit sites and n—n., occupied
inner sites. The levels satisfying Q(n.,,n)>0 are the levels
accessible to a cell with occupancy n.

lll. PARTITION FUNCTIONS

The interested reader is referred to Appendixes B and C
for the derivation of the formulas presented in this section.

The canonical partition function of the lattice £ can be
written as

07 = ol ¢
S

where the sum runs over all the possible configurations S of
particles in the lattice, each with its proper energy Hyy(S).

In order to study the properties of the model through the
computation of some probability distribution related to O%*
(e.g., one can be interested in the probability distribution of
finding the lattice in the energy Hy,), a very large number of
terms have to be considered. This makes the computation an
impossible task for large systems. Although Eq. (4) is a good
starting point to obtain information about some thermody-
namic properties (such as free energy and chemical poten-
tial), partition functions restricted to a single cell are to be
preferred to define the statistical distributions the model
obeys. If the correlations among different cells are negligible
(and this is the case for the model considered here), and if
the lattice contains a large number of cells, then such parti-
tion functions will provide information about the equilibrium
properties of the entire system.

The conditional probability distribution P®(n.|n) of
finding a cell with n., occupied exit sites given that its oc-
cupancy is n reads

Qrng,n)e P
chll(n)
where  Q°(n)=3" _ Q(ngy,n)e e s the partition
function of a closed cell. The probability P®I(n.|n) is inde-

pendent of the loading (n).
The probability of a cell to have occupancy n, denoted
f®(n), is given by
chll(n)e,Bp,n
fom) = =

P (ngy|n) = (5)

. (6)

where Z=3K_0%ll(n)ePH is the cellular (grand-canonical)
partition function of the single cell, with u as the chemical
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potential. In Appendix B we show that for the model system
Z reads

Z = (1 + ePrreecd)(] 4 ePlrrem) )K=y (7)

and that the thermodynamic equilibrium of our model is rep-
resented by a dual-site Langmuir isotherm: "'

elgain)\a
1+ ePein)

Be
ePPex\
r—————+(K-v)
1+ ePeexn,,

(n)= (8)
where v is the capacity for adsorption in the exit sites,
K—v is the capacity for adsorption in the inner sites, A,
=eP* is an absolute activity, and ef®ex, ¢F¢in play the role of
the equilibrium constants for adsorption in the exit sites and
in the inner sites, respectively. In Eq. (8) we recognize the
probability of an exit site to be occupied, p.,, and the prob-
ability of an inner site to be occupied, p;,, defined as

ePeex),,
T 1+ ePeen,’

eﬁsin}\a
1 +ePein\,,

Pex Pin= )
Inserting Eq. (7) in Eq. (6) and using the relations in Eq. (9)
one obtains the following probability distribution of occu-
pancies:

feq(n)= 2 ( ’ )(pex)nex(l _pex)v_nex

Ny =0 ex

K-v Y Tex(] = K-v-n+ngy 1
X (pin)"™"x(1 = pin) , (10)
ex

which arises from the composition of the probability distri-
butions in two subsystems (of exit and inner sites, respec-
tively) exchanging particles.

When the temperature is infinite, then Z=(1+\,)X and
Eq. (8) reduces to the single-site Langmuir isotherm (n)
=KN\,/(1+\,). For the equilibrium distribution f*9, this is the
same as to consider &;,=¢&., so that the system is trivially
microcanonical and the mutual exclusion is the only restraint
to the particle distribution in the lattice. Therefore the distri-
bution f*9 converges to a hypergeometric distribution,” de-
noted P (see Appendix C for details).

On the other hand, the entire system is canonical when
&, 7 €o- In this case energy effects add to the mutual exclu-
sion; therefore in general f°9# f¥P for T <o

The reduced variance, o>/{n) (where o2 is the variance
of the occupancy distribution f*9 calculated at the loading
(n)), can be interpreted as an indicator of the thermodynamic
tendency of a cell to accept a new particle. For large systems,
we have that

lim o*/({n)=1, (11)

(n)—0
which means that in the limit of zero loading all cells are
available to accept a new particle, while

0-2/<n>|(n>:l(:0’ (12)

indicating that at the maximum loading all cells are saturated

and as a consequence no cell can host a new particle.
When &;,=€., (or, equivalently, the temperature is infi-

nite), we obtain 1—{n)/K for the reduced variance of a large
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system. Therefore, because all sites are equivalent, when the
system saturates the thermodynamic tendency of a cell to
accept a new particle linearly decreases with the loading {(n).

IV. TIME EVOLUTION

scheme of the
of LGCA

The evolution rule follows the
randomization-propagation dynamics typical
models,9 i.e., at each time step.

* A randomization changes the internal configuration of
each cell (treated as a closed system) according to its
present state only and acting simultaneously and inde-
pendently on each cell.

* A propagation opens simultaneously all of the cells of
the lattice to their respective neighborhoods allowing
simultaneous particle transfers between adjacent cells.

Inside of each cell, the randomization determines how
many particles will access the exit sites by mapping the input
configuration s of the cell onto the output configuration s®
with probability R(s— sF). This operation preserves the oc-
cupancy of the cell while its energy could be modified. At
each time step all the cells perform the randomization simul-
taneously and independently from each other; therefore the
randomization will cause in general a change in the energy of
the entire system.

In order to ensure that the system reaches the equilib-
rium distribution in the long-time limit, this operation must
satisfy the microscopic reversibility. In Appendix A we re-
port in detail how this requirement is satisfied in our model.

In our previous work” we adopted a randomization rule
consisting on a sequence of microscopically reversible
Arrhenius-activated jumps of the guest particles from site to
site inside of each cell. Even if this procedure ensures equi-
librium in the long-time limit, it introduces time correlations
in the particle random walk due to its sequential nature.

In order to generate an uncorrelated random walk, in this
paper we focus on a randomizator which maps an input con-
figuration s into an output one s® with probability equals to
the equilibrium conditional probability of a cell to be in a
particular configuration s® given that its occupancy is n(s):

o~BHG")
R(s — s*) = P(sR|n(s)) = 0“(n(s))’ 9

which satisfies n(s)=n(s¥). Of course, the randomization
trivially satisfies the detailed balance P°I(s|n)R(s—s¥)
=P(sR|n)R(sR—s).

Each cell is simultaneously and independently random-
ized at each time step. The randomization selects the output
configuration regardless of the input one, provided that the
operation preserves the cell occupancy. Therefore, once s®
has been defined, inside of each cell we must redistribute
randomly the particle identities into the occupied sites. This
is consistent with the choice of totally neglecting the intracell
motion time scale. The randomization operation is summa-
rized in Fig. 2.
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FIG. 2. The randomization (two-dimensional representation). During this
operation, each cell is treated as a closed, independent canonical system.
The input configuration (left) is mapped onto an output one (right) following
an equilibrium criterion (see text for details). The dots represent particles in
the exit sites, and the numbers represent particles in the inner sites. The total
number of particles in each cell is given by the sum of the particles in the
exit and inner sites. From the figure it is easy to verify that during random-
ization the number of particles in each cell is invariant.

The propagation allows the intercell transfers. Let us
consider two adjacent cells, say, r and r'. During propaga-
tion, they exchange a particle with probability

Pl (si(r) = 5;,,4(00)) = [5:(r) + 5,,,4(r")
= 25,(r)s;44(r") JcpA e e, (14)

This is the probability of the states s,(r) and s,,,(r’) to be
swapped, as indicated by the symbol <. As can be seen, the
propagation involves uniquely independent pairs of adjacent
exit sites. Since there is no interaction between exit and inner
sites, this operation preserves the energy both locally and
globally. Moreover, since the propagation probability p” is
symmetric, i.e.,

PI(sir) = 5;,4() = pP5;44(r) < 5,(1)), (15)

there is no net drift in the particle motion, and the probability
of a jump equals the probability of the reverse jump. In Eq.
(14) A=exp(B min(ey, €;,)) While k, is a real number in the
interval (0, 1] acting as an additional barrier on intercell
migration. Further details about these kinetic parameters can
be found in our previous work about this model.” The propa-
gation operation is summarized in Fig. 3.

V. RESULTS OF THE SIMULATIONS

We mapped our LGCA on an Linde Type A (LTA) zeo-
lite, the ZK4, whose framework satisfies the topology re-
quirements of the model illustrated here.”! This system con-
sists in a simple cubic array of nearly spherical cavities with
an internal radius of ~5.7 A connected to six neighboring
cavities (therefore v=6) by nearly circular windows of
~4.2 A in diameter. We assume that each cavity can host a
maximum of 16 particles (therefore K=16). Where not ex-
plicitly indicated, in this work all the simulations were per-
formed on a cubic grid of 163 cells. To speed up the simula-
tions the factor «, in the propagation probability [see Eq.
(14)] has been set as ky=1. In this paper we explore how our
LGCA describes equilibrium properties in restricted geom-
etries with energetically inhomogeneous binding sites for ad-
sorbed molecules. We use our LGCA to examine the influ-
ence of site energy heterogeneity by investigating
competitive adsorption of guest molecules at different sites.
Following the lines of Bhide et al.*® we choose the energy
parameters as &,=10 kJ/mol and &;,=20 kJ/mol. The
choice to differentiate two types of site into each cell arises

J. Chem. Phys. 126, 194709 (2007)

FIG. 3. The propagation (two-dimensional representation). During this op-
eration, each pair of adjacent exit sites is treated as a closed, independent
canonical system. In it, if only one exit site is occupied, then the occupying
particle will jump into the other exit site with probability «, here assumed as
1. If both exit sites are empty or occupied, then nothing occurs.

from the experimental evidence of two different types of
adsorption locations in various zeolites,'" or more generally,
of n types of sites differing in their ability to bind a guest
species.10 The Langmuir model* is often used to describe
equilibrium adsorption in zeolites. The particles do not inter-
act except by excluding each other from the adsorption sites
and one assumes that all sites are capable of holding at most
one molecule each. Moreover, while in the simple Langmuir
model all sites are equal, the introduction of different types
of sites leads to different equilibria, corresponding to adsorp-
tion processes in pores of different binding energies. Since
each equilibrium can be represented by a single Langmuir
isotherm, the adsorption isotherm for n simultaneous equilib-
ria is well reproduced by an n-site Langmuir isotherm.'” This
result has been confirmed by molecular dynamics and grand-
canonical Monte Carlo simulations,]2 and has also been used
in KMC models" to take into account the loading depen-
dence of the self-diffusion coefficient in the study of diffu-
sion in zeolites. In our model we differentiate the adsorption
energies of the sites in order to mimic the real situation in
which different adsorption locations in the cavity influence
the ways a particle have access to a window (to reach an exit
site, in our model) and then migrate into the adjacent cavity.

In comparison with previous lattice models of adsorption
in zeolites,” we stress that in our simulations we replaced
the crystal lattice with a three-dimensional network of cells,
and that in each cell the energies of the adsorption sites and
the maximum occupation number are closer to the values
experimentally observed in real systems.ZS’24 Moreover it is
important to remark that our methodological approach is dif-
ferent from the strategy adopted by previous KMC
simulations.” In our LGCA the temporal evolution of the
system occurs synchronously that means a synchronous up-
date of the occupation numbers of all cells.

Each simulation started from a random distribution of
particles. After 20 000 time steps of equilibration, we ob-
served the evolution of the system during a time interval
ranging from 10° to 10® time steps, depending on the statis-
tical accuracy required to compute the averages of interest.
We performed simulations at various temperatures. The data
for the case of T—oo are obtained from simulations with

Eex=E€in-

A. Equilibrium distributions

A fluid adsorbed in a zeolite shows a spatially varying
density. This is the key to characterize intracrystalline mass
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FIG. 4. The occupancy distributions f*9 (straight lines) computed from Eq. (10) for loadings (n)=1,...,15 at various temperatures are shown in comparison

with the hypergeometric distributions f1¥? (dashed lines).

transport and adsorption. If we wish to develop the thermo-
dynamics of this strongly inhomogeneous fluid we need a
theory to predict how the sorbed particles distribute them-
selves into the inner void space that make up the zeolitic
host. This probability distribution of particles over indepen-
dent subvolumes™ is a quantity that can be related to differ-
ent interesting information about the system.27 In a compre-
hensive theory, factors such as the finite size of the particles
(which gives rise to the excluded volume effects) and the
interaction forces between the fluid particles and the zeolitic
host must be taken into account. Furthermore, at this molecu-
lar level of resolution, averaged properties and fluctuations
turn out to be intimately related and equally important. In
this field Xenon-129 NMR spectroscopy has been used under
a variety of experimental conditions as a versatile tool to
directly measure the fluctuations and the spatial correlations
typical of guest particles in confined systems.28 It has been
possible to determine many different features of molecular
dispersion within zeolite cavities and it has been noted that
care must be taken in assuming a specific type of distribu-
tion.

In this paper we studied the distribution of the adsorbate
in the lattice in terms of the probability f*(n) of finding
exactly n particles within a cell. The equilibrium distribu-
tions P*M and f*4 computed from simulations are in perfect
agreement with Egs. (5) and (10). We plotted in Fig. 4 the f*4
for various temperatures and integer loadings along with a
strictly statistical distribution (hypergeometric distribution,
f™P) derived by Guemez and Velasco,” which assumes that
the sorbed particles occupy mutually exclusive lattice sites in
the cells. As can be seen the computed distributions differ
from the hypergeometric distribution. The deviations from

this statistical model can be explained by the presence of two
energetically different sorption sites. Because the energy pa-
rameters &;,, €., are constant in space and time, the maxi-
mum value of f°4 always corresponds to the loading () but
the fluctuations of the occupancy n of each cell around this
value depend on the temperature. By increasing the tempera-
ture the distinction between the hypergeometric distributions
and the calculated ones becomes less evident, because the
energy difference between inner and exit sites becomes less
important and the excluded volume effect tends to prevail
(details about the convergence of the occupancy distribution
f°4 to the hypergeometric /P at high temperature can be
found in Appendix C). The same energy difference is respon-
sible of the behavior of the system at very low temperature.

It is interesting to observe on what grounds our mea-
sured distributions cannot be reproduced by the hypergeo-
metric ones. We shall refer to our case study reported in Fig.
4, with K=16 and v=6. A symmetry relation between the
hypergeometric curves exists. This means in our case that the
distributions P calculated at the loadings (n) and 16—(n)
are mirror images. The calculated distribution deviates from
the hypergeometric in the following ways: decreasing the
temperature causes the curves no longer to be related by
symmetry, and an increasing peak for (n)=10 appears. In the
limit of 0 K two well defined regions emerge. The first one is
a set of hypergeometric distributions going from loading O
up to 10, while the second is again a set of hypergeometric
distributions going from loading 10 up to 16 (details about
the convergence of the occupancy distribution f°4 to two hy-
pergeometrics /1P and %" in the limit of 0 K can be found
in Appendix C). This seemingly contradictory result is again
a sign of the presence of two energetically different sorption
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FIG. 5. Conditional probability P*I(n,,|n) for n=5 at various temperatures. For low temperatures the particles tend to occupy preferably the inner sites, so
P(n,,|n) is significant only for the lowest possible values of n.,. Therefore the accessibility of the exit sites is low. As T increases, accessibility of exit sites

also increases and higher values of n., become possible.

sites where &, <g;,. In the limit of 0 K the first region in-
cludes the set of the equilibrium distributions on the ten
equivalent inner sites while the second includes the distribu-
tions on the six energetically higher exit sites. Though in this
study the interaction forces between the sorbed particles have
been completely neglected, we have proven how an asym-
metry in the energy of the sorption sites is enough to deeply
modify the molecular distribution over the zeolitic cavities
markedly expanding the temperature effects.

The temperature sensitiveness of the single cell is well
represented by the behavior of the conditional probability
P%(n.|n) with respect to temperature. In Fig. 5 the condi-
tional probability distribution P*(n.|n), ny=0,...,v de-
fined in Eq. (5) is plotted at various temperatures for n=35. At
T=300 K, P*(n.|n) is significant only for the lowest pos-
sible values of n., because the particles tend to occupy pref-
erably the inner sites so that the states with high values of n.,
are rarely populated. Under such conditions the accessibility
of the exit sites is low. They will become more accessible by
increasing the temperature until 7— o where the distribution
P%(n.,|n) reaches the hypergeometric form (n")(n[i;”)/(f)

As can be seen from Fig. 6, by lowering the temperature
one reduces the thermodynamical tendency of a cell to ac-
cept a new particle. The nonlinear trend of the reduced vari-
ance for T<<w reflects the difference in thermodynamic
properties between the two types of site in the system.

An important property of the model is that, on suffi-
ciently large grids and far from critical conditions, the spatial
correlations are negligible. To evaluate the degree of corre-

FIG. 6. Reduced variance as a function of loading at various temperatures.

lations among neighboring cells, away from the phase tran-
sition (see next section) we computed from simulations the
static structure factor S defined as® S(r,r’)=(8n(r)dn(r’)),
where the occupancies n(r) and n(r’) are evaluated at the
same time step. Following Jameson®' another simple way to
keep track of spatial correlations is to compute the probabil-
ity g(m,n) of finding a cell of occupancy n in the neighbor-
hood of a cell of occupancy m. Evaluating S and the distri-
bution g for a large number of configurations near
equilibrium, we find S(r,r’)=0 for r#r’, and g(m,n)
= f®d(n) for all values of m,n. Therefore, in this first formu-
lation of our LGCA, spatial correlations are negligible and
the occupancies are distributed in the same way both locally
and globally.

B. Diffuse phase transition

When g;,#¢&.,, the system can be divided in two
subsystems.]5 The first one is the subsystem of exit sites,
characterized by the energy —&.,. The second one is the sub-
system of inner sites, characterized by the energy —e;,. When
the term |e;,—&.,|/ksT increases, then the exchanges be-
tween the two subsystems become increasingly difficult. In
this work we explored the case of e., <eg;,: that is, the inner
sites are the most binding. Therefore, when 7<% the par-
ticles will prefer to occupy the inner sites. At sufficiently low
temperature and below some particular loading 7, the par-
ticles will mostly occupy the inner sites. The system will
behave predominantly as an isolated subsystem of inner
sites. The loading 7, is a loading around which the inner sites
are almost all occupied. Above r; the particles begin to fill
the exit sites and, because the subsystem of inner sites is
almost saturated, the transition between the two phases oc-
curs so that the system starts to behave predominantly as the
isolated subsystem of exit sites. Therefore the phase transi-
tion causes a change in the properties of the system. At very
low temperature (7— 0) the phase transition occurs precisely
at the loading 71p= K — v, where the thermodynamic properties
of the system undergo a net change. Therefore in such a case
we can define the transition as a point transition.”

If the temperature is not very low the change in proper-
ties caused by the phase transition is smooth and we cannot
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locate precisely the value of 7. Instead, we can localize it in
a loading interval around (n)=K - v, that is,

K-v-06<ny<K-v+9,

with 6> 0. Therefore one can say that the system undergoes
a diffuse phase transition.” Decreasing the temperature, &
diminishes and the transition becomes more definite. We ob-
served how the phase transition takes place first calculating
the chemical potential at two temperatures 7=300 K and T
=100 K. Each subsystem has its own partition function

M N.e
QuN,) = ( N:>exp( sz“>, (16)
where a=ex for the subsystem of the exit sites and a=in for
the subsystem of the inner sites. Therefore M =M is the
total number of exit sites, and M;,=M(K-v) is the total
number of inner sites in the lattice. N,, indicates the number
of occupied sites of the a subsystem when the entire system

is at equilibrium. We can compute the free energy of the «
subsystem through

Fa(Na):_kBT In Qa(Na)’ (17)
and the chemical potential through
JF (N,)
NJ)=———. 18
HolNo) = — 1 (18)

a

Using Stirling’s approximation for large systems and noting
that p.,=N. /M., and p;,=N,,/ M,, are the fractions of occu-
pied sites in the exit and inner subsystems, respectively, we
find

Fa(Na) == kBTMa|: Pala ~ Pa In Pa— (1 - pa)ln(l - pa):| >
(19)
for the free energy and
Pa
Mo(Ny) ==+ kBTln( 0 ) , (20)
~Pa

for the chemical potential. Because N, NV, are equilibrium
values, the relation

/J’ex(Nex) = Iuin(Nin) (21)

is satisfied. From Eq. (20) the equilibrium condition (21)
implies

pex(1 - pin) ( Ae )
" —ex ,

=exp| - — (22)
pin(1 - pex) kBT

where Ae=¢g;,—¢,,. Therefore, we can evaluate the chemical
potential through the observables p., and p;, and using Eq.
(20). Such observables are reported in Fig. 7 as functions of
the loading at various temperatures, in order to visualize how
the system splits in two subsystems: (i) for T— oo the frac-
tions p. and p;, increase in the same way (i.e., as p
=(n)/K); (ii) for T<, the two fractions are equal only at
(n)=0 and K, while for all the other loadings p. < p;, since
the particles occupy preferably inner sites; (iii) for 7— 0, we
have p.,=0 until p;, reaches the value of 1 at loading K—v,

J. Chem. Phys. 126, 194709 (2007)
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FIG. 7. Partial loading p., of the subsystem of exit sites (solid line) and
partial loading p;, (dashed line) of the subsystem of inner sites plotted to-
gether with respect to the total loading (n) at various temperatures. For very
high temperatures (7— ) they increase in the same way because the two
subsystems are equivalent. For low temperatures the two subsystems be-
come very different; therefore the partial loadings increase with (n) in dif-
ferent ways.

then p;, stops varying and p., increases from O to 1.

As can be seen in Fig. 8, the phase transition at low
temperature produces a singularity in the plot of w vs (n)
(i.e., the inverse plot of the adsorption isotherm). Since the
variance and the chemical potential are connected by Eq.
(B9) (see Appendix B), in the same conditions the reduced
variance of f°4 exhibits a cusp.

This behavior is a feature of all systems having two (or
more) distinct adsorption locations. Of course, the inverse
plot of Fig. 8 is the dual-site Langmuir isotherm™ of Eq. (8).
In general, a system having n different adsorption sites will
separate, at low temperatures, into n subsystems, and in-
creasing the loading from zero to the saturation limit it will
undergo n—1 diffuse phase transitions.

0
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FIG. 8. The chemical potential and (in the insets) the reduced variance for
T=300 K (top) and T=100 K (bottom). The simulations were performed on
a grid of 323 cells for running times of 10° time steps (black squares) and of
10® time steps (white circles). Solid lines are fits through Eq. (8). w is in
units of kJ/mol.
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FIG. 9. The energy distributions around the phase transition (7=100 K, {(n)=10) for a system with M =16 cells. The distribution was computed averaging
over 10° time steps in (a) and over 10® time steps in (b) (see text for further details).

In Fig. 9 the energy distribution P(Hgy,) (that is, the
probability of finding the entire system in the energy Hiy,) is
reported for differently long simulations at low temperature.
As can be seen, in the proximity of a phase transition our
LGCA manifests its inherently noisy nature, and averaging
over this statistical noise requires massive calculations.®

Since the global system is canonical, we can obtain the
molar specific heat per cell at constant volume, Cy,, from
the energy distribution P(Hy,). Indicating the variance of
P(H,y;) per cell as

1
0.%-1 = MHE (Hsys - <Hsys>)2P(Hsys) b (23)
sys
if H,y, is in units of J mol™! we obtain Cy,,=07/RT?, where

R is the constant of gas in units of J mol~! K~!. The shape of
the specific heat as a function of loading is shown in Fig. 10.
At T=100 K we observe a maximum of Cy,, at (n)=K-v,
whose sharpness increases with 7— 0. This behavior of the
specific heat confirms the existence of a first order diffuse
phase transition in our system.

s0{ T=300K

10+

a0
204

T=100K ?

15
104

5
9
0-‘I—l—l—l—l-—l—l—l’l"‘9 q:—-—l~l—u—l

0 2 4 6 8 10 12 14 16
m

FIG. 10. The molar specific heat per cell for 7=300 K (top) and T
=100 K (bottom). Black squares and white circles indicate simulations 10°
and 10® time steps long, respectively.

VI. CONCLUSIONS

This paper aims to contribute in addressing the problem
of bridging large time and length scale gaps in simulating
properties of particles adsorbed in microporous materials.
For this purpose we introduced a new simulation approach
based on a discrete description of the « cages of a ZK4
zeolite represented as structured lattice points (cells). The
unit length scale coincides with the a-cage diameter and the
interaction between particles and framework is defined using
a coarse-grained description of the inner-surface forces. Ba-
sically, we replace the zeolite framework with a cubic lattice
of communicating cells. Since it has been shown that the
adsorption locations of several zeolites may differ in their
ability to bind the adparticles and to permit intercell transfer,
we differentiate the adsorption sites in each cell by giving
them not only a different adsorption energy but also a differ-
ent ability to transfer adparticles to neighboring cells. While
retaining the essential physics of atomistic simulation our
approach boosts the computational speed in predicting the
equilibrium properties of a microporous material on very
large scale and observation time. In our LGCA, the entire
network of cells constitutes a time-space discrete canonical
ensemble, while the single cell obeys to the statistics of a
grand-canonical ensemble. The model evolves in time by
combining two Monte Carlo operations locally applied to all
cells simultaneously and satisfies detailed balance by provid-
ing a reversible (in probabilistic sense) path for the energy of
the system between two consecutive time steps. In this ap-
proach the evolution of the system is parallel. Moreover, this
framework allows to gain in computational speed by updat-
ing each cell through a dynamics of states rather than a dy-
namics of particle jumps. The equilibrium distributions of
states and thermodynamic properties are temperature sensi-
tive and ruled by the difference in energy between the exit
sites (allowing particle transfers) and the inner sites (not al-
lowing particle transfers). Lowering the temperature en-
hances the difference in statistical weights of the two kinds
of site: the thermodynamics of the system is represented by a
single-site Langmuir isotherm at high temperatures and by a
dual-site Langmuir isotherm at low temperature. At very low
temperature a first order diffuse phase transition takes place
around a loading interval in which the properties of the sys-
tem change from a situation where the model behaves essen-
tially as an ensemble of only inner sites, to a situation where
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the model behaves essentially as an ensemble of only exit
sites.

In conclusion, we have developed a general LGCA
where the internal rules must satisfy the constraint of a lo-
cality principle.34 The simplicity of our LGCA facilitates not
only the simulations but also the theoretical analysis of struc-
tural and transport phenomena in such systems. We required
that (a) at each time step the total number of accessible states
of the lattice is the product of the number of accessible states
of each cell that describes the local degrees of freedom, and
(b) the Hamiltonian only involves local interactions. The ad-
vantage of our LGCA compared with other methods is that it
provides a simplified description of the microscopic dynam-
ics of particles adsorbed in micropore, yet most of the inter-
esting details are intrinsically present and sometimes it is
easier to see important correlations that are obscured in other
methods. In this context our LGCA can be considered as the
computationally cheapest model that has the essential prop-
erties of particles adsorbed in a micropore.
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APPENDIX A: DETAILED BALANCE

If the randomization is microscopically reversible inde-
pendently in each cell [i.e., it obeys detailed balance with
respect to the energy function H defined in Eq. (3)], then it
will be microscopically reversible also in the entire system.
We make clear this statement through the following example.

For simplicity, we drop the time variable ¢, assumed
fixed, and we label the cells by the subscripts j=1,...,M
instead of the lattice vectors r. Then we denote a system
configuration having the cell 1 in the local configuration s;,
the cell 2 in the local configuration s,,..., the cell M in the
local configuration s,;, with

(A1)

Usj = {51,527 ’SM}’

J
where the index j runs from 1 to M. We made use of the
notation U;s;=s;Us, - Us, to indicate the union of the
events  $1,S,,...,S); constituting the configuration

35

{81,852, ...,8).}.

For each cell j, the randomization maps its input con-
figuration s; onto a new local configuration sk ;5 therefore the
conﬁguratlon of the entire system will be mapped onto

Us ={sFs5, ... sk}
Now we focus on a particular cell of the system, denoted k.
We introduce the following probabilities:

* p(U;s)): probability of the system being in the configu-
ration U Sj

J. Chem. Phys. 126, 194709 (2007)

s p(sy|U j+48;): conditional probability of the single cell
being in the local configuration s; when the rest of the
system is in the configuration

Us;={s, ...
j#k

3Sk—1>Sk+1s -+ ,SM}.

For the cell k the detailed balance reads

p(sil IR(s; — s5) = p(sg| - IR(sf — sp), (A2)

@,

where we adopted the character to indicate that the ran-
domization rule is blind with respect to the input (U;.s;)
and output (U, KS; R) configurations of the rest of the system.
If we take two partlcular cells k; and k,, since they random-
ize independently of each other we can write

pls, U Sk2| R(sy, — Sf])R(Skz - sz)

=p(s¢ Usg|IR(sg — s )R(si, — sp,)- (A3)

Iterating we obtain

p(LjJsj)l;[ R(s; — sf) =p(LjJsf)1;[ R(sf —s;).

(A4)

Obviously if Eq. (A4) is satisfied then the energy balance

p(Hy)R(Hy — HS) = p(HSOR(HS  — Hy,),  (AS)

where H,y, and quq are, respectively, the pre- and the post-
randomlzatlon energy of the system, is also satisfied.

Not only the randomization but also the entire
randomization-propagation algorithm satisfies the detailed

balance in the entire system.

* During randomization, the system performs a transition
between an input c.onl.iguration U S (with egergy Hy)
and a postrandomlzatlon configuration U s; (with en-

ergy Hgys) in a reversible way.

* Next the propagation step performs the allowed dis-
placements only in the exit sites in a reversible way,
because (i) the propagation probability p” is symmetric
[see Eq. (15)], and (ii) the total number of particles
occupying the exit sites and the total number of par-
ticles occupying the inner sites are conserved separately
during propagation, so the postpropagation energy of
the system equals the postrandomization value: H
—H

So the following scheme applies:

Hsys(t) A syi(t) Hqu(t),

where = indicates that the randomization changes the en-
ergy of the system in a (probabilistically) reversible way, and
nyq(t) Hy(t+7), that is, the energy of the state of the sys-
tem at time 7+ 7, is defined as the energy of the postpropa-
gation state at time 7. Since the path (A6) from Hbyb(t) to

qu(t+ 7) satisfies the detailed balance, and there is no net
drift in the motion of the particles [see Eq. (15)], then the
model samples the equilibrium distribution of states in the

long-time limit.

(A6)
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APPENDIX B: COMPUTATION OF THE PARTITION
FUNCTIONS

Let us consider first the possible configurations of the N
particles in the KM sites of the lattice £. For a given con-
figuration, let N, and N;, be the total number of occupied
exit and inner sites, respectively. Obviously their sum is al-
ways the total number of particles N=N,, +N;,, which is con-
stant in time.

Since there is no interaction between the particles, the
energy of the entire system depends only on the values of N,
and Nj,. As (ne,n) defined in Sec. II B specifies a particular
energy level of the single cell, in the same way we indicate

as (N4, N) a particular energy level of the system with de-
Mv \( M(K-v)
generacy (N ,N)= ( )( N-N,, ), where M is the total

number of cells. The energy of the level (Ney,N) is

Hsys(Nex’N) =Nex( Ein— ex) Nejy,. (B1)
Therefore the Eq. (4) can be rewritten as
Mv
0% = 2 QNey, N)e M), (B2)
Ney=0
The probability of the level (Ng,N) is
Q(Ney, N) e PHisysNexN)
(Nex,N) (B3)

sts ’

and the occupancy probability distribution of the single cell,
indicated as

JA={0), ...

reads

M-1v\[ K-v
e S

X( (M — l)(K_ V) )e—ﬂHsys(Nex’N).
N_Nex_n+nex

SR,

(B4)

Computing probability distributions of states through
Egs. (B2) and (B4) is feasible only for a system containing a
very small number of cells.

Instead, it is much easier to compute the probability dis-
tribution f*4 in terms of the cellular partition function, Z.

Let us denote®® a={ay, ...,ax} a particular distribution
of occupancies of the system of M cells, where a, is the
number of cells having occupancy n.

e Given the particular distribution of occupancies a, the
sum over states of an ordered sequence of the M cells
preserving the occupancy of each cell is

H;I;O chll(n)]a,,.

* Differently ordered sequences of the M cells according
to the distribution a are equally probable. The number
of ways that any partlcular distribution of the a;’s can
be realized is M! /11X ja,!.

Therefore the sum over states for a system described by the
particular distribution of occupancies a is

J. Chem. Phys. 126, 194709 (2007)

chll(n)]a

a ‘

W(a) = M'H [ (B5)

Indicating as WTOT the sum over states over all the pos-

sible configurations, for a very large system (M — ) we
have

lim W™T= lim 2 W(a) =
M—oo M—x

W(a%), (B6)

where a®=Mf* is the equilibrium occupancy distribution.
Using Stirling’s approximation Eq. (B5) becomes

K K
In W(@a*)=MIn M — 2 afl‘l In af,q + E an In chu(n).
n=0 n=0

(B7)

We maximize this function using the method of Lagrange
multipliers with the constraints 3% a*1=M and 3 na®
=N and then we obtain Eq. (6).

The cellular partition function is written as Z
=K 0°!(n)ePr". This partition function is analogous to the

grand-canonical one, so the following relations are satisfied:
14d InZ
,8 i

(n) = , (B8)

() =~ ‘9<”>

(B9)
where 02((n)) is the variance of the occupancy distribution
/%4 at the loading (n).

Since the energy parameters &, and g;, are fixed in
space and time, the expression for Z can be mamipulated36 to
obtain the partition function of the Fermi-Dirac statistics:

K

Z=11 (1 +ePrre),

j=1

(B10)

which reduces to Eq. (7). Now, using the relation (B8) and
introducing the absolute activity A,=e?*, we obtain the dual-
site Langmuir isotherm reported in Eq. (8).

APPENDIX C: LIMITING OCCUPANCY DISTRIBUTIONS
1. Distributions for T— «

In this case, limy_,f*9= fhyp, i.e., the particles distribute
into the cells according to the hypergeometric distribution:

=)/ )

For systems with a very large number of cells (M — ), this
expression reduces to

K
fP(n) = (n )(p)"(l -p)*,

with p=(n)/K. This is because in the limit of T— o, Eq. (22)
has the solution p.,=pij,=p. The partition function of a
closed cell reduces to ch“(n)=(5>, and Eq. (10) reduces to

(CD

(€2)
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K\ N
fq(”)=<n>(1+x)’<'

Using the fact that p=X\,/(1+\,), we recognize in Eq. (C3)
the hypergeometric distribution in the limit of M — o re-
ported in Eq. (C2).

Using Eq. (B9) we obtain the variance

(C3)

o _Ldman,

T BN, gn K ). (€4

2. Distributions for T—0

In such a case the occupancy distribution splits up in two
distinct hypergeometrics (referred to two distinct regions of
loading) separated by a delta function at the loading at which
the point transition (see Sec. V B) occurs:

%) for0<(n)<K-v
lim f*(n) =\ 8(n—(n)) for (n)=K-v (C5)
" M) for K—v<(n)<K,
where
ftlr?lp(n) = (K_ V)(pm)n(l - pin)K_V_n with Pin = I{<’i> 5
(Co)
and
120 (n) = (n ~ IZ+ V)(pex)""“”(l = pex) " with pe
=1_K—<n)' €
v

This is because in the limit of 7—0, Eq. (22) has the solu-
tions (i) pe=0 and (ii) p;,=1. Using the relation

<n> = VPex + (K_ V)pinv (C8)

we find that, since 0<p., <1 (with a=ex,in).

(1) If p=0, then (n)=(K-v)p;,, which is valid for
0s(ny<K-v.
Since n., cannot be negative, then in order to satisfy
the relation p., =0 it must be n., =0 for each occu-

pancy n=n.+n;, Therefore ne[0,K-v]e, and
0°(n) reduces to

K-v
Nin

with n;,=n. We can represent the sum over states in a
cell through the inner partition function

Zin = (1 + eﬁsi“)\in)K_V

[with \j,=ePHin, with w;, given by Eq. (20)]. Using
Eq. (10) and the relation n=n;, we obtain

J. Chem. Phys. 126, 194709 (2007)

— Bein). )
f?.?(n)=<Kn v)( (ePeink;,) (C9)

1 + ePeiny, )K=V

Using the relation py,=e”®in\;,/(1+ePin\;;), we ob-
tain Eq. (C6). This is a hypergeometric distribution of
particles in K—v sites inside of a cell in the limit of
M — o, when the remaining v sites are all empty. Its
variance is

, L dn) on, (n)?
AL R J LAY
:8 &kin al'l’il‘l

K-v

(ii)  If py,=1, since then (n)=wvp.+(K—-v), which is valid
for K—v<(n)<K. Since n;, cannot be greater than
K—-v, then in order to satisfy the relation p;,=1 it
must be n;,,=K-—v for each occupancy n. Therefore
ne[K-v,K]eN. Since n,, is fixed, for each value of
n also the observable n,, turns out to be fixed. There-
fore 0" (n) reduces to

(C10)

14
11 - (K-
0% (1) = ePoin& ")<n )eﬁseX”“,
ex

with ng,=n—(K-v). Introducing A, =ePex, we obtain
the exit partition function

Zey = ePnlE (1 4 Pronk ).

Using Eq. (10) and the relation n=K - v+n,,, we ob-
tain

v ) (eﬁsex)\ex)n—l(ﬂf (Cl 1)

(1) =
Jaln) = (n —K+v/) (1+ePen,)”’
which, using pe,=ePfeh /(1+ePPex)\,,), can be re-
duced to Eq. (C7). This is a hypergeometric distribu-
tion of particles in v sites inside of a cell in the limit
of M — o, when the other K- v sites are all filled. Its
variance is

5 1 Kn) Ohe,
(Tex =5 .
IB&)\CX alLeX

1
=——[(n)>- 2K - v){n) + K(K - v)]. (C12)
v
44 PO T—o
T=600K ,./ * 4
s ,\'~ .......... .
Ng RPN _T=300K “'\'\

hE R 2

. 3

T-0K
0 ,
] 4 6 10 12 14 16

FIG. 11. The variance of the occupancy distributions at the two limiting
temperatures 77— and 7—0, and at the intermediate temperatures of 300
and 600 K.
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(ili) At the transition point the relations p.,=0 and p;,=1
hold  simultaneously; therefore  f*4=fP N f1p
=08(n—(n)) with (n)=K-v.

In Fig. 11 the variance of f*9 at the two limiting tempera-
tures [from Egs. (C4), (C10), and (C12)] and at intermediate
temperatures [obtained differentiating Eq. (8) with respect to
p at T=300 and 600 K] are shown. As can be seen, the
properties of the distributions at 0 <<7'<<cc are intermediate
between the properties of the two limiting distributions, and
temperature will determine to which of the two limiting dis-
tributions the f°4 will be more similar.
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