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The synthesis of nanocrystalline Nb2O5:Eu3+ has been achieved by using a Pechini procedure. The obtained materials are single-
phase niobia with the orthorhombic structure, average crystallite size around 25 nm and average lattice strain of about 0.002. TEM
images show that the particles are rectangular and reasonably isolated. The luminescence of the Eu3+ ions in the niobia lattice is
efficient and affected by a strong inhomogeneous broadening, due to an important disorder around the lanthanide ions.
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1. INTRODUCTION

Luminescent niobate crystals activated with trivalent lan-
thanide ions (Ln3+) have been the subject of considerable
attention in the past decades. In particular, lithium niobate
(LiNbO3) has attracted huge interest as a valuable host for
Ln3+ ions, with important applications in the field of opto-
electronics and light emitting devices [1]. Moreover, other
niobates such as strontium barium niobate (SrxBa1−xNb2O6)
(SBN) and barium sodium niobate (BNN), activated with
Ln3+ ions, are very promising materials in the field of pho-
torefractive memories [2] and linear and self-frequency con-
verter solid state laser materials [3, 4]. It is important to note
that in all these crystals the location of the Ln3+ in the lattice
is not obvious, as the trivalent lanthanide ions cannot easily
replace the constitutional cations (Li+, Na+, Sr2+, Ba2+, Nb5+)
due to clear size and/or charge mismatches. This location has
been addressed by several studies where optical and/or struc-
tural techniques have been employed [5, 6]. Nevertheless, it is
still a matter of debate whether the Ln3+ can substitute for the
smaller and higher charged Nb5+ cation in a crystalline lattice
[7]. One possible contribution to the solution of this prob-
lem is to verify if it is feasible to dope Ln3+ ions in a lattice
in which only the formally pentavalent niobium cations can
be replaced, that is, Nb2O5. For this reason, we found it in-

teresting to investigate the synthesis and the structural prop-
erties of crystalline niobia (Nb2O5), doped with Eu3+. More-
over, although nanocrystalline niobia has been shown to be a
valuable material finding applications as catalyst and sensor
[8, 9], very scarce information is available on the preparation
and spectroscopic investigation of nanocrystalline Nb2O5 ac-
tivated with lanthanide ions. For this reason, in this paper we
report on the synthesis and characterization, and on the op-
tical spectroscopy of Nb2O5:Eu3+ in nanocrystalline form.

2. EXPERIMENTAL PROCEDURE

Nanocrystalline powders of Eu3+ doped Nb2O5 were pre-
pared by a Pechini approach [10]. The molar ratio between
the niobium and the Eu3+ ions was 99:1. An appropri-
ate amount of citric acid was first dissolved in hot water,
then niobium ammonium oxalate (NAmOx), Eu(NO3)3, and
polyethylene glycol (PEG) were added. The resulting solution
was stirred for 10 minutes. The gel was obtained by drying
the solution at 90◦C for 2 days. The nanocrystalline powder
was obtained by heat-treating the gel at 400◦C for 2 hours
and then at 600◦C for 1 hour. The sample will be denoted as
Nb2O5:Eu hereafter.

The powder X-ray diffraction (XRD) pattern of the
Nb2O5:Eu sample was recorded overnight with a Bruker D8
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diffractometer in the Bragg-Brentano geometry using Cu Kα

radiation (λ = 1.5418 Å). The X-ray generator worked at a
power of 40 kV and 40 mA and the goniometer was equipped
with a graphite monochromator in the diffracted beam. The
resolution of the instrument (divergent and antiscatter slits
of 0.5◦) was determined using α-SiO2 and α-Al2O3 standards
free from the effect of reduced crystallite size and lattice de-
fects. The powder patterns were analyzed according to the
Rietveld method [11] using the program MAUD [12] run-
ning on a personal computer. It is worth to recall that the
MAUD program takes into account precisely the instrument
broadening and, under the selected assumption of isotropic
peak broadening as a function of reciprocal space, performs
the separation of the lattice strain contribution to the broad-
ening from the reduced crystallite size. Relative agreement
factors Rwp and RB are generally reported to determine the
ability of the implemented structural model in accounting
for the experimental data, which are unavoidably affected by
statistical noise due to the limited time of pattern collection.

Transmission electronic microscopy (TEM) images were
obtained with a JEM 200CX working at 200 kV; selected area
diffraction images were obtained with a camera length of
82 cm.

The 488.0 nm line of a Spectra-Physics Stabilite 2017 ar-
gon Laser was used to excite the luminescence and Raman
spectra. The emission radiation was collected by using an
optical fiber and dispersed with a Jobin-Yvon HR460 0.46 m
monochromator equipped with a 150 lines/mm (for low-
resolution luminescence spectra) or a 1200 lines/mm (for
high-resolution luminescence and Raman spectra) grating.
A suitable notch filter was employed to measure the Raman
spectrum, in order to suppress the 488.0 nm Rayleigh ra-
diation. Due to the notch filter, the Raman spectrum can
be collected for Raman shifts higher than 250 cm−1. An air
cooled Jobin-Yvon Spectrum One CCD device was employed
to detect the emission radiation. The resolution of the lu-
minescence spectra is ±1 nm for low-resolution lumines-
cence spectra (560–730 nm range) and ±0.2 nm for high-
resolution spectra (577–584 nm range). The spectral resolu-
tion of the Raman spectrum is ±2 cm−1. The emission decay
curves were measured using as the excitation source the sec-
ond harmonic (at 532 nm) of the fundamental radiation of
a Quanta System pulsed Nd-YAG laser. The emission radia-
tion was dispersed with the above mentioned monochroma-
tor and detected with a Hamamatsu GaAs photomultiplier
connected to a Le Croy Waverunner 500 MHz digital oscillo-
scope. All the spectroscopic measurements were performed
at room temperature.

3. RESULTS AND DISCUSSION

The X-ray diffraction pattern of the Nb2O5:Eu sample is re-
ported in Figure 1 as data points, together with the result of
the Rietveld fit (full lines). It is possible to assess that the sam-
ple is single phase. The pattern is typical of an orthorhombic
Nb2O5 structure, reported with space group Pbam by Kato
and Tamura [13]. The values of lattice parameters refined
from the pattern (see Table 1) are not too different from the
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Figure 1: XRD patterns for the Eu3+ doped nanocrystalline Nb2O5

sample. Dots are experimental data points, full lines are the result
of the Rietveld fit. The sequence of bars is calculated from the or-
thorhombic structure factor Pbam with the lattice parameters re-
ported in Table 1 and marks the positions expected for any peak.
The band at the very bottom of the plot reports the residuals, that
is, the difference between the square root of calculated and experi-
mental intensities.

values reported by Kato and Tamura [13] from single crys-
tal data and the small differences found may be ascribed to
the insertion into the matrix of the doping agent here used.
It should also be noted that various forms of the Nb(V) ox-
ide are known from literature, namely tetragonal [14] and
monoclinic [15]. Further, additional monoclinic forms exist,
which are modified by pressure and temperature. The pattern
of our orthorhombic Nb2O5:Eu sample is in close agreement
with that reported by Pinna et al. [16]. Direct evaluation of
the line broadening by the Rietveld program MAUD, which
includes the correction for the instrument function, gives an
average crystallite size of about 25 nm with a sensible amount
of lattice strain of 0.002.

The crystallography and morphology of the powder were
also probed by selected Area electron Diffraction (SAD). In
Figure 2(a), a TEM bright field image shows monodisperse
rectangular nanoparticles with a narrow particle size dis-
tribution. The mean particle dimensions were determined
by averaging over about one hundred particles. The average
length and width were observed to be 26 and 19 nm, respec-
tively. This result agrees with the size obtained from XRD
with the Rietveld method and with the observations by Pinna
et al. [16].

The Raman spectrum of the niobia sample under inves-
tigation is shown in Figure 3. A strong broad band peaking
at about 700 cm−1 dominates the Raman spectrum although
some weaker features around 300 cm−1 can be observed. The
spectrum is very similar to the one found by Brayner and
Bozon-Verduraz for a nanocrystalline orthorhombic Nb2O5

sample prepared by a soft chemical route [17]. The broad
band around 700 cm−1 can be attributed to the stretching
modes of the NbO6 polyhedra typical of the orthorombic
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Table 1: The main crystallographic and microstructure parameters for the Nb2O5:Eu sample from the best-fit data of Figure 1.

Geometry and space group Lattice parameters (Å) Crystallite size (Å) Lattice strain (x10−3) Agreement index Rwp

Orthorhombic Pbam
a = 6.191 (±2)
b = 29.244 (±5)
c = 3.926 (±2)

230± 30 2.0 (±0.2) 4.7 %

50 nm
25 nm

21 nm

Nb2O5
[0 0 1]

[1 8 0]
[1 8 1]
[0 0 2]
[3 8 0]
[3 8 1]
[3 8 2]

Figure 2: TEM and SAD images for the Eu3+ doped nanocrystalline
Nb2O5 sample.
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Figure 3: Room temperature Raman spectrum of the Eu3+ doped
nanocrystalline Nb2O5 sample.

Nb2O5 crystalline structure. The remarkable broadening of
this band suggests the presence of distorted niobia polyhedra.
Besides, the weaker bands around 300 cm−1 are characteristic
of the bending modes of the Nb−O−Nb linkages [17].

The room temperature laser excited luminescence spec-
trum in the 560–730 nm region is shown in Figure 4. The
spectrum is characterised by emission bands ascribed to
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Figure 4: Room temperature luminescence spectrum of the Eu3+

doped nanocrystalline Nb2O5 sample (λexc = 488.0 nm). Inset:
5D0 → 7F0 emission band.

5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions. These bands ap-
pear to be significantly broadened, a behaviour typical of lan-
thanide impurities in disordered environments. It should be
noted that the 5D0 → 7F0 emission band of the Eu3+ ion
(shown in the inset of Figure 4) is characterised by a full
width at half maximum (FWHM) of 32 ± 2 cm−1, which is
much higher than for ordered crystalline materials, in agree-
ment with the presence of a high degree of disorder for the
Eu3+ sites in the Nb2O5 host. This FWHM value results to be
even higher than the one observed for Eu3+ doped strontium
barium niobate (SBN) single crystals (FWHM = 24 cm−1)
[6], which are among the crystals affected by a high degree of
intrinsic disorder. Moreover, the FWHM for the Nb2O5:Eu
sample is very similar to that found for Eu3+ doped SBN
nanocrystalline powders (FWHM of about 30 cm−1) [18].
The presence of such disorder is attributed to the differ-
ence in the ionic radii in octahedral coordination for Nb5+

(78 pm) and for Eu3+ (108.7 pm) [19], so that the substitu-
tion of the dopant ion cannot easily occur without distor-
tions, which are likely to be affected by a site-to-site variation.
Moreover, the necessary charge compensation could also oc-
cur in a variety of different ways, giving rise to a distribution
of possible sites for the Eu3+ ions.

The asymmetry ratio

R = I
(5
D0 −→ 7F2

)

I
(

5D0 −→ 7F1
) (1)

of the integrated intensities of the hypersensitive 5D0 →
7F2 and the magnetic dipole 5D0 → 7F1 transitions can be
considered indicative of the asymmetry of the coordination
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Figure 5: Room temperature luminescence decay curve of the
Eu3+ doped nanocrystalline Nb2O5 sample (λexc = 532 nm, λem =
610 nm).

polyhedron of the Eu3+ ion [20]. In particular, the lower the
R value is, the higher is the site symmetry at the Eu3+ ion. The
value of the asymmetry parameter for the Nb2O5:Eu sample,
obtained from the measured emission spectra (see Figure 4),
results to be 6.0 ± 0.1. This value indicates that the Eu3+

ions are accommodated in noncentrosymmetric sites [20],
in agreement with the fact that the forbidden transition is
clearly detectable. This value appears to be on the upper side
of the R range commonly found for Eu3+ doped glass hosts
(R = 3− 6) [20].

The RT emission decay curve of the 5D0 level (see
Figure 5) show a nonexponential behaviour. The nonexpo-
nential shape of the luminescence decay curve is mainly as-
cribed to the disorder affecting the sites in which the Eu3+

ions are accommodated, as also evidenced by the significant
inhomogeneous broadening of the emission bands. We eval-
uate the effective average emission decay time τavg using the
equation (see [21])

τavg =
∫
tI(t)dt
∫
I(t)dt

, (2)

where I(t) represents the luminescence intensity at time t
corrected for the background and the integrals are evaluated
on a range 0 < t < tmax, where tmax � τavg. The obtained τavg

value for the Nb2O5: Eu sample is 0.78 ± 0.01 millisecond.
This value of the effective decay time is similar to that found
for SBN nanopowders (about 0.70 millisecond) [18]. The ra-
diative lifetime τR of the 5D0 level of the Eu3+ ion can be es-
timated using the formula (see [22])

1
τR
= AMD,0n

3
(

Itot

I
(

5D0 −→ 7F1
)
)

, (3)

where n is the refractive index of the medium, AMD,0 is the
spontaneous emission probability for the 5D0 → 7F1 tran-
sition in vacuo, and Itot/I(5D0 → 7F1) is the ratio of the
total area of the Eu3+ emission spectrum to the area of the
5D0 → 7F1 band. The refractive index of the Nb2O5 host is
taken as 2.4, as reported for Nb2O5 thin films [23, 24]. The

AMD,0 value is estimated to be 14.65 s−1 [22]. The radiative
lifetime τR of the 5D0 level of the Eu3+ ion, obtained from (3)
and the measured emission spectrum (see Figure 4), results
to be 0.56 millisecond. It is worth noting that the experimen-
tal effective lifetime τavg results to be longer than the radia-
tive lifetime obtained from (3). The lengthening of the emis-
sion decay time of the 5D0 level was also observed for some
Eu3+ doped nanosized materials, such as Eu3+ doped Y2O3

nanopowders [25] and Eu3+ doped nanocrystalline zirconia
[26]. This behavior can be due to a lower refractive index
(neff) surrounding the Eu3+ ion in the nanocrystalline mate-
rial with respect to the bulk size host, due to the fact that the
filling factor (the fraction of the volume of the host occupied
by the nanoparticles) is lower than one [25].

4. CONCLUSIONS

This work has shown that the synthesis of nanocrystalline
niobia activated with Eu3+ ions is successfully achieved with
the Pechini method. The obtained materials are single phase,
with rectangular cross section nanoparticles of crystallite av-
erage length and width of 26 and 19 nm. Among the pos-
sible niobia polymorphs, the orthorhombic one with space
group Pbam is observed. The luminescence features are af-
fected by sizeable inhomogeneous broadening due to disor-
der around the dopant ions. The strongest emission band
of the Eu3+ doped nanocrystalline Nb2O5 sample peaks at
about 610 nm, suggesting a possible use of the present ma-
terial as a red phosphor for lighting devices. In fact, the
emission is quite efficient with reasonably long decay times,
also due to the relatively low phonon cutoff of the nio-
bia lattice (about 700 cm−1), making nonradiative relaxation
inefficient. Therefore, it appears justified concluding that
nanocrystalline Nb2O5 activated with Eu3+ ions can be con-
sidered as an interesting and promising luminescent and
multifunctional material. The present study shows that pen-
tavalent niobium ions can be substituted by trivalent lan-
thanide ions in crystalline niobates. This substitution is ac-
companied by a strong disorder around the Ln3+ ions.
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