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“All models are wrong. Some are useful.” 
- George E. P. Box 
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Abstract 
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ABSTRACTABSTRACTABSTRACTABSTRACT    

In the last two decades several simulation systems were developed to provide 

information about temporal and spatial variations of fire spread and behaviour. 

FARSITE (Fire Area Simulator), one of the most common simulators, is a spatially and 

temporally explicit fire simulation system. The simulator is based on Rothermel's fire 

spread model, and describes the fire spread and behaviour as a function of 

relationships among fuels, topography and weather conditions. The use of FARSITE on 

areas different from those where the simulator was originally developed requires a 

local calibration in order to produce reliable results. This is particularly true for the 

Mediterranean ecosystems, where plant communities are characterized by high 

specific and structural heterogeneity and complexity, determined by the interaction of 

sub-arid Mediterranean climate and human factors. Therefore, to perform FARSITE 

calibration, the choice of the appropriate standard fuel models or the development of 

specific custom fuel models are required. In addition, the capabilities of FARSITE 

simulator can be affected by other environmental characteristics, as complex steep 

terrains with the resulting high spatial and temporal variability of wind speed and 

direction. 

In this work, FARSITE was employed to simulate spread and behaviour of four 

real fires occurred in North Sardinia during 2003, 2004 and 2006 summer seasons. 

The effect of fuel models, weather conditions and topography on the accuracy of 

FARSITE simulations was evaluated in order to assess the capabilities of the simulator in 

accurately forecasting the fire spread and behaviour in areas covered by 

Mediterranean maquis. A custom fuel model, designed and developed by our working 

group for maquis, provided realistic values of simulated fire behaviour. Improvements 

on the accuracy of both fire spread and behaviour were also obtained using raster 

maps of wind speed and direction. The results confirm that the use of both accurate 

wind field data and appropriate custom fuel models is crucial to obtain accurate 

simulations of fire behaviour occurring on Mediterranean vegetation during the 

drought season, when most wildfires occur. 
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RIASSUNTORIASSUNTORIASSUNTORIASSUNTO    

Negli ultimi venti anni sono stati sviluppati diversi sistemi di simulazione col 

fine di studiare le variazioni spaziali e temporali della propagazione e del 

comportamento degli incendi. FARSITE (Fire Area Simulator), uno dei simulatori più 

diffusi, è in grado di fornire previsioni del comportamento e dell’evoluzione 

dell’incendio nel tempo e nello spazio. Il simulatore è basato sul modello di 

propagazione di Rothermel, e descrive il comportamento e l’avanzamento di un 

incendio in funzione delle interazioni fra vegetazione, topografia e condizioni 

meteorologiche. L’impiego di FARSITE in aree diverse da quelle in cui il simulatore è 

stato originariamente messo a punto richiede una calibrazione locale affinché si 

possano ottenere risultati attendibili. Quanto affermato è in particolar modo valido per 

gli ecosistemi mediterranei, in cui la comunità vegetale è caratterizzata da un’elevata 

eterogeneità e complessità specifica e strutturale, determinata dall’interazione fra clima 

mediterraneo sub-arido e fattori antropici. Pertanto, per la calibrazione di FARSITE è 

necessario ricorrere alla scelta dei più appropriati modelli di combustibile standard 

oppure sviluppare dei modelli di combustibile specifici per le condizioni vegetazionali 

locali. Inoltre, le potenzialità del simulatore FARSITE possono essere influenzate da altre 

caratteristiche ambientali, quali condizioni orografiche particolarmente complesse, in 

grado di indurre un’elevata variabilità spaziale e temporale delle condizioni 

anemometriche.  

In questo lavoro, FARSITE è stato utilizzato per simulare la propagazione e il 

comportamento di quattro incendi verificatisi nel nord Sardegna durante le stagioni 

estive 2003, 2004 e 2006. E’ stato studiato l’effetto dei modelli di combustibile, delle 

condizioni meteorologiche e della topografia sull’accuratezza delle simulazioni 

condotte in aree a macchia mediterranea. Un modello di combustibile adattato alle 

suddette condizioni vegetazionali ha fornito valori maggiormente realistici del 

comportamento degli incendi simulati. Un miglioramento nell’accuratezza delle 

simulazioni del comportamento e della propagazione degli incendi è stato inoltre 

ottenuto impiegando mappe della velocità e della direzione del vento. I risultati 

confermano che l’uso di dati anemometrici accurati e dei modelli di combustibile 

appropriati è cruciale per l’ottenimento di accurate simulazioni del comportamento 

degli incendi che interessano la vegetazione mediterranea durante la stagione arida, 

nella quale si concentra la maggiorparte degli incendi. 
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The European territory is covered by about 1,000 million hectares of forest, 

about one half of its whole surface. Europe has been divided in eleven bio-

geographical regions (Alpine, Anatolian, Artic, Atlantic, Black Sea, Boreal, Continental, 

Macaronesian, Mediterranean, Pannonian, Steppic). In these regions the main forest 

categories are: Western Taiga, Oak and Beech Forests, Deciduous Mediterranean 

Forests, Sclerophyllous Mediterranean Forests, Temperate Mountain Conifer Forests, 

Mediterranean and Macaronesian Mountain Conifer Forests (European Commission, 

2003). The Euro-Mediterranean region is one of the most important in terms of 

biodiversity. In this part of Europe, situated in a transitional zone among the European, 

African and Asian continents, 25,000 floral species (approximately 10% of the world 

flowering plants) are present. The Mediterranean ecosystems are the biomes of some 

regions of the moderate-warm belt, with a climate conditioned by seas and oceans: this 

climate represents a transitional regimen between moderate and tropical-dry climates 

(Di Castri and Mooney, 1973). The Mediterranean climate presents a marked 

seasonality. During the year, a fresh and rainy period alternates with a warm and dry 

season of variable length; between these two seasons, two periods with intermediate 

characteristics are present. The annual medium temperatures range between 14 and 

20 °C (Pignatti, 1995). The minimum temperatures come down very rarely under 0 °C 

during winter, and snowy precipitations and frosts have limited incidence. In summer 

the maximum temperatures are lower than 50 °C. Seas and oceans exercise a 

meaningful mitigating effect on the thermal regimen, so the range of temperatures is 

modest regarding continental climates (Bussotti and Schirone, 2001). The 

precipitations, concentrated in the winter period, reach annual values ranging from 

250 to 1300 mm; in the warm season the rainfall is poor, or almost null. However, 

there is a high variability among years as for the annual values of precipitations. These 

climatic conditions characterise five different regions of the world: the Basin of the 

Mediterranean Sea, California in the United States, the central zone of Chile, South 

Africa and south-western Australia (Specht, 1969). The above mentioned areas occupy 

little more than 1% of emerged lands, and most of this amount are located in the 

Mediterranean Basin. The Mediterranean climate and ecosystems are concentrated 

mainly in the western areas of the continents, in correspondence with a belt of 15 ° 

(approximately) around the 35 ° parallel, in both the boreal and austral hemisphere. 

The Mediterranean climate is the main factor determining the characteristics 

and the dynamics of the Mediterranean vegetation. The Mediterranean environment 

presents a very heterogeneous vegetation, constituted, in wide measure, by evergreen 
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forests and characterized by the dominance of evergreen shrubs, with broad and small, 

stick and thick leaves (sclerophyill) (Di Castri, 1981; Bussotti and Schirone, 2001). 

Such shrub formations are locally called macchia in Italy, maquis in the francophone 

Countries and Israel, matorral in Spain and Chile, chaparral in California, mallee in 

Australia, strandveld (on dunes) and renosterveld in South Africa (Di Castri, 1981; 

Gaudenzio and Peccenini, 2002). When the shrub vegetation is low and poor, along 

gradients of increasing aridity, the term becomes gariga in Italy, garrigue in the 

francophone regions, phrygana in Greece, batha in Israel, coastal sage in California, 

jaral in Chile. The term fynbos indicates instead South Africa vegetation dominated by 

Erica. By considering the variability of some climatic and geo-morphologic factors of 

the Mediterranean environment, it is not useful to consider just one representative 

ecosystem: this fact represents a big difference with respect to other zones, in which 

environment and vegetation are uniform. Therefore, when the Mediterranean biome is 

considered, we make reference to a whole of ecosystems, each one occupying habitats 

with peculiar environmental conditions.  

In an ecosystem, the maximum degree of development and equilibrium the 

vegetation community can reach is named climax: the climax is reached after a 

sequence of changes in the ecosystem (succession). Following an increasing order of 

altitude, in the Mediterranean zones five climax vegetations can be distinguished: 

Coastal Zones Climax, Oleo-Ceratonion, Mediterranean Maquis, Mediterranean 

Evergreen Forest, Mediterranean Deciduous Forest. A considerable portion of the 

Mediterranean natural ecosystems is occupied by Oleo-Ceratonion, Mediterranean 

Maquis and Mediterranean Evergreen Forest climax, and also by secondary vegetation 

formations. The secondary formations are associations of vegetation deriving from 

climax, and in dynamic state of degradation or evolution towards a climax formation. 

Among these secondary formations, gariga, steppic grassland and secondary maquis 

(which can assume different characteristics in relation with prevailing species) can be 

mentioned. The secondary maquis represents an involutional stage of the 

Mediterranean shrubland, which can evolve and originate Oleo-Ceratonion, 

Mediterranean Maquis, or Mediterranean Forest, in relation with environmental 

conditions and vegetation characteristics.  

 

The Mediterranean ecosystems are very vulnerable, with respect to other 

vegetation typologies: many causes can lead these ecosystems to degradation. Several 

Mediterranean zones have characteristics and environmental conditions particularly 
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favourable to the human presence and activities: these aspects facilitated the 

urbanization. Moreover, considering the natural beauties and the mild climate, in 

many zones a flourishing tourist activity increased. The urbanization and the 

increment of population involved an increase of the human productive activities, with 

a remarkable expansion of commercial and industrial activities and of means of 

communication. An intensive agriculture developed, with the aim to produce large 

amounts of vegetables and fruits on relatively modest areas, with a consequent strong 

exploitation of lands and a massive consumption of resources (energy, water, etc.). The 

effect of the overgrazing pressure influenced various regions, with changes in the 

vegetation distribution models and in the landscape dynamics. The overgrazing, linked 

with fires, accelerated the erosion problems in steep landscapes and in areas with low 

vegetation, with an important reduction of the soil fertility and of the forested areas 

(Luciano and Franceschini, 2006). On the contrary, in those regions which are more 

distant from sea and towns, some studies pointed out the progressive abandonment of 

agriculture and the reduction of the environment management. All these factors 

induced in the years a progressive degradation of the Mediterranean ecosystems. Since 

the Mediterranean vegetation has always been subject to recurrent fires (Naveh, 

1975), mostly of anthropic origin, wildfires can be considered as a natural 

environment element. Some Mediterranean species “forged” and evolved acquiring 

resistance to fire, and others even “need” occasional fires to survive. Unfortunately, at 

present wildfires represent one of the main threats that the Mediterranean ecosystems 

must face: wildfires are usually the main destruction cause for the Mediterranean 

forest environment (Velez, 2000).  

In the dry season the fire propagation is favoured by warm-dry meteorological 

conditions, with the resulting high degree of flammability of the vegetation; the wind 

intensity also plays a relevant part in fire spread and behaviour. In the last years 

(2000-2005), in the South-Western European Mediterranean region (Italy, France, 

Spain, Portugal, Greece) more than 60,000 wildfires per year have been recorded, with 

about 490,000 hectares of burned areas (European Commission, 2006). During the 

past 2007 summer season many European Countries experienced disastrous wildfires. 

In Greece, the overall burned area in 2007 amounted approximately to 270,000 

hectares, of which 180,000 burnt between the 24 and 30 August (European Civil 

Protection, 2007); during these days more than 60 people died. Also in Italy last 

summer fire season provoked many damages, with 230,000 hectares of burned areas 
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mainly concentrated in the southern part of the Country (Corpo Forestale dello Stato, 

2007a; 2007b).   

 

Also Sardinia must face the wildfire problem each summer season: on average, 

during the period 1971-2005, in our island 3,000 wildfires per year have been 

recorded, and 41,000 hectares of natural landscapes have been burned (Boni, 2004). 

But, in the last years (1996-2005), on average the number of fires per year decreased 

until 2,700 and the burned areas until 18,000 hectares. Most wildfires are linked with 

human activities, both for intentional and accidental causes. For example, during the 

1994-2003 summer seasons in Sardinia only 1% of the observed wildfires was not 

linked with human activities, and the arson number ranged between 65-85% of the 

fires (Saba, 2004). In the Mediterranean areas, up to 95% of fires have anthropic 

origin, both for arson and negligence (FAO, 2007). Some interannual fluctuations in 

this phenomenon can be observed, particularly due to the increase of the extreme fire 

seasons related with the pattern of summer meteorological conditions. Therefore, 

wildfire remains a serious problem, even if the average burned area per fire has 

decreased in the last years. 

 

Every year wildfires cause a devastating damage for the natural environment 

and ecosystems, sometimes also destroying houses and farms and causing casualties 

and death. If wildfires are recurrent, it is possible to observe a gradual destruction of 

the structure and of the floristic composition of the vegetation, with the appearance of 

more degraded vegetation formations characterized by involutional dynamics that can 

bring to landscape desertification. Moreover, in those regions where tourist activities 

prevail, the loss of natural areas determines an impoverishment of the landscape, the 

loss of important natural forest areas, and it risks to inflict serious damages to the 

image of the Mediterranean regions, making useless all the efforts for tourist 

promotion and development. Since the European Mediterranean region is considered 

as one of the most important regions in the world for its biodiversity features, it should 

be very important to increase the efforts in order to limit the hectares of forests and 

other wooded lands annually destroyed by fires.  

In order to face the wildfire calamity, the European Union, the Countries and 

the regional and local Administrations annually assign huge financial resources in 

order to guard, to monitor and to fight wildfires: the main part of the efforts against 

wildfires is circumscribed to the active fight. In the last ten years, the strengthening of 
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the wildfire contrast action (strong technological development and modernization, 

introduction of more flexible and effective aerial craft, growth of terrestrial forces, 

etc.) permitted to obtain a meaningful benefit, with an important reduction of the 

burned areas in many Mediterranean regions. For example, in Sardinia the increased 

efficiency of the firefighting apparatus allowed to have 92% of fires up to 10 ha, and 

60% of fires less than 1 ha (Boni, 2004).  

 
Unfortunately, the active fight apparatus sometimes is unable to respond to all 

the intervention demands, when severe environmental conditions lead to an increase of 

wildfire frequencies. In these situations, wildfires can become unmanageable, burning 

wide areas and bringing serious damages in the landscape.  

The use of decision support systems (DSSs) can be useful in the optimization of 

resources, in order to decide the priority of the aerial and terrestrial interventions, 

considering the site characteristics: presence of residential zones, fires threatening 

relevant natural interest areas, adverse meteorological conditions, presence of 

particularly vulnerable vegetation, etc.. DSSs can be also used for the development of 

fire prevention and management policies, to reduce the wildland fire risk. A DSS can 

be developed incorporating fire spread and behaviour prediction models, geodatabases 

of environmental and vegetational information, as well as sets of decision rules. 

As for prediction models, fire spread and behaviour can be simulated using 

semi-physical or empirical models developed over recent years. Among these wildfire 

behaviour modelling systems, FARSITE (Fire Area Simulator; Finney, 1994) represents 

one of most complete and user friendly model in order to study ignition, propagation 

and behaviour of fires: FARSITE is capable to consider the aerial and terrestrial 

interventions against fire during the event. FARSITE, like most fire prediction models, 

has been calibrated and validated in the United States, or in ecosystems different from 

the Mediterranean Basin ecosystems. The fire behaviour and propagation is a very 

critical topic for a decisive intervention, since the fire is an event with highly variable 

evolution (in time and in space) and with dynamic characteristics, especially with 

heterogeneous types of vegetation and with severe meteorological conditions. 

Therefore, an extensive calibration and validation of these models is required in order 

to obtain reliable results on Mediterranean vegetation. The other research demand is 

represented by the reconstruction of the wind fields, which constitute the greatest 

element of variability during a fire.  
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The Italian Presidenza del Consiglio dei Ministri, with the Dipartimento della 

Protezione Civile (2002) (Gazzetta Ufficiale, February 26, 2002, n° 48), promoted 

most of the approaches and strategies mentioned in this introduction section, by the 

legislative decree December 21, 2001, which states that the most useful approach in 

order to pursue the conservation of the forest lands is linked with the promotion and 

the stimulation of the prevention and forecast activities, rather than privilege only the 

emergency phases of wildfire extinction (…). To obtain a constant and radical 

reduction of the causes of wildfire ignitions, the use of forecast systems is important to 

localize and study the fire danger characteristics or to adopt initiatives of prevention, 

in order to realize an organic management of interventions and actions to mitigate the 

wildfire consequences (…). The decree also emphasizes the role of survey techniques 

from satellite images, GIS applications, and the modelling approach in order to 

produce simulations of the fire behaviour.  

The Department of Economics and Woody Plant Ecosystems, University of 

Sassari, in collaboration with the Institute of Biometeorology, National Council of 

Research of Sassari, have developed a series of research activities in order to strengthen 

the fire risk management and to predict the spread and behaviour of fires. In the 

specific instance, the main topics have been the evaluation of the meteorological 

condition effects on vegetation, the development of a fire risk dynamic model (Ichnusa 

Fire Index) (Pisanu, 2005; Spano et al., 2005; Sirca et al., 2005) and the calibration 

and validation of a fire behaviour model (FARSITE) for Mediterranean areas. 

 

This work focuses on the evaluation of the capabilities of FARSITE simulator in 

order to model the fire spread and behaviour on historical fires observed in the 

Mediterranean maquis of Sardinia and on the analysis of the effects of weather 

conditions, vegetation and topography on the simulations. 
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A wildfire is an uncontrolled fire occurring in wildland areas, but it can also 

involve urban or agricultural areas. The term fire behaviour is used to describe 

magnitude, direction and intensity of the fire spread. The wildfire behaviour is 

generally defined by considering the ways the vegetation burns, the flames develop, 

the fire spreads and manifests extreme behaviours (for example firewhirls, spotting, 

etc.). The fire behaviour is widely linked with meteorological conditions of short, 

medium and long time, with physical conditions (local and regional topography and 

landscape characteristics) and with vegetation (Countryman, 1972; Rothermel, 1983; 

Pyne et al., 1996; DeBano et al., 1998). Since the combinations among these elements 

are almost infinite, and since the ignition point is not predictable, the wildfire growth 

and behaviour have univocal characteristics (Graham et al., 2004).  

Really, during a fire it is not usual to record just one behaviour, but there are 

several variations of the wildfire behaviour on temporal and spatial scale, because of 

the different and changing environmental conditions. Various useful characteristics 

can be used to describe the wildfire behaviour: among the most important, we can 

mention rate of spread, fireline intensity, flame height, transition to crown fire. As 

described later, these elements are modelled and measured in the advanced front of the 

fire (heading fire), but they can also be estimated for every direction in which the fire 

spreads. In addition to the cited elements, one of the most used and immediate 

parameters for the description of the wildfire behaviour is the burned area (Rothermel, 

1991). 
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1111. . . . Combustion and Heat TransferCombustion and Heat TransferCombustion and Heat TransferCombustion and Heat Transfer    

Combustion.Combustion.Combustion.Combustion. The contemporary presence of three primary elements is 

necessary for a fire to develop: heat, oxygen and fuel. These components define a very 

common diagram, named "fire fundamental triangle" (Figure 1).  

 
Figure 1. The fire fundamental triangle 

 

The vegetation burns only in particular conditions, after receiving a sufficient 

amount of heat, and reacts with the atmospheric oxygen releasing combustion by-

products (water vapour, carbon dioxide, particles, ashes, etc.) and generating heat in 

its turn. In an ecosystem, the fuel is represented by the organic matter of the 

vegetation; the fuel, in presence of oxygen and heat, supplies the chemical energy for 

the fire propagation (DeBano et al., 1998). The heat refers to the initial source of 

energy imparted to the fuel and necessary to carry the vegetation to the ignition 

temperature, but also to the energy released during the combustion: for a fire to 

continue to burn, this energy must be transferred from fire to unburned vegetation. 

The heat flow can happen according to four modalities: radiation, convection, 

conduction, mass transport. The oxygen is the third component of the fire triangle, and 

generally it is always available in natural ecosystems. This gas is indispensable because 

it represents the oxidant agent of the combustion reaction, thanks to which the 

chemical energy stored in the plants is released in the atmosphere. 

 

The combustion is a rapid chemical-physical process and it can be defined like 

the inverse process of photosynthesis (Pyne et al., 1996; DeBano et al., 1998). The 

process of combustion follows a definite sequence, apart from the type of burned 
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vegetation: the chemical energy stored in plants is released in form of heat, several 

gases and particles with different dimensions. The combustion process can be 

represented with the following equation: 

HEATOHCOHEAT INITIALO)OHC( 222n5106 ++→++        (1) 

Initially the reaction is endothermic, later it becomes exothermic. 

 

The combustion process can be divided at least into four phases (Pyne et al., 

1996; DeBano et al., 1998): pre-ignition; ignition; combustion (flaming, smoldering 

and glowing); extinction. 

 

The first phase of the combustion process is the pre-ignition, in which a pilot 

source provides the heat needed to raise fuels to the temperature range (325-350 °C) 

needed for ignition (DeBano et al., 1998). Because of the increment of the fuel 

temperature, the free water of plants progressively evaporates (dehydration). As fuels 

are heated by radiation and convection to temperatures greater than 100 °C, water 

vapour, noncombustible organics and volatile extractives are distilled to the fuel 

surface and driven off into the air (Ryan and McMahon, 1976). As soon as caught up 

elevated temperatures, the pyrolysis can start: it represents the thermal degradation of 

the fuel (DeBano et al., 1998), by which the long polymer chains are divided in 

gaseous molecules with low molecular weight, in semi-volatile carbonic tars and in 

solid chars. During pre-ignition, a limited amount of smoke, in prevalence white-

coloured, and constituted mainly by water vapour, is produced. 

 

The ignition is the phase between pre-ignition and combustion, and it defines 

the transition point between endothermic and exothermic phase of combustion. To this 

point the fire is able to self-sustaining, since the heat produced by the combustion 

provides the energy needed for the pre-ignition of the unburned fuels, allowing the 

prosecution of the combustion process. 

 

The following phase of combustion, in its turn, can be sub-divided in three 

sub-phases: flaming, smoldering and glowing. 

During the flaming combustion, the products of pyrolysis, mainly combustible 

gases and vapours, mix with oxygen, and burn during the flaming part of combustion. 

Temperatures exceeding 1650 °C have been measured in exceptionally intense fires, 

but flame temperatures of 700-980 °C are more common (Pyne et al., 1996). The heat 
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produced from the flaming reaction accelerates the pyrolysis rate and releases greater 

quantities of combustible gases (DeBano et al., 1998). The smoke rises up by heat 

action, and it is prevalently constituted by carbon dioxide and water vapour. The 

flaming combustion is initially vigorous; it reduces its vigour when the charcoal 

formation on the surface of woody fuels reduces the fuel thermal conductivity and the 

flux of heat deep into the burning wood (DeBano et al., 1998). To this point, the chars 

can burn as a result of superficial oxidation process, by means of smoldering 

combustion or glowing combustion.  

The smoldering combustion is a sub-phase in which combustion is without 

flames. It happens when the production of combustible gas decreases and the vigorous 

combustions are not possible, with a consequent drop of temperatures and released 

heat. Larger amount of gases condense into smokes, and the maximum particulate 

emission is recorded. The presence of particulates confers a darker colour to smoke, 

compared to previous phases. 

The glowing combustion is the last part of combustion. In this sub-phase, 

volatile gases are no more produced and atmospheric oxygen comes into direct contact 

with surface of the charred fuel. As a fuel oxidizes, it burns with a characteristic glow 

and continues this process until the temperature drops so low that combustion can no 

longer occur or until the fuel is reduced to noncombustible ashes (DeBano et al., 

1998). Because of this, there is no production of smoke. 

 

The extinction represents the final phase of the combustion process. A fire goes 

out when all the fuel is consumed or when the heat is not sufficient to support neither 

combustion nor pyrolysis. 

 

 

Heat Transfer.Heat Transfer.Heat Transfer.Heat Transfer. The heat produced during a fire is transferred to the different 

components of the ecosystem by four processes: radiation, convection, conduction, 

mass transport. Among these processes, radiation and convection are the most common 

mechanisms by which heat is transferred from a fuel to another fuel. Large amounts of 

heat are lost into the atmosphere along with smoke, gases, particulate matter generated 

by fire. It has been estimated that only 10-15% of the heat energy released during the 

combustion of aboveground fuels is absorbed and directly transmitted to litter and duff 

or mineral soil (DeBano, 1974; DeBano et al., 1998). The transfer of heat through 
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mineral soil is very important because it is the main responsible for the changes in the 

physical, biological and chemical properties of soil.  

 

Radiation represents the heat transfer by the movement of electromagnetic 

waves, that travel at the speed of light. Therefore, radiation represents the transfer of 

heat from one body to another (not in contact with it) by electromagnetic waves 

motion. Fire is a remarkable source of radiative energy, since flames can reach 

1400 °C and the temperatures in the combustion zone can reach 1000-1200 °C. 

Applying Stephan-Boltzmann’s∗ law, the amount of energy released by a body in 

combustion can be calculated: since the energy is proportional to the fourth power of 

the temperature of the radiant body, radiation is a very important process during 

wildfires. In general, radiation is typically the major mode of heat transfer during the 

advance of a fire in still air (DeBano et al., 1998); it is moreover the primary 

mechanism of heat transfer during the initial stages of many forest fires (Chandler et 

al., 1983). 

Convection is the process whereby the heat is transferred from a point to 

another by the mixing of fluid masses (Chandler et al., 1983; DeBano et al., 1998). 

Two main modalities of convection can be distinguished: free and forced convection. 

Free convection is when the fluid motion of gases only depends on differences in 

densities, resulting from temperature differences. The formation of the convection 

column (smoke plume) or the heating of shrub and tree crowns above a surface fire 

are examples of heat transfer by free convection (DeBano et al., 1998). Forced 

convection occurs when external mechanical forces alter the flows of fluids from their 

“natural and free” velocity and direction (Chandler et al., 1983): wind can act as 

external mechanical factor. In conditions of strong external convective forces, as for 

example intense winds, the main process of heat transfer from the burning fuels is the 

convection (DeBano et al., 1998). 

Conduction is the heat transfer between two bodies in contact, by means of the 

increment of the molecular activity. Since air, soil, wood and water conduct heat 

slowly, conduction does not have a meaningful importance during a fire. 

Mass transport is the process of heat transfer tied to spotting and downslope 

rolling. Spotting involves the physical removal of burning material by thermal updrafts 

from flaming fuels and the subsequent deposition in unignited fuels after a flight of 

                                                
∗
 4TE ×= σ , E = energy produced by the body (W m

-2
), σ = 5,67 x 10

-8
 W m

-2 
K

-2
, T = body 

temperature (K). 
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various meters (some kilometres are not rare) (DeBano et al., 1998). The fuel able to 

move by spotting is constituted in prevalence by particles with modest weight. 

Downslope rolling is important on steep slopes, being tied to the gravitational forces 

which can move burning conifer cones, logs, twigs or branch downslope into 

unburned fuels, and therefore promoting the ignition of new fires in the downstream 

zones. 



Fire Behaviour Description - 2. Environmental Conditions and Fires 

 15 

2.2.2.2. Environmental Conditions and Fire Environmental Conditions and Fire Environmental Conditions and Fire Environmental Conditions and Firessss    

The fire behaviour is a product of the environment in which the fire is burning 

(Pyne et al., 1996). Countryman (1972) presented the concept of the fire environment: 

the fire environment is represented by the surrounding conditions, influences, and 

modifying forces that determine the fire behaviour. The interacting forces and 

influences that constitute the fire environment are represented by topography, 

weather, fuel and the fire itself. The fire environment triangle (Figure 2) illustrates this 

concept. It is called triangle because three components, and the interactions among 

them and fire, affect the fire spread and behaviour (Rothermel, 1983, Pyne et al., 

1996). The fire in the center of the triangle symbolizes the interaction between fire 

and environment. 

 

Figure 2. The fire environment triangle (from Countryman, 1972) 

 

It can be point out that: 

- topography can change strongly in space, but not in time; 

- vegetation changes in space and in time; 

- meteorological conditions represent the most changing component, with fast 

and often meaningful variations in space and time. 

There is a fourth factor, frequently ignored but fundamental in order to 

describe the fire behaviour (Viegas, 2005a): the time. Really, the wildfire behaviour is 

dynamic, and all the spread characteristics can change during the time, even if the 

environmental conditions are unchanged. Considering the time variable, the “Square 

of the Fire Environment” can be used.  
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2222.1. Topography.1. Topography.1. Topography.1. Topography    

Topography is a static element, since it cannot change in time but only in 

space; although that, it strongly influences weather and vegetation, besides the fire 

behaviour (Pyne et al., 1996). The effect of the topography on fire is marked in zones 

with complex orography, while it tends to be limited in flat areas. 

Slope is the topographical element that mainly influences the fire propagation. 

First of all, the slope affects an important meteorological phenomenon on local scale. 

In ridges, the air masses heated by sun, with low density, go up towards the survey 

top, and originate a draft, which moves upslope (during the night the air flow moves 

in the opposite direction). Therefore, in a ridge it is usual to observe the movement of 

warm air masses along the slope, during diurnal hours: this is the reason why a fire 

often spreads easily along the line of maximum slope. The more elevated the slope is, 

the faster and more intense the fire spread and growth are. Flames, moving along the 

slope, are facilitated in combustion. As the fuelbed is tilted, the distance between the 

flame and an unignited fuel particle ahead of the flame decreases: consequently, more 

radiative energy reaches the same fuel particle in tilted fuelbed in comparison to the 

level fuelbed. This results in more rapid heating of the fuel particles and in faster rate 

of spread (Morais, 2001). Since during the fire remarkable amounts of heat are 

released, the movement of warm air masses is more emphasized, and in its turn the 

growth of the speed of air masses increases the fire rate of spread. Therefore, during 

the day, a fire that moves upslope tends to “feed on itself” and to accelerate 

progressively its rate of spread till the top of the relief (Viegas, 2006). The wildfires in 

these conditions become rapidly extensive, and sometimes they are controllable only 

when the top of the ridge is reached: here the fire will face an opposite direction air 

flow coming from the other side of the relief. The combined effect of slope and warm 

air flows can originate a very dangerous phenomenon for Firefighters, named chimney 

effect; it is common in terrain with steep sides and in canyons (Pyne et al., 1996). In 

these zones, the upslope air flows is rapid and funnelled to the chimney’s shape; these 

chimneys draft a fire like a stove chimney. The fast acceleration of a fire in areas with 

steep sides and in canyons can remember an eruption, so we can also speak of eruptive 

behaviour (blowup is the term commonly used by northern American researchers) 

(Viegas, 2005b; Viegas et al., 2005; Viegas, 2006).  
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Elevation influences the general climate and therefore the fuel availability. 

Although the effect of the elevation above sea level is often mentioned for its relation 

with air temperature, rainfall and atmospheric oxygen content, the effective incidence 

of this element on fire behaviour is somewhat limited (Velez, 2000). 

 

Aspect is the direction in which the side of a topographical relief is facing 

regarding the cardinal points. There is a relation between orientation of a side and 

amount of solar radiation: south and south-west facing slopes receive more direct 

sunlight (and more radiation) and are therefore warmer than the north facing slopes 

(Pyne et al., 1996; Velez, 2000). The aspect of a relief is also important because it 

influences the exposure to predominant winds. 

 

Landscape configuration influences the wind direction and movement. For 

example, the mountain chains represent a barrier to the horizontal movement of the 

air masses. The wind is deviated as soon as it arrives in proximity of chains, as result of 

the action of local convective winds moving along the maximum slope of the slide. The 

airflows, in their movement towards the top, can arrest or limit a fire, when the flames 

arrive on the highest parts of a relief. Ravines and gullies form privileged ways for the 

movement of air masses and can modify the fire spread direction. In tight gully, the 

heat released by a fire causes the loss of humidity and the consequent drying process 

of the vegetation on the opposite side. When the air flow is “trapped” by topography, it 

tends to increase its speed, with an increase of both the fire intensity and the spread 

rate. 

 

Barriers are elements, natural or artificial, able to oppose or slow down the fire 

propagation. A barrier cannot support wildland fires because the fuel is not present. 

Using the description of Scott and Burgan (2005), in the group of barriers the 

following elements are present: urban or semi-urban areas; zones with ice or snow; 

some agricultural areas (ploughed field, rice field, etc.); open bodies of water; bare 

ground. Also areas that have suffered a fire a short time earlier can be considered as 

barriers (Pyne et al., 1996). 
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2222.2. Meteorologi.2. Meteorologi.2. Meteorologi.2. Meteorological Conditionscal Conditionscal Conditionscal Conditions    

The weather constitutes, if combined with some physiological conditions of 

fuel, the factor which mainly influences the fire behaviour. Dryness, strongly related to 

the fuel flammability and combustibility (Viegas et al., 1991), and wind play a key role 

during the flame front propagation (Rothermel, 1972). In many cases, meteorological 

conditions overcome the other elements of the fire environment triangle, so much to 

determine, alone, the behaviour and the dangerousness of a fire (Pyne et al., 1996). In 

the Mediterranean zones, the fire season is always associated with the period between 

late spring and the beginning of autumn; in this period the temperatures are more 

elevated and the fuel dryness is maximum. Meteorological factors are variable, 

sometimes even unexpectedly, both in space and in time and, unlike vegetation, cannot 

be controlled or managed by men. On the other hand meteorological factors can be 

forecasted, and a good knowledge of the meteorological condition evolution can be 

fundamental for the operations of fire extinction and management.  

 

In the description of the most important meteorological factors tied to the fire 

propagation, the classification proposed from Velez (2000) is particularly valid. The 

meteorological variables can be classified into two groups: 

a) variables influencing the possibility of fire ignition, because they have an 

influence above all on the fuel moisture; therefore, these variables exercise a limited 

effect on the spread of the event, and mainly they strongly influence the possibility that 

a fire can ignite more or less easily; 

b) variables affecting the rate of spread, because they influence the flow of 

oxygen necessary for the combustion and the heat transfer processes; therefore the 

predominant effect of these variables is on fire behaviour.  

 

METEOROLOGICAL VARIABLES INFLUENCING FIRE IGNITION. Solar radiation 

represents the energetic source of all natural processes. Its effect on fires is “indirect”, 

since radiation affects various factors tightly linked with the fire behaviour (fuel 

moisture and temperature, day duration, etc.).  

Precipitations can quickly modify the humidity of soil and vegetation, both live 

and dead. The effect of precipitations on dead fuel moisture is almost immediate, while 

for live fuel the moisture content changes after some days. 
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Air temperature has a direct influence on the energy needed to reach the 

ignition temperature and on the facility by which combustion happens. Air 

temperature has a fundamental effect on vegetation, both for dryness and for 

temperature of tissues. In the Mediterranean Basin, the effect of the temperature must 

be “adjusted” considering also the water availability (Kramer et al., 2000). In the 

vegetation heated by sun, ignition and combustion happen with greater velocity, and 

the spread rate is more elevated. In Mediterranean zones, air temperature presents a 

cyclical course, both daily and yearly. During the day the temperatures are more 

elevated in early afternoon; so also the fuel temperature reaches its maximum value in 

these hours. It is for this reason that fires reach maximum intensity values during first 

afternoon. During the year, the temperature peaks are recorded in summer, when the 

day duration and the angle of incidence of solar rays, regarding the land surface, are 

maximum. 

Relative humidity, also because of its link with temperatures, in normal 

conditions presents a meaningful daily variation, with a minimum in central and 

warmer hours of the day and a maximum during the night. In general terms, relative 

humidity values inferior to 30% are favourable to fire ignition and propagation. The 

effects that the relative humidity exercises on fires can be referred to two elements. The 

first effect, even if not so important, is on the oxygen availability for combustion, since 

as relative humidity grows, atmospheric oxygen descends. The second effect is linked 

with the connection between relative humidity and fuel moisture. Dead and live fuels 

are physical elements exchanging humidity with atmosphere. This rate of exchange is 

inversely proportional to the dimensions of the fuel particles: small particles are more 

rapid to achieve an equilibrium with the humidity of surrounding atmosphere. The 

greater fuel moisture is, the greater energetic contribution to supply, in order to 

eliminate water from tissues and to carry the fuel to ignition temperature. 

Lightnings represent, in some areas (i.e. mountainous zones of the United 

States), the main causes of fire ignition. Fires caused by lightnings can quickly assume 

important proportions: in fact thunderstorms are often associated with strong winds 

and incoming nightfall, so the fire extinction operations by direct and aerial attacks 

are hindered. 

 

 METEOROLOGICAL VARIABLES INFLUENCING FIRE RATE OF SPREAD. Wind 

represents the movement of air masses relative to the earth’s surface and, like a vector, 

it is defined by its intensity and its direction. The wind direction is tied to differences in 
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atmospheric pressure between two zones, since air masses move from high pressure 

towards low pressure zones. Because of the terrestrial rotation, the movement of air 

masses among zones with different atmospheric pressure does never follow a straight 

line, but tends to rotate. The force by which air masses move depends on the distance 

between high and low pressure and on the pressure gradient. At terrestrial surface 

level, local topographical characteristics can remarkably influence the anemometry, 

modifying wind direction and intensity. The more important examples of local winds, 

for which the general rule of air masses movement is not “respected”, are sea and 

earth breezes and streams moving along a steep side. Among the meteorological factors 

affecting the fire behaviour, the wind represents the most variable and important. 

Variations of wind speed and direction take place during all the day, with a greater 

variability during afternoon, when the atmospheric conditions are more unstable.  

During a fire, an air mass, named convective column, is produced; it tends to 

go up and its movement is regulated by the heat released from fire and by the thermal 

differences (in altitude) existing in loco: this is very important, because the events of 

big dimensions are able to originate their own meteorological conditions, and therefore 

they can “regulate” wind direction and intensity independently of the surrounding 

environment.  

The effects that wind can exercise on fire behaviour are various: 

- increase of the vegetation dryness, because of the increment of plant evapo-

transpiration and the decrease of atmospheric relative humidity; 

- increment of the oxygen flux and acceleration of the combustion process; 

- greater inclination of flames, with consequent better transmission of energy 

towards unburned fuels and in slopes; 

- greater possibility of ignition of spot fires, because of the ability to push up the 

particles in combustion towards the top of the convective column. 

Wind is a fundamental element for fire behaviour, since it regulates its rate of 

spread and intensity, it can allow flames to cross defensive barriers and it can facilitate 

the transition to crown fires. 

Atmospheric stability represents the resistance offered by atmosphere to the 

vertical movement of air masses. An unstable atmosphere favours the fire propagation, 

since it favours the motion of the combustion gases and the arrival of air masses from 

flanks, allowing fire to have a greater rate of spread: in these conditions, a fire can be 

very dangerous. On the contrary, when the temperature difference between air mass 

near the ground and air mass in altitude is limited, the air masses tend to return to 
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their departure positions: when the atmosphere has such a degree of stability, wildfires 

difficultly have a frightening behaviour. Generally, the conditions of maximum 

stability are recorded during the night, while phenomena of instability are recorded in 

the central hours of the day. 
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2222.3. .3. .3. .3. Fuel (Vegetation)Fuel (Vegetation)Fuel (Vegetation)Fuel (Vegetation)    

The vegetation is the fuel on which the fire propagates and determines in a 

meaningful way the fire characteristics, because the fuel influences the easiness of 

ignition, the fire intensity and spread rate, and the height of flames (Pyne et al., 1996). 

The vegetation is the most studied among all the elements involved in the fire 

propagation, and its knowledge represents a key element for the understanding of the 

fire behaviour. It is also true that vegetation is typically very heterogeneous and 

discontinuous, and this aspect makes it difficult to characterize. Among the 

environmental factors, vegetation represents the only element that management 

practices can directly modify or control (Finney, 2001; Pollet and Omi, 2002).  

    

2222.3.1. Fuel Properties .3.1. Fuel Properties .3.1. Fuel Properties .3.1. Fuel Properties     

The iiiintrinsic propertntrinsic propertntrinsic propertntrinsic propertiesiesiesies of fuels are defined by chemical characteristics, 

density, thermal conductivity and heat content.  

The chemical composition of a plant is the most important for its effects on the 

combustion process and the fire propagation. Vegetation is mainly constituted by water 

and polymeric organic and inorganic compounds: 

- water, which brakes the combustion;   

- cellulose and hemicellulose, main organic components of plants, are readily 

pyrolyzed; 

- lignin is transformed in char, and only limited amount can volatilize;  

- extractives (aromatic and aliphatic hydrocarbons, alcohols, aldehydes, sugars, 

gums, terpenes, waxes, oils), present in limited amounts, remarkably influence fire 

propagation and represent a large source of volatile combustibles, because of their 

volatility, high heat of combustion and low limit of flammability;  

- minerals (or ashes) have a suppression effect on fire. 

The chemical composition of the woody cells is approximately, in dry weight, 

41-53% cellulose, 15-25% hemicellulose, 16-33% lignin, and the remaining part is 

constituted by extractives and ashes (Pyne et al., 1996). The percentage of lignin 

increases, with respect to the other components, in decaying plants and tissues. The 

herbaceous vegetation has a greater content in extractives and a lower content in 

cellulose and lignin with respect to woody fuels. 
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The fuel heat content represents the heat released from a unitary fuel amount 

(completely oxidized). Usually each species has a characteristic heat content (ranging 

from 18000 to 22000 KJ Kg-1), but this value does not vary widely in forest fuels: the 

value of 18620 KJ Kg-1 is commonly used as standard.  

 

The eeeextrinsic propertiesxtrinsic propertiesxtrinsic propertiesxtrinsic properties of fuels are defined by fuel load, dimension and shape, 

compactness and arrangement.  

QUANTITY OR LOAD. The fuel load represents the ovendry weight of fuels for 

a unitary area, and is often expressed in t ha-1. The main advantage of expressing the 

vegetation load on dry weight basis, rather than in fresh weight, is to exclude the 

moisture content, generally variable, from fuels. Fuel load was also defined as measure 

of the potential heat that can be produced during a wildfire (Martin et al., 1989, 

Whelan, 1995, Pyne et al., 1996), since it represents the organic matter potentially 

involved in combustion. Such definition evidences that when the fuel load increases, 

also fire intensity and its dangerousness grow. Fuel load is variable, and is linked with 

the vegetation species: herbaceous plants are fuel type with lower load, while a greater 

fuel load can be found in logging slash areas (ranging from 70 to 450 t ha-1) (Pyne et 

al., 1996). The ground fuel load is often considered separately, and it is specified in 

terms of “duff” depth; duff is the organic soil layer composed of humus, decaying 

leaves, roots, and other organic matter in decomposition.  

SIZE AND SHAPE. Size and compactness of fuel particles regulate two 

important processes for the fire propagation: the heat transfer and the availability of 

oxygen for the fuel (Clar and Chatten, 1966). The fuel of smaller size has a better 

aptitude of ignition and facilitates the combustive process (Pyne et al., 1996). The 

energy necessary to remove water and to bring fine fuels to ignition temperature is 

inferior with respect to bulkier fuels. Fine fuels are essential to facilitate the fire front 

propagation. Moreover, with high presence of thin fuels, the ignition of new fronts 

with spot fires is more frequent. The size of the fuel particles is commonly defined by 

SAV, which indicates the ratio between surface area and volume of a particle, and it is 

expressed in cm-1 (cm2 cm-3). The smaller SAV ratio is, the more voluminous fuel 

particles are. SAV ratio is an important element to define the fuel characteristics, 

because it is correlated to the rates of change in fuel temperature and in moisture 

content. A close relationship between SAV and some fire behaviour parameters also 

exists. 



Fire Behaviour Description - 2. Environmental Conditions and Fires 

 24 

COMPACTNESS. The compactness represents the free spacing between fuel 

particles, and it defines the closeness of particles in the fuelbed. The compactness 

degree is tied to fuel load and depth, as well to particle dimensions. The packing ratio 

defines the fuelbed compactness, in terms of effective volume occupied by fuel. The 

bulk density is used in order to estimate the weight per unit volume of the fuel 

complex; the bulk density approximates the fuel porosity. When the fuel is compact, it 

is common to observe a slower fire spread rates (Biswell, 1989). Fuels with a smaller 

compactness react faster to moisture changes and have more oxygen for the 

combustive process.  

ARRANGEMENT. The arrangement includes the orientation of the fuel particles 

(horizontal or vertical) with respect to the ground, and the spatial relationship 

between particles (Pyne et al., 1996). Shrubs and grass are vertically oriented fuel 

types, while timber litter and logging debris are horizontally oriented. Fuel horizontal 

orientation influences fire behaviour and can represent a determining element for 

flame propagation. A typical example is constituted by the continuity of canopies for 

crown fires. Orientation on a vertical plan influences the vegetation interested by fire: 

the vertical structure of the fuel can support crown fires or only ground or surface 

fires.  

    

2222.3.2. Forest Fuel Layers.3.2. Forest Fuel Layers.3.2. Forest Fuel Layers.3.2. Forest Fuel Layers    

The vegetation is typically classified by considering the position of its elements 

with respect to a vertical plan (Pyne et al., 1996); besides, the vegetation is also divided 

in dead or live fuels (Clar and Chatten, 1966). Forest fuels are compounds of different 

particle sizes of live and dead vegetal matter, arranged in complexes with different 

components, named layers. Sandberg et al. (2001) proposed an interesting 

classification scheme for the vegetation. This classification subdivides the fuel in six 

horizontal fuelbed layers: tree canopy; shrubs and small trees; low vegetation; woody 

fuels; litter fuels; ground fuels. These layers constitute the fuel on which fire 

propagates. Each fuelbed layer is subdivided in one or more fuel categories in its turn, 

considering physiognomical characteristics (morphological, chemical and physical 

characteristics), fuel availability and combustion characteristics.  

To simplify, in my work the most common distinction for the fuelbed is 

described. Fuels are divided into (Figure 3): 

- ground fuels; 
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- surface fuels; 

- crown or aerial fuels. 

  

Figure 3. Fuel components categorized according to ground, surface, crown fuels (from 
Barrows, 1951) 

 

GROUND FUELS. In this category roots, humus and material in decomposition 

on the ground (from the tiniest to tree logs) are included (Pyne et al., 1996; Sandberg 

et al., 2001). The ground layer in which humus and material in decomposition lie is 

named “duff”. In the top of the duff, needles, leaves and other castoff vegetation 

material in the first phases of decomposition are present; these elements are typically 

bounded by fungal mycelium. The bottom of the duff is represented by mineral soil. 

The ground fuels are generally compact. 

SURFACE FUELS. Surface fuels represent the more studied fuelbed layer, since 

most fires originate and propagate on this component (Pyne et al., 1996). Small trees, 

with maximum height of 2-3 m, shrubs, herbaceous vegetation, litter, woody residues 

of slash, are included in surface fuels. The surface component of the vegetation is 

generally not compact. The fire behaviour is different according to the characteristics 

of the surface fuelbed, depending on whether we consider the fire propagation only in 

litter, in grassland or in areas with shrubs and trees. 
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CROWN (OR AERIAL) FUELS. In this category tree crowns and shrubs with 

height over 2 m are included (Pyne et al., 1996). Except some particular cases, the 

aerial vegetation is largely constituted by biomass, with high moisture content: 

therefore the crown tree burns only if the heat released by the fire is maintained for 

long time or if the flames burn directly the crowns. So that the flames may arrive at 

the canopy, the presence of a layer of shrubs and small trees is necessary, in order to 

eliminate the gap between surface and aerial layer. The layer of small trees and shrubs, 

in this case, is defined ladder fuel. It is important to estimate aerial vegetation, because 

a crown fire cannot develop without it (Van Wagner, 1977). 

    

2222.3.3. Fuel Moisture.3.3. Fuel Moisture.3.3. Fuel Moisture.3.3. Fuel Moisture    

The amount of fuel available for the combustion process is linked with the 

amount of water in the vegetation (fuel moisture) (Pyne et al., 1996). In order to ignite 

a fuel, it is necessary to induce the water evaporation from tissues. The heat that must 

be supplied to remove water from vegetation is proportional to the moisture content. 

The fuel moisture is the result of the cumulative effects of past and present weather 

conditions; to this amount, the effect exercised by biological processes on biomass must 

be added. The fuel moisture varies in space and in time, sometimes also rapidly and 

within a single fuel element: this effect influences unavoidably the fuel flammability 

(Biswell, 1989). The fuel moisture content (FMC) is expressed in percentage, using as 

reference the dry weight, and it is calculated as: 

dry

drywet

M

MM
FMC

−
=              (2) 

The FMC is defined by per cent ratio between the water weight of the fuel 

sample and the weight of the same material dried up in stove; the water weight can be 

obtained by difference between the beginning weight of the fuel (Mwet) and its dry 

weight (Mdry). 

 

DEAD FUEL MOISTURE. The amount of water in the fuel particles change 

continuously, depending on the humidity of the environment. The gain in moisture of 

the dead fuel is related to the action of liquid water and water vapour; the fuel drying 

is instead tied to evaporation (Pyne et al., 1996). Dead fuel moisture is influenced by 

all three legs of the fire environment triangle: weather, fuel and topography. As for the 
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effect of vegetation, the most important elements are fuel composition (needles, leaves, 

duff, etc.) and size, as well as location; also the presence of some superficial layers, i.e. 

cortex or waxes, affects the dead fuel moisture. The location of the dead fuel is another 

important factor: ground dead fuel has a higher average moisture content and a more 

limited water content variability with respect to dead fuel laying in surface. 

Precipitations, wind, solar radiation, temperature and atmospheric humidity influence 

the dead fuel moisture. Solar radiation, in general terms, represents the meteorological 

factor that mostly affects the dead fuel moisture, influencing its temperature; its effect 

varies on hour, day, month, slope, aspect, latitude. Wind can have both a drying and a 

wetting effect. 

 

A feature used to express the dead fuel moisture is the equilibrium moisture 

content (EMC), which defines the moisture content value if the fuel is exposed, for an 

infinite length of time, to constant atmospheric conditions of humidity and 

temperature (Pyne et al., 1996). In nature it is very rare to have constant atmospheric 

conditions, so EMC is useful to confront measures obtained on different fuels. 

 

Dead fuel is classified according to the time fuel takes to reach the equilibrium 

with humidity variations in atmosphere. Timelag, or response time, is defined as the 

time required for dead fuel to lose about 63%∗ of the difference between its initial 

moisture content and EMC, in constant conditions of humidity and temperature. 

Timelag is generally expressed in hours. Each fuel is characterized for having a 

defined timelag. The average timelag interval varies especially in relation with the 

dead fuel size. Fuels are grouped, by considering their timelags, into four categories: 

lower than 2 hr, from 2 to 20 hr, from 20 to 200 hr, greater than 200 hr. An 

equivalent dead fuel diameter class corresponds to these four categories of average 

timelag (Table 1). 

Table 1. Dead fuel timelag and diameter class 

Dead Fuel TimelagsDead Fuel TimelagsDead Fuel TimelagsDead Fuel Timelags    Dead Fuel Diameter ClassDead Fuel Diameter ClassDead Fuel Diameter ClassDead Fuel Diameter Class    
1 hr (0-2 hr) 0-0.25 inches - 0-0.6 cm 
10 hr (2-20 hr) 2.5-1 inches - 0.6-2.5 cm 

100 hr (20-200 hr) 1-3 inches - 2.5-7.6 cm 
1000 hr (> 200 hr) > 3 inches - > 7.6 cm 

 

                                                

∗
 this value is obtained by the calculation: 








−
e

1
1 , where e is Nepero’s number (a constant value 

approximately equal to 2,718). 
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LIVE FUEL MOISTURE. The influence that live fuel exercises on fire can be 

positive, since biomass supplies an additional source of energy during combustion, or 

negative, because it is necessary to supply more energy for the fuel ignition and for the 

water evaporation, and this can retard the fire propagation and intensity. Unlike the 

dead fuel moisture, linked with meteorological conditions, the biomass presents 

seasonal variations in moisture connected with physiological and phenological 

processes of plants. The moisture content of leaves in many fuel types varies 

remarkably during the year, and it is regulated above all by the weather conditions 

and the pheno-physiological characteristics of plants. In herbs, the minimum moisture 

content coincides with the plant death. In shrubs and in deciduous tree species the 

minimum level of leaf moisture is recorded before leaves fall. In shrub and evergreen 

species, because of the continuous presence of leaves, the minimum leaf moisture value 

is higher than the value of other plants. The fluctuation of the leaf moisture content is 

characterized by a series of irregularities: such an irregular trend is common for the 

herbaceous species, which are very sensible to short period and seasonal 

meteorological conditions. 

    

2222.3.4. Fuel Classification.3.4. Fuel Classification.3.4. Fuel Classification.3.4. Fuel Classification    

The variability of the vegetation requires the use of classification systems that 

supply accurate descriptions for the different fuelbed types. In the last years, various 

classification systems have been proposed. The most important are presented below. 

The fuel classification system by direct estimation recurs to a subjective opinion 

executed by a specialist who has matured experiences with wildfires on similar parcels 

(Chandler et al., 1983). This procedure has been created by U.S. Forest Service around 

1930 (Hornby, 1936). The fuel was rated into categories, based on the fire spread rate 

and on the resistance to control, in “normal” meteorological conditions. The main 

problem of this system is not the subjectivity, but that the fire behaviour for a defined 

vegetation type in normal meteorological conditions can be completely different from 

severe or low risk conditions. This method has been the official fuel classification 

system in USA until about 1970. 

The fuel classification system by plant communities uses specific silvicultural 

and ecological nomenclature and fire behaviour definition for each category by 

considering historical data and expert opinions (Chandler et al., 1983). This system 

has the advantage of being flexible and understandable. A valid method has been 
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proposed by Trabaud (1974, 1978) for Southern France, and it consisted in 

considering both floristic and physical features of plant communities. The first step 

was the calculation of the relative proportion of trees, shrubs and herbs; therefore the 

volume occupied by each class was estimated to characterize phytomass; at last, since 

some stands may be physically similar but can have different combustion 

characteristics, they were typed by 2-3 dominant species. One of the disadvantages of 

this classification system is that the production of a vegetation map may be very 

subjective, so an area can be typed using different classification schemes according to 

authors; moreover, if the classification system is narrow, the fire behaviour 

information results expensive and time-consuming (Arno and Sneck, 1977). 

Some fuel classification systems by dichotomous keys have been developed. 

They were based on blowup potential (Wendel et al., 1962), on rate of spread, or on 

crowning potential (Fahnestock, 1970; Chandler et al., 1979). This classification 

system has some points of strength, which are, at the same time, also weakness 

elements. In fact the choices are subjective, and only experts can be able to correctly 

classify the vegetation using dichotomous keys. 

The fuel classification system by fuel models is very important. A fuel model is 

a mathematical representation of the surface fuels, with all the variables necessary to 

calculate the main characteristics of the fire behaviour, in particular the spread rate 

and the fireline intensity (Deeming, 1975). Therefore, a fuel model can be defined as a 

complete set of fuel inputs for mathematical fire spread model (Rothermel, 1972). A 

fuel model represents all vegetation types whose characteristics (load, SAV ratio, etc.) 

are equivalent to those of the same fuel model. Since a fuel model is not based on 

floristic parameters, but on physical parameters of the fuelbed, a single fuel model can 

represent a wide variety of fuel types (Chandler, 1983). Moreover, unlike other fuel 

classification systems, the fire behaviour characteristics can be easily computed over 

the full range of meteorological and topographical conditions. To these advantages, 

some negative elements can be opposed: the validation of the fuel models is difficult 

and expensive (Bevins and Martin, 1978), and moreover a purely mathematical 

representation does not “illustrate” perfectly the fuel types present on landscape. 

 The fuel classification system by photographic guides combines the 

approaches based on the use of plant communities and fuel models (Chandler et al., 

1983). With this system, small plots are selected as representative of defined fuel types; 

after some adequate photographs on the studied vegetation, the fuel characteristics are 

described. Subsequently, the plots are dissected in sections and all fuelbed 
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characteristics, necessary to define the fuel model, are measured. At present, the most 

used classification system in the world is the one based on photographic guides 

summarized by fuel models: various examples of vegetation classification obtained 

with this system are available in literature (Albini, 1976; Deeming et al., 1977; 

Anderson, 1982; Cruz, 2005; Scott and Burgan, 2005; etc.). The main problem of the 

classification system by photographic guides is tied to high costs (Chandler et al., 

1983), since the work of many persons at the same time is necessary; it must be added 

that this methodology is complex and time-consuming.  

In the last years, the definition of the different fuelbed classes is mainly 

obtained with information derived by ground sampling, remote sensing and aerial 

photography imagery, and ecological gradients analysis.  
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3333. . . . Fire Fire Fire Fire GrowthGrowthGrowthGrowth Phases Phases Phases Phases    

During a fire it is possible to distinguish some potential phases of growth or 

evolution: these phases take place in chronological order. Emmons (1966) created a 

classification of the fire growth phases, proposing the distinction of six main potential 

phases during a spreading fire: ignition, build-up, stationary equilibrium, decay, flame 

extinction and cooling of residues until they reach ambient temperature. More 

recently, André (1996) suggested the distinction of eight potential development phases: 

1) IgnitionIgnitionIgnitionIgnition. It is the beginning phase of each fire and brings forest fuel to a 

condition of “self-supported” propagation of the flame front.  

2) BuildBuildBuildBuild----upupupup. The fire reaches the propagation regime named stationary or 

semi-stationary. The fire spread acceleration is positive, but it tends to decrease 

asymptotically in time until it becomes null. 

3) Full Development of Fire RegimeFull Development of Fire RegimeFull Development of Fire RegimeFull Development of Fire Regime. The fire is fully developed and it assumes a 

stationary or nearly-stationary behaviour, mainly determined by environmental 

conditions and by fuels. The phase of full development interests the most of the fire 

duration. In this phase all the possible fire behaviours can be present, so the studies are 

concentrated in particular on this third phase. 

4) PossiblePossiblePossiblePossible Transition to a New Spread Regime Transition to a New Spread Regime Transition to a New Spread Regime Transition to a New Spread Regime. Some fires can present a fourth 

development phase, during which a transition of the spread regime can be possible: 

the transition is induced by meaningful changes of vegetation, topography, and/or 

meteorological conditions. This phase is generally very fast, because of the strong and 

not linear effects that are involved. Among the most important regime transitions, the 

passage from moderate surface fires to “blow-up”, which takes place during big fires 

burning trees or shrubs, can be mentioned. 

5) DecayDecayDecayDecay. The fire reaches an unstable phase of decay when environmental 

conditions change (increment of fuel moisture, onset of opposite winds, etc.), reducing 

the spread of fire. Although in this phase the fire has a not stationary behaviour, for 

short intervals a nearly-stationary spread regime can be recorded: this regime belongs 

to a specific class of fires, named marginal fires (André et al., 1992). 

6) FlameFlameFlameFlame    ExtinctionExtinctionExtinctionExtinction. The previous phase of decay is followed by the flame 

extinction, for flaming fires.  

7) Smoldering CombustionSmoldering CombustionSmoldering CombustionSmoldering Combustion. The phase of smoldering combustion occurs 

immediately after the sixth phase, and protracts until the extinction of the smoldering 

combustion regime. The smoldering combustion is characterized by: 
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- combustion of the fuelbed particle surface, reduced to coal; 

- very limited oxygen demand; 

- fuel consumption rate very low and, therefore, high residence time (Chandler 

et al., 1983). 

8) Cooling of Combustion ReCooling of Combustion ReCooling of Combustion ReCooling of Combustion Residuessiduessiduessidues. In this last phase, the combustion residues 

cool until they reach ambient temperature.  

 

Therefore, like organisms, the wildfires have an origin and a growth phase; 

they can reach “maturity”, decay and finally die (Viegas, 2005a) (Figure 4). These 

potential fire phases can be observed, during a wildfire, at different time or in different 

sites at the same time. 

  

Figure 4. The fire evolution: ignition, growth and extinction (adapted from Viegas, 2005a) 
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4444....    Fire Propagation RegimeFire Propagation RegimeFire Propagation RegimeFire Propagation Regimessss    

The fire propagation regime refers to a defined typology of stationary or 

nearly-stationary wildfire behaviour. Observations of real fires and laboratory and 

field experiences have demonstrated that various regimes of fire propagation exist, and 

that among these regimes remarkable qualitative differences can be found. However, 

for short periods, during a fire, some not stationary phases are also recorded, for 

example during build-up or decay phases. Four criteria of classification of the fire 

regimes exist, based on (André et al., 2006): 

a) the combustion regime in the fire front (Kanury, 1976): it can be 

distinguished into regimes without flames, with glowing or smoldering combustion, or 

regimes with flames, with flaming combustion;  

b) the type of forest fuels in which the fire front spreads: this classification 

divides fires into ground, surface and crown fires (which are either free or dependent 

on surface fires) (Brown and Davis, 1973); 

c) the sensitivity of the fire response to a change in a given input parameter of 

fuelbed or environment; 

d) the order of magnitude of values of some properties of the fire front, such as 

rate of spread (slow and fast fire regimes) or fireline intensity (low, medium and high 

intensity fire regimes). 

Among these four classes of fire regimes, certainly the most known 

classification criterion is the second one. 

    

4444.1. .1. .1. .1. Surface FireSurface FireSurface FireSurface Firessss    

Surface fires interest litter, trees of small dimensions, shrubs and herbaceous 

biomass, and dead fuel accumulated on the ground surface (DeBano et al., 1998). 

During its propagation, a surface fire can provoke the ignition of dead trees lying on 

ground, can destroy vegetation, and can cause “torch out” of big trees with dense 

foliage and vertical continuity between terrain surface and canopy. A fire is named 

surface fire until its rate of spread depends only on surface fuel: when other 

mechanisms take place, as for example spotting or crown fires, the fire propagation 

regime cannot be defined as surface regime, even if it interests also that specific 

vegetation. Being the most diffuse regime, as well as the most important in 

Mediterranean areas, numerous studies are focused on this topic. All the following 
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treatment of the fire models will make reference to surface fires; so a detailed 

treatment of this fire type will be presented later on. 

    

4444.2. .2. .2. .2. Ground FiresGround FiresGround FiresGround Fires    

Ground fires are typical in zones where a deep organic soil layer is present, in 

areas with accumulations of organic matter, in its several states of decomposition. 

These fires interest all the organic matter in the organic layer, so the most affected 

elements are duff and roots. Since the ground fuels are compact, the ground fires 

propagate with a very low spread rate, and in most cases the combustion is without 

flames. The ground fires are persistent, difficult to control and expensive to extinguish, 

both in economic and time terms. The ground fires, perhaps because of their limited 

intensity (the combustion regime without flame is less energetic than surface or crown 

fires), are not object of many researches, even if they have some characteristics (André 

et al., 1992): 

- they are probably the most toxic, because of the incomplete character of 

pyrolysis reactions and of glowing combustion (Kanury, 1976); 

- they are difficult to detect; 

- they are the most harmful for the organic soils (loss of organic matter, 

erosion, soil element volatilization) (Hungerford et al., 1991). 

    

4444.3. .3. .3. .3. Crown FiresCrown FiresCrown FiresCrown Fires    

The spatial continuity and the canopy density, together with the environmental 

conditions (in particular wind), supplies the necessary conditions to the propagation of 

intense fires able to burn the tree crowns in wooded zones (Graham et al., 2004). A 

surface fire can become a crown fire in relation with the surface fire intensity and 

with some crown characteristics (Van Wagner, 1977; 1993). Crown base height, 

crown bulk density and crown continuity are typical elements of a forest structure that 

influence the crown fire ignition and propagation (Albini, 1976; Rothermel, 1991) 

(Figure 5). 

The crown base height, the height to which crown begins, is important because 

it influences the transition to crown fires. With limited crown base height, the crown 

fire ignition, from a surface fire, is easier. The crown continuity is hard to quantify. 
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Low uniformity reduces fire propagation inside tree crowns. The crown bulk density 

represents the crown weight for a defined volume, and varies considerably inside a 

forest. 

 

Figure 5. The main crown parameters influencing crown fire (from Finney, 2007) 

 

Two categories of crown fires can be distinguished: active or passive (Van 

Wagner, 1977). To these categories a third one can be added: independent crown fires 

(Finney, 1998) (Figure 6). 

 

 

Figure 6. The three crown fires typologies (from Finney, 2007) 

 

In order to distinguish the first two crown fires typologies, a comparison 

between the actual crown fire spread rate and the critical rate for transition to an 

active crown fire is necessary: if the value of crown fire spread rate exceeds or not the 

threshold value, fires are respectively distinguished into active or passive. The 

independent crown fires are so defined because they are not dependent on surface 

fires, unlike other two types; in these circumstances the crown fire precedes the arrival 

of the surface fire. There is an important difference between active and passive crown 
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fires. For the first, the rate of spread remains equal to the surface fire rate of spread, 

but the intensity of the fire front and the flame length increases; for passive crown 

fires, the rate of spread is higher with respect to the surface fires, as also the intensity 

of the fire front and the length of flames. 

 

Another classification distinguishes crown fires into wind-driven fires and 

plume-dominated fires (Rothermel, 1991). If the wind intensity is higher than the 

energy of the fire convective column, a wind-driven crown fire will develop (Figure 

7). The wind speed profile will show an increment of intensity with height: therefore, 

the wind will push the fire spread and it will orient the direction of the convective 

column according to the wind direction (Pyne et al., 1996). These crown fires are 

characterized by showers of sparks and embers, and by high probabilities of spotting 

fires ahead of the flaming front. 

 

Figure 7. Wind-driven crown fire (left) and plume-dominated crown fire (right) (from 
Rothermel, 1991) 

 

A fire in which a convective column develops vertically over the fire front is 

instead a plume-dominated crown fire (Figure 7 and Figure 8). Some researchers 

suppose that in these cases strong turbulent flows take place; these flows move towards 

the bottom and promote the combustion process. The increment of the fire turbulence 

and intensity increases, in their turn, the heat transfer by radiation and convection, 

with an acceleration of the spread rate. This process can explain why, in some fires, 

rates of spread unexpectedly elevated can be observed, regarding anemometric 

conditions (Pyne et al., 1996). 
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Figure 8. Hayman wildfire convective column (from Graham et al., 2004) 
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4444.4. .4. .4. .4. Extreme Extreme Extreme Extreme FireFireFireFire    Behaviour Behaviour Behaviour Behaviour     

Some fires are very dangerous because they can assume extreme behaviours, 

exceeding the “normal” characteristics recorded in most fires (Pyne et al., 1996). The 

extreme fire behaviour occurs on a small percentage of fires, but has major effects: it is 

estimated that 10% of the fires in southern California account for over 90% of the 

burned area (Minnich, 1998). Therefore, although few fires can manifest so dangerous 

behaviours, their study is important: a fire with these characteristics can provoke huge 

damages and problems for safety and for control and suppression interventions. 

 

The crown fires have already been discussed in the previous pages. Such events 

develop with other peculiar phenomena, among which the most important are 

horizontal roll vortices, spotting and fire whirls. 

 

The horizontal roll vortex is a very extreme event where rotating air moves 

horizontally, driven by strong winds. Really, the crown fires sometimes do not burn 

completely all the vegetation inside the burned perimeter: some cases in which 

unburned forest fuel was concentrated on elongated strips, called streets (Figure 9), 

have been signalled (Pyne et al., 1996).  

 

Figure 9. Tree crown streets resulting from Sioux Lookout Fire, USA, 1979 (from Haines, 1982) 

 

This fact has suggested that during a crown fire warm air flows can develop, 

from the convective column towards the vegetation, provoked by horizontal roll 
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vortices, which kept fire (and therefore flames) out of the crowns, creating such strips 

(Haines, 1982; Haines and Smith, 1987). The horizontal roll vortices move 

horizontally (this fact explains the horizontal strips), until the dissipation and the 

formation of other vortices, originated as result of the fire expansion. 

 

A fire is named spotting fire when firebrands or pieces of burning materials 

are carried beyond the burning zone and provoke new ignitions in the landing points, 

originating spot fires (Clements, 1977; Albini, 1979; Pyne et al., 1996) (Figure 10 and 

Figure 11). Spotting is an important mechanism for the fire growth, with which in 

extreme conditions new flame fronts can start kilometres in front of the departure 

point of firebrands. The spot fire distance is primarily tied to wind speed and fire 

intensity (Morris, 1987), whereas the spot fire density mainly depends on the 

characteristics of the potential firebrand for a given fuel type (quantity, shape, size, 

particle density, etc.) (Alexander, 2000). 

 

Figure 10. New fire front originated by firebrands in Cume, Portugal, 2002; the distance from 
the main fire front was approximately 850 m (Rossa, 2007) 

 

As for spotting fires some features are fundamental (Pyne et al., 1996): 

a) source of firebrands; 

b) type, size and number of firebrands produced; 

c) distance that firebrands are carried and means of transport; 

d) ignition of spot fires. 
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The forest fuels able to originate burning firebrands are various: among the 

most important, pinecones, herbaceous plants tufts, pieces of bark, twigs, moss. To be 

effective, a firebrand must continue to burn during the flight transport and it must 

supply sufficient heat source when it lands. Small firebrands can cover great distances, 

but they often land already extinguished or with limited chance to originate spot fires; 

on the contrary, bigger firebrands usually travel shorter distances, but, when they 

land, they may stay ignited longer than smaller embers, and consequently new fire 

fronts can originate. 

Although it is a phenomenon associated with crown fires, spotting is possible 

also with surface fires, in extreme environmental conditions. In general terms, the 

greater fire intensity is, the more important spotting (and consequently ignition of spot 

fires) is. 

 

Figure 11. An illustrative scheme of spotting fires (from Finney, 2007)  

 

A fire whirl is a vortex, a gas mass with rotational motion (Pyne et al., 1996). 

Fire whirls can greatly vary in size, strength and duration: most of them are small, but 

sometimes a fire whirl with destructive strength and size can develop. Usually the fire 

whirls develop near the ground, but occasionally they can develop above ground and 

then extend down, like a tornado. The formation of the fire whirls is linked with the 

rise in columns of the air heated by fire: some columns develop a strong rotational 

motion (Pyne et al., 1996). The fire whirl formation increases significantly the 

combustion rate, which in its turn increases the fire intensity and the fuel 

consumption. To these elements, the generation of high intensity winds, which allow 



Fire Behaviour Description - 4. Fire Propagation Regimes 

 41 

the fire whirl to transport firebrands, must be added, increasing therefore the ignition 

of spot fires. 
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5555. . . . Main ChaMain ChaMain ChaMain Characteristicsracteristicsracteristicsracteristics    of of of of FireFireFireFiressss    

    

5555.1. .1. .1. .1. Shape and Parts of FireShape and Parts of FireShape and Parts of FireShape and Parts of Firessss    

The shape assumed by wildland fires is strongly tied to the environmental 

conditions in which fires spread. The studies demonstrated that, for surface fires, there 

is a connection among propagation, wind direction and slope. It is also verified that a 

fire assumes more oblong shapes as wind intensity and slope become higher. In order 

to describe the shape assumed by fire, as a result of a single ignition point, the 

elliptical shape is often used (Pyne et al., 1996): the more the environmental conditions 

keep uniform, the more the shape tends to be elliptical. 

In a surface fire it is possible to distinguish a series of “anatomical parts” that 

univocally characterize it (Alexander, 2000) (Figure 12). 

 

Figure 12. Anatomical parts of a fire (from Alexander, 2000) 

 

In particular, three regions can be evidenced, in relation with the orientation 

of the edges with respect to the main wind direction and the rate of spread: 

- heading fire; 

- backing fire; 

- flanking fire. 

 
The heading fire represents the front zone of fire, and it is the zone with the 

most elevated propagation rate. The heading fire is the part that more directly moves 

towards vegetation not burned yet, under the effect of wind and, eventually, 
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topography. In extreme conditions, above all when the wind intensity is very strong, 

the heading fire cannot operate combustion efficiently, releasing dense and black 

smoke and leaving a part of vegetation partially burned. 

The backing fire represents the back area of fire, and it is the one with the 

most limited propagation rate. The flames, because of the effect of wind or slope, are 

inclined towards the vegetation already burned, and can provoke the ignition of the 

fuel backwards: therefore the backing fire propagates upwind and/or counterslope. It 

is for this reason that its propagation rate is so limited and operates independently of 

the main environmental factors. Unlike heading fire, combustion is often complete and 

efficient, and there is a smaller release of smoke and the production of small ash 

residuals, above all for some type of vegetation. 

The flanking fire is represented by the lateral parts of fire: the flanks of flames 

are disposed parallel regarding the main wind direction. The flames are inclined along 

the fire flanks, and because of the changing direction of wind they can sometimes 

originate heading or backing fire. Therefore, the flanking fire assumes intermediate 

characteristics between backing and heading fire. 

    

5555.2. .2. .2. .2. Main Elements of Fire FrontMain Elements of Fire FrontMain Elements of Fire FrontMain Elements of Fire Frontssss        

In a surface fire, some parameters are useful in order to obtain important 

information for the description of the fire front. The main elements used to describe a 

fire front are: flame height; flame length; flame angle; flame depth. 

The flame height is the vertical distance that continuous flames extend above 

the fuelbed (http://www.ffp.csiro.au) (Figure 13); moreover it is used in the equations 

on crown fire transition (Van Wagner, 1977; Cruz et al., 2006). The measure of this 

feature is not simple, because of its variability: it is easy to record the height of flames 

in single observations, but it is difficult to define an average value. The flame height is 

generally evaluated observing the average maximum height of continuous flames in a 

unit of time (commonly a minute) and for a defined distance on fire perimeter (10-

15 meters). 

The flame length (Figure 13) is used to describe fire intensity and difficulties 

for the suppression operations (Alexander, 1982), and it is the distance from the base 

of the flaming zone to the top of continuous flames. It is a difficult feature to estimate 
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in field, because of wind, fuels and fire behaviour changes, and because the observer 

may be standing at an angle to the fire front (parallax error). 

 

Figure 13. Length, height and angle of flames 

 

The flame angle (Figure 13) represents the angle between the ground and the 

average flame around the flaming zone. This feature is strongly influenced by the wind 

on fire front and by the convective column. 

The flame depth (Figure 14) constitutes the distance between the fire front and 

the backing fire zone, characterized by the presence of continuous flames. Therefore, 

the depth of flames is difficult to estimate for big fires. Such parameter is tied to the 

spread rate and to the residence time of flames∗, and it is a useful indicator because it 

supplies the information about type and amount of burned fuel. 

 

Figure 14. Flame depth 

    

5555.3. .3. .3. .3. Fire Spread and IntensityFire Spread and IntensityFire Spread and IntensityFire Spread and Intensity        

During a fire, some features allow to quantify intensity and easiness of fire 

spread (Pyne et al., 1996). The range of these fire characteristics is very wide, 

                                                
∗
 time of residence indicates the time during which the flames stay over a particular point in the 

fuelbed 
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considering that fire intensity and rate of spread can assume different values 

depending on cases. 

 

The rate of spread (ROS) defines the rapidity of the fire propagation and 

measures the distance covered by the fire (from any particular point of the fire 

perimeter, in perpendicular direction to perimeter) during a defined time. Since the 

environmental conditions are in continuous evolution and change in time and in 

space, the spread rate represents the average value recorded in the unit time. The fire 

zone with the most elevated propagation rates is the heading fire, while the one with 

the most reduced values is the backing fire; the flanks of fire have intermediate ROS 

(Catchpole et al., 1992). The fire rate of spread is influenced in large measure by two 

elements: wind intensity and slope: if a fire moves in the same direction of wind and 

slope, the spread rate can reach elevate values. Also fuel influences the propagation 

rate, in particular, for surface fires, with the fine dead fuel (1 hr). Spread rate is 

measured in the heading part of a fire. It can vary from a minimum of 1.5 m h-1 (the 

inferior limit of spread for a fire burning surface fuels), to beyond 20 km h-1 in areas 

with grass fuel (Alexander, 2000). 

The fire intensity defines the heat released by a fire per unit time (Pyne et al., 

1996), and it is a valid measure to define the difficulty of containing a wildfire 

(Alexander, 2000). In order to calculate fire intensity, various modalities exist (Byram, 

1959; Rothermel, 1972; Andrews et al., 2005). 

The reaction intensity is much used. It defines the energy release rate, that is 

the energy produced per unit time from a unitary surface in the flaming zones, 

expressed in J min-1 m-2∗, or W m-2. The heat for unit area represents instead the 

energy produced from a unitary surface in a period of time in which the flaming zone 

is on a defined area, and it is measured in W or J m-2. Another useful parameter is the 

fireline intensity, which defines the energy released per unit time from a strip of 

unitary length extended from the heading part to the back of fire, and it is measured in 

W m-1. The observed values of fireline intensity vary from 10 kW m-1 (the observed 

minimum value during flaming combustion) till values of 105 kW m-1, during 

extreme fire behaviour (Alexander, 2000). 

A detailed treatment of the equations defining fire spread and intensity is 

presented in the next chapters. 

                                                
∗
 (1 W = 1 J s

-1
)  
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The fire behaviour simulation systems are software applications which are 

capable to supply information and data on both the simulated fire perimeter and the 

main parameters related to the fire spread and behaviour; in addition, a graphical or 

tabular visualization of fire parameters is usually provided.  

A fire simulation system is constituted by two elements (Albright and Meisner, 

1999): (1) a fire prediction model, which represents the core of the simulator, and 

simulates the fire propagation by considering the environmental conditions, and (2) a 

fire simulation technique, by means of which the parameters describing the fire spread 

and behaviour are compounded along the landscape. 

In the last decades, a broad range of fire simulators was realized by researchers 

(Table 2), using different fire prediction models and simulation techniques. In relation 

to the fire prediction model, the semi-empirical and empirical approach is most 

appropriate for the incorporation into a wildland fire calculation system for 

operational intended uses, training or real time simulation purposes (Johnston et al., 

2005). At present, the alternative approach based on physical models is limited to the 

description of chemical and physical processes during the fire combustion and spread. 

By considering the various characteristics of the fire prediction models and the 

fire simulation techniques, it is possible to evidence the differences among the fire 

simulation systems, and also to estimate the similarities. 

Most of the fire simulators are mathematical, and they are based on 

Rothermel’s semi-empirical fire prediction model (1972) as incorporated into the 

BEHAVE Fire Behaviour Prediction and Fuel Modelling System (Andrews, 1986). 

Differences among simulators include the integration of procedures, the treatment of 

fire extinction and fire effects, and the incorporation of other methodologies for 

obtaining secondary fire behaviour parameters or meteorological variables (Pastor et 

al., 2003). The BEHAVE software was developed in the eighties by the United States 

Department of Agriculture and Forest Service, and it was based on Rothermel’s studies 

(1972). This software permitted the evaluation of some fire behaviour parameters like 

the rate of spread or the fireline intensity of surface fires, by considering the 

environmental conditions. In the latest version of BEHAVE (Andrews et al., 2005), 

crown and spot fire modules have been implemented; in addition, the graphical 

interface has been improved. Other fire behaviour simulator systems have been 

developed in many other Countries (Australia, Canada, etc.) in the following years.  
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Table 2. The main fire behaviour simulation systems (from Pastor et al., 2003)∗ 

NAMENAMENAMENAME    COUNTRYCOUNTRYCOUNTRYCOUNTRY    AUTHORSAUTHORSAUTHORSAUTHORS    MAIN CHARACTERISTICSMAIN CHARACTERISTICSMAIN CHARACTERISTICSMAIN CHARACTERISTICS    

BURN United States Veach et al. (1994) SFM Rothermel 
Cellular simulation 
technique (cellular 

automaton) 

CARDIN Spain 
Martìnez Millàn et 

al. (1991) 
SFM Rothermel 

Cellular simulation 
technique 

DYNAFIRE United States 
Kalabokidis et al. 

(1991) 
SFM Rothermel 

Cellular simulation 
technique (cellular 

automaton) 

EMBYR United States 
Hargrove et al. 

(2000) 
SFM Hargrove 

et al. 

SM Albini; Cellular 
simulation technique 
(bond percolation) 

FARSITE United States Finney (1994) 
SFM Rothermel 
CFIM Finney 

SM Albini; Wave 
simulation 

technique; CFSM 
Scott and Reinhardt 

FIREGIS Portugal 
Almeida et al. 

(1997) 
SFM Rothermel 

Cellular simulation 
technique (cellular 

automaton) 

FIREMAP United States 
Ball and Guertin 

(1992) 
SFM Rothermel 

Cellular simulation 
technique (cellular 

automaton) 

FIRESTATION Portugal Lopes et al. (1998) SFM Rothermel 
Cellular simulation 

technique 

GEOFOGO Portugal 
Vasconcelos et al. 

(1998) 
SFM Rothermel 

Cellular simulation 
technique 

INTEGRATED 
INFLAME SOFTWARE 

SYSTEM 

European 
Union 

Viegas (2000) 
Viegas et al.; 
Marguerit and 
Guillaume 

Cellular simulation 
technique 

MEFISTO-AIOLOS-F Greece 
Lymberopoulos et al. 

(1996) 
SFM Croba et al. 

Cellular simulation 
technique 

PFAS Canada Anderson (2002) 
SFM Forestry 
Canada Fire 
Danger Group 

CFSM Forestry 
Canada Fire Danger 
Group; Cellular 

simulation technique 

PROMETHEUS Canada 
Canadian Wildland 
Fire Growth Model 
Project Team (1999) 

SFM Forestry 
Canada Fire 
Danger Group 

CFSM Forestry 
Canada Fire Danger 

Group; Wave 
simulation technique 

PYROCART New Zealand Perry et al. (1999) SFM Rothermel 
Cellular simulation 

technique 

SIIF TRAGSATEC Spain Alvarez (1996) SFM Rothermel 
Cellular simulation 

technique 

SIROFIRE Australia 
Coleman and 
Sullivan (1995) 

SFM McArthur 
Wave simulation 

technique 

SPARKS Switzerland Schöning (1996) SFM Rothermel 
Cellular simulation 

technique 

SPREAD Portugal 
Mendes-Lopes et al. 

(2000) 
SFM Rothermel 

Cellular simulation 
technique (cellular 

automaton) 

WILDFIRE Canada Wallace (1993) 
SFM Forestry 
Canada Fire 
Danger Group 

CFSM Forestry 
Canada Fire Danger 

Group 
SFM = surface fire model; CFIM = crown fire ignition model; CFSM = crown fire spread model; 

SM = spotting model 

 

                                                
∗
 Johnston et al. (2005) added to this list the fire behaviour system proposed by Vakalis et al. 

(2004a; 2004b). 
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6666. . . . Fire Prediction Models and Their ClassificationFire Prediction Models and Their ClassificationFire Prediction Models and Their ClassificationFire Prediction Models and Their Classificationssss    

The fire prediction models are tools that are able to simulate the fire behaviour 

using site-specific data such as weather, terrain, and fuel type and conditions (Albright 

and Meisner, 1999). The fire prediction models are generally composed of a collection 

of equations, the solution of which gives numerical values for spatial/temporal 

evolution of the different fire variables, such as rate of spread, flame height, ignition 

risk or fuel consumption (Pastor et al., 2003). Various classification systems of fire 

prediction models exist (Perry, 1998; Albright and Meisner, 1999; Pastor et al., 2003; 

Johnston et al., 2005), according to the nature of equations for the energetic flow 

modelling, the types of studied variables or the modelled physical system. 

    

6.1. 6.1. 6.1. 6.1. Classification based on Classification based on Classification based on Classification based on the the the the Heat Flow ModeHeat Flow ModeHeat Flow ModeHeat Flow Modelllllinglinglingling    

Many important equations of mathematical models attempt to model the flow 

of energy produced during the fire combustion (Albini, 1985). Actually the process of 

fire spread consists in the release of energy due to combustion and the transport of 

part of this energy to the adjacent unburned fuels, which are subsequently heated to 

ignition temperatures (Albini, 1985). The reconstruction of the energetic flows allows 

to define the most probable space-time evolution and propagation of fires. The 

different predictive methods used to quantify these processes differentiate, 

quantitatively and qualitatively, the various types of fire prediction models (Albright 

and Meisner, 1998). The classification of these predictive models has been organized 

in different ways, according to authors. In the next pages, the classification scheme 

proposed by Albright and Meisner (1998) has been used; these authors have 

distinguished four types of fire predictive models. 

 

In physical (or theoretical) models the fire propagation prediction is based on 

the mathematical analysis of the physical-chemical laws that govern fluid mechanics, 

combustion and heat transfer (radiation, convection, conduction). Analysis or 

correlations with observed or laboratory fire experiments are instead not considered 

(Perry, 1998; Albright and Meisner, 1999; Pastor et al., 2003; Johnston et al., 2005). 

Therefore the results obtained must be subsequently validated and calibrated by tests 

(Catchpole and De Mestre, 1986). Theoretical models assume the knowledge of all 
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parameters of the chemical processes, and they use a series of variables as input, 

among which, for example, flame temperature and height: therefore, physical models 

contain some degree of empiricism, considering that some inputs (i.e. flame height and 

stack gas viscosity) are very difficult to measure in field (Chandler et al., 1983; Beer, 

1991) and, secondly, the processes of heat transfer are neither temporally nor spatially 

constant (Perry, 1998). The greatest advantage of theoretical models is that they are 

based on well-known relations, so it is easy to make comparisons (Chandler et al., 

1983). Although various physical models have been developed, few of them are used, 

for several reasons (Perry, 1998; Albright and Meisner, 1999). First of all, they need a 

remarkable amount of information and data, and, considering the complexity of 

equations, the use of vast computing resources to solve them is necessary (Albright and 

Meisner, 1999; Johnston et al., 2005). Moreover, because of the complexity of 

equations and forest fuel structure, several semplificative assumptions are required (i.e. 

fuel characteristic uniformity); these simplifications are not always fit to reality 

(Johnston et al., 2005). Therefore, the validation of a theoretical model is particularly 

difficult. 

 

Semi-physical (or semi-empirical) models are a “combination” of theoretical 

and statistical models, since they both adopt physical and statistical techniques. Such 

models combine the physical theory about combustion and the heat transfer with 

statistical correlations based on observations on laboratory fire-experiments, with the 

aim to define mathematical formulas able to describe the fire behaviour (Albright and 

Meisner, 1999; Pastor et al., 2003). In semi-empirical models, the burning fuel is 

treated as a source of heat while heating and evaporation of fuel and moisture are 

sinks for heat. Laboratory and field experiments are conducted to determine how 

physical properties of fuel, weather and slope contribute to each of these variables 

(Johnston et al., 2005). The employment of such models in environmental conditions 

not similar to those tested in laboratory or field (i.e. very strong winds, elevated 

temperatures) may not be very accurate, so validation is however necessary; difficulty 

in validation of semi-physical models is smaller than for physical models (Pastor et al., 

2003; Johnston et al., 2005). The most important and used semi-empirical predictive 

models are Rothermel’s model (1972) and the model incorporated in the Canadian 

Forest Fire Behaviour Prediction System (Forestry Canada Fire Danger Group, 1992). 
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Statistical (empirical) models resort to information and statistical correlations 

obtained by fires, reproduced in laboratory or observed; all of them are used as test to 

calculate the descriptive parameters of the fire spread and behaviour (Albright and 

Meisner, 1999; Pastor et al., 2003). Evidently, each fire-test has specifical 

environmental conditions (wind intensity and direction, fuel types, slope, etc), so 

statistical relations make reference to these specific local conditions (Albright and 

Meisner, 1999). Since these models are not based on physical processes that regulate 

fire spread, their success in predicting fire behaviour is limited to conditions similar to 

those of test fires (Chandler et al., 1983; Catchpole and De Mestre, 1986; Perry, 1998). 

 

Probabilistic models are based on contingency tables rather than physical or 

statistical equations (Albright and Meisner, 1999). In such systems, each 

environmental variable is associated with every possible environmental condition, and 

contingency tables with relative probability are created. Since numerical values for 

probabilities are not based on physical processes, probabilistic models are applicable 

only under conditions similar to those for which they were developed. They are 

commonly used to simulate ignition and probability of spread for a sequence of 

hypothetical fires over a landscape, not to predict rate of spread for a specific fire 

(Albright and Meisner, 1999). 

    

6.2. 6.2. 6.2. 6.2. Classification based on Classification based on Classification based on Classification based on Studied Studied Studied Studied Variables Variables Variables Variables     

This classification system refers to the type of variables studied by the fire 

predictive model; these models can be distinguished into (Pastor et al., 2003): 

a) Wildland fire spread models, which provide the mechanisms to obtain the 

main physical variables directly related to the fire perimeter advance. The most 

important variables, which most models refer to, are rate of spread, fireline intensity 

and fuel consumption;  

b) Fire front property models, which describe geometric flame features such as 

height, length, depth and angle of inclination. 
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6.3. 6.3. 6.3. 6.3. CCCClassification based on the lassification based on the lassification based on the lassification based on the ModelModelModelModellllled ed ed ed Physical System Physical System Physical System Physical System     

The most important classification scheme is based on the physical system on 

which modelling is developed; with this approach four categories can be distinguished. 

Each category represents a defined type of fire spread, tied substantially to the fuel type 

burned. The fire predictive models will be briefly described in the next pages. 

    

6666.3.1. Surface Fire Predictive Models.3.1. Surface Fire Predictive Models.3.1. Surface Fire Predictive Models.3.1. Surface Fire Predictive Models    

The surface fire predictive models are able to supply valid forecasts for fires 

spreading on surface fuels, generally with height lower than 2 m, that is small trees, 

shrubs, herbaceous vegetation, litter, cut residual. Many surface fires are simulated 

using the elliptical wave propagation technique, by which fire spreads in an 

approximately elliptical shape with the major axis aligned with wind direction, the 

maximum speed with the wind and the minimum speed into the wind; the ellipse focus 

is constituted by the ignition point (Johnston et al., 2005). The inputs required to 

evaluate the space-time evolution of fires are various according to the model: the 

parameters necessary to predict the surface fire behaviour (spread rate, fire front 

intensity, etc.) are tied to several features of environmental conditions. In Table 3, a 

summary of the main models developed for surface fires is proposed, although only 

some of them are employed successfully. 

Most of these fire predictive models were theoretical and were built according 

to a one-dimensional, steady fireline spread hypothesis, which was represented by a 

combustion interface and a flat, rectangular, inclined isothermal fire front advancing 

across a homogeneous fuelbed (Figure 15). This fuelbed was characterized by moisture 

content, packing ratio and SAV ratio of its constituent particles, which were assumed 

to be uniformly distributed in all directions (Pastor et al., 2003). Some theoretical 

models differ from this approach; for example, Huang and Xie (1984) developed a 

model that incorporates a fuel discretisation, in order to consider the fuel 

characteristics not completely uniform; in Albini’s model (1985; 1986) the two-

dimensionality of fuel components is proposed. Cekirge (1978), Fujii et al. (1980) and 

Weber (1989) assume instead a non-steady propagation of the fire front, unlike the 

use of uniform, steady, rectangular fire front. 
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Table 3. Surface fire predictive models (1946-2000) (adapted from Pastor et al., 2003) 

AUTHORAUTHORAUTHORAUTHOR    MODEL TYPMODEL TYPMODEL TYPMODEL TYPEEEE    COUNTRYCOUNTRYCOUNTRYCOUNTRY    
Fons (1946) Theoretical United States 

Emmons (1964) Theoretical United States 
Hottel et al. (1965) Theoretical United States 
McArthur (1966) Empirical Australia 

Van Wagner (1967) Theoretical Canada 
Thomas (1967) Theoretical United Kingdom 
McArthur (1967) Empirical Australia 
Anderson (1969) Theoretical United States 
Frandsen (1971) Semi-empirical United States 
Rothermel (1972) Semi-empirical United States 

Pagni and Peterson (1973) Theoretical United States 
Telisin (1974) Theoretical Russia 
Steward (1974) Theoretical United States 

Konev and Sukhinin (1977) Theoretical Russia 
Cekirge (1978) Theoretical United States 

Noble et al. (1980) Empirical Australia 
Fujii et al. (1980) Theoretical Japan 

Grishin et al. (1983) Theoretical Russia 
Griffin and Allan (1984) Semi-empirical Australia 
Huang and Xie (1984) Theoretical United States 

Stauffer (1985) Semi-empirical Germany 
Sneeuwjagt and Peet (1985) Semi-empirical Australia 

Albini (1985; 1986)) Theoretical United States 
De Mestre et al. (1989) Theoretical Australia 

Weber (1989) Theoretical Australia 
Burrows et al. (1991) Semi-empirical Australia 

Forestry Canada Fire Danger Group 
(1992) 

Empirical Canada 

Croba et al. (1994) Theoretical Greece 
Marsden-Smedley and Catchpole 

(1995) 
Semi-empirical Australia 

Ferragut et al. (1996) Theoretical Spain 
Grishin (1997) Theoretical Russia 
Dupuy (1997) Theoretical France 
Linn (1997) Theoretical United States 

Santoni and Balbi (1998) Theoretical France 
Catchpole et al. (1998) Semi-empirical Australia 
Catchpole et al. (1998) Semi-empirical Australia 
Fernandes (1998) Semi-empirical Portugal 
Vega et al. (1998) Semi-empirical Spain 
McCaw (1998) Semi-empirical Australia 

Viegas et al. (1998) Empirical Portugal 
Cheney et al. (1998) Empirical Australia 
Porterie et al. (1998) Theoretical France 
Larini et al. (1998) Theoretical France 

Margerit and Sero-Guillaume (1999) Theoretical France 
Burrows (1999) Semi-empirical Australia 

Hargrove et al. (2000) Probabilistic United States 
Morandini et al. (2000; 2001) Theoretical France 

Vaz et al. (2002) Semi-empirical Portugal 

 

Most theoretical models for surface fires consider radiation as the most 

important heat transfer process towards the unburned fuel (Pastor et al., 2003). The 

semi-empirical model of Rothermel (1972) is the surface fire predictive model mostly 

employed, and it is based on the modelling of the fire behaviour by considering the 
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energy global balance. By the use of some information about fuels (i.e. fuel load; heat 

content; moisture; etc), Rothermel’s model supplies the main descriptive parameters of 

the fire propagation. 

 

 

Figure 15. Modelling of surface fire front by theoretical models (adapted from Pastor et al., 
2003) 

    

6666.3.2. .3.2. .3.2. .3.2. Other Other Other Other Fire Predictive ModelsFire Predictive ModelsFire Predictive ModelsFire Predictive Models    

The crown fire predictive models simulate the behaviour of fires spreading on 

aerial and surface fuels; depending on environmental conditions and on consequent 

rate of spread, crown fires can be active or passive. The modelling of crown fires is 

very complex, both for empirical or theoretical equations employed, and for the 

validation process; for these reasons few works have been published about crown fires. 

The crown fire predictive models are divided into two groups: 

- crown fire initiation models; 
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- crown fire spread models. 

Table 4 shows the main models employed for crown fires. 

Hereafter the type of modelling used, the majority of crown fire models 

considers radiation as the major heat transfer mechanism (Pastor et al., 2003). Figure 

16 defines the pattern of heat transfer by radiation during crown fires. 

Table 4. Classification of crown fire predictive models (1957-2001) (Pastor et al., 2003) 

AAAAUTUTUTUTHORHORHORHOR    MODELLINGMODELLINGMODELLINGMODELLING    TYPETYPETYPETYPE    COUNTRYCOUNTRYCOUNTRYCOUNTRY    
Molchanov (1957) Initiation modelling Semi-empirical Russia 

Kilgore and Sando (1975) Initiation modelling Empirical United States 
Van Wagner (1977) Initiation modelling Semi-empirical Canada 
Xanthopoulos (1990) Initiation modelling Semi-empirical United States 
Perminov (1995) Initiation modelling Theoretical Russia 
Alexander (1998) Initiation modelling Semi-empirical Australia 

Kurbatskiy and Telitsin 
(1977) 

Spread modelling Theoretical Russia 

Albini and Stocks (1986) Spread modelling Theoretical Canada 
Van Wagner (1989) Spread modelling Semi-empirical Canada 
Rothermel (1991) Spread modelling Empirical United States 
Albini (1996) Spread modelling Theoretical United States 

Forestry Canada Fire Danger 
Group (1992) 

Initiation and spread 
modelling 

Empirical Canada 

Finney (1994) 
Initiation and spread 

modelling 
Semi-empirical United States 

Grishin (1997) 
Initiation and spread 

modelling 
Theoretical Russia 

Gomes da Cruz (1999) 
Initiation and spread 

modelling 
Empirical Canada 

Scott and Reinhardt (2001) 
Initiation and spread 

modelling 
Semi-empirical United States 

 

 

 

Figure 16. Simplified representation of the radiation emitted during a crown fire (from Van 
Wagner, 1968) 

 

The ground fire predictive models are used to define the behaviour of fires that 

interest the ground layer, under the litter layer. Ground fires are characterized by very 

modest spread rate and by smoldering combustion; their impact on the ecosystem is 
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remarkable, because the ground fires consume the organic layer of soil and heat the 

inorganic layer, damaging the forest biotic activities (Pastor et al., 2003). The 

modelling studies relative to ground fires are few, and the ground fire modelling is 

concentrated mainly on the probability of ignition and on the heat transfer. 

 

The spot fire predictive models forecast the aerial movement of fuel firebrands, 

by the action of wind and of convective column, with which the fire expansion and the 

ignition of new fires is possible. Spot fire models are not many, and only some of these 

models supplied useful information to understand and predict the phenomenon. The 

distance that a firebrand can cover by flight and the probability of ignition of new fires 

are the main characteristics of spot fires that researchers investigated. The most 

representative works about spot fires are those of Albini (1979; 1981; 1983), who 

predisposed a theoretical model, partially confirmed also in empirical way. In these 

works, Albini defines the maximum distance that a fuel particle (with cylindrical 

shape) can cover, originating a new fire. The methodology is based on the employment 

of six separate mathematical sub-models (Table 5). 

Table 5. Sub-models used by Albini (1981) in the spot fire model 

SUBSUBSUBSUB----MODELMODELMODELMODEL    BRIEF DESCRIPTIONBRIEF DESCRIPTIONBRIEF DESCRIPTIONBRIEF DESCRIPTION    

1 
The structure of a steady flame that consumes the combustible pyrolyzate from 

the foliage 

2 
The structure of the steady buoyant plume established by flame, in which the 

particle reaches its ultimate height 
3 The rate at which a woody particle burns as it moves relative to atmosphere  

4 
The trajectory of an inert cylinder (firebrand) in the steady, non uniform, flow 

field of flame and buoyant plume 

5 
The structure of the surface wind field over rough terrain, that transports the 

firebrand from its maximum height to its downwind destination 
6 The trajectory of a burning woody cylinder in a steady, non uniform, wind field 

 

Viegas started new experimental activities devoted to study both the firebrand 

production on Pinus spp. cones, Eucaliptus spp. barks and other combustibles, and the 

time duration of the active firebrands. Viegas (personal communication, 2007) 

suggests that the spot fire problem can be modelled by considering four main phases: 

firebrand production (a); firebrand trajectory (b); firebrand combustion in the wind 

field (c); firebrand landing and ignition of new fires (d). A vertical combustion tunnel 

is used by Viegas and its working group in order to investigate the relationship among 

the different variables involved in the spot fire phenomena. 
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7777. . . . Fire Simulation TechniquesFire Simulation TechniquesFire Simulation TechniquesFire Simulation Techniques    

Each fire simulation system uses, in addition to an underlying fire prediction 

model, a fire simulation technique to represent the spread of fire through the 

landscape. The fire simulation techniques differ from each other in how they represent 

the landscape and the spreading process (Albright and Meisner, 1999).  

The methods used for the landscape representation, obtained by GIS, are 

referable to two categories: the use of a lattice of discrete boxes or elements, or a 

continuous medium (Richards, 1995). If the landscape is shown as a lattice of discrete 

boxes or elements, then the spread of fire from one box to the next is governed by a 

specific set of rules or a probability of occurrence. If the landscape is shown as a 

continuous medium, the fireline shape is represented by mathematical functions 

(Albright and Meisner, 1999). 

With the first method, when the landscape is represented as cell grid (Figure 

17), the main fire simulation techniques are the bond percolation and the cellular 

automaton. Since a grid of cells has been used, these simulation techniques are also 

named cellular propagation models.  

 

Figure 17. Cell grids in cellular propagation models 

 

The attractiveness of using bond percolation and cellular automaton techniques 

to simulate the fire spread lies in the simplicity of their components for producing an 

overall fire behaviour that can be extremely complex (Wolfram, 1984). Moreover, 

both techniques yield reasonable estimates of fire spread when the fire physical 

determinants are unknown. In general, cellular models have had a diminishing success 

in reproducing the expected two-dimensional shapes and growth patterns as the 

environmental conditions become more heterogeneous (French, 1992). For example, 

cellular models have difficulty in responding appropriately to temporal changes such 

as shifting wind speed and direction as well as fuel moisture (Finney, 2004). 
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When the landscape is represented as a continuous medium, the most used 

simulation technique is the elliptical wave propagation. With this approach, more 

complex with respect to previous models, the problems affecting cellular models are 

avoided. The elliptical wave propagation is essentially the inverse of cellular method 

(Finney, 2004). 

    

7777.1. Bond Percolation.1. Bond Percolation.1. Bond Percolation.1. Bond Percolation    

The bond percolation fire simulation technique represents the landscape as a 

lattice of square, triangular, or hexagonal boxes (Albright and Meisner, 1999). In each 

box some given values are incorporated; these values define the environmental 

characteristics for each landscape division.  

The fire propagates from the burning boxes to the neighbouring unburned 

boxes with a specified probability p (Albright and Meisner, 1998). The probabilities of 

spread to the neighbouring boxes are adjusted to account for the preferred direction of 

fire spread due to external biases resulting from wind velocity, topography, differences 

in fuel types, etc. (MacKay and Jan, 1984; Ohtsuki and Keyes, 1986). If most of the 

boxes contain unburned fuel and the probability of propagation is high, then the fire 

spreads (percolates) throughout the lattice (Albright and Meisner, 1999).  

A bond percolation technique must be tuned by adjusting the probabilities so 

that the modelled fire spreads in a manner comparable to that of actual fires over 

similar terrain under similar weather and fuel conditions. These probabilities are 

adjusted by an empirical fire behaviour mathematical model made using historical fire 

data (Pastor et al., 2003). Since the technique is not based on physical processes, 

success in simulating fire spread is limited to conditions similar to those for which the 

technique has been tuned. 

    

7777.2. Cellular Automaton.2. Cellular Automaton.2. Cellular Automaton.2. Cellular Automaton    

Like the bond percolation technique, the cellular automaton fire simulation 

technique represents the landscape as a lattice of boxes or cells, each with a set of 

possible values (fuel type, slope, elevation, etc.) (Albright and Meisner, 1999). 

Therefore, a cell has a specific initial state before ignition. The likelihood of fire 

spreading to each cell in the lattice is determined by rules that are the same for all 
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cells. These rules relate the future state of cell to its initial state and the states of 

neighbouring cells (Albright and Meisner, 1999). The rules are based on theoretical 

and semi-empirical mathematical fire behaviour models. Since the rules that link fire 

propagation to cell grid can have a physical base, the cellular automaton technique 

can be applied to different environmental conditions. 

    

7777.3. Elliptical Wave Propagation.3. Elliptical Wave Propagation.3. Elliptical Wave Propagation.3. Elliptical Wave Propagation    

The elliptical wave propagation fire simulation technique projects the 

landscape as a continuous medium rather than as a lattice of boxes or cells (Albright 

and Meisner, 1999). Moreover, this technique is based on the use of mathematical 

functions and not on probabilistic calculations or logical rules. A detailed description 

of this fire simulation technique is proposed in the next pages. 
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FARSITE (Fire Area Simulator, Finney, 1994) is one of the main fire simulation 

systems developed for the description of spread and behaviour of wildland fires. This 

model is a deterministic simulator of the two-dimensional wildfire spread, and 

incorporates some models for the prediction of spread and behaviour of surface and 

crown fire, spotting fire, post frontal combustion, fire acceleration, fuel moisture 

(Finney, 2004). FARSITE is based on the semi-empirical model of fire prediction 

created by Rothermel (1972), and incorporated into BEHAVE Fire Behaviour Prediction 

and Fuel Modelling System (Andrews, 1986). The spatial growth of fire perimeters is 

simulated with the elliptical wave propagation technique, applying Huygens’ principle 

(Richards, 1990; Finney, 1998). 

In order to analyze the wildfire behaviour and characteristics, this simulator 

needs 5 essential input layers (elevation, slope, aspect, fuel models, canopy cover), 

inserted as digital maps with ASCII files, created by using a Geographic Information 

System (GIS). The complete description of the fuelbed characteristics is approximated 

and summarized by using fuel models; the fuel models can be standardized (Anderson, 

1982; Cruz, 2005; Scott and Burgan, 2005) or customized for some distinguishing 

vegetation type. 

FARSITE was initially developed to simulate prescribed fires in U.S. national 

parks and areas of naturalistic value: therefore, the simulator was tested and validated 

using a large number of controlled fires in these areas, with complete information of 

the environmental conditions (Finney, 1994; Finney and Ryan, 1995). Actually, some 

studies try to validate FARSITE simulator in areas different from those ones where this 

model was originally developed, mainly in Europe, South Africa and Australia (Van 

Wilgen et al., 1985; Perry et al., 1999; Sauvagnargues-Lesage et al., 2001; 

Dimitrakopoulos, 2002; Miller and Yool, 2002; Bilgili and Saglam, 2003; Pastor et al., 

2003; De Luis et al., 2004; Arca et al., 2005, 2006): the main difficulties are linked 

with the differences in the fuel characteristics and with the rebuilding of weather 

conditions. 

Rothermel’s equation provides a good approximation of fire spread mainly 

within the range of conditions tested during calibration and development of the model, 

based on laboratory experiments with homogeneous fuelbed and some simplifying 

assumptions (Albini and Baughmann, 1979; Van Wagtedonk et al., 1996; Zhou et al., 

2005a; Zhou et al., 2005b). By this way, it is possible to control many experimental 

conditions (fuelbed, slope, wind, humidity, etc.), but the simulation results are not 

always realistic. 
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FARSITE simulations require a set of spatial information of the three main 

environmental factors that affect the fire behaviour (Figure 18): topography, 

vegetation and meteorological conditions. All this input layers required are provided in 

ASCII format.  

 

Figure 18. FARSITE input layers for landscape topography and vegetation (from Finney, 2007) 

 

The topographytopographytopographytopography factor is composed by three different layers: elevation, slope 

and aspect. Elevation, in meters above sea level, is used to adiabatically adjust the 

values of humidity and temperature, by considering a variation of these features linked 

with landscape elevation. Moreover elevation is necessary to compute the burned area 

during fire simulation in the “topography plane”. Slope and aspect layers, respectively 

in degrees and in azimuth degrees, are used in fire spread calculation and in order to 

determine the hourly solar radiation incidence angle (with latitude, date and hour) 

and to translate the fire spread in horizontal coordinates. 

 

The vegetationvegetationvegetationvegetation layer is composed by fuel and canopy cover maps. 

The fuel model map gives a detailed physics description of the landscape 

surface vegetation, by using appropriate standard or custom fuel models. Each fuel 

model includes the following information: 
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- fuel load, divided in live and dead fuel load. Live fuel load is sub-divided in 

herbaceous and woody load, whereas dead fuel load is sub-divided by considering 

three timelags or size classes (1, 10, 100 hr); 

- live and dead fuel 1 hr SAV ratio; 

- depth of the surface fuelbed; 

- dead fuel 1 hr moisture of extinction; 

- live and dead fuel heat content. 

For all fuel models used in FARSITE simulations, the following features have 

been considered as constants: 

- 10 hr dead fuel SAV was 109 ft-1, and 100 hr SAV was 30 ft-1; 

- total mineral content was 5.55%, and effective (silica-free) mineral content 

was 1.00%; 

- ovendry fuel particle density was 32 lb ft-3. 

The custom fuel model can be defined, inputed and managed using a specific 

graphical user interface (Figure 19). 

 

Figure 19. Graphical interface to insert custom fuel models 

 

The canopy cover layer defines the percentage of the horizontal surface plane 

covered by trees. The canopy cover theme is used to determine the average surface fuel 

shading (Rothermel et al., 1986), that affects the fuel moisture calculations, and to 

calculate the wind speed reduction factor, that reduces the wind speed from the 
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reference intensity set in the weather file to the midflame intensity (Albini and 

Baughman, 1979).  

 

To the five main layers (elevation, slope, aspect, fuel model and canopy cover), 

the following optional themesoptional themesoptional themesoptional themes can be added in FARSITE: stand height, crown base 

height, canopy bulk density, coarse woody and duff.  

Stand height, expressed in meters, is used for the calculation of the wind 

profile. With canopy cover, it influences the wind reduction factor (Albini and 

Baughmann, 1979) and the firebrand behaviour during FARSITE spotting simulations 

(Albini, 1979). 

Crown base height, in meters, is used, with surface fire intensity and foliar 

moisture content, to determine the threshold for transition to crown fire (Van Wagner, 

1977; Alexander, 1988).  

Canopy bulk density, expressed in kg m-3, is necessary in order to determine 

the threshold for transition to active crown fire (Van Wagner, 1977; 1993). 

In general, these optional layers are indispensable if forest fuels are present in 

the landscape (oakwoods, pine woods, etc.) and if the user needs to simulate crown fire 

and/or spotting fires to determine the wildfire behaviour in these conditions. 

Duff load theme, used in order to define the duff load, and commonly 

expressed in t ha–1 cm-1, is necessary to determine the ground fire behaviour with the 

Post Frontal Combustion model used in FARSITE. 

Also the coarse woody debris theme is used to determine the ground fire 

behaviour with the Post Frontal Combustion model. The coarse woody debris is 

constituted by 1000 hr sound and rotten fuels. 

 

The five indispensable layers, and eventually the other optional themes, 

constitute in FARSITE the “Landscape File (.lcp)”, which contains all the landscape 

spatial information. The graphical interface is below proposed (Figure 20). 
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Figure 20. Definition of the landscape file  

 

The fuel moisturefuel moisturefuel moisturefuel moisture data define the water content of each fuel model, before the 

event. In this file (.FMS), the fuel moisture must be set for dead (1 hr, 10 hr, 100 hr) 

and live (herbaceous and woody) components. 

FARSITE considers as constant in space and time the values of live fuel moisture 

(unless manual changes), whereas dead fuel moisture can change. For this reason, in 

the simulations a “conditioning period” before the wildfire day can be used. With this 

tool, FARSITE calculates the dead fuel moisture content changes: the effect of the initial 

moisture content of dead fuels decreases if the conditioning period increases. To 

evaluate this trend, FARSITE uses the BEHAVE model (Rothermel et al., 1986; Hartford 

and Rothermel, 1991) for the 1 hr and 10 hr dead fuel moisture, and the National Fire 

Danger Rating System equations (Bradshaw et al., 1984) for the 100 hr dead fuel 

moisture. 

FARSITE graphical interface for fuel moisture is shown in Figure 21. 
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Figure 21. Graphical interface for fuel moisture file 

 

The meteorological conditionsmeteorological conditionsmeteorological conditionsmeteorological conditions of the wildfire days are considered by a weather 

file (.WTR). This file contains daily observations on temperature, hours at which 

minimum and maximum temperature were recorded, humidity and precipitation. The 

meteorological data are used to define a diurnal weather pattern for a designated 

portion of the landscape so that dead woody fuel moistures can be calculated (Finney, 

2004). Temperature and humidity are assumed to respond inversely over time as 

approximated by a cosine curve between maxima and minima (Beck and Trevitt, 1989; 

Rothermel et al., 1986) (Figure 22).  

 

Figure 22. The diurnal pattern of temperature and humidity, by using minimum and maximum 
values from the weather file 

 

Therefore, FARSITE fits the temperature and humidity data to a sine curve form 

for interpolation of these parameters throughout the day cycle. Using these weather 
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data and the starting fuel moistures, the model provides dynamic inputs of weather 

and fuel moistures over the simulation time. 

Adiabatic adjustment from input elevations to any landscape point determines 

the local temperature (1 °C per 100 m) and humidity (0.2 °C per 100 m); the possible 

rainfall is assumed spatially constant. 

 

The weather file is inserted in FARSITE as ASCII file, as presented in Figure 23. 

 

Figure 23. The weather file production in FARSITE 

 

The wind datawind datawind datawind data inserted in FARSITE are required at 6.1 m above the top of 

vegetation. The wind file (.WND, or .ATM when gridded files are used) is composed by 

three hourly data: wind speed, wind direction and cloud cover. The wind vectors can 

be inserted as constant for all the landscape, otherwise the landscape can be divided 

into a mixture of cells, each one with a defined wind stream. The same procedure 

(constant or gridded stream) is applicable to supply more detailed weather condition 

files, in the weather file. 

The wind intensity is assumed parallel to the ground and is reduced till the 

midflame height (this wind intensity is named “effective” midflame wind speed, U; 

Albini and Baughman, 1979), without any account for different wind exposures to 

surface fires that result for combinations of wind direction and topographic position 

(such as ridgetop versus sideslope versus valley bottom) (Albini and Baughman, 1979; 

Andrews, 1986). For non-forested areas, as for Mediterranean maquis, the midflame 
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wind speed is reduced to a nominal height equal to twice fuelbed depth (Albini and 

Baughman, 1979). In forested areas the wind speed is reduced locally by the canopy 

cover data provided as spatial theme (Finney, 2004): 
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where H is the forest canopy height (m), derived from spatial inputs; U20+H 

defines the wind speed (m s-1) at 6.1 m above the tree tops; f is the crown filling 

fraction, calculated as: 
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where C is the canopy cover value of the landscape cells. This equation 

assumes conical tree crowns, occupying one-third the volume of a cylinder of the same 

dimensions (Albini and Baughmann, 1979). 

 

For all the simulations, an adjustment factoradjustment factoradjustment factoradjustment factor is considered. The adjustment 

factor file (.ADJ) allows to use estimated or observed data to tune the simulated rate of 

spread for a specific fuel model. In any case, with the adjustment factor only the fire 

rate of spread can be modified. 

 

Before the run of a simulation, other elements are indispensable in order to 

define the fire environment and behaviour. 

The first element is named “ParametersParametersParametersParameters”, and it is characterized by three 

components:  

a) timestep (and visible timestep), which defines the maximum amount of time 

for which the conditions are assumed constant at a given point; 

b) perimeter resolution, which defines the maximum spacing of projection 

points in the fire perimeter. The reduction of the perimeter resolution induces an 

increment in the fire projection points. 

c) distance resolution, which defines the maximum distance of travel in a 

timestep without the need of new information from the landscape. 

The second element is the “Fire Behaviour OptionsFire Behaviour OptionsFire Behaviour OptionsFire Behaviour Options”, with which it is possible to 

set the fire behaviour characteristics. For example, with this tool the user can choose to 

simulate a crown fire or a “simple” surface fire, or to define the ignition frequency 

and the delay of new fronts generated by firebrands. 
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The last element is the “DurationDurationDurationDuration”, which defines the starting and stopping 

time for fire simulation and fuel moisture calculations. In this box, the use of a 

conditioning period for the fuel moisture calculations can be chosen. 

 

All the simulations made by FARSITE can be exported and managed by using a 

GIS: some OOOOutputsutputsutputsutputs    are exported as vector, other as raster format. The typical vector file 

produced by FARSITE simulations is the fire perimeter shapefile, which contains the 

vertices of each timestep fire polygons. Raster outputs are produced by FARSITE for 

eight fire behaviour parameters; these files have a default ASCII format, and their 

resolution can range between 1 and 200 meters. The eight raster files are presented in 

the Table 6. 

Table 6. The eight output files produced by FARSITE 

OUTPUT FILEOUTPUT FILEOUTPUT FILEOUTPUT FILE    EXTENSIONEXTENSIONEXTENSIONEXTENSION    VALUE UNITSVALUE UNITSVALUE UNITSVALUE UNITS    

Time of Arrival .TOA hours 
Fireline Intensity .FLI kW m-1 
Flame Length .FML m 
Rate of Spread .ROS m min-1 

Heat per Unit Area .HPA kJ m-2 
Reaction Intensity .RCI kW m-2 
Crown-No Crown .CFR 1=surface, 2=passive, 3=active 
Spread Direction .SDR 0-359º Azimuth 
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Two-dimensional fire shapes are assumed to be generally ellipsoidal under 

uniform conditions. Uniform conditions occur when factors affecting fire behaviour 

(fuels, weather, topography) are spatially and temporally constant, although these 

conditions rarely exist in nature (Finney, 2004) (Figure 24).  

 

Figure 24. During a prescribed fire with punctual ignitions, under uniform conditions, the 
shape of fire is typically ellipsoidal (Marinha Grande Pinewood, Portugal, February 2007)  

 

Many studies have shown that a fire spreading in landscapes with uniform and 

constant fuel conditions, and with constant slope, wind and fuel moisture, tends to 

assume a simple ellipse shape (Richards, 1990). Observations under relatively uniform 

field conditions have suggested fire shapes ranging from ovoid (Peet, 1967) to pair of 

ellipses (Albini, 1976; Anderson, 1983), to fan shaped (Byram, 1959). Most of the 

disparity between simple ellipse and alternate shapes occur towards the rear of fire, 

where little area is burned compared to the heading portions (Finney, 2004). Even if 

the assumption of elliptical fire shapes in continuous fuels is true, fire shapes in fuels 

that are not continuous at the scale relevant to mechanisms of fire propagation may 

not be elliptical or intuitive (Green, 1983).  

Green et al. (1983) concluded that a simple ellipse can fit observed fire growth 

data as well as other shapes, in relation with environmental conditions. Richards 

(1990) analytically developed a set of differential equations in order to describe the 
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fire propagation, by the expansion of an elliptical wave front, in non-uniform 

environmental conditions. Shape and size of ellipses are dependent upon some 

parameters and characteristics based on the Fire Behaviour Prediction System of 

Forestry Canada Fire Danger Group (1992). The fire can propagate with a different 

elliptical shape when the burning conditions change (i.e., for wind speed or slope 

variation) (Finney, 2004). Actually, laboratory experiments (McAlpine, 1989) suggest 

that these shape changes occur relatively rapidly and at a short distance compared to 

the time and distance required for the build-up in spread rate or intensity. The 

elliptical wave technique requires no local tuning, assuming that fuels, weather and 

topography in the area of interest are sufficiently similar to those for which the 

underlying parameters were recorded. However, this technique should not be used 

under conditions for which representative parameters are not available (Albright and 

Meisner, 1999). 

 

FARSITE simulates the fire spread by using the elliptical wave propagation 

technique, but a set of implementations and perfectings are used; therefore, there are 

some differences with respect to Huygens’ original principle. With this fire growth 

modelling, the fire front is propagated as a continuously expanding fire polygon at 

specified timesteps (Anderson et al., 1982). On the basis of Huygens’ principle 

approach, Anderson et al. (1982) proposed the definition of a number of regularly 

spaced points, or vertices, on the fire perimeter: each point is the ignition site of a 

small fire that spreads outward from the point. The two-dimensional vertices, defined 

by X and Y coordinates, represent the fire perimeter growth points, with Richards’ 

technique (1990; 1995). The number of vertices increases as fire grows over time (as 

polygon expands) (Figure 25). 

The fire perimeter for each timestep is formed by the union of small ellipses 

that propagate from single vertices. The expansion of the fire polygon is determined by 

computing spread rate and direction from each vertex and multiplying by the duration 

of timestep (Finney, 2004). As next equations show, the shape and direction of ellipses 

are determined by wind-slope vector, while the size is determined by spread rate and 

length of timestep (Finney, 2004). Ellipse shape, direction and dimensions are 

therefore tied to environmental conditions (Figure 26). For example, many studies state 

that the fire eccentricity increases with the increment of wind speed or slope steepness, 

or both (Alexander, 1985). 
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Figure 25. The growth of the polygon for each fire perimeter point, with homogeneous 
environmental conditions (Finney, 2004)  

 

 

Figure 26. The effect of different environmental conditions (fuel and wind) on the ellipse 
eccentricity (Finney, 2004) 

 

Spread direction and rate normal to fire front is determined by direction and 

rate of maximum spread by an elliptical transformation (Richards, 1995). The reliance 

on an assumed fire elliptical shape is necessary because the spread rate of only the 

heading portion of a fire is predicted by the present fire spread model (Rothermel, 

1972). Fire spread in all other directions is inferred from the forward spread rate 

using the mathematical properties of ellipse (Finney, 2004). 
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It is common to assume that the ignition point or the fire origin is coincident 

with the rear focus of the ellipse (Alexander, 1985; Bratten, 1978). Although not 

necessarily correct (Bilgili and Methven, 1990; Catchpole et al., 1982; Green et al., 

1983) this does provide an implicit backing fire spread rate (Alexander, 1985). 

Alternatively, the location of the fire origin along the major axis of ellipse could be 

computed from an independently calculated backing spread rate (Finney, 2004). 

As discussed before, FARSITE uses Richards’ method (1990; 1995) in order to 

compute the fire polygon growth with an elliptical approach. Richards’ differential 

equations describe the expansion of an elliptical wave front from a series of vertices 

that define the edge of the fire. The information required at each vertex are: 

i) the orientation of the vertex on fire front in terms of component differentials 

(m) xs e ys; 

ii) the direction of maximum fire spread rate θ (by considering the resultant 

wind-slope vector; radians azimuth); 

iii) the shape of an elliptical fire, determined by the conditions which 

characterize that vertex, in terms of dimensions a, b, c (m min-1) (Figure 27). 

 

Figure 27. The elliptical wave propagation for each fire perimeter vertex; a corresponds to 1/2 
the minor axis, b corresponds to 1/2 the major axis, c identifies the distance from ignition 

point (ellipse fire) to center of ellipse (Finney, 2004)  

 

From these inputs, Richards’ (1990) equation computes the orthogonal spread 

rate differentials (m min-1) Xt and Yt for a given vertex (Finney, 2004): 
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Richards’ (1990, 1995) equations were originally developed for flat terrain. In 

these terrains a horizontal coordinate system remains unchanged when projected onto 

the ground surface. This is not the case for sloping terrain (Finney, 2004). All inputs 

and outputs associated with equations 5 and 6 are referred to coordinates of the 

surface plane local for each vertex (xi, yi). The computer stores all vertices in the 

horizontal plane, so inputs to equations 5 and 6 (xs, ys e θ) must be transformed to 

surface plane, and outputs (Xt, Yt) must be transformed to horizontal plane (Figure 

28). 

 

Figure 28. Transformation of the surface fire perimeter from horizontal to surface ground 
plane (from Finney, 2007)  

 

For a complete discussion about the transformations of Richards’ equations for 

sloping terrain, it can be useful to read Finney (2004). 

 

The dimensions a, b, c for equations 5 and 6 describe the elliptical shape 

assumed by the fire produced at a given vertex or ignition point (Finney, 2004). 

Alexander (1985) assumes that the effects of wind and slope on fire shape are 

proportional to their effect on the rate of spread of the heading fire (Figure 29). Fire 

shapes have only been determined empirically and with respect to measured wind 

speed, but shapes may be affected differently by wind and slope (Finney, 2004). The 

fire shape is computed at each vertex of the perimeter using the “effective” midflame 

wind speed (U, in m s-1 (equation 3 for forested areas)), which is obtained from the 

reduction of the wind intensity at 6.1 m above the tree tops, as already pointed out 
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previously. For surface fires, the perimeter of the spreading fire is obtained from the 

resultant vector of midflame wind and slope (as presented in equations 26 and 27).  

 

Figure 29. Slope and wind effect on fire shape (from Finney, 2004)  

 

The dimensions of elliptical fires have been related to wind speed using a 

number of empirical formulas (Alexander, 1985; Andrews, 1986; Bilgili and Methven, 

1990; Rothermel, 1991; Forestry Canada Fire Danger Group, 1992). These formulas 

produce various fire shapes for a given wind speed (Finney, 2004). The range and 

uncertainty in wind speed over time and with vertical height, forest structure, and 

uneven terrain, accounts for at least as much variation in fire shape as any of the 

individual models (Finney, 2004). For FARSITE, the relationship developed by Anderson 

(1983) was chosen for the length to breadth ratio (LB) assuming fire grows as a single 

ellipse (Alexander, 1985): 
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The original equation of Anderson (1983) was modified by subtracting 0.397 

from LB, to have LB = 1.0 on flat terrain with absence of wind (Finney, 2004). The 

accuracy in the prediction of the fire growth has a benefit because the natural 

variation in wind direction at high frequencies effectively decreases LB during real 

fires (Simard and Young, 1978; Richards, 1993). Considering the empirical data 

referenced by Alexander (1985), ellipses with LB values greater than 8.0 in the 

equation 7 are truncated to that “threshold” dimension. Assuming the rear focus of 

ellipses to be the fire origin (Alexander, 1985), the head to back ratio is described as: 
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from which the a, b, and c dimensions of the elliptical axes (equations 5 and 6) 

can then be computed in units of fire rate of spread R (m min-1): 
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Figure 30. The wind speed effect on the elliptical fire shape, for LB and HB ratios  
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11110000. . . . FARSITE FARSITE FARSITE FARSITE Fire Behaviour ModelFire Behaviour ModelFire Behaviour ModelFire Behaviour Modelssss    

Fire behaviour models used in FARSITE are specific to distinct “types” of fire 

behaviour: for this reason, separate models are used for surface fire, crown fire, 

spotting, post frontal combustion and point-source fire acceleration. Fire behaviour 

models are formulated as one-dimensional point calculations: they produce outputs 

from conditions specified at a defined geographic point. By using Huygens’ principle 

approach, the wave-front is based on a set of vertices, from which data on fire 

environment are obtained. At each vertex, the environmental variables (fuels, weather 

and topography) are used to compute fire behaviour. 

The fire spread in time, with the elliptical wave technique, is evaluated and 

parameterized at each vertex by using the previous equations.  

The linkage among the fire behaviour models in FARSITE relies on an assumed 

sequence of fire activity (Finney, 1998). In the first moments, a fire may spread as a 

surface fire, burning grass, shrubs, or downed woody fuels in contact with the ground 

surface. If the environmental conditions permit, the fire will accelerate towards a new 

equilibrium spread condition. Given sufficient fuels, weather, and topography, the fire 

may make the transition to crown fire. If crown fuels are ignited, trees are assumed to 

torch and can loft embers. The following models were used in FARSITE to represent 

these phases of fire activity. 

    

11110000.1. .1. .1. .1. Rothermel’s Rothermel’s Rothermel’s Rothermel’s Surface Surface Surface Surface Fire Fire Fire Fire SpreadSpreadSpreadSpread Model Model Model Model    

The surface fire spread model used in FARSITE is Rothermel’s fire spread 

equation (Albini, 1976; Rothermel, 1972). Rothermel’s model is a semi-empirical 

model developed essentially from results obtained on a quite considerable amount of 

experiments. In simple terms, Rothermel’s model has been developed in order to 

determine the propagation of a two-dimensional steady surface fire, burning 

homogeneous fuelbed, with uniform slope and wind conditions (André et al., 1992). 

The main outputs produced by Rothermel’s fire spread equation are the rate of spread 

R and the reaction intensity Ir of surface fires.  

 

The surface fire rate of spread Rsurface fire rate of spread Rsurface fire rate of spread Rsurface fire rate of spread R (m min-1) is calculated at each vertex of the 

fire polygon, burning in stationary regime and spreading on a plane parallel to the 

ground surface; several environmental conditions are used as input. Rothermel’s 
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equation (12) expresses an energy balance within a unit volume of the fuel ahead of 

the flame, and it represents the ratio between the rate of fuel heating and the energy 

required to bring that same fuel to ignition (Lopes, 2000). In more simple terms, the 

numerator is the total heat released by fire, while the denominator is the heat that the 

fuel is able to absorb. In Rothermel’s equation the numerator, that represents the global 

heat released by combustion, can be divided in three parts (André et al., 1992): 

- the first component represents the heat released in environmental conditions 

of no slope and no wind; therefore this component is only dependent on reaction 

intensity Ir and on propagating flux ratio π. For these reasons, with no slope and no 

wind the rate of spread is exclusively determined by fuelbed and by the characteristics 

of fuel particles;  

- the second part defines the effect of the adimensional factor Фw, linked with 

wind speed and with fuelbed and fuel particle geometry;  

- the last component defines the effect of the adimensional factor Фs, 

dependent on slope of terrain and on fuelbed geometry.  

Rothermel’s fire spread equation is calculated as: 

igb

swr

Q

)1(I
R

ερ
φφπ ++

=   (12) 

where: 

� R = rate of spread (in m min-1), i.e. the forward rate of propagation of the surface 

fire front, in stationary conditions; 

� Ir = reaction intensity (in kJ min-1 m-2), i.e. the energy release rate per unit area of 

flame front; 

� π = propagating flux ratio (dimensionless), i.e. the fraction of energy released 

responsible for neighbouring fuel heating and ignition; 

� ρb = bulk density (in kg m-3), i.e. the dry mass of fuel per unit volume; 

� ε = effective heating number (dimensionless), i.e. the ratio between the bulk 

density and the mass of fuel involved in the process of ignition; 

� Qig = heat of pre-ignition (in kJ kg-1), i.e. the heat required to bring the unit 

weight of fuel to ignition. 

 

Фw and Фs coefficients, related respectively to wind and slope, are considered 

in additional terms on Rothermel’s equation, and are calculated as defined in the 

equation 27 and 26. 
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In order to define all the features of Rothermel’s model, a series of equations, 

defined in the BEHAVE format, are indispensable (Albini, 1976; Anderson, 1982; 

Burgan and Rothermel, 1984; Andrews, 1986). First of all, some variables describing 

the fuel characteristics, indispensable to determine the values of the various equations, 

are added in FARSITE fuel models as input∗. Therefore, the values of these variables are 

known, because the user needs to set them before the simulation: 

• W0 = fuel load (in kg m-3); 

• δ = fuel depth (in m); 

• β = packing ratio (dimensionless); 

• σ = SAV (surface/volume) ratio (in m-1); 

• ρ = particle density (in kg m-3); 

• Mf = fuel moisture content (in % of dry weight); 

• Mx = moisture of extinction (in % of dry weight); 

• h = fuel heat content (in J kg-1); 

• St = fuel mineral content (in %); 

• Se = fuel mineral content, silica-free (in %) 

 

The reaction intensityreaction intensityreaction intensityreaction intensity Ir quantifies the rate of released energy per unit area of 

fire front, and it is evaluated by the following equation:  

smnr hW'I ηηΓ=   (in W m-2)  (13) 

The reaction intensity is computed as function of the net fuel load Wn 

(expressed in kg m-2), the optimum reaction velocity Г’ (in s-1) and the inferior caloric 

power of fuel h (in kJ kg-1). The effects of moisture and mineral content on reaction 

intensity are introduced through parameters ηm and ηs (named respectively moisture 

damping coefficient and mineral damping coefficient). 

The optimum reaction velocity Г’ is the inverse of the time a fuel particle 

would take for complete combustion, with no moisture and no mineral content. This 

feature is computed by the following equation: 

                                                
∗ Most fuel properties are supplied for different fuel size classes and dead-live classification. 
Most properties are averaged between size classes using the surface area as the weighting 
factor, as suggested by Rothermel (1972). Dead and live fuels are treated separately, each being 
used to compute its own value. Final value for some equations is obtained as sum of 
corresponding values for dead and live fuel. 
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and it is proportional to the maximum reaction velocity Г’max (in s-1), which is 

calculated by considering the SAV ratio σ of fuel particles: 

( ) 15.1
max 926.20591.0'

−−+=Γ σ   (in min-1)   (15) 

For the calculation of the optimum reaction velocity Г’ , the packing ratio β 

and the optimum packing ratio βop are also important. The equations for the evaluation 

of the packing ratio β and the optimum packing ratio βop are respectively: 

p

b

ρ
ρ

β =   (dimensionless)  (16) 

8189.0
op 20395.0

−= σβ   (dimensionless)  (17) 

In equation 16, for the evaluation of the fuel packing ratio, ρb and ρp represent 

respectively the fuel array bulk density (Rothermel, 1972) (in kg m-3) and the fuel 

particle density (in kg m-3). The ovendry bulk density ρb will be defined in equation 

23. 

The other element that affects the optimum reaction velocity value Г’ is the A 

coefficient, computed as:  

7913.09033.8A −= σ   (dimensionless)  (18) 

As it was before defined, ηm and ηs permit to evaluate respectively the moisture 

effect and the mineral content of fuel particles on reaction intensity Ir; a proportional 

relationship among Ir, ηm and ηs exists. The equations for the evaluation of the 

moisture damping coefficient ηm and of the mineral damping coefficient ηs are: 

3

x

f

2

x

f

x

f

m
M

M
52.3

M

M
11.5

M

M
59.21 










−










+−=η   (dimensionless)  (19) 

19.0
es S174.0
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Finally, for the evaluation of the optimum reaction velocity Г’ , the net fuel 

load Wn (in kg m-2) is considered; the value of the net fuel load Wn is in inverse 

relation with the fuel particle mineral content: 

)S1(WW t0n −=   (in kg m-2)  (21) 
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To evaluate the fire rate of spread R it must be defined the propagating flux 

ratio π, which represents the ratio of energy released responsible of fuel heating and 

ignition: 

( ) ( )( )[ ]1.07597.3792.01 5.0

e9095.7192
++−+= βσσπ   (dimensionless)  (22) 

The propagation flux ratio π defines the ratio of energy transmitted to fuel in 

conditions of no wind and no slope. The numerical value of the propagation flux ratio 

is linked both with the packing ratio β and with the SAV ratio σ.  

 

ρb represents the ovendry fuel bulk density (in kg m-3), which defines the fuel 

dry mass per unit of volume. The value of the bulk density is computed by the ratio of 

fuel load (kg m-2) to surface fuel depth (m) 

δ
ρ 0
b

W
=   (in kg m-3)  (23) 

 

ε defines the effective heating number, which is used in order to determine the 

efficiency of heating as a function of the particle size, and it represents the fuel amount 

heated up to the ignition temperature. The effective heating number value (Frandsen, 

1973) is linked with the SAV ratio of the fuel particles: 








 −
= σε

528.4

e   (dimensionless)  (24) 

 

Finally, to compute the rate of spread in Rothermel’s equation the evaluation of 

the heat of pre-ignition Qig is necessary. This element defines the heat required to 

bring a unit weight of fuel to ignition: 

fig M2594092.581Q +=  (in kJ kg-1)  (25) 

The heat of pre-ignition is computed with the assumption that the fuel ignition 

temperature Tig is 320 °C, and that the fuel moisture Mf is completely evaporated when 

a temperature of 100 °C is reached (André et al., 1992). Evidently, the heat of pre-

ignition is strongly linked with the initial fuel moisture Mf . 

 

The symbol θ in Richards’ equations represents the angle of the wind-slope 

vector for the direction of maximum fire spread (0 ≤ θ ≤ 2π) on the local slope at a 

given vertex (xi, yi) (Finney, 2004). This vector was calculated for surface fires using 

two elements: the dimensionless coefficients for midflame wind speed Фw and slope Фs 

(Rothermel, 1972; Wilson, 1980): 
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where ø is the terrain slope (radians), U is the midflame wind speed (m s-1), 

and C, B, and E coefficients are functions of the fuel particle sizes in the fuelbed 

(Burgan, 1987; Rothermel, 1972). 

The vectors used in order to determine the spread direction of surface fires are 

highly dependent on the characteristics of surface fuelbed, and thus they are not 

necessarily applicable to determine the spread direction of active crown fires. 

 

Another important element is the fireline intensity Ifireline intensity Ifireline intensity Ifireline intensity Ibbbb (Byram, 1959), that 

defines the heat released per second from a unit section of fuel extending from the 

front to the back of the flaming zone: 

60

RHW
I n
b =   (in kW m-1)  (28) 

where H is the total heat released by fuel (the total heat produced except the 

heat required for fuel moisture evaporation), Wn is the net fuel load burned with 

flaming combustion∗, and R is the fire spread rate. 

The heat released per surface unit HPA is the product of the total heat released 

by fuel H and the net fuel load Wn. Therefore, HPA is equal to HWn of Byram’s 

equation 29. HPA can be defined also as (Andrews and Rothermel, 1982): 

rr tIHPA =   (in kJ m-2)  (29) 

where Ir represents the reaction intensity (in kJ min–1 m-2) and tr is the 

residence time (in min). The residence time tr is computed as (Anderson, 1969): 

σ
595.12

tr =   (30) 

where σ  is the SAV ratio (cm-1) of the fuelbed. 

Since HWn is equal to HPA, the Wn term can be computed also as: 

H

HPA
Wn =   (31) 

 

                                                
∗
 the total amount of fuel burned with following smoldering and glowing combustion is not 

considered (Scott and Reinhardt, 2001). 
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In FARSITE and BEHAVE, the fireline intensity Ib is computed by using the 

following equation (Wilson, 1980; Finney, 2004): 

60

RtI
I

R595.12

60

I
I rr

b
r

b =⇔×=
σ

  (32) 

 

In general terms, in FARSITE the frontal fire characteristics (spread rate, 

fireline intensity, and so forth) are calculated for a steady-state fire, and are dependent 

on the current environmental conditions. All of these environmental parameters must 

be available or computable at any point on the landscape at any time (Finney, 2004). 
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11110000.2. .2. .2. .2. Other Other Other Other ModelModelModelModelssss    

FARSITE crown fire model was developed by Van Wagner (1977, 1993) and it 

is similar to its implementation in the Canadian Forest Fire Behaviour Prediction 

System (Forestry Canada Fire Danger Group, 1992). It determines if the fire remains 

burning in surface fuels or makes a transition to burning in crown fuels, and whether 

it spreads actively through tree crowns or simply torches individual trees (Finney, 

2004). The model assumes that a threshold for transition to crown fire Io (kW m-1) 

exists: this value is dependent on the crown foliar moisture content M (percent on dry 

weight basis) and on the height to crown base CBH (m) (Van Wagner, 1989). 

Transition to crown fire occurs if the surface fire intensity Ib meets or exceeds Io. In the 

last versions of FARSITE, another crown fire model has been added, by using Scott and 

Reinhardt’s (2001) methodology. Therefore, actually a user can choose to simulate 

crown fire behaviour by using the “classic” FARSITE method or Scott and Reinhardt’s 

(2001) method. In general terms, Scott and Reinhardt’s method is a crown fire 

prediction system useful mainly when crown fire interests wide areas (Finney, 2004). 

 

The spotting model used in FARSITE is based on Albini’s (1979) equations for 

spotting from torching trees. Spotting distance in uneven terrain depends on ember 

size, vertical wind speed profile, and surface topography in the direction of the ember 

travel (Finney, 2004). In general, larger embers can burn longer and can achieve a 

higher terminal velocity, but won’t be lofted as high as small ones. Albini’s model 

(1979) calculates the height to which a particle is lofted as the height where the 

duration of the buoyant flow structure of torching tree tf equals the time required for 

the particle to travel upward from its source tt (Finney, 2004). In order to compute the 

lofting height of particles with defined diameter and characteristics, some assumptions 

are used (Finney, 2004):  

a) particles are assumed to originate at the top of the canopy; 

b) flame base is assumed equal to half the stand height; 

c) particles are cylinders with constant specific gravity and drag coefficient; 

d) particles are lofted vertically above the burning tree. 

The particles begin descending through the wind field: it is assumed that wind 

speed has only a horizontal component and increases logarithmically from the 

reference velocity provided as a simulation input (at height of 6.1 m above the 

vegetation). Since particle loses density and volume during burning, it descends at a 

decreasing rate. The user needs to set an ignition frequency, because many embers that 
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drop on ground are not able to originate new fires. Several elements influence the 

ignition frequency: the most important are fuel heterogeneity, fuel moisture content, 

fuel temperature and other physical and thermal fuel properties (Blackmarr, 1972; 

Bunting and Wright, 1974; Bradshaw et al., 1984). 

 

In order to simulate the fuel combustion, linked with smoldering and flaming 

fire activity behind the main flaming front, FARSITE uses the “Burn Up” model (Albini 

and Reinhardt, 1995; Albini et al., 1995). With this model the combustion history of 

the fuel complex, the heat flux, the gaseous emissions, the soil heating, can be 

simulated (Finney et al., 2003). The fuel complex is defined for each size class by 

woody fuel load (kg m-2), heat content (kJ kg-1), fuel density (kg m-3), moisture content 

(%). The model requires as input the initial fire conditions that ignite the fuel complex, 

namely fire intensity (kW m-2) and residence time (sec); the environmental conditions 

are also required, including wind speed and moisture contents of woody fuels and 

duff. Other information required for the Burn Up model are duff and woody fuel load. 

The outputs from Burn Up model are intensity (kW m-2) and fuel weight loss at each 

timestep (kg m–2 min-1). 

 

Fire acceleration is defined as the rate of increase in spread rate for a given 

ignition source assuming all fire environmental conditions remain constant. In a strict 

sense, fire spread rate increases in these situations because the environmental 

conditions are changing to create higher potential levels of fire spread rate equilibrium 

(Finney, 2004). FARSITE uses a model for fire acceleration; this model is useful because 

it is able to eliminate instantaneous jumps to faster spread rates that would follow 

sudden increases in wind speed, steeper slopes, or changes to faster fuel types. The 

formula for the fire acceleration model has been proposed by Canadian Forest Fire 

Behaviour Prediction System, and it assumes that the fire spread rate Rt at time t is 

dependent on only the time allowed for accelerating to the maximum rate possible 

under current conditions (Forestry Canada Fire Danger Group, 1992; McAlpine and 

Wakimoto, 1991). 
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FARSITE can be used for many practical applications. Finney and Andrews 

(1999) state that FARSITE has three main uses: simulation of past fires, simulation of 

active fires and simulation of potential fires. The capabilities of FARSITE are important 

because the fire behaviour models currently incorporated in the simulator can 

calculate surface and crown fire behaviour, spot fires, fire acceleration, post frontal 

combustion and fuel moisture (Finney, 2004). 

The main potential applications of FARSITE simulator are described in the 

following points. 

a) Simulation of Past Fires. FARSITE is able to simulate propagation and 

behaviour of past wildfires. Analyses of past fires reveal how well the simulation 

reproduces known fire growth patterns, given available input data. Simulating past 

fires is critical in developing confidence for using FARSITE to project the growth of 

active fires (Finney and Andrews, 1999). In order to obtain a good result, all the inputs 

required for the simulation have to be as similar as possible to the environmental 

conditions of the case studies. By considering that topography is a static parameter, the 

main problems are linked with the definition of the fuelbed characteristics and the 

rebuilding of the weather conditions.  

The outputs produced by FARSITE can be very useful in order to study the fire 

behaviour and to evaluate if the suppression operations have been efficient and 

correct. The maps of fire growth and behaviour obtained with FARSITE simulations 

have formats suitable for Arc Map and Arc View. Since FARSITE is able to take into 

consideration all ground (direct, indirect and parallel) and aerial attacks, or the barrier 

creation, an evaluation of the global suppression intervention (with eventual mistakes 

or effectiveness) of the Firefighter service can be conducted. 

b) Simulation of Active Fires. FARSITE can be used to produce simulations in 

order to evaluate in real time the potential propagation and behaviour of wildfires. For 

this aim, all the input layers indispensable to obtain a simulation must be ready for use: 

therefore, this application can be helpful in areas of important naturalistic interest, or 

in proximity of highly populated areas. 

c) Simulation of Potential Fires. FARSITE can become an interesting tool in 

order to define and to manage prescribed fires. Really, FARSITE was originally intended 

to use it as management support tool for active prescribed fires in national parks or 

wilderness areas under management (Finney, 1994).  
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Finney and Andrews (1999) state that fire planning is an appropriate use of 

FARSITE and it is currently its most common application. In a given landscape, FARSITE 

can be used to determine the best ignition points depending on meteorological 

conditions, or to define when meteorological conditions and fuel status can support in 

the right way the fire spread. This application can be very useful in order to optimize 

the ratio cost of prescribed burning to effectiveness of burning. FARSITE can also be 

used to examine the economic consequences of potential wildfires occurring with and 

without fuel management activities.  

With FARSITE it is possible to evaluate the efficiency of the fire propagation 

barriers in the landscape. Clearly, some of these barriers are natural, but other barriers 

can be created by Firefighters to improve the fire extinction operations.  

Another interesting application of FARSITE can be represented by the creation 

of some extreme meteorological scenarios, with the consequent effects on fuel moisture 

state. For example, in Sardinia, some simulations can be produced by considering two 

typical extreme conditions historically tied to the most dangerous wildfires: the sirocco 

(dry hot south-eastern wind) windy and hot days, and the mistral (dry cold north-

western wind) windy and cold days. 

In areas of naturalistic interest, the creation of probabilistic maps of fire 

propagation and behaviour can be very useful. These maps can be produced with the 

use of some possible climatic and vegetational (load, moisture, etc.) scenarios. 
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Any fire predictive model generates estimates of fire spread and behaviour that 

can be affected by some inaccuracies, in both the estimated burned area extension and 

the values of the fire behaviour parameters (rate of spread, fireline intensity, etc.). One 

of the main sources of inaccuracies is linked to the difficulties in the acquisition of 

reliable input data, with the required spatial and temporal resolution. There are other 

reasons why a model may produce unreliable results. Sometimes the model is not 

applicable to some sites or specific situations, due to the lack of an adequate model 

calibration phase. 

In any case, due to the complexity of the involved phenomena, the main 

preliminary assumptions and limitations of FARSITE simulator are following described. 

 

1) As many simulators, the fire growth simulations of FARSITE generally get 

worse with time and spread distance, because there is a cumulative effect of errors. 

The simulation of the fire growth increases its accuracy when accurate data at high 

spatial and temporal resolution are used. 

2) The landscape file used for the simulation is created by using different 

information (slope, elevation, etc.), normally with large spatial scales when the 

territory is wide. This simplification may worsen the accuracy of simulations at local 

scale, because the landscape can be too coarse to consider the environmental 

variability. 

3) Another limitation of the fire simulator is linked with the use of simplified 

weather and, eventually, wind data. With respect to the first limit, actually only few 

studies give useful information. Finney (2004), for example, states that calculations 

depending on fuel temperature and moisture may not be accurate where shadows are 

cast by topography, precipitations vary spatially or with elevation, or water availability 

is significantly altered (e.g. higher fuel moistures near streams).  

The limited account for topographic variations that affect wind exposure to 

surface fires, such as ridgetop versus sideslope versus valley (Finney, 1998; Albini and 

Baughmann, 1979), is another limitation of the model. For this reason, an 

overestimation of downslope fire perimeter and of other fire behaviour elements can 

be produced. 

4) The scale of the used wind data (for time and space) is commonly an hour 

or half an hour scale, therefore it can be too coarse to consider the great variability of 
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wind speed and direction in the fire environment. This could force the average fire 

spread rate over large areas and long time to be overestimated. The fluctuations in 

wind directions can also overestimate the spread in the heading fire direction front, 

because the real fire shape has a lesser eccentricity with respect to the theoretical 

elliptical shape.  

High frequency variability in wind direction and intensity is a common cause 

of non steady behaviour of fires; in these conditions many simulators produce results 

not consistent with observed fire propagation. 

5) The interaction of multiple fire fronts observed in extreme fire conditions is 

difficult to model by fire simulation systems. These severe scenarios involve rapid 

transitions in fire behaviour, abrupt thresholds in fire activity, and strong feedbacks 

between fire behaviour and environmental conditions. Therefore, most models are 

poorly suited to explain or predict the fire behaviour in these extreme situations. 

6) As already pointed out, the model of Rothermel is able to reproduce only a 

surface fire, spreading along a fuelbed that is continuous, uniform, homogenous, and 

contiguous to the ground. The fire behaviour outputs reflect a surface burning front, 

moving in an entirely uniform (horizontally and vertically) fuel complex, within 2 m 

of the ground. Clearly, this is a wide simplification of the actual surface vegetation, 

above all when the landscape is covered by shrublands, as it can be observed in 

Mediterranean areas. 

7) It is not completely confirmed whether Huygens’ principle is able to 

simulate the fire spread on complex landscapes. Some studies gave promising results, 

but it is important to consider that many potential sources of error in observed data 

(fuel maps, weather and wind data, etc.) can preclude a correct comparison between 

simulated and real fire. 

The simple approach to correct the spread rates, too simplistic (maybe) for 

complex landscapes, is to assign rate of spread adjustment factors to each fuel type 

(Rothermel and Rinehart, 1983). These factors must be based on empirical 

observations of previous fires, or of phases of growth of existing fire, in patches of 

homogeneous fuels. They should be based on the heading portion of fire, given that 

spread in other directions is dependent on the elliptical dimensions. The adjustment 

factors, however, may not be constant throughout the duration of a fire (Finney, 

2004).  

8) The oval shape of the fire front perimeter observed in simplistic scenarios 

has been considered by many researchers to have the special configuration of an 



FARSITE Model - 12. FARSITE Limitations 

 

 90 

ellipse. But some studies evidenced that there are parameter ranges for which the fire 

front is not even roughly elliptical, despite high regularity of fuel distribution, virtual 

flatness of terrain, and constancy of the wind magnitude and direction (Fendell and 

Wolff, 2001). 

9) The most important result of FARSITE tests to be quoted has been that spread 

rates for all fuel models tended to be over predicted by Rothermel’s spread equation 

(Rothermel, 1972). Sanderlin and Sunderson (1975) made a similar observation and 

ascribed the causes to problems relating wind speed to elliptical dimensions. Some 

problems may be a result of inaccurate data on fuel moistures, fuel descriptions (e.g. 

models), and weather. Also, wind reduction factors for forested areas and lee-side 

topographic sheltering can undoubtedly cause errors for spread rate calculations on 

some parts of a landscape (Finney, 2004). 
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When FARSITE was applied in Mediterranean climate areas, results were 

controversial. This can be mainly attributed to the characteristics of shrubland 

vegetation across the Mediterranean Basin. Unlike other vegetation types, live fuel is 

the main component of the available fuel for fires in Mediterranean shrubland. 

Shrubland vegetation is usually more flammable than other vegetation types because of 

the low moisture content and volatile organic compounds. In addition, Mediterranean 

shrublands can sustain high intensity fires also within few days after rainfall and when 

meteorological conditions are relatively moderate. Moreover, most fire events in the 

Mediterranean Basin are short in duration and occur in complex-terrain areas, where 

spatial variability of wind speed and direction is usually wide. Realistic predictions of 

fire behaviour using FARSITE depend on the consistency and accuracy of the weather 

input data and on the accuracy of the fuel model and of the other additional 

parameters required by the simulator. 

The main aims of this study are (1) to evaluate the capabilities of FARSITE 

simulator in accurately modelling the fire spread and behaviour on historical fires that 

burned Mediterranean maquis, and (2) to analyze the effects of fuel models, weather 

conditions, and topography on the simulations. 
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11113333. . . . CCCCase ase ase ase SSSStudtudtudtudiesiesiesies    

FARSITE was used to simulate behaviour and spread of four human-caused 

wildland fires occurred in the western Mediterranean Basin area, in North Sardinia 

(Figure 31; Figure 32), during 2003, 2004 and 2006 summer season. These fires 

burned areas mainly covered by the typical shrubland Mediterranean vegetation, 

named maquis.  

 

Figure 31. Geographical map of the western Mediterranean Basin 

 

All of the case study sites, located near the coast of Sardinia, show similar 

climate and vegetational characteristics.  

The climate is sub arid with a remarkable water deficit from May until 

September, and most annual rainfall amounts (approximately 700 mm, Figure 33) 

occur in fall and winter. During the summer season, the cumulative amounts of 

precipitations is instead very limited (Figure 34). The mean annual temperature along 

the coast line is approximately 18 °C (Figure 35), with peaks higher than 30 °C in 

summer season (Figure 36).  
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Figure 32. Sardinia map, with main towns and wildfire case studies 
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Figure 33. Sardinian annual cumulative 
amounts of precipitations (Chessa and 

Delitala, 1997) 

 

Figure 34. Sardinian cumulative amount of 
precipitations (in July) (Chessa and 

Delitala, 1997) 

 

Figure 35. Sardinian mean annual 
temperatures (Chessa and Delitala, 1997) 

 

Figure 36. Sardinian mean maximum 
temperatures (in August) (Chessa and 

Delitala, 1997) 
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The average wind speed is relatively high (≈ 4 m s-1) in both winter and 

summer seasons, with about 50-70% of the days showing values between 1.6 and 

8 m s-1 (Chessa and Delitala, 1997). The prevailing wind directions at the sites are 

typically west and north-west with a cumulative frequency greater than 50%, as 

frequently observed in different Sardinian weather stations (Figure 37). However, the 

local wind direction, mainly with low wind intensities, can be modified by the complex 

terrain. 

Maximum Wind Direction Frequency on 10 Sardinian Weather Stations
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Figure 37. The maximum wind direction frequency on 10 Sardinian Weather Stations (adapted 
from Chessa and Delitala, 1997). The maximum wind is the observed maximum wind speed, 

with the associated direction, during the day 

WD = western directions (225-315°); OD = other directions.  

I = wind speed range 1,5-8 m s-1; II = wind speed range 8-13,5 m s-1; wind speed higher than 
13,5 m s-1 

 

The different sites were characterized by small differences in the maquis 

species composition and fuel load, while great differences affected fire behaviour, fire 

severity and effectiveness of Sardinian Forest Service activity. 
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11113333.1. .1. .1. .1. Budoni Case StudyBudoni Case StudyBudoni Case StudyBudoni Case Study    

 

Figure 38. Budoni three-dimensional map (source: http://www.sardegna3d.it) 

 

This fire occurred in a hilly area near the village of Budoni, Gallura district 

(lat. 40° 43’, long. 09° 42’, 100 m a.s.l.) (Figure 38), on August 26, 2004, where 

about 145 ha were burnt. As presented in Figure 39, the area is highly populated, with 

many houses threatened. Because of this anthropic influence, the place presents many 

roads (main and secondary), that helped the direct attack near the residential areas. 

The burned area (Figure 40) was mainly covered by the typical shrubland 

Mediterranean vegetation (approximately 104 ha), with plant height ranging from 1 

to 4 m. Dominant species included Pistacia lentiscus L., Olea europaea L. var. oleaster, 

Myrtus communis L., Cistus monspeliensis L., Calycotome spinosa L., Euphorbia 

dendroides L. Link, Pyrus amygdaliformis Vill.. Small surfaces inside the area were 

covered by open wooded pastures and grasslands with an extension of about 22 ha 

and 19 ha, respectively.  
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Figure 39. Budoni fire map, with roads and urban areas 

 

 

Figure 40. Budoni vegetation map; the fire perimeter is shown in red 
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The fire started at 5:00 p.m. LST (local solar time) near a road along the south-

western side of the area. The day of the fire was very windy, but with moderate 

temperatures: the maximum temperature was 28 °C and was reached at 12.00 a.m. 

LST, the minimum was 20 °C at 9.00 p.m. LST. 

The fire spreads quickly, moving towards the east driven by a strong western-

south-western wind of about 35 km h-1 in average. The fire was successfully 

extinguished by Forest Service Firefighters only on the initial portion of the south flank, 

near the grassland area. On the opposite flank, near a ridge-line, the wind effect was 

reduced by the slope of terrain and the fire stopped propagating (Figure 41). The steep 

terrain and the strong upslope wind did not allow the direct suppression attack on the 

head of fire, which was slowed down only by some aerial attacks. Consequently, the 

spread rate of the fire front decreased significantly only after 9:00 p.m. LST, probably 

due to both down-slope wind flow and decreasing wind speed. However, the fire 

threatened some residential and resort areas on the south-east boundary. 

Approximately, the fire stopped its propagation at 11.30 p.m. LST, in the north-eastern 

border of the fire perimeter, at 1 km from sea, between Agrustos and Ludduì. The fire 

spread duration was 6 hours and 30 minutes. 

 

Figure 41. Budoni slope map, with isohypses of elevation; the fire perimeter is shown in red 
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11113333....2222. . . . Ospolo Case StudyOspolo Case StudyOspolo Case StudyOspolo Case Study    

 

Figure 42. Ospolo three-dimensional map (source: http://www.sardegna3d.it) 

 

The second fire occurred near the village of Siniscola, Baronia district 

(lat. 40° 30’, long. 09° 41’, 360 m a.s.l., Ospolo site), on August 21, 2004, and burned 

an area of about 19 ha (23 km south of Budoni fire event) covered by a mixed, dense 

shrubland vegetation (Figure 42 and Figure 43) with homogeneous structural 

characteristics and mainly composed of Arbutus unedo L., Erica arborea L., Myrtus 

communis L., Cistus spp., Olea europaea L. var. oleaster, Pistacia lentiscus L., Phyllirea 

angustifolia L.. 

The fire started at 7:00 p.m. LST and lasted approximately 5 hours and 

30 minutes. The ignition point was located near a road along the western boundary of 

the area (Figure 42 and Figure 43). Although the fire event occurred in late afternoon, 

the weather was relatively severe, with air temperature around 24 °C and relative 

humidity around 35%. The fire moved towards south-east driven by a western-north-

western wind (280 °), that reached an average intensity of about 15 km h-1 in the first 

two hours after ignition, till 9.00 p.m. LST. The slope helped the spread of fire towards 

north-west (Figure 42 and Figure 44). The fire was successfully controlled by Forest 
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Service Firefighters only along a road on the north flank. On the opposite flank and on 

the head of the fire, the steep terrain and the lack of roads did not allow a direct 

suppression attack (Figure 44).  

 

Figure 43. Ospolo vegetation map; the fire perimeter is shown in red 

 

Figure 44. Ospolo slope map, with isohypses of elevation; the fire perimeter is shown in red 
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The spread of fire decreased near the east ridge-line, due to the effect of 

decreasing slope and the decrease of wind speed after 9.00 p.m. LST. Approximately, 

the fire stopped its propagation at 0.30 a.m. LST, after 5 hours 30 minutes of spread, 

in the south-eastern border of the fire perimeter, near the top of Ospolo hill, at an 

elevation of about 550 m a.s.l.. By considering a line between the ignition point and 

the farther point of the fire perimeter, Ospolo fire spreads for 930 m approximately, 

with a difference in elevation of about 220 m.  
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11113333.3. Razza di Juncu .3. Razza di Juncu .3. Razza di Juncu .3. Razza di Juncu CCCCase ase ase ase SSSStudytudytudytudy    

 

Figure 45. Razza di Juncu three-dimensional map (source: http://www.sardegna3d.it) 

 

The fire occurred at 13 km north from the village of Porto Rotondo 

(lat. 41° 01’, long. 09° 32’, 0 m a.s.l.), at Razza di Juncu site (38 km north of Budoni 

wildfire). This area, located in Gallura district, is characterized by a smooth 

topography, with some hills near the coast line (Figure 45 and Figure 46).  

Razza di Juncu wildfire threatened the resort of Portisco and the nearby 

beaches; 100 people at least were saved by using some coastguard patrol boats, 

because there was no other chance to avoid flames. The fire burned some vehicles 

along the road to Razza di Juncu beach. The ignition point was located 100 meters 

along the helicopter base of Costa Smeralda Consortium, which was surrounded and 

threatened by fire.  

Razza di Juncu fire occurred on August 11, 2003, and the burned area was 

about 45 ha. The day was characterized by a moderate western-north-western wind 

and was very hot: the maximum temperature recorded in the closest SAR 

meteorological station (39 °C) was reached at 2.00 p.m. LST, the minimum (25 °C) 

was reached at 6.00 p.m. LST. The vegetation type burned was a dense and uniform 
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maquis shrubland (Figure 47), with plant height ranging from 1,5-2 m. Dominant 

species included Pistacia lentiscus L., Cistus monspeliensis L., Arbutus unedo L., Olea 

europaea L. var. oleaster, Myrtus communis L., Pyrus amygdaliformis Vill., Calycotome 

spinosa L., Phyllirea angustifolia L., Juniperus phoenicea L..  

The fire started approximately at 12.45 a.m. LST, and the ignition point was 

located near the road along the north-western border of the fire perimeter. The fire 

moved towards south-east driven by the wind (295 °), with an average intensity of 

about 13 km h-1 till the end of fire spread. 

Sardinian Forest Firefighter Service extinguished the fire with success near the 

road, in northern and western flanks. The direct attack in the maquis zone was not 

possible, because the fire arrived at the beach very soon. Afterwards, the fire 

propagated mainly towards the south direction, with a limited effect of wind and slope. 

Some attaches were conducted along the south flank, using helicopters (Helitanker) 

and an airplane (Canadair). Razza di Juncu wildfire had an important rate of spread 

till the fire arrived at the sea, then its velocity of propagation reduced. The fire stopped 

its spread approximately at 3.45 p.m. LST, after about 3 hours.   

 

Figure 46. Razza di Juncu slope map, with isohypses of elevation; the fire perimeter is shown in 
red 
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Figure 47. Razza di Juncu vegetation map; the fire perimeter is shown in red 
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11113333.4. Monte Pedrosu .4. Monte Pedrosu .4. Monte Pedrosu .4. Monte Pedrosu CCCCase ase ase ase SSSStudytudytudytudy    

 

Figure 48. Monte Pedrosu three-dimensional map (source: http://www.sardegna3d.it) 

 

Monte Pedrosu wildfire occurred 13 km to the north of the town of Alghero 

(lat. 40° 33’, long. 08° 18’, 0 m a.s.l.), in July 2006. This site is located in Nurra 

district, in a flat area characterized by a smooth topography, with only small hills with 

an elevation of about 200 m a.s.l, partially burned by this fire (Figure 48 and Figure 

49).  

The area was subjected to recurrent arson fires in the last years, principally 

during severe environmental conditions in such a way to permit the fire spread 

towards the peaks of the hill. Monte Pedrosu wildfire affected the eastern part of the 

hill. The fire threatened some rural houses and the village of Santa Maria La Palma; 

due to the presence of houses and of agricultural lands, the viability in this area is 

good.  

Monte Pedrosu wildfire occurred on July 15, 2006, at 2.30 p.m. LST; the 

burned area was about 65 ha. The day was characterized by a light wind, with some 

occasional gusts, but it was very hot: the maximum temperature recorded in the closest 

meteorological station was 36 °C and it was reached at 3.00 p.m. LST, the minimum 

was 20 °C at 7.00 a.m. LST. The vegetation type burned was mainly maquis (about 
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87% of the total burned area) (Figure 50), with plant height ranging from 1-1,5 m. 

Dominant species included Pistacia lentiscus L., Myrtus communis L., Chamaerops 

humilis L., and some Arbutus unedo L.. The maquis was not so uniform and it was 

denser at the bottom of the hill. The remaining vegetation was grassland, concentrated 

near the road, especially in the zone nearby the ignition point. 

The ignition point was located near the road along the north-eastern boundary 

of the area. The fire moved towards south-west driven by mild slope and by north-

eastern wind (40 °), that reached an average intensity of about 11 km h-1 till 7.00 p.m. 

LST, then it decreased. Sardinian Forest Firefighter Service extinguished the fire with 

good success near the road. The direct attack in the maquis zone was not easy, because 

of the heat released by fire. So, in that central region, the fire attack was mainly 

carried out by aerial forces. When Monte Pedrosu wildfire overtook the hilly chain, the 

rate of spread decreased, also because of downwind; then, after 7.00 p.m. LST, also the 

wind speed reduced, so the fire propagation became slower. The fire stopped its spread 

approximately at 7.45 p.m. LST, after about 5 hours and 15 minutes.  

 

Figure 49. Monte Pedrosu slope map, with isohypses of elevation; the fire perimeter is shown in 
red 
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Figure 50. Monte Pedrosu vegetation map; the fire perimeter is shown in red 
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11114444.... FARSITE Simulation FARSITE Simulation FARSITE Simulation FARSITE Simulation Parameters  Parameters  Parameters  Parameters     

As it discussed before, FARSITE simulator requires a set of spatial data, referred 

to topography, vegetation and meteorological conditions. In addition, a set of 

simulation parameters must be defined.  

All the input layers required to run FARSITE simulator have been acquired and 

managed by using a Geographic Information System GIS (ArcGis 9, ESRI Inc., 

Redlands, CA, USA). The grid resolution for the spatial information of layers has been 

defined by considering the extension of burned areas and of surrounding landscape: a 

grid resolution of 10 m was used for Ospolo and Razza di Juncu fires, while a grid 

resolution of 15 m was used for Monte Pedrosu and Budoni. All the raster themes were 

converted into raster ASCII format, in order to support the definition of the landscape 

file into FARSITE simulator. 

The Digital Elevation Model (DEM) and the elevation map of each area were 

derived from the Carta Tecnica Regionale of Sardinia by using the Triangular Irregular 

Network (TIN) algorithm. The additional themes of slope and aspect were derived from 

DEM using the Spatial Analyst tool of ArcGIS 9. 

Fuel model and canopy cover maps were produced by supervised classifications 

of pre-fire aerial photographs (1 : 10,000) and by field observations of plant 

community; some parts of landscapes were mapped using CORINE land cover map 

(1 : 25,000) of Sardinia (EEA, 2002). In the first steps polygons were drawn onto the 

pre-fire aerial photographs, and afterwards these polygons were ground-truthed, 

corrected where necessary and allocated to fuel model and canopy classes. 

The fuel model map gives a fuel model code for each point of the grid. For 

each fuel model code the values of the following physical characteristics must be 

provided by an ASCII file: 

- fuel load; 

- SAV ratio; 

- depth of surface fuelbed; 

- moisture of extinction; 

- fuel heat content. 

In all the case studies, the vegetation was mainly composed of shrubland 

vegetation, and partially of grassland and wooded pasture.  

To describe the shrubland vegetation characteristics, standard fuel models of 

Anderson (1982) (model n° 4, FM4) and Scott and Burgan (2005) (models 142, SH2; 



Materials and Methods - 14. FARSITE Simulation Parameters 

 

 111 

145, SH5; 147, SH7) were used. With Anderson’s FM4, “fire intensity and fast-

spreading fires involve the foliage and live and dead fine woody material in the crowns 

of a nearly continuous secondary overstory. Stands of mature shrubs, 6 or more feet∗ 

tall, such as California mixed chaparral, the high pocosin along the east coast, the 

pinebarrens of New Jersey, or the closed jack pine stands of the north-central States are 

typical candidates. Besides flammable foliage, dead woody material in the stands 

significantly contributes to the fire intensity. Height of stands qualifying for this model 

depends on local conditions. A deep litter layer may also hamper suppression efforts” 

(Anderson, 1982). In Scott-Burgan’s SH2, “the primary carrier of fire is woody shrubs 

and shrub litter. Moderate fuel load, depth about 1 foot (about 33 cm), no grass fuel 

present. Spread rate is low; flame length low” (Scott and Burgan, 2005). In Scott-

Burgan’s SH5, “the primary carrier of fire is woody shrubs and shrub litter. Heavy 

shrub load, depth 4-6 feet (about 130-200 cm). Spread rate very high; flame length 

very high. Moisture of extinction is high” (Scott and Burgan, 2005). In Scott-Burgan’s 

SH7, “the primary carrier of fire is woody shrubs and shrub litter. Very heavy shrub 

load, depth 4 to 6 feet. Spread rate lower than SH5, but flame length similar. Spread 

rate is high; flame length very high” (Scott and Burgan, 2005). 

In order to account for the site specific characteristics of shrubland vegetation 

(Figure 52), a custom fuel model was developed and tested. This fuel model, named 

Custom Model Maquis 28 (CM28), was realized using field sampling data from recent 

and former studies conducted in North Sardinia and bibliographic information on the 

Mediterranean Basin, on similar types of vegetation (Leone et al., 1993; Fernandes, 

2001; Baeza et al., 2002; Caria, 2003; Pellizzaro et al., 2003, 2005; De Luis et al., 

2004; Cruz, 2005). Field data were collected from destructive sampling conducted in 

North Sardinia, in 2 m x 2 m plots located in maquis areas. This destructive sampling 

has been conducted in different sites, with similar shrubland characteristics, located in 

Gallura district (Monti, lat. 40° 48’, long. 09° 20’) and in the northern part of Nurra 

district (Porto Palmas, lat. 40° 74’, long. 08° 15’; Monteforte, lat. 40° 74’, 

long. 08° 19’).  

Vegetation of any plot was weighted, distinguishing dead and live fuel and, for 

dead fuel, the 1 hr, 10 hr, 100 hr timelag size classes. For live fuel and for each 

timelag size class some samples were prepared (Figure 51). All samples were 

afterwards dried in oven at 102 °C for 96 h, in the CNR-IBIMET labs of Sassari, in 

                                                
∗
 1 foot is equal approximately to 0.33 meters 
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order to evaluate the dry weight and to calculate the fuel moisture content for any 

category.  

 

Figure 51. Samples of live and dead fuel, divided in timelag size classes, before the ovendry at 
102 °C 

 

To determine the SAV ratio for dead and live fuel, in any plot some twigs and 

leaves were considered as representative of the shrubland vegetation; for the selected 

twigs and leaves, the SAV ratio values were recorded. For each plot, the fuelbed depth 

and the specific shrubland composition were determined. In order to evaluate the 

moisture of extinction, a value reported by many studies as typical for the 

Mediterranean maquis was used. The standard value proposed by Anderson (1982), 

Pyne et al. (1996) and Scott and Burgan (2005) was used for the fuel heat content. 

The main difference between shrubland standard fuel models and CM28 is 

primarily due to the fuel load characteristics: the latter have a higher ratio live/dead 

fuel load.  
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(a) 

 

(c) 

 

(e) 

 

(g) 

 

(b) 

 

(d) 

 

(f) 

 

(h)

Figure 52. Variability in fuel species, load, height and complexity in eight different areas 
covered by Mediterranean maquis. 
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A previous custom fuel model (CM20) for the Mediterranean shrubland 

vegetation was defined by Caria (2003), for a maquis study area located in north-

western Sardinia, in Capo Caccia peninsula (lat. 40° 36’, long. 08° 09’, 150 m a.s.l.). 

This custom fuel model is useful for Capo Caccia local vegetation, but it is unfit for the 

maquis vegetation of the four case studies, located in different places and with some 

shrub species and fuelbed height differences. Actually, Arrigoni (1968) defined Capo 

Caccia vegetation as “brush and coastal maquis of southern and middle-eastern 

Sardinia, and partially of Nurra planes (north-western Sardinia)”. In any case, also the 

CM20 confirms that the ratio live/dead fuel load is greater than one, unlike the main 

shrubland fuel models (Anderson, 1982; Scott and Burgan, 2005).  

Grasslands and wooded pastures were assigned to Anderson standard fuel 

models n° 1 (FM1) and n° 2 (FM2) respectively (Anderson, 1982). With Anderson’s 

FM1, “the fire spread is governed by the fine, very porous, and continuous herbaceous 

fuels that have cured or are nearly cured. Fires are surface fires that move rapidly 

through the cured grass and associated material. Very little shrub or timber is present, 

generally less than one third of the area. Grasslands and savanna are represented 

along with stubble, grass-tundra, and grass-shrub combinations that met the above 

area constraint. Annual and perennial grasses are included in this fuel model” 

(Anderson, 1982). With Anderson’s FM2, “the fire spread is primarily through the fine 

herbaceous fuels, either curing or dead. These are surface fires where the herbaceous 

material, in addition to litter and deaddown stemwood from the open shrub or timber 

overstory, contributes to the fire intensity. Open shrub lands and pine stands or scrub 

oak stands that cover one-third to two-thirds of the area may generally fit this model; 

such stands may include clumps of fuels that generate higher intensities and that may 

produce firebrands” (Anderson, 1982). 

Scott and Burgan non-burnable fuel model n° 91 (NB1) (Scott and Burgan, 

2005) was used for urban and suburban areas and for roads. 

Table 7 resumes the characteristics of the fuel models used for the case study 

simulations. 

 

Each canopy cover layer was created from the fuel model maps by the addition 

of a field to the attribute table, defining the canopy cover percentage. The canopy 

cover layers in all case studies have been created by considering no tree presence in 

the maquis vegetation. So, in the shrubland zone the canopy cover was set as zero. The 
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grid files were created using the canopy cover field value as raster cell value; 

afterwards, the grid files were converted into ASCII format. 

 

Table 7. Characteristics of the fuel models used in the simulations 

    
Fuel mode codeFuel mode codeFuel mode codeFuel mode code    

    

FM1 FM1 FM1 FM1 
(AND.)(AND.)(AND.)(AND.)    

FFFFM2M2M2M2    
(AND.)(AND.)(AND.)(AND.)    

FM4 FM4 FM4 FM4 
(AND.)(AND.)(AND.)(AND.)    

SH2 SH2 SH2 SH2 
(S.&B.)(S.&B.)(S.&B.)(S.&B.)    

SH5 SH5 SH5 SH5 
(S.&B.)(S.&B.)(S.&B.)(S.&B.)    

SH7 SH7 SH7 SH7 
(S.&B.)(S.&B.)(S.&B.)(S.&B.)    

CM28CM28CM28CM28    CM20CM20CM20CM20    

 Grassland 
Open 

Wooded 
Pasture 

Shrub Shrub Shrub Shrub Shrub Shrub 

Fuel Model 
Parameters 

        

- Dead Fuel 
Load (Mg ha-1) 

1.66 7.84 24.70 10.09 12.78 24.66 9.86 5.46 

1-hr 1.66 4.48 11.23 3.03 8.07 7.85 3.92 4.75 
10-hr 0 2.24 8.99 5.38 4.71 11.88 3.92 0.71 
100-hr 0 1.12 4.48 1.68 0 4.93 2.02 0 

- Live Fuel 
Load (Mg ha-1) 

0 1.12 11.23 6.50 6.50 7.62 17.93 6.35 

Herbaceous 0 0 0 0 0 0 0 0 
Woody 0 1.12 11.23 8.63 6.50 7.62 17.93 6.35 

Fuel Model 
Type 

static static static static static static static static 

- Dead 1-hr 
SAV (cm-1) 

114 98 65 24 24 24 60 62 

- Live 
Herbaceous 
SAV (cm-1) 

0 0 0 0 0 0 0 0 

- Live Woody 
SAV (cm-1) 

49 49 49 52 52 52 50 82 

- Fuelbed 
Depth (cm) 

30.48 30.48 182.88 30.48 182.88 182.88 200 35 

- Moisture of 
Ext. (%) 

11 14 20 14 14 14 25 25 

Dead Heat 
Cont. (kJ kg-1) 

18620 18620 18620 18620 18620 18620 18620 20934 

Live Heat Cont. 
(kJ kg-1) 

18620 18620 18620 18620 18620 18620 18620 20934 

Fuel Moisture (%)         
- Dead (%)         

1-hr 5 5 8 8 8 8 8 5 
10-hr 8 8 11 11 11 11 11 8 
100-hr 12 12 13 13 13 13 13 12 

- Live (%)         
Herbaceous 0 0 0 0 0 0 0 0 
Woody 0 100 60 60 60 60 60 76 

Adjustment 1.0 1.0 1.0 1.0 1.0 1.0 1.0  

 

Since the vegetation of wildfire case study areas can be considered like a 

surface layer, with maximum height of 3-4 m only for some isolated big shrub in 
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Budoni wildfire, the tree canopy characteristics (crown base, height, bulk density, 

foliar moisture content, diameter, species, and shade tolerance) were not considered. 

So, all FARSITE simulations reproduced a surface fire spreading in the surface 

layer of shrub, wooded pastures and grasslands of the landscapes. Therefore, in these 

fuel conditions, crown fire or spot fire were not simulated with FARSITE. 

Sometimes also maquis can experience spot fire phenomena, and therefore the 

choice to avoid spot fire in FARSITE simulations can be considered as simplistic. At the 

moment, we don’t have adequate data and information about incidence and 

characteristics of the spot fire phenomenon in Mediterranean shrublands. The choice 

to consider only a surface fire spread, with no spot fire phenomena, was also linked 

with the low accuracy of FARSITE spot fire model: in literature there are few case 

studies in which the spot fire module has been used, and there are no sufficient 

validations of this module.  

 

The fuel moisture information was determined by integrating field observations 

and some literature data.  

Shrubland and grassland live fuel moisture content was determined by drying 

several samples in oven.  

In order to determine the actual dead fuel moisture content for the different 

case studies, the values for 10 hr timelag class were estimated calculating the 

relationship between fuel moisture content (direct measurements) and fuel moisture 

sensor (model CS505, Campbell Sci., Logan, UT, USA) in days with meteorological 

conditions similar to those when the fire events occurred. The 1 hr and 100 hr timelag 

dead fuel moisture content values were obtained from field observations and literature 

data (for shrubland vegetation, Fernandez, 2001; Baeza et al., 2002; De Luis et al., 

2004). 

FARSITE considers as constant in space and time the value of live fuel moisture, 

whereas dead fuel moisture can change. For this reason, in the simulations of the 

wildfire case studies a conditioning period of two days (before the fire day) was 

considered.  

 

In order to rebuild meteorological conditions of the wildfire days, hourly 

meteorological data (air temperature, relative humidity, wind speed and direction, 

solar radiation, rainfall) were obtained from the closest weather stations of Sardinian 

Agrometeorological Service (SAR) network. The relative shortwave radiation (i.e., ratio 
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between solar and extraterrestrial radiation) was used to define cloud cover conditions 

(Colliver, 1991), a parameter required to define the FARSITE weather file. Since the 

relative shortwave radiation was always above the 0.60 threshold, the cloud cover 

value was assumed equal to 0 throughout the day (Aubinet, 1994). 

Meteorological data were input as hourly values for wind speed and direction 

and for cloud cover, whereas rainfall, maximum and minimum temperature and 

maximum and minimum relative humidity were input as daily data. For temperature 

values, FARSITE requires also the hour in which minimum and maximum were 

recorded. 

The weather file was created for each simulation to represent temperature, 

humidity, and precipitation amount for the area over the fire period. All 

meteorological information was provided as ASCII format data stream.  

The wind data inserted in FARSITE are required at 6.1 m above the top of the 

vegetation. For all the wildfire case studies, many FARSITE simulations were done using 

wind field maps in raster format to determine the effect of wind field data on the 

accuracy of simulations.  

For this purpose, for all the case studies the model NUATMOS (Ross et al., 

1988) was used to obtain some numerical simulations of the wind field over complex 

terrain, and to evaluate the effect of topography on wind regime and on fire spread 

(Figure 53).  

NUATMOS produces a 3D mass consistent wind field based on observations 

arbitrarily located (Carvalho et al., 1997), and satisfies the equation of continuity. The 

NUATMOS input data required for the wind field rebuilding are wind speed and 

direction at a given number of punctual locations. For all NUATMOS simulations, the 

wind data of SAR weather station network closest to the fire events were used.  

NUATMOS is a mass conservative model, but it doesn’t solve the problem of 

momentum conservation; due to its linear character, the non linear phenomena 

associated with the flow over steeper topography cannot be predicted. In effect, 

NUATMOS is a model quite realistic to simulate wind fields in smooth topography 

landscapes (Lopes, 2003): for this reason the NUATMOS simulations are not so realistic 

for the event of Budoni.  

Therefore, in order to simulate the behaviour of Budoni wildfire with FARSITE, 

additional wind speed and direction data were collected using a portable instrument 

(mod. MPM2000, Solomat Corp., Stamford, CT, USA) at different locations across the 

burned area to simulate the effect of topography (ridge-top, side slope and valley 
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bottom) on prevailing wind regime during the event. The wind maps were interpolated 

using the Inverse Distance Weighted method as incorporated into ArcGis 9.1 (Watson 

and Philip, 1985). 

 

Figure 53. Example of NUATMOS simulation for the wind field map production 

 

For all simulations, the adjustment factor for fire rate of spread was set at 1.0 

for all fuel models.  

 

All the simulation outputs obtained by FARSITE have been exported and 

managed by using a GIS. 

For each simulation the fire perimeter shapefile and the eight raster outputs 

have been exported, in order to understand and to describe fire behaviour and 

dangerousness. 

Raster outputs produced by FARSITE for the fire behaviour characteristics have 

ASCII format, and their resolutions have been set between 10 and 30 m, by 

considering the dimension of the case study boxes. 
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11115555. . . . Statistical Analysis of FARSITE SimulationsStatistical Analysis of FARSITE SimulationsStatistical Analysis of FARSITE SimulationsStatistical Analysis of FARSITE Simulations        

Several simulations were conducted to compare the performance of FARSITE 

simulator when different combinations of fuel models and input parameters (mainly, 

wind field) were used.  

The output parameters provided by FARSITE were the fire perimeter for each 

timestep, the time of arrival of fire for each point of grid, the rate of spread. Each 

output was exported in vector or raster format. 

The final surface fire area obtained by FARSITE simulation and the actual fire 

area, in vector format, were transformed into raster format and reclassified as burned 

and unburned areas, by considering a rectangular box in relation with the whole 

extension of each wildfire case study. The same procedure was applied on the partial 

burned areas, by dividing simulated and actual fire areas in partial perimeters, at 

defined timesteps.  

The observed fire area grid, classified in burned and unburned categories, was 

converted to text file, and later was imported as table of points (with X and Y 

coordinates, and the associated values) in the GIS project. Therefore, the box 

containing the observed fire area can be defined as a set of sample points with two 

possible values: burned and unburned. 

The union between the observed fire perimeter and the simulated perimeter 

permits to obtain four possible cases, which are defined a, b, c, d in Figure 54. 

 

Figure 54. The union between observed and simulated fire perimeter, with the four possible 
cases and the error matrix 
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In Figure 54, b defines the false positive points, c defines the false negative, a 

and d the correct estimation respectively for burned and unburned areas.  

An error matrix between actual and simulated fire areas was calculated to 

define the frequency of each case (presence/absence of burned areas). If we consider 

presence or absence of fire, the error matrix is represented by a square matrix: the 

diagonal elements are the number of cases where observed and simulated fire areas 

agree, whereas the off-diagonal cells contain the numbers of misclassified items. 

The accuracy of each simulation was evaluated using two statistical indicators 

of binary association between burned and unburned areas, derived from the error 

matrix: Cohen’s kappa coefficient (Congalton, 1991; Congalton and Green, 1999) and 

Sørensen’s coefficient (Legendre and Legendre, 1998).  

 

Cohen’s kappa coefficient (K) is a standard nonparametric measure of the 

classification accuracy, which allows the evaluation of the overall agreement between 

two sets of categorizations (simulated and actual areas) while correcting for chance 

agreements between the categories (Jenness and Wynne, 2005). This statistic is 

especially useful for estimating the accuracy of predictive models measuring the 

agreement between the simulated areas of the predictive model (FARSITE) and the 

observed burned area. Cohen’s kappa coefficient makes use of both model overall 

accuracy and accuracies within each category in terms of agreement between 

simulated and observed areas. 

K values were calculated as follows (Congalton and Green, 1999): 
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where r is the number of rows in the matrix, xii is the number of observations 

in row i and column i, xi+ and x+i are the marginal totals of row i and column i, 

respectively, and N is the total number of observations.  

K values typically range between 0 and 1, with values closest to 1 indicating a 

higher agreement. When K values are equal to 0, the agreement between observed and 

simulated cases is only due to chance. Negative values are possible, but rare, and they 

indicate the complete disagreement among observations. 

Commento: Descrivere meglio 
questa nuova figura 
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Since K is asymptotically normally distributed, a basic Z-score was used for 

significance testing. Therefore, the Z-score was used to determine the overall accuracy 

values exceeding those obtained from chance agreement (Congalton and Green, 

1999), and the significance of the differences in K values among simulations 

(Congalton and Mead, 1983). The Z-score was calculated as follows: 

)K(var

K
Z

1

1=          (34) 

where K1 is the K value obtained for a generic simulation n° 1, with the 

associated variance. 

The significance of Z-score is evaluated based on the associated P-value. If the 

hypothesis testing is employed, the null hypothesis H0: K1 = 0 or the alternative 

hypothesis H1: K1 ≠ 0 can be verified. The null hypothesis means the accuracy of 

classification is by no means different from a purely random classification. The 

alternative hypothesis means the accuracy of classification is significantly different 

from a random classification; in this case, H0 is rejected at some critical Z-score. 

Variance and K statistic can be used also to calculate an interval of confidence 

around K: 

)Kvar(ZKIC 1
2

1 α±=        (35) 

For the evaluation of all case study simulations, with the use of an error matrix, 

a confidence interval equal to 0.95 was used. 

To evaluate if different features (i.e. fuel models, fuel moisture content, etc.) or 

methodologies (i.e. uniform or gridded wind fields) produce significantly different 

results on fire perimeters, two K values can be compared (Congalton and Mead, 1983); 

for this purpose the Z-score is calculated as:   
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where K1 and K2 are the K values obtained for two generic simulations n° 1 

and n° 2, with the associated variances. 

Considering the hypothesis testing, in this case we have to consider the 

hypothesis H0: K1-K2 = 0, or the alternative one H1: K1-K2 ≠ 0. 

Assuming a two-sided test (K1 is different from K2), the H0 hypothesis will be 

rejected if the Z-score value is major-equal to Zα/2. 
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The comparison between two K values can be extended to a general test for 

multiple K values, by first estimating the supposed common kappa value Kc (as 

described by Fleiss, 1981): 
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The Kc common value obtained from the previous equation can subsequently 

be used in order to test for equal values on the Chi-Square distribution with g-1 

freedom degrees: 
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The second statistical index was Sørensen’s coefficient (SC), an asymmetric 

index that is an indicator of the exclusive association between burned areas (both 

observed and simulated).  

SC values were calculated as follows: 

cba2

a2
SC

++
=          (39) 

where a is the number of cells coded as burned in both observed and simulated 

data, b is the number of cells coded as burned in the simulation and unburned in the 

actual fire, and c is the number of cells coded as unburned in the simulation and 

burned in the actual fire.  

The significance of the association was determined using the frequencies from 

the error matrix, and calculating the Chi-square statistic to test the null hypothesis of 

independence between observed and simulated areas (Ludwig and Reynolds, 1988). 

 

Moreover, the actual rate of spread (ROS) for the partial extent of the burned 

surfaces was estimated dividing the vector amplitude (L) from one perimeter to the 

next by the time (T) needed to move from the first to the second perimeter 

(ROS = L/T, m min -1). ROS values for each fire event were estimated computing the 

sum of both L and T over the entire duration of fire and then dividing the sum of L by 

the sum of T.  
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11116666. . . . Budoni Budoni Budoni Budoni Case StudyCase StudyCase StudyCase Study        

As mentioned in the section of materials and methods, the wildfire of Budoni 

involved predominantly a wildland area, but threatened some residential areas on the 

east flank. Most burned area was covered by maquis, and the other small surfaces by 

open wooded pastures and grasslands. Despite the presence of anthropic activities, the 

limited network of roads in some areas did not permitted an effective attack by 

Firefighters, while the aerial attack was limited by the meteorological conditions 

(strong wind), the presence of other big fires in neighbouring areas, and because the 

fire started in late afternoon. The fire evolved essentially unmanaged, and therefore the 

case study of Budoni can be considered a good test site in order to evaluate the 

accuracy of the fire spread and the behaviour predictions provided by FARSITE 

simulator. 

The general description of the simulation performances for the final and 

partial fire perimeters of Budoni case study is reported in the next tables. Maps of 

simulated and actual fire behaviour and spread are shown in Figure 56 and Figure 57. 

Statistical analysis showed that the best performance for Budoni wildfire was 

obtained using the CM28 custom fuel model for shrubland vegetation (Table 8); as 

already pointed out, FM1 was used to reproduce the grass areas, and FM2 for the open 

wooded pasture areas.  

Table 8. Statistical evaluation of FARSITE performance by different simulations on the final 
perimeter of the fire event occurred in Budoni, Italy, on August 26, 2004. The letters a, b, c, 

refer to the number of cells correctly and wrongly estimated. 

Simulation (Fuel 
Models) 

SC K a b c 

1° (FM1, FM2, FM4) 0.34** 0.12**AA 1592 6044 10 

2° (FM1, FM2, SH5) 0.38** 0.17**BB 1592 5192 10 

3° (FM1, FM2, SH7) 0.45** 0.28**CC 1592 3834 9 

4° (FM1, FM2, CM28) 0.72** 0.65**DD 1579 1212 23 

SC, Sørensen’s coefficient; K, Cohen’s kappa coefficient; 

* P ≤ 0.05; ** P ≤ 0.01; SC values followed by ** indicate a significant association 
between burned and unburned areas at P ≤ 0.01 by χ2 test; values of K followed by the 
same letters are not significantly different at P ≤ 0.05 (one letter) or at P ≤ 0.01 (two 

letters) by Z-score test 

a, burned area agreement; b, overestimated area; c, underestimated area 
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Cohen’s kappa coefficient (K) was used to measure the overall agreement 

between simulated and actual burned and not burned areas, after that the chance 

agreement was removed from the analysis (Congalton, 1991). K values show that all 

simulations estimated the spatial extension of burned and unburned areas better than 

the random chance at P ≤ 0.01. The best value of K coefficient (Table 8) was obtained 

by the simulation n° 4 (K = 0.65), whereas the other simulations (standard fuel models 

FM4, SH5, and SH7) gave K values ranging from 0.12 and 0.28. Comparing the 

standard fuel models, the higher K values were obtained using the SH7 fuel model 

(simulation n° 3), with K values of 0.28. The worst performance was provided by the 

FM4 fuel model (simulation n° 1), with K value of 0.12, due to a systematic 

overestimation of the actual burned area. A comparison of the K values obtained from 

the different simulations was done using the Z-test. Results showed that all the 

differences among the simulations were significant at P ≤ 0.01 (Table 8).  

 

Figure 55. Comparison between observed and simulated fire areas using different fuel models 
for the fire event occurred in Budoni 

 

Since Sørensen’s coefficient (SC) is an asymmetric index, it is an indicator of 

the exclusive association among burned areas (actual and simulated). Once more, the 

best agreement among areas (Table 8) was obtained by the simulation n° 4 

(SC = 0.72), while the other simulation runs showed values less than 0.45. The lowest 



Results - 16. Budoni Case Study 

 

 126 

SC values were obtained by simulations n° 1 and 2, when the fuel models FM4 

(simulation n °1) and SH5 (simulation n° 2) were used (SC values respectively equal to 

0.34 and 0.38).  

The wide overestimation of the burned areas (Table 8) obtained by the 

standard fuel models generally determined poor performances that can be explained 

by the inadequacy of some fuel model parameters in describing the characteristics of 

the maquis vegetation, in particular in terms of load and SAV ratio. 

The performance of the simulation n° 4 was evaluated using SC coefficient on 

three different partial steps (i.e., on three different burning periods) within +02:00, 

+03:30, and +06:30 hours from the ignition starting time. Table 9 shows the good 

agreement obtained between actual and simulated fire areas obtained for both the first 

(SC = 0.70) and the second timestep (SC = 0.81), while the third step indicated a clear 

decrease in the SC value (0.63). 

Table 9. Values of Sørensen’s coefficient (SC) obtained for simulation n° 4 by partial timesteps 
of the fire event occurred in Budoni. The SC value for the whole area is also shown 

Step SC 

1 0.70 

2 0.81 

3 0.63 

Whole area 0.72 

 

The good performance obtained during the first step, when the burned area 

was mainly covered by shrubland vegetation (87%), was confirmed during the second 

burning period, although a large burned surface was covered by grasslands (24%) and 

open wooded pastures (17%). Therefore, the fuel models used to simulate the actual 

fire behaviour seem to be reasonable. During the third burning period, the accuracy of 

the simulation was probably reduced by the decrease in wind speed and down-slope 

wind conditions.  

The above mentioned statistical tests showed a good accordance between actual 

and simulated fire areas. The essentially adequate performance of FARSITE can be 

probably explained by the accuracy of the custom fuel model in describing the 

characteristics of the shrubland vegetation of the area. However, the wind field is a key 

factor in determining the fire behaviour; for this reason, additional analyses were 
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devoted to investigate the effect of the accuracy of the wind field data on FARSITE 

simulation. 

Raster maps were realized by two different approaches: the use of a statistical 

method based on the spatial interpolation of the wind data (Interpolated Wind Field, 

IWF), and the numerical simulation by the mass-consistent NUATMOS model (MCM-

WF); raster maps were realized using wind speed and direction data collected on seven 

points and used in order to initialize the simulations. 

Table 10. Statistics obtained for three different FARSITE simulations (using CM28 with different 
wind field maps) on the final perimeter of the fire event occurred in Budoni, Italy, on August 
26, 2004. The letters a, b, c, refer to the number of cells correctly and wrongly estimated. 

Simulation (Wind Fields) SC K a b c 

IWF 0.72** 0.65**AA 1579 1212 23 

MCM-WF 0.64** 0.54**BB 1593 1773 9 

CWF 0.60** 0.49**CC 1590 2083 12 

SC, Sørensen’s coefficient; K, Cohen’s kappa coefficient; 

* P ≤ 0.05; ** P ≤ 0.01; SC values followed by ** indicate a significant association between 
burned and unburned areas at P ≤ 0.01 by χ2 test; values of K followed by the same letters 
are not significantly different at P ≤ 0.05 (one letter) or at P ≤ 0.01 (two letters) by Z-score 

test 

a, burned area agreement; b, overestimated area; c, underestimated area 

 

The statistical analysis (Table 10) showed that FARSITE performances were 

improved substituting interpolated maps of wind field (IWF, MCM-WF) for constant 

wind field (CWF), in order to account for the combined effect of wind field and 

topography on fire spread. Statistical analysis conducted on K values also showed that 

the three simulations obtained with different wind field maps are statistically different 

for P = 0.01 (Table 10). The use of raster maps provided by the mass consistent 

NUATMOS model (MCM-WF) did not furnish improvements of accuracy in 

comparison with the raster maps obtained by IWF method (Table 10 and Figure 55). 

The different runs of simulation n° 4 realized using IWF and CWF showed 

similar accuracy values during the first and second timesteps (Table 11), when a 

strong upslope wind propagated the fire. The simulation results obtained using 

interpolated maps showed a better accuracy in comparison with the constant wind 

field during the third time step, when the complexity of the terrain greatly affected 

local wind conditions (Figure 56). Actually, the area burned during the third timestep 
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is characterized by a high spatial variability in slope and elevation, with many sectors 

involved in the fire characterized by down slope wind conditions. 

 

Figure 56. Comparison between observed and simulated fire areas (using CM28 custom fuel 
model) obtained with raster wind map (IWF), NUATMOS wind field map (MCM-WF) and 

constant wind field map (CWF) for the fire event occurred in Budoni 

 

Table 11. Values of Sørensen’s coefficient (SC) obtained for simulation n° 4 using raster maps of 
interpolated wind field (IWF) and constant wind field (CWF) for the fire event occurred in 

Budoni. The SC values for the whole area are also shown 

Step IWF CWF 

1 0.70 0.70 

2 0.81 0.78 

3 0.63 0.48 

Whole area 0.72 0.60 

 

The ROS gives general information on the effect of fuel and environmental 

conditions on fire behaviour. Observed ROS ranged from 7 to 12.4 m min-1 for the 

first and second steps respectively (Table 12), with a lower value (6.6 m min-1) for the 

third burning period.  
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Table 12. Observed and predicted rate of spread (ROS, m min-1) obtained from simulation n° 4 
for the fire event occurred in Budoni. The ROS values for the whole area are also shown 

Step Observed ROS Simulated ROS 

1 7.00 6.50 

2 12.40 10.30 

3 6.60 7.40 

Whole area 8.10 8.10 

 

The estimated mean values of ROS are in agreement with the actual mean 

value for the first and third steps, with an underestimation of about 2.1 m min-1 for 

the second step. Figure 57 shows the spatial variation of the simulated ROS.  

 

Figure 57. Rate of Spread (ROS, m min-1) predicted by simulation n° 4 for the fire event 
occurred in Budoni 

 

Slope, together with the canopy cover characteristics and their relative effect 

on wind speed, were the principal factors affecting the magnitude and the spatial 

variations of ROS. The maximum values of ROS (42-56 m min-1) were reached during 

the second burning period in a small area characterized by open wood pasture 

vegetation. In fact, this type of vegetation was not able to remarkably reduce the strong 
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upslope wind speed; in addition, the steepness of the terrain produced an additional 

effect on ROS. The lowest values of simulated ROS (< 9 m min-1) were obtained across 

the areas covered by maquis, and intermediate values were observed when the fuel 

was represented by open wooded pastures and short and sparse shrubland vegetation.  
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11117777. . . . Ospolo Ospolo Ospolo Ospolo Case StudyCase StudyCase StudyCase Study        

The wildfire of Ospolo burned an area of about 19 ha, and involved a hilly 

zone completely covered by Mediterranean maquis. The vegetation can be considered 

basically the same potential vegetation as in Budoni case study. The area of Ospolo is 

actually characterized by a mixed dense shrubland vegetation with different species 

association (mainly Arbutus unedo L., Myrtus communis L., Erica arborea L.), but with 

mean values of both plant height and fuel load comparable with the case study of 

Budoni.  

Despite the fire started in late evening and stopped its spread in the night, the 

weather was relatively severe and the fire was driven by a western wind with intensity 

of about 15 km h-1 during the first hours of the event. In addition the fire was not 

effectively managed by Firefighters, because most attacks were concentrated along the 

road, on the northern flank of the fire perimeter. 

Because of the above mentioned similarities between Budoni and Ospolo, this 

case study can be considered an independent validation site for the CM28 custom fuel 

model applied on Budoni.  

FARSITE simulations were realized by using a constant wind field (CWF, 

15 km h-1 till 9.00 p.m. LST, 12 km h-1 after 9.00 p.m. LST) and wind maps provided 

by NUATMOS mass-consistent model (MCM-WF), initialized with the wind data 

collected by the nearest weather station of SAR network. 

A wide description of the simulation performances is reported in the next 

tables (Table 13 and Table 14); maps of simulated and observed fire behaviour and 

spread are shown in Figure 58, Figure 59 and Figure 60.  

The experimental results summarized in Table 13 confirmed the results 

provided by the CM28 custom fuel model on the case study of Budoni. All the 

statistical analysis showed that the FARSITE simulations with the CM28 custom fuel 

model are the most appropriate in order to obtain good accuracy in predictions of the 

fire perimeter, spread and behaviour.  

In particular, the statistical tests showed that the CM28 fuel model together 

with constant wind field (CWF) provided a K value equal to 0.61 (SC equal to 0.63), 

while the other simulations conducted using standard fuel models (FM4, SH5, SH7, 

SH2) gave K values ranging from 0.03 and 0.45 (and SC values ranging from 0.12 

and 0.46) (Table 13). 
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Table 13. Statistics obtained for different FARSITE simulations on the final perimeter of the fire 
event occurred in Ospolo, Italy, on August 26, 2004. The letters a, b, c, refer to the number of 

cells correctly and wrongly estimated. 

Simulation (Fuel 
Models) 

SC K a b c 

FM4 0.12 0.03AA 305 4535 0 

SH5 0.17** 0.09**B 305 3032 0 

SH7 0.18** 0.11**B 305 2720 0 

SH2 0.46** 0.45**CC 93 4 212 

CM28-CWF   0.63** 0.61**DD 305 352 0 

CM28-MCM-WF 0.68** 0.66**EE 305 284 0 

SC, Sørensen’s coefficient; K, Cohen’s kappa coefficient; 

* P ≤ 0.05; ** P ≤ 0.01; SC values followed by ** indicate a significant association 
between burned and unburned areas at P ≤ 0.01 by χ2 test; values of K followed by the 
same letters are not significantly different at P ≤ 0.05 (one letter) or at P ≤ 0.01 (two 

letters) by Z-score test 

a, burned area agreement; b, overestimated area; c, underestimated area 

 

K and SC values showed that all simulations estimated the spatial extension of 

burned and unburned areas better than the random chance at P < 0.01, with the 

exception of the FM4 fuel model. Among the standard fuel models, the SH2 fuel model, 

with K value equal to 0.45 (SC = 0.46), furnished the best results, probably for the 

reason that the model is characterized by low fuel load and height and different SAV 

ratios with respect to the other models. FM4 fuel model provided the worst 

performance (K = 0.03; SC = 0.12), confirming the overestimation of burned areas 

observed in the case study of Budoni. A wide overestimation of the burned area is 

confirmed also for the SH5 and SH7 fuel models. 

A clear increase of K values was obtained using MCM-WF maps; Z-test 

exhibits that the increases of K values were significant for P < 0.01. SC values 

confirmed the results, showing that the best agreement between observed and 

simulated burned areas (0.63-0.68) was obtained using CMM28 (Figure 58). 

Figure 58 and Figure 59 show the fire areas predicted by the main simulations. 

The simulation obtained with CM28 and MCM-WF maps provided a simulated burned 

area characterized only by a small systematic overestimation on both the fire front and 

flanks. These results can be explained with the orographic characteristics of the 
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burned area, that does not show high variations in slope with respect to Budoni case 

study, where different sections of the burned area were characterized by down-slope 

wind conditions. 

 

Figure 58. Comparison between observed and simulated fire areas (using CM28 custom fuel 
model) obtained using MCM-WF and CWF maps for the fire event occurred in Ospolo 

 

 

Figure 59. Comparison between observed and simulated fire areas obtained using custom and 
standard fuel models for Ospolo wildfire, with MCM-WF maps 



Results - 17. Ospolo Case Study 

 

 134 

The observed final rate of spread of Ospolo wildfire was about 2.8 m min-1 

(Table 14). Again, the best performance in predicting rate of spread was obtained 

using the CM28 fuel model and the raster wind field map produced by NUATMOS, by 

which ROS value is approximately equal to 3 m min-1.  

Table 14. Observed and predicted average rate of spread (ROS, m min-1) obtained from all the 
fuel models simulations, using both uniform and gridded wind field, for the fire event occurred 

in Ospolo 

SIMULATED ROS (m min-1) 
FUEL MODEL 

MCM-WF CWF 

OBSERVED ROS  

(m min-1) 

FM4 45.1 49.0 

SH5 25.1 35.0 

SH7 21.2 23.3 

SH2 1.1 1.2 

CM28 3.0 3.1 

2.8 

 

As shown in Figure 60, the highest values of rate of spread were reached with 

high values of the wind-slope vector magnitude; in these zones ROS values reached 4-

5 m min-1, but most simulated ROS values were under 2 m min-1.  

As already observed for the simulated burned area, also for the maximum rate 

of spread it is confirmed that some standard fuel models (SH7, SH5, FM4) strongly 

overestimate this parameter with respect to the observed value, in particular the FM4 

fuel model (45-50 m min-1) (Table 14).  

On the other hand, when FARSITE simulation runs with the SH2 fuel model, a 

large underestimation of ROS (ranging from 1.1 and 1.2 m min-1) can be observed. 
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Figure 60. Rate of Spread (ROS, m min-1) predicted by CM28 fuel model and MCM-WF map 
for the fire event occurred in Ospolo 
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11118888. Razza di Juncu . Razza di Juncu . Razza di Juncu . Razza di Juncu Case StudyCase StudyCase StudyCase Study        

The wildfire of Razza di Juncu burned a coastal area of about 45 ha, in a flat 

zone covered by Mediterranean maquis. The vegetation was characterized by dense 

shrub formations, with species, plant height and fuel load similar to the vegetation of 

Budoni case study. The fire of Razza di Juncu was very characteristic, because the 

spreading wildfire stopped to burn on the coast line. Therefore, the shape of real fire 

and of all FARSITE simulations have been affected by the presence of this natural 

“barrier” (Figure 61).  

The actual fire started at 12.45 a.m. LST. The fire spreads quickly because of 

the wind intensity (13 km h-1) and the high temperatures of the day (39 °C). When 

the fire reached the coastal line, the propagation has been possible only on the flanks, 

so the rate of spread was very high only in the first hour of the burning period. The 

fire front propagated almost unmanaged during the first period, because the 

Firefighters concentrated their initial efforts on the evacuation of tourists from the 

close beaches.  

 

Figure 61. Comparison between observed and simulated fire areas (with NUATMOS wind field 
map) obtained using custom and standard fuel models for Razza di Juncu wildfire 
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Also for this case study, FARSITE simulations were realized by using both 

constant wind field (CWF, 13 km h-1) and wind field maps obtained with NUATMOS 

model, with wind information collected by the nearest weather station of SAR network. 

The performances of the FARSITE simulations are reported in Table 15 and 

Table 16; the maps of simulated and observed fire area, spread and behaviour are 

shown in the next figures. 

The values of the statistical parameters reported in Table 15 confirmed the 

results obtained on Budoni and Ospolo case studies with the use of the CM28 fuel 

model. Therefore, the simulations of FARSITE with CM28 permitted to obtain high 

accuracies in the predictions of the burned area and of the fire spread and behaviour. 

Table 15. Statistics obtained for different FARSITE simulations on the final perimeter of the fire 
event occurred in Razza di Juncu, Italy, on August 11, 2003. The letters a, b, c, refer to the 

number of cells correctly and wrongly estimated. 

Simulation (Fuel 
Models and Wind 

Maps) 
SC K a b c 

FM4-CWF 0.57** 0.55**AA 526 783 1 

FM4-MCM-WF 0.59** 0.56**AA 526 739 1 

SH5-CWF 0.62** 0.59**BB 526 658 1 

SH5-MCM-WF  0.62** 0.59**BB 525 648 2 

SH7-CWF 0.73** 0.72**CC 526 383 1 

SH7-MCM-WF  0.73** 0.72**CC 526 384 1 

SH2-CWF 0.55** 0.53**D  202 11 325 

SH2-MCM-WF 0.37** 0.36**E 122 3 405 

CM28-CWF 0.78** 0.77**FF 524 289 3 

CM28-MCM-WF 0.79** 0.78**FF 527 285 0 

SC, Sørensen’s coefficient; K, Cohen’s kappa coefficient; 

* P ≤ 0.05; ** P ≤ 0.01; SC values followed by ** indicate a significant association 
between burned and unburned areas at P ≤ 0.01 by χ2 test; values of K followed by the 
same letters are not significantly different at P ≤ 0.05 (one letter) or at P ≤ 0.01 (two 

letters) by Z-score test 

a, burned area agreement; b, overestimated area; c, underestimated area 

 

The FARSITE simulation obtained with CM28 and CWF map provided a very 

high K value, equal to 0.77 (SC = 0.78) (Table 15). All the other simulations obtained 
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by FARSITE with constant wind field are positively affected by the effect of the coast 

line: for this reason the accuracy is good also for the other fuel models, with K values 

ranging from 0.53 and 0.72 (SC ranging from 0.55 and 0.73). As shown in Table 15, 

it is confirmed that the SH2 fuel model underestimates the fire area, whereas the other 

fuel models (SH7, SH5 and FM4) overestimate the fire perimeter. 

In Razza di Juncu case study, all simulations estimated the spatial extension of 

the burned areas better than the random chance, at P < 0.01.  

The use of raster MCM-WF maps did not allowed an increase in the 

performances of FARSITE for the burned and unburned areas. For example, for the 

CM28 fuel model (Figure 62), the use of MCM-WF wind maps did not implemented 

the K values with respect to the CWF wind map (0.78 vs. 0.78); the same limited 

improvements in accuracy were showed also by SC coefficient (0.79 vs. 0.78). For all 

fuel models, the Z-test showed that the differences in K values, when the wind field 

maps changed, were not significant for P < 0.05. Only for the SH2 fuel model the 

simulations obtained with CWF and MCM-WF are significantly different for P < 0.05 

(Table 15). This fact is linked with the low differences in the simulated fire areas, 

because of the presence of the coast line. 

 

Figure 62. Comparison between observed and simulated fire areas (using CM28 custom fuel 
model) obtained using MCM-WF maps and CWF maps for the fire event occurred in Razza di 

Juncu 
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Therefore, because of the peculiarity of Razza di Juncu wildfire, the agreement 

between simulated and observed burned area is not a completely exhaustive index able 

to emphasize the effectiveness of fuel models in order to fit the actual fire. 

 

The rate of spread is more indicative to evaluate Razza di Juncu fire behaviour, 

because there is a high variability of this parameter among the different fuel models. 

In Razza di Juncu, the observed fire front rate of spread was approximately 13 m min-

1. The SH2 fuel model underestimates the observed rate of spread, because it evaluated 

the propagation velocity close to 2-3 m min-1 (Table 16). The other standard fuel 

models (SH7, SH5 and FM4) overestimated the ROS, in particular the FM4 fuel model, 

which reached values ranging from 32.0 and 36.7 m min-1 when gridded and uniform 

wind field maps were respectively used. 

Table 16. Observed and predicted average rate of spread (ROS, m min-1) obtained from all the 
fuel models simulations, using both uniform and NUATMOS wind field, for the fire event 

occurred in Razza di Juncu 

SIMULATED ROS (m min-1) 
FUEL MODEL 

MCM-WF CWF 

OBSERVED ROS  

(m min-1) 

FM4 32.0 36.7 

SH5 22.7 31.0 

SH7 16.6 20.0 

SH2 2.3 3.3 

CM28 13.0 16.5 

13.0 

 

The best performance in predicting rate of spread was obtained using the 

CM28 fuel model and the raster wind field map produced by NUATMOS, by which the 

ROS value was about 13 m min-1. The fire perimeter propagation when this fuel model 

and the MCM-WF map were used is presented in the following Figure 63. The 

simulation timestep has been set equal to 20 minutes, so each polygon of Figure 63 

shows the fire spread for 20 minutes’ intervals. These simulated fire expansion and 

propagation were very similar to those of the observed wildfire, which arrived 

40 minutes after ignition at the first beach and 1 hour after ignition at the second little 

beach of Razza di Juncu area. 
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Figure 63. Simulated Razza di Juncu fire spread at 20 minutes’ timesteps, using CM28 fuel 
model and raster wind maps 

 

 

Figure 64. Rate of Spread (ROS, m min-1) predicted by CM28 fuel model and MCM-WF for the 
fire event occurred in Razza di Juncu 
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Figure 64 showed the spatial variation of the simulated ROS; the highest values 

of rate of spread were reached along the prevailing wind direction; in these zones ROS 

values reached 14-17 m min-1. Because of the flat terrain, the slope did not influence 

the fire rate of spread. Moreover, a meaningful part of the fire perimeter was burned 

by flanking fire, which was not able to reach high values of ROS. The best FARSITE 

simulation (CM28 and MCM-WF map), shown in Figure 63 and in Figure 64, 

evidenced that the propagation rate by flanking fire has been limited, ranging between 

0.1 and 4 m min-1. 
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Monte Pedrosu wildfire is the last case study presented in my thesis. This fire 

burned an area of about 65 ha, and involved a zone mainly covered by Mediterranean 

maquis. Monte Pedrosu area is actually characterized by uniform shrubland vegetation 

with different species association (mainly Pistacia lentiscus L., Myrtus communis L., 

Chamaerops humilis L.) but with mean values of fuel load and plant height slightly 

inferior with respect to the case study of Budoni. 

The fire started in the first hours of afternoon and stopped its spread in late 

afternoon. The weather was characterized by high temperatures and by a moderate 

north-eastern wind of about 11 km h-1 during the first hours of the event. 

All FARSITE simulations were realized by using both a constant wind field 

(CWF, 11 km h-1) and wind maps obtained with NUATMOS model (MCM-WF), 

initialized with the wind data of the nearest weather station of SAR network. 

The performances of the FARSITE simulations are reported in the next tables 

(Table 17 and Table 18); the maps of observed and simulated fire perimeters and rate 

of spread are shown in Figure 65, Figure 66 and Figure 67. 

The results reported in Table 17 confirmed that the CM28 custom fuel model, 

when the MCM-WF maps are used, is the most appropriate to obtain good accuracies 

in FARSITE predictions of both fire perimeter and spread. This fact is showed by all the 

statistical analysis summarized in Table 17. 

The statistical test showed that the simulation obtained by FARSITE with CM28 

fuel model and CWF provided a modest K value equal to 0.36 (SC = 0.47); this 

simulation is more accurate with respect to the other standard fuel models FM4, SH5 

and SH7, which gave K values ranging from 0.08 and 0.14 (SC ranging from 0.26 and 

0.31) (Table 17). Only the SH2 fuel model shows a better value of K coefficient (0.40) 

with respect to the CM28 fuel model; this result can be explained by the low 

overestimation and the limited underestimation of the burned area. It is confirmed that 

the worst performances are provided by the simulation with the FM4 fuel model 

(K = 0.08; SC = 0.26), because of the wide overestimation of the burned area. The 

overestimation is also confirmed for the SH5 and SH7 fuel models. 

Both K and SC values showed that all simulations estimated the burned and 

unburned fire perimeters better than the random chance at P < 0.01.  
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Table 17. Statistics obtained for different FARSITE simulations on the final perimeter of the fire 
event occurred in Monte Pedrosu, Italy, on July 15, 2006. The letters a, b, c, refer to the 

number of cells correctly and wrongly estimated. 

Simulation (Fuel 
Models and Wind 

Maps) 
SC K a b c 

FM4-CWF 0.26** 0.08**A 1663 9277 0 

FM4-MCM-WF 0.35** 0.20**B 1663 6086 0 

SH5-CWF 0.29** 0.11**C 1663 8303 0 

SH5-MCM-WF 0.41** 0.27**D 1662 4848 1 

SH7-CWF 0.31** 0.14**E 1663 7306 0 

SH7-MCM-WF 0.49** 0.38**F 1662 3501 1 

SH2-CWF 0.45** 0.40**G 591 363 1072 

SH2-MCM-WF 0.28** 0.23**H 296 190 1367 

CM28-CWF 0.47** 0.36**I 1663 3695 0 

CM28-MCM-WF 0.86** 0.84**L 1549 406 114 

SC, Sørensen’s coefficient; K, Cohen’s kappa coefficient; 

* P ≤ 0.05; ** P ≤ 0.01; SC values followed by ** indicate a significant association 
between burned and unburned areas at P ≤ 0.01 by χ2 test; values of K followed by the 
same letters are not significantly different at P ≤ 0.05 (one letter) or at P ≤ 0.01 (two 

letters) by Z-score test 

a, burned area agreement; b, overestimated area; c, underestimated area 

 

All the statistical tests reported an important increase when the MCM-WF 

maps were used: the increases in K and SC values were significant for P < 0.01. This 

case study confirms that the use of NUATMOS, in order to evaluate the wind field 

during the burning period, permits an improvement of the results for all the maquis 

fuel models tested. In most of the simulations the use of raster maps doubles the 

agreement among simulated and observed fire areas (Table 17). The fire perimeters 

obtained by the main simulations are presented in the next Figure 65 and Figure 66.  
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Figure 65. Comparison between observed and simulated fire areas (using CM28 custom fuel 
model) obtained using CWF and MCM-WF for the fire event occurred in Monte Pedrosu 

 

 

Figure 66. Comparison between observed and simulated fire areas (with MCM-WF maps) 
obtained using custom and standard fuel models for Monte Pedrosu wildfire 
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For example, when the CM28 fuel model and the MCM-WF maps are used, K 

value is equal to 0.84 (SC = 0.86); this coefficient comes down till 0.36 (0.47 for SC 

coefficient) when uniform wind field is used for FARSITE simulations. This good 

agreement is linked with the small overestimation and underestimation of the burned 

perimeter. Also for this case study the good performance of the CM28 fuel model and 

the MCM-WF maps can be explained by considering the orographic characteristics of 

the burned area, that did not shows important variations for slope and elevation, with 

respect to Budoni, where the down-slope wind conditions were present. 

The analysis of predicted and observed fire rate of spread is important to 

consider the differences among different fuel models. The observed final rate of spread 

of Monte Pedrosu wildfire was about 4.6 m min-1 (Table 18). Also for this case study of 

Monte Pedrosu the best performance in predicting the propagation rate of fire was 

obtained using the CM28 custom fuel model and the MCM-WF maps produced by 

NUATMOS, by which ROS value is approximately equal to observed ROS value. The 

other standard fuel models presented ROS values higher than CM28 simulated ROS, 

both for constant and raster wind maps; only the SH2 fuel model shows ROS values 

very limited (Table 18). 

Table 18. Observed and predicted average rate of spread (ROS, m min- 1) obtained from all the 
fuel models simulations, using both uniform and NUATMOS wind field, for the fire event 

occurred in Monte Pedrosu 

SIMULATED ROS (m min-1) 
FUEL MODEL 

MCM-WF CWF 

OBSERVED ROS  

(m min-1) 

FM4 7.0 13.0 

SH5 6.7 11.9 

SH7 6.5 11.4 

SH2 1.6 2.1 

CM28 4.6 8.3 

4.6 

 

The observed maximum rate of spread of Monte Pedrosu wildfire reached 

approximately 4-5 m min-1. As shown in Figure 67, for this case study the highest 

values of rate of spread were located along the wind direction line, reaching maximum 

values of 10-12 m min-1; these maximum values were reached in proximity of a little 
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hill, where the slope of terrain was increasing. Most part of simulated fire rate of 

spread was lower than 4 m min-1, in particular in the flanking parts of perimeter. 

 

Figure 67. Rate of Spread (ROS, m min-1) predicted by CM28 fuel model and gridded wind field 
for the fire event occurred in Monte Pedrosu
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In my thesis, the performances of FARSITE simulator in Mediterranean areas 

where shrubland vegetation is predominant were evaluated.  

The accuracy of FARSITE was improved using a custom fuel model (CM28) 

designed and developed with the purpose of simulating the fire spread rate and 

behaviour on this type of vegetation.  

The custom fuel model presented in my thesis is characterized by a higher live 

to dead fuel ratio, in comparison with the standard fuel models FM4 by Anderson 

(1982), and SH2, SH5 and SH7 by Scott and Burgan (2005), and it includes a more 

balanced combination of the 1, 10 and 100 hr dead fuel loads.  

As reported by other authors (van Wilgen et al., 1985; Dimitrakoupoulos, 

2002), our results suggest that specific custom models need to be developed to account 

for both the fuel characteristics and the high heterogeneity of shrubland vegetation.  

Weise and Regelbrugge (1997) reported an overestimation of actual fire 

spread in chaparral using the standard fuel model FM4, demonstrating that the 

accuracy of the simulations can be improved by developing and using specific custom 

fuel models.  

Van Wilgen et al. (1985) suggested the development of different custom fuel 

models to accurately describe the heterogeneous structural types of fynbos. 

The parameters of our custom fuel model are in agreement with several studies 

conducted to determine the fuel types of Mediterranean vegetation.  

In relation to the distribution of fuel load on different size classes (1, 10 and 

100 hr), Dimitrakopoulos (2002) described the characteristics of two Mediterranean 

shrubland (maquis) fuel models, indicating that 10 and 100 hr fuel load were 

significantly represented.  

In addition, Baeza et al. (2002) showed the effect of plant age on the fuel load 

in large size classes.  

As reported by Sun et al. (2006) for chaparral fuel, dead and live vegetation 

show differences in burning characteristics. The authors emphasized the importance of 

determining the effect of live chaparral on fire behaviour.  

Dimitrakopoulos and Papaioannou (2001) classified the foliage of the same 

species studied here as moderate flammable and flammable, even at high values of live 

moisture content. In addition, they showed the relevance of the relation between 

moisture of extinction and presence of essential oils, which are important factors in 

propagating the fire when the plant moisture content is high.  
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The effect of essential oil concentration on live vegetation fire spread was also 

reported in previous studies (Pyne, 1984; Wilson, 1985).  

Several authors discussed the use of Rothermel’s fire spread model in 

Mediterranean areas.  

Zhou et al. (2005b) did not recommend the use of this model in Mediterranean 

ecosystems (i.e., chaparral), because of the predominance of live fuel.  

Limitations of Rothermel’s model are particularly clear under low or moderate 

environmental conditions, typical of marginal burning (Zhou et al., 2005a).  

When more severe or extreme environmental conditions occur, the fire 

behaviour is less affected by the fuel status and depends mainly on fuel type, weather 

and slope conditions. In these conditions, the intrinsic limitations of Rothermel’s model 

can be overcome by the use of both appropriate custom fuel models and accurate 

weather data, which are essential to obtain reasonable simulations of fire spread and 

behaviour.  

In my thesis, FARSITE simulator combined with the custom fuel model CM28 

gave realistic values of rate of spread, similar to those reported by other authors for 

Mediterranean shrubland (Weise and Regelbrugge, 1997; Fernandes, 2001).  

The results confirm that the performance of FARSITE simulator is affected by 

resolution and accuracy of wind data (Hanson et al., 2000). Indeed one major source 

of uncertainty in fire behaviour predictions is the spatial variation in the wind fields 

used in fire simulators, because in most cases wind data are limited to only a few 

specific locations, none of which may be actually near the fire location (Forthofer et 

al., 2003). Improvements of the simulation accuracy could be obtained using high 

resolution wind field data, calculated by computational fluid dynamic models (Kim et 

al., 2000; Lopes et al., 2002; Lopes, 2003; Butler, 2005; Forthofer, 2007).  

For this purpose, the computational fluid dynamic model NUATMOS (Ross et 

al., 1988) has been used to rebuild the wind field maps in three wildfire areas.  

The main limitation of NUATMOS is linked with the topography of the burned 

areas, because it is demonstrated that this model does not work properly in complex 

topography, primarily because it doesn’t solve the momentum conservation equation 

(Lopes, 2003). 

In conclusion, the use of both wind field data and appropriate custom fuel 

models is essential to obtain reasonable simulations of fire spread and behaviour on 

Mediterranean vegetation during the drought season, when most of the annual 

wildfires occur.  
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Information derived by databases of actual fires occurred in Mediterranean 

areas could improve the accuracy of estimates by an extensive calibration and 

validation of the simulator.  

Further studies should be conducted to analyze the effect of limitations and 

assumptions of Rothermel’s model on the simulation accuracy, and to evaluate the 

potential of FARSITE simulator in planning the operational phases of fire management 

in Mediterranean Basin areas. 
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