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INTRODUCTION 

 

Seagrass meadows form extremely complex ecosystems that function through detritus-based 

food webs as well as herbivore webs. In the latter living seagrass plants as well as epiphytes on the 

plants are grazed. Seagrass meadows have recently been recognized as an important marine 

resource. The major function of seagrasses were enumerated by Wood, Odum, and Zieman (1969): 

(1) the plants stabilizes and hold bottom sediments even through the enormous stresses of 

hurricanes and temperate storms; (2) the leaves slow and retard water currents and waves, 

promoting sedimentation of particulate matter inhibiting resuspension of organic and inorganic 

matter; (3) the meadow serves as a shelter and refuge for resident and transient adult and juvenile 

animals, many of which are of commercial and recreational importance; (4) the feeding pathways 

consist of both direct grazing on the leaves or epiphytes and detrital pathways; (5) the plants attain a 

high production and growth (leaves of some species can grow 5-10 mm per day); (6) the plants 

produce and trap detritus and secrete dissolved organic matter that tends to internalize nutrient 

cycles within the ecosystem. 

Seagrass meadows serve as “nursery habitat” for a variety of economically important finfish 

and shellfish. While the importance of grazing in algal-dominated communities is well documented 

(Strong, 1992), the premise that the ingestion of living seagrass biomass is infrequent and 

inconsequential remains one of the central tenets of current food web theory. One of the most 

interesting aspects of seagrass beds is there apparent unpalatability to grazers. Based on studies in 

other ecosystem, we know that plants can compensate for losses to grazers either by increasing 

nutrient uptake from the surrounding environment or by translocating nutrients among 

physiologically integrated ramets (Heck and Valentine 2006, and reference therein). 

In the Mediterranean Sea, Posidonia oceanica (L.) Delile forms monospecific meadows with 

different types of coverage pattern (continuous to patchy with leopard-skin, in row distributions 
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with shoot densities ranging from 150-300 shoots m-2 (very sparse bed) to more than 700 shoots m-2 

(very sparse bed) (Giraud, 1977)). The shoots are borne by rhizomes growing either vertically 

(orthotrophic rhizome) avoiding burial, or horizontally (plagiotropic rhizome), enabling 

colonization. The leaves act as sediment-traps accumulating inorganic and organic particulate 

matter. The progressive silting and the two types of rhizome growth result in a typical terraced 

formation called ‘matte’ consisting of the intertwing of various strata of rhizomes, roots, and 

sediment. In shallow waters, such an accumulation of material raises the bed to the surface. The 

rhizomes grow horizontally until space has been completely colonized. The beds have wide spacing 

between many vertical shoots with few horizontal apices (Boudouresque and Meisnez 1982; Gobert 

et al. 2006 and reference therein). 

The Posidonia oceanica beds is the climax community of a successional process (Gobert et al. 

2006 and reference therein). The development of the bed seems to need a substratum rich in organic 

material. Pioneer species such as Caulerpa prolifera settle, together with small phanerogams of the 

genera Cymodocea and Zostera can produce suitable sediments for seed germination or shoot 

growth. Settlement, growth, and multiplication of P. oceanica shoots reduce the light intensity at 

the seafloor which causes the mortality and the disappearance of the pioneer species (Boudouresque 

and Meisnez 1982). 

In the Mediterranean Sea, the sea urchin Paracentrotus lividus (Lamarck) is commonly found 

in shallow subtidal reefs and in Posidonia oceanica (L.) Delile meadows (Tortonese 1965). This 

echinoid plays a key role in controlling macrophyte communities on rocky habitats as it is capable 

of depleting erect algae (e.g. Benedetti-Cecchi et al. 1998; Bulleri et al. 1999; Hereu 2006), whereas 

in P. oceanica beds it has been reported to feed preferentially on epiphytes rather than on plant 

material (Nédelec and Verlaque 1984; Sheperd 1987; Tomas et al. 2005, 2006). Under natural 

conditions, adult density of P. lividus is higher on rocky walls than in P. oceanica (only up to 6 

individuals m-2, Boudouresque and Verlaque 2001), and no appreciable successful recruitment takes 
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place in seagrass meadows, where adult population cannot be sustained by local recruitment (Tomas 

et al. 2004). 

The sea urchin Paracentrotus lividus is one of the benthic invertebrate species been intensely 

harvested for commercial and recreational purposes. Sea urchin fishery has been differently 

practised through years among the geographical areas of the Basin (mainly in the southern regions), 

but lately populations of P. lividus are exploited either by authorized fishermen and poachers at 

very extended coastal areas throughout the year. Human predation of P. lividus is known to occur 

either in rocky reef habitat and Posidonia oceanica (personal observations) on specimens larger 

than about 50 mm in test diameter. Only recently researchers have focused attention on the effect of 

protection on this sea urchin species (i.e. Guidetti 2006a; Guidetti et al. 2004; Gianguzza et al. 

2006; Pais et al. 2007). Although protection of coastal areas from fishing is generally meant a tool 

for increasing abundance of harvested species, it can theoretically have contrasting effects on P. 

lividus, generally being restrictions on fishing of both this sea urchin and its natural fish predators, 

which have been indicated in Diplodus sargus (L.), Diplodus vulgaris (Geoffr.), Sparus aurata (L.), 

Coris julis (L.) and Thalassoma pavo (L.). These latter are generally known to show a predatory 

behaviour at rocky habitats on medium and large-sized specimens (Sala and Zabala 1996; Sala 

1997; Guidetti 2004, 2006b), although some other authors suggest that predation can occur also on 

juveniles (Hereu et al. 2005). 

In this research several aspects of the interaction between the seagrass Posidonia oceanica and 

the sea urchin Paracentrotus lividus were investigated.  

The first experiment was a descriptive study that had the aim to investigate whether 

protection has the same effect on the population structure of Paracentrotus lividus occurring on 

rocky reef habitat and in Posidonia oceanica beds. It consisted in an extensive sampling program 

conducted at the two habitats at several locations of Capo Caccia – Isola Piana MPA under different 

protection level. Results were needed to generate hypotheses about the influence of human 

harvesting, predatory pressure and migration processes on P. lividus at the two habitats. 
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The second is also a descriptive study that had the aim to estimate herbivory pressure of 

Paracentrotus lividus on Posidonia oceanica through indirect measures. More specifically, it was 

asked what portion of the seagrass leaf is attacked by the sea urchins, whether the abundance of 

grazing marks depend on the number of sea urchins and whether herbivory of P. lividus depends on 

shoot density of the seagrass.  

The third experiment was done to estimate the daily migrations of Paracentrotus lividus from 

a rocky habitat to Posidonia oceanica patches and particularly if they depend on the size of sea 

urchins and the distance from the patch edge. It was postulated that P. lividus moves randomly to 

the seagrass patch and that the probability of reaching it could decrease with the distance. 

The forth experiment had the purpose to investigate the role of Posidonia oceanica structure 

on Paracentrotus lividus distribution. At this aim, the manipulation of the seagrass structure has 

been achieved by modifying the shoot density and leaf high. Also, in this experiment artificial 

(plastic) seagrass units mimicking natural seagrass have been used so that different combinations of 

shelter and food were provided.  
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ABSTRACT 

The sea urchin Paracentrotus lividus in the Mediterranean is common on shallow subtidal 

rocky habitats and in Posidonia oceanica beds. This study has the aim to investigate whether 

protection has the same effect on the population structure of P. lividus occurring on rocky reef 

habitat and in P. oceanica beds. Results are needed to generate hypotheses about the influence of 

human harvesting, predatory pressure and migration processes on P. lividus at the two habitats. At 

this aim, we have sampled P. lividus at seven locations at the Gulf of Alghero (North West 

Sardinia) where Capo Caccia-Isola Piana MPA occurs: 1 location is placed in a A zone, where no 

harvest of P. lividus is allowed (NH), 3 locations are placed in B zones, where harvest is restricted 

(RH), and the other 3 are located outside the MPA where sea urchins are harvested without 

restrictions (UH). Density of P. lividus was assessed in 10 replicates per location using quadrats of 

1×1 m. The size of 20 individual (test diameter without spines) per location was measured by means 

of a calliper. Sea urchins, finally, were grouped into size classes to examine frequency distributions. 

Sampling was performed at the end of a harvesting period (April-May 2006). Analyses of data have 

highlighted a significant variability for both response variables among locations. No differences 

were found among levels of protection (NH vs. RH vs. UH), while in P. oceanica habitat a 

significant lower density and a higher size were found rather than in rocky habitat, independently on 

the protection. This finding suggests that in rocky habitat settlement and recruitment could be 

higher successful events and that in P. oceanica meadows large-sized immigrants coming from the 

rocky habitat contribute to the population structure in the seagrass habitat. The need to define the 

role of P. oceanica habitat identifying the mechanisms of influence on P. lividus individuals is also 

discussed. 

 

Key words: Marine Protected Area, Paracentrotus lividus, Posidonia oceanica, spatial distribution, 
test diameter. 
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INTRODUCTION 

Estimation of the direct and indirect effects of protection on benthic species has become a 

very important goal of marine biological conservation. In fact, benthic assemblages and habitat are 

deeply altered or damaged through both direct removal (Dayton et al. 1995; Turner et al.1999; Link 

2002) and indirect cascading community effects (Sala et al. 1998; Menge 2000; Micheli et al. 2005; 

Tegner and Dayton 2000; Guidetti 2006a). In fact, fishing has the potential to directly affect target 

species and, on the other hand, influence the structure of whole assemblages and ecosystem-

functioning mainly through indirect cascading effects (Micheli et al. 2001). However, besides high 

level predatory fishes removal, fishing can also involve the harvesting of several benthic 

invertebrates that, although at a lower level in the food chain, are directly involved in the trophic 

cascade. Edible sea urchins are a good example of such benthic invertebrates, being at the same 

time prey of predatory fishes and active grazers. 

In the Mediterranean the sea urchin Paracentrotus lividus (Lamarck) is common on shallow 

subtidal rocky habitats and in Posidonia oceanica (L.) Delile beds where it occurs on rhizomes 

among shoots. On rocky habitats, at high densities, it overgrazes complex algal assemblages turning 

them into barren areas dominated by a few species of encrusting algae (e.g. Benedetti-Cecchi et al. 

1998; Hereu 2006), whereas in P. oceanica beds it has been reported to feed preferentially on 

epiphytes rather than on plant material (Nédelec and Verlaque 1984; Shepherd 1987; Tomas et al. 

2005; Tomas et al. 2006). Similarly, its population structure differs between these two habitats: 

indeed, adult density of P. lividus is higher on rocky reefs than in P. oceanica (only up to 6 

individuals m-2, Boudouresque and Verlaque 2001).  

Overall, the spatial distribution of Paracentrotus lividus is influenced by many processes such 

as predation (Sala and Zabala 1996; Guidetti 2004; Hereu et al. 2005), recruitment (Tomas et al. 

2004), migration (Palacín et al. 1997; Crook et al. 2000) and competition (Guidetti et al. 2004; but 

see Gianguzza et al. 2006). In addition, especially where predation pressure is high, heterogeneity 

of the substratum plays a significant role providing shelters to individuals of P. lividus, thus 
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allowing the structuring of populations (Hereu et al. 2005; Bonaviri et al. 2005). Although there is 

an extensive literature on this species devoted to many of these features on rocky habitats, processes 

operating on populations occurring in Posidonia oceanica habitats are still mostly neglected. 

Information collected by Tomas et al. (2004) suggest that no appreciable successful recruitment of 

P. lividus seems to take place in seagrass meadows, where adult abundance should not be sustained 

by local recruitment, but immigration. However, experimental investigations about the effect of 

predation, migration and competition on population structure of P. lividus in this habitat still need to 

be properly done. 

In the Mediterranean, the sea urchin Paracentrotus lividus is one of the benthic invertebrate 

species been intensely harvested for commercial and recreational purposes. Sea urchin fishery has 

been differently practised through years among the geographical areas of the Basin (mainly in the 

southern regions), but lately populations of P. lividus are exploited either by authorized fishermen 

and poachers at very extended coastal areas throughout the year. Human predation of P. lividus is 

known to occur either in rocky reef habitat and Posidonia oceanica (personal observations) on 

specimens larger than about 50 mm in test diameter. Only recently researchers have focused 

attention on the effect of protection on this sea urchin species (i.e. Guidetti 2006b, Guidetti et al. 

2005; Gianguzza et al. 2006; Pais et al. 2007). Although protection of coastal areas from fishing is 

generally meant a tool for increasing abundance of harvested species, it can theoretically have 

contrasting effects on P. lividus, generally being restrictions on fishing of both this sea urchin and 

its natural fish predators, which have been indicated in Diplodus sargus (L.), Diplodus vulgaris 

(Geoffr.), Sparus aurata (L.), Coris julis (L.) and Thalassoma pavo (L.). These latter are generally 

known to show a predatory behaviour at rocky habitats on medium and large-sized specimens (Sala 

and Zabala 1996; Sala 1997; Guidetti 2004, 2006c), although some other authors suggest that 

predation can occur also on juveniles (Hereu et al. 2005).  

Possibly because of the differential contribution of effects of protection, a complete portfolio 

of distribution patterns for Paracentrotus lividus have been evidenced on rocky habitats of many 
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Mediterranean marine reserves: Guidetti et al. (2005) have found no cascading effects of predator 

removal on prey despite a significant differences in predator density; Micheli et al. (2005) have 

evidenced significant indirect effects on benthic assemblages only at low wave exposure sites; 

Guidetti (2006a) has found evidence of significant predatory interactions at protected sites; 

Gianguzza et al. (2006) have found an higher abundance at the protected location rather than 

outside. Recently, Pais et al. (2007) indicated that higher abundance of sea urchins found inside 

protected locations, was attributable to a low fish recovery since protection was established. 

Furthermore, whether the effect of protection on the population structure of P. lividus in Posidonia 

oceanica habitat should not be neglected and to what extent it influences the abundance of this 

resource, it is presently unknown. For example, if in the seagrass, P. lividus is not affected by 

natural predation pressure, the indirect influence of predators would only be present on the rocky 

habitat. 

The implementation of a Marine protected Area (MPA) within a geographical area where 

exploitation of Paracentrotus lividus has been intensely conducted for decades may thus represent a 

precious opportunity to evaluate the effect of different intensity of human harvest on spatial 

distribution of this echinoderm. This study has the aim to investigate whether protection has the 

same effect on the population structure of P. lividus occurring on rocky reef habitat and in 

Posidonia oceanica beds. Results are needed to generate hypotheses about the influence of human 

harvesting, predatory pressure and migration processes on P. lividus at the two habitats. 

 

MATERIALS AND METHODS 

This study was carried out in the Gulf of Alghero (North West Sardinia, Italy), where Capo 

Caccia-Isola Piana MPA has been established since 2002. Sampling was done at 7 locations (Fig. 1) 

each about 200 m2 in size: 1 location was located in the A zone (integral protection), where no 

harvest of Paracentrotus lividus is allowed (NH), 3 locations were located in the B zone, where 

from 2006, harvest is restricted (RH), and the other 3 were located outside the MPA, where sea 
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urchins are intensively harvested without restrictions (UH). At the MPA, restricted harvest is 

performed by 4 authorized professional collectors who can harvest up to 1000 individuals/day for a 

total of 20 fishing days/year from 1st November to 31st March. At each location rocky reefs and 

Posidonia oceanica habitat at 6-10 m deep were considered. Density of P. lividus was assessed 

using quadrats of 1×1 m (at least 3 m apart) while size of individuals (test diameter without spines) 

was measured by means of a calliper (± 0.1 mm). For each combination ‘location × habitat’ 10 and 

20 replicates were considered randomly for density and size, respectively. Sampling was performed 

after the end of the harvesting period (April-May 2006).  

 

 
Fig. 1. Study locations inside and outside Capo Caccia – Isola Piana MPA. 

Locations where unlimited harvest of Paracentrotus lividus occurs: Cala Bona 
(UH1), Torre Porticciolo (UH2) and Punta Negra (UH3). Locations where 
restricted harvest of P. lividus occurs: Polt’Agra (RH1), Cala Bollo (RH2) and 
Cala Inferno (RH3). Location where no harvest of P. lividus occurs: Isola Piana 
(NH). 

 

Analyses of variance were used to test hypotheses about protection and habitat effects on the 

abundance and size of Paracentrotus lividus. Protection was treated as a fixed factor with 3 levels 

in analyses: No Harvest (NH), Restricted Harvest (RH) and Unlimited Harvest (UH). Locations 



Chapter 1. Evaluating the effects of Posidonia oceanica vs. rocky reef habitat on Paracentrotus lividus distribution at a NW 
Mediterranean MPA  
 

 6

were treated as a random factor nested in Protection. There was no specific a priori ecological 

reason for including any of these locations in the study. The only purpose of having 3 locations at B 

protection and 3 locations as controls was to provide a minimum degree of replication within each 

level of protection, in order to construct an appropriate test for the main comparisons of interest: 

‘NH’ vs. ’RH’ and ‘UH’ protection. Random selection of locations was, however, not possible due 

to the zoning plan of the MPA. Factors in analyses were 3: Protection (‘NH’, ‘RH’ and ‘UH’ 

levels), Location (three levels, nested within Protection), and Habitat (fixed, rocky and Posidonia 

oceanica levels, orthogonal to Location). Only 1 location at level ‘NH’ protection was sampled and, 

therefore, location was not completely orthogonal to levels of protection. Asymmetrical mixed-

model ANOVA was used: between ‘NH’ protection vs. the others, and among the others, between 

‘RH’ and ‘UH’ protection. The required sums of squares for the asymmetrical components of these 

analyses were calculated following Underwood (1997). Cochran's C test was used to check the 

assumption of homogeneity of variances and, when necessary, data were log-transformed to remove 

heterogeneous variances (Underwood 1997). 

 

 

 

RESULTS 

The number of individuals of Paracentrotus lividus was highly variable either among 

locations and between habitats: the mean density was over 10 ind m-2 at rocky habitats even at 

locations where harvest is unlimited and at one location where harvest is restricted (Fig 2a). At each 

location, mean test diameter was always higher at Posidonia oceanica rather than at rocky habitat, 

reaching the highest values of about 60 mm in zone A at both habitats (Fig. 2b). 
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Fig. 2. Mean number (+SE) of individuals (a) and test diameter 
(b) of Paracentrotus lividus at Posidonia oceanica and rocky reef 
habitat at each location. UH unlimited harvest of P. lividus locations, 
RH restricted harvest of P. lividus locations and NH no harvest of P. 
lividus location. 

 

The analyses of data for both response variables highlighted that no significant differences 

exist among the three levels of protection, either in the contrast between NH and the other levels 

and in the contrast between RH and UH levels (Table 1), suggesting that both types of restrictions 

on harvest did produce the same effect on population structure of Paracentrotus lividus. The effect 

of habitat was evidenced for both abundance and size of the sea urchins: in Posidonia oceanica 

habitat, density was significantly lower and size higher than in rocky habitat, consistently among 

the different levels of protection. In fact, no significant interaction between habitat and contrasts of 
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both density and size of P. lividus was highlighted within RH and UH protection levels. Also, at 

these levels the effect of habitat was different depending on the location, as clearly evidenced in 

Figs. 2a and 2b. 

 

Table 1 Asymmetrical ANOVAs on Paracentrotus lividus abundance and size at Capo Caccia - Isola Piana MPA. 
Degrees of freedom of Residual and Residual others refer to both ANOVAs (abundance/size). 

    abundance       Size         
Source of 
variation df SS MS F p SS MS F P F versus 

Location   =L 6 35.97 5.99
12.0

6 0.000 10.11 1.69 11.54 0.000 Residual
NH vs others 1 6.45 6.45 0.88 0.401 4.82 4.82 5.28 0.083 L(RH vs UH)
Among others 5 29.52    5.29    

RH vs UH 1 0.23 0.23 0.03 0.868 1.63 1.63 1.79 0.252 L(RH vs UH)

L(RH vs UH) 4 29.29 7.32
15.4

6 0.000 3.65 0.91 5.48 0.020 Residualothers

Habitat  =H 1 39.46 
39.4

6
79.4

5 0.000 14.13 14.13 96.77 0.000 Residual
HXL 6 9.52 1.59 3.19 0.006 3.40 0.57 3.88 0.001 Residual

HXNH vs others 1 0.17 0.17 0.08 0.797 1.60 1.60 3.58 0.132 HXL(RH vs UH)
HXAmong others 5 9.35 1.87   1.80 0.36   

HXRH vs UH 1 0.33 0.33 0.15 0.722 0.01 0.01 0.03 0.873 HXL(RH vs UH)
HXL(RH vs UH) 4 9.02 2.26 4.76 0.001 1.79 0.45 2.69 0.032 Residual

                

Residual 
266/
126 62.59 0.50     38.84 0.15      

Residual others 
228/
108 51.16 0.47     37.95 0.17      

                     
transformation   sqrt(x+1)      ln(x+1)      
Cochran's test   0.2057 ns      0.2821 ns      

 

 

Test size-frequency distribution of Paracentrotus lividus was quite different among levels of 

protection and between habitats (Fig. 3). In particular, at the NH location we detected individuals 

from 60 to 80 mm and from 40 to 90 mm at the rocky and Posidonia oceanica habitat, respectively. 

Overall, at this location similar distributions were observed at the two habitats. No specimens 

belonging to the size-classes of 20 and 30 mm were found at both habitats at this location. 

Conversely, at the other locations (RH and UH levels) frequency distribution patterns were wider 

across classes and distinguishable between habitats. At some of the locations (for example RH1, 
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RH3, UH1), two different modal size-classes were evidenced for both the habitats, showing a 

higher mode for P. oceanica. However, at each location larger individuals were always found in the 

seagrass habitat except for UH3 location: the largest size-class ranged from 60 to 90 mm at UH3 

and RH2, respectively. P. lividus specimens of the 90 mm size-class were not found at the rocky 

habitat at any of the locations considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Sea urchin test size frequency at each location at the two habitats: Posidonia oceanica 
and rocky reef habitat. Size class 1= 0-1 cm, 2= 1-2 cm, 3= 2-3 cm, 4= 3-4 cm, 5= 4-5 cm, 6= 5-6 
cm, 7= 6-7 cm, 8= 7-8 cm, 9= 8-9 cm. UH unlimited harvest of Paracentrotus lividus locations, 
RH restricted harvest of P. lividus locations and NH no harvest of P. lividus location. 
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DISCUSSION 

Overall, we found that at Capo Caccia - Isola Piana MPA no significant differences occur 

either in Paracentrotus lividus abundance and size among different levels of protection suggesting 

that harvesting restrictions (zone A and B) on sea urchin harvest would have no effect on the 

population structure of this species. The lack of protection effect on this species could be 

ascertained to the lack of the re-establishment of trophic interactions due to the small time elapsed 

since the MPA was declared. Actually, fishing prohibitions in Mediterranean marine reserves may 

re-establish lost interactions among strongly interactive species with potential community-wide 

effects (Guidetti and Sala 2007). However, at Capo Caccia - Isola Piana MPA a relative scarcity of 

P. lividus predators is still perceived (personal observation) and probably protection has not been 

long enough to encompass the life span of some predator fish species.  

However, even if the effects of protection were not significant on both response variables, it is 

worth nothing that our sampling program revealed a general lack of small-sized Paracentrotus 

lividus individuals (i.e. <30 mm in test diameter) at the zone A (no-harvest location), while small 

specimens (even 20 mm in size) were found at several of the unlimited and restricted harvest 

locations. This finding could lead to generate the hypothesis that at the NH location a higher fish 

predation rate is exerted on small–sized individuals and that P. lividus recruitment is consequently 

more influenced by natural predation pressure. 

Nevertheless, similar population structures of Paracentrotus lividus could be produced by the 

negative effects of human harvest and predatory pressure which covary at the locations: in fact, 

where lower is the human harvest of sea urchin, higher is the natural predatory pressure, and vice 

versa (i.e. Guidetti 2006a). This can clearly happen since restrictions generally involve both the 

fishing of P. lividus and its natural predators. 

Unfortunately, the lack of a significant effect of protection on this species did not really allow 

to detect the eventual interactive effect of the habitat and protection that still remains an interesting 

hypothesis that needs to be tested. However, the significant effect of the habitat on population 
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structure of Paracentrotus lividus revealed that larger individuals inhabits Posidonia oceanica 

meadow but that in this habitat a lower population density occurs consistently at all the locations 

investigated, independently on the protection level. This finding suggests two possible hypotheses: 

(1) in rocky habitat settlement and recruitment are higher successful events; (2) in P. oceanica 

meadows large-sized immigrants coming from the rocky habitat contribute to the population 

structure of the seagrass habitat.  

The first hypothesis is consistent with Tomas et al. (2004), who indicated a lower abundance 

of settlers and recruits in Posidonia oceanica rather than at the rocky habitat. However, no data 

about the population dynamics of Paracentrotus lividus in this habitat have ever yet been estimated, 

and thus no information about the mortality of small-sized individuals is still available. Further, 

feeding of recruits vs. juvenile and adult specimens is not known and whether a change in food 

preference occurs during P. lividus life cycle has not been investigated. Indeed, very different 

resources are available at the two habitats: in P. oceanica beds, P. lividus is likely to feed on leaves 

of the seagrass and on the few algae understoried by the seagrass canopy (that mostly grow on 

rhizomes), while at rocky habitat more diversified macroalgal assemblages (i.e. composed by 

several turf and erect species) occur (Ruitton et al. 2000). Therefore, it is probable that recruits of P. 

lividus could have different growth and mortality rate between habitats merely based on differences 

in food availability.  

The second hypothesis (i.e. the possible immigration of large-sized individuals of 

Paracentrotus lividus from the rock to the seagrass meadow) should deserve particular 

consideration. The few available data about sea urchin density in different Posidonia oceanica 

meadows at Capo Caccia – Isola Piana MPA indicated that abundance would decrease with the 

distance from the edge of the meadow and that it would be higher where the seagrass bed is next to 

the rocky habitat (0.7 ± 0.35, mean number of individuals per m2 ± SE). In fact, where sand is 

accumulated at the margin of the seagrass, density of P. lividus is similar to that found inside the 

meadow (0.83 ± 0.33, mean number of individuals per m2 ± SE). These findings suggest that 
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migration could have an important influence on the population structure of P. lividus at P. oceanica 

habitat.  

However, description of migration by aggregation fronts of Strongylocentrotus droebachiensis 

(Müller) seems recurrent (Vadas et al. 1986; Schiebling et al. 1999; Alcoverro and Mariani 2002; 

Dumont et al. 2006) but no similar phenomenon has been described for P. lividus (but see Chelazzi 

et al. 1997), although several papers have been addressed to identify factors that influence sea urchin 

movements at a lower scale. Among the important determinants for P. lividus behaviour 

investigated, the presence of predatory fish certainly mediates the sea urchin behaviour by causing 

urchins to shelter and thus diminishing their diel foraging pattern (Carpenter 1984; Scheibling and 

Hamm 1991; Sala 1996). In fact, P. lividus shows a circadian pattern of activity with more active 

specimens during the night as a defence against diurnal predators (Hereu 2005). However, as no 

experiments on P. lividus have been conducted yet, its movement pattern and perception of the 

habitat landscape still remain unknown, so that whether the search for food and shelter relative to the 

distribution of food patches and shelter availability occurs at random, needs to be cleared. 

The high spatial variability of Paracentrotus lividus abundance and size at the scale of 

location detected in this study is absolutely consistent with many other studies that identified spatial 

heterogeneity as one the most important determinants for its population structure. In fact, for 

example, different substrate heterogeneity (thus availability of refuges) can produce different 

structure of populations, especially in marine reserves where juvenile mortality due to predation is 

minimized by shelters (Benedetti-Cecchi and Cinelli 1995; Sala et al. 1998; Ruitton et al. 2000; 

Barnes and Crook 2001). Then, sampled locations in this study were selected as replicates within 

each harvest level and, although they were similar in geomorphology, seascape of rocky substrates 

appeared quite different among them. Also, the different exposition of locations sampled in this 

study is likely to have influenced the spatial variability since shore exposition has already been 

indicated as an important determinant on the structure of P. lividus populations (i.e. Chelazzi et al. 
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1997). However, this result suggests that a high spatial replication at the scale of location is needed 

when P. lividus population structure needs to be estimated. 

Furthermore, whether the effect of both protection and habitat on Paracentrotus lividus  

population structure varies among different periods of the year, still remains unknown. Seasonality 

would deserve further attention since many features regulating sea urchin distribution undergo 

variations through time. For example, human harvest is focused in the winter season when the 

reproductive effort of the sea urchin is maximized and, on the other hand, the phenology of algal 

assemblages on rocky reefs as well as the behaviour of predators are linked to the season (e.g. Sala 

and Zabala 1996; Barnes and Crook 2001). Thus, the behaviour of P. lividus could also greatly 

change through time. In this contest, it would be crucial to define the role of Posidonia oceanica 

habitat for P. lividus individuals testing specific hypotheses on temporal variability of the 

mechanisms of influence.  
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ABSTRACT 

This mensurative study is a contribution to understanding aspects of the interaction between 

Posidonia oceanica and Paracentrotus lividus. Specifically, we examined the magnitude and 

variability of leaf herbivory due to this sea urchin by analysing the dependence of the number of 

grazing marks attributable to P. lividus on sea urchin density, the dependence of P. lividus  density 

on P. oceanica shoot density. Also, the variability of P. lividus grazing was investigated at the scale 

of P. oceanica shoots, estimating whether it interests consistently adult, intermediate and juvenile 

leaves and different portions of the leaf (distance from the leaf base). 

The number of individuals of Paracentrotus lividus was highly variable among locations and 

between areas. No significant linear dependence of P. lividus density on Posidonia oceanica shoot 

density was detected. A sigmoid function was found to better describe the relation between the P. 

lividus density and the number of its grazing marks. The distance class - frequency distribution of P. 

lividus grazing marks on pooled data revealed that this herbivore affected the length of P. oceanica 

leaf until about 700 mm from the base and the attacks were concentrated to the lower portion, near 

the base. We finally discussed the implications of our results on the general importance of P. 

oceanica as a food resource for this herbivore. 

 

 

 

Key words: Epiphytes, grazing, herbivory, Paracentrotus lividus, plant-herbivore interaction, 
Posidonia oceanica. 
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INTRODUCTION 

Seagrass ecology has traditionally been dominated by classical investigations on plant 

physiology and the impacts of eutrophication on seagrass growth, with little attention to the 

community-oriented approaches employed effectively in other branches of marine ecology 

(Valentine and Duffy 2006). In fact, there is increasing worldwide evidence that pressure exerted by 

marine herbivores, other than large vertebrates, may also play an important role in the energetics 

and interaction network of seagrass ecosystem (e.g. Tomas et al. 2005a). In fact, whereas the central 

role of grazers in structuring macroalgal assemblages on rocky habitats is well documented and 

widely recognized (Benedetti-Cecchi et al. 1998; Sala et al. 1998; Bulleri et al. 2002; Guidetti and 

Dulčic 2007), we know less about the population and community-level impacts of herbivores on 

seagrass ecosystems (but see review by Valentine and Duffy 2006). However, recently, it has 

become more evident that herbivory on seagrasses, which includes estimates of consumption of 

seagrass themselves as well as epiphytic organisms (Valentine and Heck 1999; Heck and Valentine 

2006; Prado et al. 2007a), plays an important role in the dynamics of shallow nearshore seagrass 

habitat (Tomas et al. 2005a; Heck and Valentine 2006). 

Herbivory on seagrasses can be very variable (Cebrián and Duarte 1998): in tropical 

seagrasses overgrazing is more frequent (Mariani and Alcoverro 1999; Alcoverro and Mariani 

2002) than in temperate seagrasses, in which herbivores pressure is lower (Cebrián et al. 1996; 

Cebrián and Duarte 1998), although a lower number of investigations have been conducted on the 

latter plants. In general the interaction between herbivores and seagrass can be mediated by 

epiphytes (Williams and Heck 2001; Tomas et al. 2005a; Young et al. 2005), at least in part, also 

because seagrasses do not appear to be an attractive food source (Frantzis and Grémare 1992; 

Benedetti-Cecchi et al. 1998; Bulleri et al. 1999; Hereu 2004, 2006). Valentine and Heck (2001) 

suggested that variability in the grazing of seagrasses can be due to the leaf nutritive quality, and 

further Lyons and Scheibling (2007) suggested that the feeding strategies of herbivores reflect the 
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need to optimize nutrition, and that energy or nutrient food are sometimes preferred to lower quality 

foods. 

In the Mediterranean, herbivory appears to be a minor factor controlling production of the 

endemic species Posidonia oceanica (L.) Delile, in which it seems to be limited by others factors 

(Tomas et al. 2005b; Alcoverro 1995). On this species, herbivory is due to two main 

macroherbivores: the sea urchin Paracentrotus lividus (Lamarck) and the sparid fish Sarpa salpa 

(Linné) (Verlaque 1987, 1990). They both have a distribution markedly skewed with depth, and 

exert the maximal pressure in shallow beds (0-10m; Boudouresque and Velarque 2001; Tomas et al. 

2005a). Other small organisms, such as the sea urchin Psammechinus microtuberculatus 

(Blainville) (Paul et al. 1984), some decapods and isopods (for ex. Idotea spp.) feed on P. oceanica, 

but negligibly (Zupo and Fresi 1985; Mazzella et al. 1992; Cebrián et al. 1996; Tomas et al. 2005b). 

Whereas schools of Sarpa salpa are common in shallow Mediterranean waters (seagrass 

meadows and rocky bottoms (Velarque 1990; Tomas et al 2005a; Prado et al. 2007a), Paracentrotus 

lividus is generally found in low densities in such meadows (0 to 6 ind./m2; see review of 

Boudouresque and Velarque 2001 and Ceccherelli et al. submitted). On the whole, most of 

Posidonia oceanica consumption (approximately 75%) has been attributed to S. salpa (Cebrián et 

al., 1996), although the relative importance of fish grazing varies strongly both spatially and 

temporally (Alcoverro et al. 1997; Peirano et al. 2001; Tomas et al. 2005a). Further, as sea urchin 

populations are stable (Tomas et al. 2004), others sea urchins exhibit a strong seasonal feeding 

pattern (Lozano et al. 1995; Peirano et al. 2001). 

Some authors have already investigated that the interaction between Posidonia oceanica and 

Paracentrotus lividus appears to be mediated by epiphytes, at least in part, that seem to make the 

leaves more palatable for the herbivore (Alcoverro et al. 1997; Tomas et al. 2005b, 2006; Prado et 

al. 2007b). In fact, it has been reported that P. lividus  feeds preferentially on epiphytes rather than 

on plant material (Alcoverro et al. 1997; Nédelec and Verlaque 1984; Sheperd 1987; Tomas et al. 

2005b, 2006), grazing on the final portion of the seagrass leaves for the higher abundance of 
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epiphytes (Ott and Maurer 1976; Traer 1980; Verlaque and Nedelec 1983; Nedelec and Verlaque 

1984; Sheperd 1987). The P. lividus preference of epiphytes could be attributed to their higher 

nutritional quality (i.e. lower C/N ratios) in comparison to the seagrass (Duarte 1990; Mazzella et 

al. 1992; Alcoverro et al. 1997, 2000). This has been evidenced using stable isotopes which have 

showed that P. lividus obtains most of the nitrogen from epiphytes (Tomas 2004; Tomas et al. 

2006). Further, since sea urchins feed on the tips of the leaves (Boudouresque and Velarque 2001), 

grazing marks left by this herbivore could be lost when for any reason the leaf breaks. This is what 

Tomas et al. (2005a) have suggested at high grazing pressure of Sarpa salpa, able to cut away the 

leaves with their bites. 

Overall, it is likely that effects of grazers, both Paracentrotus lividus and Sarpa salpa, on 

Posidonia oceanica biomass and production are considerable (e.g. Prado et al. 2007a). At this 

regard, variability in herbivory needs to be properly estimated since it could be influenced by 

possible interactions between herbivore species. This mensurative study is a contribution to 

understanding aspects of the interaction between P. oceanica and P. lividus. Specifically, we 

examined the magnitude and variability of leaf herbivory due to this sea urchin by analysing the 

dependence of the number of grazing marks attributable to P. lividus on sea urchin density, the 

dependence of P. lividus density on P. oceanica shoot density. Also, the variability of P. lividus 

grazing was investigated at the scale of P. oceanica shoots, estimating whether it interests 

consistently adult, intermediate and juvenile leaves and different portions of the leaf (distance from 

the leaf base). We finally discussed the implications of our results on the general importance of P. 

oceanica as a food resource for this herbivore. 

 

MATERIAL AND METHODS 

This study was carried out in Posidonia oceanica meadows around the Gulf of Alghero (North 

West Sardinia, Italy), where Capo Caccia-Isola Piana MPA has been established since 2002. 

Sampling was done at 6 locations (about 2 kms apart), randomly chosen, where shallow P. oceanica 
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meadows (about 7 m deep) were continuous and next to rocky habitat or sandy bottom. Four of 

them were located inside the MPA (Fig.1). 

 

L1

L6

L5

L4

L3

L2

 
Fig. 1 Study locations inside and outside Capo Caccia – Isola Piana MPA. 

Sampling locations were: Torre del Bollo (L1), Polt Agra (L2), Dragunara 
(L3), Bramassa (L4), Torre Porticciolo (L5) and Punta Negra (L6).  

 
 
Field sampling was conducted from July to October 2007. At each location, two areas about 

200 m apart were selected. Within each area, ten quadrats 1×1 m were randomly positioned in the 

meadow to gain data about Paracentrotus lividus abundance. Posidonia oceanica shoot density was 

measured in a 40×40 cm plot positioned inside each 1×1 m quadrat; two shoots at random were 

harvested within each plot and taken to the laboratory so that a total of 240 shoots were collected 

for the whole experiment. 

Once in laboratory, phenological analyses were performed so that juvenile, intermediate and 

adult leaves were counted and measured (length and width) for each shoot. Further grazing marks 

left by herbivores on each of these leaves were identified, counted and the distance from the leaf 

base was measured. The herbivores on Posidonia oceanica leave marks easily distinguishable from 

the shape as indicated by Boudouresque and Meinesz (1982). Other authors have already used these 

marks to indirectly estimate grazing pressure of various herbivores (Prado et al. 2007a, 2007b; 
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Tomas et al. 2005a). The relationship among P. oceanica phenology, Paracentrotus lividus density 

and grazing marks was examined. 

Analyses of variance were used to estimate spatial variability of Paracentrotus lividus 

abundance, number of grazing marks either of P. lividus and Sarpa salpa. Two-way ANOVAs were 

performed to test the hypothesis that there were no differences at the scale of the locations and 

areas: both Locations and Area (nested in Location) were treated as a random factors.  

The number of grazing marks left by the two herbivores on the leaves analysed were used to 

construct a distance class - frequency distribution and to test the hypothesis that Paracentrotus 

lividus  and Sarpa salpa grazed at different height of Posidonia oceanica canopy a three-way 

ANOVA was performed: both species (P. lividus and S. salpa) and distance classes of grazing 

marks from the base (0-100, 101-200, 201-300, 301-400, 401-500, 501-600, 601-700, 701-800, 

801-900, 901-1000 and 1001-1100 mm) were treated as fixed and orthogonal while Location (six 

levels) was treated random and orthogonal. The total number of grazing marks found on the leaves 

of each area was used as replicate (n=2). SNK test was used to compare means of significant factors 

and Cochran's C test was used to check the assumption of homogeneity of variances (Underwood 

1997). 

Further, to test the hypothesis that variables were correlated, linear and non linear equations 

were searched to describe such relations (SAS). 

 

RESULTS 

The number of individuals of Paracentrotus lividus was highly variable among locations and 

between areas (Table 1): the highest density was recorded at L1 within the MPA, while at L4 no 

urchin were found (Fig. 2). No significant linear dependence of P. lividus density on Posidonia 

oceanica shoot density was found either using raw data and averaged values per experimental area 

(Fig. 3).  
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Fig. 2. Paracentrotus lividus. Mean number (+SE) of sea urchin 

density at quadrats (1×1 m) in Posidonia oceanica at each location. 
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Fig. 3. Correlation between Paracentrotus lividus density and 

Posidonia oceanica shoot density. 
 

Table 1. ANOVAs on Paracentrotus lividus density and grazing marks and Sarpa salpa grazing marks.  
*= significant p 
 P. lividus density P. lividus grazing marks S. salpa grazing marks 
Source of variation df MS F df MS F df MS F 
Location          =L 5 11.83   6.31* 5 37.55 21.67 * 5 11.29 11.42 
Area           =A(L) 6   1.88 13.36* 6   1.73   3.19 * 6   0.99   1.67 
Plot(LXA)       =P -   108   0.54   4.26 * 108   0.59   1.40 
Residual 108 0.14  120   0.13  120   0.42  
 
transformation 

ln 
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Grazing marks on Posidonia oceanica leaves were mostly due to the 2 macroherbivores, while 

attacks by other herbivores were extremely rare (5 marks of isopods out of all leaves analysed). For 

Paracentrotus lividus grazing marks the analyses of data highlighted that there are significant 

variability at the three spatial scales considered (plot, area, location) as evidenced in Table 1 and 

Fig. 4. Grazing marks left by sea urchins were mainly observed at L2, within the MPA. 

Phenological analyses have revealed that the most affected leaves from P. lividus grazing were 

adult (91.8%) whereas no grazing marks were found on juvenile leaves. 

0

2

4

6

8

10

12

14

16

18

20

a b a b a b a b a b a b
L5L4L3 L6L1 L2

 

Fig. 4. Paracentrotus lividus. Mean number (+SE) of grazing marks 
in Posidonia oceanica for area of each location. 

 

Sarpa salpa grazing marks were quite abundant at all locations (Fig. 5). The analyses of data 

highlighted that there are significant variability at all scales considered (Table 1). Similarly to sea 

urchins, the most abundant grazing marks were found on adult Posidonia oceanica leaves (84.4%) 

while blades of the juveniles were always found intact. It is worth noting that low abundance of fish 

bites correspond to a high number of Paracentrotus lividus grazing marks (fig. 4 and 5).  
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Fig. 5. Sarpa salpa. Mean number (+SE) of grazing marks in 

Posidonia oceanica for area of each location 
 

A significant dependence of the number of Paracentrotus lividus grazing marks on sea urchin 

density (R2=0.7160, p=0.0003) has been found considering averaged values per experimental areas 

where P. lividus occurred (Fig. 6). A sigmoid function, axce
Ly

+
=

1
, was found to better describe 

the relation between the two variables where L is the carrying capacity (the maximum number of 

grazing marks per area) (Sokal and Rohlf, 1969). Estimates of parameters, c=e5.61214 =273.7294 and 

a =-1.04725, have allowed to detect coordinates (5.36, 17.5) of the flexure point. 
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Fig.6. Sigmoid function of dependence of the number of 

Paracentrotus lividus grazing marks on sea urchin density. 
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The distance class - frequency distribution of Paracentrotus lividus grazing marks on pooled 

data (Fig. 7) revealed that this herbivore affected the length of Posidonia oceanica leaf until about 

700 mm from the base and attacks were concentrated to the lower portion (i.e. near the base). 

Conversely, the higher number of Sarpa salpa grazing marks have been recorded at higher portions 

of the leaf, although attacks have been found on the whole length.  
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Fig. 7. The distance class - frequency distribution of 

Paracentrotus lividus grazing marks on pooled data of total 
leaves (0-100, 101-200, 201-300, 301-400, 401-500, 501-600, 
601-700, 701-800, 801-900, 901-1000 and 1001-1100 mm). 

 

 

The three way-ANOVA highlighted that there is a significant variability between the distance 

from the leaf base of marks left by the two herbivore species, Paracentrotus lividus and Sarpa salpa 

(Table 2).  
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Although, a very high number of grazing marks were detected at about 300 mm from the leaf 

base, SNK test (SE=0.342) identified alternative hypotheses only for five distance classes (from 301 

to 800 mm): grazing marks left by Paracentrotus lividus were significantly lower than those left by 

the herbivore fish. Also, this interaction seems to depend on the scale of the location (Table 2) 

although sensible variations were also evidenced by graphical inspection (Fig. 8).  

Table 2. ANOVA on relation between species (P. lividus and Sarpa 
salpa) and distance from the leaf base. 
  
Source of 
variation df SS MS F P 
Species          =Sp 1   23.79 23.79 1.69 0.2503 
Distance        =D 10 110.41 11.04 5.66 0.0000 
Location        =L 5   16.72   3.34 7.67 0.0000 
SpXD 10   55.95   5.59 3.97 0.0005 
SpXL 5   70.41 14.08 32.30 0.0000 
DXL 50   97.51   1.95 4.47 0.0000 
SpXDXL 50   70.39   1.40 3.23 0.0000 
Residual 132  55.55   0.43   
 
transformation ln (x+1) 

  
 

 

Cochran's test 0.0965     
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Fig. 8. Relation among distance from the leaf base of marks left by the two 

herbivore species, Paracentrotus lividus and Sarpa salpa at each location. 
 

 

In particular, at the L2 an evident higher abundance of Paracentrotus lividus marks rather than 

Sarpa salpa was found at the lower half of the leaf and this is the only location where no marks left 

by the fish were found higher than 500 mm from the base. Further, for location L4 it is worth 

nothing that few P. lividus grazing marks have been found on leaf shoots even if no urchins were 

detected during counts in the field.  

 

 

 

 

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividus
L1

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividus
L2

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividus
L3

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividus
L4

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividus
L5

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500 600 700 800 900 1000

S. salpa

P. lividusL6

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 

Distance (mm) of grazing marks from the leaf base Distance (mm) of grazing marks from the leaf base

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 

N
um

be
r o

f g
ra

zi
ng

 m
ar

ks
 



Chapter 2.                           Investigating the variability in Paracentrotus lividus herbivory on Posidonia oceanica 

 13

DISCUSSION 
 
The results have evidenced the existence of a high variability in Paracentrotus lividus density 

at all spatial scales considered. At the scale of the location and area, this result is absolutely 

consistent with other studies (Ceccherelli et al. submit.) that have already suggested the important 

role of environmental conditions, such as substrate heterogeneity (Guidetti 2000; Ruitton et al. 

2000; Hereu et al. 2005) and exposition (Chelazzi et al. 1997) on sea urchin distribution. However, 

in Posidonia oceanica habitat P. lividus density could be due to the amount of sediment 

accumulation at the border of the seagrass meadow: the lack and the very low abundance of sea 

urchins at some locations has been found either in seagrass beds where sandy bottoms occurred 

between the rocky habitat and the upper margin of the meadow and where samplings have been 

conducted inside the meadow, far from the margin (personal observation). Conversely, where the 

upper edge of the meadow was next to the rocky habitat the density of P. lividus individuals was 

higher. Further, although the higher abundance of sea urchins was found at a location (L2) within 

the B zone of the MPA, no evident relation was found between protection and P. lividus density. 

Nevertheless the high variability in P. lividus abundance in P. oceanica habitat cannot be explained 

by shoot density since no significant relation was found between these two variables. Overall, 

almost all P. lividus individuals sampled in this habitat was larger than 35 mm in test diameter and 

this supports the hypothesis that sea urchins migration, whether intentional or not (Abraham 2007; 

Pinna et al. submit.) from the rocky reefs is a major determinant on its distribution in P. oceanica, 

as already suggested by Tomas et al. (2004) and Ceccherelli et al. (submit.). 

Further, our results, accordingly with Prado et al. (2007a), highlighted that the herbivory 

pressure by Paracentrotus lividus on Posidonia oceanica estimated indirectly by means of grazing 

marks counts, was lower than by Sarpa salpa. However, the grazing impact due to the former 

species may be underestimated due to the fact that lateral bites exerted by large S. salpa individuals 

may enhance leaf break, removing portions of the blade with other grazing marks (Tomas et al. 

2005a). As suggest by some authors (Velarque 1990; Peirano et al. 2001; Tomas et al. 2005b; Prado 
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et al. 2007a) intense grazing on P. oceanica by S. salpa is a common phenomenon in shallow 

waters during summer months, before descending to spawn to deeper waters (Velarque 1990). In 

this period the occurrence of massive schools of this species can result in repeated attacks to the 

same leaves causing a biomass depletion that can mask marks of previous attacks. At the same time, 

other studies indicated that sea urchins, and in general herbivores, prefer the oldest part of the 

leaves for the presence of epiphytes (Cebrián et al. 1996; Alcoverro et al. 1997; Boudouresque and 

Velarque 2001; Peirano et al. 2001; Prado et al. 2007b). Also, some other suggest that although 

young sea urchins feed on both rhizomes and leaves, adults have a low-specialised diet and graze 

preferentially on the highly epiphytized distal part of the leaves (Nedelec and Velarque 1984; Zupo 

and Fresi 1984). 

However, this is in contrast to our results which have suggested Paracentrotus lividus to graze 

on lower portion of the leaves, whereas the attacks of Sarpa salpa have been recorded at higher 

portions. If at the study locations sea urchins feed at lower heights of the seagrass canopy the 

prediction would be that S. salpa herbivory can be underestimated. Moreover, although in some 

studies it has been evidenced that the frequency of bitten shoots does not always correlate well with 

herbivore population measurements (Tomas et al. 2005a), in this experiment a significant 

dependence of the number of P. lividus grazing marks on sea urchin density has been found. In fact, 

the sigmoid function has suggested that, although P. lividus density increases until 5.36 

individuals/m2 correspond exponential increase of the number of grazing marks, at higher densities 

this relation seems to stabilize to a plateau value. This finding can be explained by an overall 

defoliation of shoots at higher sea urchin density and this would indicate that indirect estimates of 

herbivory would be unreliable. On the other hand, at one location (L4) no P. lividus individuals 

have been found during sampling, despite the presence of sea urchin grazing marks. Whether this 

could depend on the spatial variability of a low dense population of P. lividus or on a previous 

removal of individuals by natural predators or humans (since harvest was possible at the location) it 

is not known. 
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Further, phenological analyses confirmed that the most affected leaves from Paracentrotus 

lividus and Sarpa salpa grazing were adult, whereas no grazing marks were found on juvenile 

leaves. However, Cebrián et al. (1996) sustained that S. salpa feeds preferentially the intermediate 

(i.e. mid-aged) leaves on the shoot, whereas that P. lividus attacks the leaves that are trapped by its 

spines showing a low selective strategy. This could also be in accordance with our data, since adult 

leaves correspond to higher exposure because of the external position within the shoot.  

Nevertheless, whether significant variability in feeding activity of Paracentrotus lividus exists 

either across seasons and locations still needs to be properly estimated. In fact, although authors 

indicate that P. lividus populations are very stable throughout the year (Tomas et al. 2004), others 

sustain that sea urchins show a strong seasonal feeding pattern (Lozano et al. 1995). Moreover, 

many other factors seem to influence feeding behaviour of P. lividus (Fernandez and Boudouresque 

2000; Boudouresque and Velarque 2001; Abraham 2007) and manipulative investigations should be 

conducted.  

Nevertheless, several authors suggest that indirect measures may not accurately represent 

herbivore consumption and thus could lead to misleading notions on the real importance of grazing 

in seagrass food webs (Tomas et al. 2005a), while direct quantification of seagrass biomass removal 

by herbivores has only rarely been attempted (Valentine and Heck 1999; Heck and Valentine 2006). 

Heck and Valentine (2006) suggested that many, if not most, prior estimates of grazing on 

seagrasses developed using indirect methods were far too low. However, indirect measures of 

herbivory pressure allow to arise hypotheses that need specific manipulative experiments to be 

tested. Such studies will provide estimates of the amount of seagrass production directly entering 

nearshore food webs, and they will improve our understanding of the factors that control spatial and 

temporal variability of seagrass herbivory. 
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ABSTRACT 

The sea urchin Paracentrotus lividus (Lamarck) is the most common grazer in the 

Mediterranean infralittoral. In this study, we investigated the movement of this echinoid from a 

rocky habitat to Posidonia oceanica (L.) Delile patches depending on both the size of sea urchins 

and their distance from the patch edge. We postulated that P. lividus would move randomly to a 

seagrass patch and that the probability of reaching it should decrease with distance. At this aim, we 

conducted a manipulative experiment (in four times from October 2006 to June 2007) at a location 

within a Mediterranean MPA, where several P. oceanica patches were intersperse on rocky 

platforms. On each time, after an accurate removal of sea urchins living inside them, 15 of these 

patches were randomly attributed in sets of 3 to 5 different addition treatments with groups of 10 

large and small P. lividus specimens (test diameter >50 mm and <30 mm, respectively) at close and 

far distances (25 cm and 100 cm, respectively) from the edge of the patches as follows: large-close 

(LC), large-far (LF), small-close (SC), small-far (SF), and controls (Cs) where no urchins were 

added. The abundance of sea urchins inside the patches was counted after 24 hours. Asymmetrical 

ANOVA highlighted significant variability among treatments, while no significant differences were 

detected among times. Moreover, significant differences were found for distance from the patches, 

but no significant effect for sea urchin size was evidenced. These results suggested that P. lividus 

specimens close to P. oceanica patches may have a higher probability to reach them, and that sea 

urchins are likely to move randomly to the seagrass patches because no clear preference for the 

seagrass was exhibited. Further, similar ability to move towards the patches was highlighted for 

different sized specimens, indicating that migration from one habitat to the other is possible also for 

small individuals. Overall, the results from this study open new views towards the general 

understanding of the importance of spatial arrangement of P. oceanica and rocky reef habitats on 

the spatial distribution of P. lividus. 

 

Key words: Home range, migration, Paracentrotus lividus, Posidonia oceanica. 
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INTRODUCTION 

In the Mediterranean Sea, the sea urchin Paracentrotus lividus (Lamarck) is commonly found 

in shallow subtidal rocky reefs and in the seagrass Posidonia oceanica (L.) Delile meadows 

(Tortonese 1965). This echinoid plays a key role in controlling macrophyte communities on rocky 

habitats as it is capable of depleting erect algae (e.g. Benedetti-Cecchi et al. 1998; Hereu 2006), 

whereas in P. oceanica beds it has been reported to feed preferentially on epiphytes rather than on 

plant material (Nédelec and Verlaque 1984; Sheperd 1987; Tomas et al. 2005, 2006). Under natural 

conditions, adult density of P. lividus is higher on rocky walls than in P. oceanica (only up to 6 

individuals m-2, Boudouresque and Verlaque 2001), and no appreciable successful recruitment takes 

place in seagrass meadows, where adult population cannot be sustained by local recruitment (Tomas 

et al. 2004). 

Processes such as predation, recruitment, migration, and disease exert a crucial role in sea 

urchin population dynamics and consequently they may influence the spatial distribution of 

individuals. Although there is an extensive literature on Paracentrotus lividus devoted to understand 

the importance of many of these features (Crook et al. 2000; Fernandez et al. 2001; Guidetti 2004; 

Tomas et al. 2004; Hereu et al. 2005), the role of migration from a habitat to another has been 

neglected for years. Barnes and Crook (2001) suggested that sea urchin size, covering and season 

can be important determinants of migratory behaviour that should deserve appropriate experimental 

investigations.  

Although description of migration by aggregation fronts of sea urchins such as 

Strongylocentrotus droebachiensis seems recurrent (Vadas et al. 1986; Schiebling et al. 1999; 

Dumont et al. 2006), no similar phenomenon has been described for Paracentrotus lividus (but see 

Chelazzi et al. 1997) as several papers have only been addressed to identify factors that influence sea 

urchin movements at a lower scale. For example, food availability (Andrew and Stocker 1986) and 

water flow (Kawamata 1998) are known to be important determinants of P. lividus behaviour. 

However, the presence of predatory fish certainly mediates the sea urchin behaviour by causing 
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urchins to shelter and thus diminishing their diel foraging activity (Carpenter 1984; Scheibling and 

Hamm 1991; Sala 1996). P. lividus shows a circadian pattern of activity with more active specimens 

during the night as a defence against diurnal predators. Previous evaluations of the movement 

patterns of this species in a NW Mediterranean marine reserve estimated the linear distance travelled 

in a 24 h period up to 220 cm and 130 cm in unprotected and protected areas, respectively, with a 

mean home range of 51 cm (Hereu 2005). Specifically, after 24 hours about 85% of the individuals 

travelled less than 100 cm. 

Most animals are on the move searching for food and shelter or to avoid predation and 

environmental stress (Swingland and Greenwood 1982). Movement patterns of sea urchins such as 

Strongylocentrotus droebachiensis can be adequately described by a random walk model, with 

frequent reverses in direction and occurrence of turning angles, and that deviations likely indicate 

that local environmental factors such as patches of food or physical conditions may influence the 

movement (Dumont et al. 2007). As no experiments on Paracentrotus lividus have been conducted 

in the field, its movement patterns and perception of the habitat landscape still remain unknown. 

Thus, whether the search for food and shelter relative to the distribution of food patches and shelter 

availability occurs at random needs to be cleared. 

In this study, we estimated the daily migrations of Paracentrotus lividus from a rocky habitat 

to Posidonia oceanica patches depending on the size of sea urchins and the distance from the patch 

edge. We postulate that P. lividus would move randomly to the seagrass patch, and that the 

probability of reaching it should decrease with distance. At this aim, we conducted a manipulative 

experiment at a location within a central western Mediterranean Marine Protected Area (MPA), 

where several P. oceanica patches were intersperse on rocky platforms. 

 

MATERIAL AND METHODS 

The experiment was conducted within the Capo Caccia-Isola Piana MPA (NW Sardinia, Italy) 

at Polt Agra Bay (Fig. 1), where numbered patches of Posidonia oceanica (about 2 m2 in size, 100 
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shoots m-2 in density, and 35 cm in canopy height) occurring on rocky platforms at a depth of about 

5-8 m were considered. Four replicated times (9-10 October 2006, 13-14 November 2006, 20-21 

April 2007, 5-6 June 2007, hereafter T1, T2, T3 and T4, respectively) were chosen and for each 

time two days (hereafter D1 and D2) were spent in the field. 

 

Polt Agra Bay

 
Fig. 1. Study locations inside Capo Caccia – Isola Piana MPA (B zone). 

 

During D1, 15 patches have been accurately cleared from Paracentrotus lividus by SCUBA 

divers, paying attention to remove all the individuals inside each patch and all around it for about 2 

m from its edge. These patches were randomly attributed in sets of 3 to 5 different urchin addition 

treatments with groups of large and small P. lividus specimens (test diameter larger than 50 mm and 

smaller than 30 mm, respectively) at close and far distances (25 cm and 100 cm, respectively) from 

the edge of the patches as follows: large-close (LC), large-far (LF), small-close (SC), small-far 

(SF), and controls (Cs) where no urchins were added. Close and far positions refer to 25 cm and 100 

cm from the edge of each patch, which were judged to be long enough to be covered in 24 hours 
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(Hereu 2005). Depending on the treatment (i.e., size-distance, Fig. 2), 10 P. lividus individuals were 

homogeneously positioned around each patch. 

Controls (Cs) were used to estimate possible migration of Paracentrotus lividus from reefs farer 

than 200 cm, as well as the number of individuals missed during removal. In this study, no tagging 

methods have been used, so that no artefacts due to this procedure could affect results. In fact, even 

if several workers described different sea urchin tagging techniques (see Duggan and Miller 2001 for 

a review), most of these methods are intrusive for the perforation of the test and, although in some 

cases estimates of survival were given, no data of tagging effect on the sea urchin behaviour are 

available. 

During D2 the number of sea urchins found inside the Posidonia oceanica patch was counted 

and test diameter was measured for each individuals. Pictures of benthic assemblages around the 

seagrass patches were taken to give estimates of macroalgal abundance for each taxa.  

Data obtained were analysed by asymmetrical ANOVA, where ‘Treatment’ was treated as 

fixed and orthogonal to ‘Time’ that was considered as random. Among addition treatments ‘Size’ 

and ‘Distance’ were treated as fixed and orthogonal. The contrast between addition treatments and 

controls was tested following calculation indicated by Underwood (1997) 

 

RESULTS AND DISCUSSION 

For all sampling times, specimens of Paracentrotus lividus were not found inside all the 

patches with addition treatments (i.e., LC, SC, LF and SF), nor inside Cs. The total number of P. 

lividus found in each Posidonia oceanica patch reached 9 in LF, 11 in LC, 8 in SF, 12 in SC and 6 in 

Cs, respectively. Although a higher number of sea urchins was observed in addition treatments rather 

than in Cs, no significant difference was evidenced by ANOVA (Tab. 1). Moreover, no significant 

effect was found for the size among addition treatments, while significant differences were detected 

for the distance. In fact, a lower number of P. lividus was found for both far treatments (i.e, LF and 
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SF). Furthermore, consistent results were found through times, suggesting that no significant 

temporal variability occurred during the study period. 

 

 

 

 

 

 

 

 

 

Fig. 2. Mean number (+SE) of Paracentrotus lividus density at each 
treatment patches in each sampling time. 

Table 1 Asymmetrical ANOVA on the number of Paracentrotus lividus in each Posidonia oceanica patch.  
              
Source of variation SS DF MS F P F versus 
Treatment =Tr 95.6 4 23.90 3.91 0.0293 TrXTi 

Cs vs Addition 63.04 1 63.04 6.15 0.0893 TiXCs vs Additino 
among Addition 32.56 3 10.85 2.30 0.1462 TiXAddition 

Size=S 6.02 1 6.02 1.96 0.2563 TiXS 
Distance=D 25.52 1 25.52 11.38 0.0433 TiXD 

SXD 1.02 1 1.02 0.12 0.7566 TiXSXD 
Time=Ti 42.05 3 14.02 1.40 0.2583 Res  
TrXTi 73.27 12 6.11 0.61 0.8226 Res  

TiXCs vs Addition 30.75 3 10.25 5.93 0.0197 Res Cs vs additino 

TiXAddition 42.52 9 4.72 0.39 0.9311 Res among additino 

TiXS 9.22 3 3.07 0.25 0.8581 Res among additino 

TiXD 6.72 3 2.24 0.18 0.9058 Res among additino 

TiXSXD 26.56 3 8.85 0.73 0.5416 Res among additino 
Res  401.83 40 10.05       

Res among addition 388.00 32 12.13       

Res Cs vs addition 13.83 8 1.73       
              
SNK Test             
Distance             
SE=0.3057 Far<Close           
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This is in contrast with the observations of Barnes and Crook (2001), that indicated size-

specific migration patterns for this species on rocky substrates. Based on our results, we can also 

hypothesize that sea urchins are likely to move randomly to the seagrass patches because no clear 

preference for the seagrass was exhibited. In fact, if for any reason Paracentrotus lividus had 

preferred Posidonia oceanica habitat to the rocky habitat, a similar number of specimens would have 

been found at patches regardless the distance from the edge of the seagrass patch, since both trails 

from the far and the close position should be coverable for this species during each experimental 

time (i.e. 24 h). Overall, although P. lividus is one of the most important grazer of P. oceanica (e.g. 

Nedelec and Velarque 1984; Boudoresque and Velarque 2001), the role of this seagrass on the 

distribution patterns of this echinoid still needs to be clearly defined. In fact, the results of this study 

support the hypothesis that P. lividus moves stochastically since no evidence of intentional changes 

of habitat (i.e. from rocks to P. oceanica patches) has been provided. This could suggest that P. 

lividus specimens found in P. oceanica patches are the result of those individuals that encountered 

the seagrass patch and remained in this habitat. This would also explain why in such seagrass 

patches we generally find higher abundance of P. lividus than on the next rocky reef (9.2 and 6.5 

average abundance m-2, respectively). Altogether, this would be in accordance with the observations 

reported by other authors (Domenici et al. 2003; Dumont et al. 2007), who suggested that reaching a 

shelter may correspond to a strategy of random searching behaviour. 

Further, the fact that this experiment has been performed through times of different seasons 

and that no significant effect of the time has been detected, suggests several hypotheses. First, that 

the structure of algal assemblages on rocky reefs does not influence significantly the movement of 

Paracentrotus lividus between the habitats. In fact, at all sampling times macroalgal assemblages, 

although different through seasons, were composed of several palatable species (Velarque and 

Nedelec 1983; Velarque 1987; Benedetti-Cecchi et al. 1998), such as Padina pavonica, Laurencia 

spp., Dictyotales, Sphacelariales and algal turfs, that occurred abundantly at the site. Moreover, 

during the whole experiment neither large cover of encrusting calcified rhodophytes occurred nor 
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bare rock were detected around the seagrass patches, indicating that on the rocks there were no signs 

of P. lividus overgrazing and that, conversely, the availability of possible food resources was high. 

Nevertheless, further manipulative research is needed to investigate the importance of the structure 

of macroalgal assemblages on rocky habitat on P. lividus movement towards Posidonia oceanica 

patches. 

The second hypothesis is that the temporal variability of foraging activity of Paracentrotus 

lividus through the seasons already suggested by some authors (Lozano et al. 1995; Peirano et al. 

2001) did not significantly influence the results of this study. Thus, although the feeding preferences 

of this herbivore would probably depend on the season, our findings suggest that some other stronger 

determinants could affect its behaviour. Indeed, the hypothesis that the movement of P. lividus 

individuals towards the seagrass patches could be greatly affected by an ‘escape behaviour’ (Hereu 

et al. 2004; Hereu 2004, 2005) regardless of the season, it is strongly supported. Nevertheless, 

although during the experiment no signs of attacks on sea urchins (i.e. test fragments or broken 

individuals) were observed around the patches, and the relative recent establishment of this MPA 

(dated December 2002) has not determined so far significant benefits on fish assemblages structure 

(Pais et al. 2007), it is highly reliable that predators could control sea urchin population density and 

distribution (Guidetti 2007). 

Another important issue that is worth considering is about the lack of significant differences 

among addition treatments and controls. We believe that this result could be due to the low power of 

the test and, thus, we suppose that a higher number of sampling times would detect statistical 

differences. However, to detect whether the few Paracentrotus lividus individuals found in control 

patches derive from very large migrations or they are simply individuals missed during the removal 

on D1, tagged individuals would have been required. As already mentioned, we wanted to take 

particular care to avoid any procedural artefacts and no tagging technique considered prior to the 

experiment was evaluated sufficiently acceptable. At this regard it is ignored what influence P. 

lividus individuals translocation, when positioned around the seagrass patches, could have had on 
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their behaviour: whether this procedure stresses the sea urchins and affects their need to search for a 

shelter still needs to be investigated. For this reason, in this experiment the removed urchins from 

patches on each D1 were purposely transplanted far away from the next rocky habitat so that they 

were not used for the experimental additions. In fact, the little literature available on transplant 

experiments with other echinoids produced contrasting results since Tertschnig (1989) and Yusa and 

Yamamoto (1994) did not show any effect of the habitat of origin, while Dumont et al. (2006) 

suggested that transplants led to less actions.  

Several questions can arise about the influence of environmental physical conditions of the 

environment on Paracentrotus lividus behaviour. For instance, this experiment was performed 

during only days of calm sea conditions, merely for our logistic convenience. However, wave action 

seems to influence the spatial distribution of sea urchins (Chelazzi et al. 1997; Kawamata 1998) and 

whether other results would have been obtained performing the experiment during, immediately 

before or after storms it is not very predictable (but see Chelazzi et al. 1997). Also, the importance 

of the structure complexity of Posidonia oceanica canopy (density of shoots and leaf length) could 

have affected the environment, for example by decreasing irradiance and water motion (e.g. 

Boudoresque and Meisnesz 1982; Enríquez et al. 1992), and thus have provided shelters of different 

suitability. At this regard, further manipulative research is needed to investigate what are the factors 

regulating the spatial distribution of P. lividus in P. oceanica meadows and specifically, how the 

structure of seagrass canopy influence P. lividus abundance. Overall, the results from this study 

open new views towards the general understanding of the importance of spatial arrangement of P. 

oceanica and rocky reef habitats on the distribution patterns of the Mediterranean sea urchin P. 

lividus. 
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ABSTRACT 

Seagrasses influence the surrounding environment by modifying the substrate, light conditions 

and water motion and provide a physical habitat used as predation refuge and that thus can have a 

great influence on composition and distribution on the organisms that inhabit within the meadow. In 

the Mediterranean, Paracentrotus lividus is one of the main herbivore on the seagrass Posidonia 

oceanica, where it occurs on rhizomes among shoots. Under natural conditions, adult density of P. 

lividus is higher on rocky walls than in P. oceanica, and no appreciable successful recruitment takes 

place in seagrass meadows, where adult population cannot be sustained by local recruitment. 

Nevertheless, in P. oceanica, P. lividus can likely find a suitable habitat, considering the high 

complexity structure and the availability of food. At this regard, the purpose of this study was to 

investigate the role of P. oceanica canopy structure on P. lividus distribution. The experiment 

consists in a manipulation of the seagrass structure achieved by modifying the shoot density (20%, 

50% and 100%) and leaf high (natural and halved). For each treatment combination three types of 

P. oceanica were considered: natural seagrass (NS), artificial seagrass + frame (AS+F) and natural 

seagrass + frame (NS+F). The structure of P. oceanica of artificial (plastic) seagrass (AS) units, 

mimicking natural seagrass (NS), was reproduced so that shelter but no food was provided. NS+F 

P. oceanica was used to test the effect of the frame used to hold the plastic stripes in AS+F units. 

An higher abundance of P. lividus individuals at NS units rather than at AS units would suggest that 

the food provided by P. oceanica is a significant determinant on the spatial distribution of the sea 

urchin in this habitat. Further, to comprehend mechanisms of interaction, water motion and light 

measurements were taken: these data would highlight both whether pruning the seagrass shoots for 

each canopy type and using AS+F units altered the effect of reducing bottom current regime and 

irradiance. Results have highlighted that P. lividus distribution is affected by P. oceanica shoot 

density in different ways, as highlighted by the significant ‘Posidonia × Density’ interaction. In 

fact, no significant differences in P. lividus abundance among NS, AS+F and NS+F Posidonia type 

treatments were found at low shoot densities (20% and 50%), while at natural density (100%) a 
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higher abundance was found in NS rather than in AS+F and NS+F units. This suggests that at lower 

densities the artefact effect of frame did not significantly contribute to the observed variability 

which is entirely due to the canopy material. Further, the similar P. lividus abundance between 

AS+F and NS+F types at all densities suggests that P. oceanica mainly plays a refuge role rather 

than food resource. Also, the significantly higher irradiance found at the lowered shoot densities of 

P. oceanica could explain the higher abundance of P. lividus at the highest density of the seagrass at 

NS units, while water motion cannot be invoked as a factor responsible of the distribution since no 

significant differences were found among treatments’ combinations. However, the hypothesis that 

P. lividus individuals primarily use P. oceanica to find a shelter and then they feed on it only for 

opportunity, still needs to be clarify. Overall, although many questions still remain unanswered, 

these findings add important knowledge to the understanding of P. oceanica – P. lividus interaction. 

 

Key words: Canopy, Paracentrotus lividus, plant-herbivore interaction, Posidonia oceanica, sea 
urchins, spatial distribution. 
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INTRODUCTION 

Seagrass meadows are extremely high productive systems and support a great abundance and 

diversity of species. Further, a number of commercially and recreationally important species, 

including both fish and invertebrates, have been linked to seagrasses for some stage of their life 

cycle, although few of them use seagrasses throughout their lifespan (Bronwyn 2006). 

Seagrass meadows provide shelter for species assemblages (Carpenter 1984; McClanahan and 

Muthiga 1989) mainly due to the structural complexity that shades (Verweij et al. 2006) and baffles 

currents (Guidetti 2000) as, for example, already highlighted for juvenile reef fish (Verweij et al. 

2006; Beck et al. 2001; Guidetti 2000). Variation in canopy height and shoot density on wide 

spatial scale of seagrass meadows can have substantial effect on abundance of common fish and 

decapods (Bell and Westoby 1986; Kennelly 1989). Coupled with this, higher complexity habitats 

have both producing and sediment trapping potential, as a result of attenuation of hydrodynamic 

conditions within their canopies (Papadimitriou et al. 2005; Hauser et al. 2006; Koch 1993; de Boer 

2007). Furthermore, seagrasses influence the surrounding environment by modifying the substrate 

and light conditions (Jones et al. 1994; Koch 2001; Williams 1987). All the factors above can have 

a great influence on composition and distribution on the organisms that inhabit within the meadow 

(Gambi et al. 1990; Hovel et al. 2002).  

Thus, besides the protection from predators seagrass meadows provide an increased food 

availability and both are often cited as reasons to explain why such large number of organisms are 

associated with seagrasses (Valentine and Duffy 2006). Although studies that evaluated whether 

more food is available in these habitats are scarce (but see Williams and Ruckelshaus 1993), there is 

increasing evidence that the consumption of seagrasses is more important than previously thought. 

In fact, Konar (2000, also references therein) suggests that seagrass species may structure 

communities mainly through trophic interactions with herbivores. Also, there is enough evidence to 

support the hypothesis that this plant-herbivore relationship seems largely mediated by the presence 
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of epiphytes (Alcoverro et al. 1997; Zimmerman et al. 2001; Tomas et al. 2005; Borowitzka et al. 

2006; Heck and Valentine 2006; Prado et al. 2007a). 

In the Mediterranean, Posidonia oceanica L. Delile is the dominant seagrass species, which 

forms extensive meadows from the shallow subtidal to about 30 to 40 m of depth. This seagrass is 

considered to structure habitats highly complex for the high shoot density, length of the leaves, leaf 

longevity and low shoot turnover compared to the other seagrasses (e.g. Duarte 1991; Marbà and 

Duarte 1996; Hemminga and Duarte 2000). Its structural complexity affect food webs by modifying 

ecosystem structure, providing habitat, as well as producing organic matter (Gobert et al. 2006).  

One of the main herbivore of Posidonia oceanica is the sea urchin Paracentrotus lividus 

(Lamarck). Commonly, P. lividus occurs on shallow subtidal rocky habitats where, at high 

densities, it overgrazes complex algal assemblages turning them into barren areas dominated by a 

few species of encrusting algae (e.g. Benedetti-Cecchi et al. 1998; Hereu 2006). Most of ecological 

research on P. lividus has been addressed to understand causes underlying the distribution patterns 

on rocky habitat. For example, structural complexity of the rocky habitat seems to greatly affect the 

spatial variability of P. lividus, being particularly important for juveniles survivor and when 

predation pressure is high (Guidetti et al. 2003; Bonaviri et al. 2005; Hereu et al. 2005). Moreover, 

the spatial distribution of P. lividus seems influenced by many processes such as predation (Sala 

and Zabala 1996; Guidetti 2004; Hereu et al. 2005), recruitment (Tomas et al. 2004), migration 

(Palacín et al. 1997; Crook et al. 2000) and competition (Guidetti et al. 2004; but see Gianguzza et 

al. 2006).  

Paracentrotus lividus in the Mediterranean is commonly found in Posidonia oceanica 

meadows, where it occurs on rhizomes among shoots. Population structure of P. lividus seems quite 

different at the two habitats being adult density of P. lividus higher on rocky reefs than in P. 

oceanica, as suggested by Boudouresque and Verlaque (2001) and Ceccherelli et al. (submitted). 

Likely, in this habitat, P. lividus can find a suitable habitat, considering the high complexity 

structure and the availability of food. In fact, authors have already investigated on the consumption 
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of P. oceanica and has been evidenced that the presence of epiphytes on seagrass makes the leaves 

more palatable for P. lividus (Tomas et al. 2005; Tomas et al. 2006). In fact, P. oceanica beds it has 

been reported to feed preferentially on epiphytes rather than on plant material (Nédelec and 

Verlaque 1984; Sheperd 1987; Alcoverro et al. 1997; Tomas et al. 2005, 2006). 

Furthermore, recent studies have been addressed to understand which factors influence the 

movement patterns of Paracentrotus lividus on rocky habitats (Crook et al. 2000; Barnes and Crook 

2001; Verling et al. 2002; Hereu 2005). Some authors suggest that migration could be mainly 

driven by predation and also due to avoid light (Barnes and Crook 2001). Whether the movement of 

P. lividus from the rocky habitat to Posidonia oceanica meadows occurs at random as a preference 

and what are the factors regulating the spatial distribution in this habitat are questions that still need 

to be answered. The higher number of P. lividus individuals at the margin of P. oceanica meadows 

(especially where the seagrass is directly next to rocky reefs) rather than inside (personal 

observation), and the higher frequency of large size classes individuals inside the meadow 

compared to outside, support the hypothesis that a considerable abundance of individuals migrate 

from the rocky reef habitat. 

The purpose of this study was to investigate the role of Posidonia oceanica structure on 

Paracentrotus lividus distribution. At this aim, the manipulation of the seagrass structure has been 

achieved by modifying the shoot density and leaf high. Also, in this experiment artificial (plastic) 

seagrass (AS) units mimicking natural seagrass (NS) units have been used: at these treatments, the 

structure of P. oceanica was reproduced so that shelter but no food was provided. An higher 

abundance of P. lividus individuals at NS units rather than at AS units would suggest that the food 

provided by P. oceanica is a significant determinant on the spatial distribution of the sea urchin in 

this habitat. Also, whether the abundance of P. lividus depends on the structure of P. oceanica 

canopy would be evidenced by comparing treatments.  
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MATERIALS AND METHODS  

This study was carried out in the Gulf of Alghero (North West Sardinia, Italy), near Capo 

Caccia-Isola Piana MPA (40° 34' N - 8° 13' E), at a small bay near a shore with accommodation 

facilities and living units (Fig.1). The experiment was done during winter, from November 2006 to 

March 2007, when tourist visitation is extremely low. Sampling was done at the edge of a 

Posidonia oceanica continuous meadow: a location of about 500 m2 wide at about 5 m deep was 

chosen. The seagrass edge, which corresponds to the upper limit of the meadow, was next to a 

rocky habitat and this would enhance sea urchins’ supply. 

 
Fig. 1 Study location outside Capo Caccia – Isola Piana MPA at Punta Negra. 

 

The rocky habitat consists of gently sloping platforms covered mainly by: algal turfs, Codium 

bursa (Agardh 1822), Halimeda tuna (Ellis & Sol.) J. V. Lamour, Dasycladus vermicularis 

(Mayhoub 1976), Udotea petiolata (Turra) Borgesen.  

To test one of the potential mechanisms of influence of Posidonia oceanica canopy on 

Paracentrotus lividus distribution, artificial structures were made which could reduce light and 

velocity of near-bottom water currents as P. oceanica canopy, but could not provide any food 

resource. 

Study location 
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To reproduce the broad characteristics of the seagrass habitat, the natural shoot density, leaf 

height and number of leaves per shoot were estimated in the field at the beginning of the 

experiment. Posidonia oceanica mean shoot density in 40×40 cm was 75.67 cm (± 4.67 SD), mean 

leaf height was 45.33 cm (±7.03 SD), while the mean number of leaves per shoot was 5.81 cm (± 

0.63 SD). Artificial structures (AS+F) were constructed from a 40×80 cm frame of plastic coated 

iron with a 5×10 cm mesh to which mimics of P. oceanica leaves were tied. Artificial leaves were 

made of green plastic stripes and organized to form a density of shoot and length of leaves that were 

similar to natural P. oceanica at that site: each shoot was made of 3 folded stripes of 100 cm (that 

corresponds to six leaves of 50 cm) and a total of 150 shoots were tied to each frame.  

In the experiment, a total of three types of Posidonia oceanica canopy (treatment) were 

established: natural seagrass (NS), artificial seagrass + frame (AS+F) and natural seagrass + frame 

(NS+F). In fact, to compare the effects of the NS with AS+F another type of canopy treatment was 

included in the experimental design so that the effect of undesirable factors such as those due to the 

frame, besides lower food availability, could be excluded. Indeed, at each NS+F unit the same 

plastic coated iron frame without leaf mimics was secured in 40×80 cm units where natural leaves 

were present. Eventual differences between NS and NS+F units would have highlighted the 

intruding influence of the frame. Conversely, each AS+F unit was placed on 40×80 cm areas, where 

natural seagrass vegetation was removed, in which the frame with leaf mimic was secured at the 

corners with two 35 cm iron dowels driven below the substratum using a hammer.  

Experimental units (replicates) 40×80 cm sized quadrats were prepared at the edge of the 

seagrass meadow, the position within the meadow where Paracentrotus lividus seems more 

abundant (personal observation). Overall, the three types of Posidonia oceanica were deployed at 

two different times so that a total of six times were necessary to perform the entire experiment. In 

fact to handle an experimental design in which the three types of seagrass canopy were used would 

have been a too complex work, and it would have been necessary to deal with a very wide P. 

oceanica edge surface. For this reason, it was preferred to replicate times (twice) within each type 
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of P. oceanica canopy treatment. At each time, a total of six combinations of ‘shoot density × leaf 

length’ were established by manipulating canopy height (natural and reduced to half), by cutting 

leaves, and shoot density (20%, 50% and 100%), by clipping shoots using common scissors. Each 

treatment combination was three-replicated (randomly assignment) so that 18 experimental units 

were obtained for each time. For AS+F units, the reduce canopy height was obtained by tying 50 

cm plastic stripes to the frame, while 75 and 30 bundles of stripes were used to reproduced the 50% 

and 20% shoot density, respectively. 

At each experimental time, once experimental units were established, five Paracentrotus 

lividus adult individuals (larger than 50 mm in test diameter) were positioned in every experimental 

unit: sea urchins were collected from the near rocky reef, 20 m distant from the seagrass edge. After 

a week from positioning, sea urchins abundance was recorded in each unit. 

A four-way ANOVA of Paracentrotus lividus abundance was performed: ‘Posidonia’ type 

(NS, AS+F and NS+F), shoot ‘density’ (100%, 50% and 20%) and canopy ‘height’ (Natural and 

Reduced) were treated as fixed and orthogonal, while the factor ‘time’ as random (2 levels) and 

nested in Posidonia type. Cochran’s test was performed to check for homogeneity of variances, 

while SNK test was used to make a posteriori comparisons of means (Underwood 1997). 

To provide information on how pruning the seagrass shoots altered the effect of reducing 

bottom current regime at the experimental units we used pre-weighed plaster balls that were 

exposed to the water flow for 24 h at calm conditions. In order to avoid the effect of abrasion, care 

was taken to place the balls so that they did not contact plants. Weight loss during field exposure 

gave estimates of the water movement because it controlled dissolution rates (Gambi et al. 1989). 

For each of the six combinations ‘density × length’ two replicate plaster balls were positioned and 

to calibrate weight loss 6 balls were kept in still sea water for the same exposure time. After 

recovery, balls were rinsed lightly in freshwater to remove salts, dried at 60°C for 24 h and 

weighed. The dissolution (weight loss) of each ball was converted to an estimate of flux (cm/s) 

according to the following function obtained by Bailey-Brock (1979),  
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Flux = 3.65(Me/Mc-1)  

where Me is the weight loss of each plaster ball during field exposure and Mc is the weight loss of 

calibration balls.  

Furthermore, to provide estimates of the effect of AS+F units on irradiance compared to NS 

units, light measurements were taken under the two types of seagrass canopy using a quantum 

photometer. Two replicate readings were done for each of the six combinations ‘density × length’. 

Then, data collected for flux and irradiance were analyse by three-way ANOVA excluding the 

factor ‘time’ to the design previously described. Eventual differences between NS and AS+F units 

would have highlighted the intruding influence of plastic material rather than only food depletion.  

 

RESULTS 

Overall, the abundance of Paracentrotus lividus in the Posidonia oceanica experimental units 

was quite consistent to natural abundance in this seagrass meadows. In particular, from 1 up to 7 

individuals of P. lividus occurred in most of the units while the lack of them was recorded only very 

rarely (Fig. 2). Analysis of data has shown a significant ‘Posidonia × Density’ interaction (Po × De) 

effect on the abundance of P. lividus (Table 1) and the SNK test on this interaction has highlighted 

that there were no differences in mean abundance of P. lividus among P. oceanica types at 20% and 

50% shoot density, while at natural shoot density (100%) an higher abundance was detected at 

natural P. oceanica (NS) units, rather than at AS units and NS+F units (Table 1). Furthermore, at 

AS and NS+F units there were not differences among the three levels of shoot density, while in NS 

units P. lividus abundance increased with the increase in shoot density, at both canopy heights, as 

highlighted by significant ranking among levels (Table 1). On the contrary, no significant effect of 

the canopy height was detected by the analysis, at none of the canopy type. Finally, differences 

between times on the P. lividus abundance were no significant, as revealed by ANOVA results. 
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Fig. 2. Mean number (+SE) of Paracentrotus lividus 

abundance at different canopy height (N=natural, 
R=reduced). 

 

 

Table 1. Results four-way ANOVA comparing the number of Paracentrotus lividus among 
Posidonia types (NS, AS+F, NS+F), times, canopy height (Natural and Reduced) and shoot 
density (100%, 50%, 20%). 

 

SNK TEST of interaction P×D         
SE = 0.235 

  
             20%      N = N + G = A + G 
             50%      N = N + G = A + G 
           100%     N > N + G = A + G 

  
N          20% < 50% < 100% 
N+G     20% = 50% = 100% 

         A+G      20% = 50% = 100% 
  

 
 
 
 

 

Source of 
variation df MS F p 

 
Posidonia = P 

 
2 

 
0.5926 

 
0.12

 
0.8905

Time = T(P) 3 4.9167 2.59 0.0594
Height = H 1 8.8981 5.62 0.0984
Density = D 2 4.0093 6.01 0.0369
P×H 2 7.2593 4.58 0.1224
P×D 4 4.2731 6.41 0.0234
H×T (P) 3 1.5833 0.83 0.4795
D×T (P) 6 0.6667 0.35 0.9070
H×D 2 3.1759 0.91 0.2287
P×H×D 4 6.7454 4.05 0.0630
D×H×T(P) 6 1.6667 0.88 0.5155
Residual 72 1.8981   
Cochran test       C = 0.1024 ns 
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Differences in irradiance were highly dependent on Posidonia oceanica structure of the 

canopy and type (Fig. 3a). In fact, a significant ‘type × height’ interaction indicated that greater 

light intensity occurred at reduced rather than natural height, both at NS and AS units, and that at 

reduced canopy height a higher light intensity was recorded at AS units rather than NS units (Table 

2, SNK test). Furthermore, independently on P. oceanica canopy height and types, SNK test 

detected a significant lower irradiance at 100% compared to 50% and 20% shoot density (Table 2, 

SNK test). 

 

 
Fig. 3. Mean (+SE) irradiance (a) and water flow (b) at different 

Posidonia types, shoot density and canopy height. 
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Furthermore, although water flow was quite variable among units, analysis did not detect any 

significant differences in current velocity suggesting that there were not different influences on 

current velocity between AS and NS units (Fig. 3b and Table 2). Surprisingly, significant variations 

in water flow among levels of Posidonia oceanica shoot density and canopy height were not 

evidenced by the analysis. However, a higher water movement at NS units was evident rather than 

at AS units, although greater plaster depletion at 100% and 50% shoot density could also be due to 

abrasion by direct leaf movement during the exposure (personal observation). 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

Results have highlighted that Paracentrotus lividus distribution is affected by Posidonia 

oceanica shoot density in different ways, as highlighted by the significant ‘Posidonia × Density’ 

interaction. In fact, no significant differences in P. lividus abundance among NS, AS+F and NS+F 

Posidonia type treatments were found at low shoot densities (20% and 50%), while at natural 

density (100%) a higher abundance was found in NS rather than in AS+F and NS+F units. This 

suggests that at lower densities the artefact effect of frame did not significantly contribute to the 

observed variability which is entirely due to the canopy material. Further, the similar P. lividus 

abundance between AS+F and NS+F types at all densities suggests that P. oceanica mainly plays a 

Table 2. Results three-way ANOVA comparing water flow and 
irradiance among Posidonia types (NS, AS+F, NS+F), canopy height 
(Natural and Reduced) and shoot density (100%, 50%, 20%). 

  Water flow Irradiance 
Source of 
variation df MS F p MS F P 

Posidonia = P 1 0.4496 3.19 0.0993 0.0308 30.56 0.0001 
Density = D 2 0.0150 0.11 0.8998 0.0120 11.91 0.0014 
Height = H 1 0.0004 0.00 0.9577 0.0486 48.20 0.0000 
P×D 2 0.1570 1.11 0.3597 0.0107 10.62 0.0022 
P×H 1 0.3799 2.70 0.1265 0.0113 11.17 0.0059 
D×H 2 0.0926 0.66 0.5359 0.0002 0.16 0.8530 
P×D×H 2 0.2574 1.83 0.2029 0.0002 0.15 0.8599 
Residual 12 0.1409   0.0010   
Cochran test        C =  0.4953 ns C = 0.4132 ns 
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refuge role rather than food resource. However, at 100% shoot density the analysis has revealed the 

artefact effect of the frame; particularly, at natural shoot density, the frame had a negative effect on 

P. lividus abundance so that estimates of artificial habitat effect could lead to wrong conclusions for 

the impossibility to distinguish between frame and plastic effect. Even if results have highlighted an 

artefact effect of the frame, this not excludes that P. lividus can utilize the densest P. oceanica as 

refuge, just as it has emerged for the other shoot densities. However, we ignore the mechanism that 

could have led to these results since we cannot think of an influence of the frame that could be 

relevant at the natural seagrass density and not at the lower densities. Nevertheless, differences in P. 

lividus abundance between NS and AS+F could not be ascertained to a different hydrodynamics. 

Indeed, our results have highlighted that there were no significant differences in current velocity 

between canopy types. Further, no significant variations in water flow among levels of P. oceanica 

shoot density and canopy height were evidenced.  

However, the increased abundance of Paracentrotus lividus at NS canopy type with the 

increase shoot density suggests that different combinations of environmental conditions occur at the 

three density levels. The changes in reducing bottom current regime and in light regime, are 

mechanisms by which Posidonia oceanica has been shown to affect the understory assemblages 

(Ceccherelli and Cinelli 1999). As suggested by some authors, shade may be an important factor 

affecting P. lividus distribution (Barnes and Crook 2001; Verling et al. 2002) and dense shoots of 

seagrasses could provide such condition (Ceccherelli and Cinelli 1999; Verweij et al. 2006). 

Consistently, in this study reduced irradiance have been found at the lowered densities of P. 

oceanica and this could explain the dependence of the abundance of P. lividus on the density of the 

seagrass. 

For this experiment, we assume that Paracentrotus lividus individuals that are found in the 

units are the result of those moving from the rocky areas around the seagrass edge and those from 

the meadow, although we believe that those coming from the rocks could contribute more because 

of their overall higher abundance at this habitat. Probably, the suggestion given by our results that 
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P. lividus can utilize Posidonia oceanica primarily as refuge together with the fact that P. lividus 

grazing does occur on P. oceanica, can be explained by the hypothesis that this sea urchin is 

attracted by the seagrass where it can find a refuge from predators and water motion and, once it 

finds the shelter, it grazes on it. Some other authors had suggested that P. lividus behaves 

fundamentally as an important feeder able widely to adapt to availability of food resources (Zupo 

and Fresi 1984). This would also be supported by studies on P. lividus food preference between 

palatable algae and P. oceanica. In fact, the algal species that are depleted by P. lividus grazing 

(Benedetti-Cecchi et al. 1998; Bulleri et al. 1999; Hereu 2006) and the importance of P. lividus 

feeding on P. oceanica leaves (Alcoverro et al. 1997; Prado et al. 2007a, 2007b) have both already 

been evidenced by field experiments. Further, a very recent work by Vergés et al. (2007) has 

highlighted the chemical deterrence of P. oceanica on P. lividus and several other predators. 

However, whether P. lividus has a feeding preference on macroalgae rather than on the seagrass still 

needs further insights. 

Furthermore, to demonstrate that Paracentrotus lividus primarily use Posidonia oceanica to 

find the shelter and that it feeds on it only for opportunity, the use of artificial seagrass structures of 

different dimensions is probably needed. In fact, in this experiment, the small patch structures of 

artificial seagrass used could have served as suitable shelters as the grazing could have been 

performed in the nearby algae on rocky reefs and in natural P. oceanica. In this way, artificial 

structures could have functioned to P. lividus just as rocky crevices. Conversely, patches of 

artificial seagrass larger than P. lividus calculated home range (several square metres, Hereu 2005) 

are expected to host most of the sea urchins at the margin so that grazing could happen at the next 

habitat. However, to estimate the influence of seagrass patch arrangement on the sea urchin 

distribution, P. lividus home range should be estimated at artificial seagrass units of different patch 

size fixed at rocky substratum with different levels of crevices availability. 

In fact, as highlighted by many studies, structural complexity may be an important 

determinant for fish and invertebrate communities. In particular, as suggested by Ruitton et al. 
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(2000), the size of shelter must be proportional to the invertebrate size, to be effective and, further, 

that the abundance increases with increasing structural complexity (Bonaviri et al. 2005). In 

Mediterranean rocky habitat this has also been shown for juveniles of Paracentrotus lividus (Hereu 

et al. 2005). Indeed, in presence of high predator pressure the availability of shelters determines a 

cryptic behaviour on P. lividus (Guidetti et al. 2003) and a successful reduction in predation rate 

(Carpenter 1984; McClanahm and Muthiga 1989; Sala et al. 1998). In this Basin, it has been 

suggested that P. lividus could have a nictemeral behaviour, mainly due to the search of food: at 

night it grazes on the rocks and during the day it shelters to avoid predators (Dance 1987; Hereu 

2004). However, other studies conducted at Lock Hyne (Ireland), have shown grazing activity by P. 

lividus during the day, in order to avoid nocturnal predators (Ebling et al. 1966; Barnes and Crook 

2001). 

At the study site, although the rocky platforms have not likely provided good shelters, since 

irregularities of the rocks were small and rare, they were covered by algal turfs that have been 

shown to be highly palatable for Paracentrotus lividus (Benedetti-Cecchi et al. 1998; Bulleri et al. 

1999; Hereu 2006). The conformation of this rocky habitat supports the hypothesis that P. lividus 

could firstly consider Posidonia oceanica meadow as a refuge and that the abundance of this sea 

urchin species in this seagrass could mostly be due to the migration from the rocky habitat.  

Further relevance should be given to protection from human activity, as another factor that 

potentially affects Paracentrotus lividus behaviour and, consequently, distribution. In fact, in 

MPAs, where there is a high density of fish predators, such as Diplodus sargus (L.), Diplodus 

vulgaris (Geoffr.), Sparus aurata (L.), Coris julis (L.) and Thalassoma pavo (L.), sea urchins 

movement is lower than at unprotected areas where low predator pressure occurs (Hereu 2005). At 

this regard, it is worth highlighting that this experiment was carried out in an unprotected area and 

that at this site the search for P. lividus of a shelter should have not been greatly influenced by the 

predator pressure. However, at the moment we don’t know whether the results obtained in this 

study have been affected by the low density of predators and only a high spatial replication at the 
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scale of locations at both high and low predation pressure would be needed to properly define the 

influence of predation on the role of Posidonia oceanica habitat on P. lividus distribution. However, 

if the importance of the refuge role of P. oceanica has been evidenced outside a MPA (this study), 

this should only be augmented inside and absolutely more probable at reserve areas. 

Furthermore, whether the effect of Posidonia oceanica habitat on Paracentrotus lividus  

distribution could vary among different periods of the year, still remains unknown. Seasonality 

would deserve further attention since many features regulating sea urchin distribution undergo 

variations through time. Besides human harvest, which is focused in the winter season when the 

reproductive effort of the sea urchin is maximized, phenology of algal assemblages on rocky reefs 

as well as the behaviour of predators are likely linked to the season (Sala and Zabala 1996; Barnes 

and Crook 2001; Tomas et al. 2005). Thus, the behaviour of P. lividus could also greatly change 

through time. In this contest, it would be crucial to define the role of P. oceanica habitat for P. 

lividus individuals testing specific hypotheses on temporal variability at the scale of the season. 

Although many questions still remain unanswered, these findings add important knowledge to the 

understanding of P. oceanica – P. lividus interaction and arose some more specific hypotheses that 

need to be tested to identify the overall role of this seagrass on this sea urchin. 
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