Generating Interface Grammars from WSDL for
Automated Verification of Web Services *

Sylvain Hallé, Graham Hughes, Tevfik Bultan, and Muath Alkhalaf

University of California
Santa Barbara, CA 93106-5110 USA
shalle@acm.org, {graham,bultan,muath}@cs.ucsb.edu

Abstract. Interface grammars are a formalism for expressing constraints
on sequences of messages exchanged between two components. In this
paper, we extend interface grammars with an automated translation
of XML Schema definitions present in WSDL documents into interface
grammar rules. Given an interface grammar, we can then automatically
generate either 1) a parser, to check that a sequence of messages gen-
erated by a web service client is correct with respect to the interface
specification, or 2) a sentence generator producing compliant message
sequences, to check that the web service responds to them according to
the interface specification. By doing so, we can validate and generate
both messages and sequences of messages in a uniform manner; more-
over, we can express constraints where message structure and control
flow cannot be handled separately.

1 Introduction

Service-oriented architecture (SOA) has become an important concept in soft-
ware development with the advent of web services. Because of their flexible
nature, web services can be dynamically discovered and orchestrated to form
value-added e-Business applications. However, this appealing modularity is the
source of one major issue: while dynamically combining cross-business services,
how can one ensure the interaction between each of them proceeds as was in-
tended by their respective providers? Achieving modularity and interoperability
requires that the web services have well defined and enforceable interface con-
tracts [20].

Part of this contract is summarized in the service’s WSDL document, which
specifies its acceptable message structures and request-response patterns. This
document acts as a specification that can be used both to validate and to generate
messages sent by the client or the service. This double nature of WSDL makes it
possible to automatically produce test requests validating the functionality of a
service, or to test a client by communicating with a local web service stub that
generates WSDL-compliant stock responses.

As it is now well known, many web services, and in particular e-commerce
APIs such as the Amazon E-Commerce Service, Google Shopping or PayPal,

* This work is supported by NSF grants CCF-0614002 and CCF-0716095.

WSDL WSDL to Interface Control Flow
SDL | =) (Interface Grammar) C=> <& Constraint
Specification Translator Grammar onstraints

g

Interface
Compiler

SOAP SOAP
; Request |~ -~ ~7 L 71 Request
Web rServlce d Sever 1 : Service |q—) Web Service
Client l€«—1 Stub 1 1 Driver l&— Server
SOAP === === ! e ' soap
Response Response

Fig. 1: Our web service verification framework

introduce the notion of sessions and constrain communications over several
request-response blocks. The previous approach does not generalize to such sce-
narios. Apart from attempts at validation of service interactions through runtime
monitoring of message sequences [5,6,13,14,18], for the most part the question of
generating a control-flow compliant sequence of messages, for simulation, testing
or verification purposes, remains open.

Interface grammars are a specification formalism that has been proposed to
enable modular verification [16]. An interface grammar specifies the allowable
interactions between two components by identifying the acceptable call/return
sequences between them. In earlier work, we proposed their use for expressing
the control-flow constraints on a client interacting with a web service [17]. How-
ever, message elements in these grammars were regarded as terminal symbols; to
actually generate or validate a given message, hand-coded Java functions had to
be written and hooked to their respective grammar counterpart. In this paper,
we bridge the gap between control flow and message specifications by developing
an automated translation of WSDL documents into interface grammar rules.

In Section 2, we present a real-world web service, the PayPal Express Check-
out API. We exhibit constraints where the sequence of allowed operations and
their data content are correlated, and express them with the use of interface
grammars.

Our web service verification framework (Figure 1) consists of two tools: 1) a
WSDL-to-interface grammar translator and 2) an interface compiler. First, the
WSDL to interface grammar translator takes a WSDL specification as input and
converts it into an interface grammar; this translation is described in Section 3.
Constraints that are not expressed in WSDL (such as control-flow constraints)
can then be added to this automatically generated interface grammar.

In Section 4, we use an interface compiler which, given an interface grammar
for a component, automatically generates a stub for that component. This stub
acts a parser for incoming call sequences; it checks that the calls conform to the
grammar and generates return values according to that grammar. Moreover, the
same grammar can be used to create a driver that generates call sequences and
checks that the values returned by the component conform to it. The compiler

was applied to perform both client and server side verification on two real-world
services, including PayPal’s Express Checkout, and allowed us to discover a
number of mismatches between the implementation of the services and their
documentation. In addition to being feasible and efficient, our approach differs
from related work mentioned in Section 5 by enabling us to validate and test
properties where control flow and message content cannot be handled separately.

2 Web Service Interface Contracts

An interface contract is a set of conventions and constraints that must be ful-
filled to ensure a successful interaction with a given web service. Elicitation
and enforcement of such contracts has long been advocated [20], and interface
documents such as WSDL provide a basic form of specification for syntactical
requirements on SOAP messages and request-response patterns. Although many
web services are composed of such simple request-response patterns of indepen-
dent operations, in practice a fair number of services also exhibit long-running
behavior that spans multiple requests and responses. This is especially true of
commerce-related web services, where concepts such as “purchase transactions”
and “shopping carts” naturally entail some form of multi-step operations.

2.1 The PayPal Express Checkout API

A commercial web service suite provided by the PayPal company, called the
PayPal Web Service API, is an example of a service that supports multi-step
operations. Through its web site, PayPal allows to transfer money to and from
credit card and bank accounts between its registered members or other financial
institutions. In addition to direct usage by individuals, an organization wishing
to use these functionalities from its own web site can do so through PayPal’s
web service API. All transactions can be processed in the background between
the organization and PayPal by exchanging SOAP messages that replace the
standard access to PayPal’s portal.

PayPal’s API is public and its documentation can be freely accessed [1]. The
sum of all constraints, warnings, side notes and message schemas found in this
documentation constitutes the actual interface contract to the web service API.
We shall see that this contract is subject to data and control-flow constraints,
and that these constraints can be formally specified using interface grammars.

To illustrate our point, we concentrate on a subset of PayPal’s API called
“Express Checkout”, which allows for a simplified billing and payment between
an organization and a customer. The organization simply sends PayPal a to-
tal amount to be charged to the customer; PayPal then performs the necessary
background checks and confirmations with the customer, after which the orga-
nization retrieves a transaction number which can be used to execute the money
transfer.

Express Checkout is performed in three steps, each corresponding to a request-
response pattern of XML messages. The first step is to create an Express Check-
out instance through the SetExpressCheckout message, whose structure, defined

<PaymentDetails>
<Token>1234< /Token>
<OrderTotal>50< /OrderTotal >
<PaymentDetailsItems>
<PaymentDetailsItem>
<Name>...</Name>
<Number>...</Number>
<Quantity>. .. </Quantity>
<Amount>...</Amount>
</PaymentDetailsItem >

<Token>...</Token>
<PayerID>... </PayerID>
<PaymentDetailsItems>

</PaymentDetailsItems>

e (b) GetExpressCheckoutDetails
</PaymentDetailsItems>

<PaymentAction>Sale</PaymentAction>
< /PaymentDetails>

(a) SetExpressCheckoutRequest

<Token>...</Token> <Token>...</Token>
<PayerID>... </PayerID> <PaymentInfo>
<PaymentDetailsItems> <TransactionID>... <TransactionID>
S <GrossAmount>. .. <GrossAmount>
< /PaymentDetailsItems> <PendingReason>... <PendingReason>
<PaymentAction>Sale</PaymentAction> < /PaymentInfo>

(C) DoExpressCheckoutPaymentRequest (d) DoExpressCheckoutPaymentResponse

Fig. 2: Request and response messages from PayPal’s Express Checkout API

in the WSDL specification, is shown in Figure 2a. This message provides a total
for the order, as well as (optionally) a list of items intended to detail the contents
of the order the client is billed for. PayPal’s response to this message consists
of a single Token element, whose value will be used in subsequent messages to
refer to this particular instance of Express Checkout. The PaymentAction ele-
ment (Figure 2¢) can take the value “Sale”, indicating that this is a final sale,
or “Authorization” and “Order” values indicating that this payment is either a
basic or an order authorization, respectively.

The second step consists of obtaining additional details on the Express Check-
out through the GetExpressCheckoutDetails operation. The request message
simply requires a token identifying an Express Checkout instance; the response
to this message is structured as in Figure 2b. It repeats the payment details
and token fields from the previous request, and adds a PayerID element. This
element is then used in the last operation, DoExpressCheckoutPayment (Figure
2¢); the response to this message (Figure 2d) completes the Express Checkout
procedure.

2.2 Interface Grammars for Web Services

Interface grammars were proposed as a new language for the specification of
component interfaces [15,16]. The core of an interface grammar is a set of pro-
duction rules that specifies all acceptable method call sequences for the given
component. An interface grammar is expressed as a series of productions of the
form a(vy,...,v,) — A. The vy,..., v, are lexically scoped variable names cor-
responding to the parameters of the non-terminal a. A is the right hand side of
the production, which may contain the following:

start — !sEco(docy, items, token, action); jSEco(doca, token);
start; details(items, token, action, payerid); start
| €
details(items, token, action, payerid) — !GEcoDp(doct, token); jGECOD(docz, token, payerid);
do(items, token, action, payerid)
do(items, token, “Sale”, payerid) — !DEcoP(docy, token, payerid, items, “Sale”);
iDECOP (doca, token, transactionid)
do(items, token, actiony, payerid) — !DEcoP(docy, token, payerid, items, actions);
(

iDECOP (docz, token, transactionid)

Fig. 3: Interface grammar for a PayPal Express Checkout client

— nonterminals, written nt(vi,...,v,);

— semantic predicates that must evaluate to true when the production is used
during derivation, written [p];

— semantic actions that are executed during the derivation, which we express

as (a);

— incoming method calls, written ?m(vy, ..., v,);
— returns from incoming method calls, written jm(vy,...,v,);
— outgoing method calls, written lm(vy,...,v,);
— returns from outgoing method calls, written jm(v1,...,v,).

For the purposes of web service verification, the method calls in the interface
grammar correspond to the web service operations. For example, the interface
grammar shown in Figure 3 represents the client interface for a simplified ver-
sion of the PayPal service described previously. Terminal symbols SECO, GECOD
and DECOP stand respectively for operations SetExpressCheckout, GetExpress-
CheckoutDetails and DoExpressCheckoutPayment; the ! and | symbols denote
the request and response message for each of these operations. The 7 and ; sym-
bols, which are not used in our example, would indicate that the server, instead
of the client, initiates a request-response pattern.

Nonterminal symbols in interface grammars are allowed to have parame-
ters [15]. The “doc;” symbol in each message refers to the actual XML docu-
ment corresponding to that particular request or response; it is assumed fresh
in all of its occurrences. Remaining parameters enable us to propagate the data
values from that document that might be used as arguments of the web service
operations. Because we need to be able to pass data to the production rules as
well as retrieve them, we use call-by-value-return semantics for parameters.

By perusing PayPal’s API documentation, it is possible to manually define
the simple interface grammar shown in Figure 3, which captures a number of
important requirements on the use of the PayPal API:

1. Multiple Set, Get and Do operations for different tokens can be interleaved,
but, for each token, the Set, Get and Do operations must be performed in
order.

2. The PayerID field in the DoExpressCheckoutPaymentRequest must be the
one returned by the GetExpressCheckoutDetails response with matching To-
ken element.

3. If the action element of the SetExpressCheckout operation is set to “Sale”, it
cannot be changed in the DoExpressCheckoutPayment; otherwise, the Get
and Do operations can have different action values.

4. To ensure that every Express Checkout instance is eventually complete, every
SetExpressCheckout operation must be matched to subsequent GetExpress-
CheckoutDetails and DoExpressCheckoutPayment requests.

Although all these constraints are mentioned in the service’s documentation in
some form or another, none of them can be formally described through the
WSDL interface document.

3 Translating WSDL to Interface Grammars

While interface grammars can express complex interfaces that involve both data-
flow and control-flow constraints, writing such grammars manually requires a
surprisingly large amount of boilerplate code. Crafting the appropriate data
structures, verifying the result and extracting the data, even for one operation,
requires as much code as the entire interface grammar. Moreover, parameters
such as “items” and “token” refer to actual elements inside “doc”, but the
grammar in Figure 3 offers no way of actually specifying how the document
and its parts are structured or related. To alleviate this difficulty, we developed
a tool that uses type information to automatically translate the data structures
associated with a WSDL specification into an interface grammar, without user
input.

3.1 Translation from XML Schema to Interface Grammars

A WSDL specification is a list of exposed operations along with the type of the
parameters and return values. It encodes all types using XML Schema. Since
XML Schema itself is verbose, we use the Model Schema Language (MSL) for-
malism [10], which encodes XML Schema in a more compact form. More pre-
cisely, we define a simplified version of MSL that handles all the portions of XML
Schema we found necessary in our case studies:

g—b | tlgol | g{m.n} | g1, 9k | 91l ok (1)

Here g, go, 91, - - -, gk are all MSL types; b is a basic data type such as Boolean,
integer, or string; ¢ is a tag; and m and n are natural numbers such that m < n
(n may also be o).

The MSL type expressions are interpreted as follows: g — b specifies a basic
type b; g — t[go] specifies the sub-element ¢ of g, whose contents are described
by the type expression go; g — g1{m,n}, where n # oo, specifies an array of
g1s with at least m elements and at most n elements; g — g1{m, oo} specifies

an unbounded array of ¢gis with at least m elements; g — g1,..., g specifies
an ordered sequence, with each of the g;s listed one after the other; and g —
g1 - - - gk specifies choice, where g is one of the g;s. We denote the language of
type expressions generated by Equation (1) to be X ML.

For example, the type for the DoExpressCheckoutPaymentResponse message
(Figure 2c¢) is the following:

Token[string], PaymentInfo[
TransactionID[string], GrossAmount[int], PendingReason[string]]

As a more complex example, the SetExpressCheckoutRequest message (Fig-
ure 2a) is of the following type:

Token|string]{0, 1},
PaymentDetails|
OrderTotal[int],
PaymentDetailsItems]|
PaymentDetailsItem|
Name|string]{0, 1}, Number|[string]{0, 1}, Quantity[int]{0, 1},
Amount[int]{0, 1},
{1, 00}
1{0, 00},

PaymentAction|[string]{0, 1}]

These type expressions can be used to generate XML documents. However,
to communicate with a SOAP server, we chose to use Apache Axis, a library
that serializes Java objects into XML. Accordingly, we create Java objects from
XML type expressions, and do so in the same way that Axis maps WSDL to
Java objects.

XML Schema and the Java type system are very different and, hence, map-
ping from one to the other is not trivial. However, since such a mapping is already
provided by Axis, all we have to do is the follow the same mapping that Axis
uses:

1. ¢ — b is mapped to a Java basic type when possible (for example, with
Booleans or strings). Because XML Schema integers are unbounded and
Java integers are not, we must use a specialized Java object rather than
native integers.

2. g — t[go] is mapped to a new Java class whose name is the concatenation of
the current name and ¢; this class contains the data in gg, and will be set to
the ¢ field in the current object.

3. g — ¢1{0,1} is mapped to either null or the type mapped by ¢;.

4. g — g1{m,n} is mapped to a Java array of the type mapped by ¢;.

5.9 — g1,...,9r is mapped to a new Java class that contains each of the g;s
as fields.

6. g — g1|...|gr is mapped to a new Java interface that each of the g;s must
implement.

The rules for the WSDL to interface grammar translation are shown in Fig-
ure 4. The translation is defined by the function p, which uses the auxiliary func-
tions r (which gives unique names for type expressions suitable for use in gram-
mar nonterminals) and t (which gives the name of the new Java class created
in the Axis mapping of g — t[go]). By applying p[g] to an XML Schema type
expression g, we compute several grammar rules to create Java object graphs for
all possible instances of the type expression g. The start symbol for the generated
interface grammar is rfg].

p: XML — Prod
r: XML —- NT
t : AML — Type

plo =vostean) = { 07 (0700
o [gl <m — o)),
plo =tel = {r[[qﬂ (2) — rlgl (=) <<m—m+1>>} ®)
S P OENCEEDE
Ply = string] {rﬂg]]()Hr[[g]](m) (o =zlley for every } @
plg =A{c1,...,cn}] = {r[g]] — {(z = "c¢;")) for every ci} (5)
e (O S I
z) — {(x = 1)),
Bt I
rlgl(2) — (o =),
=4 0, co = ! ! 8
plo. = oo el {rﬂgﬂ(z) = r[[g’]1<y>-rugﬂ<z>;«m:z||y>>} ol ()
rlgl(x) — (o =),
[[. rlgl(z) — rlg'I(w)i (o =], ol o
P = ¢ s = . P ¢
’ ’ rlg](z) — r[[g]](yl);»-»;r[[g’]](yn); ’
(z=[y1,---, Yn)
_ _ [rlal(®) = c[g'1(w1); - - 529" (ym);
plo. =g {m.nil = { rlo”1(); (o = [yl,...,ymlnw»} (10)
uplg”] U plg’] where g — g'{0,n —m}
k
pls =g1,-- o] = {rlgl(=) — rlg1](2);- - s r[gxl(=)} U | plo:] (11)
i=1
plg =gl lgxl U {r[g](z) — rlg:] (=)} U p[g:] (12)

For a nonterminal g, p[g] is the set of associated grammar rules, r[g] is a unique name suitable for a
grammar nonterminal, t[g] is the unique Java type for that position in the XML Schema grammar,

and z and y designate an XML document or subdocument.

Fig. 4: MSL to interface grammar translation rules

Rule (2) translates Boolean types by simply enumerating both possible val-
ues. Calling r[¢](x) with an uninitialized variable x will set z to either true or

false. Rule (3) translates integer numbers to a Java instance by starting at 0
and executing an unbounded number of successor operations. If the number is
bounded we can generate it more efficiently by creating one production for each
value. However, Rule (3) allows us to generate an infinite number of values. We
can also accommodate negative integers using Rule (3) and then choosing a sign.

Rule (4) translates strings to Java strings. It starts with an empty string and
concatenates an unbounded number of characters onto it, to generate all possible
string values. It should be noted that strings are frequently used as unspecified
enumerations, have possible correlations with other parts of the object graph, or
have some associated structure they should maintain (as in search queries), etc.
Accordingly, the automatically generated grammar can be refined to something
more restricted but also more useful by manually changing these rules.

Rule (5) takes care of enumerated types by providing one rule to generate
each possible value of that type.

Rule (6) translates tags into Java objects. The rule is simple; we figure out
which Java type Axis is using for this position using t[g¢], if it is not already
initialized (which can happen if we are applying Rule (11)) instantiate it, re-
cursively process its contents, and then set the contents to the ¢ field on the
object we are currently working on. Rule (7) translates optional elements into
Java objects by having two rules, one for null and the other to generate the
object.

Rule (8) translates unbounded arrays into Java objects. We start with the
base case of an empty array and concatenate objects onto it. Rule (9) translates
bounded arrays into Java objects, by simply generating n rules, one for each
potential object. Although we give this simple rule here for readability, in our
implementation we handle this case more efficiently.

Rule (10) translates general arrays, that may have a minimum number of
objects greater than 0, to a situation where one of Rule (8) or Rule (9) applies.
Rule (11) translates sequences into Java objects; we simply apply each of the sub-
rules to the object graph under examination in sequence. Rule (12) translates
alternations into Java objects; we pick one of the sub-rules and apply it.

As an example of translation, consider the MSL type for the DoExpress-
CheckoutPaymentResponse message in the PayPal WSDL specification men-
tioned above. First, the production rules for the basic types string and integer
are:

int(doc) — int(doc); {(doc = doc + 1))

string(doc) — ((doc = ""))
string(doc) — string(doc); {(doc = docl|c)) for every character ¢
int(doc) — ({doc = 0)
(doc)

The message type consists of a sequence. For the first element of the sequence, we
need to apply Rule (6) followed by Rule (4), resulting in the following grammar
production:

a(doc) — ((if (doc = null) doc = new Token)); string(doc:); {(doc. Token = docy)

with start symbol a. Applying these productions can assign to doc a subdocument
like <Token>abc</Token>. Nonterminal a is responsible for the creation of
the Token element, and repeated application of the productions for the string
nonterminal creates an arbitrary value for the string field.

For the second element of the sequence we apply Rule (6) which leads to
another sequence. Then we apply Rule (11) followed by three applications of
Rule (6), two applications of Rule (4) and one application of Rule (3). The
resulting productions are:

b(doc) — ((if (doc = null) doc = new PaymentInfo)); c(docy);d(docy); e(docy);

doc.PaymentInfo = doc,))
if (doc = null) doc = new PaymentInfoTransactionID)); string(doci);
doc.PaymentInfoTransactionID = doc;)

d(doc) — ((if (doc = null) doc = new PaymentInfoGrossAmount));int(doci);

(
(
c(doc) — (
(
(
(

doc.PaymentInfoGrossAmount = doc;))
e(doc) — ((if (doc = null) doc = new PaymentInfoPendingReason)); string(doc:);

{(doc.PaymentInfoPendingReason = doc1))

with start symbol b. Finally, we apply Rule (11) one more time resulting in one
additional nonterminal and production:

DoEzxpressCheckout Payment Response(doc) — a(doc); b(doc)

3.2 Control-Flow and Messages

Using the translation scheme described above, terminal symbols standing for
messages in the grammar of Figure 3 can be expanded into productions for val-
idating or generating individual message instances. For example, the DECOP
terminal symbol refers to a message of type DoExpressCheckoutPaymentRe-
sponse. Generating such a message simply amounts to expanding the respective
message productions according to the derivation rules we have just shown.

Recall that production symbols in an interface grammar can carry additional
parameters that can be used to refer to specific elements of messages. These
parameters can be passed on from message to message to express correlations
between parameters across a whole transaction.

In the case of the |DECOP symbol, we attach two parameters: token and
transactionid, standing for the values of message elements of the same name.
We must therefore associate these two variables with the actual content of the
production that relates to these values:

10

a’(doc, token) — ((if (doc = null) doc = new Token)); string(token);

«

{(doc. Token = token))

b’ (doc, transactionid) — ((if (doc = null) doc = new PaymentInfo));
' (docs, transactionid); d(docs); e(docy);
{(doc.PaymentInfo = doc,))

'(doc, transactionid) — ((if (doc = null) doc = new PaymentInfoTransactionID));

string(transactionid);

{(doc.PaymentInfoTransactionID = transactionid))

Finally, the rule for {DECOP itself can be obtained by:
iDECOP(doc, token, transactionid) — a’(doc, token); b’ (doc, transactionid);

This mechanism is not restricted to primitive types; for example, the “items”
argument of the ISECO message stands for the list of items; this element itself is
formed of multiple item elements with values for name, amount, and so on.

This particular characteristic of our translation to interface grammars is fun-
damental. By expressing message structures, parameter values and control flow
in a uniform notation, all such properties of a given service are taken into ac-
count in one specification framework. For example, by using the above rules to
simulate an Express Checkout client, we have that: 1) if the client invokes Set-
ExpressCheckout with some token 4, then the client expects a response with the
same token value; 2) the client is guaranteed to eventually invoke Get and Do
with that same token 4. Additionally, if the client invokes SetExpressCheckout
with an action value of “Sale” for token ¢, then the DoExpressCheckoutPayment
message that will be eventually sent for token i will also have the value “Sale”.
These constraints could not be handled if the messages were generated by a
procedure independent of the control flow constraints.

4 Experiments

To demonstrate the value of our approach, we studied two web services: the
Amazon E-Commerce Service provided by Amazon.com and the PayPal Web
Service API that we used as a running example throughout the paper.

4.1 Amazon E-Commerce Service

The Amazon E-Commerce Service (AWS-ECS) [3] provides access to Amazon’s
product data through a SOAP interface specified with WSDL. It was analyzed
in an earlier paper [17]; however, although it was not mentioned at the time,
the interface grammar for the six key operations (ItemSearch, CartCreate, Car-
tAdd, CartModify, CartGet, and CartClear) was generated automatically from

11

the WSDL specification of the AWS-ECS. These six operations also have sev-
eral control flow constraints that are not stated in the WSDL specification of
the AWS-ECS. We extended the automatically generated interface grammar by
adding these extra constraints. The data summarized below, and the interface
grammar itself, are described in more detail in [17].

We used the interface grammar both for client and server side verification,
as shown in Figure 1. The AWS-ECS client we used in our experiments is called
the AWS Java Sample. This client performs no validation on its input data
whatsoever. It is intended as a programming example showing how to use the
SOAP and REST interfaces, not as something to use. Hence, it serves as a
suitable vehicle to demonstrate the bug finding capabilities of our approach.

We fed the interface grammar for the AWS-ECS to our interface compiler
and generated a service stub for the AWS-ECS. We combined this service stub
with the AWS Java Sample for client verification. We used the Java PathFinder
(JPF) [9] to systematically search the state space of the resulting system. Note
that a model checker like JPF is not able to analyze the AWS Java Sample with-
out the automatically generated service stub provided by our interface compiler.

We analyzed three types of errors that the client, were it doing proper input
validation, would catch: type failures happen when the user enters a string when
an integer is expected; data failures occur when the user attempts to add a
nonexistent item to a nonexistent cart (the request is syntactically valid, but
nonsensical); uncorrelated data failures involve two operations that are in the
correct sequence, but the data associated with the two calls violates the extra
constraints (for example, editing an item that was previously removed from the
cart). We were able to discover the type failures in 12.5 seconds using 25 MB
of memory, the data failures in 11.1 seconds using 25 MB of memory and the
uncorrelated data failures in 20.8 seconds using 43 MB of memory.

For server verification, our interface compiler takes the interface specification
as input and automatically generates a driver that sends SOAP requests to the
web service. We ran ten tests using a sentence generator that chooses the next
production randomly. In each of these tests, the sentence generator was run
until it produced 100 SOAP message sequences, which were sent to the AWS-
ECS server. The average execution time for the tests was 430.2 seconds (i.e., 4.3
seconds per sequence). On average, the driver took 17.5 steps per derivation,
and each such derivation produced 3.2 SOAP requests.

These tests uncovered two errors, corresponding to mismatches between the
interface grammar specification and the AWS-ECS implementation:

1. The AWS-ECS implementation does not allow multiple add requests for the
same item, although this is not clear from the specification of the service.

2. We assumed that a shopping cart with no items in it would have an items
array with zero length. However, in the implementation this scenario leads

to a shopping cart with a null items array. This was not clarified in the
AWS-ECS specification.

12

4.2 PayPal Express Checkout Service

As a second case study, we conducted server side verification for PayPal’s Express
Checkout API. The running example in earlier sections is a simplified version
of this API. As we did for the server side verification of the AWS-ECS service,
we used a random sentence generator algorithm that sends SOAP requests to
PayPal’s web service. Our tests uncovered two errors. Again, these errors cor-
respond to discrepancies between the interface grammar specification and the
APT’s actual implementation:

1. In a SetExpressCheckout request, elements CancelURL and ReturnURL can-
not be arbitrary strings; they must be valid URLs. This is not written in the
API documentation or in the WSDL, which only specify it must be a string.
It took 5.7 seconds to find this error.

2. The implementation does not allow a client to set its own token in a SetEx-
pressCheckout request. If the client does not use a token previously returned
by another SetExpressCheckout request, it has to set the token to the empty
string and reuse what SetExpressCheckout gives back. Again this constraint
was not clear from the documentation. It took 2.5 seconds to catch this error.

Once we modified the interface grammar specification to reflect these con-
straints, the driver did not produce any more errors. The round-trip time to
generate each new message from the grammar, send it, get and parse the re-
sponse from PayPal took about 1 second.

5 Related Work

Earlier work has been done on grammar-based testing. For example, Sirer and
Bershad [21] have developed a grammar-based test tool, lava, with a focus on
validating Java Virtual Machine implementations. Test data has been generated
using enhanced context-free grammars [19], regular grammars [8] and attributed
grammars [12]. None of these tools focus on web service verification —they use
grammars to characterize inputs rather than interfaces.

Some approaches attempt to automate the testing of web services by taking
advantage of their WSDL definitions. Available tools like soapUI [2] allow a
user to create so-called “mock web services” whose goal is to mimic the actual
web service requests and responses; for each such operation, the tool generates
a message skeleton that the user can then manually populate with data fields.
Other works automate this process entirely by simulating a web service through
the generation of arbitrary, WSDL-compliant messages when requested [4,7].

On the other hand, other works attempt to validate incoming and outgoing
messages to ensure they are WSDL-compliant. The Java API for XML Web Ser-
vices (JAX-WS)! provides a validator for that purpose; the IBM Web Service

! https://jax-ws.dev.java.net /

13

Validation Tool? validates a trace of SOAP messages against WSDL specifica-
tions. Cacciagrano et al. [11] push the concept further and validate not only
the structure of messages, but also additional constraints such as dependencies
between values inside a message.

However, all these previous approaches treat request-response as patterns
independently of each other; therefore, they do not allow properties where values
generated in some messages constrain the control flow of the web service, as we
have shown is the case in PayPal’s Express Checkout.

6 Conclusion

We proposed and implemented a translator to automatically generate an in-
terface grammar skeleton from a WSDL specification. This interface grammar
skeleton can be combined with control flow constraints to generate an interface
specification that characterizes both control and data-flow constraints in a uni-
form manner. Using the actual documentation and WSDL specification from the
PayPal Express Checkout API, we have shown how such automatically gener-
ated grammar skeletons can be extended with control flow constraints to obtain
interface grammars that specify the interaction behavior of web services. These
interface grammars can then be automatically converted to web service stubs
and drivers to enable verification and testing. We also applied these techniques
to a client for the key interfaces of the Amazon E-Commerce Service and also to
the Amazon E-Commerce Service server directly, and have demonstrated that
our approach is feasible and efficient.

References

PayPal web service API documentation, 2008. http://www.paypal.com.

soapUL: the web services testing tool, 2009. http://www.soapui.org/.

Amazon web services. http://solutions.amazonwebservices.com/.

X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based automatic test case

generation for web services testing. In IEEFE International Workshop on Service-

Oriented System Engineering (SOSE) 2005, pages 207-212, 2005.

5. F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of
instances and classes of web service compositions. In Proceedings of the 2006
IEEE International Conference on Web Services (ICWS 2006), pages 63—71, 2006.

6. L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An integrated approach
for the run-time monitoring of BPEL orchestrations. In Proceedings of the First
European Conference Towards a Service-Based Internet (Service Wave 2008), pages
1-12, 2008.

7. C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Towards automated WSDL-

based testing of web services. In A. Bouguettaya, I. Kriiger, and T. Margaria,

editors, ICSOC, volume 5364 of Lecture Notes in Computer Science, pages 524—

529, 2008.

=W e

2 http://www.alphaworks.ibm.com/tech /wsvt

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. A. Bauer and A. B. Finger. Test plan generation using formal grammars. In
Proceedings of the 4th International Conference on Software Engineering, pages
425-432, Munich, Germany, September 1979.

G. Brat, K. Havelund, S. Park, and W. Visser. Java pathfinder: Second generation
of a Java model checker. In Proceedings Workshop on Advances in Verification,
2000.

A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL: a model for W3C XML
Schema. In Proceedings of the 10th International World Wide Web Conference,
pages 191-200, 2001.

D. Cacciagrano, F. Corradini, R. Culmone, and L. Vito. Dynamic constraint-
based invocation of web services. In M. Bravetti, M. Nufez, and G. Zavattaro,
editors, WS-FM, volume 4184 of Lecture Notes in Computer Science, pages 138—
147. Springer, 2006.

A. G. Duncan and J. S. Hutchison. Using attributed grammars to test designs and
implementations. In Proceedings of the 5th International Conference on Software
Engineering, pages 170-178, New York, NY, USA, March 1981.

S. Hallé and R. Villemaire. Runtime monitoring of message-based workflows with
data. In Proceedings of the 12th International Enterprise Distributed Object Com-
puting Conference (EDOC 2008), pages 63-72, 2008.

S. Hallé and R. Villemaire. Browser-based enforcement of interface contracts in web
applications with BeepBeep. In A. Bouajjani and O. Maler, editors, CAV, volume
5643 of Lecture Notes in Computer Science, pages 648-653. Springer, 2009.

G. Hughes and T. Bultan. Extended interface grammars for automated stub gen-
eration. In Proceedings of the Automated Formal Methods Workshop (AFM 2007),
2007.

G. Hughes and T. Bultan. Interface grammars for modular software model check-
ing. IEEE Trans. Software Eng., 34(5):614-632, 2008.

G. Hughes, T. Bultan, and M. Alkhalaf. Client and server verification for web
services using interface grammars. In T. Bultan and T. Xie, editors, TAV-WEB,
pages 40—46. ACM, 2008.

K. Mahbub and G. Spanoudakis. Run-time monitoring of requirements for systems
composed of web-services: Initial implementation and evaluation experience. In
Proceedings of the 2005 IEEE International Conference on Web Services (ICWS
2005), pages 257-265, 2005.

P. M. Maurer. Generating test data with enhanced context-free grammars. IEEFFE
Software, 7(4):50-55, 1990.

G. Meredith and S. Bjorg. Contracts and types. Commun. ACM, 46(10):41-47,
2003.

E. Sirer and B. N. Bershad. Using production grammars in software testing. In
Proceedings of DSL’99: the 2nd Conference on Domain-Specific Languages, pages
1-13, Austin, TX, US, 1999.

15

