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Résumé
Les méthodes de zones, des plans imaginaires et les transferts discrets ont été

adaptées à la modélisation du transfert de chaleur radiatifdans les enceintes complexes en
trois dimensions. Puisque l'accent a été mis sur les aspects géométriques du rayonnement,
le millieu gazeux a été considéré gris pour ne pas alourdir indûment la présentation.
Des techniques de dépistage de rayons ont été adaptées spécifiquement à chacune des
méthodes, ouvrant ainsi la voie à l'utilisation des coordonnées cylindriques et curvilignes.
Des comparaisons sont données pour évaluer la justesse et le temps de calcul des méthodes
des plans imaginaires et des transferts discrets par rapport à la méthode de zones. Ces
comparaisons ont été réalisées pour des enceintes rectangulaire et cylindrique en faisant
varier l'émissivité de surface et le coefficient d'absorption du gaz. Quatre cas complexes
simulant de près des problèmes industriels ont été traités par les différentes méthodes, de
façon à mettre en lumière les possibilités des techniques utilisées.
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Abstract
The zone, the imaginary planes and the discrete transfer methods have been adapted

for modelling thermal radiation in complex 3D enclosures. Since emphasis is laid on the
geometrical aspects of radiation, for the sake of simplicity, radiation was modelled in gray
systems. All three methods have been fitted with ray tracing techniques which have been
tailored to the specific requirements of the methods, enabling the treatment of cylindrical
and curvilinear systems as well. Comparisons are reported to evaluate accuracy and
computational performance of the imaginary planes and the discrete transfer methods
relative to the zone method in a rectangular and in a cylindrical enclosure at variable
surface emissivities and gas absorption coefficients. Four difficult 3D cases close to
industrial problems have been worked out by the different methods to show the geometrical
capabilities of the different models.
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Introduction

Nowadays the utilization of natural resources and the environment protection are

emerging as critical issues. The industrial furnaces and combustion chambers, being

main fuel consumers and also pollution sources, are strongly linked with these questions.

There is a constant need to lower the fuel consumption and pollutant emissions. Slight

increase in furnace efficiency can result in large savings in operating costs considering

today's fuel prices. A better understanding of the physical phenomena in the combustion

chambers and industrial boilers helps to improve their performance, which has positive

effects in both economic and environmental points of view.

Mathematical modelling of furnaces and industrial boilers is a powerful tool which

can be used to design new efficient installations, or to improve and optimize the operation

of the existing ones. A complete furnace simulation includes the solution of the

momentum, heat and mass transfer equations. In most cases radiation is the predominant

heat transfer mechanism.

In the past thirty years several numerical methods have been worked out to model

the radiation phenomenon. Among the most important and well known methods are the

zone method (Hottel et al. 1967), the Monte Carlo method (Siegel and Howell 1972), the
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six-flux method (de Marco and Lockwood 1975), the discrete ordinates method (Fiveland

1987) and the discrete transfer method (Shah 1979). These methods have been improved

constantly and adapted to increasingly difficult problems, including real gas, particle

scattering and special surface behavior.

Some of the latest contributions to radiation modelling are given below. Charette et

al. (1990) worked out a modified zone method called the imaginary planes method. The

method has proven to be attractive and accurate since it retains the essential features of the

zone method while reducing the computing time significantly. Raithby and Chui (1990)

report a new finite volume method that can be implemented on non-orthogonal grids used

for fluid flow problems. Bhattacharjee and Grosshandler (1990) propose a model based

on a two-flux scheme for rectangular and cylindrical enclosures. The method is applied

in a two-dimensional geometry for gray and real gases. Kumar et al. (1990) report

their work on the differential-discrete-ordinate method. They compare several quadrature

schemes to reduce the radiative transfer equation to a set of ordinary differential equations

which can be readily solved. Kobiyama (1990) describes a modified Monte Carlo method

which is aimed at reducing the computing time.

1.1 Scope of the present work

Radiation heat transfer is strongly dependent on the geometrical configuration of

the enclosure. Most of the methods are worked out for 2D or for simple 3D cases like

rectangular parallelepipeds and cylinders. However, radiation modelling is often desired

in case of complex and irregular geometrical configurations.

In this work, three methods have been adapted for modelling radiation in 3D

enclosures. These are the zone, the imaginary planes and the discrete transfer methods.
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Details of the methods will be given in chapter 2. All three methods can handle problems

in 3D rectangular, cylindrical and irregularly shaped enclosures. In each method the

radiation space is subdivided into finite volumes, or zones, with the help of a grid.

For rectangular parallelepipeds the grid is cartesian, for cylinders it is cylindrical and

for enclosures with irregular geometries the space should be subdivided into hexahedral

zones with a curvilinear grid. Also any number of zones can be blocked within the

domain for a better representation of the geometry if it becomes necessary.
��?

Since emphasis is laid on the geometrical aspects of radiation, for the sake of

simplicity, radiation is modelled in gray systems i.e. walls are considered as gray

lambertian surfaces where the cosine law is assumed and enclosures are filled with gray

gases. However, the gray system restriction can be removed easily with already existing

procedures.

All three methods have been fitted with ray tracing techniques which have been

tailored to the specific requirements of the methods. The imaginary planes method

requires ray tracing only within the individual cells while zone and discrete transfer

methods require ray tracing through the entire radiation space. Ray tracing is generally

considered to be computationally expensive, but the rapidly increasing computational

power of engineering workstations justifies their extended use in radiation models. Two

separate codes have been worked out for ray tracing, one for cylindrical and one

for irregular systems with hexahedral volume zones. The rectangular system can be

considered as a special case of the latter, and it uses the same algorithm.

The zone method is regarded as one of the most accurate radiation modelling

method. In the case of complex 3D systems for which exact solutions are not available,
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the zone method can serve as the "accurate solution" for radiation problems. This method

was used as a reference throughout the present work. Comparisons were made to evaluate

the accuracy and the computational performance of the imaginary planes method (IPM)

and the discrete transfer method (DT). Also, some difficult 3D radiation problems were

solved by some of the methods. These complex 3D geometries all originate from practical

combustion systems.
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The present discussion concerns only gray systems without any reference to selec-

tive gas absorption or scattering effects. This follows from the objective of this study

which is to compare the performance of the three methods and to apply them to complex

geometrical configurations without further complications.

In the following, a summary of the zone, the imaginary planes and the discrete

transfer methods is given in order to have a clear reference for further developments.

2.1 The zone method

The radiation space and the boundaries are discretized by a grid into a number

of finite volumes and finite surfaces, which are called volume and surface zones,

respectively. Temperatures and radiative properties are assumed to be uniform in the

finite volumes and over the finite surfaces.

If the temperature distribution is available, a radiative energy balance can be written

for each zone. The radiative balance includes the radiative exchange between a given

zone and every other zone of the system, with the help of the total-interchange areas.
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The net radiative interchange using the total interchange areas for a pair of surface

zones of the enclosure is expressed as:

]E.ii-Eaj) (2.1)

Analogous expressions are written for an exchange between a gas and a surface zone:

Qi^j = G~S]{Eg,i - EaJ) (2.2)

and between the two gas zones:

Qi^ = GJGj(Egti - EtJ) (2.3)

In the above equations, Q is the radiative heat transfer [W], 5,-5y, G{Sj, G{Gj are the

total exchange areas [m2] and E is the emissive power [W/m2].

Considering the interactions between a surface zone i and all the other zones j of

the enclosure, the net radiative flow on the /-th surface zone can be expressed as:

Qi,net = £ 3J3Ç (E.j - E.,i) + Ç GjS~i {Egj ~ Eaj) (2.4)
3 3

The energy balance can be further simplified by isolating ESii which gives:

Qi,net =

i i V i i / (2.5)
= Ç ~SjSl E.j + Y; GjSl EgJ - eiAiE^i

3 3

The radiative balance for a gas zone i considering all the interactions with the other zones

of the enclosure, including itself is given by:

(2.6)

jGi E.j + £ G3Gi Egtj - *KiViEg,i
3 3
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Equation (2.6) is the mathematical expression for the so-called volumetric radiative

source term for gas zone i.

The above equations yield directly the radiative heat flows if the temperatures of

all the zones (surface and gas) are known. In the absence of a known temperature

distribution, complete or partial, an overall heat balance is written for each zone of

unknown temperature. This results in a set of non-linear algebraic equations which has

to be solved iteratively. For this purpose, the flow and combustion patterns as well as

the convection and conduction coefficients at the zones must be available. The overall

energy conservation equation can be written for a surface zone as

Qrad + Qconv + Qcand = 0 (2.7)

and for a gas zone

Qrad + Qconv + Qcond + Qcomb + &Hgaa = 0 (2.8)

The method can easily be extended to enable the treatment of real gas cases by the

use of weighting factors associated to a number of gray gases according to Hottel (1967).

Obviously it is the calculation of the total interchange areas which represents the

greatest challenge in the zone method. The geometrical difficulties to overcome are all

included in these terms. Closed formulas are given only for a very limited number of

cases. The Monte-Carlo technique is well adapted for such calculations, and it can be

applied to the most complex radiation problems. A brief description of the Monte-Carlo

technique and a detailed discussion of its use in different geometries will be given in

the following chapter.
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The zone method is a precise radiation calculation technique but its high computa-

tion time and memory requirements makes it rather inefficient in many cases, especially

those where a complete simulation (coupling with energy and motion equations) is re-

quired or where a transient situation is studied.

2.2 Imaginary planes method

The imaginary planes method (IPM) was developed in 2D by Erchiqui (1987) based

on the paper of Strom (1980). The method was further developed by Larouche (1988)

for 3D rectangular enclosures.

The imaginary planes method is essentially a simplified zone method. The radiation

space is divided into zones in the same manner. The volume zones are filled with gas

(gray in the present study) of uniform temperature and absorption coefficient, and the

walls of the enclosure are considered as diffuse gray of uniform emissivity. The volume

zones are bounded by real surfaces along the walls of the enclosure and by "imaginary

planes" (surfaces) in the radiation field. Each volume zone has a direct view only of its

boundaries, i.e. direct radiation exchange takes place only inside the volume zones. The

adjacent volume zones are linked through radiative fluxes crossing the imaginary planes.

2.2.1 Radiation principles inside a single zone

A rectangular enclosure divided into zones is shown on Figure 2.1.
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ï
y

/

/

T
imaginary
surface (plane)

gas zone real surface

Figure 2.1 Division of an enclosure into zones

The net radiation to real surface k can be written as:

Akqk = Ak(qko

with the radiation leaving the surface:

= Ak{ekEk + (1 - ek)qki)

(2.9)

(2.10)

Akqki = ^ Ajfjkqjo + Eggsk

and the irradiation due to the radiation received from the other surfaces of the zone and

from the gas:

6

(2.11)

The meaning and the calculation procedure of the reception factor fjk, and the gas-surface

direct interchange area ijsZ will be discussed in detail in the following chapter. Combining

(2.9), (2.10) and (2.11) results in an equation in which the incident flux is absent:

(2.12)
3=1

Ak
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On the other hand a heat balance performed on an imaginary plane gives :

Qk = (ft. - ft,M* (2.13)

Using (2.11) and (2.13) the following equation can be obtained for the imaginary plane:

9*. ~ 2 ^ fkj9j. = -^ +

The similarity of equations (2.12) and (2.14) can be exploited to obtain a relation which

is valid for both cases

3=1

where

I.J
real surface (2.13)

kj � fkj imaginary surface

kEk + (1 ~ ek)Eg*jT~ real surface
- + Eg^r- imaginary surface

where 5 is the Kronecker delta. The set of equations can be arranged in a matrix form.

To find qjo the system should be inverted:

where B = 6"1. As it can be seen from (2.15), £>* contains the imaginary flow term

Qfc. Other relations have to be introduced in order to be able to solve for the net heat

flows on the real surfaces. This is explained in the next section.

2.22 Linking procedure between the zones by the imaginary fluxes

The above equations apply within one single zone. From now on, this zone is

marked by a superscript C (for "central") and the surrounding zones are referred to,

according to Figure 2.2, by E, W, N, S, H, L (for "east, west, north, south, high, low"
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respectively). The linking procedure between the adjacent zones is demonstrated also

on Figure 2.2. The imaginary plane chosen for the explanations is the back plane of

block C identified as 6.

N

H
SE

���
<£~ - < £

� %

Figure 2.2 Relative positions of zones and the linking procedure for the x direction

The basic Unking assumption for this plane is:

(2.17)

Of course, equation (2.13) can be applied to the given plane:

(2.18)

According to the linking principle expressed by (2.17), the incident flux q$. on surface 6

can be replaced with the leaving flux to the adjacent volume zone qfo:

_ c nE (2.19)
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Introducing (2.16) into (2.19) and rearranging the terms result in the following equation

for the x direction:

QY DC , Qx f-, oC TfE\ , Qx
W °* 4? V1 " B*< ~ 5V + I

N Oc ONE ONE

* " *

f 56J

T»Z n C ^i Z n C ^i Z T}E i ^i Z TJE

U + A*B"\ (2.20)

/

E nE I cEjpE ,

3=1 \

The energy balance in zone C can be similarly written for the imaginary fluxes in the

y and z directions.

Equation (2.20) with the corresponding equations in the y and z directions can be

expressed in a matrix form to facilitate computation:

[BM]{Q} = {CM} (2.21)

The solution for Q gives the unknown imaginary fluxes

{Q} = [BM]'1 {CM} (2.22)

and equation (2.16) can now be solved for the radiative fluxes on the real surfaces of

an enclosure.

In the case of high spatial divisions, the set of equations cannot be solved eco-

nomically with direct methods (for example the Gaussian elimination), or the solution is

hindered by excessive storage requirement. An economical way of storage of matrix BM

and an iterative solution for the set of equations (2.21) is proposed in Appendix A.
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The radiative source term in a gas zone is given by summing all the net radiative

heat rates on the imaginary planes and on the real walls (if any) of the zone.

m 6

(2.23)
t = l »=TO+1

where m is the number of imaginary planes in the zone.

Generally radiation problems also involve conduction, convection and fluid flow.

In order to determine the unknown zone temperatures, an overall energy balance must

be written including the radiative heat fluxes. This results in a set of nonlinear equations

which can be solved iteratively.

More details on the IPM can be found in Larouche (1988) .

2.3 Discrete transfer method

The discrete transfer method was developed by Shah (1979). The method is a

combination of the zone, the flux and the Monte Carlo methods. Similar to the zone

method, the radiation space is divided into finite volumes, or zones, in which the

temperatures and radiative properties are assumed to be uniform.

For a pencil of ray with intensity / and solid angle dU around the directional vector

s crossing a layer of gray gas with an absorption coefficient of K and a black-body

intensity of /&, the equation of radiative transfer can be written as :

^ = -KI + KIh (2.24)
as

The change of intensity over the path length ds expressed by the left hand side of the

equation is due to the loss by absorption and the gain by spontaneous emission of the

medium in the given direction, supposing constant temperature along the path.
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This equation can be analytically integrated and discretized along the path of the

ray, yielding

/n+i = / n e - * ' + ( l - e - * ' ) ^ (2.25)

where In is the intensity entering the zone, In+j is the intensity leaving the zone , s is the

distance the ray travelled in the zone. The resulting recurrence relation can be applied

repeatedly along the path of the rays in the enclosure. Figure 2.3 illustrates the path of

a ray through non�uniform zones.

W

o
Figure 2.3 Path of a ray emitted from point O

Since the discussion concerns gray lambertian surfaces, the intensity leaving a

boundary surface zone of the enclosure can be written:

Io = Si = (1 _ e)Si + îïlt (2.26)

On the other hand, the net flux on a wall is:

qnet = qo-qi (2.27)

The incident flux turns out to be unknown in both the boundary condition equation (2.26)

and the energy balance equation (2.27). However, it can be calculated by integrating the

incoming intensities over the hemisphere:

q{= 1 1 cos P<Kl (2.28)
2x
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where (3 is the angle between the incident intensity and the surface normal. For the

calculation of the incident fluxes, the hemisphere over the surface zone has to be

discretized into a number of small solid angles. The center of each solid angle fixes

the direction of the rays impinging onto the middle of the wall zone. The incident

intensities are summed over the whole hemisphere seen by the given surface zone. The

intensities of the rays just before hitting the wall zone can be calculated using the equation

of emission (2.26) and the recurrence relation (2.25).

In black enclosures (£=1), the outgoing flux qo is independent of the incident flux

qi, so that the net heat flux to a surface zone can be obtained in one step by calculating qt.

In the case of emissivities less than one, the outgoing flux qo is dependent on the incident

flux qu thus the net heat flux has to be calculated iteratively. An initial <?,- distribution

is assumed which determines the boundary intensity distribution (equation 2.26). The

incident fluxes are calculated on the surfaces as explained previously. If the resulting

and the initial incident flux distributions do not agree widiin a given tolerance, the above

calculation is repeated until convergence is reached. The lower the surface emissivity is,

the higher the number of iterations is.

The volumetric source term can be obtained by adding the energy "left" behind by

a pencil of rays as they cross the volume zones. The energy accumulation in volume

zone n when a pencil of ray passes through it can be written as:

Sn = (/n+i - In)dA cos P d£l (2.29)

The pencil of ray emitted from the surface element dA in the solid angle dû is assumed

to cross the zone with all the energy concentrated in the center of the pencil. In fact on

the right hand side of equation (2.29) dA should be considered as the area on the surface
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of the volume zone that the ray covers on impinging. The determination of this area

would cause difficulties in the calculation since it can be only a fraction of the surface.

Therefore, the area on the surface that is emitting the pencil of rays is selected for this

calculation, as suggested by Shah (1979). This simplification can lead to inaccurate

results if a low number of divisions are used in the discretization of the hemisphere over

the emitting surface element Problems are also encountered when curvilinear grids are

used, as will be seen in Chapter 6.



Geometrical foundations
of the radiation methods

Thermal radiation is strongly dependent on the geometrical configuration of the

physical system. Radiation modelling methods rely on geometry in different ways. A

common way of taking the geometry into consideration is the application of ray tracing

techniques. The discrete transfer (DT) method, as described in chapter 2, is based directly

on ray tracing, while the zone and the imaginary planes (IPM) methods treat the geometry

with the concept of interchange areas. The interchange areas can be calculated efficiently

by the Monte Carlo technique which can be applied for any geometrical configuration.

Monte Carlo method also uses ray tracing. In this chapter, the geometrical concepts of the

three methods will be summarized and ray tracing in different systems will be explained.

3.1 Interchange areas

3.1.1 Direct interchange areas

The radiative exchange between two black surfaces elements Ait Aj or between a

gas volume and a black surface element V{, Aj in the presence of an absorbing medium

17
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can be expressed with the aid of the direct exchange area concept of Hottel et al. (1967)

t t dA{ cos &i dAj cos 6j T(T)

*i*i = JJ �2JJ 2
Ai Ai

f f KidVi dAi cos djr{r)
W = JJ ^

where r(r)is the transmissivity of the intervening gas.

The IPM method treats radiation as a local phenomenon inside the zones which are

linked by the imaginary fluxes. In this method, the geometrical aspects are taken care of

by the direct interchange areas and the reception factors. Following the definition of the

direct interchange areas (DIA), the wall zones are considered black for the calculation.

For a gas volume bounded by n black surfaces the following relation holds:

n

The direct interchange areas can also be expressed in a product form

lïg = Aifig (3.3)

gS{ = 4KVfgi

where the last terms of the right hand side products are the reception factors. Incorporating

equation (3.3) in (3.2) and making use of the law of reciprocity ( J3{ = Jïg ), one

obtains:
n

" + / ; , = ! t = l...n (3.4)

The physical meaning of the reception factors can be explained as the fraction of the

total radiation energy emitted by the i-th surface which is intercepted by the j-th surface

or the gas.
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The reception factors for simple geometrical configurations like cubes can be found

analytically by evaluating the double integrals of equation (3.1), but for volumes with

irregular geometry it is intractable. It is necessary to find a way of calculation which

can yield the reception factors independently of the geometrical complexity. The Monte

Carlo method can be applied successfully in these cases.

3.1.2 Total interchange areas

The zone method incorporates the geometrical factors through the so-called total

interchange areas (TIAs). The total-interchange areas can be considered as a measure of

the effect of the size and shape of the system as well as its radiative properties, their

dimensions being those of an area. They express numerically the way a zone sees an

other zone of the enclosure directly and via reflections.

The TIAs can be obtained using the following expressions

(3.5)

G~G]=4KiVi<pij

where <pij represents the total reception factors between two zones i and j (directly and

assisted by reflections at the surface zones). The summation of the TIAs results in:

y-5 f-\

,G&] = AKiVi
j j

Equations (3.6) can be simplified by dividing by Aiei and AKiVi respectively, thus giving
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The Monte Carlo technique can be successfully used for the total reception factor

calculation, as it is explained in the following section.

3.2 Interchange area calculation by the Monte Carlo technique

3.2.1 Principles of the Monte Carlo method

The Monte Carlo method, as its name implies, is a statistical numerical method.

If the distribution of the values (events) that occur in a physical process is known (e.

g. Planck distribution of intensities versus wavelength for a blackbody), the procedure

of Monte Carlo is to assign a wavelength to each of a huge number of emitted beams

(at least 5000) in such a way that the known physical distribution can be reproduced.

Moreover, each of the assignment should be independent of each other to have a good

statistical representation. These conditions are fulfilled by forming cumulative distribution

functions and then using random numbers (from 0 to 1) to extract the desired variable

( the wavelength in the example given above).

The Monte Carlo method can be used successfully for radiation modelling. An

excellent discussion is given in Siegel and Howell (1983). In this technique, radiation

exchange is modelled by the emission and absorption of discrete amounts of energy which

can be called "energy bundles". Local energy flux can then be computed by knowing

the number of these bundles arriving per unit area and time at some position. Figure 3.1

illustrates surface dAj and surface A2 which are in radiation interchange with each other.

Since dAj is emitting in a hemisphere, the direction of emission can be characterized
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k

Figure 3.1 Radiation interaction between a differential surface dAj and a finite surface

by the circumferential angle 9 and the cone angle /?. The hemisphere is covered by f3

varying from 0 to ir/2 and 9 from 0 to 2TT. Circumferential angle 9 can be obtained

randomly by:

9 = 2TRI, (3.8)

where Rj is a random number in the open interval of 0 to 1. Hereafter random numbers

will be denoted by R. Samples for the cone angle can be obtained directly from the

cumulative distribution function of (3, which is the probability that the cone angle will

be between 0 and 0.

= sin""1 (3.9)

If the bundles are emitted from a gas zone, the cone angle may vary from 0 to IT. The

randomly selected values of (3 are then obtained by:

13 = cos"1 (1 - 2R2) (3.10)
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Since the emission takes place in an absorbing and emitting gas, the length of travel of

each bundle before absorption should be obtained. A similar procedure leads to:

The gas permits the bundle to travel the distance L, but in the meantime it can hit a wall.

In this case a random number can decide whether the bundle is absorbed or reflected. If

the random number is smaller than the surface absorptivity, the bundle is absorbed:

�>RA (3.12)

If it is higher, the bundle is reflected and the process of bundle tracing should be continued.

In the present example energy bundles are emitted from the center of a differential

surface dAj to Ai. If the interaction between two finite surfaces Aj and A2 is examined,

it can be seen that the same process could be repeated with dAj at randomly selected

positions on Aj and with (IA2 at randomly selected positions on A2. The position on a

plane can be described by two freely selected coordinates, so two more random numbers

(R5, R(s) need to be generated. Having a rectangular surface element with boundary

coordinates xj, yj, X2, y2, the place of emission is given by:

(3.13)

ye = y\ + (v2 - yi)R*

The emission point from a rectangular gas zone is determined by using (3.14), which

incorporates the third coordinate direction of the cartesian space:

Xe = 31 + (32 - 3l)#5

(3.14)
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3.2.2 The Monte Carlo method for reception factor calculation

Direct reception factor In the present study, the direct reception factors are used only

in the imaginary planes method. Since this method treats each zone separately, the

evaluation of the direct reception factors is confined to individual volume zones. Since

it is not necessary to assign energy to the bundles for the reception factor calculation,

they will be called rays. All the surfaces surrounding a volume zone are assumed to be

black. Rays emitted from a surface are intercepted by the other surfaces or by the gas.

The place, the direction of emission and the length of travel are obtained by generating

random numbers as explained previously. The total number of rays intercepted by a

given surface divided by the total number of rays originated from the emitting surface

gives the reception factor between the two surfaces. The sum of the reception factors on

a given surface should be 1 according to equation (3.4). Since no ray can escape from a

closed enclosure, the sum of rays intercepted by the walls and the gas should necessarily

give the number of emitted rays from a given surface.

Total reception factors In the case of the total reception factor calculation, all the

surface and gas zones in the radiation space have to be considered, since these factors

are used in the zone method. No energy is assigned to the emitted rays from the walls.

The rays are emitted by a gas or a surface zone according to the rules already mentioned.

However the length of travel calculations have to be modified if the absorption coefficients

of the gas space is not uniform. According to Cannon (1967) it can be written

-\nR (3.15)
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where K{ is the absorption coefficient of a particular zone and s{ is the distance travelled

by the ray along its path in that zone. The rays are absorbed in a gas zone if the sum

of the optical thicknesses along its path exceeds the negative of the logarithm of the

generated random number. Reflection is accounted for at the walls. The sum of the rays

intercepted by zone j divided by the number of rays emitted by zone i gives the total

reception factor between zone i and j . The sum of all the total reception factors on a

zone should necessary be / in a closed enclosure.

3.3 Geometrical details of the discrete transfer method

The hemisphere over a zone surface is divided into small solid angles by Np cone

angle divisions and Ng circumferential divisions. The rays are emitted from the center of

a surface zone (cell) in NpxN$ directions. The rays are followed on their way crossing

the zones, storing the distance travelled in each volume zone, the temperature and the

absorption coefficient of the zone until a boundary surface is hit. Then a "backtracking"

step starts which involves the calculation of intensity / (j3,9) at point O (see Figure

2.3) using the recurrence formula (2.25), starting from the intensity at point W given

by equation (2.26).

The total incident flux can be calculated from the discretized form of equation

(2.28):

qi = ^2 J(/3,9) sinp cos 0 dp d9 (3.16)
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3.4 Ray tracing in polyhedra

The ray tracing inside a single zone can be identified as the principal event of ray

tracing in 3D systems. While the IPM method needs tracking the rays inside a single

zone, the zone and the DT methods require ray tracing in a 3D grid of zones. Ray tracing

in a grid of zones can be realized with the repeated application of ray tracing in a single

zone. Although the zone and DT methods use generally the same approach, in the zone

method a ray can be absorbed in the gas space along its path, while the rays have to be

followed until they hit a boundary in the case of DT method.

A ray tracing method will be described for zones with planar walls. The only

geometrical constraint imposed is that the enclosure should be convex, i.e. the angle

between the neighboring planar walls should be less than 180°. This will enable the use

of irregular zone sizing (i.e. other than rectangular or cylindrical ...) and of curvilinear

coordinate system for solving radiation problems with the zone, IPM and DT methods.

The irregular geometry should be divided into finite volume zones having planar

surfaces. It can be done with the help of a curvilinear grid generation technique. In the

present discussion the number of planar surfaces surrounding the zones is restricted to

six, i.e. the method will be performed with hexahedra.

Figure 3.2 explains the logical structure of the ray tracing. The branch drawn with

thick line is used in the case of a multiple zone arrangement. When using the discrete

transfer method, the gas absorption block should be omitted. The direction of emission

and place of emission steps are realized differently by the Monte Carlo and the discrete

transfer methods, as will be explained later.
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Increase counter of
the gas zone

Emit ray

Place of emission

Direction of emission

±
Find intersection with the sur-
face containing the i-th wall
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Figure 3.2 The flowchart of the ray tracing algorithm

The main elements of the ray tracing algorithm will now be discussed in detail. All

the calculations and discussions are related to 3D cartesian space. Points in the 3D space

are noted by P and a subscript. Vector analisys is extensively used in the presentation.

Vectors from the origin to the different points are always referred to by r with a subscript.
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In an enclosure surrounded by six planar surfaces, the surfaces are considered to have

four corners numbered counterclockwise according to Figure 3.3.

Figure 3.3 Identification of the wall corners

Although the first step in ray tracing is to decide on the coordinates of the emission

point, for convenience of explanation this part will be discussed later on in section 3.4.4.

3.4.1 Direction of emission

The emission from a given point of a planar surface occurs in a hemisphere over

the surface point. The Monte Carlo method determines the direction of emission by two

randomly determined angles if a coordinate axis is parallel to the surface normal: the

circumferential angle 6 and the cone angle /?.

In the discrete transfer method, the circumferential angle 8 and the cone angle (3

are obtained from the division of the hemisphere into small solid angles.

For calculation purposes, it is convenient to assign a directional vector to the

direction of emission. If the surface normal is parallel to a coordinate axis, for example

parallel with the z axis, the direction of emission over the x,y plane can be decided with
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the unity vector

d* =
cos 6 sin/3
sin 5 sin/3

cos/3
(3.17)

For an arbitrarily positioned plane, the surface normal vector is n. This vector can be

rotated by using two consecutive rotations to bring it into the z coordinate direction as

shown in Figure 3.4. The two consecutive rotations are:

(a) (b)

Figure 3.4 (a) Surface normal on an arbitrarily positioned plane (b) Bringing

the normal parallel to the z axis by using two consecutive rotations

1. clockwise rotation with angle 7 around the z axis resulting in n'

2. clockwise rotation with angle S around the y axis resulting in n" (Figure 3.4)

The angles of rotation can be calculated from the x, y, z directional components of the
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surface normal vector n.
n T = [nXtny,nz]

= <

6 =

' arctan (ny/nx) nx > 0, ny > 0
2x � arctan(\ny/nx\) nx > 0, ray < 0
7T � arctan (\ny/nx\) nx < 0, ny > 0
ir + arctan (|%/nx|) nx < 0, ny < 0
TT/2 n* = 0, % > 0
T nx < 0, ny = 0
3ir/2 n s = 0, nv < 0
0 nx > 0, ny = 0
direct, sur/, normal nt = 0, ny = 0

, " ' a ) ^ > 0

(3.18)

arccos

7r � arccos

The direction of emission over the x, y coordinate plane determined by equation

(3.17) can be transformed to give the direction of emission over the arbitrarily positioned

plane. This is done by performing the two rotations already described on Figure 3.4

in reverse direction starting with S and then 7. The transformation can be expressed

in a matrix form, resulting in the directional vector of emission d from the arbitrarily

positioned plane:
d = M 7 M6 d*

^B ^& ^m ^&« 4B4 4M î K* I 1 Mm J^t MM Mk I I A 4 4<« Jk ^J^^

(3.19)

The process is illustrated by Figure 3.5. To summarize, the procedure to obtain the

direction of emission d from a plane of surface normal n is as follows:

1. Determine the position of n relative to the direction (0,0,l)1 by computing 7 and S

from equation (3.18)

1 other coordinate directions are also permitted

'dx]
dy

dz

=

cos 7
sin 7

0

d = M 7 Ms d*
� sin 7 0
cos 7 0

0 1

cos£
0

� sin S

0
1
0

sin S
0

cos£
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2. Generate the cone angle P and circumferential angle 9 of emission, and form the

directional vector d* (equation 3.17)

3. Rotate d* with the transformation given by equation (3.19) to obtain the direction

of emission d

Rotations ( 8, y J

Figure 3.5 Obtaining the direction of emission on the arbitrarily positioned plane

The emission takes place in a hemisphere from diffuse surfaces. The above

procedure takes advantage of the axisymmetrical nature of emission in determining the

direction of emission. Only two rotations are applied to move d* into d, whereas, in

general, to rotate an object from a given angular position to another (specified), three

rotations have to be employed around the x, y and z axes of the coordinate system. The

basic 3D theory of objects is discussed in detail by Watt (1989).

3.4.2 Intersection point with the plane passing through a wall

The path of a ray can be described by a line equation using the emission point Pe,

the direction of emission d and r pointing to any location on the line depending on the
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value of the parameter t (Figure 3.6a):

with coordinates:

r = re +1 d

x = xe + tdx

(3.20)

z = ze + tdz

The path of the ray starts at the emission point and continues on the line in the direction

of emission, thus, negative values for the parameter t are not permitted.

(a) (b)

Figure 3.6 Vectorized description of (a) a line (b) a plane

On the other hand, the general equation of a plane in a three dimensional cartesian

space can be written as:

Ax + By + Cz + D = 0 (3.21)

In the present situation, four points of every plane are given, these points being the corner

points of a wall (Figure 3.6b). Three points are enough to define a plane. If r is a general

vector describing the plane, then, with the help of the vectors r i , T2, T4 pointing at the

corner points Pi, Pi, P4, the plane equation can be given by the mixed product:

(r - n ) � (r2 - r i) x (r4 - n ) = 0 (3.22)
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on

y � yi z � z\
y2- yi Z2 - z\
y4 - yx Z4 - z1

= 0

From the determinant the coefficients A, B, C, and D of the equation of the plane can

be easily found.

The intersection point of the plane and the line can be obtained by solving the set

of equations (3.20) and (3.21) for the parameter t:

Cdz
K }

With the help of the parameter, the intersection point P,- can be obtained from equation

(3.20). If the parameter t has a positive value, then Pi is taken as the intersection point

of the path of the ray and the plane passing through that wall.

3.4.3 Determination of the place of the intersection point

If a ray hits a plane passing through a wall, it has to be decided whether the

intersection point Pi is within the boundaries of that wall. The 3D problem can be reduced

to 2D simply by projecting the wall on a coordinate plane as illustrated by Figure 3.7.

The projection on a coordinate plane is equal to ignoring the coordinate along which
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y Pi

/n

Figure 3.7 Projection of a wall on a coordinate plane (x, y in this case)

the projection is made from every point Before initiating the projection, it is necessary

to decide which coordinate plane would give the most advantageous projected picture.

This can be defined as the picture which gives a projected area closest to the area of

the wall. The direction of projection can be decided on by finding the maximum of the

absolute values of the normal vector components for the wall. The coordinate, which the

maximum vector component belongs to, is the direction of projection.

max {\nx\, \ny\, |nz|} >-> gives the component to be omitted

from the wall coordinates
(3.24)

Now the problem is reduced to finding out whether the point P*i is inside the

polygon P*jP*2P*3P*4. The method to solve this problem is explained using Figure 3.7.

First a side of the polygon for example P*jP*4 is selected. A straight line is drawn

parallel to P*jP*4 through />*,-. This line should cross the two neighboring sides P*iP*2

and P*3P*4, resulting in intersection points S' and S" (since the line is parallel to the
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side P*jP*4, the intersection points exist). The same process is then repeated selecting

the side P*iP*2> and similarly intersection points T and V are obtained.

If point P*i is located between the intersection points 5' and S" on the first parallel

line and between T and V on the second parallel line, point P*i is inside the polygon

P*iP*2P*3P*4, and this means that the bundle did hit the wall defined by P*iP*2P*3P*4-

Otherwise P*i is outside of P*jP*2P*3P*4 meaning that the ray hit another wall.

An efficient formula to compute line intersections is suggested by Harrington

(1987). If line 1 is defined by two points A (xj,yj) and B (X2,y2), the equation can

be written

= 0 (3.25)

or

T\X + s\y +1\ = 0

where:
n = y2 - yi

h = x2yi -

If the same is done for line 2, then r2, S2, t2 are introduced. The intersection point

of lines 1 and 2 is then given by:

(3.26)

The use of the above formula for line intersection computation is very advantageous

because it eliminates the possible effect of round off errors introduced in the calculation
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if a Une is almost parallel with a coordinate axis. In such a case, problems could be

encountered if the following weU known formula is used:

y =mx + b (3.27)

where

V2 -y\m = ,

for line equations and for intersection point computation.

Having determined the intersection point Pi and the emission point Pe, or two

successive intersection points Pi, P'i, the distance si a ray travelled in a zone can now

be calculated from :

si = y(xi - xey + (yi - yey + fa - z,)' (3.28)

or from:

/ . . t .o . To

(3.29)

These distances are necessary for calculating the gas absorption with the Monte Carlo

technique and for the backtracing procedure of the DT method.

3.4.4 Place of emission

According to the Monte Carlo technique the emission points have to be uniformly

distributed over the emitting surface element, or inside the emitting gas element. If the

cartesian coordinate axes are parallel to the surface or the volume boundaries (rectangles

and parallelepipeds) the emission points can be determined by linear interpolation with

equations (3.13) and (3.14). The emission point from surface or volume zones of arbitrary

shape cannot be computed directly by linear interpolation in the coordinate directions.
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However, a surface element with an arbitrary shape can be enclosed in a rectangle

with sides parallel to the cartesian coordinate system, and, similarly, a volume with

an arbitrary shape can be surrounded by a parallelepiped with edges in the cartesian

coordinate directions. In the enclosing rectangle or parallelepiped the emission point is

calculated by linear interpolation, and the point is accepted as an emission point (Pe) if

it is located inside the arbitrary-shaped zone, otherwise it is discarded.

Figure 3.8 illustrates the process for a surface zone. The zone should be projected

Figure 3.8 Point of emission from a wall zone

on a coordinate plane as explained in 3.4.3. The coordinates xj, X2 and yj, yi of the

bounding rectangle can be computed as:

xi =min(a!p1, xPi, xp3, xPi)

a?2 = max(asp1, xPa, xPt, xPt)

yi = voin(yPl, yPi, yPa, yPi)
(3.30)

y2 = max(ypt) yPa, yPs, yPi)

The emission point is generated inside the bounding rectangle with two random numbers

according to (3.13). To decide whether an emission point Pe is inside the boundaries

of Pi, Pi, P3, P4, the same process should be followed as for the intersection point

calculation in 3.4.3.
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For a volume zone a bounding parallelepiped of coordinates xj, X2,yi, y2 and z;,

Z2 is generated with coordinates computed from the minimum and maximum coordinate

values of the eight corner points. The emission points in the bounding parallelepiped are

given by linear interpolation according to (3.14) using three random numbers. To decide

if the emission point Pe is inside the arbitrary-shaped zone, three lines a, b and c are

drawn through Pe such that they are parallel to the three contour lines of the zone at a

given corner (see Figure 3.9). The lines a, b and c must cross the planes of the opposing

Figure 3.9 Place of emission from a gas volume

walls, since each contour line of a chosen corner crosses the planes of two opposing

walls. If Pe is located between points Ai and A// on line a, between points £/ and Bu

on line b and between points C/ and C// on line c, then the emission point is inside

the hexahedron. It is enough to check only one coordinate for each line in the above

process. This coordinate should be the one to which the maximum absolute value of the

line directional vector components belong. This has to be done to avoid problems which

could arise if the line drawn through the emission point is parallel to a coordinate plane.
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The generation of emission points should be continued until a given number of

emission points is found inside the surface or volume zone. The distribution of the

emission points inside the zone will be uniform since the points are part of a larger

uniformly distributed array of points.

3.4.5 Simplified emission point calculation

An arbitrary-shaped surface zone or gas zone can be regarded as a deformed

rectangle or parallelepiped. To every emission point in the regular zone, a corresponding

emission point is existing in the irregular zone. The emission point Pe(xe', ye') on a

rectangular surface element (Figure 3.10a) can be determined by using random numbers

R3 and R4:

(3.31)

The emission point on an arbitrary-shaped surface element (Figure 3.10b) can also be

given by the use of the same interpolation principle. However, the emission points chosen

in this manner will not be uniformly distributed over the area.
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P3

P3

1-1
Pe

J±4^

P'l p>

Figure 3.10 (a) Place of emission in a rectangle (b) Place

of emission on an arbitrarily formed surface element

The sides P1P4 and P2P3 can be divided in two portions (I-R3) and R3, thus

introducing points Pa and P\, or in a vector notation r a and i v The point of emission

Pe (rc) can be found on the Une segment PaPb by dividing it in portions (I-R4) and R4.

It can be written in a vector notation:

r» = r i + (r 4 - ri)R3

rb = r 2 + (r3 -
(3.32)

re =

And by substituting r a and rb in the re relation, one obtains:

r e = r x ( l - R3)(l -R*) + r 2 ( l -
(3.33)

In the zone method, emission points have to be calculated also from the volume zones.

In a volume zone there is one more degree of freedom and therefore one more random

number is necessary. With the help of two random numbers one point can be determined
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as described above on each of two opposing walls . The line connecting the two points

is then divided in a ratio given by the third random number, thus yielding the point of

emission.

The error in the interchange area calculation, when using the simplified emission

point calculation, is reasonable if the form of the arbitrary zone does not differ too much

from that of a regular zone, Le. from a rectangle or a parallelepiped. An example is

given in appendix C which compares the accuracy of the two techniques of emission.

Point of emission for the discrete transfer method In the discrete transfer method,

the rays are emitted from the center of the surface zones. For irregularly shaped polygons

the middle point is not defined. However, if in equation (3.33) the random numbers are

replaced by 0.5, the resulting point Pe is taken as the approximate middle point.

3.4.6 Area and volume calculation for hexahedra

Area The volume zones were defined as bounded by planar walls. Given the coordinates

of the corners, the area of an arbitrary-shaped four corner polygon can be calculated by

dividing the polygon into two triangles (Figure 3.11).

X

Figure 3.11 Division of a zone into two triangles for surface calculation

The area of the individual triangles can be obtained through the cross products as

follows:
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An = -

PlP2 X P1P4

X P3P2

(3.34)

And the total area is readily obtained by

A = A! + An

Volume A hexahedron can be divided into 5 tetrahedra as Figure 3.12 shows.

(3.35)

Figure 3.12 Division of a zone into tetrahedra for volume calculation

The volume of a hexahedron is given by the sum of the volumes of the tetrahedra

Vv (3.36)

where the volumes Vi, Vu, Vm, VJV, Vy can be obtained by the mixed product of

their three side vectors starting from the same corner. The calculation is presented for

tetrahedron I.
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Vl = ïïl (P2 i>1) " ( P 2 P 4 x (3.37)

An assessment of the Monte Carlo technique applied to the computation of direct

interchange areas for irregular shapes and making use of the techniques described in

sections 3.2 and 3.3, is given in Appendix C.

3.5 Ray tracing in cylindrical sections

The flowchart of ray tracing in polyhedra of irregular systems apply in the case

of cylindrical systems as well. The main elements of the ray tracing process will be

explained for cylindrical systems. Both the cylindrical and the cartesian coordinate

systems are used throughout the ray tracing process. The two coordinate systems are

positioned with common z coordinate axis and with <j> coordinate starting from the x axis

and running in counterclockwise direction. The conversion between the JC, y, z coordinates

and the r, <f>, z coordinates of any point in the 3D space is a simple transformation process.

A cylindrical sector bounded by the coordinate surfaces of the cylindrical coordinate

system belonging to rj, r2, <f>i, <fa and z;, Z2 coordinates is drawn on Figure 3.13. The

boundary walls of the cylindrical sector are numbered in the lower right corner to have

a simple and clear reference in the discussion.



J Geometrical foundations of the radiation methods 43

X,r

Figure 3.13 Cylindrical sector

3.5.1 Place of emission

The place of emission (Pe) can be determined by the linear interpolation technique

between the coordinate boundaries using two random numbers. However, if coordinates

r and <f> are used to determine the emission place from walls 5 and 6, the emission

coordinates according to the Monte Carlo principle are given by:

(3.38)

= Z\ Y

3.5 J Direction of emission

The directional vector (d) of emission from a plane is given by the cone angle /?

and by the circumferential angle 9. The normal to surfaces 5 and 6 is parallel to the z

axis. The direction of emission from surface 5 is given by:

dx = sin j3 cos 9

sinfl (3.39)

dz = cos f3
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The emission from surface 6 takes place always in the negative z direction towards the

interior of the enclosure, thus the sign of dz is changed:

dx = sin j3 cos 9

dy = smp sin0 (3.40)

dx = � cos /3

In the case of walls 1, 2, 3 and 4 a cartesian basis x',y',z' is placed on the wall

with a coordinate axis parallel to the surface normal and pointing towards the interior of

the enclosure, as being the result of a counterclockwise rotation of the x, y, z coordinate

system around z (see Figure 3.13). The direction of the emission is first calculated relative

to the x',y',z' basis resulting in vector d*, then these coordinates are expressed in terms of

the x, y, z system giving the coordinates of d. For wall 1 the coordinate basis is rotated

by <f>i, for wall 3 by 02+*"» for wall 2 by <f>, for wall 4 by 0+n- in counterclockwise

direction. The x, y and z components of directional vectors d and d* are for wall 1:

à*x = sin /3 cos 9

d* = COB/3

d*x = s in^ sin 9
(3.41)

dx � d*x cos <f>i � d^ s in <j>i

dy = d*x s i n 0 i + d*y cos <f>\

dz = dl,
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for wall 3:

d*x = sin/? cosd

d*z = sin/3 sin0
(3.42)

dx = d*t cos (02 + *0 - dy sin (02 + *0

iy = <£ sin (02 + ir) + dÇ cos (02 + ir)

dz = dZi

for wall 2:

d*x = cos/3

d^ = sin/3 cos0

d*z = sin/3 sin6
(3.43)

dx = d*x cos <f> � d^ s in 0

ij, = d£ sin 0 + <2* cos 0

< * * = < * : ,

for wall 4:

d*z = cos/3

(^ = sin/3 cosd

d*z = sin/3 si
(3.44)

d* = d% cos (0 + x) - d*y sin (0 + ir)

iy = <££ sin (0 + TT) + d*y cos (0 + x)

4. = 4.
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3.53 Intersection calculation

The path of a ray is described by the equation of a line (3.20). The intersection

point calculation of a line crossing planar walls is described in 3.4.2, and this applies

for walls 1, 3, 5 and 6.

The cylindrical surfaces (2, 4) are described by the equation of a cylinder whose

axis is at the origin of the coordinate system:

x*+y2 = r2 (3.45)

The coordinates of intersection point (Pi) are given by the solution of the set of equations

consisting of (3.20) and (3.45). If the line crosses a cylindrical coordinate surface resulting

in two intersection points, in ray tracing the intersection point is taken to be the one which

is located at the shortest distance from the emission point

3.5.4 Place of intersection

The walls in the cylindrical system are identified by surfaces defined by the

cylindrical coordinate system. In order to decide whether the intersection point is inside

the boundaries of a wall, the coordinates of the intersection point have to be converted

to cylindrical coordinates, and compared to those of the boundary.

Since the cylindrical sector is a concave enclosure due to wall 4, the procedure of

identifying the wall on which the intersection point is located should always be started

with wall 4, which has a shading effect on the other walls from certain positions in the

enclosure.

When emitting from planar walls, the emitting wall is not checked for intersection

but in the case of wall 2 it has to be done due to its convex nature.
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An assessment of the direct interchange area calculation obtained for cylindrical

cases is given in Appendix B.



Application of the methods in
different coordinate systems

The first step in a simulation using the zone, the imaginary planes (IPM) or the

discrete transfer (DT) method, is to discretize the 3D radiation space into finite volumes

and surfaces, which is called zoning. The zoning of the radiation space cannot be done

arbitrarily, it requires some organization to enable the identification of the individual

zones during the solution procedure. Furthermore, the discretization or zoning should

conform to the geometrical boundaries of the radiation field.

The zoning arrangement is provided by a coordinate system. With the help of a

cartesian, cylindrical or curvilinear coordinate system, a 3D grid can be generated to

divide the radiation space into zones. The curves of a constant coordinate value are the

grid lines, the intersection of which define the grid vertices. The grid vertices surround

the individual zones which are separated by surfaces delimited by the vertices. In the

grid the coordinates help the identification process necessary for the calculations.

In the following it will be explained how different coordinate systems can be applied

to the radiation models to enable the treatment of complex geometrical configurations.

48
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4.1 Cartesian coordinate system

Figure 4.1 shows the division of the enclosure into zones using the coordinate

planes of the cartesian coordinate system. The surface zones are rectangles and the

volume zones are rectangular parallelepipeds. The zones can be identified according to

x, y and z directions with i, j and k positions.

The application of the cartesian coordinate system is restricted to rectangular

parallelepiped-shaped enclosures, however by using "blocking" it can be extended to

irregular shapes.

zone

grid vertices grid lines

Figure 4.1 The ose of the cartesian coordinate system for zoning

4.1.1 The use of blocking

The irregularly shaped enclosures can be placed in a cartesian grid. The zones lying

outside of the enclosure boundary should be "blocked", i.e. they should be discarded

from the calculation. Figure 4.2 illustrates the blocking approach for an irregularly shaped

enclosure. The higher the number of divisions is, the more realistic the approach is in
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Computational space

Figure 4.2 Example of blocking for a 2D enclosure

representing the real boundaries. However, the computer memory is used inefficiently

when the blocking techniques are called for. The size of the variable arrays used for the

computation is defined by the cartesian system enclosing the radiation space. The arrays

also include the blocked regions although the computation has to be done only for the

zones of the physical space.

The incorporation of blocking into the zone and DT methods concerns directly the

ray tracing process. The zone and DT methods follow the rays across the zones. Every

time a ray hits a wall surrounding a volume zone it is checked whether the wall is part of

a real boundary. By using blocking, the walls of the blocked regions have to be declared

as real walls and suitable radiative properties have to be assigned to them.

The IPM method can also incorporate the blocking technique. This method uses

ray tracing locally in the individual zones, and the radiation space is interconnected with

imaginary fluxes. The ray tracing for the direct interchange areas is not affected by the

use of blocking but the equation containing the imaginary fluxes (equation 2.21) have to

be modified. Equation (2.21) can be repeated in a more detailed form as:

BM = [CM] (4.1)
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The vector Q contains the x, y and z directional imaginary fluxes in the given order. By

the use of blocking, the imaginary planes of the computational space can become real

walls or part of the blocked region. The imaginary fluxes crossing these walls have to

be removed from the Q vector, similarly the corresponding lines and columns should be

removed from vector CM and matrix BM respectively. The set of equations can then be

solved for the unknown imaginary fluxes (Q).

4.2 Cylindrical coordinate system

For cylindrical shapes the zoning can be carried out according to the cylindrical

coordinate system (Figure 4.3). The zones are surrounded by planes of constant z

coordinate perpendicular to the axis of rotation, planes of constant 9 parallel to the z

axis and concentric cylindrical surfaces. The ray tracing procedure of the zone and the

DT methods has been developed for cylinders placed centrally in a polar coordinate

system. The identification of the zones and the corresponding variable arrays are also

arranged according to the cylindrical coordinates. In the case of IPM, the imaginary flux

Figure 4.3 Zoning according to the cylindrical coordinate system

calculation algorithm developed for the cartesian coordinate system has been modified
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for cylindrical case. A rectangular parallelepiped can be bent around the x axis until the

left and right faces meet each other resulting in a cylinder as illustrated in Figure 4.4.

After the bending process the surface zones on the left and right hand walls lose their

real surface nature and become imaginary planes. At the axis of the cylinder the zones

have only S surfaces instead of six as in the original cartesian coordinate system. In such

cases the summation in equation (2.16) has to be done from j=l to j=5

Zones can be blocked in the cylindrical grid system in the same way as it was done

in the cartesian coordinate system.

Figure 4.4 Application of the cartesian system to the cylindrical version of the IPM method

4.3 Curvilinear coordinate system

The use of curvilinear coordinate system for the grid generation enables the

application of the zone, IPM and DT methods to a wide variety of complex 3D problems.

None of the methods is restricted to orthogonal coordinate systems in their present form,

so non-orthogonal coordinates can also be freely used.

The curvilinear grid is best imagined by supposing a regular cartesian grid placed

in a jelly-like medium, which is then stretched, bent and twisted. All the zones which

were originally in contact with one another remain so, but their shapes may have been

changed considerably.
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Curvilinear grid is frequently employed for the solution of fluid flow problems. In

these cases, the physical field is divided by a curvilinear grid in the cartesian coordinate

system but the partial differential equations describing the motion of the fluid are

transformed and solved for a computational field which is always a regular rectangular

grid in the curvilinear coordinate system.

In the case of radiation modelling, the physical space is divided into zones by the

curvilinear grid. The ray tracing is performed in the curvilinear grid in the physical

space. Once the geometry dependent part of the radiation models are solved, the rest

of the calculation can be done in the same way as for the cartesian grid, since the

arrangement and the identification functions of the curvilinear grid are the same way as

those of the cartesian grid.

Ï 1-1
i=4

(a)
(b)

Figure 4.5 Application of the curvilinear grid to a 2D system and the corresponding cartesian grid

In the physical space the irregularly-shaped enclosure of Figure 4.2 is divided into

zones using a curvilinear grid (£, q) in such a way that, on each boundary segment, a

curvilinear coordinate of constant value is specified (see Figure 4.5a). In the curvilinear

coordinate system (£, -q) the boundary segments become a rectangle, and the grid becomes

a rectangular grid (Figure 4.5b) similar to those used for the rectangular parallelepipeds.
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The indexes (i, j , k) are used to identify the zones in the curvilinear coordinate system

in a similar way as in the cartesian coordinate system.

The ray tracing techniques are described in the previous chapter for arbitrary

hexahedral zones having planar surfaces. Unfortunately the eight corner points of a

zone in a 3D curvilinear coordinate system define generally a volume element without

planar surfaces. Therefore, the methods cannot work in real 3D curvilinear grids.

The above restriction can be overcome by the use of "pseudo curvilinear" grids. A

3D grid can be generated by the extension of a 2D curvilinear grid with a geometrical

transformation. Such a transformation can be the translation of the 2D grid with small

increments in the third coordinate direction (section 6.4) or the rotation of the grid around

an axis (section 6.2) resulting in a third dimension for the grid points. In these cases,

the requirement for hexahedral zones is fulfilled.

The radiation methods studied allow also the use of connected regions. Figure 4.6a

illustrates a 2D connected region, which is opened up along the joint boundaries in the

cartesian space on Figure 4.6b, and the corresponding rectangular grid in the curvilinear

coordinate system is shown on Figure 4.6c. For the ray tracing algorithm of the zone and

the DT methods, the zones on the connected boundary have to be identified as neighbors

for the rays crossing the connected surface. The imaginary flux calculation of the IPM

method permits also the use of connected regions. The imaginary fluxes will cross the

connected surfaces and attention has to be paid to the identification of the neighboring

zones.
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t
(a)

x Connected region
(b)

Connected region

(c)

Figure 4.6 (a) Curvilinear grid with a connected region; (b) The curvilinear grid

opened up at the connected region; (c) The corresponding rectangular grid.

Furthermore, obstacles placed in the radiation field can also be modelled as embed-

ded regions. Figure 4.7a illustrates two circles as embedded regions in the 2D curvilinear

grid of a rectangular enclosure in cartesian space. Figure 4.7b shows the enclosure in

the curvilinear coordinate system, where the embedded regions appear as coordinate seg-

ments which have real boundaries. The surfaces of the embedded regions have to be

treated as real surfaces.

Lembedded regions ~ ^ * embedded regions

(a) (b)

Figure 4.7 Curvilinear grid with embedded regions and the corresponding cartesian grid
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The use of connected or embedded regions allows solving problems with obstruc-

tions in the radiation space as an alternative to the application of the blocking principle.

At the same time, the use of blocking is also permitted while using curvilinear coor-

dinates if required. The curvilinear grid generation technique is explained in detail by

Thompson et al. (1985). For this work the curvilinear grid generating system of Wu

(1990) has been used.

It should be noted that the cylindrical coordinate system can be regarded as a special

case of the curvilinear system. By dividing a cylinder into a large number of divisions,

the circumferential planes can be replaced by flat surfaces and the case can be taken as

a connected curvilinear region.



5
Comparison of the methods

Mathematical models are generally defined as a set of algebraic or differential

equations which may be used to represent or predict a certain phenomenon. The term

model opposed to law implies that the relationships applied may not be quite exact

and the final result may only be approximate. The zone, the imaginary planes (IPM)

and the discrete transfer (DT) methods model thermal radiation phenomena differently as

explained in chapter 2, but their solutions are assumed to approximate to some (unknown)

extent the real solution of the physical problem.

The intention here is to use the radiation models in 3D enclosures, where analytical

solutions or exact solution for radiation problems do not exist. On the other hand the

literature on radiation modelling recognizes the zone method as one of the most accurate

numerical methods available. It is frequently used as reference when testing new models.

In this chapter, solutions to 3D test problems with IPM and the DT methods will be

compared with the solution given by the zone method.

5.1 Accuracy of the zone method

When solving a radiation problem by the zone method, the resulting heat flux

distribution will be strongly influenced by the discretization of the continuous domain

into finite volumes and surfaces.

57
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The total-interchange areas are calculated by the Monte Carlo technique, since it

can be applied to enclosures with irregular as well as regular geometries. The use of

Monte Carlo technique introduces a statistical error into the calculation. The effect of this

type of error can be estimated by using different random sequences. The fluctuation of

the resulting fluxes around a mean value ranges from 1 to 5%. This fluctuating error can

be responsible for local maximum discrepancies, but is cancelled when average values

are computed over the whole field.

5.2 The bases of comparison

The IPM and DT methods were compared with the zone method on the basis of

heat flux and volumetric source term distributions and the computation (CPU) time. The

variable parameters of the comparison were the radiative properties and the number of

divisions in the enclosure. The tests were conducted in rectangular and cylindrical 3D

enclosures. In gray systems the radiative properties to be specified are the emissivity of

the surfaces and the absorption coefficient of the gas.

5.3 Comparison in a rectangular parallelepiped

The rectangular parallelepiped has been selected in such a way that the radiation

process would not prevail in any direction and the radiation heat transfer would be three

dimensional. The dimensions and the surface identification of the chosen parallelepiped

are shown in Figure 5.1.
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Figure 5.1 Rectangular parallelepiped test enclosure

5.3.1 Effect of radiative property variation

The comparison is carried out with constant number of divisions and with variable

surface emissivity and gas absorption coefficient The input data are given in Table S.I.

Table 5.1 Input data for the test in cartesian coordinates

Dimensions x, y, z
Divisions
Temperatures

faces 1,3
faces 2,4
faces 5,6

gas
Emissivities

uniform on every surface
Absorption coefficient

uniform

3m x 2m x 2m
8 x 5 x 5

300 °C
500 °C
400 °C
1300 °C

02, 05, 0.8, 1.0 (variable)

0.01, 0.05, 0.1, 0.25,0.5, 1.0, 2.0 1/m
(variable)

The chosen values of the emissivity are representative of a highly reflective surface,

the surface of a metal bath, a strongly absorbing wall and a black body, respectively. The

gas absorption coefficient varies within a very large range from transparent to strongly

absorbing gas, including three values that are frequently used (0.05, 0.1, 0.25). Taking

into account the size of the zones and the values of the gas absorption coefficient, the

optical thickness varies roughly between 0.005 and 1.0.
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The size of the rectangular parallelepiped was selected to conform to 3D enclosures

found in industry. The given geometrical configuration has 200 volume zones and 210

surface zones. Including all the variations for the radiation parameters 27 different cases

are treated with three different methods.

The total-interchange areas (TIA) of the zone method were calculated by the Monte

Carlo technique by emitting 6000 rays from each volume and surface zone. It has been

noticed from experience that, in case of simple geometrical configuration (parallelepiped

with uniform zoning), the TIA values are fluctuating around a mean value if more than

5000 rays are used.

The direct interchange areas (DIA) of the IPM method were calculated with 10000

emitted rays. The application of 6000 rays would have been sufficient here too, but,

since the computation was done for only one set of DIAs within a single zone, the use

of a high number of rays was affordable.

The accuracy of the discrete transfer method is dependent on the number of divisions

of the hemisphere over the emitting and absorbing surfaces. The comparison was done

for 36, 100, 400, and 900 divisions, so that accuracy could be estimated according to

the solid angle divisions as well. The discrete transfer method used with different solid

angle divisions will often be referred to by DT36, DT100, DT400, DT900.

In this particular problem uniform gas temperatures and absorption coefficient have

been used. The DT and the zone methods could treat this problem with only one zone

for the entire gas volume keeping the surface divisions. However, the calculation was

made with the given zone sizing, in order to use the method in the same way as in case

of more difficult problems.



5 Comparison of the methods 61

Because of the extensive number of results, the values obtained with the three

methods are not reported at every location. Profiles are given at specific locations.

Average relative differences (ARD, VRD) are computed for the whole field and maximum

relative differences (MRD) allow the identification of the most erroneous results.

Average relative differences The heat fluxes obtained with the IPM and DT methods

are compared to the heat fluxes predicted by the zone method for every surface zone.

The absolute value of the relative difference between the surface flux obtained with IPM

or DT and that obtained with the zone method is formed for every surface zone. Then,

the relative differences are summed over all the surfaces and are divided by the number

of the surface zones (ns) to give an average relative difference

ns
average relative difference = 1

nsT=i

DTI IPM fluxi - ZONE flux{

ZONE (5.1)

{ARD)

The average relative difference value is used to characterize the accuracy of the method

for a given wall emissivity and gas optical thickness. The formulation of the average

relative difference does not permit zero flux values for the zone method. The possibility

of zero flux for any method is very small but attention has to be paid to the near zero

flux values. For example, if the zone method gives a heat flux of 0.1 kW/m2 at a specific

location, while the IPM result is 1.0 kW/m2, the resulting relative difference in the flux

values is 900%. In fact this difference in the flux values does not affect the overall

performance of the method, since in radiation heat transfer generally high flux values

are considered. For the accuracy evaluation, the fluxes close to zero should therefore be

excluded. In Figures 5.2, 5.3, 5.4, 5.5 the heat flux distributions obtained with IPM and

DT methods (100 solid angle divisions) are compared with those provided by the zone



5 Comparison of the methods 62

method. For K=0.01, the radiative fluxes are very close to zero, therefore this case was

excluded completely during the evaluation of the methods for accuracy.
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Figure 5.2 Heat flux distribution on the x direction centerline on face 2, e=0.2

The heat flux distribution on face 2 along the x direction centerline is shown on

Figure 5.2 for a low surface emissivity case (�=02). The heat flux distribution along

the same line but with e=0.8 is given on Figure 5.3. In both cases the heat fluxes for

K=0.01 are very close to zero.

Figures 5.4 and 5.5 show the heat flux distribution along the lower portion of face

1 with surface emissivities 0.2 and 0.8 respectively. In this region, it is seen that the

discrepancies between the distributions predicted by the three methods are somewhat

higher than along the centerline. In the case of zone method, the effect of the statistical
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errors on the heat flux distribution �due to the Monte Carlo technique� is well detectable

and the error is somewhat higher than that along the centerline.
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Figure 5.3 Heat flux distribution on the x direction centerline on face 2, e=0.8

100

80 -

S

s -
I_J

ê 4°

20 -

0.00

e=0.2
face 1 k-5

i

K

K

I

= 1.0

-0.5

i

i ZONE
DPM
DT100

0.75 1.50 2.25

distance x [m]
3.00

Figure 5.4 Heat flux distribution at k=5 on face 1 e=0.2
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Figure 5.5 Heat flux distribution at k=5 on face 1 e=0.8

The average relative differences (ARD) between the IPM or DT and the zone

method solution are given in a bar graph format on Figures 5.6 to 5.9, the ARD calculated

here over all the surface zones. The accuracy of the IPM method (Figure 5.6) seems to

depend strongly on the wall emissivity. In the case of black walls the relative difference

can be 2-3 times higher than for a 0.2 emissivity. The ARD is maximum in the gas

absorptivity range 0.5 � 1.0. It varies from 3% to 10% when the black wall case is

discarded from the examination.

The accuracy of the discrete transfer solutions increases rapidly with the number of

divisions of the hemisphere. For the high emissivity cases (0.8, 1) the application of 36

divisions yields ARD values lower than 10% over the whole gas absorption coefficient

range. If 100 solid angle divisions are used, ARD is between 5 and 10% for K=0.05 and

0.1, and around 5% for higher values of K depending slightly on the wall emissivity.
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With increasing number of solid angle divisions ARD decreases to less than 5% (Figure

5.9). For this simple radiation problem the accuracy is practically unchanged for more

than 400 solid angle divisions.

It is necessary to emphasize that for complex geometrical configurations, with

non-uniform zone sizes, more solid angle divisions may be necessary to obtain the same

accuracy. Examples of such geometrical configurations will be presented in the following

chapter.
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Figure 5.6 Average relative difference of surface heat flux between IPM and

zone method with respect to surface emissivity and gas absorption coefficient
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Figure 5.7 Average relative difference of surface heat flux between DT (36 solid angle

divisions) and zone method with respect to surface emissivity and gas absorption coefficient
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Figure 5.8 Average relative difference of surface heat flux between DT (100 solid angle

divisions) and zone method with respect to surface emissivity and gas absorption coefficient
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Figure S.9 Average relative difference of surface heat flux between DT (400 solid angle

divisions) and zone method with respect to surface emissivity and gas absorption coefficient

Maximum relative differences The use of average relative differences gives a good

indication of the overall accuracy, but it is also necessary to examine to what extent

the individual heat fluxes differ from those of the zone method. For this purpose, the

maximum relative differences have been formed:

DT/IPM fluxi - ZONE fluz
maximum relative difference = max

(MRD)

ZONE (5.2)

Attention has to be paid here to the stochastic nature of total interchange area

calculation. In the case of ARD, the random fluctuations of the zone flux values are

smoothed by the average formulation, but in MRD attention is focused on the most

inaccurate flux value. Figure 5.10 displays the maximum relative differences for the IPM

method. For K=0.05 and black walls, the maximum relative difference values can reach

40 � 50%. This location is on surface 4 at i=4,j=2. Figure 5.11 shows the y direction
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heat flux distribution for i�4 on surface 4 and the maximum error location marked by

arrows. Obviously a large stochastic error is added to the existing relative difference

value. In Figure 5.12 the lower curve shows the x direction flux distribution forj=2 on

the same surface, while the upper curve shows the heat flux distribution on face 2 atj=5

for K=0.1, e=1.0 through the maximum relative difference location. In the latter case the

maximum error is strictly due to the IPM inaccuracy.

The maximum relative differences of the DT method using 100 solid angle divisions

is shown on Figure 5.13. The stochastic nature of the zone method can be expected

to have the same influence on the results here, as for the IPM method. The maximum

difference is increasing with increasing surface emissivity, and decreasing with increasing

absorption coefficient In case K=0.05, the maximum differences are between 20-30%,

while for higher absorption coefficients they decrease to 8-15%.

For 400 solid angle divisions, the distribution of the maximum differences has a

similar trend, but the values are 3-5% lower than those obtained by 100 solid angle

divisions. If the number of solid angle divisions is increased to 900, the MRD stay

practically at the 400 division range (5-20%).
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Figure 5.10 Maximum relative difference of surface heat flux between IPM and

zone method with respect to surface emissivity and gas absorption coefficient

30

25

i:
10 face 4,

e=1.0
'� K=0.05

:

\

f1
=4

.
ZONE
IPM :
DT100 :

�

-

-

:

0.00 0.40 0.80 1.20 1.60

distance y [m]
2.00

Figure S.ll Heat flux distribution at i=4 on face 4 e=1.0 (Maximum error location marked by arrows)

Bibliothèque
Universiié du Québec à Chicoutitnï



5 Comparison of the methods 70

50

40

.g
^ 30

20

! .
face 4
K=0.(
e=l.C

� w � w �

, j=2
5

t

face 2
K=0.1
e=1.0

.�

i=5 .

�

�

�

ZONE
IPM
DT100

0.00 0.75 1.50 Z25 3.00

distance x [m]

Figure S.12 Heat flux distribution at j=2 on face 4 e=1.0 (Maximum error location marked by arrows)

S

60

50

40

30

20

10

DT 100 - zone max. relative difference
De=0.2

BE=0.8
� e=1.0

K=0.05

0.1

0.25 0.5
1.0 2.0

[I \
10 10"

gas absorption coefficient [1/m]

Figure S.13 Maximum relative difference of surface heat flux between DT (100 solid angle

divisions) and zone method with respect to surface emissivity and gas absorption coefficient

Volumetric radiative source terms The volumetric radiative source terms of the IPM

and discrete transfer methods can be compared to those of the zone method in a manner
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similar to the formulation of the ARD values in (5.1). The volumetric source terms are

given by equation (2.6) for the zone method, by equation (2.23) for the IPM and by

equation (2.29) for the DT method. Note that equation (2.29) gives only the contribution

of a single ray crossing the given zone and that the complete source term is obtained

by summing the contributions of all the rays crossing the zone. The absolute value of

the relative difference between the volumetric source terms obtained with IPM and DT

method and that obtained with the zone method is determined for every volume zone.

Then, the relative differences are summed over all the volumes and are divided by the

number of volume zones (nv) to find the average relative difference for the volumetric

sources (VRD):

average relative difference . n«
of the volumetric radiative = � T

nvsource (VRD) Jtv <=i

DT/IPM vol.sourcej - ZONE vol.sour cet
ZONE vol.sourcei

(5.3)

The VRD values of the IPM and of the DT method with 100 solid angle divisions

are given on Figures 5.14 and 5.15 respectively. In the case of the IPM the VRD values

are under 5% for the absorption coefficients 0.01, 0.05 and 0.1. For higher absorption

coefficients (0.5, 1.0, 2.0) the VRDs are over 10 % but they never exceed 15%.

The DT method is evaluated only for 100 solid angle divisions. The VRD values

stay under 5% for all the absorption coefficients except for the highest one (K=2.0),

where it is 6-7%.

The volumetric source terms are in good agreement with the values of the zone

method for both simplified methods, but it has to be kept in mind that the temperature

and the absorption coefficient within the gas volume were taken to be uniform.
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Figure S.14 Average relative difference of volumetric radiative source term between IPM

and zone method with respect to surface emissivity and gas absorption coefficient
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Figure S.1S Average relative difference of volumetric radiative source term between DT (100 solid angle

divisions) and zone method with respect to surface emissivity and gas absorption coefficient

Computation time The total interchange area computation of the Monte Carlo tech-

nique takes 95 % of the computation time of the zone method. The calculation time
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increases with decreasing surface emissivity, but it is most influenced by the gas absorp-

tion coefficient. The lower the surface emissivity or the gas absorption coefficient is, the

lower the possibility is for a ray to be absorbed by the wall or by the gas. Consequently

the ray has to be followed for a longer period.

If the boundary surfaces are not black, the discrete transfer method calculates

iteratively. The calculation time depends mostly on the number of iteration steps

necessary for the solution.

The IPM method computing time is independent of the radiative properties. The

direct interchange areas have to be calculated only once, provided that the zoning and the

properties are uniform. Table 5.2 displays the CPU times of the different methods with

respect to K for e=02. In Table 5.3 the CPU times are given with respect to e for K=025.

In the previous section the DT method proved to be very accurate in the case of

high (400,900) number of solid angle divisions. Table 5.2 and 5.3 show that the increase

in accuracy of the DT method is very costly in terms of computation time.

Table 5.2 CPU times of zone, IPM and DT methods at e=0.2 with respect to K (Computer SGI 4D/340)

e

02

K
0.01
0.05
0.1
0.25
0.5
1.0
2.0

CPU time [s]
zone
11780
9415
7497
4835
3234
2110
1327

DT36
187
165
135
98
67
52
37

DT100
565
513
436
308
214
148
124

DT400
1756
1584
1336
996
747
582
415

DT900
3725
3535
2977
2233
1673
1301
929

IPM
40

The speed of calculation for the DT method is comparable with that of the IPM only

for the 36 solid angle division case, for both of which the accuracies are similar. In the

case of higher solid angle divisions the calculation time of the DT method becomes one or
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two orders of magnitude higher than that of the IPM. With 900 solid angle divisions the

calculation time of DT method is already comparable (in the same order of magnitude)

to the calculation time of the zone method.

Table 5.3 CPU times of zone, IPM and DT methods at K=0.25 with respect to c (Computer SGI 4D/340)

e
0.2
0.5
0.8
1.0

K

0.25

CPU time [s]

zone
4835
3315
2432
2060

DT36
98
60
38
15

DT100
308
205
128
51

DT400
996
665
416
167

DT900
2233
1301
929
372

IPM
40

The ordinate axis of Figures 5.16 and 5.17 is the ratio of the CPU time of the zone

method over the CPU times of the IPM or DT method, the latter with different number of

solid angle divisions. These values are plotted against wall emissivity and gas absorption

coefficient on Figures 5.16 and 5.17, respectively. In other words Figures 5.16 and 5.17

show how many times faster the IPM or the DT method solves the test problem compared

to the zone method, with wall emissivity and gas absorption coefficient being varied.
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Figure 5.16 Relative speed of the IPM and DT methods

compared to the zone method with respect to e, at K=0.25

The IPM method, depending on the radiative properties, was found to be 50-120

times faster than the zone method. If DT method with 100 solid angle divisions is used

in which case the ARD is near 5 %, DT method is about 20 times faster than the zone

method.

With increasing gas absorption coefficient the calculation time of the zone method is

rapidly decreasing, which is illustrated by the strong negative slopes on Figure 5.17. The

computations were done on a 33 Mhz CPU of a Silicon Graphics 4D/340 workstation.
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Figure S. 17 Relative speed of the IPM and DT methods

compared to the zone method with respect to K, at e=0.5

5.3.2 Effect of increasing the number of divisions

So far in the given enclosure the influence of radiative properties on accuracy and

computation time have been analyzed for constant temperatures and zone sizes. Now the

radiative properties will be fixed, and the effect of increasing the number of divisions

will be examined. The gas absorption coefficient K and the surface emissivity e are set to

0.5 [1/m] and 0.8, respectively. Similarly to the previous section, the relative differences

are formed in order to compare the IPM and DT methods with the zone method. This

time the minimum relative differences are also introduced, which prove to be useful to

evaluate the behavior of the IPM. These are also defined by equation (5.2). They were not

used before because they are not influenced much by variations of radiative properties.

For this comparison, the number of solid angle divisions of the DT method were

kept at 100. Table 5.4 contains all the statistical data obtained by comparing the IPM
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and the DT methods with the zone method. Figure 5.18 illustrates more clearly the first

column of this table.

Table 5.4 Summary of the comparison of IPM and DT methods (100 solid angle

divisions) to the zone method as a function of increasing number of spatial divisions

Divisions

5 x 3 x 3

8 x 5 x 5

12 x 7 x 7

16 x 10 x 10

Average relative

diff[%]

IPM

5.7

113

15.5

20.2

DT

7.0

4.4

3.4

3.0

Maximum

relative diff [%]

EPM

10.0

19.9

29.2

38.0

DT

12.5

11.9

11.9

13.6

Minimum

relative diff [%]

IPM

1.6

1.8

6.4

10.0

DT

2.4

0.2

0.06

0.02

Cpu time

[s]

IPM

30

35

40

45

DT

30

128

326

1024

#of

surf,

zones

78

210

434

840

The IPM method is a simplification of the zone method. If the enclosure is divided

into one zone, the IPM method is equivalent to the zone method, and the ARD is zero. By

using more and more divisions the IPM method loses accuracy as it is clearly indicated by

the average relative differences. The computation time increases only very slightly with

the increasing number of zones, which is due to the iterative solution technique of the

linear equations containing the imaginary fluxes. The minimum and maximum relative

differences increase in the same proportion as the average relative difference, meaning

that the IPM flux distribution is uniformly moving away from the zone flux distribution

and that the increase in discrepancy is not due to local effects. Hence the IPM method is

not suggested to be used in case of high number of zonal divisions. Despite this weakness,

the IPM method is useful in many practical systems, as described in section 5.5.
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Figure 5.18 Variation of the ARD with increasing number of spatial divisions (first column of Table 5.4)

The DT method behaves oppositely to the IPM method. By increasing the number

of divisions, the ARD decreases. However the MRD stays constant, and this can be

explained by the fact that the number of solid angle divisions were kept unchanged. The

computation time of the DT method is strongly dependent on the number of divisions

used. If the divisions in x, y and z directions are multiplied by a factor rx, ry and rz,

respectively, the calculation time can be multiplied by the product of rx . ry . rz keeping

all the other conditions constant. This approximate relation is also valid for the zone

method, but it is also influenced by the gas absorption coefficient slightiy since the rays

can be absorbed along their path, while in case of the DT method the rays have to be

followed until hitting a boundary. The DT solution is getting very close to the zone

method solution in case of large number of divisions, but the computing time is still

rather high.



5 Comparison of the methods 79

5.4 Comparison in a cyiindricai enclosure

Figure 5.19 Cylindrical test enclosure

Table 5.5 Input data for the test in cylindrical coordinates

Dimensions
Divisions
Temperatures

face 21
face 2 h
face 5
face 6
gas

Emissivities
uniform on every face

Absorption coefficient
uniform

dia: 2 m, length: 3 m
8 x 8 x 4 (x,y,z - z, <f>j)

400 °C
600 °C
300 °C
500 °C
1300 °C

02, 0.5, 0.8, 1.0 (variable)

0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0 1/m
(variable)

In this case, unlike the tests in the rectangular enclosure, the results show flux

values close to zero not only at K=0.01 but also at K=0.05. In the rectangular case, due

to these small values, the relative difference values at K=0.01 were not presented. Here

the flux values lying in the interval [�5, 5] kW/m2 are excluded from the statistics. The

overall number of real surfaces is 128. However at e=0.2 and K=0.01 only 69 flux values

are included in the statistics, and only 83 at e=0.5, K=0.01.
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Figure 5.20 Average relative difference of surface heat flux between IPM and zone method

with respect to surface emissivity and gas absorption coefficient for the cylindrical case.

Heat fluxes lying in the interval [�5, S] kW/m2 are excluded from the statistics.

Figures 5.20,5.21 and 5.22 show the ARD values as a function of the gas absorption

coefficients and the surface emissivities for the IPM and DT methods in the given

cylindrical system. For the IPM method, even though the enclosure dimensions, the

number of spatial divisions and the input temperatures for the rectangular system are

very close to those of the present cylindrical case, the ARD values of the cylindrical

case are 2-4% higher. This is due to the fact that in the cylindrical system the ratio

of the number of imaginary planes to the number of real surfaces is 6.5, while in the

rectangular case it is only 2.5. As seen in section 5.3.2, an increase in the number of

imaginary planes increases the ARD, and consequently the accuracy deteriorates.

The accuracy of the DT method is similar for the cylindrical and for the rectangular

cases as indicated by the ARD values.
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Figure 5.21 Average relative difference of surface heat flux between DT (100 solid angle divisions)

and zone method with respect to surface emissivity and gas absorption coefficient for the

cylindrical case. Heat fluxes lying in the interval [�5, 5] kW/m2 are excluded from the statistics.
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Figure 5.22 Average relative difference of surface heat flux between DT (400 solid angle divisions)

and zone method with respect to surface emissivity and gas absorption coefficient for the

cylindrical case. Heat fluxes lying in the interval [-5, 5] kW/m2 are excluded from the statistics.
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5.5 Additional remarks

At this point, it is worthwhile to emphasize some additional advantages of the IPM.

� The IPM is fitted with a restricted ray tracing algorithm since the rays are to be

followed only in the individual zones. On the contrary, the DT and zone methods

need a more sophisticated ray tracing technique, since the rays are tracked through

the whole field. In this sense, in the absence of a good ray tracing technique, the IPM

can be more easily adapted to complex problems (e.g. non-uniform gas absorption

medium or irregular surface geometry) than the zone and the DT methods.

� In the case where some of the surface temperatures are not known (this was not the

case in the preceding examples), the DT method needs two levels of iteration: one

which is due to the intrinsic principle of the method (already explained in Section

2.3), the other which is related to the iterative solution of the heat balances at the

walls for temperature calculation. This drawback of the DT method leads to a more

complex procedure than that of the IPM where only one level of iteration is used

for such problems.

It should be added that the zone sizing restrictions of the IPM do not impose too strong

limitations in many practical cases. Provided the zoning is done correctly, this method

can yield very good results for complex problems, as can be seen in examples 1 and 4

of the next chapter.



Examples of complex
three dimensional cases

In this chapter the three radiation models are applied to stringent cases in order

to prove the versatility and robustness of the methods. The problems are solved by

the zone method for all cases in order to have a reference and with either the discrete

transfer (DT) or the imaginary planes (IPM) method. The results are presented in three

dimensions and graphical heat flux distributions are drawn at some selected places. For

the 3D grids, in many cases the 2D curvilinear grid generating system of Wu (1990)

was used, and the three dimensional representation of the results is due to the graphical

interface of Brisson (1991). These tools were essential for the successful completion of

the following examples.

6.1 Example 1 : cylindrical remelting furnace

This example models a cylindrical aluminum remelting furnace. Figure 6.1 gives

the schematic description of the furnace. The conic shape of the charge at the bottom of

the furnace is approximated by a stepwise cylindrical pyramid, which is treated by the

83
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blocking technique. A limited number of zones are used in the example, thus blocking

provides only a rough approach to the conic shape.

j0T8m

�«- B

(a) (b)

Figure 6.1 Description of the remelting furnace; (a) cross section, (b) top view

The radiative properties of the system are shown on Figure 6.1 and gathered in

Table 6.1. The bulk gas temperature is set at 800 °C and two combustion zones are

simulated by prescribing higher temperature and absorption coefficient at two locations.

The charge is kept at the melting temperature of aluminium (933 K). All the temperatures

are prescribed except that of the cylindrical wall of the enclosure which is calculated by

the models used. Gas flow pattern is not needed since the gas temperatures are specified.
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Table 6.1 Input

Number of divisions
x, y, z

Temperatures
circumferential
surfaces
top surface
bottom surface .charge
gas
flame
ambiant

Wall emissivities
top, circumferential surfaces
bottom, chaise

Gas absorption coefficient
gas
flame zone

Overall heat transfer coefficient
top, bottom, circumferential
surfaces

data for example 1

6,8,4

unknown

673
933

1073
1173
300

0.8
0.6

0.1
0.3

1.0

K
K
K
K
K

1/m
1/m

W/m2K

The example has been solved by the IPM and by the zone methods. Due to the

uniform cylindrical grid and only two different gas absorption coefficients, six different

direct interchange areas are calculated for the IPM. Newton method is used in the iteration

for the unknown temperatures of the circumferential surfaces in both the zone and the

imaginary planes methods with analytically formulated Jacobian matrix.

Selected results are shown in Table 6.2, where the heat fluxes and the temperatures

are presented for the horizontal and vertical faces of the pyramid steps in two radial

sections A and B. The influence of the combustion regions appears clearly in the table:

increased heat fluxes on the charge and increased temperatures at the wall in the vicinity

of these regions.
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Table 6.2 Results obtained with the IPM and zone method for the remelting

furnace (h and v refer to horizontal and vertical zone respectively)

Zone

top

�

�

�

�

bottom

Temperatures on the cylindrical
wall[°C]

sector A

IPM

721

752

780

779

747

687

zone

703

744

778

780

748

718

sector B

IPM

718

747

766

766

742

685

zone

701

735

752

752

741

716

Zone

3h

3v

2h

2v

lh

lv

Heat fluxes on the charge
[kW/m2]

sector A

n»M

15.5

19.6

19.7

12.6

12.9

8.8

zone

10.9

20.1

19.2

13.1

12.5

8.7

sector B

IPM

14.2

12.7

12.9

11.0

11.2

8.5

zone

8.8

11.6

10.8

10.9

10.6

8.8

Table 6.2 gives also a comparison between the zone method and the IPM. It is

seen that the IPM is very accurate in this case, except for the heat flux at the top part

of the charge (zone 3h). However, owing to the small area of this zone, the drawback

of the discrepancy is minor.

6.2 Example 2: cylindrical remelting furnace
with hemispherical dome

The configuration of the remelting furnace is now changed: the flat top becomes a

hemispherical dome and the charge dumped on the base is modelled as a cone (which will

become an octagonal regular pyramid in the curvilinear grid). The geometric arrangement

and dimensions are shown on Figure 6.2. The data is somewhat artificial, however

the main feature of the example is the combination of various geometrical elements (a

cylinder, a cone and a hemisphere) within the same enclosure which illustrates clearly

the flexibility of the technique developed in this thesis
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Figure 6.2 Cylindrical furnace with hemispheric dome and conic charge: geometrical arrangement

A curvilinear grid was inserted into one half of the cross-section of the radiation

space. It was then rotated around the axis of the cylinder to scan the three dimensional

volume, thus building the 3D grid. The 2D grid is shown on Figure 6.3. This grid would

give a regular rectangular region in the curvilinear coordinate space. Index j is running

horizontally from 7 to 5 and index k is running from 1 to 10. The third index i is running

around the perimeter from 1 to 8.

k=10
flame region

Figure 6.3 Two dimensional curvilinear grid used to generate the 3D grid



6 Examples of complex three dimensional cases 58

The physical conditions are listed in Table 6.3. The gas temperature is set to 1300

K, but four higher gas temperature regions are also created to represent the flames of

four burners at j=2-4, k=4-6 and at i=l, 3, 5, 7 around the circumference.

Table 6.3 Input data for example 2

Number of divisions

v,Ct
Temperatures

bottom, cone
cylinder, hemisphere
gas
flame zone

Wall emissivities
bottom, cone
cylinder, hemisphere

Gas absorption coefficient
gas
flame zone

5 x 10 x 8

500
900

1300
1800

0.6
0.8

0.1
0.5

K
K
K
K

1/m
1/tn

The radiation heat fluxes were calculated by the zone and DT methods. The discrete

transfer method used 400 solid angle divisions. The 3D representations of the heat fluxes

on the surfaces obtained by the zone and DT methods are given on Figures 6.4 and 6.5.

The 27 color shades of the color bar correspond to the heat fluxes on the surfaces. The

pictures can be rotated around the coordinate axes and magnified for details. Moreover,

the results of the two different methods can be displayed at the same time in two separate

windows on the screen, which enables the comparison of the flux distributions. The red

regions on the outside walls and the yellow regions on the conic charge represent the

effect of the flame region.
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Figure 6.4 Heat flux results using the zone method, example 2

Figure 6.5 Heat fiux results using the discrete transfer method, example 2

The resulting fluxes and volumetric radiative source terms of the DT method are

compared to those of the zone method by forming the average and the maximum relative
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differences as given by equations (5.1), (5.2) and (5.3). The results of the comparison

and the CPU times are shown in Table 6.4.

Table 6.4 Comparison of the heat fluxes and the computation time, example 2

Average relative difference

fluxes on the surface zones (ARD)
volumetric sources in the gas zones (VRD)

Maximum relative difference (MRD)
fluxes on the surface zones
volumetric sources in the gas zones

CPU time (SGI IRIS 4D/440)
Zone method
DT method (400 div)

divisions
5x10x8

3.3
37.9

18.8
205.7

3902
1305

v,C,t
10x10x16

1.9 %
15.2 %

9.9 %
165.45 %

21700 s
2780 s

The discrete transfer method predicts the surface fluxes with a very good accuracy

but the volumetric radiative source calculation is very inaccurate. The same example

with prescribed uniform gas temperature field (i.e. omitting the high flame temperature

regions) resulted in a VRD of 16% and a MRD of 80 % for the volumetric sources, which

can still be considered to be rather inaccurate. The example was repeated with doubled

circumferential and radial (77 direction) divisions under the same physical conditions.

The evaluation of the results is given in the rightmost column of Table 6.4. The

results still show a considerable MRD for the radiative sources while the VRD decreased

significantly. The volume source calculation needs improvement to avoid inaccuracies of

this magnitude. It appears at first hand that Shah's approximation (discussed in Chapter

2) should be reconsidered when curvilinear coordinates are used with a relatively coarse

grid.

The heat flux curves along the side of the cone are shown on Figure 6.6. The

higher heat flux curve at j=l, i=l refers to a position facing a hot gas (flame) region
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while the lower flux curve at j=l, i-2 corresponds to the section next to the previous

curve location between two hot regions.
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Figure 6.6 Heat flux curves along the side of the cone

6.3 Example 3: cylinders in a rectangular parallelepiped

Two cylinders are placed on the symmetry axis of a rectangular parallelepiped. The

positions and dimensions of this configuration are shown on Figure 6.7. The difficulty

of this example lies in the combination of a rectangular and a cylindrical shape.
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Sideview Topview
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Figure 6.7 Two cylinders in a rectangular parallelepiped: geometrical configuration

A 2D curvilinear grid (Figure 6.8) was generated in the y, z plane, and then moved

with equal increments in the x coordinate direction to generate the 3D grid.
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Figure 6.8 The 2D curvilinear grid of example 3

The temperatures, radiative properties as well as the divisions are specified in

Table 6.5.

The problem was solved by the zone and by the discrete transfer methods. Only

100 solid angle divisions were used with the DT method but it is sufficient due to the

homogeneous distribution of the zones.
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Table 6.5 Input data for example 2

Number of divisions
£, Tjt C direction

Temperatures
paralellepiped
cylinders
gas

Wall emissivities
paralellepiped
cylinders

Gas absorption coefficient
gas

8 x 15 x 10

573
773

1273

0.5
0.8

0.1

K
K
K

1/m

The 3D post-processing of the results are displayed on Figures 6.9 and 6.10. The

effect of the cylinders is well detectable on the side and on the bottom of the parallelepiped

in the case of both methods.

Bars in a r«t . parallelepiped. ZONE method

Figure 6.9 Heat flux results using the zone method. Example 3
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Figure 6.10 Heat flux results using the discrete transfer method. Example 3

The statistical comparison of the zone and the DT results is tabulated in Table 6.6,

Equations (5.1), (5.2) and (5.3) were used to form the relative differences.

Table 6.6 Comparison of the heat fluxes and the computation time, example 3

Average relative difference
fluxes on the surface zones (AKD)
volumetric sources in the gas zones (VRD)

Maximum relative difference (MRD)
fluxes on the surface zones
volumetric sources in the gas zones

CPU time (IRIS 4D/440)
Zone method
DT method (100 diy)

4.4 %
32 %

15.6 %

30969 s
1270 s

The relative difference values are very low for both the fluxes and the volumetric

sources although less solid angle divisions have been used than in example 2, where the

gas source calculation with the DT method was very inaccurate. In this example, the

temperature and radiative property distribution of the gas field were unifonn and the grid
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was finer, which resulted in accurate volume source computation. Similar experience

with the DT method is reported by Guilbert (1989).

The heat flux curves along the symmetry Une next to the cylinders on the bottom

surface at k=5 and halfway between the symmetry line and the wall at k=3 are presented

on Figure 6.11.
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Figure 6.11 Heat fluxes on the bottom plate of the parallelepiped

6.4 Example 4: rotary kiln

This example represents a geometrical configuration which can be encountered in

rotary kilns used in many industries. The difficulty of the example lies in the combination

of the cylindrical circumferential wall and the planar bottom surface. The geometry could

be well approached by using a cylindrical coordinate system and blocking the zones lying

underneath the bottom surface. In this case, for a realistic geometrical approximation,

high number of radial and circumferential divisions would have to be used which would

practically exclude the use of the zone method. Instead, a curvilinear 2D grid (Figure
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6.13) has been applied which was moved with equal increments along the length of the

enclosure to generate the 3D grid.

Figure 6.12 Geometrical configuration of a kiln shape enclosure

The temperatures of the front, end and circumferential surfaces are unknown and,

beside radiation, conduction in the walls is also considered. The bottom and the gas

temperatures are prescribed. In the gas, a flame zone is specified in a region defined by

j-3, 4, k=3..J and i=1....6. The direction and the origin of the coordinates are shown

on Figure 6.12. The example is solved by the IPM and the zone methods.
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Table 6.7 Input data

Number of divisions
(, tf, C direction

Temperatures
front, end, circumferential
surfaces
bottom surface
gas
flame zone
ambiant

Wall emissivities
front, end, side
bottom

Gas absorption coefficient
gas
flame zone

Overall neat transfer coefficient
front, end, circumferential
surfaces

for example 4

6 x 6 x 8

unknown

873
1273
1473
300

0.8
0.5

02
0.5

5.0

K
K
K
K

1/m
1/m

W/m2K

k=8

region

Figure 6.13 Two dimensional curvilinear grid used to generate the 3D mesh for example 4

The temperature distributions on the surfaces obtained by the zone method and by

the IPM are shown on Figures 6.14 and 6.15 respectively. The statistical effect caused

by computing the exchange areas with the Monte Carlo technique is clearly seen on

Figure 6.14.
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Figure 6.14 Temperature distribution using the zone method

Figure 6.15 Temperature distribution using the IPM method

The temperature distribution on the surfaces of the kiln are plotted at two selected

sections. One section is located on the side of the cylinder at i=2 spanning from the

bottom up to the symmetry line along the ( curvilinear coordinate from k�1 to 8 (Figure
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6.16), the other is located on the front (or rear because of symmetry) face at k=3 in the

t\ curvilinear coordinate direction (Figure 6.17).

I

1300.0

1280.0 -

1260.0 -

1240.0 -

1220.0 -

1200.0

1

�
-

- A

i

1

�

A

i

1

D
A

I

1

â

i

A

�

i l l .

A A :
A a D "
� :

-

�ZONE side, i=2
AIPM side, i=2

i i i '

position k in Ç direction

Figure 6.16 Temperature distribution on the circumferential side of the kiln, at i=2
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Figure 6.17 Temperature distribution on the front of the kiln, at k=3
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The results are compared based on the average and maximum differences (ARD,

VRD, MRD) for the surface heat fluxes, the volumetric sources in the gas zones and

also the calculated temperatures. The surface heat fluxes and temperatures show small

difference values, but in the case of the volumetric sources, the MRD and VRD values

are very high.

Table 6.8 Accuracy and speed of calculation of the zone and the IPM methods for the kiln example

Average relative difference [%]
fluxes on the surface zones (ARD)
temperatures on the surface zones (ARD)
volumetric sources in the gas zones'11 (VRD)

Maximum relative difference MRD [%]
fluxes on the surface zones
temperatures on the surface zones
volumetric sources in the gas zones*

CPU time (IRIS 4D/440)
Zone method
IPM

1.2
0.9
61.9

5.3
3.2

164.9

3346 [s]
900 [s]

'"The heat fluxes of absolute value smaller than 5 kW/m2 were not included in
the statistics

The IPM was less efficient in the kiln example computation, than it was for the

computation of the rectangular and cylindrical test cases. The zones do not have a uniform

shape because of the application of curvilinear coordinates. The direct interchange areas

had to be calculated for 48 zones due to differences is shapes. The iteration for the

unknown temperatures was carried out by the Newton method for both the zone and the

imaginary planes method. The Jacobian matrix necessary for the Newton method was

formulated analytically for both methods.



Conclusion

This work is basically divided into two parts: the assessment of the imaginary

planes and discrete transfer methods in rectangular and cylindrical coordinates, and the

application and comparison of the three methods (the imaginary planes, the discrete

transfer and the zone methods) in the case of selected complex enclosures.

As for the first part, the imaginary planes and the discrete transfer methods have

been compared with the zone method in a rectangular parallelepiped and a cylinder for

accuracy and computational performance. Comparisons were made for surface heat flux

and volumetric radiative source terms. Surface emissivity and gas absorption coefficient

were varied. The gas medium was considered as gray. The IPM proved to be sensitive

to surface emissivity and a loss of accuracy in the case of higher spatial divisions was

observed; however, the computational time requirements were very low. The discrete

transfer method was not very sensitive to radiant property variation, and the solutions

were very close to those of the zone method when 100 solid angle divisions were used;

however, computational time requirements were 3 to 6 times higher than that of the IPM,

especially in low-wall-emissivity cases due to its iterative procedure. This part of the

work stressed the inherent weaknesses and the limitations of the IPM and the DT methods,

101
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but, at the same time, fields for reliable application of these methods were shown to exist

This assessment study was made possible by the simultaneous development of a general

purpose ray tracing technique which became an indispensable tool.

In the second part of the study, the three aforementioned methods were applied to

more complex cases, and extension was made to curvilinear coordinates. The corner-

stone of this part was still the fact that the ray tracing technique could be adapted to these

more difficult problems. A major contribution of this work is that, above the fact that

simplified methods proved to be adequate in many cases, the applicability of the zone

method has been extended to cases that could not have been handled before. "Rigorous"

results can now be obtained for a wide range of complex examples.

An immediate extension of the current work would be the incorporation of real

gases. The assessment of the simplified methods relative to the zone method could

be done for the same examples. More work should also be done to explain the large

discrepancies obtained for the volumetric radiative source terms in examples 2 and 4

of chapter 6.

It would also be interesting to extend this work to semi-transparent media. The

zone method for instance, with the Monte Carlo technique for calculating interchange

areas, could be easily adapted to 3D radiation calculations in materials like glasses or

systems such as packed beds, piles or fluidized beds. In a second step, simplified methods

could then be tested by comparison to the reference solutions. Complex cases of mixed

conduction/radiation or conduction/convection/radiation could eventually be studied.
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Appendix A
Mathematical procedure related
to the imaginary planes method

In the imaginary planes method a set of linear equations is solved to obtain the

imaginary fluxes. The condensed form of these equations is reproduced from Chapter 2:

[BM]{Q} = {CM} (A.1)

The dimension of the system is given by the number of imaginary fluxes crossing the

imaginary planes. In a rectangular enclosure, having nx, ny, nz spatial divisions in the

three coordinate directions, the dimension of the system is:

dim = Z*nx*ny*nz + nx*ny + nx*nz + ny*nz (A.2)

In a rectangular enclosure divided by 10 spatial divisions in every coordinate direction, the

dimension of the set of equations is 3300, and the matrix BM has 10,890,000 elements,

thus requiring a very large memory storage. As a consequence of the way the equations

are formulated, the maximum number of non-zero elements in BM is 11 in each Une. In

the case of the above example, that means a maximum of 36300 non-zero elements. In

general, the maximum number of non-zero elements can be given by: 11 * dim.

With direct methods (for example the Gaussian elimination), the set of equations

cannot be solved economically in the case of high spatial divisions, or the solution is

hampered by excessive storage requirement.

The structure of BM is drawn on Figure A.l. The matrix is composed of 9

submatrices. The submatrices on both the upper and the lower side of the diagonal have
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a 3 band storage pattern, resulting in a sparse matrix structure. The maximum width of

the band in the main diagonal is 3, the other bands having a maximum of 2 elements.

Figure A.1 The storage pattern of matrix BM

A data structure is described by Dahlquist et al. (1974) for the storage of large

sparse systems. If A is a large sparse matrix, it can be stored by the means of three vectors

AN, JA, IA. AN contains the non-zero elements row by row. The column number in A

of the element AN(fc) is given in JA(ifc), while IA(fc) gives the position in vector AN of

the first element of the ith row of A. The last element in IA is equal to the total number

of elements in AN plus one. For example:

A =

[2 0 0 1 01
0 4 0 0 5
6 0 1 0 0
0 0 0 9 9

. 0 1 0 0 7
AN = (2, 1, 4, 5, 6, l", 9, 9, 1, 7)

JA = (1, 4, 2, 5, 1, 3, 4, 5, 2, 5)

IA = (1, 3, 5, 7, 9, 11)

(A.3)
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The number of memory storage places necessary to store the BM matrix using the

above storage principle becomes:

11 * dim + 11 � dim + dim = 23 * dim (A.4)

The set of equations, with only the non-zero elements, can be solved using an

iterative method. The Gauss-Seidel method works well in this case, but faster results

can be obtained by the successive overrelaxation (SOR) method. The iterative solution

is performing so well that it is worth to use it in the case of lower spatial distributions,

where the direct methods are still applicable.

If the IPM is used with iteration on temperatures, a set of nonlinear equations is

solved iteratively using the Newton method. Larouche (1989) explains how the Jacobian

matrix of the Newton method can be constructed analytically to increase the speed

of iteration. For the analytical formulation of the Jacobian matrix, BM"1 has to be

supplied. The most important feature of the iterative solution is that BM matrix is

not formulated, therefore the Jacobian matrix for the temperature iteration have to be

computed numerically.
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Appendix B
Assessment of the direct interchange
areas obtained for cylindrical cases

Hottel (1967) gives the direct interchange areas (DIA) for a cylinder filled with

gray gas, which has been subdivided with a cylindrical grid without using circumferential

divisions (keeping full annular zones around the axis). The DIAs between the gas zones

(gi), the lateral wall zones (w,) and the end wall zones (e,) are computed with numerical

integration and tabulated in terms of the optical thickness KB of the zone and of the

relative spatial position between the zones.

The author has used these results to test his Monte Carlo calculations of the total

interchange areas (TIA) in cylindrical systems. The emissivity was set to 1 in order to

compare with Hottel's DIAs. The computation was done with 8 circumferential divisions

and the DIAs so obtained were then summed to enable the comparison.

The geometrical configuration of the cylinder and the position of the zones for

which the DIAs are provided are shown on Figure B.I. For the Monte Carlo simulation,

B was taken as 1 m and 10,000 rays were emitted from every zone. Table B.I contains

the DIA values for the configuration of Figure B.I.
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B

Figure B.I Geometrical configuration of the cylindrical test case

Table B.I Verification of Monte Carlo method for direct interchange area

calculations (B=lm, 8 circumferential divisions, 10,000 rays emitted from every zone )

ëïgl

ëîëj

ëTEÏ

îûïffï

tûîëT

9ÏS2

gïm

9ïëï

KB
0.1

1.211E-1
1238E-1
2.786E-1
2.840E-1
1.660E0
1.644E0
1.588E-1
1571E-1
1.029E 0
1.018E 0
1.660E0
/.675£ 0
1.763E-2
1.8O0E-2
1.588E-1
iJS5£-i
1J211E-1
1.119E-1

0.25
2.246E-1
2362E-1
1.459E-1
7J09£-i
1.102E 0
i.09i£ 0
2.585E-1
2.603E-1
4.913E-1
4931E-1
1.102E 0
i.095£ 0
7.556E-2
7.175E-2
2.585E-1
2.483E-1
2246E-1
2J95£-i

1.0
2.145E-1
2Jd5£-i
5.831E-3
6.26S-J
1.723E-1
1.709E-1
1.304E-1
1237E-1
2.115E-2
2.073E-2
1.723E-1
1.746E-1
2.033E-1
1.941E-1
1.304E-1
1.184E-1
2.145E-1
1.935E-1

Hottel
Mon/e Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo

Hottel
Monte Carlo
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Appendix C
Assessment of the direct interchange

areas for irregular shape

Let rectangles A, B and C be black surfaces positioned in the geometrical con-

figuration given on Figure C.I. The rigorous values of the DIAs between rectangle A

and B and between A and C can be obtained analytically with the formulas given by

Siegel and Howell (1983); these will serve as references for comparison with the Monte

Carlo calculation.

Figure C.1 Geometrical arrangement for DIA calculation test for irregular shapes

Surface A is then subdivided into six irregular surface elements, as shown, and the

Monte Carlo technique for irregular shape is then applied (see section 3.4.4, uniformly

distributed emission points). For reference a regular grid is superimposed on surface A

and its spacing is set to 1 m. The DIAs are calculated between each tetragon and surfaces
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B and C, and then summed to give the desired values:

6

TÂJË = ^2
t=i
6

The results are given in the following table:

Table C.1 Comparison of DIAs between A, B and A, C obtained

analytically and by the Monte Carlo technique for tetragonal shapes

TÂsc

TÂ*B

Analytically

(Siegel & Howell)

7.08256

5.82336

Numerically

Monte Carlo

7.08549

5.78720

(C.1)

It is seen that the values are very close to each other. On the other hand, in section

3.4.5 a simplified method for emission point determination is proposed for the Monte

Carlo technique in irregular zones. Due to the simplification, the uniform distribution of

the emission points is not fulfilled, the effect of which is studied in Table C.2:

Table C.2 Comparison of DIAs obtained for the irregular surfaces

Ai using uniform and non-uniform emission point distribution

8Ax*B

SA7*B

»At*B

SA^'B

SAt*B

'Aa'B

Emission point
distribution

Uniform

05529

1.1189

0.7192

0.7299

15435

1.1227

Non-uniform

0.5485

1.0833

0.7480

0.7586

1.5199

1.0697

'Ax'C

SA,8C

*A,'C

SAt'C

3At8c

aAtsc

Emission point
distribution

Uniform

0.9603

1.9538

1.2191

05646

1.4243

0.9632

Non-uniform

0.9260

2.0166

1.3207

0.5827

1.3617

0.8607



no

The errors introduced by the simplified emission point calculation are in the range of

2-9 %. Considering that the Monte Carlo introduces a statistical error, it is recommended

to use the uniform emission point generation for highly irregular shapes (i.e. for shapes

far from rectangles) to avoid the accumulation of errors. The ratio of calculation time

with the uniform emission point generation compared to the non-uniform is 12 to 1.4.



Ill
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