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Abstract

In an age of explosive growth of digital communications and electronic data stor-
age, cryptography plays an integral role in our society. Some examples of daily use
of cryptography are software updates, e-banking, electronic commerce, ATM cards,
etc. The security of most currently used cryptosystems relies on the hardness of the
factorization and discrete logarithm problems. However, in 1994 Peter Shor discov-
ered polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. Therefore, it is of extreme importance to develop cryptosystems
that remain secure even when the adversary has access to a quantum computer; such
systems are called post-quantum cryptosystems. One promising candidate is based
on codes; in this thesis we focus more specifically on code-based identification and
signature schemes.

Public key identification schemes are typically applied in cryptography to reach the
goal of entity authentication. Their applications include authentication and access
control services such as remote login, credit card purchases and many others. One of
the most well-known systems of this kind is the zero-knowledge identification scheme
introduced in Crypto 1993 by Stern. It is very fast compared to schemes based on
number-theoretic problems since it involves only simple and efficiently executable
operations. However, its main drawbacks are the high communication complexity
and the large public key size, that makes it impractical for many applications.

Our first contribution addresses these drawbacks by taking a step towards reduc-
ing communication complexity and public key size simultaneously. To this end, we
propose a novel zero-knowledge five-pass identification scheme which improves on
Stern’s scheme. It reduces the communication complexity by a factor of 25% com-
pared to Stern’s one. Moreover, we obtain a public key of size of 4 KB, whereas
Stern’s scheme requires 15 KB for the same level of security. To the best of our knowl-
edge, there is no code-based identification scheme with better performance than our
proposal using random codes. Our second contribution consists of extending one of
the most important paradigms in cryptography, namely the one by Fiat and Shamir.
In doing so, we enlarge the class of identification schemes to which the Fiat-Shamir
transform can be applied. Additionally, we put forward a generic methodology for
proving the security of signature schemes derived from this class of identification
schemes. We exemplify our extended paradigm and derive a provably secure sig-
nature scheme based on our proposed five-pass identification scheme. In order to
contribute to the development of post-quantum schemes with additional features, we
present an improved code-based threshold ring signature scheme using our two pre-
vious results. Our proposal has a shorter signature length and a smaller public-key
size compared to Aguilar et al.’s scheme, which is the reference in this area.
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Zusammenfassung

Gegenwartig spielt die Kryptographie eine fundamentale Rolle bei der Absicherung
einer Vielzahl von tdglichen Anwendungen und Prozessen. Dazu gehoren beispiel-
sweise Software-Updates, E-Commerce und E-Banking Anwendungen. Die Sicher-
heit der am haufigsten in der Praxis eingesetzten kryptographischen Verfahren beruht
auf der Schwierigkeit, grofle Zahlen in ihre Primfaktoren zu zerlegen oder diskrete
Logarithmen zu berechnen. Im Jahr 1994 présentierte Peter Shor Algorithmen,
mit denen das Problem der Faktorisierung und des diskreten Logarithmus in poly-
nomieller Laufzeit mittels Quantencomputern gelost werden koénnen. Daher ist es
von auflerster Bedeutung nach Alternativen zu suchen, die langfristig als Ersatz
fungieren. Als mogliche Kandidaten kommen Code-, gitter-, multivariate-, und hash-
basierte Kryptosysteme in Betracht, die in den letzten Jahren grofie Erfolge verzeich-
nen konnten. Die Untersuchung und das Design von Code-basierten Identifikation-
und Signaturverfahren stellen den Kerninhalt dieser Arbeit dar.

Im Jahr 1993 wurde von Jacques Stern das erste effiziente Identifikationsver-
fahren verdffentlicht, welches auf Codierungstheorie basiert. Es hat allerdings zwei
Nachteile, welche die Grofle des offentlichen Schliissels und die hohen Kommu-
nikationskosten betreffen. Zu diesem Zweck schlagen wir ein neues 5-Pass Zero-
Knowledge-Identifikationsverfahren vor, das unseres Wissens nach alle Code-basierten
Verfahren tibertrifft. Mittels unserer Konstruktion werden die Kommunikation-
skosten um bis zu 25% und die Grofe des 6ffentlichen Schliissels von 15 KB auf 4 KB
im Vergleich zum Verfahren von Stern reduziert. Als weiteres Ergebnis prasentieren
wir eine Verallgemeinerung der Fiat-Shamir Heuristik, welches eines der wichtigsten
Paradigmen in der Kryptographie darstellt. Diese wird dazu verwendet, um aus
einem kanonischen (3-Pass) Identifikationsprotokoll ein Signaturverfahren zu kon-
struieren. Ebenfalls entwickeln wir einen Sicherheitsbeweis fiir diese Transformation
fiir Protokolle, die nicht kanonischen sind. Mit dieser Verallgemeinerung kann man
nun unsere Identifikationsverfahren als auch viele andere nicht kanonischen Iden-
tifikationsprotokolle zu sicheren Signaturverfahren transformieren. Im letzten Teil
schlagen wir ein Threshold Ring Signaturverfahren vor, ein Signaturverfahren mit
speziellen FEigenschaften, dem das vorgeschlagene Zero-Knowledge-Identifikations-
verfahren zugrunde liegt. Es stellt sich heraus, dass unsere Konstruktion in Bezug
auf die Signaturlange, die Grofle des 6ffentlichen Schliissels und die Signaturkosten
effizienter ist als alle bekannten Code-basierten Threshold Ring Signaturverfahren.
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1 Introduction

Today, cryptography is embedded in all aspects of our life to protect our privacy.
The security of many popular transactions such as: online shopping, secure elec-
tronic mail, automatic software updates, secure computer access, health care ser-
vices, etc., can be ensured using cryptographic methods. Security is basically de-
fined as integrity, confidentiality, authentication, and non-repudiation. To achieve
these security services there are some traditional cryptography tools, such as encryp-
tion schemes, digital signatures, and identification protocols. Cryptography can be
broadly classified into symmetric cryptography which uses a single key that both
the sender and recipient know, and asymmetric cryptography (or public-key cryp-
tography) that uses two different keys: a public key and a private key. The main
advantage of public-key cryptography compared to symmetric cryptography is to
remove the need for in-person meetings or trusted couriers to exchange secret keys.

Currently, public key cryptography has been dominated by two major families
of cryptographic classes: primitives whose security is based on the assumption that
factorisation of large integers is a hard problem, such as the Rivest-Shamir-Adleman
(RSA) algorithm [71], and primitives, whose security is believed to be contingent
on the difficulty of the discrete logarithm problem, such as the Digital Signature
Algorithm (DSA) [54].

Quantum computation arises much interest in cryptography, since Peter Shor
found a polynomial-time algorithm to solve the factoring and discrete logarithm
problems using quantum computers [78]. Therefore, it naturally follows that quan-
tum computers would render all widely used public key cryptosystems insecure. This
is one of the principal reason to motivate the research of alternatives that can resist
quantum attacks. Such alternative systems are called post-quantum cryptosystems.
The most promising ones, at least for the moment, are based on codes, lattices, hash
functions, and multivariate systems over finite fields.

Since the publication of McEliece’s encryption scheme in 1978 [52], which was the
first attempt to introduce error-correcting codes in cryptography, code-based cryp-
tography has received much more attention in recent years. Many other proposals
to build cryptosystems followed based on the hardness of the syndrome decoding
problem which is now well studied and strongly believed to hold. The class of
cryptographic schemes build on error-correcting codes, encompasses public key en-
cryption schemes (e.g. [52, 57]), signature schemes (e.g. [26, 49]), identification
schemes (e.g. [81, 88]), as well as hash functions and stream ciphers (e.g. [5, 38]).
This thesis focuses more specifically on the code-based identification and signature
schemes.

Identification schemes are very useful and fundamental tools in many applications
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such as electronic fund transfer and online systems for preventing data access by
invalid users. Such schemes are typical applications of zero-knowledge interactive
proofs [43], which are two-party protocols allowing a party called a prover to con-
vince another party called a verifier, that it knows some secret piece of information,
without the verifier being able to learn anything about the secret value except for
what is revealed by the prover itself. Zero-knowledge identification schemes are
of particular interest because it is possible to convert them into secure signature
schemes through the very famous Fiat-Shamir paradigm [32].

Besides the fact that designing code-based identification schemes offer security
against quantum attacks, these schemes have other good features. Firstly, they are
usually very fast and easy to implement compared to schemes based on number-
theoretic problems as they use only matrix-vector multiplications. Secondly, their
security are directly related to the syndrome decoding problem. Finally, the com-
plexity of attacks against code-based identification schemes can be given in the ex-
pected number of binary operations and not only through asymptotic estimations,
as in the case of lattice-based cryptosystems for example.

At Crypto 1993, Stern proposed an efficient code-based identification scheme using
binary random codes, which is still today the reference in this area. This scheme
is a multiple round zero-knowledge identification protocol, where each round is a
three-pass interaction between the prover and the verifier with a soundness error of
2/3. Unfortunately its major weakness is the high communication complexity, this
comes from having to repeat the protocol many times in order to reach a prescribed
level of authentication. Another drawback is the large public key size, as for all
code-based schemes. For 80-bit security level and a cheating probability of 2716 (a
weak authentication level according the norm ISO/IEC-9798-5), the public key size
of Stern’s scheme is around 15 KB, where the size of the communication complexity
is more than 5 KB.

This thesis makes a step further by improving the Stern’s scheme in terms of the
communication complexity and public key size. We contribute further by extend-
ing one of the most important paradigm in cryptography, namely the Fiat-Shamir
paradigm. Finally, we present an improved code-based signature scheme with addi-
tional properties.

Summary of results

Chapter 2 gives the background for the remainder of the thesis. It introduces the
principal notions for codes, hard problems in coding theory, and an overview featur-
ing the existing code-based signature schemes. Chapters 3 - 5 present our results.
Finally, we resume and point out open problems and future fields of research in
Chapter 6. In the following, we present a short summary of Chapters 3 - 5.

Code-based ldentification Scheme (Chapter 3) This chapter is based on [19]
presented in SAC 2010. Starting from Stern’s scheme, we present an improved iden-
tification scheme based on the hardness of the syndrome decoding problem defined
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over ;. Our scheme is a multiple round zero-knowledge identification protocol,
where each round is a five-pass interaction between the prover and the verifier with
a soundness error of 1/2 instead of 2/3 by Stern’one. Due to this fact we can reach
any desired authentication level in fewer rounds, which has a positive impact on the
communication complexity. Our scheme reduces this complexity by a factor of 25%
compared to Stern’s scheme. Moreover, it permits to obtain a public key of size of
4 KB, whereas that of Stern’s scheme is 15 KB for 80-bit security and a cheating
probability of 2716, Further, we provide a comparison of our scheme to other post-
quantum identification schemes having similar features to ours. At the end of this
chapter, implementation results will be provided confirming the advantage of our
construction compared to Stern’s scheme and its dual version proposed by Véron
[88]. As far as we are aware, there is no code-based identification scheme with better
performance than our scheme using random codes.

Extended Security Arguments for Signature Schemes (Chapter 4) This chapter
is based on [29] presented in AfricaCrypt 2012. It is motivated by the previous
chapter and other recent proposals in different areas [18, 80, 19, 73, 2, 76]. In
all these works, a number of five-pass identification schemes have been presented
providing better communication complexity compared to three-pass identification
schemes in their corresponding area. Indeed, they fall outside the original framework
if we want to transform them into existentially unforgeable signature schemes, since
the original framework works only for canonical (three-pass) identification schemes.
Therefore we enlarge the class of identification schemes to which the Fiat-Shamir
transformation can be applied in order to obtain new efficient signature schemes.
Furthermore, we provide a security proof of the resulting signatures in the random-
oracle model following the work of Pointcheval and Stern presented at Eurocrypt
1996 [65]. To this end, we extend the well known forking lemma which is the main
tool of the proof. As an application, we show explicitly in this chapter how to
convert Stern’s and our identification scheme to signature schemes, after that, we
give the security arguments of such transformations. Finally, we show the running
times for our C implementations of the obtained signature schemes. As a result, we
obtain three very fast signature schemes, thus it is possible to sign and verify in the
order of milliseconds. However, the signature sizes are typically about 19 KB for
our scheme and 25 KB for Stern’s and Véron’s schemes for 80-bit security.

Improved Code-based Threshold Ring Signature Scheme (Chapter 5) This chap-
ter is based on [17] presented in WAIFI 2012. In this chapter we present an improved
code-based threshold ring signature scheme, which is fully anonymous and unforge-
able based on a proof of knowledge in the random-oracle model. Our proposal is
obtained through the application of the extended Fiat-Shamir transform to our five-
pass identification scheme presented in chapter 3. Since this latter scheme has a low
soundness error allowing a specified security to be reached in few rounds, this fact
is used to achieve a threshold ring signature scheme with shorter signature length,
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smaller public key size and signature cost compared to Aguilar et al.’s scheme, which
is the most efficient threshold ring signature scheme based on coding theory. At the
end of this chapter, we give both the theoretical comparison and the implementa-
tion results of the two schemes, in order to confirm the advantage of our proposal
in terms of performance.



2 Coding Theory and Cryptography

In this chapter we give some basic mathematical definitions and principal tools re-
lated to coding theory that are prerequisite for the following chapters. We also
introduce the basic cryptographic schemes that we need throughout this thesis. Fi-
nally, we present an overview featuring the main proposals for code-based signature
schemes.

2.1 Introduction

The study of error-correcting codes and the associated mathematics is known as cod-
ing theory. It was introduced in the middle of the 20th century by Claude Shannon
in a paper called “A Mathematical Theory of Communication” [77]. This discipline
deals with the transmission of messages over noisy channels (WiFi network) or the
storage of data to unreliable media (CD, hard disk). More specifically, if we suppose
that an encoder converts a message into a codeword which is transmitted over noisy
communication channels. The main goal is to find an efficient decoder which is able
to correct possible added errors and convert the transmitted codeword back into the
original message. The efficiency of a decoder depends on the used code.

In 1978, McEliece was the first one to introduce error-correcting codes in crypto-
graphy by presenting his code-based encryption scheme [52]. The general idea is to
identify encryption with encoding, which consists of mapping the message to be sent
to a codeword in the public code and then adding errors to it. The decoding step
is identified with decryption, where the receiver is able to decode the transmitted
message by using secret knowledge.

2.2 Coding Theory

We give in this section the basic definitions of coding theory. For a more extensive
background we refer to [77]. We limit ourselves to linear codes over finite fields,
which we capture in the following definition.

Definition 2.1 (Error-correcting code). Linear codes are k-dimensional subspaces
of an n-dimensional vector space over a finite field Fy, where k and n are positive
integers with k < n, and ¢ a prime power. In short, linear codes with these param-
eters are often denoted [n, k]-codes.

In this thesis, we denote a [n, k]-code by C. The elements of the set C are called
codewords. The co-dimension r of a code C is defined as r =n — k.
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Remark 2.2. If g equals 2 we speak of binary linear codes, otherwise we speak of
q-ary linear codes.

Remark 2.3. The ratio R = k/n is known as code rate and measures the informa-
tion rate, i.e. the proportion of useful data transmitted in each codeword.

Definition 2.4 (Error-correcting capability). Let w be a positive integer. We say
that a code C is able to correct w errors if, for each codeword, it is possible to detect
and correct any configuration of w errors occurred during its transmission.

Any subvectorspace of a code C is said to be a subcode of C, we can also define a
notion of subfield subcode which is often used for constructing some special codes.

Definition 2.5 (Subfield subcodes). Let m be a positive integer and C be a code
defined over an extension field Fym of F,. A subflied subcode C’ of C is the restriction
of C to Fy:

' =Cpg, = CNFL.

As codes are treated as vector spaces, we often define them by the matrices related
to the code.

Definition 2.6 (Generator matrix, parity-check matrix). Let C be a linear code
over F,. A generator matrix G of C is an k x n matrix whose rows form a basis of C:

C:{IL‘G:$EF'I;}.

A parity-check matrix H of C is an r X n matrix whose rows form a basis of the
orthogonal complement of the vector subspace C, i.e. it holds that,

C:{xEFZ:HxT:()}.

Definition 2.7 (Syndrome). The syndrome of a vector x € Fy with respect to H
is the column vector HxT € I,

In particular, the elements of a code C have zero as syndromes.

Remark 2.8. The two matrices G and H are not unique and by a linear transfor-
mation one can easily determine a parity-check matrix from a generator matrix for
a linear code C. In particular, given a matrix G in systematic form, i.e., G = (I;|R)

where I, denotes the k x k identity matrix and R € F];X(n_k), then H = (—R"|I,,_3)
is a parity-check matrix for the code C.

Definition 2.9 (Hamming distance, Hamming weight, minimum distance). The
Hamming distance dist(x,y) between two words z,y € Fy is the number of coordi-
nates where they differ. The Hamming weight of a vector x is the number of non-zero
entries. We use wt(z) to represent the Hamming weight of . The minimum distance
d of a linear code C is the smallest Hamming distance between different codewords.
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In many cases, we simply write weight instead of Hamming weight and distance
instead of Hamming distance.

Remark 2.10. The minimum distance of a code C is fundamental to determine its

error-correcting capability. More formally, for a word x and w < @ , a decoding

algorithm uniquely outputs the closet codeword c if d is the minimum distance of
C. In particular, a linear code with minimum distance d has an error-correcting
capability w = L@J A code with these properties is denoted an [n, k, w]-code.
In the following sections we introduce some special types of codes that we need in
some parts of this thesis.

2.2.1 Goppa codes

Goppa codes were introduced by Valery D. Goppa in [85, 86]. This class of codes
was used by McEliece to define his cryptosytem. We first define generalized Reed-
Solomon codes which are strongly related to the class of Goppa codes.

Definition 2.11 (Generalized Reed-Solomon code). Let g a prime power and m be
a positive integer. Given a sequence L = (Lg,...,L,_1) € Fym such that the L; are
pairwise different elements of Fym and a sequence D = (Dy, ..., D,_1) where D; are
nonzero elements of Fym. The generalized Reed-Solomon code GRS, (L, D) is the
[n, k,w]-code defined by the following parity-check matrix

1 1
LO Ln—l DO 0
H = . :
: i 0 Dy
-1 -1 1
ot B n

The alternant code; denoted <7 (L, D), is a subfield subcode of the generalized Reed-
Solomon code GRS,,(L, D).

Definition 2.12 (Goppa codes). Given a sequence L = (Ly,...,L,_1) such that
the L; are pairwise different elements of Fy» and a polynomlal g(a:) € Fymz] of
degree w such that g(L;) # 0 for 0 < i < n. The Goppa code I'(L, g ) over F,
s @/(L,D), the alternant code over F, that corresponds to GRS, (L, D), where

D= (g(LO)_la cet ag(Lnfl)_l)‘

2.2.2 Quasi-cyclic, quasi-dyadic codes

Code-based cryptosystems suffer from a major drawback, they require a very large
public key which makes them very difficult to use in many practical situations. To
mitigate this drawback, there have been some proposals which consists in replacing
a matrix defining a code by a particular type of matrices with a very compact
representation. We present two examples of such proposals which are relevant to
this thesis. The first one by Berger et al. consists in using quasi-cyclic codes [11].
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The second one by Misoczki and Barreto uses quasi-dyadic codes [53]. A parity-
check matrix H is called a quasi-cyclic matrix (resp. quasi-dyadic matrix), if H is
a rob = r X n = ngb matrix consisting of rg X ng blocks of b x b spare circulant
(resp. dyadic) submatrices, for some integer b. The same holds true for the case of
a generator matrix by replacing r = rob and k = kgb.

A circulant matrix is defined by a vector (aj,as,...,ay) € ]FZ and has the following
form:
al as as ... ap
R a, a1 a2 ... QAap-1
as az a4 ... al

A matrix (I|R*) is called double circulant matrix.
A dyadic matrix is recursively defined: any 1 x 1 matrix is dyadic and for p > 1,
a 2P x 2P dyadic matrix has the form:

B C
* __
w05 ),
where B and C are 2P~ x 2P~ dyadic matrices. To give an example, an 4 x 4 dyadic
matrix has the following form:

R* =

Q0o o
o L e o
SR QU0
Q O

where a, b, c,d € F,.

The advantage of a parity-check quasi-cyclic resp. quasi dyadic matrix is the fact
that the whole matrix can be reconstructed from the knowledge of the first rows of
the rokg blocks. This is the trick to reduce a public key element.

2.3 Provable Security

The concept of provable security in cryptography has the goal to offer formally
veriable guarantees that no adversarial strategy will be successful to break a scheme
as long as certain assumptions hold. Most of all, it is possible to provide a proof
of security using a black-box polynomial-time Turing reductions. A reduction proof
works by the method of contradiction; if there exists an adversary that breaks the
scheme, then there exists an algorithm that breaks the underlying problem. There
are mainly two models of providing this security proof, the first one is called the
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standard model and the second one is called the random-oracle model. These two
models will be defined below.

Definition 2.13 (Standard model). A standard model in cryptography is the model
of computation in which the adversary is only limited by the amount of time and
computational power available.

This is the “real” world scenario. Schemes that are proven secure using only com-
plexity assumptions are said to be secure in the standard model.

Most of all, it is difficult to achieve security proofs in the standard model, there-
fore, the idea is to replace cryptographic primitives by idealized versions, called
random oracles.

Definition 2.14 (Random oracle). A random oracle is a mathematical abstraction
that works as a theoretical black box, that is, an oracle that answers to every query
with a uniformly random sample. For any specific query, the output returned is
always the same.

Random oracles are very useful to represent functions that need to have a truly
random behavior, most commonly cryptographic hash functions. When used in
reduction proofs, the random oracle allows the reduction algorithm to adaptively
program the input-output behavior outside of the view of the remaining algorithms.
This technique allows security proofs for schemes that are otherwise hard or impos-
sible to prove secure under standard assumptions.

Definition 2.15 (Random-oracle model). A Random-oracle model is a heuristic
used to provide security arguments for cryptographic protocols by modeling crypto-
graphic hash functions with perfectly random functions.

When we give a security proof for a scheme in the random oracle model, we say that
this scheme is secure in the random-oracle model.

One major application of random oracles is the Fiat-Shamir heuristic, which allows
to turn interactive identication protocols into digital signature schemes.

2.4 Cryptographic Primitives

We begin by introducing some notations and briefly reviewing some definitions. A
function u(-) is negligible in n (a positive integer), or just negligible, if for every
positive polynomial p(-) and all sufficiently large n, it holds that u(n) < 1/p(n).
Otherwise, we call u(-) non-negligible. Note that the sum of two negligible functions
(resp. non-negligible) is again negligible (resp. non-negligible) whereas the sum of
one non-negligible function 7(-) and one negligible function p(-) is non-negligible,
i.e. there exists a positive polynomial p(-) such that for infinitely many n’s it holds
that 7(n) + p(n) > 1/p(n).
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Two distributions ensembles {X,, }en and {Y), },en are said to be (computation-
ally) indistinguishable, if for every non-uniform polynomial-time algorithm D, there
exists a negligible function p(-) such that

[Pr[D(Xn) = 1] = Pr[D(Ys) = 1]| < u(n).
A random variable X has min-entropy k, denoted Hoo(X) = k, if
max, Pr[X =] =27
Here, we recap the definitions and security models of hash functions.

Definition 2.16 (Hash function). Let H be a function on A whose range B is a set
of strings of fixed length n. Then H is a cryptographic hash function if it satisfies
the following properties:

e Computability: For all z € A it is easy to compute H(z).

e Preimage resistance: For all y € B it is computationally infeasible to find
x € A such that y = H(x).

e Second-preimage resistance For all z € A it is computationally infeasible to
find 2/ # x such that H(z') = H(z).

e Collision resistance: It is computationally infeasible to find z, 2’ € A such that

x # o' and H(x) = H(z').

The value H(x) is called message digest or simply digest. Clearly, all the properties
are required in order to ensure that a malicious adversary is unable to modify the
input without changing its digest. Usually the data is encoded in binary, and we
have A = {0,1}* (bit-strings of arbitrary length) and B = {0,1}".

In the following we recap the definitions and security models for identification and
signature schemes.

Definition 2.17 (Identification scheme). An identification scheme consists of a
probabilistic polynomial-time algorithm KeyGen and two probabilistic polynomial-
time interactive algorithms P and V with the following properties:

e The algorithm KeyGen is a key generation algorithm. It takes as input a
security parameter  and outputs a pair of strings (sk, pk), pk is called a public
key, and sk is called a secret key.

e P receives as input the pair (sk,pk) and V receives as input pk. After an
interactive execution of P and V, V outputs an 1 (indicating “accept”) or a 0
(indicating “reject”). For a given sk and pk, the output of V at the end of this
interaction is a probability space and is denoted by < P(sk, pk), V(pk) >.

10
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For the security proof we use the concept of zero-knowledge interactive proof of
knowledge system. In such context, P has as goal to convince a V that a given
string x belongs to a language L, without revealing any other information. This
kind of proof satisfies three properties:

1. Completeness: any true theorem can be proven. That is, Vo € L
(< P(sk,pk), V(pk) > [z] = 1) > 1 — u(n). (u(n) is a negligible function on
some security parameter ).

2. Soundness: no false theorem can be proven. That is, Vo ¢ L VP’ (malicious)
(< P’(sk, pk), V(pk) > [z] = 1) < 1/2, where P’ denotes any entity playing the
role of the real P.

3. Zero-Knowledge: anything one could learn by listening to P, one could also
have simulated by oneself. That means, there exists a probabilistic polynomial-
time simulator (Sim) such that no polynomial-time distinguisher can tell whether
V is interacting with an honest prover or interacting with the simulator.

Remark 2.18. Assuming that one round of an identification protocol has a sound-
ness error equals A. In order to detect cheating P, the protocol has to be run
several times. For example, to achieve an authentication level L, one determine the
minimum number of rounds & such that: \° < L.

Definition 2.19 (Signature scheme). A digital signature scheme is a collection of
the following algorithms S = (KGen, Sign, Vf) defined as follows.

KGen(1") is a probabilistic algorithm which, on input a security parameter &, out-
puts a secret and a public key (sk, pk).

Sign(sk, M) is a probabilistic algorithm which, on input a secret key sk, a message
M, outputs a signature o.

Vf(pk, M,0) is a deterministic algorithm which, on input of a public key pk, a
message M and a signature o, outputs either 1 (= valid) or 0 (= invalid).

We require correctness of the verification, i.e., the verifier always accept genuine
signatures. More formally, for all (sk, pk) - KGen, any message M, any
o « Sign(sk, M), we always have Vf(pk, M,0) = 1.

For signature schemes we require that no outsider should be able to forge a signer’s
signature. The following definition captures this property formally.

Definition 2.20 (Unforgeability of a signature scheme). A signature scheme S =
(KGen, Sign, Vf) is unforgeable under adaptive chosen message attacks if for any effi-
cient algorithm A making at most qs oracle queries, the probability that the following
experiment returns 1 is negligible:

11
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Experiment Unforgeability’; (»)

(sk, pk) < KGen(1¥)

(O'*,M*) <__AOSign(sk,-)(pk)
OSign(-) on input M
outputs o < Sign(sk, M)

Return 1 iff
Vf(pk, M*,0*) =1 and
M* was not queried to OSign(sk,-) by A

The probability is taken over all coin tosses of KGen, Sign, and A.

Definition 2.20 captures unforgeability against adaptively chosen message attacks for
signature schemes. Unforgeability against no-message attacks is defined analogously
but ¢s; must be 0.

2.5 Code-based Cryptography

We describe in the following the main hard problems on which the security of code-

based schemes presented in this paper relies. We denote by x ﬁ A the uniform
random choice of x among the elements of a set A. The symbol | denotes the
concatenating operator.

2.5.1 Hard problems

Definition 2.21 (Binary Syndrome Decoding Problem (SD)).
Input : H & Fy ",y & F?%, and an integer w > 0.
Find : a word s € F} such that wt(s) < w and Hs? = y.

This problem was proven to be NP-hard in 1978 [10]. A dual version of the previous
problem, using the generator matrix G instead of the parity-check matrix H of the
code C, can be defined as follows.

Definition 2.22 (General Decoding Problem (G-SD)).

Input : G & Fhxn gy & F%, and an integer w > 0.
Find : A pair (z,¢) € F¥ x F?, where wt(e) < w s.t 2G 4+ e =y.

GD states that given a vector y € F¥, find the (unique) codeword x € C, such that
wt(z — y) is minimal. GD is also proven to be NP-hard. Moreover, it is assumed
that it is hard not only for some worst-case instances, but hard on average.

An extension of the binary syndrome decoding (SD) problem over an arbitrary
finite field can be formulated as well.

Definition 2.23 (g-ary Syndrome Decoding (¢SD) problem).
Input : H & Fo" y & 7, and an integer w > 0.
Find : a word s € I such that wt(s) < w and HsT =y.

12



2 Coding Theory and Cryptography

The ¢SD problem was proven to be NP-hard by A. Barg in 1994 [6]. We define a
variant of this problem in the case y = 0.

Definition 2.24 (g-ary Minimum Distance (¢qMD) problem).

Input : H ﬁ IE‘ZX”, and an integer w > 0.
Find : a word s € I}/ such that wt(s) < w and HsT =0.

Notably the difficulties of solving the two problems (¢SD and ¢MD) are equivalent
[83]. The intractable assumptions associated to these problems are respectively
denoted by ¢SD assumption and gMD assumption.

We now present a very important bound for linear codes. Gilbert [40] and Var-
shamov [87] independently developed bounds on the maximum size of a code. Based
on these bounds, Barg [6] proposed the related Gilbert-Varshamov distance.

Definition 2.25 (Gilbert-Varshamov distance, Gilbert-Varshamov bound). Let C
be an [n, k] linear code over Fy, the Gilbert-Varshamov (GV) distance is defined as
the maximum integer dy such that

S ()@ =17 < gt

If a weight w of C satisfies w < dp, we have a unique solution to SD problem. Other-
wise, multiple solutions exist [62]. It follows that decoding problems are meaningful
only if the weight w is small.

Let Hy(x) be the g-ary entropy function, given by:

Hy(z) = rlog,(q — 1) — xlogq(x) — (1 —xz)log, (1~ x) .

It is well-known that for sufficiently large n random linear codes reach the so called
the Gilbert-Varshamov (GV) bound:

Suppose 0 < ¢ < (¢ — 1)/q. Then there exists an infinite sequence of (n, k) g-ary
linear codes with d/n = £ (d is the minimal distance of the code) and rate R = k/n
satisfying the inequality:

R>1—Hy &)  Vn.

Remark 2.26. Like random binary codes, it is proved in [36] that quasi-cyclic codes
can asymptotically approach the Varshamov-Gilbert bound. This issue is still an
open problem for quasi-dyadic codes.

2.5.2 Attacks on code-based cryptosystems

The most successful attacks on code-based cryptosystems can be classified in two
major classes: decoding attacks and structural attacks. The first class is used to
decode a given cipher which has no visible structure, and the second one try to
recover the structure of the secret code from the public key. In this thesis, we
consider only decoding attacks, since we use only random codes in our constructions.

13
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The most efficient decoding attack in this case is the Information Set Decoding (ISD)
algorithm. Some improvement of this algorithm have been developed by Peters [63],
Niebuhr et al. [56], Bernstein et al. [12], and recently by Becker et al. in [9] and by
May et al. [50].

Given a r x n parity-check H of a code, and Hs” = y, where s is a vector of
weight w and y its syndrome. The ISD algorithms take as input the vector y and try
to recover s. To do this, the main idea consists in applying a permutation matrix P
to H in the hope that all columns corresponding to error positions in s are moved
to the left side of the matrix H. After using the Gaussian elimination, one gets a
matrix H' = [I|R] (R is a 7 X n — r matrix) and the row operations are performed
on y in order to get a vector 3. If 3/ has a weight smaller or equal than w, the ISD
algorithm succeds, otherwise one restarts this algorithm again.

The ISD algorithm is often used as a tool to determine the parameters n,k =n—r
and w of a given code required to achieve the desired security level (e.g. 80-bit or
128-bit security) and we denote the workfactor of this algorithm by WFgp.

2.5.3 Code-based signature schemes

Signature schemes are among the most useful and recurring cryptographic schemes.
Usually, there are three main approaches for constructing code-based signature
schemes. The first one requires a trapdoor like RSA signature scheme. The sec-
ond one uses a well-known Fiat-Shamir paradigm converting zero-knowledge iden-
tification protocols into secure signature schemes. The last approach is generic, it
is similar to El Gamal signature and consists of defining particular sets where the
signer is able to decode any syndrome.

In this section we present an overview featuring the main proposals following the
first and the third approaches. The second approach is addressed more explicitly in
Chapter 3 of this thesis.

Courtois, Finiasz and Sendrier (CFS) signature scheme. The CFS scheme was
introduced by Courtois, Finiasz and Sendrier in Asiacrypt 2001 [26]. This scheme is
not quite as successful as the RSA signature, due to the large signing time. This is
due to the fact that decoding any random element into codeword is not guaranteed.
The authors of the CFS scheme uses Goppa codes, which have a good proportion of
decodable words and choose parameters such that this proportion is reasonable. For
a Goppa code of length n = 2™ (m positive integer) and w as correcting capability,
the number of decoding attempts to get one signature is in average approximately
around w!. The authors of [26] suggested the following parameters (m,w) = (16,9)
for a 80-bit security. For such parameters the signature length is 144 bits, however,
in order to sign, it is necessary to repeat the algorithm in average 9! times. An
additional disadvantage is a public key size which can attain 1152 KB.

This scheme can be described as follows, given a message M to be signed and
a secure hash function H. The idea of the CFS algorithm is to compute M; =
H(H(M)|i) starting for ¢ by 0 and increasing at each try until M; is decodable. This

14
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syndrome M; is decoded into a word s of length n using the decoding algorithm,
such that Hs? = M;,, where ig is the smallest value of ¢ for which a decoding is
possible. The signature consists of {s,ig}. Algorithm 2.1 describes more explicitly
the CF'S signature scheme.

Algorithm 2.1 CFS algorithm

Parameters: H € F,*": parity-check matrix of Goppa code, H a collision
resistant hash function.

> Signature:

Hash the message M (to be signed) into H (M)

Compute M; = H (H(M)]i) for i =0,1,2---

Find ¢ the smallest value of 7 such that M, decodable

Using the decoding algorithm to compute s such that Hs” = M;
Signature of M: {s,io}

> Verification:

Compute by = Hs”

7. Compute by = H(H(M)lio)

8: Compare by and bo, if they are equal the signature is valid

@

In view of Bleichenbacher’s attack described in [34], the preliminary parameters
of the CFS had to be increased. The authors of [34] suggested the parameters must
be set to (m,w) = (15,12) or (16,10). This leads to an increase of the public key
size or of the signature cost by an exponential factor in parameters {m,w}.

Finiasz suggested in [33] a way to increase the security of the CFS while keeping
the parameters as small as possible. The idea of his proposal consists in performing a
parallel decoding to generate two CFS signatures using two different hash-functions
for the same message. In this case, an attacker has to produce two forgeries for one
message, this makes the decoding attack much harder compared with the regular
CFS. The same idea can be generalized to several parallel decodings. However,
the gain in security offered by this proposal is at the cost of a huge increase in
signing /verification cost and in the signature size, due to the complete decoding
requirement.

Motivated by the drawback that the CFS scheme requires a large memory require-
ment, Barreto et al. [7] proposed an improved version of CFS using QD Goppa codes
instead of the standard Goppa codes. This modification allows to reduce the key
size by a factor of 4 in practice and to speed-up the computation by using the QD
structure. However, this improvement has a disadvantage of increasing the number
of signing attempts by a factor of 2.

The security proof of the CFS scheme was presented in 2007 by Dallot [27] using
a reduction to the hardness of syndrome decoding and code indistinguishability.
However, in 2010, Faugere et al. showed in [31] that Goppa codes of very high rate
R = k/n can be distinguished from random codes. This leads to the invalidity of
the dallot’s security proof. Recently, the authors in [70] addressed this problem and
showed the existential unforgeability of CF'S signature scheme under chosen message
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attacks.

Kabatianskii, Krouk, and Smeets (KKS) signature scheme. KKS signature scheme
was proposed by Kabatianskii, Krouk and Smeets in 1997 [49], this scheme is based
on random linear codes. Unlike the CFS signature scheme, the KKS scheme avoids
the need of using a decoding algorithm. The main idea of this construction consists
in building a public linear matrix for which the signer is able to decode any syndrome
obtained by column combination of this matrix. The security of the KKS scheme
has been investigated by Cayrel et al. in [21]. The authors of [21] showed that a pas-
sive attacker intercepting just a few message/signature pairs can efficiently find the
private key. They gave precisely the number of signatures (at most 20 signatures)
required to achieve this target. Furtheremore, they broke all parameters proposed
in [49] and suggested new secure ones instead. Therefore, the KKS signature scheme
can be used only as one-time signature. For secure parameters, the KKS signature
scheme provide in average a reasonable signature size (0.3 KB), unfortunately the
public key size is large (25 KB). Recently, Otmani and Tillich showed in [60] an
attack that break all proposed parameters for the KKS scheme without even need-
ing to know a single message/signature pair. We should mention that this attack
doesn’t break the scheme itself.

Barreto, Misoczki, and Simplcio (BMS) signature scheme. In 2010, Barreto et
al. proposed a variant of the KKS signature scheme [8], the aim of this work was
to have a one-time signature scheme with a security proof. This is accomplished by
combining the idea of Schnorr [74] and KKS [49]. More explicitly, this construction
modifies the KKS scheme by introducing the use of a hash function and adding an
error vector to the signature. The authors proved that BMS scheme is one-time
existential unforgeability against chosen-message attacks based on the hardness of
decoding random binary codes. The proposed parameters for this scheme are also
affected by the attack by Otmani and Tillich.

Gaborit, Schrek (GS) signature scheme. Recently, Gaborit and Schrek proposed
a code-based one-time signature scheme (GS) [37] based on some special codes with
an automorphism group in order to decrease the public key size for the KKS scheme.
The idea of GS construction consists of using one given syndrome to construct several
decodable syndromes by using some combinatorial properties. This scheme can be
considered as a trade-off between the size of the signature and the size of the public
key. The authors obtained public key sizes less than 2.25 KB and a signature length
of 0.8 KB.

Table 2.1 shows a comparison of all previous presented signature schemes for 80-bit
security without taking into account the recent attack by Otmani and Tillich.
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CFS KKS | BMS GS
Public key size (KB) 720 25 113.5 2.25
Signature length (KB) 0.02 0.3 0.45 0.8
Approach trapdoor generic | generic | generic

Table 2.1: Comparison of code-based signature schemes.

Code-based signature schemes with special properites

The development of cryptosystems with additional properties is one of the recent
hot research topics. Based on coding theory, there exist only few constructions
of such schemes. The existing schemes are: ring signature [91], blind signature
[61], identity-based identification and signature schemes [22, 8], and threshold ring
signatures [3, 4, 17]. We refer the readers to [16] for a general overview on this topic.
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3 Code-based ldentification Schemes

Public-key identification schemes are typically applied in cryptography in order to
reach one of the main objectives, namely access control. These schemes enable one
party to authenticate to another via an insecure channel without disclosing any
additional information that might be used by an impersonator. The most efficient
code-based identification scheme was proposed by Stern in Crypto 1993. In this
chapter we propose an improved variant of Stern’s scheme by designing a five-pass
identification scheme reducing the soundness error from 2/3 to 1/2. Due to this fact
we can reach any desired level of security in fewer rounds, which permits to reduce
the communication complexity for our scheme by a factor of 25% compared to Stern’s
one, typically for a cheating probability of 2716, Moreover, our scheme permits to
obtain a public key of size of 4 KB, whereas that of Stern’s scheme is 15 KB for
the same level of security. Another advantage of our scheme is that, its security is
directly based on the hardness of the syndrome decoding problem defined over IF,.
Overall our scheme has the good features of satisfying a zero-knowledge security
proof, a small communication complexity, and a small public key size compared to
all previous code-based identification schemes using random codes.

This chapter is based on a joint work with Pierre-Louis Cayrel and Pascal Véron
[19]. Tt was presented at the 17th Annual International Workshop on Selected Areas
in Cryptography (SAC 2010) in Waterloo, Ontario, Canada.

3.1 Introduction.

An identification (ID) scheme is a series of messages exchanged between two entities,
called prover and verifier, in order to enable a prover to convince a verifier that it
knows a given secret key corresponding to a public key assumed to be held by the
verifier. The minimum security of such schemes should be that a passive observer
who sees the interaction should not be able to perform his own interaction and
successfully impersonates the prover. A formal definition of an ID scheme and its
security properties are given in Section 2.4.

Since the introduction of the famous Fiat-Shamir’s scheme [32], there have been
many other proposals (e.g. [76, 45, 79, 59, 41]) for constructing secure ID schemes.
Most of them are based on problems from number theory. Such proposals require
fairly costly multiplication and exponentiation operations. Another potential prob-
lem is that the security of those schemes are based on problems which can be solved
in polynomial time if (or when) quantum computers become reality.

After introducing the first encryption scheme by McEliece in 1978 using error-
correcting codes [52], there have been many attempts to build secure code-based ID
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schemes. The first scheme was proposed in 1989 by Harari in [46], unfortunately it
has been proved to be insecure in [89]. A second scheme was proposed by Stern in
1989 [84], but this proposal was inefficient. Another scheme proposed by Girault in
1990 [42] has been demonstrated insecure in [75]. Eventually, the first efficient and
secure code-based ID scheme was proposed at Crypto 1993 by Stern [81], which is
still the reference in this area. Stern’s scheme is a multiple-round zero-knowledge
protocol, where each round is a three-pass interaction between the prover and the
verifier with a soundness error of 2/3. A few years later, Véron designed in [88]
a scheme which slightly decreases the communication complexity but at the same
time it increases the size of the public key compared to Stern’s one.

Stern’s and Véron’s ID schemes are very interesting since their security is directly
related to a hard problem. They are very fast and usually easy to implement.
Moreover, they can be turned into signature schemes through the Fiat-Shamir’s
paradigm [32]. Meanwhile, there are two strong drawbacks:

1. Since the soundness error is 2/3 for these two constructions instead of 1/2 as
in the case of Fiat-Shamir’s ID protocol based on integer factorization [32],
they use more rounds to achieve the same security, typically 28 rounds for a
cheating probability of 2716,

2. The public key size is very large, typically 15 KB.

In this chapter, we propose an improvement of the Stern’s and Véron’s ID schemes
by defining a five-pass code-based ID scheme for which the success probability of
a cheater is 1/2 and where the public key size is reduced as well. We reach this
without losing provable security, since our proposal uses random codes over F, which
is proved to be NP-hard [6].

The content of this chapter is organized as follows. We present a short description
of Stern’s and Véron’s ID schemes in Section 3.2. Afterwards, we give in Section
3.3 a detailed description of our proposal, we discuss the security, and we show the
advantage of our construction by giving a theoretical comparison to Stern’s, Véron’s
schemes and to other post-quantum ID schemes having some features similar to our
scheme. Finally, we show in Section 3.4 a performance aspect of our construction
by providing implementation results.

3.2 Stern’s and Véron’s Schemes

In the following we briefly describe the Stern’s and Véron’s schemes and their prop-
erties.

Stern’s scheme

Stern’s ID scheme uses a fixed binary r x n matrix H which is common to all provers.
If H is chosen randomly, it provides a parity check matrix for a code [n, k,w| (r =
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n — k) with asymptotically good minimum distance given by the (binary) Gilbert-
Varshamov (GV) bound. The prover’s private key s is a binary vector of length n and
small weight wt(s) = w (e.g. w ~ GV bound), which corresponds to the syndrome
Hs" =y, the public key. In one round of the Stern’s protocol, the prover identifies
itself by proving his knowledge of the vector s without revealing any information on
it. To this end, two blending factors are used: a permutation and a random vector.
However, a dishonest prover not knowing s can have success with probability up to
2/3 in any given round. Thus, the protocol has to be run several times to detect
cheating provers. The number of rounds depends on the authentication level needed.
For instance to achieve the weak and strong authentication levels of 2716 and 2732
according the norm ISO/TEC-9798-5, one needs respectively 28 and 56 rounds. The
security of this scheme relies on the hardness of the binary syndrome decoding (SD)
problem, that is on the difficulty of determining the preimage s of y = Hs'.
The Stern’s scheme has two parts: a key generation algorithm, shown in Figure 3.1,
and an ID protocol as given in Figure 3.2.

In what follows, H denotes a hash function and S, the symmetric group of de-
gree n.

KeyGen:
Let x be the security parameter
Choose n, r,w, such that WFgp(n,r,w,2) > 2"

H & ppon

s & F2, s.t. wt(s) = w.

Yy HsT

Output (sk, pk) = (s, (y, H,w))

Figure 3.1: Stern key generation algorithm.

Véron’s scheme

In 1994, Véron proposed a dual construction of Stern’s ID scheme [88]. He used a
k x n public generator matrix G defining a random linear binary code and designed
an ID scheme based on the hardness of the G-SD problem. For this scheme, a prover
demonstrates his knowledge of a pair (e, ) such that xtG@®e = y (public), where e is a
binary vector of weight w and length n and x is a random binary vector of length k.
Véron’s scheme decreases slightly the communication complexity but it increases
the size of public key compared to Stern’s scheme. The secret key is protected by
using the same two techniques as in the Stern’s construction: the transformation
by means of a permutation, and the addition of a random vector. Véron’s scheme
is also a multiple-rounds ID protocol, where each round is a three-pass interaction
with a soundness error of 2/3 to succeed in the protocol without the knowledge of
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Prover P Verifier V
(sk, pk) = (s, (y, H,w)) < KeyGen
(M public hash function)
ud F3, 0 & Sh
c1 + H (o|Hu)
c2 M (o(u))

c5  H(o(u® s)) C1,C2,C3
Challenge b b= {0,1,2}
If b=0: o Check ¢; and ¢
if b= 1: %u®s Check ¢; and c3
V checks correctness of ¢y
using Hu” = Hu® s)T @y
it b= 2: a(u),o(s) Check ¢; and ¢3,

wt(s) Zw

Figure 3.2: Stern identification protocol.

KeyGen:
Let k be the security parameter
Choose n, k, and w such that WFgp(n, k,w,2) > 2~

G & Fhn

(z,e) & F5 x F%, s.t. wt(e) = w
y<—aGde

Output (sk, pk) = ((z,€), (y, G, w))

Figure 3.3: Véron key generation algorithm.

the secret key.
The key generation algorithm and the ID protocol parts of Véron’s scheme are
described, respectively, in Figure 3.3 and Figure 3.4.

3.3 CVE Scheme

To our knowledge, amongst all ID schemes whose security does not depend upon
some number theoretic assumptions, only three of them involve five-pass, have a
soundness error bounded by 1/2, and deal with values over a finite field F, (¢ >
2): Chen’s scheme [24], and the schemes based on Permuted Kernels (PKP) [76]
and Constrained Linear Equations (CLE) [82]. Stern’s five-pass variant is on a
binary field, Permuted Perceptrons (PPP) [67] five-pass variant has a soundness
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Prover P Verifier V
(sk,pk) = ((z,€), (y, G,w)) + KeyGen
(H public hash function)
U ﬁ IFS, o i Sn
c1 < H(o)
2+ H(e(udz)q))
(o

e3  H (0 (uG @ ) C1,C2,C3

Challenge b

b— {0,1,2}

o, (udx)

Ifb=0: Check ¢; and ¢

wd )G
ith=1: o((ue)G).ale) Check ¢; and ¢,

R
wt(o(e)) =w

V checks correctness of ¢3 using

o((udx)G)dole) =oc(uG dy)

if b=2: Check ¢y and c3

Figure 3.4: Véron identification protocol.

error bounded by 2/3 and MQ*-IP is a two-pass protocol [90].

Chen’s scheme and those based on PKP and CLE have one thing in common: once
the commitments sent, the verifier sends a random challenge which is an element
a € [Fy. Then the prover sends back his secret vector scrambled by: a random vector,
a random permutation and the value a.

Our proposal shows how to adapt this common step in the context of the syndrome
decoding problem over F, (qSD). Notice that while it is known since Barg’s paper
in 1994, that the qSD problem is NP-hard, it’s only from the works developed in
[55, 63], where the ISD algorithm is studied over F,, that it was possible to set up
realistic parameters for the security of an ID scheme based on the qSD problem.

In what follows, we write elements of Fy as n blocks of size [logy(q)] = N. We
represent each element of IF, as NV bits. We first introduce a special transformation
that we use in our protocol.

Definition 3.1. Let ¥ be a permutation of {1,...,n} and v = (y1,...,7m) € Fy
such that Vi,~; # 0. We define the transformation IL, »; as :

Ms: F? — F?

voo= (IR)Usa)s - TS VS )
Notice that Va € Fy, Vo € Fy, I, s(av) = oll, s (v), and wt(Il, x(v)) = wt(v).
Our proposal (the CVE scheme) consists of two parts: a key generation algorithm
and an ID protocol described respectively in Figure 3.5 and Figure 3.6. In the
following we describe these two parts.
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KeyGen:
Choose n, k,w, and ¢ such that WFgp(n,r,w, q) > 27
HE Fre
s & Fy, st wt(s) = w.
y < HsT
Output (sk, pk) = (s, (y, H,w))

Figure 3.5: CVE key generation algorithm.

CVE key generation algorithm Let  be the security parameter and n,r = n—k, w
the secure chosen parameters. The CVE scheme uses a random (r X n) g-ary matrix
H common to all users which can be considered to be the parity check matrix of
a random linear [n, k,w] g-ary code. We can assume that H is described as (I,|R)
where R is a random r X r matrix; as Gaussian elimination does not change the code
generated by H, there is no loss of generality. Figure 3.5 presents the key generation
algorithm.

CVE protocol The secret key holder can prove his knowledge of s by using two
blending factors: a random vector and a special transformation which has the ad-
vantage to hide the non-zero values of the secret s. In the next section we show
how a dishonest prover not knowing s can cheat the verifier in the protocol with
probability of ¢/2(q — 1); this is reasonably close to 1/2 for big enough ¢. Thus, the
protocol has to be run several times to detect cheating provers. The security of the
CVE scheme relies on the hardness of the syndrome decoding problem defined over
F, (qSD), that is on the difficulty of determining the preimage s of y = Hs”.

3.3.1 Properties and security analysis

Zero-knowledge-proof Let I = (H,y,w) be the public data shared by the prover
and the verifier in our construction, and let P(1,s) be the predicate.

P(I,s) = “s is a vector which satisfies Hs? = y,wt(s) = w”. We show in this
section that the protocol presented in Figure 3.6 corresponds to a zero-knowledge in-
teractive proof. To this end, we provide in the following proofs for the completeness,
soundness, and zero-knowledge properties of the CVE scheme.

Completeness Clearly, each honest prover which has the knowledge of a valid
secret s, the blending mask u, and the permutation IL,x for the public data can
answer correctly any of the honest verifier’s queries in any given round, thus the
completeness property of the scheme is satisfied.
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Prover P Verifier V
(sk, pk) = (s, (y, H,w)) <= KeyGen
(H public hash function)

wir s ds,
y & Foe
g+ H (E,*y,HuT)

1, ¢
e H(IL, 5 (u), IL, 5,(s)) L2
@ « ﬁ I
B+ I, x(u+ as) p
Challenge b & (0,1}

If b=0: % Ch 2z -1(37

=0: eck ¢ = H(%,~, HH%E(B) — ay)

1II

Else: 12() Check ¢ = H(B — oIly x(s), 1Ly = (s)),

wt(TL, 5:(s)) = w

Figure 3.6: CVE identification protocol

Zero-Knowledge The zero-knowledge property for the CVE ID protocol is proved
in the random-oracle model assuming that the hash function H has statistical inde-
pendence properties.

Theorem 3.2. The CVE ID protocol is a zero-knowledge interactive proof for
P(1,s) in the random-oracle model.

Proof. The proof uses the classical idea of resettable simulation [44]. Let Sim be a
polynomial-time probabilistic simulator (Turing machine) using a dishonest verifier.
Because of the two interaction with the prover, we have to assume that the dishonest
verifier could contrive two strategies : St;(c1,c2) taking as input the prover’s com-
mitments and generating a value a € Fy, Sta(c1, c2, 3) taking as input the prover’s
commitments, the answer § and generating as output a challenge in the set {0, 1}.
Sim generate a communication tape representing the interaction between prover
and verifier. The goal is to produce a communication tape whose distribution is
indistinguishable from a real tape by an honest interaction. The simulator Sim is
constructed as follows :

Step 1. Sim randomly picks a query b from {0, 1}.

e If b = 0, Sim randomly chooses: u,, and X, and solves the equation:
Hs'" =y for some s’ not necessarily satisfying the condition wt(s') = w.
The commitments are taken as ¢; = H(X,v, Hu'), and ¢y as a random
string. By simulating the verifier, Sim applies St;(c1,c2) to get a € Fy,
and then computes § = IL, 5;(u + as’), and has the information needed
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to derive the simulated communication data between prover and veri-
fier. Therefore the candidates to be written in the communication tape
consist of elements A = c¢1|co, # and ans = «|X. Taking into account
the uniform distribution of the random variables used in the computa-
tion of A, ans and S, it follows that the distribution of these elements is
indistinguishable from those resulting from a fair interaction.

e If b = 1, Sim also chooses u,7y, and X at random. This time it picks
s as random from the set Fj with weight w. The commitment c; is
given uniformly at random value and ¢z = H(IL, x(u),Il, x(s)). Again,
from Sti(c1,¢2), Sim computes 8 = I1, 5;(u+as), and has the information
needed to derive the simulated communication data. The communication
set features elements A = c¢q|c, B and ans = II, x(s). The uniformly ran-
dom character of the choices made render these elements indistinguishable
from those resulting from a fair interaction.

Step 2. Sim applies the verifier’s strategy Sta(c1, c2, 8) obtaining b’ as result.

Step 3. When b = b/, Sim writes on its communication tape the values of A, a, 3,
b and ans. If the values differ, however, nothing is written and Sim returns to
step 1.

Therefore, in 20 rounds on average, Sim produces a communication tape indistin-
guishable from another that corresponds to a fair identification process execution
that takes 0 rounds. This concludes the proof.

O]

Soundness: We now show that at each round, a dishonest prover is able to cheat
a verifier to accept his identity with a probability limited by ¢/(2(¢ — 1)).

Let us suppose that a dishonest prover has devised the following strategies to cope
with the challenges that the verifier is expected to send. The first strategy (sto)
corresponds to the actions the prover takes when hoping to receive 0 as challenge.
He chooses u, 7, and ¥ at random and solves the equation H g1 = y without
satisfying the condition wt(s’) = w. Then he computes ¢; according to these values
and randomly generates co. Thus, he is able to answer the challenge b = 0, regardless
of the value of a chosen by the verifier. The second strategy (st;) is successful in
case a value 1 is received as challenge. He chooses u, v and ¥ at random and
picks an s’ with Hamming weight w. With this choice, the commitment ¢y can be
correctly reconstructed, and the Hamming weight of the fake private key validated.
The commitment c; is randomly generated.

Now, these two strategies can be improved. Indeed a dishonest prover can try to
make a guess on the value « sent by the verifier. Let a. be the guessed value, so
that 5 would be I, s (u + a.s’).
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In stg, instead of randomly generating ca, he computes co = H(5 — a8, §) where § is
a random word of Hamming weight w which will be sent as answer (if b = 1) instead
of TL, 5;(s’). With such a strategy, the cheater can answer to b = 0 regardless the
value of a chosen by the verifier and to b = 1 if a = a.

In sti, instead of randomly generating 1, he computes ¢; = H(3, v, H ul oo (Hs' T_
y)). With such a strategy, the cheater can answer to b = 1 regardless the value of «
chosen by the verifier and to b =0 if a = a.

Therefore, when we consider the probability space represented by the random vari-
ables b and «, the success probability of a strategy st for one round is given by:

Pr[cheating] =

1
) . q
;P(st = sti)P(b=1i) + P(st = st;)P(b=1—i)P(a = ac) = 1)

Though it was calculated for the particular strategies above, this value also cor-
responds to the upper limit for generic cheating strategies as shown below. The
security assumptions that we make are as follows: we require that the commitment
scheme be computationally binding and that the qSD problem be hard. We now
show that if a cheating prover manages to answer more than (ﬁ)‘; of the queries
made by a verifier after § rounds, either of the security assumptions above was bro-
ken, as stated in the theorem below.

Let us denote by V an honest verifier and by P a cheating prover.

Theorem 3.3. If V accepts P proof with probability > (ﬁ)‘S + ¢, then there
exists a polynomial time probabilistic machine which, with overwhelming probability,
either computes a valid secret s or finds a collision for the hash function.

Proof. Let T be the execution tree of (75, V) corresponding to all possible questions
of the verifier when the adversary has a random tape RA. B may ask 2(¢ — 1)
possible questions at each stage. Each question is a couple («,b) where o € [F7 and
b € {0,1}. First we are going to show that, unless a hash-collision has been found,
a secret key s can be computed from a vertex with ¢ + 1 sons. Then we show that
a polynomial time Sim can find such a vertex in T with overwhelming probability.
Let V be a vertex with ¢ + 1 sons. This corresponds to a situation where 2 com-
mitments ¢, co have been made and where the cheater has been able to answer to
g+ 1 queries. That is to say that there exists a # o/ such that the cheater answered
correctly to the queries («,0), (a, 1), (¢/,0) and (o/,1). Now let :

e (8,%,7) the answer sent for the query («,0),
e (f3,z) the answer sent for the query (a, 1),

o (5',3,4) the answer sent for the query (o, 0),
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e (,2') the answer sent for the query (¢, 1),

the value z (resp. z’) represents the expected value IL, x:(s), (resp. IL, sv(s)), hence
wt(z) = w. Notice also that the same value 3 (resp. 3) is used for (,0) and (o, 1)
(resp. (o/,0) and (o, 1)) since it is sent before the bit challenge b. Then, because
commitment ¢; (resp. cg) is consistent with both queries («,0) and (a/,0) (resp.
(o, 1) and (o/, 1)), we have:

H(S, 7, HIL L(5) — ay) = e1 = H(, ' HIL L, (8)" — o'y).

and
H(B—az,z)=co=H(B —d'7,7).

The equations are satisfied by finding collisions on the hash function or having the
following equalities:

y =¥
y =7
z = 2
HILL(B) —ay = HIL',(8)" —a'y
B—az = B —d7.
Hence:
HIZ5(8=8) (a—a)™" =y
B=p)(a-a)" = 2
Then:

HH;}E(Z) =y.

Therefore, the value s = H;lz(z) with Wt(Hle(z)) = wt(z) = w, obtained from the

equalities above, constitutes a secret key that can be used to impersonate the real
prover.

Now, the assumption implies that the probability for T" to have a vertex with g+ 1
sons is at least €. Indeed, let us consider RA the random tape where P randomly
picks its values, and let @ bet the set F; x {0,1}. These two sets are considered as
probability spaces both of them with the uniform distribution.

A triple (c,o,b) € (RA x Q)% represents the commitments, answers and queries
exchanged between P and V during an identification process (c represents commit-
ments and answers). We say that (¢, a, b) is “valid”, if the execution of (P, V) leads
to the success state.

Let V be the subset of (RA x Q)° composed of all the valid triples. The hypothesis

of the lemma means that:
4
card(V) > q ‘e
card((RA x Q)?) 2(q—1)

Let Q5 be a subset of RA? such that:
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e If ¢ € Q5, then ¢° + 1 < card{(a,b), (c,,b) be valid } < (2(q —1))?,
o If c€ RA%\ Qj, then 0 < card{(a,b), (c,,b) be valid } < ¢°.
Then, V = {valid (¢, a,b),c € Q5} U {valid (¢, a,b),c € RA® \ Qs}, therefore :
card(V) < card(Qs)(2(q — 1))° + (card(RA%) — card(€5))¢°.

Thus

card(V) card(Qs) _ card(Qs)
card((RA x Q)?) S card(RA?) +a ((Q(q —)7 - card((RA x Q)5)>

card(Qs) q o
card(RA9) * <2(q - 1)) '

card ()
card(RA%) — ©

It follows that:

This shows that the probability that an intruder might answer to (at least) ¢° + 1
of the verifier’s queries, by choosing random values, is greater than €. Now, if more
than ¢° 4+ 1 queries are bypassed by an intruder then T(RA) has at least ¢° + 1
leaves, i.e. T(RA) has at least a vertex with ¢ + 1 sons.

So, by resetting P % times, and by repeating again, it is possible to find an execution
tree with a vertex with ¢ + 1 sons with probability arbitrary close to one. This
theorem implies that either the hash function H is not collision free , or the qSD
problem is not intractable. Therefore, the soundness property was demonstrated,
given that one must have the probability negligibly close to 1/2. O

Proposed parameters

As for binary Stern’s and Véron’s ID schemes, the security of the CVE scheme relies
on three properties of random linear g-ary codes:

1. Random linear codes satisfy the g-ary Gilbert-Varshamov lower bound [51];
2. For large n almost all linear codes lie over the Gilbert-Varshamov bound [64];

3. Solving the g-ary syndrome decoding problem for random codes is NP-hard

[6].

We now have to choose parameters for an instantiation of the CVE scheme. We take
into account the bounds corresponding to the Information Set Decoding algorithm
over IF, and propose parameters for a security level of at least 80-bit security. The
number of rounds must then be chosen in order to minimize the success probability
of a cheater.
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Let N be the number of bits needed to encode an element of F,, £ the output
size of the hash function H, f5, (resp. () the size of the seed used to generate
the permutation 3 (resp. the vector «y) via a pseudo-random generator, and 0 the
number of rounds. We have the following properties for the CVE scheme:

Size of the matrix in bits :
kE x k x N(we use the systematic form of H)

Size of the public identification :
kN

Size of the secret key :
nN

Total number of bits exchanged:
520 + N +nN + 14 (fs + £, +nN)/2)
Prover’s computation complexity over F,:
5((k* + wt(s)) multiplications 4 (k2 + wt(s)) additions)

To obtain a precise complexity on the workfactor of ISD algorithms over F, we’'ve
used the code developed by C. Peters, which estimates the number of iterations
needed for an attack using a Markov chain implementation [63]. ISD algorithms
depend on a set of parameters and this code allows to test which ones can minimize
the complexity of the attack.

Since we use random linear codes, the syndrome decoding problem is hardest to
solve when k£ = n/2 and w is chosen slightly below the Gilbert-Varshamov bound
(see Chapter 2). For the CVE scheme, we suggest the following parameters in order
to reach 80 bit security according to the ISD algorithm:

q=256,n =128,k = 64, wt(s) = 49.

For the same security level in Stern’s and Véron’s schemes, we need to take n =
700, k = 350, wt(s) = 75.
To obtain 128 bit security, we have to choose these parameters,

q =256,n =208,k =104, wt(s) = 78,
which gives a scheme with the following properties:

Number of Rounds : 16

Matrix size (bits) : 86528

Public Id (bits) : 832

Secret key (bits) : 1664

Communication (bits) : 47248

Prover’s Computation : 2'74mult. and 2'74add. over Fas
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Stern Véron | Stern 5-pass | CVE
Rounds 28 28 16 16
Matrix size (bits) 122500 122500 122500 32768
Public Id (bits) 350 700 2450 512
Secret key (bits) 700 1050 4900 1024
Communication (bits) 42019 35486 62272 31888
Prover’s Computation (op.) 2221 2227 22192 216
Over the Field o Fy Ty Fose

Table 3.1: CVE vs. Stern and Véron schemes.

Some improvements of the CVE scheme:

e To get better communication complexity in comparison to the version of the
protocol presented in Figure 3.6, the prover could use a public function ¢,
by sending gbq_l(H%g(s)) instead of I, x:(s), where ¢, is an efficient bijective
encoding which takes its input from the interval [0, (¢ — 1)“(")[ and outputs
a binary word of length n and Hamming weight w. This function is described
in Algorithm 6.1 (see Appendix).

e We could use the same random seed to generate the permutation ¥ and the
vector v in order to further reduce the communication complexity.

Remark 3.4. To be fair, the two improvements of the CVE scheme above-mentioned
are not taken into account in the calculation of the communication complexity in
Table 3.1, since these improvements can be applied to Stern’s and Véron’s schemes
as well. By using the same seed for ¥ and ~, the communication complexity will be
30864 bits instead of 31888, and only 26760 bits if we use in addition an encoding
function.

3.3.2 CVE vs. Stern’s and Véron’s schemes

In [81], Stern has proposed two five-pass variants of his scheme. The first one to lower
the computing load. However, this variant slightly increases the cheating probability
rather than lowering it, and thus increases the communication complexity. The other
one minimizes the number of rounds and lowers the cheating probability to (1/2)°.

Table 3.1 shows the advantage regarding the communication complexity and the
size of the matrix of the CVE scheme in comparison to Stern’s initial proposal, his
second variant, and Véron’s scheme, for 80 bit security and a cheating probability
of 2716, We considered that all seeds used are 128 bits long and that hash values
are 160 bits long.
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SH CLRS AGS CVE
Rounds 16 16 18 16
Matrix size 45 x 30 64 x 2049 | 1 x 350 | 64 x 64
over the field Fos Z IFy Fos6
Public Id (bits) 492 288 700 512
Secret key (bits) 2048 192 700 1024
Communication (bits) 13282 223104 20080 | 31888
Prover’s computation (op.) 222 216 221 216
Area Multivariates | Lattices Codes | Codes

Table 3.2: CVE vs. other post-quantum schemes.

3.3.3 CVE vs. efficient post-quantum ID schemes

In this section we compare the CVE scheme to some other five-pass post-quantum
identifications schemes. The first one was proposed by Sakumoto et al. at Crypto
2011, it a five-pass ID scheme based on multivariate quadratic polynomials [73]. The
second one is similar to our construction, it was proposed by Cayrel et al. in [18]
and its security is based on the hardness of the SIS lattice problem. The last one
was proposed recently by Aguilar Melchor et al. [2]. They designed a code-based
five-pass ID scheme (AGS) with an asymptotic soundness error of 1/2. However, at
the difference of the CVE scheme, their scheme uses structural codes which seems
weaker in comparison to random codes due to possible structural attacks. Table
3.2 shows a comparison between the CVE scheme and all these schemes for 80-bit
security and a cheating probability of 2716,

3.3.4 CVE vs. ID schemes based on other problems

We compare our scheme to some other zero-knowledge ID schemes cited in Section
3.3 and whose security does not depend upon number theoretic assumptions, and
where the whole cheating probability is bounded by (1/2)° (except for PPP). We use
some results given in the corresponding papers of these schemes [66, 67, 69, 48], and
try to adapt parameters such that the security level has to be as near as possible to
80 bits for a fair comparison. Notice that for CLE, the result given in our table does
not fit with what is given in [67] and [69]. Indeed, as mentioned in [82], the zero-
knowledge property of the scheme can only be stated if two quantities (So and T'7)
are public in addition to the public identification. For PPP, we consider the three-
pass version instead of the five one because, as stated by the authors in [67], it is more
efficient from a computational point of view and furthermore easier to implement.
We do not consider for the prover’s complexity the cost of the computation of hash
values but the number of these values needed for the computation is mentioned in
Table 3.3.
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PKP CLE PPP CVE

Rounds 16 16 39 16
Matrix size 24 x24 | 24 x24 | 161 x 177 | 64 x 64
over the field Fas51 Fos7 IFy Fos6
Public Id (bits) 384 288 245 512
Secret key (bits) 128 192 177 1024
Communication (bits) 13456 | 16528 51441 31888
Prover’s computation (op.) 21328 213.28 2211 216
Number of hash values 2 2 8 2
Bit security 85 84 > 74 87

Table 3.3: CVE vs. schemes based on another problems.

Reducing a public key size As we have already mentioned in Section 2.2, there
have been some proposals to use quasi-cyclic or quasi-dyadic codes in order to reduce
the public key-size. In context of ID schemes, Gaborit et al. proposed a variation of
the Stern ID scheme by using double circulant codes [35]. Using this variant, Cayrel
et al. described in [23] an implementation of the Stern’s scheme in low-resource
devices. In this sens, besides random matrices we also give in the next section
implementation results for Stern’s, Véron’s and the CVE schemes using quasi-cyclic
and quasi-dyadic matrices. Recently, There have been several structural attacks
against such constructions, the first attack presented by Gauthier et al. in [39] and
the second attack is due to Faugere et al. [30]; these attacks extract the private key
of some parameters of these variants. We should mention that schemes using binary
codes are unaffected by such attacks.

3.4 Implementation Results

In order to demonstrate the improvement of the CVE scheme in terms of efficiency
compared to Stern’s and Véron’s schemes, we provide in this section the results for
our C implementation of the three schemes.

In our implementation the public matrices G and H are given in systematic form,
i.e. G = [I4|R] and H = [I,,_|R] respectively (r =mn — k and k = n/2), where only
the redundant part R is used.

For the generation of random vectors and hash values used in these schemes we
deployed Keccak,!. We have chosen Keccak, because it can be used as a hash
function and as a stream cipher at the same time. But note that it can be replaced
by any other suitable scheme providing the necessary functionality.

Finally, all the tests have been carried out on an Intel(R) Core(TM)2 Duo CPU
E8400@3.00GHz machine running Ubuntu/Linux 2.6.32-21. The source has been
compiled with gcc 4.4.3. It assumes a 64-bit architecture.

"http:/ /keccak.noekeon.org
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Stern’s and Véron’s schemes

For the implementation we use as parameters n = 768, k = 384, and w = 76
for Stern’s (resp. Véron’s) scheme in order to reach 80-bit security and at the
same time to satisfy some implementation constraints. Double circulant and dyadic
submatrices of H have a size of 64 x 64 bits. For instance, if H € IF§84X768 is quasi-
cyclic or quasi-dyadic, then the submatrix R consists of 6 x 6 = 36 double circulant
or dyadic submatrices of size 64 x 64 bits respectively. Due to the row-major order of
C, the product sH” is more efficient as Hs” (s € F%). Hence, the implementation
uses the transposed matrix H” instead of H.

Memory requirements: the memory requirements for the Stern’s and Véron’s
schemes are as follows: using a random matrix 384 x 384 = 147.456 bits are neces-
sary to store the redundancy part R of H resp. G. Using quasi-cyclic (quasi-dyadic)
matrices, the memory footprint for the matrices drops by a factor of 64. Only
6 x 6 x 64 = 2.304 = 147.456/64 bits are needed. Hence, although the timings
using quasi-cyclic (quasi-dyadic) matrices are worse than for random matrices, in
some environments the smaller memory footprint might compensate for the loss in
performance.

CVE scheme

It uses a parity check matrix H of size r x n over Fy, where ¢ = 2™, 1 < m < 16,
r=mn—kand k =n/2. If H is quasi-cyclic or quasi-dyadic, then the submatrix R
would consist of 81 double circulant or dyadic submatrices of 8 x 8 field elements.

The matrix size is always measured in numbers of field elements. Each field
element occupies invariably 2 bytes of memory. Strictly speaking, this would be
necessary only in the case m = 16. However, using only the necessary bits would
complicate the code and slow down the computation. In environments in which
memory is a very valuable resource, this fact had to be taken into account. The
parameters used in this implementation are: n = 144, r = 72,w = 55, and ¢ = 2™ =
28 = 256.

Table 3.4 shows a comparison of the experimental results for running times that
a prover needs to be identified using the three ID schemes, for 80 bit security and a
cheating probability of 2716,

Stern Véron CVE
Rounds 28 28 16
Random 1.047 ms | 0.896 ms | 0.580 ms
Quasi-Cyclic || 0.959 ms | 0.962 ms | 0.710 ms
Quasi-Dyadic || 1.506 ms | 1.494 ms | 0.648 ms

Table 3.4: Timing results for CVE, Stern’s, and Véron’s ID schemes.
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Memory requirements for our scheme: using a random matrix, 72 x 72 x 2 =
10.368 bytes are necessary to store the redundancy part R of H resp. G. Using
quasi-cyclic (quasi-dyadic) matrices, the memory footprint for the matrices drops
by a factor of 8, because in this case only 9 x 9 x 8 x 2 = 1.296 = 10.368/8 bytes
are needed. Again, as with the Stern’s and Véron’s scheme, memory savings using
the structured matrix types might be more important than the loss in runtime.
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4 Extended Security Arguments for
Signature Schemes

Digital signatures are an essential security technology in the modern world, for
instance they are the cornerstones of software security, e-business, e-government,
and many more applications. One of the ways to build a signature scheme is firstly
to construct an identification protocol and then convert it to a signature scheme
using the well-known Fiat-Shamir paradigm. This idea has gained great popularity
since its introduction because it yields efficient signature schemes. At Eurocrypt
1996, Pointcheval and Stern presented a new reduction technique to obtain security
arguments of such transformation in the random-oracle model. The main tool of
their security proof is the well-known forking lemma. However, this proof only works
for canonical (three-pass) honest verifier zero-knowledge identification schemes.

Throughout the recent years, a number of five-pass identification schemes have
been proposed, examples of such schemes can be found in [18, 80, 19, 73, 2, 76]. These
schemes have the advantage that they provide better communication complexity
compared to canonical identification schemes in their corresponding area, indeed,
they fall outside the original framework if we want to transform them to secure
signature schemes. To the best of our knowledge, there is no work that deals with
this issue.

In this chapter we propose a generalization of the Fiat-Shamir paradigm for identi-
fication schemes with multi-pass. Furthermore, we provide by extending the forking
lemma the security proof of the resulting schemes what we called n-generic signature
schemes. These include signature schemes that are derived from certain (2n+1)-pass
identification schemes for n > 2.

This chapter is based on a joint work with Ozgiir Dagdelen, Pascal Véron, David
Galindo, and Pierre-Louis Cayrel [29]. It was presented at the fifth International
Conference on Cryptology, Africacrypt 2012, at Al Akhawayn University in Ifrane,
Morocco.

4.1 Introduction

The focus of this chapter is on methodologies to prove the security of digital signature
schemes. Thus, instead of providing security reductions from scratch, the goal is to
provide security arguments for a class of signature schemes, as previously done for
example in [1, 58, 65, 68, 25]. In particular, we aim at extending a pioneering
work by Pointcheval and Stern [65] where a reduction technique was introduced to
obtain security arguments for the so-called generic signature schemes. These security
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arguments allow for simple proofs and for efficient signature schemes. Moreover, this
type of signature schemes can be derived from ID schemes through the Fiat-Shamir
paradigm if the latter satisfy certain requirements.

The content of this chapter is organized as follows. We present a short descrip-
tion of the original Fiat-Shamir transformation with a security argument in Section
4.2. Afterwards, we show in Section 4.3 how to generalize the original Fiat-Shamir
paradigm for identification scheme with multi-pass. In Section 4.4 we provide the
extended security arguments for n-generic signature schemes, and we exemplify this
by deriving a provably secure signature scheme based on the CVE scheme proposed
in Chapter 3. In Section 4.5 we give implementation results of the signature schemes
derived from the Stern’s, Véron’s, and CVE schemes using the Fiat-Shamir paradigm
and its extended version.

4.2 Fiat-Shamir Paradigm and Security Argument

At Crypto 1986, Fiat and Shamir proposed a method to transform canonical ID
schemes to signature schemes [32]. More precisely, this transformation works as
follows. Let consider a canonical ID scheme where a prover sends first a commitment
Com, then receives a challenge Ch drawn from a uniform distribution, and finishes
the interaction with a message, called response Rsp. Finally, the verifier applies a
verifying algorithm to the prover’s public key, determining acceptance or rejection.
In order to transform the ID scheme described above into a non-interactive signature
scheme, Fiat-Shamir proposed the following approach. Since the (honest) verifier is
supposed to draw the challenge Ch randomly and does not depend on the previous
commitment Com by the prover, this step is replaced by introducing a random oracle
which upon input the message M and commitment Com returns the challenge Ch
to the prover. Now, the prover can compute the response Rsp given from Com and
Ch. The obtained signature scheme of a message M, which called generic signature
scheme is defined as follows o = (0¢, h,01) =(Com, Ch,Rsp). In order to use these
signature schemes in practice, the authors of [32] suggested to instantiate the oracle
by an appropriate hash function.

Pointcheval and Stern [65] provided security arguments for generic signature
schemes. However, these generic signature schemes are restrictive in the sense
that (a) they allow transformations only based on canonical ID schemes, and (b)
they additionally enjoy the existence of a polynomial-time algorithm, called extrac-
tor, that recovers the signing key from two related signatures o = (oo, h,01) and
o' = (00,h,01) with h # h’. The main tool of the security proof proposed by
Pointcheval and Stern is a forking lemma. This lemma states that a successful
forger can be restarted with a different random oracle in order to get two distinct
but related forgeries. Using this lemma the security of generic signature schemes is
guaranteed under a supposedly intractable problem.
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Remark. The work of Abdalla et al. [1] introduced a new transformation from ID
schemes to signature schemes without insisting on the existence of such an extractor.
Nonetheless, they require again canonical ID schemes. Ohta and Okamoto [58]
assume that the ID scheme is honest-verifier (perfect) zero-knowledge and that it is
computationally infeasible for a cheating prover to convince the verifier to accept.
Again, this result is valid only for three-pass ID schemes.

Very recently, Yao and Zhao [25] presented what they call challenge-divided Fiat-
Shamir paradigm. Here, security results are set for three-pass ID schemes with
divided random challenges. Even though they consider more challenges, still ID
schemes with more than three interactions are not captured by their paradigm.

4.2.1 Stern’s signature scheme

We show in the following how canonical ID schemes can be turned to generic signa-
ture schemes through the original Fiat-Shamir paradigm, for instance we do this for
the Stern’s scheme presented in Chapter 3.

In order to obtain a signature S = (KGen, Sign, Vf) from the Stern’s ID scheme we
do the following.

Let 0 be the number of rounds needed to achieve the required cheating probability.

KGen(1%) takes as input a security parameter 1* and outputs K(1%). The random
oracle O outputs element of {0, 1}, respectively.

Sign(sk, M) takes as input sk (as defined in Figure 3.1) and a message M,
e computes co; = H (az\HulT) 1 = H(oi(w;)), c2; = H (0i(u; @ s)), and
sets 00 = (co,i, 14, C2i), Where u; i F% and o; & Sy, for all 1 <7 <.
e computes h = O(M,001,...,005), with h = (h1,...hs) € {0, 119,
o sets 01; = (04,w;) if hy =0, 01 = (04,u; ® s) if h; = 1, and o9, :=
(Gi(ui),ai(s)) if h,’ = 2, for all 1 S ) § d.
Finally, returns the signature o for the message M as (0g, h,01), where 0; =
(O’j71, ce ,O‘jﬁ) with 0 S] <1

Vf(pk, M, o) takes as input a public key pk (as defined in Figure 3.1), a message M
and a signature o, outputs 1 iff (oq,1,...,01,5) is well calculated as in the ID
protocol.

Security Argument. Now, We prove that the signature scheme derived from the
Stern’s zero-knowledge ID scheme is secure against adaptively chosen-message at-
tacks. We assume that an adversary produces a valid signature (og,h,o1) for a
message M. By applying the forking lemma introduced by Pointcheval and Stern
we can find a second forgery (¢, h', o) with a non-negligible probability, such that
h # h'. That leads to the existence of an index ¢ with 1 <4 < ¢, such that h; # h/.
W.lo.g. assume h; = 0 and h} = 1. Now, the adversary gets the answers for two dis-
tinct challenges, namely (05, u;) and (04, u; @ s). Finally, by XORing the two values
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u; and (u; @ s), the secret key s can be disclosed. This contradicts the intractability
of the SD problem. The same result can be obtained for the two remaining cases,
ie. hy =0and h, =2 or h; =1 and R} = 2.

4.3 Generalized Fiat-Shamir Paradigm

Our goal in this section is to enlarge the class of ID protocols to which the Fiat-
Shamir transformation can be applied. We identify a potential set of candidates that
we name n-canonical ID schemes. By these schemes we mean schemes secure with
respect to impersonation against passive attacks, where the challenges are drawn
from an uniform distribution and have (2n + 1)-pass for n > 2. Such schemes can
be defined as follows.

Definition 4.1 (n-canonical ID scheme). An n-canonical ID scheme ID = (K, P, V)
is a (2n+1)-pass interactive protocol. K and P = (P, ..., Pn41) are PPT algorithms
whereas V = (ChSet, Vf) with ChSet being a PPT algorithm and Vf a deterministic
boolean algorithm. These algorithms are defined as follows:

K(1%) upon input a security parameter 1%, outputs a secret and public key (sk, pk)
and challenge spaces G1, ..., G, with 1/|G;| negligible in 1*.

P1(sk) upon input a secret key sk outputs the commitment R;.

Pi(sk, R1,C4,...,Ri—1,Ci_1) for i = 2,...,n, upon input a secret key sk and the
current transcript Ry, C1,..., R;—1,C;_1, outputs the i-th commitment R;.

Pnt1(sk, R1,C1, ..., Ry, Cy,) upon input a secret key sk and the current transcript
R, C4,...,R,, C,, outputs a response Rsp.

ChSet(pk,i) upon input a public key pk and round number ¢, outputs a challenge
C; € G;.

Vf(pk, R1,C4,. .., Ry, Cy, Rsp) upon input a public key pk, and the current tran-
script Ry, Ch, ..., Ry, Cp, Rsp, outputs either 1 (= valid) or 0 (= invalid).

An n-canonical ID scheme has the following properties.

Public-Coin For any index i € {1,...,n} and any (sk, pk,G1,...,Gy) < (1) the
challenge C; <— ChSet(pk, 7) is uniform in G;.

Honest-Verifier Zero-Knowledge There exists a PPT algorithm Z, the zero-knowledge
simulator, such that for any pair of PPT algorithms D = (Dg, D7) the follow-
ing distributions are computationally indistinguishable:

e Let (pk,sk,state) <+ Dy(1%), and trans = (R1,C4,..., Ry, Cy, Rsp) +
(P(sk, pk), V(pk)) if pk belongs to sk, and otherwise trans <— L. Output
D (trans, state).
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o Let (pk,sk,state) < Dy(1%), and trans = (Ry,Ch,..., Ry, Cp, Rsp) «+
Z(pk,1) if pk belongs to sk, and otherwise trans < Z(pk,0). Output
Dy (trans, state).

Note that the definition of 1-canonical ID schemes is identical to that of canonical
ID schemes [1].

4.3.1 From n-canonical ID to signature schemes

In this section we show how we can transform the n-canonical ID scheme defined
above in order to get what we called n-generic signature scheme. Like the original
Fiat-Shamir transform, the idea of this transformation consists of replacing the
uniformly random challenges of the verifier as set by ChSet in the ID scheme by
the outputs of some secure hash functions #; : {0,1}* — G; modeled as random
oracles. More precisely, let ID = (IC,P,V) be an n-canonical ID scheme. The joint
execution of P(sk,pk) and V(pk) then defines an interactive protocol between the
prover P and the verifier V. At the end of the protocol V outputs a decision bit
be {0,1}.

Let H; denote a hash function with output of cardinality 2" (derived from the
security parameter k).

n-Generic Signature Scheme. We call the resulting signature scheme
S = (KGen, Sign, Vf) derived from the ID scheme ID = (K, P, V) n-generic signature
Scheme and it can be constructed as follows.

KGen(1") takes as input security parameter 1* and returns IC(1%).

Sign(sk, M) takes as input a secret key sk and a message M and returns the tran-
script (P(sk, pk), V(pk)) as the signature o, i.e.,

g = (JOahb' . 'ahnaan) = (Rlaclv' . 'aRTHOn)RSp)

or simply o = (0¢,...,0n,h1...,hy) = (R1,..., Ry, Rsp,C1,...,Cy). Here,
C; is defined by the equation C; := H;(M,Ry,...,R;,C1,...,Ci_1). We re-
quire that the min-entropy of the random variable which outputs og,...,0,-1
must be in w(|Hy|).!

Vf(pk, M, o) takes as input a public key pk, a message M and a signature o and
returns V.Vf(pk, M, 0)? as the decision bit.

Similar to generic signature schemes defined by Pointcheval and Stern [65] we require
in the security proof from n-generic signature schemes a property which we call n-
soundness. Informally, n-soundness means that the secret key can be extracted from

!This requirement is necessary so that our security arguments in Lemma 4.4 goes through
2By V.Vf(pk, M, o) we mean the verification algorithm performed by the verifier from the under-
lying ID scheme ID.

41



4 Extended Security Arguments for Signature Schemes

two correlated valid signatures o = (oo, hiy...,0n-1,hn,0n) and
o' = (o0,h1,...,0n-1,hl,00) with h, # hl in polynomial-time and with a non-

negligible probability.

Definition 4.2 (n-Soundness). Let S = (KGen, Sign, Vf) be an n-generic signature
scheme. We call S n-sound if there exists a PPT algorithm K, the knowledge extrac-
tor, such that for any x and M, any (sk,pk) <+ KGen(1"), any
o = (o0,h1,...,0n-1,hp,0,) and o = (o0,h1,...,0n-1,h),0)) with
Vf(pk, M,0) = Vf(pk,M,o’) = 1 and h], # h,, we have sk + K(pk,o,0’) with
non-negligible probability.

The notion of special-soundness® and n-soundness coincide if n = 1.

We like to note that if one sets of = (0o, h1,...,0n-1), then S satisfies n-soundness
as long as the (identical) signature scheme outputting (o, hy, 0y) satisfies special-
soundness. Nonetheless, we stick to n-soundness through this paper, to emphasize
that the last challenge is needed to be different.

4.4 Security Arguments for n-generic Signature Schemes

In this section we extend the forking lemma in order to use it for proving that
any n-generic signature scheme satisfying what we call n-soundness is existentially
unforgeable in the random-oracle model.

4.4.1 Extended Forking Lemma

Pointcheval and Stern introduced in [65] the forking lemma as a technique to prove
the security of some families of signature schemes, namely generic signature schemes
with special-soundness. This well-known lemma is applied to get two forgeries for
the same message using a replay attack, after that, the two forgeries could be used
to solve some computational problem which is assumed to be intractable. We firstly
provide the Extended Forking Lemma in the no-message attack model, then we
show that a successful forger in the adaptive chosen-message attacks model implies
a successful forger in the no-message attack model, as long as the honest-verifier
zero-knowledge property holds. In this way, the n-generic signature scheme will be
proved to be existentially unforgeable under chosen-message attacks, which is the
standard level of security that a signature scheme should achieve.

For the forking lemma proofs, we need an important lemma called splitting lemma.
Let X and Y be two sets, this lemma states that one can split a set X into two
subsets, (a) a non-negligible subset € consisting of ”good” z’s which provides a non-
negligible probability of success over y (y € Y), and (b) its complement, consisting
of "bad” z’s.

3 Actually, special-soundness is a notion belonging to ID schemes. However, since this property is
quite similar to the required property of generic signature schemes, this concept is used for both
cases in the literature.
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Lemma 4.3 (Splitting Lemma). Let A be a subset of X x Y such that
Pr[A(z,y)] > €, then there exist 2 C X such that

1. Priz € Q] > €¢/2 (e is a positive integer)
2. whenever a € Q, Pr[A(a,y)] > €¢/2
See [68] for the proof.

No-Message Attack Model
Consider parameters ki, ..., k, derived from security parameter .

Lemma 4.4. Let S be an n-generic signature scheme with security parameter k. Let
A be a PPT Turing machine given only the public data as input. If A can find a valid
signature (0¢,...,0n,h1,...,hy) for a message M with a non-negligible probability,
after asking the n random oracles Oy, ..., O, polynomially often (in k), then, a re-
play of this machine with the same random tape, the same first oracles O1,...,On_1
and a different last oracle O, outputs two valid signatures (oo, ...,0n,h1,...,hy)
and (09, ...,00,h1,...,hl) for the same message M with a non-negligible probability
such that h,, # hl,.

Proof. We are given a no-message adversary A, which is a PPT Turing machine
with a random tape w taken from a set R,,. During the attack, A may ask q1,...,qn
(polynomially bounded in k) queries to random oracles Oy, ..., O, with qj(.i) denoting
the j-query to oracle O;. We denote by qgi), . ,q((lf) the ¢; distinct queries to the
random oracles @; and let r() = (rgi), e ,ré?) be the answers of O;, for 1 < i < n.
Let S denote the set of all possible answers from O;, i.e., {rgi),...,réi)} e St
Furthermore, we denote by

& the event that A can produce a valid signature (o, ..., on, hi,...,hy) for message
M by using random tape w and the answers ng) e r(gz) for ¢ < n. Note that
a valid signature implies h; = O;(M, 00, h1,...,hi—1,0i-1).

F the event that A has queried the oracle O, with input
(M, O'Q,hl,. . -;hn—laan—l)a i.e.,

El] S dn : qj(n) = (M7 go, h17 o 7hn—17 Un—l)'
Accordingly, its complement —F denotes

VJ S dn : q§n) 3& (Ma UOahla cee 7hn7170-n71)-

By hypothesis of the lemma, the probability that event £ occurs (Pr[€]), is non-

negligible, i.e., there exists a polynomial function 7'(-) such that Pr[&] > T(I,.;)' We

know that

Pri&] =Pr[EN F]+Pr[EN ~F]. (4.1)
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Furthermore, we get

Pr [hn = On(M,O'o,hl,...,hnfl,anfl)/\_']:]
=Pr [hn = On(M,O'o,hl, . .,hnfl,O'n,l) | —|]:] . PI‘[—| ]
S Pr [hn - On(M,O'O,hl, .. '7hn7170-n71) ’ _']:]
1

SQTna

because the output of O,, is unpredictable and (M, oy,...,0,—1) has a high min-
entropy given the definition of n-generic signature. The event £ implies that
hp = On(M,00,h1,...,hp_1,0,—1), and thus we get

1
Pr[EA=F] < Prlhy, = On(M,00,h1, ...  hno1,00-1) AN =F] < 50— (4.2)

n

Relations (4.1) and (4.2) lead to

1 L S 1
T(k) 2k = T'(K)

Pr[EN F] > (4.3)

Note that a polynomial 77(-) must exist since the difference between a non-negligible
and negligible term is non-negligible. Therefore, 3l < g, so that

(n) _ 1
Pr[é’/\ql - (Maaoahla"'vhn—lvan—l)] Z an/(H)
Indeed, if we suppose that, VI € {1,...,q,},
Pr |:5 AN q(n) = (M oo h1 o hnfl O'nfl)i| < #
l bl bl bl bl ) an/(H)

then,

Pr[EN F]=Pr [5 INEI/ES qn,q](-n) = (M, 00, hy, .. .,hn,l,an,l))}

dn
< ZPI' |:8 A qj(n) = (M, o0, h1,. oy b1, Un—l)
j=1
o 1
S TR T(R)

This leads to a contradiction with (4.3). Further, we define

B= {(w,r(l), e ,7‘(")) s.t. € /\ql(n) = (M,o0,h1,...,hpn_1,0n-1)}.

Since, B C R, x S{* x ... x Si" and Pr[B] > m , by using the splitting lemma

we have:
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e IO C R, such that Prjw € Q] > m.

e Vw e Q, Pr[(w,r(l),...,r(”)) €B] >
over ST x ... x Si".

m, where the probability is taken

We define
B = {(w,r(l), .. .,r(”)) s.t. (w,r(l), . ,r(")) € BAw e Q}.

Recall that () = (r%i), e ,7“((1?) where rj(-i) € §; for 1 < j < ¢;. Since,

B' C (Ry x ST x ... x Sh1) x §in=t+1,
by using the splitting lemma again we get
e 3O’ C R, x S x ... x S&! such that
Pr [(w, r ) (rgn), . ,rl(ﬁ)l)) € Q’] >

1
= 4gnT'(k)"

o V(w,r®, . pe=D My e o,

Pr {(w,r(l),...,r(”’l),(rgn),...,Tl(ﬁ)l,rl(n),...,réz))) epB > ﬁ’(ﬁ)’
where the probability is taken over Sg”_lﬂ.
As a result, if we choose I, w, (r(D ... r(=1), (rgn), .. .,rl(f)l)), (rl(n), . 77'((1:))a and
(r’ l(n), ! ((]Z)) randomly, then we obtain two valid signatures
(60y..-yOn,h1,...,hy) and (0o, ...,00, h1,..., k) for message M with a non-negligible
probability such that h,, # hl,.4 O

Chosen-Message Attack Model

We now provide the Extended Forking Lemma in the adaptively chosen-message at-
tack model. In this model, an adversary may adaptively invoke a signing oracle and
is successful if it manages to compute a signature on a new message. If the signing
oracle outputs signatures which are indistinguishable from a genuine signer without
knowing the signing key, then using the simulator one can obtain two distinct sig-
natures with a suitable relation from a single signature, similarly to the no-message
scenario.

Theorem 4.5 (The Chosen-Message Extended Forking Lemma). Let S be an n-
generic signature scheme with security parameter k. Let A be a PPT algorithm
given only the public data as input. We assume that A can find a valid signature
(00, 0n,h1,...,hy) for message M with a non-negligible probability, after asking
the n random oracles Oy, ...,Oy, and the signer polynomially often (in k). Then,

4Since [ is the index of A’s query and there are only polynomially number of queries made by A,
our success probability remains non-negligible when picking [ randomly.
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there exists another PPT algorithm B which has control over A by replacing interac-
tions with the real signer by a simulation, and which provides with a non-negligible
probability two wvalid signatures (oo, ...,0n,h1,...,hy) and (oq,...,00,hi,...,hl)
for the same message M such that hy, # hl,.

Proof. We consider a PPT algorithm B that executes A in such a way that B simu-
lates the environment of A. Therefore, B must simulate the interactions of A with
random oracles Oq,...,0, and with the real signer. Then, we could see B as an
algorithm performing a no-message attack against the signature scheme S.

Let Sim denote the zero-knowledge simulator of S that can simulate the answers
of the real signer without knowledge of the secret key and has access to the random
oracles O; (1 < i < n). Let A be an adaptively chosen-message adversary, which
is a probabilistic polynomial time Turing machine with a random tape w taken
from a set R,. During the attack, A may ask qi,...,g, queries to random oracles
O1,...,0,, and gs queries (possibly repeated) to Sim. The values ¢, ..., g, and gs
are polynomially bounded in k. We denote by qgi), . ,q,gf) the g; distinct queries to
the random oracles O;, and by MM, ... M%) the g, queries to the simulator Sim.

The simulator Sim answers a tuple (a(() ), . 07(3), hgj), o ,hg)) as a signature for
a message M (@), for each integer j with 1 < j < ¢s. Then, the adversary A assumes
that hz(-j) = (’)i(M(j),a((]]),hgj), .. .,hgj_)l,a(]_) ) holds for all 1 <i <nand 1< j <gs,
and stores all these relations.

Now we need to consider potential “collisions” of queries in the random oracles.
There are two kind of collisions that can appear. That is, (a) the simulator Sim
queries the random oracle with the same input the adversary has asked before (let
us denote this event by &), and (b) Sim asks the same question repeatedly (let us
denote this event by &).

We show that the probabilities of such events are negligible.

Pr[&]|=Pr[Fie{1,...,n}Fje{l,...,q:}; It € {1,...,q}|
(MD 0§ 1D D)) = o)

"L 1 7 ngsQn
<SOSS P(M9D, 0§ 1D nE, 0 = gff) < Pt Lo,
=1 j=1t=1

which is negligible, assuming that the ¢;’s are random values drawn from a large set
with cardinality greater than 2%.
Moreover, we have

Pr[&] =Pr[Fi € {1,...,n}; 35,5 € {1,...,qs} : j # |
R A Y A2 N OV N R R W)

71 —10 Fi—

2 9)9) DU CR NN

i=1 j=1j'=1

46



4 Extended Security Arguments for Signature Schemes

which is also negligible.
Algorithm B succeeds whenever the machine A produces a valid signature without
any collisions. Hence, we have

1 ngsgn nqg

T(k) 2% 2

Pr[B succeeds | = Pr[A succeeds | — Pr[&;] — Pr[&)] >

which is non-negligible.

Summing up, we have an algorithm B that performs a no-message attack against
the signature scheme S in polynomial time with non-negligible probability of success.
So we can use Lemma 4.4 applied to algorithm B, and we obtain two valid signatures
for the same message, such that h,, # h], again in polynomial time.

O

Security of n-generic signature schemes

The following theorem states that all n-generic signature schemes satisfying n-
soundness are existentially unforgeable under adaptively chosen-message attacks in
the random-oracle model.

Theorem 4.6 (Security of n-Generic Signature Schemes). Let S be an n-generic
signature scheme satisfying n-soundness with underlying hard problem P. Let k be
the security parameter. Then, S is existentially unforgeable under adaptively chosen-
message attacks.

Proof. We assume that the underlying hardness P of the n-generic signature scheme
is hard, i.e., for all PPT algorithms A the probability to solve a hard instance of P
is negligible. The key generation algorithm KGen of S outputs a secret and public
key pair (sk,pk) derived by a hard instance and its corresponding solution of the
problem P.

Now, assume by contradiction, that S is not existentially unforgeable under
chosen-message attacks. That is, there exists a PPT algorithm B; such that B
is able to output a signature o* = (0¢, h1,...,0n_1, hyn,0y) for a fresh message M*
with non-negligible probability. Then, due to the Extended Forking Lemma, one
can construct a PPT algorithm B which outputs two correlated signatures ¢* =
(co,h1,...,0n-1,hn,0p) and o** = (00, h1,...,0n-1,h,,0) with non-negligible
probability such that h,, # hl, .

Due to the n-soundness of S, we know that there exists an “extractor” which
extracts the secret key given the two signatures above. This contradicts with the
assumption that the underlying problem P is hard, and by implication, we learn

that there cannot exist such a successful forger B;.
O

4.4.2 CVE signature scheme

Using our extended framework, we can show that all aforementioned five-pass ID
schemes give raise to 2-generic signature schemes. We isolate a property, called n-
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soundness, that implies unforgeability of all the schemes satisfying it. In this section
we apply this for instance to the CVE scheme presented in Chapter 3. The resulting
n-generic signature scheme S = (KGen, Sign, Vf) can be described as follows. Let §
be the number of rounds needed to achieve the required cheating probability.

KGen(1%) takes as input a security parameter 1” and outputs K(1%). The random
oracles 01 and Oy output elements of Fg and {0,1}%, respectively.

Sign(sk, M) takes as input sk (as defined in Figure 3.5) and a message M,
e computes co; = H (Zi, v, Hul) jc1i = H (I, 5, (w), Iy, 5,(s)), sets
00,0 = (Coar 1), where u; & F2, 5, & 8, and y; & F* forall 1 < i < 5,
e computes hy = O1(M,00,1,...,005) With by = (h1,1,...h1s) € Fg,
e computes o1,; = IL,, x, (u; + h1;s),

e sets ho = O3(M, 01, hy,09), where oj = (Uj71,...,0'j,5) with 0 < 5 < 1,
and ho = (h2,17 R h275) S {0, 1}6,

e and finally, returns the signature o for the message M as (0g, hi, 01, he, 02),
where 09 = (02,1,...,02,) such that oo; = (74, %;) if ho; = 0 and, other-
Wise, 02, = H,yhgi(s),

Vf(pk, M, o) takes as input a public key pk (as defined in Figure 3.5), a message M
and a signature o, and outputs 1 iff (co,1,...,005) is well calculated as in the
ID protocol, i.e., the following respective equation is valid for all 1 < < é:

Ifhe;j =0:  cos=H(M, 5y, HH;12 (01.)" — h1y)
Ehyi=1: e =HMo1)" —hilly, 5, (s), 1L, 5,(5))

?

A wit(Ilyn(s)) = w

Security Argument. Using the Extended Forking Lemma, we prove in the following
that the signature scheme derived from our zero-knowledge ID scheme is secure
against adaptively chosen-message attacks. We assume that an adversary produces
a valid signature (og, h1, 01, ho,02) for a message M. By applying Theorem 4.5 we
can find a second forgery (oo, h1,01, hb, o) with a non-negligible probability, such
that he # hf. That leads to the existence of an index ¢ with 1 < i < §, such
that ha; # hh;. W.lo.g. assume hy; = 0 and hj; = 1. Now, the adversary gets
the answers for two distinct challenges, namely (v;, ¥;) and I, 5, (s). Since we can
construct IL,, s, from (v;,%;), the secret key s can be disclosed. This contradicts
the intractability of the ¢SD problem.

4.5 Implementation Results

In this section we present the result of the implementation in C of the signature
schemes derived from the Stern’s, Véron’s and CVE schemes using the Fiat-Shamir
paradigm and its extending version.
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Matrix Type Dimensiony,,,,; | Weight %H’EM&L Msg.(ariB] | Sec.|pits]
Random 384 x 768 76 6.473 | 5.745 1 80
Quasi-cyclic 384 x 768 76 6.443 | 5.697 1 80

Y
Quasi-dyadic 384 x 768 76 6.783 | 6.014 1 80
Table 4.1: Timing results for Stern’s signature scheme.
. . . . Timey,,,

Matrix Type Dimensiony,,,,; | Weight S*’—k—vl— Msg.(ari] | Sec.|pits]
Random 384 x 768 76 6.193 | 5.909 1 80
Quasi-cyclic 384 x 768 76 6.198 | 5.883 1 80
Quasi-dyadic 384 x 768 76 6.690 | 6.213 1 80

Y

Table 4.2: Timing results for Véron’s signature scheme.

All the tests have been carried out only on an Intel(R) Core(TM)2 Duo CPU
E8400@3.00GHz machine running Linux 2.6.32-21 (Ubuntu). The implementation
has been compiled with gcc 4.4.3, it assumes a 64-bit architecture.

The following tables show the runtime measurement of the three signature schemes;
Stern’s, Véron’s and CVE signature schemes. For the signing and verification time
(s/v) are used 140 rounds for Stern’s and Véron’s schemes, and 80 rounds for the
CVE scheme in order to achieve 278 as cheating probability. We use the same
parameters n, k, and w as in Section 3.4, therefore the memory requirements for the
three signature schemes is the same as for the corresponding ID schemes.

The signature size for Stern’s and Véron’s is about 25 KB and for the CVE scheme
is about 19 KB for 80-bit security.

Ti
Matrix Type Dimensiony,,,,; | Weight S*lm’ﬁmj— Msg.(arip] | Sec.|yits]
Random 72 x 144 55 2.683 | 2.354 1 80
Quasi-cyclic 72 x 144 55 2.947 | 2.133 1 80
Quasi-dyadic 72 x 144 55 2.869 | 2.142 1 80

Table 4.3: Timing results for the CVE signature scheme.
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Designing efficient threshold ring signature schemes is one of the recent hot research
topics. Such schemes enable any t participating users belonging to a set of N users
to produce a valid signature in such a way that the verifier cannot determine the
identity of the actual signers. Some applications contexts, such as multi-user elec-
tronic shares, multi-user united elections and employee opinion survey, require the
sharing of signing power in consideration of protecting the identities of signers.

The first code-based threshold ring signature scheme was proposed by Aguilar et
al. in [3, 4]. Their proposal is a generalization of Stern’s identification scheme. The
major advantage of this construction is that its complexity depends linearly on a
maximum number of signers N, comparing with the complexity of threshold ring
signature schemes based on number theory whose complexity is O(tN). However,
the disadvantage of large public key size and signature length is still unsolved for
this scheme.

We present in this chapter a novel code-based threshold ring signature scheme
based on the CVE scheme presented in chapter 3. Since this latter has a low sound-
ness error allowing a specified security to be reached in few rounds, our construction
uses this fact to achieve a secure scheme with shorter signature length, smaller pub-
lic key size and signature cost compared to Aguilar et al.’s scheme. We confirm
our results by providing implementation results in C for both schemes, which shows
clearly the advantage of our proposal.

This chapter is based on joint work with Pierre-Louis Cayrel, Gerhard Hoffman,
and Pascal Véron [17]. It was presented at the fourth International Workshop of
Arithmetic of Finite Fields, WAIFI 2012, Bochum, Germany.

5.1 Introduction

The concept of ring signature schemes was introduced first in 2001 by Rivest et al.
[72]. These schemes permit any user from a set of intended signers to sign a message
with no existing group manager and to convince the verifier that the author of the
signature belongs to this set without revealing any information about its identity.

In 2002, Bresson et al. [15] extended ring signature schemes in a (¢, N)-threshold
ring signature schemes, such schemes enable any ¢ participating users belonging
to a set of IV users to produce a valid signature in such a way that the verifier
cannot determine the identity of the actual signers. Some application scenarios
are multi-user electronic shares, multi-user united elections and employee opinion
survey. Bresson et al.’s scheme suffers from a lack of efficiency since the size of the
signature grows with the number of users and the number of signers.
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In [3, 4], Aguilar et al. introduced the first code-based threshold ring signature
with complexity depending only on a maximum number of signers N. The main idea
of this scheme is to generalize the Stern’s ID scheme and convert this latter into a
threshold ring signature scheme (TRSS) using the Fiat-Shamir paradigm. Aguilar
et al.’s scheme was proven to be existentially unforgeable under a chosen-message
attacks in the random oracle model and its security relies on the hardness of a
variation of the syndrome decoding problem, called the binary Minimum Distance
problem.

A second code-based TRSS was proposed by Dallot and Vergnaud in [28]. Their
proposal is not derived from an ID scheme as opposed to Aguilar et al.’s scheme.
Dallot and Vergnaud’s scheme uses Goppa codes and combines the generic construc-
tion of Bresson et al. [15] and the CFS signature scheme [26]. This proposal has
the advantage to provide a scheme having a short signature due to the use of CFS
signature scheme. However, the public key size is too huge and the required time to
generate a signature is too high. These disadvantages make it very difficult to use
in practice.

The content of this chapter is organized as follows. First, we explain the basic
idea how to construct a TRSS starting from an ID scheme in Section 5.2. Then, we
present a short description of Aguilar et al’s scheme in Section 5.3. Afterwards, we
give in Section 5.4 a detailed description of our proposal, we discuss the security,
and we show the advantage of our construction by giving a theoretical comparison
with Aguilar et al.’s one and other similar post-quantum schemes. Finally, we show
a performance aspect of our construction by providing implementation results.

5.2 TRSS from ID Schemes

In this section we show one of the way to construct a TRSS starting from an honest
verifier zero knowledge ID scheme. For simplicity we consider only a canonical ID
scheme but this idea holds for every ID scheme with arbitrary number of passes.
Before to do this, we first introduce a formal definition of a (¢, N)-threshold ring
signature scheme together with the security requirements.

Definition 5.1. Let ¢ < N be integers. A (¢, N)-threshold ring signature scheme
consists of three algorithms:

KGen(1") is a probabilistic algorithm which, on input a security parameter &, out-
puts N pairs of private and public keys (sk1,pki), ..., (skn,pkn).

Sign(sk, M) is a probabilistic interactive protocol between t users, involving a set
(pk1,...,pkn) of public keys, a set (ski1, ..., ski) of secret keys and a message
M, and which outputs a (¢, V)-threshold ring signature o for the message M.

Vf(pk, M, o) is a deterministic algorithm which takes as input a threshold value ¢,
a set of public keys (pki,...,pky) and a message/signature pair (M, o), and
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outputs 1 if o is a valid (¢, N)-threshold ring signature for the message M
w.r.t. the public keys (pki,...,pky) and 0 otherwise.

For the security of a TRSS the basic criteria are:

e Unforgeability: Without the knowledge of the ¢ secret keys, it is infeasible to
generate a valid (f, N)-threshold ring signature.

e Anonymity: Given a message-signature pair, it should be infeasible for the
verifier to reveal which ¢-subset of signers generated a signature.

See [4] for a formal definition of the two pervious properties.
A methodology for constructing a TRSS from an ID scheme consists of two main
steps (a) and (b), which can be described as follows.

(a) From ID scheme to threshold ring identification scheme: in this step we extend
a given ID scheme to a threshold ring identification scheme as follows.

We suppose that a set of ¢ signers, one of them is the leader L, want to identify
itself to a verifier. To do this, we perform the following algorithms:

(1) Setup takes a secret parameter as input and outputs the public parameters
and chooses the leader.

(2) Ring key generation takes public parameters as input and outputs a pair
of keys corresponding to the secret and the public keys.

(3) Commitment-challenge-answer and verification step is an interactive
protocol between the ¢ signers and the verifier consisting of the computation
of the commitments, challenges and responses, following by a verification
step which takes as input the answers of the challenges and verifies the
honestly of the computation, and returns 1 (accept), and 0 (reject).

Figure 5.1 illustrates this step which can be described as follows.

Each member of the ¢ signers (including L) creates local commitments
(com;) using the secret keys and sends them to L.

L collects the t values com;, simulates the missing ones for the (N — t)
other users, and creates a commitment (COM), called a master com-
mitment, which will be sent to the verifier.

The verifier chooses randomly a challenge (Ch) and sends it to L who
forwards it to the (¢t — 1) signers.

L collects the answers (Rsp;) from the (¢ — 1) signers, computes the
responses for the (N — t) users and finally computes a global answer
(RSP) for the verifier.

After receiving RSP, the verifier checks the correctness of the master
commitment as in the underlying identification scheme.

The three algorithms (1), (2), and (3) constitute the obtained threshold ring
identification scheme.
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(t-1) Signers Leader Verifier
Com;
i coM
Ch
Ch )
Rsp;
RSP

Figure 5.1: Threshold ring identification scheme.

(b) From threshold ring identification scheme to threshold ring signature scheme:
by replacing a verifier with a secure hash function modeled as random oracle
and then applying the Fiat-Shamir transform, as shown in chapter 4, we deduce
a signature for a given message from a threshold ring identification scheme, this
signature consists of the transcript of the interaction between the leader and the
verifier.

5.3 Aguilar et al.’s TRSS

Aguilar et al. introduced in [3, 4] the first code-based TRSS, which is proved to
satisfy the notion of unforgeablity and anonymity. The idea of the Aguilar et al’s
construction follows the methodology presented in the previous section. Starting
from the Stern’s ID scheme, we suppose that a set of ¢ signers, one of them is
the leader, interact in order to generate a signature of a given message. Each pair
(signer;, leader) executes the Stern’s identification scheme, where signer; plays as
prover and leader acts as verifier, sharing the same challenge. By this interaction,
each signer uses a parity-check matrix H; of a random code and a null syndrome
as parameters. The use of syndromes equals to zero enables the leader to simulate
the actions of the non-signers without knowing their secrets. On its turn, the pair
(leader, verifier) runs an instance of Stern’s identification scheme as well, where
the commitments and answers are compositions involving the values received by
the leader from the other signers. The leader applies block permutations over theses
individual values in order to achieve the goal of anonymity. This process leads finally
to obtain a Stern’s threshold ring identification scheme, which was proven to be a
zero-knowledge protocol with soundness error of 2/3 for each round as in the Stern’s
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ID protocol.

Finally, by using the Fiat-Shamir paradigm, the Stern’s threshold ring identifi-
cation scheme is transformed into a signature scheme. The signature size of this
scheme is too huge, due to the fact that the Stern’s threshold ring identification
scheme has to be executed in multi-rounds in order to achieve a required cheating
probability. Whereby, the number of rounds is constrained by the soundness error
of the underlying identification protocol.

5.4 Our Proposal

The soundness error of approximately 1/2 for the CVE scheme presented in chapter 3
allows a performance gains when compared to Stern’s one. In order to make use of
this gain, we present in this section an improved threshold ring identification scheme
based on the CVE scheme.

To describe our scheme, we need the two notions of block permutations:

Definition 5.2. Let n and N be two integers and let
B=(B1s--,BnsPrntis--sBon,---,Bnn) be a vector of length nN defined over some
alphabet. Let us define for ¢ € [1, N] the elements B; = (Bti—1)n+1 - - - » Bin) such
that 8 can be expressed as (61, ey B~N)

The constant (n, N)-block permutation © is a permutation over {1, ..., N} which
acts over vectors of length n/V such that

6(5) = @(IBND - aﬁNN) = (B@(l)a s aB@(N))

Let 0 = (01,...,0n) be a family of N permutations over {1,...,n}, we define a
(n, N)-block permutation II, as a permutation which acts over a vector of length
nN and which is the product of a constant n-block permutation © and the family
o, i.e.

I(B) = O(c1(B1), - .-, an(BN))

Roughly speaking, a constant (n, N)-block permutation divides a vector of length
nN into N blocks of size n and permutes them. A (n, N)-block permutation per-
mutes also for each block the components of the block.

Example 5.3. The permutation (6,5,4,3,2,1) is (2,3)-block permutation, and the
permutation (3,4,5,6,1,2) is a constant (2, 3)-block permutation since the order on
each block ((1,2),(3,4) and (5,6)) is preserved in the block permutation.

5.4.1 Description

We consider one set of N members. Let (S1,...,S:) be a subset of this set consisting
of the members who want to prove that they know some secret s, whereas one of
them is a leader L. The parameter ¢ corresponding to the number of signers has to
be fixed at the beginning of the protocol.
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Our protocol consists of the following steps: Setup, Ring public key generation,
Commitment-Challenge-Answer and Verification step. We describe each step as
follows:

e Setup given k as security parameter, we generate the corresponding public
parameters n,r,w, and ¢ such that WFgp(n,r, w, q) > 2%, where n and r are
the parameters for each matrix H; (1 < ¢ < N) which will be used to form
the ring public matrix. Each matrix can be constructed as follows: we choose
a random vector s; € Fy of weight w, generate n — r — 1 random vectors and
consider the code C obtained by these n — r words (the operation can be re-
peated until the co-dimension of C; is r). The matrix H; is then a parity-check
matrix of a code C; and thus we have HisZT = 0, where s; € IF;‘ has a weight
w. The fact that we take a same syndrome and the same weight for the vec-
tors s; helps for conserving the anonymity in the group. For the (N —t) other
users, s; are fixed at 0, because 0 is always a solution of the equation H,-siT = 0.

¢ Ring key generation the leader collects all these matrices and forms among
them the ring public matrix H, which can be described as follows:

H 0 - 0
0 Hy O 0
H =
H, 0
0 0 --- Hy

¢ Commitment-challenge-answer and verification step to simplify the de-
scription, we consider that the t signers correspond to the first matrices H;
(1 <1i <t). The leader L, member of the set of ¢ signer among N members,
want to prove to the verifier that he knows a secret key s, where s is a nIN
vector of weight tw. This will be achieved by performing the following steps:

- Each member of the t signers (including L) creates local commitments using
the secret keys s; and sends them to L.

- L collects all these commitments, simulates the missing ones for the (N —t)
other users by fixing all remaining s; by 0, and creates the master commit-
ment using a random constant block permutation.

- The master commitment is sent to the verifier.

- The verifier chooses a random value « over F, and sends it to L, the latter
one forwards this value to the (¢ — 1) signers.

- Each member of the t signers (including L) calculates the vectors (;, L
collects those values and creates a global vector 8" using a constant block
permutation and it will be sent to the verifier.

- V chooses a challenge from {0,1} and sends it to L who forwards it to the
(t — 1) signers.
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- L collects the answers from the (¢ — 1) signers, computes the responses for
the other users and finally computes a global answer for the verifier.

- After receiving the global answer, the verifier checks the correctness of the
master commitments.

Algorithm 5.1 gives a full description of this interaction between the set of ¢ signers
and the verifier. This algorithm has to be performed in multi-rounds in order to
reach the required cheating probability.

We stress that during the answer step (line 19 of Algorithm 5.1), the knowledge
of the permutation p permits to recover O, ¥;, and ~; for 1 < i < N. In addition,
the verifier can easily obtain 3; (1 < i < N) by applying the inverse of 6 on the
known vector f3'.

5.4.2 Security analysis

We prove that our threshold ring identification protocol is an honest-verifier zero-
knowledge proof of knowledge.

Lemma 5.4. Finding a vector s of length nIN such that the global weight of s is
tw, the weight of s for each of the N blocks of length n is 0 or w, and such that s
has a null syndrome for H, is hard under the assumption of hardness of the qMD
problem.

Proof. The construction of the matrix H (described above) and the vector s implies
that finding such a n-block of length n/V is also equivalent to finding a solution of
a local hard problem s; of weight w such that H;s; = 0, which is hard under our
assumption. ]

Theorem 5.5. Our scheme is an honest verifier zero-knowledge proof of knowledge,
with soundness error bounded by 1/2, that the group of t signers knows a vector s
of length nIN such that the global weight of s is tw, and such that the vector s has a
null syndrome for H. The scheme is secure in the random-oracle model under the
assumption of the hardness of the gMD problem.

Proof. We prove that our scheme satisfies the three properties: completeness, sound-
ness and zero-knowledge.

Completeness It is clear that each group of honest signers who has the knowledge
of a valid secret key is able to answer correctly any of the honest leader’s queries,
which permit him to compute the master commitments. The leader, on his turn is
able to reveal the information necessary to the honest verifier, in order to check the
correctness of these commitments.
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Algorithm 5.1 Generalized ¢-SD protocol

InpUT: n,k,N,t €N, where k <nandt < N. H € IFZNX"N, where r = n — k and
H a collision resistant hash function.
PRIVATE KEY: s = (s1,...,sy) € FIN, wt(s;) = 0 or w, wi(s) = tw, and Hs” = 0.
COMMITMENT STEP:
Each signer S; chooses u; <¥$FZ, i S, v <—$IFZ* (1<i<t).
Si constructs Cl,i < H (ZJ’}Q‘HluZT) and Co.i < H (H,Yhzi (U’l)‘H’Y“E7(S’L))
S; sends ¢ ; and cy; to leader L.
L fixes the secret keys s; of the N — ¢ other users at 0 (t+1 < i < N).

L chooses N — t values ui<—$]Fg and N — t permutations ¥; <~ S, and N — t values
viﬁlﬁ‘g* (t+1<i<N).
L chooses © <& Sy in order to obtain the master commitments.
L computes the master commitments C7 < H(O|c11
H(@(Cg,l, ceny 627[\/’)).
C1 and C5 are sent to the verifier V.
V sends back the value a <—$IFq and L passes it to each S; (1 < i <1t).
S; computes f; < Iy, 5, (u; +as;) (1 <i < t).
L computes f; < I, s, (u;) (t+1<i < N).
B =0(3)=06(b, ,Bn)=(Boq)---Bew) is sent to V.
CHALLENGE STEP:
V sends a challenge b<>{0, 1}
ANSWER STEP: > The first part of this step is between each signer S; (1 < i <) and the
leader L.
if b =0 then
S; sends vy; and ¥; to L.
else if b =1 then
S; sends (IL,, »,(s;)) to L.
end if
L simulates the N — ¢ other answers with s;, =0 (t +1 <i < N).
L computes the answer for V:
if b =0 then
Y=, 8), 2= (Z1,...3n), and O are sent to V.
else if b =1 then
p(s) = (H'Y(—)(l)az(—)(l) (5@(1))v s ’H'Y(—)(N)vz(—)(N) (SG(N))) is sent to V.
end if
VERIFICATION STEP:
if b =0 then )
V checks Cy £ H(OH(S1In [ HATT Ly, (81)7)] - - [H(Enlyw AT 5 (83)T)) and

?

©c Sy.

else if b =1 then
V checks

-~-|CI,N) and CQ —

T
H(Bowy—allyg ). 26x0) (S0@) | Hrg 1y, 560 (So(1)))

e, 7 7—[( H(Bo(2)—allyg 5,56 2 (S(j)(z)) [Tyg (2. Re (2 (S0(2)))
H(B@(N)*QHVQ(N),Z(_)(N)(Sc—;(N)) [Mye vy Se ) (o))
wt(p(s)) < tw, and that p(s) is formed of N blocks of length n and of weight w or weight

0.
end if
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Soundness It was proven in [19] that the underlying ID scheme satisfies this prop-
erty and that the soundness error is bounded by 1/2, assuming that the gMD problem
is hard. Because our protocol can be seen as a composition of ¢ simultaneous execu-
tions of the underlying ID scheme and given that the latter one can be reduced to
our protocol by making all signing instances equal, this implies that this soundness
error cannot be higher than 1/2 for our protocol in one single round.

Zero-knowledge The zero-knowledge property for our protocol can be proven in
the random-oracle model. In order to do that, we use the classical idea of resettable
simulation. Let Sim be a polynomial-time probabilistic Turing machine (simula-
tor) using a dishonest verifier. Because of the two interactions with the leader, we
have to assume that the dishonest verifier could contrive two strategies: St;(C1,C2)
taking as input the leader’s (master) commitments and generating a value o € F,
Sta(Cy, Oy, 8') taking as input the leader’s commitments, the answer 3 and generat-
ing as output a challenge in the set {0,1}. Sim will generate a communication tape
representing the interaction between leader and verifier. The goal is to produce a
communication tape whose distribution is indistinguishable from a real tape by an
honest interaction. The simulator Sim is constructed as follows:

Step 1. Sim randomly picks a query b from {0, 1}.

e If b = 0, Sim randomly chooses: u;,v;, £; (1 <i < N) and © as a ran-
dom constant block permutation on N blocks {1,2,..., N}, and solves
the equation: Hs'" = 0 for some vector s = (s'1,...,sn) of length nN
and not necessarily satisfying the condition wt(s’) = tw. The values ¢;;
(1 < i < N) can be computed as follows: ¢;; = H (Zz|%|Hlu;f), the
master commitments are taken then as C1 = H(Olcy1]...|ci,n) and Co
as a random string. By simulating the verifier, Sim applies St;(Cy, Cs)
to get a € F,, and then computes ' as follows: 3 = O(IL,, 5, (u1 +
as’t),..., Iy vy (un +as’y)), and has the information needed to derive
the simulated communication data between leader and verifier. There-
fore the candidates to be written in the communication tape consist of
elements A = C1|Cy, A’ and ans= p = O(Il, 5,,...,1L,, 5, ). Taking
into account the uniform distribution of the random variables used in the
computation of A, ans and (', it follows that the distribution of these
elements is indistinguishable from those resulting from a fair interaction.

e If b = 1, Sim randomly chooses u;,7v;, 2; (1 < i < N) and © as a
random constant block permutation on N blocks {1,2,...,N}. This
time it picks s = (s1,...,sn5) as a random vector from the set FQN
with weight tw and formed of N blocks of length n and of weight w
or 0. The commitments C; will be given uniformly at random values and
Cy = H(O(c2,1,--.,c2,n)) such that each co; = H(IL,, x, (ui) |11y, 5, (84))-
Again, from St;(C1,C2), Sim gets o € F, and computes " as follows:
= O(ILy, 5, (u1 + asi),..., I, sy (un + asy)), and has the infor-
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mation needed to derive the simulated communication data. The com-
munication set features elements A = C1|Ca, (' and ans = p(s) =
(o) o) (S0(1)): - -+ e n) Son (So(v)))- The uniformly random char-
acter of the choices made will render these elements indistinguishable from
those resulting from a fair interaction.

Step 2. Sim applies the verifier’s strategy obtaining b’ as result.

Step 3. When b = ¥/, the machine Sim writes on its communication tape the values
of A, o, , b and ans. If the values differ, however, nothing is written and the
machine returns to Step 1.

Therefore, in 20 rounds on average, Sim produces a communication tape indistin-
guishable from one that corresponds to a fair interaction process execution that
takes ¢ rounds. O

Now, using the generalized Fiat-Shamir paradigm presented in chapter 4, we can
transform our honest verifier zero knowledge threshold ring identification protocol
into a threshold ring signature scheme. The aim of the next section is to prove that
the resulting threshold ring signature through this transformation is existentially
unforgeable under chosen-message attacks in the random-oracle mode. We prove this
result in general for ring signature derived from non-canonical ID scheme following
the work of Herranz and Séez [47] which require only canonical ID schemes as basis.

5.4.3 Extended security arguments for ring signature schemes

In this section we present a security proof for ring signatures obtained from non-
canonical honest verifier zero-knowledge ID schemes. In order to do this, we general-
ize the work of [47]. This work provided a security proof for ring signature schemes
obtained from canonical ID schemes. They achieve this by generalizing the forking
lemma for a class of ring signatures which they call generic. This class is defined as
follows. Consider a security parameter x and a ring of » members (S, ... S,). Given
a message M, its signature is formed by a tuple (M, Ry, ..., R,, h1,...,h.,n), where
Ry,..., R, are randomly chosen values from a large set GG, h; is the output of a hash
function H on input (M, R;) for 1 < i < r, and the value 7 is fully determined by
the values Ry,..., R, h1,...,h, and the message M.

Informally, the authors of [47] show given an adversary A which produces a signa-
ture (M, Ry,..., Ry, h1,...,hy,n) within time 7" and success probability €, there ex-
ists an adversary 55 which outputs two valid signatures (M, Ry, ..., Ry, hi,..., hy,n)
and (M,Ri,...,Ry by, ... hl,n') with h; # hl for some 1 < i < r with non-
negligible probability &’ in time T" € O(Te'~!) by replaying A internally. Their
result captures both no-message and adaptively chosen-message attacks.

In the following, we propose an extension of the forking lemma even more for a
class of ring signatures schemes, which we call n-generic.
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Let x denote a security parameter (from which Gy, ..., G, are derived from) and
n be an integer. Further, let #; : {0,1}* — G; denote hash functions for 1 < ¢ < n.
We consider a ring Sy, ..., S, of r members. We capture n-generic ring signature in
the following definition.

Definition 5.6 (n-Generic Ring Signature Scheme). Assume the hash functions
‘H; are modeled by publicly accessible random oracles. An n-generic ring signa-
ture scheme is a ring signature scheme RS = (KGen, Sign, Vf) with the following
properties:

Structure A signature o for a message M is of the form (oy,...,0,,h1,... hy,)
where o) = (0'071, . ,0’07,ﬂ)7 g;, = (0'2'71, . ,Ui7r) and hi = (hi,].v . 7hi7r) for
1= 1, R It holds that hl’j = Hl(M, UOJ) and hm‘ = 'HZ(M, 00,js-++50i—1,5,
hij,...,hi—1j) for i =2,...,nand j = 1,...,r. The value 0;; depends on
previous oqj,...,0;—1,; and hash values hyj,...,h; ;. We require that the
min-entropy of the random variable which outputs oy, ...,0,_1 must be in
w([Hnl)-

Honest-Verifier Zero-Knowledge (HVZK) Let Test be an algorithm such that
Test(pk, sk) = 1 iff (sk, pk) belongs to the range of KGen(1%). Let PK (resp.
SK) be aset of public (resp. matching secret) keys. The HVZK property states
that there exists a PPT algorithm Z, the zero-knowledge simulator, controlling
the random oracles, such that for any pair of PPT algorithms D = (Dy, D1)
the following distributions are computationally indistinguishable:

o Let (PK,SK, sk, M, state) < Do(1%). If Test(pk,sk) =1, set
o= (00,...,0n,h1,...,h,) < Sign(pk,sk, PK, M) ;
otherwise set o < L. Output D (o, state).
e Let (PK,SK,sk, M, state) < Do(17). If Test(pk,sk) =1, set
o= (00,...,0n,h1,....hy,) + Z(pk, PK,M,1) ;

otherwise set o < Z(pk, PK, M,0). Output D1 (o, state).
where PK (resp. SK) is a set of public (resp. secret) keys.

No-Message Attack Model.

The following lemma proves validity of the Extended Ring Forking Lemma in the
no-message attack model for n-generic ring signature schemes, where the adversary
has to forge a valid signature knowing only the verification keys.

Lemma 5.7. Let RS be an n-generic ring signature scheme with security parameter
K, and let r be the number of ring members. Let A be a PPT algorithm given only
the public data as input. If A can find a valid signature (oq,...,0,,hy,..., hy) for
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a message M with a non-negligible probability, after asking the n random oracles
O1,...,0, polynomially often (in k), then, a replay of this machine with the same

random tape, the same first oracles O1,...,On_1 and a different last oracle O, out-
puts two valid signatures (60,...,0n,h1,...,hy) and
(0. y0n-1,00,,h1,....h,_1,h)) for the same message M with a non-negligible

probability such that h,, # h .

Proof. We are given a no-message adversary A, which is a probabilistic polynomial
time Turing machine with a random tape w taken from a set R,. A may ask
q1,---,qn (polynomially bounded) queries to random oracles Oq,...,0, with qj@
denoting the j-query to oracle O;. Furthermore, let r; = (’l“§i),...,?”((1i)) be the
answers from oracle O;. Let S; denotes the set of all possible answers from O; for

1<i<n,ie., {r&i), ... ,7’((1?} € S;.

Note that o¢ is a tuple o9 = (00,1,...,00,), and o; (resp. h;) is a tuple
g; = (UZ'71,...,O'Z"T) (resp. hz = (hi,la~--7hi,7’)) for 1 < 1 < n. For the sake of
shorter formulas, let 0.1 ; (resp. hiyp ;) denote the commitments (resp. challenges)
Ui,j7 . 7Uk,j (resp. h@j, e 7hk,j)'

Let us denote by:

& the event that A can produce a valid signature (o, ...,0,,hi,... h,) for a mes-
sage M by using random tape w and the answers r; for 1 < i < n. Note that
a valid signature implies h@j = OZ(M, 00,55+++50i—1,5, th, cee vhi—l,j)'

F the event that A has queried the oracle O,, with input (M, 0o.n—1,, h1:n—1,5) for
all ring members j < r, i.e.,

Vi <r3; < gy, C]ZL) = (M, 00015, hin—1;) -
Accordingly, its complement —F denotes

dj <rV; < Qn7Qé?) # (M, 00:n—1,5, hin—1,5) -

By hypothesis of the lemma, the probability that event £ occurs (Pr[£]), is non-
negligible, i.e., there exists a polynomial function 7'(x) such that: Pr[&] > T(ln). We
know that

Pri&] =Pr[EN F]+Pr[EN ~F]. (5.1)

Furthermore, we have
PriVj <r:hyj=0n(M,00;m-14,h1m—15) N F]
=Pr[Vj<r:h,;=0,(M 00n1j h1:n-1; | ~F]-Pr[=F]
<PrVj<r:hnj=On(M,000-1,4,h1n-1; | 7F]

1
<

— 9rkn ’
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because the output of O,, is unpredictable and (M, oy,...,0,-1) has a high min-
entropy. The event £ implies that Vj <7 : hy j = On(M, 00:n—1,5, h1:n—1,5), and thus
we get

Pr[& A —F]
<PrVj <r:hy;=O0n(M 00n-1;hn-1;) N F] (5.2)
1

— 9rkn

Relations (5.1) and (5.2) lead to

1 S 1
T(k) 2 = T(k)

Pr[EA F] > (5.3)

Note that a polynomial 77(-) must exist since the difference between a non-negligible
and negligible term is non-negligible. Therefore, for all j < r, 3¢; < g, such that

1
rgnT' (k)

Notice, that in probabilistic term, the event associated to F is

Pr [5 A qg) = (M, Go:n—l,j,h1:n—1,j)] >

rj;:l ng1 F(Ea.])
where F'(¢, ) is the event qé") = (M,00:mn—14, hin—14)-

Suppose that Jjo < r such that V¢ € {1,...,¢,},

Pr [5 A = (M, 00m-1o, hlzn_l,jo)} < an;,(n) (5.4)
Then
Pr[EA Fl=Pr[EA Mi_ U, F(L,5)] <Pr[EA UE F(C, jo)]
Now dn
Pr[EA U F(L,jo)] <Y Pr[EA F(L,jo)]
/=1

and since from (5.4)

1
P F(¢. 4 —_—
r[é’/\ (£7]0)] < anT/(H)
This leads to 1
P
r[EN Fl < ()

which is in contradiction with (5.3).
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Foreachj e {1,...,7},let ¢; € {1,..., gy} besuch that qé?) = (M,00:n—14, P1:n—1,)-
We denote by f; the maximum coordinates of ¢, i.e. §; := max;{¢;}. Then, we can
apply the splitting lemma (see Lemma 4.3).

Let us now define

B ={(w,r1,....70) st. EAGY = (M, 0016, hrn-1,)}-

Since, B C R, x S{' x...x S}" and Pr[B] > m , by using the splitting lemma,

we have:

e IO C R, such that Prjw € Q] > m.

o Yw € Q) Pr[(w,rgl),...,ré?,...,rin),...,r,(zn)) EB] > m, where the

n

probability is taken over S{' x ... x Si".
We define

B/:{(w,rl,...,rn) s.t. (w,r1,...,m) € BAw € Q}.

Since, B’ C (R, x ST' x ... X Sy x g =Pt by using the splitting lemma again
we get

o 30 C R, x 8™ x ... x S5 such that
Pr |:(UJ,T'1, - .,Tnfl,'/"%n)’ .. .,7‘};;11) S Q/i| 2 m

° V(w,rl,...,rn,l,r§n),...,rggll) e Y,
Pr [(w,rl,...,rn_l,'ryl),...,Téﬁll,réj),...,7”((1:)) € B’] > m’

where the probability is taken over S?L”*ﬁ et

(n) (n) ), ( (n) (n))7 and

As a result, if we choose By, w, (1,...,7n—1,7 e, 1), (g, s T
(rgf), cee r;(nn)) randomly, then we obtain with a non-negligible probability two valid
signatures (60,...,0n,h1,...,hy) and

(60y.-y,0n-1,00,h1,...,h) for the same message M such that h,, # h/,. O

Adaptively Chosen-Message Attacks.

So far, we considered the security of n-generic ring signature schemes against no-
message attacks. However, ring signatures require to satisfy security against adap-
tively chosen-message attacks to achieve the standard security level.

Informally, chosen-message attacks work as follows. After an adversary receives
the public key of the ring signature scheme, he may ask queries to the signing
oracle which expects a message M and a party identifier pid as input and outputs a
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signature o. At some point the adversary outputs a message M™* and a signature o*.
If M* was not queried before and the signature o* is valid, we declare the adversary
as successful.

In case we prove an n-generic ring signature scheme to be unforgeable (against
adaptively chosen-message attacks) in the random oracle model, the adversary may
query, in addition to the signing oracle, also the random oracle (polynomially often
in the security parameter).

The following theorem states the Extended Ring Forking Lemma against adaptive
chosen-message attacks.

Theorem 5.8 (The Chosen-Message Extended Ring Forking Lemma). Let RS be
an n-generic ring signature scheme with security parameter k, and let r be the
number of ring members. Let A be a PPT algorithm given only the public data
as input. If A can find a valid signature (oq,...,0,,h1,...,hy,) for a message
M with a non-negligible probability, after asking the n random oracles Oq,...,Onp
and some real signer of the ring polynomially often (in k), then, a replay of this

machine with the same random tape, the same first oracles O1,...,0p_1 and a
different last oracle Oy, outputs two valid signatures (og,...,0n,h1,..., hy,) and
(0y...,0n-1,00,,hy,....h,_1,h)) for the same message M with a non-negligible

probability such that h,, # hl,.

Proof. We consider a PPT algorithm B that executes A in such a way that B sim-
ulates the environment of A. Therefore, B must simulate the interactions of A
with random oracles Oy, ...,0, and with real signers. Then we could see B as an
algorithm performing a no-message attack against the ring signature scheme RS.
We denote by qu’)’ . ,qc(lf) the ¢; distinct queries to random oracle O;, and by
M® .. M) the g, queries (possibly repeated) to the real signers. Note that
g;’s and ¢s are polynomially bounded in k. Since RS is an n-generic ring signa-
ture scheme, RS satisfies the honest-verifier zero knowledge property and thus there
exists an efficient simulator which outputs a valid ring signature for an adversary
chosen message without the knowledge of the secret key and which output distri-
bution is indistinguishable from a real signer. Using this simulator, B can perfectly
simulate the answers of the real ring of signers. For a message M®), the simula-

tor answers a tuple (M(l),a(()l), e ,ag),hgl), e ,hgf)) where a(()l) = (a((]l’)l,...,a((){zq),
0',51) = (aﬁf,...,aﬁﬁ) and hgl) = (hl(li,,hglz,) for ¢ = 1,...,n. Then B con-
structs random oracles Of sy (95 by storing in “random oracle lists” the relations

OFM®, oo O hD) ) = A for all j e {1, ), i€ {1, n)
(

and [ € {1,...,¢s}. When A makes a query qji) to the random oracle O;, B looks in

the random oracle list of (’)ZB . If this value is in the list, B outputs the corresponding

(’)iB (qj(l)) Otherwise, B chooses a random value h, sends it to A and stores the

relation Of(qj(i)) = h.
Now we need to consider potential “collisions” of queries in the random oracles.

If the simulator outputs ring signatures which are indistinguishable from the ones
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@

produced by a real signer of the ring, then we have that no o, ; can appear with

probability greater than 1/2" in a simulated ring signature, too. Since the values

hglj) are outputs of the random oracle, we have that a determined hglj)

ring signature (real or simulated) with probability less than 1/2".
Then, three kinds of collision can occur:

appears in a

e A tuple (M(l),o(()l’}7 .. .,az(l_)l’j,hgi)j, .. .,h§217j) that the simulator outputs, as
part of a simulated ring signature, has been asked before to the random or-

acle O; by the adversary. In this case, it is quite unlikely that the relation

(’)F(M(l),a(()l’;,...,agli)lyj,h%,...,hEQl’j) = hglj) corresponding to the values

output by the simulator coincides with the relation previously stored in the
random oracle lists. The probability of such a collision in all oracles is, how-
ever, less than W.

e A tuple (M(ll),a((){;»z, . ,UZ-(l_lijl, hgl;)l, e hz(.l_lijl) that the simulator outputs,
as part of a simulated ring signature, is exactly equal to another tuple
(M(lz)’ 0.(12) 0_(12) h(l2) h(lz)

0272 Ti1jor Pl nr -+ o i—1,j2) also output by the simulator. The
(TQS)Q o1
2 2

probability of this collision is less than

e Two answers h; ;, and h; j, of the random oracle O; chosen at random by B

are exactly equal, while the two corresponding inputs (M @), a(()’l]?l, . ,al@L i

(1) (1) (2) 2 (2) (2 :
hiGuses hifl,jl) and (M®), L RERRRE R PP hi—l,jg) are different.
The probability of such an event for all random oracles Oy,...,0, is less
than ((Q1+---+gn)+rq5)2 . %

Let g:=¢q1 4+ ...+ q,. Now we can compute:

Pre, 0,,..,0,) [ B succeeds] = Pry, 0, . 0,)[no-collisions and A succeeds]

> Pry,0,,..,0,) A succeeds | no-collisions]|

—Prw,0,..,00) [ no-collisions]

v

Pr, 0,,..,0.) [ A succeeds]

qrgs + (TQS)Q + 2(q + qu)
B 2/@+1

The resulting term is non-negligible since Pr(, o, . 0,)[A succeeds] is assumed to
be non-negligible and the second term is negligible in security parameter x.
Summing up, we have an algorithm B that performs a no-message attack against
the ring signature scheme RS in polynomial time with non-negligible probability of
success. So we can use Lemma 5.7 applied to algorithm B, and we will obtain two
valid signatures again in polynomial time. O

As application of theorem 5.8 and using a reduction technique to the underlying
hard problem, the security of ring signature schemes is guaranteed in the random-
oracle model. The following theorem states this result in particular for threshold
ring signature schemes derived from an ID scheme.

66



5 Threshold Ring Signature Schemes

Theorem 5.9. The resulting threshold ring signature scheme obtained from the CVE
scheme is unforgeable under chosen-message attacks in the random-oracle model.

Theorem 5.10. Our threshold ring signature scheme obtained from the CVE scheme
s anonymous in the random-oracle model.

Proof. The second property we would like to examine is the anonymity property in
the random-oracle model of the resulting threshold ring signature scheme obtained
from the CVE scheme. In other words, the verifier must not be able to determine
the identity of the real signers, a part from the fact that they were at least t among
the n specified ring members. For the challenge 0 the response of both real signers
and the non-signers are completely indistinguishable, since ©, 3J;, and ~; are chosen
uniformly at random and therefore the response is random. So the only possibility to
identify non-signers is challenge 1. In this case the verifier receives a permuted value
of the secret key without having access to the used permutation. As consequence,
the anonymity of the signers is preserved.

The two last theorems permit us to conclude the security proof of the obtained
threshold ring signature scheme. O

5.4.4 Performance aspect and comparison

In general the signature length of signature schemes derived from ID schemes is
constrained by the number of rounds. Our proposal is built by applying the CVE
scheme, which needs a smaller number of rounds to reach the same cheating proba-
bility as by Stern’s ID scheme. For a cheating probability of 278 one needs about
140 rounds for Aguilar et al.’s scheme and only 80 rounds for our proposal. This
fact has a positive effect in terms of signature length for our proposal.

A second code-based threshold ring signature was proposed by Dallot and Vergnaud
[28], this scheme uses the CFS signature scheme as basis, therefore it inherits the ad-
vantage to provide a shorter signature length, however it suffers from slow signature
generation cost and large public key sizes.

Taking into account the performances of the ISD algorithm, we suggest the fol-
lowing parameters to reach 80 bit security.

For our scheme we take ¢ = 256, n = 128, r = 64, and w = 49. For Aguilar et
al.’s scheme, we need to take: ¢ =2, n = 694, r = 347, w = 69 [3]. For Dallot and
Vergnaud’s scheme we take ¢ = 2, n = 222, r = 198, w = 9.

We considered that all seeds used are 128 bits long, the hash outputs are 160 bits
long and the cheating probability is bounded by 278°. Table 5.1 presents a compari-
son between all existing code-based threshold ring signature schemes in terms of key
sizes, signature length and the signing cost for the parameter set (N, t) = (100, 50).

Recently, two post-quantum threshold ring signature schemes have been proposed
which are related to our construction. The first one (CLRS) was proposed by Cayrel
et al. presented in [20] and based on the hardness of SIS lattice problem. The second
one (PBB) was proposed by Petzoldt et al. based on the MQ-problem of solving
systems of quadratic equations over finite fields.
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TRSS Public key | Signature size | Signature cost
(KB) (KB) (ops.)

Aguilar et. al’s scheme 1470 2448 230

Dallot and Vergnaud’s scheme 10137122 7 235

Our scheme 400 1946 226

Table 5.1: Comparison code-based threshold ring signature schemes

TRSS Public key | Signature size | Area

(KB) (KB)
CLRS 7168 14336 Lattices
PBB 3584 655 Multivariates
Our scheme 400 1946 Codes

Table 5.2: Comparison post-quantum threshold ring signature schemes

Table 5.2 compares our scheme with these two post-quantum threshold signature
schemes for 80-bit security.

Remark 5.11. To further reduce the public key size, we can replace a random
matrix H by a quasi-cyclic matrix respectively a quasi-dyadic matrix. In this case,
we obtain a public key size in 12.5 KB for our construction, 8.47 KB for Aguilar et
al.’s one.

5.5 Implementation Results

General remarks

The following tables show the timings we have obtained for a C implementation of
our threshold ring identification scheme and Aguilar et al.’s one. The test system
was an Intel(R) Core(TM)2 Duo CPU E8400@3.00GHz, running Debian 6.0.3. The
sources have been compiled using gcc 4.6.2.

In all cases, we used parity check matrices in systematic form. Due to the row-
major order of C, the transposed matrices have been stored. The tables show the
setup time and the time running the protocol, where the setup time is consumed for
the generation of the necessary public and private keys.

Finally, the use of quasi-dyadic matrices does not allow for all theoretically possible
parameters. For instance, dyadic matrices have the dimension 2P x 2P (p € N), which
means that for quasi-dyadic matrices r = b2P for some b € N. In order to have
comparable results and a uniform implementation, we have used this restriction for
the random and the quasi-cyclic case as well.
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Aguilar et. al's scheme

The number of rounds for the scheme has been set to 28 (cheating probability of
2716 the dimension of the parity check matrix H” over F3 has been set to 704 x 352,
but only the redundancy part has been stored in memory, which is of dimension
352 x 352 bits. The weight of the secrets has been set to 76. Table 5.3 shows the
timing results.

‘ Matrix Type ‘ Dim. [n x 7] ‘ Weight ‘ Setup [ms] ‘ Protocol [ms] ‘ Total [ms] ‘ Sec.[pits] ‘

Random 704 x 352 76 108.539 98.662 207.200 80
Quasi-dyadic 704 x 352 76 811.202 474.737 1285.939 80
Quasi-cyclic 704 x 352 76 476.796 302.935 779.731 80

Table 5.3: Timings for Aguilar et al.’s scheme.

Our proposal

‘ Matrix Type ‘ Dim. [n x 7] ‘ Weight | Setup [ms] ‘ Protocol [ms] ‘ Total [ms] ‘ Sec. jpiss]

Random 144 x 72 54 32.979 18.499 51.477 80
Quasi-dyadic 144 x 72 54 44.331 29.109 73.439 80
Quasi-cyclic 144 x 72 54 38.747 26.550 65.298 80

Table 5.4: Timings for our proposal.

For our scheme the parity check matrices H” have been chosen over Fys, mainly
because in this case a field element fits exactly in one byte. The number of rounds
has been set to 16 (cheating probability of 2716), the weight of the secrets has been
set to H4. Table 5.4 shows the timing results.

Remark 5.12. The given implementation is given as a proof of concept. For in-
stance, the communication between the leader and the signers takes place on the
same machine, even inside the same executable. In reality, the signers would be
located on different computers, having a different architecture, connected to the
leader via network connections and the like. In such a heterogeneous scenario, the
communication latency for those network connections had to be taken into account.
It also might be possible that some signers use a very fast machine, whereas others
use a very slow one. The interaction process would be dominated then by the slowest
possible signer.

Resulting threshold ring signature scheme

In Table 5.5 we give some timings for the resulting signature scheme using the
generalized Fiat-Shamir paradigm. We used the same settings as above, but run
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| Doc. [MB] [ Sig. [MB] | Dim. [n x r] | Weight | Signing [ms] [ Verification [ms] | Sec.j |

1 4 144 x 72 54 544 454 80
10 13 144 x 72 54 3643 3551 80
25 28 144 x 72 54 8803 8700 80

Table 5.5: Timings for our proposal.

the protocol with random matrices only. The savings using other matrix types is
negligible compared to the gained signature sizes.

The signature sizes are not fixed, but show a small variation depending on the
values chosen during the challenge step. More specifically, the answers transmitted
for the cases b=0,1 vary in size, which effectively leads to varying signature sizes as
well. The values are therefore average values obtained while running the protocol
80 rounds (cheating probability of 2780).
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6 Conclusion and Future Work

The security of most public-key cryptosystems used in practice today will be threat-
ened for the time when potential quantum computer become a reality. Besides
the fact that code-based cryptography is believed to resist to quantum attacks,
code-based cryptosystems are one of the most promising candidates of future cryp-
tography mostly due to their simplicity of operations and high speed performance.
However, if we consider, in particular, the question of designing code-based iden-
tification and signature schemes, all current proposals are rather impractical for
many applications with constraint devices, e.g., smartcards. Beside the problem of
public-key size, this is due to the very large communication complexity for identifica-
tion scheme, and slow signing algorithms or security issues for signature schemes. In
order to address these drawbacks, we have introduced in this thesis an improved five-
pass zero-knowledge identification scheme whose security is directly derived from the
hardness of decoding random codes. Our scheme has better communication com-
plexity and smaller public key size compared to all code-based identification using
random codes. We have also presented an extension of the Fiat-Shamir paradigm
and the well-known Forking lemma, which can be used to construct efficient signa-
tures from identification schemes with more than 3-pass. This was one open task
for many recent works such as in [73]. We have applied our new framework in order
to build signature from our proposed identification scheme. The implementation
results has showed that the resulting scheme is very fast with signing/verification
time around 2 ms. However, the size of the signature and the public key are still
large (19KB) compared to classical schemes like RSA and DSA (< 2 KB). Our final
result has concerned developing schemes with additional properties. To this end,
we have applied our extended Fiat-Shamir to our proposed identification scheme in
order to construct a threshold ring signature scheme, which is fully anonymous and
unforgeable based on a proof of knowledge in the random oracle model. This pro-
posal achieves a scheme with shorter signature length, smaller public key size and
signature cost compared to schemes based on codes but still inefficient in practice.
We conclude that a lot of effort is needed to have secure and practical code-based
signature schemes which can be serious alternatives to the currently used cryptosys-
tems. For example, it would be very helpful to see whether it is possible to modify
existing ID schemes in order to obtain new ID protocols with negligible soundness
error which would reduce the number of rounds to reach a perfect completeness.
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Appendix

Encoding function over F, Let n,q and w be any fixed positive integers. A
constant weight encoding bijective function ¢, is described in Algorithm 6.1, this
function takes its input from the interval [0, (¢ — 1)¢ (Z)[ and outputs a g-ary word
of length n and Hamming weight w. Algorithm 6.1 uses a binary encoder method
introduced by Biswas and Sendrier [14]. This function is a constant weight encoding
function taking s = wlogy(n/w) input bits and outputting a binary word of length
n and weight w, and which is very efficient because of its linear time encoding.

Algorithm 6.1 ¢g-ary EnumDecoding

Input: integers n, ¢, w and z € [0, (¢ — 1)¥ (Z)[, (w<mn)
Output: g-ary word of length n and Hamming weight w
s db <+ |z/(q— 1))
ret < binary encoder(db, n, w)
rest < x mod (g — 1)¥
for ¢ from 1 to n do
if 0 j ret[i
ret[i] + (rest mod (¢ — 1)) +1
rest < |rest/(q—1)]
end if
end for
Return ret
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