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Zusammenfassung

Die Dynamik von kleinen, trägen Partikeln, sogenannten inertial particles, in turbu-
lenten Fluiden wie Luft oder Wasser bestimmt Naturphänomene wie Sandstürme oder
technologische Vorgänge wie das Verbrennen von Treibstoffen und hat deshalb viele
Naturwissenschaftler und Mathematiker bewogen, diese Prozesse näher zu untersuchen.
Die Bewegung eines Partikels wird durch das zweite Newtonsche Gesetz beschrieben,
wobei man annimmt, dass die Kraft proportional zur Differenz zwischen der Fluid-
und der Partikelgeschwindigkeit ist. In dieser Arbeit studieren wir das Langzeitver-
halten der Partikel unter der Hypothese, dass das Fluidgeschwindigkeitsfeld Lösung
einer stochastischen partiellen Differentialgleichung vom Ornstein–Uhlenbeck–Typ ist,
die durch eine unendlich–dimensionale fraktionelle Brownsche Bewegung mit beliebigem
Hurst–Parameter H ∈ (0, 1) angetrieben wird. Die Nützlichkeit dieses Ansatzes liegt
darin, dass wir Geschwindigkeitszufallsfelder modellieren können, die gewünschte statis-
tische Eigenschaften von turbulenten Fluiden, basierend auf bestimmten physikalischen
Gesetzen, aufweisen und die man mit relativ geringem Rechenzeitaufwand simulieren
kann. Solch ein Modell beschreibt sehr gut das sogenannte preferential concentration-
Phänomen, welches man in numerischen und Laborexperimenten von turbulenten Flu-
iden beobachtet, d.h. die Partikel sammeln sich in Regionen mit schwacher Vortizität,
was wir im Folgenden als Clusterbildung der Partikel bezeichnen. Wir beweisen die
fast sichere Existenz und Eindeutigkeit von Lösungen der Partikeltransportgleichung,
geben hinreichende Bedingungen an, das Modell als zufälliges dynamisches System zu
beschreiben, welches einen zufälligen Attraktor hat und leiten Eigenschaften eines modi-
fizierten Systems her, die eine Volumenkontraktion im System nahelegen. Abschließend
visualisieren und untersuchen wir in numerischen Experimenten die Clusterbildung der
Partikel in Abhängigkeit von den Parametern im Modell.



Acknowledgements

It is my greatest pleasure to thank my supervisor Prof. Dr. Wilhelm Stannat for the
support of my idea for this project, continuous encouragement and fruitful advice.
Many thanks also go to Prof. Dr. Andrew Stuart and his team for helpful suggestions
and warm hospitality during my visits at the University of Warwick, UK. In particular,
I am extremely grateful to Andrew Duncan who steadily supported me in my numerical
investigations.
Moreover, I owe a lot of thanks to the Japanese members of our International Research
Training Group 1529 ’Mathematical Fluid Dynamics’ associated with TU Darmstadt,
Waseda University and University of Tokyo and funded by DFG and JSPS, which is
greatly acknowledged. My gratitude especially goes to my Japanese advisor Prof. Dr.
Tadahisa Funaki for productive discussions during my stays at the Waseda University
in Tokyo.
Furthermore, I would like to thank Prof. Dr. Dirk Blömker, Prof. Dr. Björn Schmalfuß
and Prof. Dr. Hans Crauel for useful hints and suggestions.
Finally, I am indebted to Anne for her loving support during the time–consuming writing
of this thesis.



Contents

1. Introduction and Notations 6

2. Motivation for the Use of Fractional Noise 12

3. Mathematical Background 15
3.1. Fractional Brownian Motion on the Real Line and Wiener Integration . . 15
3.2. Infinite–Dimensional Fractional Brownian Motion and the Kolmogorov Test 23
3.3. Some Semigroup Theory of Linear Operators . . . . . . . . . . . . . . . . 26
3.4. Random Dynamical Systems, Invariant Measures and the Hausdorff Di-

mension of the Random Attractor . . . . . . . . . . . . . . . . . . . . . . 30

4. Stationary Fractional Ornstein–Uhlenbeck Process 41
4.1. Properties of the Stationary Fractional Ornstein–Uhlenbeck Process . . . 41
4.2. Simulating the Stationary Fractional Ornstein–Uhlenbeck Process . . . . . 57

4.2.1. Standard Cholesky Method and Durbin–Levinson Method . . . . . 58
4.2.2. Circulant Embedding Method . . . . . . . . . . . . . . . . . . . . . 61

5. Inertial Particles in Fractional Gaussian Fields 72
5.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2. Existence, Uniqueness and Regularity of Solutions of the Model . . . . . . 75
5.3. The Model as a Random Dynamical System and the Existence of the

Random Attractor and of Invariant Measures . . . . . . . . . . . . . . . . 82

6. Matching Desired Statistical Properties of the Velocity Field 107

7. Numerical Simulation of the Long–Time Behaviour of Inertial Particles 110
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2. Simulating the Velocity Field and the Particle Movement . . . . . . . . . 112
7.3. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A. Fractional Calculus 123

B. Some Definite Integrals 125

References 126

5



1. Introduction and Notations

Motion of inertial (i.e. small heavy) particles in turbulent fluids occurs in natural phe-
nomena as well as in technological processes and therefore has excited theoretical in-
vestigations (see e.g. [99] and the references therein). Examples for such processes are
formation of raindrops, evolution of clouds and combusting of liquid fuel.
The starting point for many theoretical investigations concerning the motion of iner-
tial particles in turbulent flows is Stokes’ law (see e.g. [5]), which says that the force
exerted by the fluid on the particle is proportional to the difference between the back-
ground fluid velocity and the particle velocity, i.e. we are concerned with the following
transport equation:

τ ẍ(t) = v
(
x(t), t

)
− ẋ(t), (1.1)

where v(x, t) is the velocity of the fluid at point x in space at time t and x(t) is the
position of the particle at time t. Here the response time τ = m

νC in two dimensions or
τ = m

6πνr in three dimensions is often called Stokes’ time, where m is the particles’ mass,
r the particles’ radius, ν the fluid viscosity and C > 0 a universal constant. We neglect
that C actually depends on the radius r and the relative velocity making the law non-
linear ([5]). Further, an important non–dimensional parameter related to the equation
(1.1) is the so–called Stokes’ number St, which is the ratio of the particle aerodynamic
time constant to an appropriate turbulence time scale. In turbulent fluid flows St is usu-
ally defined by St = τ/τη, where τη = ε−1/2ν1/2 is the eddy turnover time associated to
the Kolmogorov length scale η = ε−1/4ν3/4 with viscosity ν and mean energy dissipation
rate ε. If τ → ∞, the equation (1.1) tends to ẍ(t) = 0 which is the equation of motion
of a particle moving with constant velocity. And if τ = 0, i.e. the inertia of the particle
is neglected, we get ẋ(t) = v

(
x(t), t

)
which is the equation of motion of a fluid particle

or a passive tracer which is a particle that follows the streamlines of the fluid. Various
extensions of the basic model (1.1) have been considered in the literature, in particular
by Maxey and collaborators ([56, 57, 97]).
Real world and numerical experiments show that the distribution of inertial particles in
a turbulent fluid is highly correlated with the turbulent motion ([31, 35, 76, 90, 91]).
The particles cluster in regions of low vorticity and high strain rate. This clustering phe-
nomenon is known as preferential concentration. The Stokes’ number St plays a central
role in the effect of preferential concentration. If the particle and fluid time constant
have almost the same order, i.e. St ≈ 1, the particles concentrate in regions where
straining dominates vorticity. Experiments at high or low Stokes’ numbers do not show
this clustering phenomenon.
In principle, the fluid velocity v should satisfy the Navier–Stokes equations and it is
obtained through direct numerical simulations (DNS). DNS for a turbulent flow is com-
putationally very expensive. Therefore, it is also important to consider simplified models
for the velocity field v which simplify the rigorous mathematical analysis and careful nu-
merical investigations, but which still include some important (statistical) properties of
the turbulent flow. Hence, it is reasonable to consider v in (1.1) to be a given random
field v(x, t) which mimics some statistical features of the velocity field obtained from
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DNS, but may not satisfy the Navier–Stokes equations, e.g. random fields whose energy
spectrum is consistent with that of velocity fields obtained from DNS. Such an approach,
i.e. a random velocity field which matches some statistics of turbulence, is also referred
as synthetic turbulence. One example for such an approach is described in the book [37]
by Garcia–Ojalvo and Sancho. In particular, they introduce the PDE formulation of
synthetic turbulent velocity fields that is used in the model by Sigurgeirsson and Stuart
([89]), which is introduced below, together with advocating the use of the fast Fourier
transform to simulate such velocity fields efficiently.
A model for the motion of inertial particles in two dimensions which covers the pre-
ferential concentration phenomenon was introduced by Sigurgeirsson and Stuart in [89]
and analyzed in a series of papers ([42, 49, 64, 65, 66, 67, 68, 88]). This model consists
of Stokes’ law (1.1), where the velocity field is a Gaussian random field that is incom-
pressible, homogeneous, isotropic and periodic in space, and stationary and Markovian
in time. This gives the equations in the non–dimensional form

τ ẍ(t) = v (x(t), t)− ẋ(t), (x(0), ẋ(0)) ∈ T2 × R2, (S1)

v(x, t) = ∇⊥ψ(x, t) =
( ∂ψ
∂x2

(x, t),− ∂ψ
∂x1

(x, t)
)
, (S2)

dψt = νAψtdt+ ν
1
2Q

1
2dWt, ψ0 ∈ V, t ≥ 0, (S3)

where τ, ν > 0, T2 is the two–dimensional torus, W is an infinite–dimensional Brownian
motion in the separable Hilbert space V := {f ∈ L2,per(T2)|

∫
T2 f(x)dx = 0} and the

self–adjoint operators A and Q
1
2 on V will be chosen to match a desired energy spec-

trum of the velocity field. Precise assumptions will be given later. The equation (S3)
is interpreted as a linear stochastic evolution equation ([23]) and the stationary solution
is an infinite series of stationary Ornstein–Uhlenbeck processes. In [89] various qualita-
tive properties of the system (S) have been studied, such as existence and uniqueness
of solutions and existence of a random attractor. In particular, numerical simulation
in [89], see also [8], indicates that system (S) also covers the preferential concentration
phenomenon, where the parameter τ can be now interpreted as Stokes’ number, whereas
ν indicates how fast the velocity field decorrelates. Therefore, the random attractor of
the system (S) is highly relevant for the study of preferential concentration of inertial
particles.
Similar to Stuart and Sigurgeirsson in [89], Bec simulated in [8, 9] not only the motion
of inertial particles with a random velocity field as in the system (S), but also nume-
rically calculated the Lyapunov dimension (LD) of the random attractor which is an
upper bound of the Hausdorff dimension. It is important to note that the Hausdorff
dimension of the random attractor in (S1) is almost sure constant due to the ergodicity
of the underlying noise (S2)–(S3). Bec’s numerical calculation shows that there is a
parameter regime (0, τ∗) with some τ∗ > 0 of the Stokes’ number τ such that the LD
is strict less than the physical phase space dimension 2. In particular, he computed
that LD ≈ 2 for τ ≈ 0 as expected since v is incompressible by (S2) and for τ → 0 we
get the limiting ODE ẋ(t) = v (x(t), t). Then the LD decreases in τ to some minimum
1 < LDmin(τ∗∗) < 2 with τ∗∗ ∈ (0, τ∗) and then increases in τ with LD(τ) > LD(τ∗) = 2
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for τ > τ∗. The behaviour for τ →∞ is also reasonable since (S1) tends in this case to
ẍ(t) = 0. In particular, the bounds in (0, τ∗) below 2 give us a numerical justification of
preferential concentration as a fractal clustering phenomenon.
Further, various limits of physical interest in system (S) have been studied: rapid decor-
relation in time limits ([49, 64, 65]) and diffusive scaling limits ([42, 66, 67, 68, 88]).
Also of interest are studies of system (S) for fluid particles or passive tracers, i.e. τ = 0
and so (S1) is replaced by ẋ(t) = v (x(t), t). This problem in a similar framework was
considered among others by Carmona (see [11] and references therein).

In this work we generalize system (S) to the fractional noise case, i.e. in the system
(S) the stochastic evolution equation (S3) will be driven by an infinite–dimensional
fractional Brownian motion BH with arbitrary Hurst parameter H ∈ (0, 1).

dψt = νAψtdt+ νHQ
1
2dBH

t (S′3)

We recover system (S) as a special case for H = 1
2 . The main motivation to use frac-

tional noise, to model now a fractional Gaussian random velocity field, is that certain
statistical similarities exist in the scaling behaviour of a fractional Brownian motion and
a turbulent velocity field. These statistical similarities are described in Section 2. The
great advantage of our generalized model for the velocity field is that it enables us to
match an additional statistical property of turbulent fluids based on some statistical
physical laws, which is, in general, not covered in system (S) with H = 1/2. Moreover,
the generalized system still allows us to perform numerical experiments of relative high
speed.
First we extend the results of Sigurgeirsson and Stuart in [89] to the fractional noise
case with arbitrary Hurst parameter H ∈ (0, 1), i.e. we prove the existence and unique-
ness of solutions to the extended system (S′)=((S1),(S2),(S′3)) and the existence of a
random pullback attractor. Since a fractional Brownian motion for H 6= 1

2 is not a semi-
martingale and not a Markov process, standard tools from Ito stochastic calculus are not
available. That makes the analysis more complicated. To establish our assertions we use
recent results by Maslowski and Pospisil in [54] concerning the existence of stationary
ergodic mild solutions to a general class of linear stochastic evolution equations with an
additive infinite–dimensional fractional Brownian motion. In Theorem 5.2.1 we prove
the existence of a unique stationary ergodic mild solution ψ to (S′3) with an explicit
representation of this solution. The existence is due to [54], whereas we establish the
uniqueness (in an appropriate sense) and the explicit representation of ψ. Then we
verify in Theorem 5.2.3 and Corollary 5.2.5 regularity properties of ψ which determine
the regularity of the velocity field v = ∇⊥ψ and which in turn provides us sufficient
conditions to prove in Corollary 5.2.8 the existence and uniqueness of solutions to (S1).
To study the long–time behaviour of the particles we rewrite system (S′) in Proposition
5.3.1 and Proposition 5.3.4 as a random dynamical system (RDS). In the proofs of the
two propositions we work out all technical issues concerning the measurability aspects
of the RDS which were left out in [89]. Subsequently, we verify in Theorem 5.3.5 the
existence of a unique random pullback attractor and improve the results in [89], now in
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the generalized system (S′), in such a way that we extend the universe of attracting sets
from deterministic bounded sets to random tempered sets with an explicit representation
of a random tempered the universe absorbing set. With this additional information we
are also able to prove in Theorem 5.3.5 the existence of an invariant forward Markov
measure for the RDS. To show the existence of the random attractor and global existence
of particle paths, it is crucial to derive linear growth conditions for some functionals of ψ.
We accomplish this in Lemma 5.3.2(ii). To establish the assertions of Lemma 5.3.2(ii),
we adopt a method introduced by Maslowski and Schmalfuß in [53], where an analo-
gous statement is proven for increments of an infinite–dimensional fractional Brownian
motion. Further, Section 6 describes how to match desired statistical properties of the
velocity field. In particular, Proposition 6.1 approves that our velocity field indeed cap-
tures the statistical property motivated in Section 2 to use fractional noise. All these
results described so far, i.e. Theorem 5.2.1, Theorem 5.2.3, Corollary 5.2.5, Corollary
5.2.8, Proposition 5.3.1, Lemma 5.3.2(i)–(ii), Proposition 5.3.4, Theorem 5.3.5, Proposi-
tion 6.1 and parts of Section 2 and Section 6 were published in [84] except the assertion
of the existence of an invariant forward Markov measure in Theorem 5.3.5.
Further, in view of Bec’s numerical results, it would be desirable to analytically derive
(upper) bounds of the Hausdorff dimension (HD) of the random attractor depending on
the parameter τ in the generalized system (S′) with fractional noise. Schmalfuß provides
in [83] a general theorem to bound the HD of a random attractor. Unfortunately, his
theorem is not directly applicable to our system (S′) since we have a two–dimensional
torus T2 in the position coordinates and to the best of our knowledge there are so far
no results in the field of random dynamical systems on manifolds to bound the HD of
a random attractor whenever the attractor is not a random fixed point. Therefore, we
replace T2 by R2 in (S1) and extend v and ψ in (S2)–(S′3) by periodicity to R2. For
this modified system we still can show existence and uniqueness of particle paths, but
we cannot prove the existence of a random attractor. Nevertheless, we establish pro-
perties of this modified system which are very close to the assumptions of Schmalfuß’
theorem in [83] to bound the HD of a random attractor. These results are on the one
hand of independent interest and on the other hand suggest a volume contraction in the
modified and presumably in the original system (S′), see Remark 5.3.7, Theorem 5.3.8
and Remark 5.3.9.
At last, we perform numerical experiments in system (S′). Since the unique stationary
solution ψ of (S′3) is an infinite series of one–dimensional stationary fractional Ornstein–
Uhlenbeck (sfOU) processes, we first analytically and numerically verify in Section 4.2
the applicability of popular methods for simulating stationary Gaussian processes to the
one–dimensional sfOU process. More precisely, we investigate the standard Cholesky
method with complexity O(n3), the Durbin–Levinson method with complexity O(n2)
and the circulant embedding method with complexity O(n log(n)). For that we estab-
lish in Proposition 4.1.2, see also Remark 4.1.3, to the best of our knowledge partly
new properties of the sfOU process. It turns out that the standard Cholesky method
and the Durbin–Levinson method are always applicable, whereas the circulant embed-
ding method might only be partly of practical use. Section 7.2 then describes how the
velocity field can be computed in an efficient way using the fast Fourier transform al-
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gorithm. The trajectory of the particle is obtained by using the classic fourth–order
Runge–Kutta scheme. Finally, in our numerical experiments in Section 7.3 we discover
that the generalized model with fractional noise also captures the clustering phenomenon
of preferential concentration, i.e. for τ ≈ 1 the clustering of the particles is distinctive,
whereas for very low and large values of τ there is almost no clustering. We observe
that if we increase the Hurst parameter, the clustering of the particles becomes stronger.
Moreover, we heuristically deduce that, not surprisingly, the velocity field decorrelates
for ν →∞ more slowly by increasing the Hurst parameter.
To summarize, the main contributions of this work are threefold: modelling, rigorous
mathematical analysis and numerical investigation. We introduce a generalized model
for the velocity field with an additional statistical property motivated by some physical
laws. The main analytic results are regularity properties of the unique ergodic mild
solution ψ, the global existence and uniqueness of particle paths, the existence of a
unique random attractor and the derivation of some properties of a modified system
which suggest a volume contraction in this system. We describe how the particle motion
can be simulated efficiently, numerically verify that the generalized model also captures
the clustering phenomenon of preferential concentration and investigate the dependence
of the clustering on the parameters τ, ν and H.

The remainder of this work is organized as follows: At the end of this section we
summarize the required notations for this work. In Section 2 we present the motivation
to use fractional noise to model the random velocity field. Section 3 provides prelimina-
ries of stochastic calculus w.r.t. the (infinite–dimensional) fractional Brownian motion
(Section 3.1 and Section 3.2), semigroup theory of linear operators (Section 3.3) and
random dynamical systems (Section 3.4) which are needed in subsequent sections. In
Section 4 we study properties of the stationary fractional Ornstein–Uhlenbeck process
(Section 4.1) and describe how to simulate this process (Section 4.2). In Section 5.1 we
introduce the generalized model (S′) for motion of inertial particles in a fractional Gaus-
sian random velocity field. We derive conditions for global existence and uniqueness of
solutions for the system (S′) in Section 5.2. Further, we verify in Section 5.3 that the
system (S′) defines a random dynamical system which admits a random attractor and
prove properties of a modified model which suggest a volume contraction in the system.
Section 6 is devoted to verifying that the random velocity field (S2)-(S′3) captures the
statistical properties of a turbulent fluid flow which were motivated in Section 2. In the
last Section 7 we describe how to simulate the system (S′) (Section 7.1 and Section 7.2)
and study the long–time behaviour of the particles in numerical experiments (Section
7.3). Finally, the appendix is devoted to additional preliminaries for fractional calculus
and tables of integrals.

In the whole thesis we use the following conventions: If E is a Banach space, then
we denote by | · |E the norm of E and by 〈·, ·〉E(=: | · |2E) the inner product of E if E
is even a Hilbert space. In the cases E = Rn for some n ∈ N or E = T2 × R2, where
T2 denotes the two–dimensional torus, we just write | · | = | · |E and 〈·, ·〉 = 〈·, ·〉E for
the norm and inner product, respectively. We also use |z| to denote the absolute value
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of a scalar z ∈ R or a complex number z ∈ C. Further, by ∗ we denote the complex
conjugate of a complex number or a complex–valued function. For a separable Hilbert
space E we denote by L(E) the Banach space of linear, bounded operators from E into
E equipped with the operator norm | · |L(E) and L2(E) equipped with the inner product
〈T, S〉L2(E) :=

∑
n∈N〈Ten, Sen〉E , T, S ∈ L2(E), denotes the Hilbert space of Hilbert–

Schmidt operators from E into E, where (en)n∈N is an orthonormal basis of E. For
Q ∈ L(E) we denote by Q∗ ∈ L(E) the adjoint of Q. We say Q ∈ L(E) is a trace-class
operator on E if Q is a product of two Hilbert–Schmidt operators, i.e. Q = T ◦S for some
S, T ∈ L2(E), where ◦ denotes the composition. If Q ∈ L(E) is a trace–class operator
on E, we set tr(Q) :=

∑
n∈N〈Qen, en〉E < ∞ for some (and hence all) orthonormal

bases (en)n∈N of E. Further, we denote by (Ω,F ,P) always a probability space and E
the expectation w.r.t. P. For 0 < p < ∞ and E a separable Banach space, we write
Lp(Ω, E) and Lp(Ω) := Lp(Ω,R) if E = R for the Banach space of E–valued integrable
random variables X : Ω → E (in fact, equivalence classes of random variables, where
X ∼ Y if X = Y P–a.s.) equipped with the norm |X|pLp = E(|X|pE). In the same way we
define the spaces Lp(R) with respect to the Lebesgue measure. We denote by B(E) the
Borel σ–algebra of a metric space E. For a multi–index δ = (δ1, . . . , δN ) ∈ NN0 we set

|δ| := δ1 + · · ·+δN and denote the partial derivative operator by Dδ := ∂|δ|/∂xδ11 . . . ∂xδNN
and Dδ := id if |δ| = 0. We define by C(R, E) the space of all E-valued continuous
functions on R where E is a complete separable metric space with metric d. Notice
that endowing C(R, E) with the compact open topology given by the complete metric
d̃(f, g) =

∑∞
n=1 dn(f, g)/(2n(1 + dn(f, g))), dn(f, g) = sup−n≤t≤n d(f(t), g(t)), makes

C(R, E) a Polish space, actually a Frechet space. Let O ⊆ Rm, m ∈ N, be open and
bounded with closure O. Ck(O), k ∈ N0, with norm |f |Ck(O) =

∑
|α|≤k supx∈O |Dαf(x)|

denotes the separable Banach space of all real–valued k–times continuously differentiable
functions on O. By Ck,δ(O×Rr,Rs), k ∈ N0, δ ∈ [0, 1), r, s ∈ N, we denote the Frechet
space of functions f : O × Rr → Rs which are k–times continuously differentiable and
(for δ ∈ (0, 1)) whose k–th derivative is locally δ-Hölder continuous with seminorms
|f |k,0;K :=

∑
0≤|α|≤k sup(x,y)∈O×K |Dαf(x, y)|,

|f |k,δ;K = |f |k,0;K +
∑
|α|=k

sup
(x1,y1),(x2,y2)∈O×K,

(x1,y1) 6=(x2,y2)

|Dαf(x1, y1)−Dαf(x2, y2)|
|(x1, y1)− (x2, y2)|δ

,

where K is a compact convex subset of Rr and α ∈ Nm+r
0 . A complete metric is

given by ρ(f, g) =
∑∞

n=1 |f − g|k,δ;Kn/(2n(1 + |f − g|k,δ;Kn)), where (Kn)n∈N is some
increasing sequence of compact convex sets exhausting Rr. While Ck,0(O × Rr,Rs) is
separable and hence Polish, the space Ck,δ(O × Rr,Rs) for δ ∈ (0, 1) is not separable
(see Appendix B2 in [2] and references therein). In cases δ = 0 and k = 0, r = s = 1 we
set Ck,0(O × Rr,Rs) = Ck(O × Rr,Rs) and C0,δ(O × R,R) = Cδ(O × R), respectively.
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2. Motivation for the Use of Fractional Noise

Before we give the motivation to use fractional noise it is important to introduce some
notations which are used frequently in this section.
Since solutions of the Navier–Stokes equations for very turbulent fluids, i.e. at large
Reynolds numbers, are unstable in view of the sensitive dependence on the initial condi-
tions that makes the fluid flow irregular both in space and time, a statistical description is
needed (see e.g. [14] and [36]). Based on this and since we will model a two–dimensional
fluid field, we call a measurable mapping

v : Ω× R2 × [0,∞)→ R2

a (two–dimensional) random field on a probability space (Ω,F ,P). We say that a random
field is of second–order if E(|v(x, t)|2) <∞ for all (x, t) ∈ R2 × [0,∞) and mean zero if
E(vi(x, t)) = 0 for all 1 ≤ i ≤ 2 and (x, t) ∈ R2 × [0,∞), where vi, 1 ≤ i ≤ 2, denote
the components of v. Since we are only interested in velocity fields, we call a random
field also a random velocity field. Further, we refer to a (two–dimensional) random fluid
field v if v is a random velocity field which satisfies ω–wise, ω ∈ Ω, the Navier–Stokes
equations in two space dimensions.
A random velocity field v is called stationary if for all x ∈ R2 and s ≥ 0 (v(x, s +
t))t≥0 and (v(x, t))t≥0 have the same finite dimensional probability distributions and
analogously a random velocity field v is said to be homogeneous if for all t ≥ 0 and
y ∈ R2 (v(x + y, t))x∈R2 and (v(x, t))x∈R2 have the same finite dimensional probability
distributions. If a homogeneous random velocity field is a second–order random field,
the homogeneity implies that for a fixed t ≥ 0 the spatial covariances

Cij(t;x, y) := E ((vi(x, t)− E(vi(x, t)))(vj(y, t)− E(vj(y, t))))

for all 1 ≤ i, j ≤ 2, x, y ∈ R2 are functions of x− y.
We say that a random velocity field v is isotropic if for any orthogonal 2 × 2 ma-
trix K, t ≥ 0 and y ∈ R2 (v(Kx + y, t))x∈R2 and (v(x, t))x∈R2 have the same finite
dimensional probability distributions, i.e. the probability distributions for the values
of its components at any finite arbitrary set of points are unaffected by any trans-
lations, rotations and reflections. Notice that by our definition an isotropic random
velocity field is always homogeneous. If an isotropic random velocity field is a second–
order random field, the isotropy implies that for a fixed t ≥ 0 the spatial covariances
Cij(t;x, y) for all 1 ≤ i, j ≤ d, x, y ∈ R2 are functions of |x − y|. In this case we set
Cij(t; |x − y|) := Cij(t;x, y). Further, we say that a second–order isotropic random ve-
locity field v admits a spectral density representation, if for all t ≥ 0 and 1 ≤ i, j ≤ 2
there is a positive function Eij(t; ·) : [0,∞)→ [0,∞) such that

Cij(t; |x− y|) =

∞∫
0

J0(k|x− y|)Eij(t; k)dk,
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where x, y ∈ R2 and J0 is the Bessel function of the first kind of order 0, that is,

J0(r) =
∞∑
m=0

(−1)m
(r/2)2m

(m!)2
.

For a general spectral representation theorem for isotropic random fields the reader is
referred to [1] page 116.
In this section we will implicitly assume that a random fluid field is a mean–zero second–
order stationary and isotropic random velocity field which admits a spectral density
representation. The energy spectrum of this random velocity field is then defined by

E(·) :=
1

2

∑
1≤i≤2

Eii(t; ·) =
1

2

∑
1≤i≤2

Eii(0; ·).

The need for the use of fractional Gaussian noise can be understood by comparing
some statistical characteristics of a random fluid field and a fractional Brownian motion
with Hurst parameter H ∈ (0, 1). Due to a phenomenological approach, first introduced
by Kolmogorov ([46]) in three dimensions and by Kraichnan ([47]), Leith ([51]) and
Batchelor ([6]) in the two dimensional case, we have the following phenomenological
correspondence (see Section 4b in [7]) between the relation of the spatial second–order
structure function

E
(
|v(x+ r, t)− v(x, t)|2

)
= C|r|α−1 (2.1)

and the relation of the energy spectrum E(·) of the random fluid field v

E (k) = C̃k−α, (2.2)

where C, C̃ > 0 are some constants, 1 < α < 3, r ∈ R2 and k > 0 in the inertial
subrange. In particular, for α = 5/3 we obtain the famous Kolmogorov’s two–thirds law
and Kolmogorov’s five–thirds law (or Kolmogorov energy spectrum), respectively.
The connection to the fractional Brownian motion gives now Taylor’s frozen turbulence
hypothesis ([92]) which informally assumes that the spatial pattern of turbulent motion
is unchanged as it is advected by a constant (in space and time) mean velocity V ,

|V | :=
(∑

i V
2
i

) 1
2
, let us say along the x axis. Mathematically, Taylor’s hypothesis says

that for any scalar–valued fluid–mechanics variable ξ (e.g. vi, i = 1, 2) we have

∂ξ

∂t
= −|V |∂ξ

∂x
. (2.3)

The frozen turbulence hypothesis enables us to express the statistical characteristics of
the space differences v(x+r, t)−v(x, t) in terms of the time differences v(x, t)−v(x, t+s)
corresponding to a fixed time t. Indeed, (2.3) implies vi(x, t + s) = vi(x − V s, t) and
therefore by (2.1) we deduce

E
(
|v(x, t)− v(x, t+ s)|2

)
= C|V |α−1sα−1 (2.4)
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in the inertial subrange along the time axis. For a discussion under which conditions the
frozen turbulence hypothesis is valid the reader is referred to [59].
Note that due to our derivation the properties (2.2) and (2.4) are closely related to each
other!
Now comparing (2.4) with the statistical property

E
(
|βHt+s − βHt |2

)
= s2H (2.5)

of the fractional Brownian motion (fBm) (βHt )t∈R with Hurst parameter H ∈ (0, 1) in-
dicates that it is reasonable to model the random velocity field v with noise driven by a
fBm. With this motivation and since the fractional Ornstein–Uhlenbeck (OU) process
(i.e. a OU process driven by a fractional Brownian motion) satisfies at least approxi-
mately local in time the property (2.5), Shao proposed in [85] a finite dimensional sta-
tionary fractional OU process to model the statistical feature (2.4) and he argued in [86]
that this may remedy some inconsistencies arising in Lagrangian stochastic models for
non–passive particle diffusion in turbulent flows.
Further, Sreenivasan and collaborators used a one–dimensional fractional Brownian mo-
tion with H = 1

3 in [45] to construct a one–dimensional random velocity field as a model
for turbulence by arguing that this gives some scaling behaviour that resembles Kol-
mogorov turbulence.
In [63] Papanicolaou and Solna use the fractional Brownian motion with special interest
in H = 1

3 to model turbulence and discuss the wavelet based scale spectrum that can be
used for spectral estimation of such processes.
Since we are only interested in statistical properties of the random fluid field v, we intro-
duce in Section 5 a two–dimensional, incompressible, stationary and isotropic random
velocity field to capture both statistical features, (2.2) and (2.4). These assumptions
(Gaussian statistics, stationarity and isotropy) are quite common in random mathema-
tical models of turbulent fluids (see e.g. [5]). Section 6 describes in detail how to match
these statistics in such a random velocity field.
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3. Mathematical Background

In Section 3.1 we first introduce the one–dimensional fractional Brownian motion (fBm)
and the Wiener integral w.r.t. the fBm. Further, we provide properties of these processes
which are used in Section 4, where we introduce the stationary fractional Ornstein–
Uhlenbeck process which is a special Wiener integral. Here we refer to [4, 58, 60, 70]. In
Section 3.2 we will define the infinite–dimensional fBm as a straightforward generaliza-
tion of a cylindrical Wiener process ([23, 72]) and recall the Kolmogorov test from [23]
which will yield us the existence of continuous modifications of the random velocity field
introduced in Section 5. Finally, we summarize some required notations and concepts of
the semigroup theory of linear operators and the theory of random dynamical systems in
Section 3.3 and Section 3.4, respectively, where we mainly refer to the books [2, 32, 69].

3.1. Fractional Brownian Motion on the Real Line and Wiener Integration

For the next definition recall that a stochastic process X : Ω×R→ R denoted by (Xt)t∈R
on a probability space (Ω,F ,P) is called Gaussian if for any positive integer n ∈ N and
any t1, . . . , tn ∈ R the joint distribution of the random variables Xt1 , . . . , Xtn is jointly
normal.

Definition 3.1.1. The (real–valued and normalized) fractional Brownian motion (fBm)
on R with Hurst parameter H ∈ (0, 1) is a Gaussian process

(
βHt
)
t∈R on (Ω,F ,P),

having the properties

(i) βH0 = 0 P-a.s.,

(ii) E(βHt ) = 0, t ∈ R,

(iii) E(βHt β
H
s ) = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R.

(iv) (βHt )t∈R has continuous sample paths P-a.s.

It is possible to consider the fBm only on R+ (one–sided fBm) or on an interval [0, T ]
for some T > 0 with evident changes in Definition 3.1.1.
The fBm has the following self–similarity property: For any constant a > 0, the processes(
a−HβHat

)
t∈R,

(
βHt
)
t∈R have the same distribution in the sense of finite–dimensional

distributions. This property is an immediate consequence of the fact that the covariance
E
(
βHt β

H
s

)
is homogeneous of order 2H.

Note that

E
(
(βHt − βHs )(βHu − βHv )

)
=

1

2

(
|s− u|2H + |t− v|2H − |t− u|2H − |s− v|2H

)
(3.1.1)

and in particular
E
(
|βHt − βHs |2

)
= |t− s|2H .

It follows from (3.1.1) that the process βH has stationary increments, but it is not
stationary itself.
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One can show (see e.g. Theorem 1.6.1 and Proposition 1.7.1 in [4]) that there is a version
of βH such that the trajectories are Hölder continuous of order H − ε for any ε ∈ (0, H)
and that the fBm does not have differentiable sample paths P-a.s.

If H = 1
2 then we have E

(
β

1
2
t β

1
2
s

)
= min{t, s} and the increments of β

1
2 are not

correlated, and consequently independent. So β
1
2 is a standard Brownian motion.

For H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)

and t1 < t2 < t3 < t4, it follows from (3.1.1) that

E
(
(βHt4 − β

H
t3 )(βHt2 − β

H
t1 )
)

= 2

(
H − 1

2

)
H

t2∫
t1

t4∫
t3

(u− v)2H−2dudv. (3.1.2)

Therefore, the increments are positively correlated for H ∈
(

1
2 , 1
)

and negatively corre-
lated for H ∈

(
0, 1

2

)
.

Before proceeding, we introduce an important definition.

Definition 3.1.2. Let (Xt)t≥0 be a real–valued stationary process on (Ω,F ,P) with finite
variance. We say that (Xt)t≥0 is long–range dependent if the covariance function
γ(n) := Cov(Xk, Xk+n) = Cov(X1, X1+n), k, n ∈ N, satisfies

lim
n→∞

|γ(n)|
n−α

= C

for some constant C > 0 and α ∈ (0, 1). (In this case we have
∑∞

n=1 |γ(n)| =∞.)
(Xt)t≥0 is called short–range dependent if

∑∞
n=1 |γ(n)| <∞.

As easily seen, we have by (3.1.2)

r(n) := E
(
βH1
(
βHn+1 − βHn

))
∼ 2

(
H − 1

2

)
Hn2H−2

for n → ∞. Therefore, the increments Xn := βHn+1 − βHn , n ∈ N0, of the fBm βH ,
also often called fractional Gaussian noise, are long–range dependent for H > 1/2 and
short–range dependent for H ≤ 1/2. It should be noted that the definition for long–
range dependence given in Definition 3.1.2 suits the fBm very well. For alternative (and
more general) definitions of long–range dependence see Definition 1.4.2 in [4].
Further, it is easy to prove (see e.g. Section 1.15 in [58]) that the fBm for H 6= 1

2 is not
a semimartingale and not a Markov process. As a direct consequence of this fact, one
cannot use the Ito stochastic calculus developed for semimartingales in order to define
the stochastic integral w.r.t. the fBm.
We have the following representations of the fBm on R which are due to Mandelbrot/van
Ness ([52]) and Samorodnitsky/Taqqu ([80]).

Theorem 3.1.3. Let H ∈ (0, 1).
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(i) Let (ω̃t)t∈R be a standard Brownian motion on R and H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)
. The

process
(
βHt
)
t∈R defined by

βHt :=
1

C1(H)

∫
R

[(
(t− s)+

)H− 1
2 −

(
(−s)+

)H− 1
2

]
dω̃s,

where C1(H) =
( ∫

R+

(
(1 + s)H−

1
2 − sH−

1
2

)2
ds + 1

2H

) 1
2

=
Γ(H+ 1

2
)(

2H sin(πH)Γ(2H)
) 1

2
, has

a continuous modification which is a fractional Brownian motion on R with Hurst
parameter H. Here (y)+ := max{0, y} for y ∈ R and Γ(·) denotes the gamma
function.

(ii) Suppose that
(
βHt
)
t∈R is a fractional Brownian motion on R. Then

(
βHt
)
t∈R

d
=

 1

C2(H)

∫
R

eitx − 1

ix
|x|

1
2
−Hdω̂(x)


t∈R

,

where C2(H) =
(

2π
Γ(2H+1) sin(πH)

) 1
2
> 0 and ω̂ = ω̂1 + iω̂2 is a complex Gaus-

sian measure such that ω̂1(A) = ω̂1(−A), ω̂2(A) = −ω̂2(−A) and E(ω̂1(A))2 =

E(ω̂2(A))2 = |A|
2 , for any Borel set A of finite Lebesgue measure |A|. Here

d
=

denotes the equality in the sense of finite–dimensional distributions.

Proof. (i): Theorem 1.3.1 in [58].
(ii): Section 7.2.2 in [80].

Remark 3.1.4. We note that the fBm (βHt )t∈[0,T ] on a finite interval [0, T ] for some T > 0
with Hurst parameter H ∈ (0, 1) can be represented by

βHt =

t∫
0

KH(t, s)dω̃s, t ∈ [0, T ], (3.1.3)

where KH : [0, T ]2 → R is some kernel function and (ω̃t)t∈[0,T ] is a standard Brownian
motion on [0, T ] (see [60] Chapter 5 for details). In particular, the standard Brownian
motion (ω̃t)t∈[0,T ] that provides the integral representation (3.1.3) is unique and both

processes (βHt )t∈[0,T ], (ω̃t)t∈[0,T ] generate the same filtration ([60]). In contrast to the

representation (3.1.3) of the fBm (βHt )t∈[0,T ] on a finite interval [0, T ] the standard Brow-

nian motion (ω̃t)t∈R and the fBm (βHt )t∈R on R in Theorem 3.1.3(i) do not generate the
same filtration. So, unlike the standard Brownian motion, the two–sided fBm (βHt )t∈R
is not obtained by glueing two independent copies of a one–sided fBm (βHt )t≥0 together
at t = 0.
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Now we want to introduce the Wiener integral w.r.t. the fBm on R. Here we follow
Pipiras and Taqqu [70] and use their notations.
As in the standard Brownian motion case one likes to view the integral

∫
R f(t)dβH(t)

as approximated by
∑

1≤k≤n−1 ak(β
H(tk+1) − βH(tk)) where ak and tk < tk+1 are real

numbers. So let Υ be the set of elementary (or step) functions f : R → R on the real
line, i.e. f(t) =

∑
1≤k≤n−1 ak1[tk,tk+1), where t1 < t2 < · · · < tn ∈ R and ak ∈ R,

1 ≤ k ≤ n− 1. For f ∈ Υ define

IH(f) :=

∫
R

f(t)dβH(t) :=
∑

1≤k≤n−1

ak(β
H(tk+1)− βH(tk)).

Then the linear space of Gaussian random variables {IH(f), f ∈ Υ} is a subset of the
larger linear space

sp(βH) :=

{
X : IH(fn)

L2(Ω)−−−−→
n→∞

X, for some (fn)n∈N ⊂ Υ

}
.

We can associate with X an equivalence class of sequences of elementary functions
(fn)n∈N such that IH(fn)→ X for n→∞ in the L2(Ω)–sense and X is usually written
in an integral form as X =

∫
R fX(t)dβHt . If we endow sp(βH) with the inner product

E(XY ) for X,Y ∈ sp(βH), it becomes a Gaussian Hilbert space (see e.g. [44] for a

definition). It is well–known that for the standard Brownian motion sp(β
1
2 ) and L2(R)

are isometric. So we are interested in the following question:

Which classes of integrands in the definition of the Wiener integrals w.r.t. the fBm are
isometric to sp(βH) or at least to some of its subspaces?

The following proposition from [70] gives the general answer to this question.

Proposition 3.1.5. Let C be some class of integrands and let Υ ⊂ C be the class of step
functions. Under the assumptions

(1) C is a space with inner product (f, g)C, f, g ∈ C,

(2) for f, g ∈ Υ, (f, g)C = E
(
IH(f)IH(g)

)
,

(3) the set Υ is dense in C,

we have the following:

(i) There is an isometry between the space C and a linear subspace of sp(βH) which is
an extension of the map f → IH(f) for f ∈ Υ,

(ii) C is isometric to sp(βH) if and only if C is complete.

Proof. Proposition 2.1 in [70].
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For the following, recall the definitions (A.1) and (A.2) for the fractional integral operator
Iα− and fractional derivative operator Dα

− with α > 0.

Definition 3.1.6. In view of Proposition 3.1.5 we define the following inner product
spaces:

(i)

Λ̃H =

f : R→ R
∣∣∣ f ∈ L2(R),

∫
R

|f̂(x)|2|x|1−2Hdx <∞

 ,

for H ∈ (0, 1), with inner product

(f, g)
Λ̃H

=
1

C2(H)2

∫
R

f̂(x)(ĝ(x))∗|x|1−2Hdx,

where C2(H) > 0 is the constant from Theorem 3.1.3(ii). Here f̂(x) denotes the
Fourier transform of f , i.e f̂(x) =

∫
R e

ixtf(t)dt and (ĝ(x))∗ the complex conjugate
of ĝ(x).

(ii)

ΛH =
{
f : R→ R

∣∣∣

∫
R
[
(D

1
2
−H
− f)(t)

]2
dt <∞ for 0 < H < 1

2

f ∈ L2(R) for H = 1
2∫

R
[
(I
H− 1

2
− f)(t)

]2
dt <∞ for 1

2 < H < 1

}

with inner product

(f, g)ΛH =


Γ(H+ 1

2
)2

C1(H)2

∫
R(D

1
2
−H
− f)(t)(D

1
2
−H
− g)(t)dt for 0 < H < 1

2

(f, g)L2(R) for H = 1
2

Γ(H+ 1
2

)2

C1(H)2

∫
R(I

H− 1
2

− f)(t)(I
H− 1

2
− g)(t)dt for 1

2 < H < 1

,

where C1(H) > 0 is the constant from Theorem 3.1.3(i).

(iii)

|Λ|H =

f : R→ R
∣∣∣ ∫

R

∫
R

|f(u)||f(v)||u− v|2H−2dudv <∞

 ,

for H ∈ (1/2, 1), with inner product

(f, g)|Λ|H = H(2H − 1)

∫
R

∫
R

f(u)g(v)|u− v|2H−2dudv.

Remark 3.1.7. Notice that:
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(i) In the Definition 3.1.6(i) the Fourier transform is defined without the normalization
constant 1√

2π
.

(ii) Due to the definition of the fractional derivative operator Dα
− we can equivalently

define ΛH =
{
f : R → R | ∃φf ∈ L2(R) such that f = I

1
2
−H
− φf

}
for 0 < H < 1

2

with inner product (f, g)ΛH =
Γ(H+ 1

2
)2

C1(H)2

∫
R φf (t)φg(t)dt.

(iii) The definition of Λ̃H is based on the spectral representation of the fBm introduced
in Theorem 3.1.3(ii)

(
βHt
)
t∈R

d
=

 1

C2(H)

∫
R

eitx − 1

ix
|x|

1
2
−Hdω̂(x)


t∈R

.

By observing that eitx−1
ix = 1̂[0,t)(x) and

IH(f)
d
=

1

C2(H)

∫
R

f̂(x)|x|
1
2
−Hdω̂(x)

for f ∈ Υ, one can deduce (see (7.2.9) in Samorodnitsky and Taqqu [80]) that

E
(
IH(f)IH(g)

)
=

1

C2(H)2

∫
R

f̂(x)(ĝ(x))∗|x|1−2Hdx

for f, g ∈ Υ.

(iv) The introduction of the space ΛH is motivated by the fact (see Lemma 1.1.3 in
[58]) that for H ∈

(
0, 1

2

)
∪
(

1
2 , 1
)

we have for all t ∈ R the equality

(I
H− 1

2
− 1(0,t))(x) =

1

Γ(H + 1
2)

(
((t− x)+)H−

1
2 − ((−x)+)H−

1
2
)
,

where I−α− = Dα
− for α > 0. From this and Theorem 3.1.3(i) it follows that for

f ∈ Υ we have ∫
R

f(u)dβHu
d
=

Γ(H + 1
2)

C1(H)

∫
R

(I
H− 1

2
− f)(s)dω̃s

and in particular

βHt
d
=

Γ(H + 1
2)

C1(H)

∫
R

(I
H− 1

2
− 1(0,t))(t)dω̃t.

And hence

E
(
IH(f)IH(g)

)
=

Γ(H + 1
2)2

C1(H)2

∫
R

(I
H− 1

2
− f)(t)(I

H− 1
2

− g)(t)dt

for f, g ∈ Υ.
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(v) The definition of |Λ|H is based on the following observation: Let RH be the covari-
ance function of the fBm (βHt )t∈R with 0 < H < 1. Then, for f, g ∈ Υ,

E
(
IH(f)IH(g)

)
=

∫
R

∫
R

f(u)g(v)d2RH(u, v),

where the double integral is defined to be linear and to satisfy∫
[a,b]

∫
[c,d]

d2RH(u, v) = RH(d, b)−RH(d, a)− (RH(c, b)−RH(c, a)),

for any real number a < b and c < d. This may suggest that one can define the
integral

∫
R f(u)dβHu for functions from the space

|Λ|H =

f : R→ R
∣∣∣ ∫

R

∫
R

|f(u)||f(v)|d2|RH |(u, v) <∞

 ,

where |RH | is the total variation measure of RH . Observe however, that when
0 < H < 1

2 the function RH is not of bounded variation around the diagonal u = v
and hence the measure |RH | is not defined. But in the case 1

2 < H < 1 we have

d2RH(u, v) = H(2H − 1)|u− v|2H−2dudv.

We summarize now the results of Pipiras and Taqqu from [70] in the next theorem.

Theorem 3.1.8. We have:

(i) The spaces Λ̃H ,ΛH , |Λ|H satisfy the assumptions (1)–(3) of Proposition 3.1.5.

(ii) The space ΛH is complete for H ∈
(
0, 1

2

)
and incomplete for H ∈

(
1
2 , 1
)
. Therefore,

ΛH is isometric to sp(βH) for H ∈
(
0, 1

2

)
and isometric to a subspace of sp(βH)

for H ∈
(

1
2 , 1
)
.

(iii) For any H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)

we have the strict inclusion Λ̃H ⊂ ΛH and for H = 1
2

the equality Λ̃ 1
2

= L2(R) = Λ 1
2
. Further, (f, g)

Λ̃H
= (f, g)ΛH for f, g ∈ Λ̃H and

any H ∈ (0, 1). Since Λ̃H is incomplete unless H = 1
2 it is isometric to sp(βH) for

H = 1
2 and isometric to a subspace of sp(βH) for H 6= 1

2 .

(iv) Let H ∈
(

1
2 , 1
)
. Then |Λ|H ⊂ ΛH and this inclusion is proper. Further, (f, g)|Λ|H =

(f, g)ΛH for f, g ∈ |Λ|H and |Λ|H is incomplete. So |Λ|H is isometric to a subspace
of sp(βH).

Moreover, we have the inclusions

(v) L1(R) ∩ L2(R) ⊂ Λ̃H if and only if H ∈
(

1
2 , 1
)
,
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(vi) L1(R) ∩ L2(R) ⊂ L
1
H ⊂ |Λ|H for H ∈

(
1
2 , 1
)
.

By Theorem 3.1.8
(
|Λ|H , (·, ·)|Λ|H

)
is not complete. However, by introducing a new

norm on |Λ|H ,

‖f‖ =
( ∫
R

∫
R

|f(u)||f(v)||u− v|2H−2dudv
) 1

2 ,

(
|Λ|H , ‖ · ‖

)
becomes a Banach space (see Theorem 4.1 in [70]). The norm ‖ · ‖ is usually

easier to work with than the norm ‖ · ‖|Λ|H .
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3.2. Infinite–Dimensional Fractional Brownian Motion and the Kolmogorov
Test

In the following let (U, 〈·, ·〉U ) be a separable Hilbert space.
The next definition provides on the one hand an infinite–dimensional analogue of the
definition of a finite–dimensional fractional Brownian motion with Hurst parameter H ∈
(0, 1) and on the other hand the generalization of the definition of the standardQ–Wiener
process (see e.g. Definition 2.1.9 in [72]). For that purpose we recall that a U–valued
random variable X on a probability space (Ω,F ,P) is called Gaussian, if for all u ∈ U
the random variable 〈X,u〉U is normal. A Gaussian U–valued random variable X is said
to be N (m,Q)–distributed, if there is a vector m ∈ U and a symmetric, non–negative
linear operator Q ∈ L(U), called covariance operator, such that

E(〈X,u〉U ) = 〈m,u〉U

for all u ∈ U and

Cov(〈X,u1〉U , 〈X,u2〉U ) := E
(
(〈X,u1〉U −〈m,u1〉U )(〈X,u2〉U −〈m,u2〉U )

)
= 〈Qu1, u2〉U

for all u1, u2 ∈ U . The expectation of X is then defined by E(X) := m. Covari-
ance operators are trace class operators (Proposition 2.15 in [23]). Further, a U–valued
stochastic process (X(t))t∈R on (Ω,F ,P) is Gaussian if for any positive integer n ∈ N,
any t1, . . . , tn ∈ R and any u1, . . . , un ∈ U , the joint distribution of the random variables
〈Xt1 , u1〉U , . . . , 〈Xtn , un〉U is jointly normal. In particular, for any U–valued Gaussian
process (X(t))t∈R and any t, s ∈ R there are m(t),m(s) ∈ U and a symmetric, non–
negative, trace–class operator Q(t, s) ∈ L(U) such that

Cov(〈X(t), u1〉U , 〈X(s), u2〉U ) := E
(
(〈X(t)−m(t), u1〉U )(〈X(s)−m(s), u2〉U )

)
= 〈Q(t, s)u1, u2〉U

for all u1, u2 ∈ U . We set Cov(X(t), X(s)) := Q(t, s).

Definition 3.2.1. Let H ∈ (0, 1) and Q ∈ L(U) be a non–negative, symmetric, trace–
class operator. A U–valued Gaussian process (BH

Q (t))t∈R on a probability space (Ω,F ,P)
is called a fractional Q–Wiener process (on R) with Hurst parameter H if

(i) BH
Q (0) = 0 P-a.s.,

(ii) E
(
BH
Q (t)

)
= 0 for all t ∈ R ,

(iii) Cov
(
BH
Q (t), BH

Q (s)
)

= 1
2

(
|t|2H + |s|2H − |t− s|2H

)
Q for s, t ∈ R,

(iv) (BH
Q (t))t∈R has U–valued, continuous sample paths P-a.s.

The existence of a fractional Q–Wiener process is given by the following proposition.
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Proposition 3.2.2. Let H ∈ (0, 1) and Q ∈ L(U) be a non–negative, symmetric, trace–
class operator on U . Further, let (en)n∈N be an orthonormal basis of U consisting of
eigenvectors of Q with corresponding eigenvalues (λn)n∈N. Then

BH
Q (t) =

∑
n∈N

√
λnβ

H
n (t)en, t ∈ R, (3.2.1)

is a U–valued fractional Q–Wiener process (BH
Q (t))t∈R, where βHn , n ∈ {k ∈ N : λk >

0}, are independent fractional Brownian motions on R with Hurst parameter H on
(Ω,F ,P). The series (3.2.1) converges in L2(Ω, U) and has a P-a.s. continuous mod-
ification. In particular, for any Q as above there is a fractional Q–Wiener process on
U .

Proof. Proposition 1.1.1 in [71].

In the case then H = 1
2 , (B

1
2
Q(t))t∈R is the standard Q–Wiener process. Analogous to a

(standard) cylindrical Wiener process in U (see e.g. [72] for a definition) with Q = id,
we can define a cylindrical fractional Wiener process in U with Q = id by the formal
series

BH(t) =
∑
n∈N

βHn (t)en, t ∈ R, (3.2.2)

where again (en)n∈N is an orthonormal basis of U and
(
(βHn (t))t∈R, n ∈ N

)
is a sequence

of independent fractional Brownian motions each with the same fixed Hurst parameter
H ∈ (0, 1). The series (3.2.2) does not converge in L2(Ω, U). So BH(t) is not a well–
defined U–valued random variable. However, proceeding as in Section 2.5.1 in [72] for
the standard cylindrical Wiener process, it is easy to verify that for any Hilbert space

U1 such that U
J
↪→ U1 and the linear embedding J is a Hilbert–Schmidt operator, the

series BH(t) =
∑

n∈N β
H
n (t)J(en) defines a U1–valued random variable and (BH

Q (t))t∈R
is a U1–valued fractional Q1–Wiener process, where Q1 := JJ∗.
In particular, if (BH(t))t∈R is a cylindrical fractional Wiener process in U and Q ∈ L(U)
a non–negative, symmetric, trace–class operator and (en)n∈N an orthonormal basis of U
consisting of eigenvectors of Q with corresponding eigenvalues (λn)n∈N, then

BH
Q (t) :=

√
QBH(t) :=

∑
n∈N

βHn (t)
√
Qen =

∑
n∈N

√
λnβ

H
n (t)en,

t ∈ R, is a U–valued fractional Q–Wiener process (BH
Q (t))t∈R, where

√
Q ∈ L(U) such

that Q =
√
Q ◦
√
Q.

The next two lemmas will provide us in Section 5 sufficient conditions for the existence
of continuous modifications of our random velocity field.

Lemma 3.2.3. Let X be a U–valued N (0, Q)–distributed random variable on (Ω,F ,P).
Then for all n ∈ N there exists a constant C(n) > 0 such that

E(|X|2nU ) ≤ C(n)
(
E(|X|2U )

)n
.
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Proof. Corollary 2.17 in [23].

Lemma 3.2.4 (Kolmogorov test). Let T > 0 and suppose G ⊂ Rd is open and bounded.
Consider a family {X(t, x) : t ∈ [0, T ], x ∈ G} of real–valued random variables on
(Ω,F ,P) such that

E
(
|X(t1, x1)−X(t2, x2)|δ

)
≤ C(|t1 − t2|2 + |x1 − x2|2)(d+1+ε)/2 (3.2.3)

for C, ε > 0, δ ≥ 1, all t1, t2 ∈ [0, T ], and all x1, x2 ∈ G. Then there exists a version of
X (again denoted by X) such that P-almost all sample paths

[0, T ]×G→ R, (t, x) 7→ X(t, x)(ω)

are Hölder continuous on [0, T ]×G with arbitrary exponent smaller than ε/δ.

Proof. Theorem 3.4 in [23].

Remark 3.2.5. It is important to remark that if for a random field X(t, x)t∈R,x∈G (3.2.3)
is even satisfied for all t, s ∈ R and the constant C is independent of t, s then by the
same argumentation as in the proof of Theorem 3.4 in [23], we can deduce that for all
γ ∈ (0, ε/δ) there is a version of X (again denoted by X) such that P-a.s. X ∈ Cγ(R×G).
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3.3. Some Semigroup Theory of Linear Operators

In this subsection we introduce the concept of an analytic semigroup which is exponen-
tially stable and fractional powers of linear operators generating this semigroup. We will
refer to this concept when we define our model for the particle movement in Section 5.1.
Here our approach follows the books [32, 69] very closely.

In the following let X be a Banach space.
As usual, we call

ρ(A) :=
{
λ ∈ C

∣∣ (λ−A) : D(A) ⊆ X → X is bijective
}
,

σ(A) := C \ ρ(A)

the resolvent set and the spectrum of a closed linear operator A : D(A) ⊆ X → X with
domain D(A), respectively. The resolvent (of A at the point λ ∈ ρ(A)) is denoted by

R(λ,A) := (λ−A)−1

which is a bounded operator on X by the closed graph theorem, and

s(A) := sup
{
Re(λ)

∣∣ λ ∈ σ(A)
}
⊆ R ∪ {±∞}

is called the spectral bound of A where Re(λ) denotes the real part of λ ∈ C and
s(A) := −∞ if σ(A) = ∅.

Definition 3.3.1. A one parameter family (S(t))t≥0 ⊆ L(X) of bounded linear operators
in X is called a strongly continuous or C0–semigroup on X if

(i) S(0) = idX , where idX denotes the identity operator on X.

(ii) S(t+ s) = S(t)S(s) for every t, s ≥ 0.

(iii) limt↓0 S(t)x = x for every x ∈ X.

The linear operator A defined by

D(A) :=

{
x ∈ X

∣∣ lim
t↓0

S(t)x− x
t

exists

}
and

Ax = lim
t↓0

S(t)x− x
t

, x ∈ D(A),

is the infinitesimal generator of the semigroup (S(t))t≥0 with domain D(A).

It can be shown (see Proposition I.1.4 and Proposition V.1.22 in [32]) that for any
C0–semigroup S(t)t≥0 on X there is ω ∈ R and M ≥ 1 such that

|S(t)|L(X) ≤Meωt, t ≥ 0,
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and

−∞ ≤ s(A) ≤ ω0 := inf
{
ω ∈ R

∣∣ There exists M(ω) ≥ 1

such that |S(t)|L(X) ≤M(ω)eωt, t ≥ 0.
}
<∞.

We call a C0–semigroup (S(t))t≥0 on X exponentially stable if ω0 < 0 and bounded if
ω0 ≤ 0.
In particular, a linear operator A with domain D(A) is the infinitesimal generator of a
C0–semigroup (S(t))t≥0 on X satisfying |S(t)|L(X) ≤ Meωt for some M ≥ 1, ω ∈ R, if
and only if

(i) A is closed and D(A) is dense in X.

(ii) The resolvent set ρ(A) of A contains the ray ]ω,∞[ and

|R(λ,A)n|L(X) ≤M/(Re(λ)− ω)n

for all Re(λ) > ω and n ∈ N.

For a proof the reader is referred to Theorem 1.5.3 in [69].

We are mainly interested in analytic semigroups. In the following arg(z) denotes the
argument of a complex number z ∈ C.

Definition 3.3.2. A family of operators (S(z))z∈Σδ∪{0} ⊆ L(X) with angle δ ∈ (0, π/2]
and

Σδ := {λ ∈ C| |arg(λ)| < δ} \ {0}

is called analytic if

(i) S(0) = idX and S(z1 + z2) = S(z1)S(z2) for all z1, z2 ∈ Σδ.

(ii) The map z 7→ S(z) is analytic in Σδ.

(iii) limΣδ′3z→0 S(z)x = x for all x ∈ X and 0 < δ′ < δ.

If, in addition,

(iv) |S(z)|L(X) is bounded in Σδ′ for every 0 < δ′ < δ, we call (S(z))z∈Σδ∪{0} a bounded
analytic semigroup.

Obviously, the restriction of an analytic semigroup to the real axis is a C0–semigroup.
Conversely, on can prove (see Theorem II.4.6 in [32]) that a linear operator A : D(A) ⊆
X → X generates a bounded analytic semigroup (S(z))z∈Σδ∪{0} on X, i.e. A generates
a bounded C0–semigroup (S(t))t≥0 on X which is extendable to (S(z))z∈Σδ∪{0}, if and
only if A is closed, densely defined, Σπ/2+δ ⊆ ρ(A) for some δ ∈ (0, π/2] and for each
ε ∈ (0, δ) there exists M(ε) ≥ 1 such that

|R(λ,A)|L(X) ≤
M(ε)

|λ|
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for all 0 6= λ ∈ Σπ/2+δ−ε, where Σπ/2+δ−ε denotes the closure of Σπ/2+δ−ε. Since the
multiplication of a C0–semigroup (S(t))t≥0 by eωt for some ω ∈ R does not affect the
possibility or impossibility of extending it to an analytic semigroup, the results for ge-
neral C0–semigroups follow from the corresponding results for bounded C0–semigroups.
Further, we say that an analytic semigroup is exponentially stable if the corresponding
C0–semigroup is exponentially stable.

The next proposition will be sufficient for our purposes in Section 5.1 to verify that our
linear drift operator of the stochastic evolution equation generates an analytic semigroup
which is exponentially stable.

Proposition 3.3.3. Let A : D(A) ⊆ U → U be a self–adjoint operator on a Hilbert
space U with

s(A) < 0.

Then A generates an analytic semigroup on U which is exponentially stable. In parti-
cular, we have

s(A) = ω0.

Proof. Corollary II.4.8 and Corollary V.2.10 in [32].

Finally, we introduce fractional powers of an operator A for which (−A) generates an
analytic semigroup and give some properties of such an operator. For the definition we
make the following assumption:

Assumption 3.3.4. A : D(A) ⊆ X → X is a densely defined closed linear operator in X
such that

Υ :=
{
λ ∈ C

∣∣ 0 <
π

2
− ε < |arg(λ)| ≤ π

}
∪ V ⊆ ρ(A)

for some ε ∈ (0, π/2), where V is a neighbourhood of zero, and there is M ≥ 1 such that

|R(λ,A)|L(X) ≤
M

1 + |λ|

for all λ ∈ Υ.

If A satisfies Assumption 3.3.4 then (−A) is the infinitesimal generator of an analytic
semigroup (see Theorem 2.5.2 in [69]).

Definition 3.3.5. Suppose that A satisfies Assumption 3.3.4. For every α > 0 we define

A−α :=
1

Γ(α)

∞∫
0

tα−1S(t)dt, (3.3.1)

Aα :=
(
A−α

)−1

and A0 := idX . Here Γ(·) denotes the gamma function and (S(t))t≥0 the C0–semigroup
generated by A.
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It should be noted that the integral in (3.3.1) converges in the uniform operator topology
and that A−α for α > 0 is one–to–one (see Lemma 2.6.6 in [69]).
We conclude this subsection with some results relating Aα and the analytic semigroup
generated by (−A).

Theorem 3.3.6. Suppose that A satisfies Assumption 3.3.4 and let (S(z))z∈Σδ be the
analytic semigroup generated by (−A). Then

(i) for all α, β ∈ R we have
Aα+βx = AαAβx

for every x ∈ D(Aγ), where γ = max(α, β, α+ β).

(ii) For every α ∈ R and x ∈ D(Aα) we have S(t)Aαx = AαS(t)x for all t ≥ 0.

(iii) For every α ≥ 0 there is M > 0 such that for all t > 0 the operator AαS(t) is
bounded and

|AαS(t)|L(X) ≤Mt−α.

Proof. Theorem 2.6.8 and Theorem 2.6.13 in [69].
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3.4. Random Dynamical Systems, Invariant Measures and the Hausdorff
Dimension of the Random Attractor

We now recall some required definitions and concepts from the theory of random dy-
namical systems. For the general theory of random dynamical systems we refer to the
excellent monograph [2].
In the following, (X, d) is a complete separable metric space and 2X denotes the set of
all subsets of X. Further, for B ∈ 2X we denote by B the closure of B in X and by
Bc := B \ X the complement of B in X. For x ∈ X and B,C ∈ 2X we define the
semidistance by

dist(x,B) := inf
b∈B

d(x, b) and dist(B,C) := sup
b∈B

inf
c∈C

d(b, c).

We make the convention d(x, ∅) =∞, where ∅ denotes the empty set.

Definition 3.4.1. A family (θ(t))t∈R of mappings on Ω into itself is called a metric
dynamical system and is defined by (Ω,F ,P, (θ(t))t∈R) if it satisfies the following four
conditions:

(i) The mapping (ω, t) 7→ θ(t)ω is F ⊗ B(R)–F measurable.

(ii) θ(0) = idΩ = identity map in Ω.

(iii) (θ(t))t∈R satisfies the flow property, i.e. θ(t+s) = θ(t)◦θ(s) for all s, t ∈ R, where
◦ denotes the composition.

(iv) (θ(t))t∈R is a family of measure preserving transformations, i.e. P(θ(t)−1(A)) =
P(A) for all A ∈ F and t ∈ R, where θ(t)−1(A) := {ω ∈ Ω | θ(t)ω ∈ A}.

We say that a metric dynamical system is ergodic if for all A ∈ F , such that θ(t)−1(A) =
A for all t ∈ R, we have P(A) ∈ {0, 1}.

Notice that conditions (ii) and (iii) in Definition 3.4.1 imply that all θ(t) are invertible
with θ(t)−1 = θ(−t).

Definition 3.4.2. A random dynamical system (RDS) (on X over a metric dynamical
system (Ω,F ,P, (θ(t))t∈R) with time R) is a mapping

φ : R× Ω×X → X, (t, ω, x) 7→ φ(t, ω, x),

with the following properties:

(i) Measurability: φ is B(R)⊗F ⊗ B(X)–B(X) measurable.

(ii) Cocycle property: The mappings φ(t, ω) := φ(t, ω, ·) : X → X form a cocycle over
θ, i.e. they satisfy φ(0, ω) = idX for all ω ∈ Ω and φ(t+s, ω) = φ(t, θ(s)ω)◦φ(s, ω)
for all s, t ∈ R, ω ∈ Ω. Here ◦ denotes the composition.
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We call an RDS φ continuous or C0–RDS if (t, x) 7→ φ(t, ω, x) is continuous for every
ω ∈ Ω and we say that an RDS φ is a Ck–RDS, where 1 ≤ k ≤ ∞ if for each (t, ω) ∈ R×Ω
the mapping x 7→ φ(t, ω, x) is k–times differentiable w.r.t. x ∈ X and the derivatives are
continuous w.r.t. (t, x) ∈ R×X for each ω ∈ Ω.

We will often omit in the following the addition ’on X over a metric dynamical system
(Ω,F ,P, (θ(t))t∈R) with time R’, speaking just of a (continuous or Ck-) RDS φ.

Remark 3.4.3. (i) Deterministic dynamical systems (see e.g. Temam [93] or Robinson
[78]) are particular cases of RDSs. Indeed, if the RDS φ is independent of ω then
the RDS decouples into a metric DS and deterministic dynamical system.

(ii) To prove the measurability of a random dynamical system φ it is sufficient to prove
(see Lemma 1.1 in [21]) that

• ω 7→ φ(t, ω, x) is F–B(X) measurable for every (t, x) ∈ R×X,

• x 7→ φ(t, ω, x) is continuous for every (t, ω) ∈ R× Ω,

• t 7→ φ(t, ω, x) is continuous for every (ω, x) ∈ Ω×X.

(iii) Condition (ii) in Definition 3.4.2 forces the cocycle to be invertible. In particular,
we have

φ(t, ω)−1 = φ(−t, θ(t)ω)

for all (t, ω) ∈ R× Ω, or equivalently,

φ(−t, ω) = φ(t, θ(t)−1ω)−1

for all (t, ω) ∈ R× Ω. These statements are proved in [2], Theorem 1.1.6. Since φ
is a cocycle over θ if and only if φ(−·, ·) is a cocycle over θ−1, we call

ψ(t, ω) := φ(−t, ω)−1 = φ(t, θ(t)−1ω) = φ(t, θ(−t)ω)

a backward cocycle over θ−1. The important difference between the cocycle φ and
the backward cocycle ψ lies in the asymptotic behaviour for t→∞: In general, in
contrast to autonomous systems, it makes a big difference in the non–autonomous
case between moving points from 0 to t, and moving points from −t to 0. Only in
the second case will the result be in the same fiber {ω} × X for all t, hence can
be studied for t → ∞. That is the reason why the backward cocycle ψ will be of
fundamental importance for the construction of the random attractor of φ.

Now we are going to introduce the random D–attractor of an RDS φ.
The global attractor in the theory of deterministic dynamical systems, see e.g. Temam
[93] or Robinson [78], has become one of the main concepts for the study of the asymp-
totic behaviour of evolution equations. Crauel and Flandoli [18], Schmalfuß [83] and
Schenk–Hoppe [81] have introduced the corresponding generalization of this concept to
the stochastic case. We will define the random attractor in the spirit of the paper [83]
by Schmalfuß, because we will mainly work with his results.

For convenience, we assume in the following that (X, | · |X) is a separable Banach space
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with metric d(x, y) := |x− y|X .

Because of the non–autonomous noise dependence of an RDS, generalized concepts of
absorption, attraction and invariance of (random) sets have to be introduced. For that
purpose we also recall some facts from the theory of measurable (closed) random sets,
sometimes also called measurable multifunctions (see [21]).

Definition 3.4.4. (i) A set valued map D : Ω → 2X taking values in closed subsets
of X is said to be measurable if for each x ∈ X the map ω 7→ dist(x,D(ω)) is
F–B([0,∞)) measurable. In this case D is called a closed random set (of X).

(ii) A set valued map ω 7→ D(ω) is said to be an open random set if its complement
Dc is a closed random set.

(iii) A non–empty closed random set D is called bounded if supx∈D(ω) |x|X <∞ for all
ω ∈ Ω.

Remark 3.4.5. (i) Random sets have been investigated by Castaing and Valadier [12],
who addressed them as measurable multifunctions, as also does Schmalfuß in [83].
But we decided to call them (closed) random sets, since this is more often used in
the literature.

(ii) It can be shown (see Proposition 2.4 in [21]) that the statement that D is a
closed random set is equivalent to the statement that for all open U ⊆ X the
set {ω|D(ω) ∩ U 6= ∅} is measurable. Consequently, measurability of closed set
valued maps does not depend on the choice of the metric d, as might be suggested
by the Definition 3.4.4(i). Further, if D is non–void, then the two statements are
equivalent (see Theorem 2.6 in [21]) to the assertion that there exists a sequence
(xn)n∈N of measurable maps xn : Ω→ X such that⋃

n∈N
xn(ω) = D(ω).

Definition 3.4.6. A universe of closed random sets D (of X) is a system of non–empty
closed random sets of X, such that D is closed under inclusion, i.e. if D and D′ are
non–empty closed random sets of X, such that D′(ω) ⊆ D(ω), for all ω ∈ Ω, and D ∈ D,
then D′ ∈ D.

We are mainly interested in the universe of tempered random sets.

Definition 3.4.7. Let (Ω,F ,P, (θ(t))t∈R) be a metric dynamical system.

(i) A positive random variable R is called tempered if

lim
t→±∞

e−c|t|R(θ(t)ω) = 0

for any c > 0 and ω ∈ Ω.
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(ii) A bounded closed random set D is said to be tempered if D(ω) is contained in the
closed ball with center 0 and tempered radius R(ω) := supx∈D(ω) |x|X , ω ∈ Ω.

(iii) The system of closed random sets with bounded and non–empty tempered images
forms the universe of tempered sets (of X) which we denote by G.

Remark 3.4.8. The universe of tempered sets contains only sets which grow sub–exponentially
fast including every compact deterministic set.

Now we are ready to introduce the concepts of invariance, absorption and attractor.

Definition 3.4.9. Let φ be an RDS and D a universe of closed random sets.

(i) A closed random set B is called (strictly) φ–forward invariant if

φ(t, ω)B(ω) ⊆ B(θ(t)ω) (φ(t, ω)B(ω) = B(θ(t)ω))

for all ω ∈ Ω, t ≥ 0.

(ii) A closed random set B ∈ D is called D–absorbing if for any D ∈ D, ω ∈ Ω there
exists a time tD(ω) ≥ 0, the so–called absorption time, such that for any t > tD(ω)

φ(t, θ(−t)ω)D(θ(−t)ω) ⊆ B(ω). (3.4.1)

(iii) A closed random set A ∈ D ⊇ G with compact values is called random D–attractor
of the RDS φ if A is strictly φ–forward invariant and for any ω ∈ Ω we have

dist
(
φ(t, θ(−t)ω)D(θ(−t)ω), A(ω)

)
→ 0 as t→∞ (3.4.2)

for any D ∈ D.

If there exists a random D–attractor, then the attractor is already unique in D. Indeed,
suppose we have two attractors Ai ∈ D, i = 1, 2. It follows that for any ω ∈ Ω

dist(A1(ω), A2(ω)) = lim
t→∞

dist
(
φ(t, θ(−t)ω)A1(θ(−t)ω), A2(ω)

)
= 0.

Therefore, A1(ω) ⊆ A2(ω) for any ω ∈ Ω. Similarly, we can find the contrary inclusion.
So the D–attractor is unique in D.

Theorem 3.4.10. Let φ be a continuous RDS and D ⊇ G a universe of closed random
sets. In addition, we assume the existence of a φ–forward invariant and D–absorbing
closed random set B with compact values. Then the RDS has a unique random D–
attractor given by

A(ω) =
⋂
t∈N

φ(t, θ(−t)ω)B(θ(−t)ω).

Proof. See Proposition 9.3.2 in [2] or Theorem 2.4 in [83].
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Remark 3.4.11. (i) Crauel and Flandoli defined in [18] the random attractor as a
strictly φ–forward invariant closed random set with compact values such that
(3.4.2) holds P-a.s. for all bounded deterministic sets of X. The existence of
such a random attractor is assured if there is a closed random set B with compact
values absorbing (in the sense of (3.4.1)) the universe of deterministic bounded
sets. However, such an attractor is in general not an element of this universe of
sets.
At the first view, the definition of the random attractor by Crauel and Flandoli
suggests that it is not a topological, but a metric concept. But by a deep result of
Crauel in [20] this random attractor is P-a.s. uniquely determined already by the
property of attracting (in the sense of (3.4.2)) all compact deterministic subsets of
X (and of course, being strictly φ–forward invariant and a closed random set of X
with compact values). This shows that a random attractor for bounded determi-
nistic subsets of X does not depend on the choice of a metric on X: If there exist
two attractors for two different metrics (both including the topology of X), then
the two attractors must coincide already.
Therefore, notice that in our definition of the random D–attractor D contains al-
ready all compact deterministic sets such that the random D–attractor is not only
unique in D but also P-a.s. uniquely determined.

(ii) The generalized concepts of absorption and attraction in Definition 3.4.9 are called
pullback absorption and pullback attraction. The noise ω is first pulled back in time
by θ(−t) and then evolved forward by φ(t, ·), so that we consider the resulting
image set at time zero. In general this limit in the pullback sense does not imply
ω–wise or almost surely convergence forward in time (see [82]). But due to the
θ–invariance of the probability measure P, it is easy to prove that the pullback
attraction implies forward convergence in probability, i.e.

lim
t→∞

P
(
{ω ∈ Ω| dist(φ(t, ω)D(ω), A(θ(t)ω)) > ε}

)
= 0 (3.4.3)

for all ε > 0. This property has been used by Ochs [62] to define a weak random
attractor as a closed random set with compact values satisfying strictly φ–forward
invariance and property (3.4.3) for every bounded deterministic set D of X. Any
pullback attractor is also a weak attractor, although the converse is false in general.

The concept of the random attractor is also closely related to the concept of an in-
variant measure of an RDS φ which we introduce next. For that purpose we first have
to provide some additional notations.

Definition 3.4.12. Let φ be an RDS on X over (Ω,F ,P, (θ(t))t∈R).

(i) We call the F ⊗ B(X)–measurable mapping

(ω, x) 7→
(
θ(t)ω, φ(t, ω)x

)
=: Θ(t)(ω, x), t ∈ R,

skew product of the RDS φ.
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(ii) Let πΩ : Ω × X → Ω, (ω, x) 7→ πΩ(ω, x) = ω, be here and in the following the
projection onto Ω and µ a probability measure on

(
Ω×X,F⊗B(X)

)
with marginal

P, i.e. πΩµ = P, where πΩµ is the image measure of µ w.r.t. πΩ. A function

µ·(·) : Ω× B(X)→ [0, 1]

is said to be the factorization of µ (w.r.t. P) if

1. for all B ∈ B(X), ω 7→ µω(B) is F-B([0, 1]) measurable,

2. for P-a.a. ω ∈ Ω, µω(·) is a probability measure on (X,B(X)),

3. for all A ∈ F ⊗ B(X)

µ(A) =

∫
Ω

∫
X

1A(ω, x)dµω(x)dP(ω),

where 1 denotes the indicator function.

(iii) We call the σ–algebra

F− := σ
{
ω 7→ φ(s, θ(−t)ω)x | x ∈ X, 0 ≤ s ≤ t

}
the past and

F+ := σ
{
ω 7→ φ(t, θ(s)ω)x | x ∈ X, 0 ≤ s, t

}
the future generated by φ.

Notice that the skew product Θ satisfies the flow property, i.e. Θ(0) = idΩ×X and
Θ(t + s) = Θ(t) ◦ Θ(s) for all t, s ∈ R, and since (X, d) is a complete separable metric
space, the factorization of µ exists and is P-a.s. unique (see Proposition 1.4.3 in [2]).

Definition 3.4.13. Let φ be an RDS on X over (Ω,F ,P, (θ(t))t∈R).

(i) A probability measure µ on
(
Ω×X,F ⊗B(X)

)
is said to be a φ–invariant measure

if it satisfies πΩµ = P and Θ(t)µ = µ for all t ∈ R, where πΩµ and Θ(t)µ denote
the image measure of µ w.r.t. πΩ and Θ(t), respectively.

(ii) We call a φ–invariant measure µ a φ–invariant forward Markov measure or φ–
invariant backward Markov measure if the factorization ω 7→ µω is F−–measurable
or F+–measurable, respectively.

(iii) Let µ be a φ–invariant measure and K a closed random set. µ is said to be sup-
ported on K if µω(K(ω)) = 1 P-a.s.

Remark 3.4.14. (i) By Theorem 1.4.5(ii) in [2] µ is a φ–invariant measure if and only
if for all t ∈ R

φ(t, ω)µω = µθ(t)ω (3.4.4)

P-a.s. The property (3.4.4) is also called equivariant (w.r.t. φ).
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(ii) For a discussion when a φ–invariant measure is a product measure on
(
Ω×X,F ⊗

B(X)
)
, i.e. µ = P⊗ ρ, where ρ is a probability measure on (X,B(X)), the reader

is referred to Example 1.4.7 in [2].

(iii) The notion of φ–invariant forward/backward Markov measures was introduced by
Crauel in [16] and further studied in [17] and [21]. Such Markov measures are of par-
ticular interest since they provide the connection between the notion of φ–invariant
measures of a white noise RDS φ or sometimes called RDS with independent in-
crements, i.e. where F− and F+ are independent and the notion of invariant
measures of the associated Markov semigroup generated by φ. That is also the
reason for naming those measures Markov measures. For a detailed description of
this relation, actually a one-to-one correspondence, the reader is referred to [16]
Section 5.2.2, [2] Chapter 1 Section 7 or [22] Section 4. Typical examples of white
noise RDSs are RDSs generated by homogeneous Markov chains (Section 2.1.3 in
[2]) and stochastic differential equations driven by a standard Brownian motion
(Section 2.3.8 in [2]).
Moreover, the non–Markov property of φ–invariant measures is linked to the posi-
tiveness/negativeness of the Lyapunov exponents w.r.t. the associated φ–invariant
measure (see Corollary 5.4 and Remark 5.5 in [17]).

The following theorem shows the relation between the random D–attractor and φ–
invariant measures.

Theorem 3.4.15. Let φ be a continuous RDS with a unique random D–attractor A.

(i) Then there exists a φ–invariant measure. In particular, all φ–invariant measures
are supported on A.

(ii) If A is F−–measurable, then there exists a φ–invariant forward Markov measure.

Proof. (i): Theorem 1.6.13 in [2] and Corollary 4.4 in [20]. It should be noted that
Corollary 4.4 in [20] is applicable since by our definition of the random D–attractor D
contains already all compact deterministic subsets of X.
(ii): Theorem 1.7.5 in [2].

Remark 3.4.16. A φ–invariant measure supported on a random D–attractor which is
F−–measurable must not be a φ–invariant forward Markov measure (see Remark 6.18
in [21] and references therein).

Next we introduce a general theorem by Schmalfuß [83] to bound the Hausdorff dimen-
sion of the random D–attractor. For the following definition of the Hausdorff dimension
we refer to Temam [93] and Robinson [78].
In the following let (X, 〈·, ·〉X) be a separable Hilbert space with corresponding norm
| · |X .
For d ≥ 0, ε > 0 and Y ⊆ X we set

µX(Y, d, ε) := inf
∑
i∈I

rdi ,
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where the infimum is taken over all coverings of Y by a family (Bi)i∈I of balls of radii
0 < ri ≤ ε, where the index set I is countable.

Definition 3.4.17. Let d ≥ 0 and Y ⊆ X.

(i) The number µX(Y, d) ∈ [0,∞] defined by

µX(Y, d) := lim
ε↘0

µX(Y, d, ε) = sup
ε>0

µX(Y, d, ε)

is called the d-dimensional Hausdorff measure of Y .

(ii) The Hausdorff dimension dHX(Y ) ∈ [0,∞] of Y is defined by

dHX(Y ) := inf{d ≥ 0| µX(Y, d) = 0},

where by convention inf ∅ =∞ for the empty set ∅.

Remark 3.4.18. It can be shown that the d–dimensional Hausdorff measure µX(·, d) is
indeed a measure on (X,B(X)) and a natural generalization of the Lebesgue measure in
finite dimensions (see Section 2.10 in Federer [34]).

Now let L ∈ L(X) be a compact operator. Then we know that (L∗L) is a compact

self–adjoint non–negative operator in X and we can define its square root (L∗L)
1
2 which

enjoys the same properties. In particular, there exists an orthonormal basis (en)n∈N
of X consisting of eigenvectors of (L∗L)

1
2 with corresponding eigenvalues (αn)n∈N (in

decreasing order)

α1 ≥ α2 ≥ · · · ≥ 0, (L∗L)
1
2 en = αnen.

The image L(B) of the unit ball B is an ellipsoid with semiaxes {αnen| n ∈ N, αn > 0}
and (corresponding) lengths of the semiaxes {αn| n ∈ N, αn > 0}, i.e.

L(B) =

x =
∑
n∈N
〈x, en〉Xen|

∑
n∈N,αn>0

〈x, en〉2X
αn

≤ 1

 ⊆ X.
We define for n ∈ N0, s ∈ [0, 1], d = n+ s

V0(L(B)) := 1, Vn(L(B)) :=
n∏
i=1

αi for n ≥ 1

and

Vd(L(B)) := (Vn(L(B)))1−s(Vn+1(L(B)))s.

Further, we set Vd(L) := Vd(L(B)).
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Remark 3.4.19. (i) The number Vn(L) for an n ∈ N can be interpreted as an n–
dimensional volume of the parallelepiped generated by α1e1, . . . , αnen, i.e. of the
set of points

λ1α1e1 + · · ·+ λnαnen, 0 ≤ λi ≤ 1, 1 ≤ i ≤ n,
see Chapter V Section 1.3 in Temam [93].

(ii) We motivate the introduction of the numbers Vd(L) for convenience in the deter-
ministic autonomous setting: Consider the abstract initial–value problem

dφ

dt
(t) = f(φ(t)), t > 0, φ(0) = x ∈ X, (3.4.5)

with some given function f : X → X. We assume that (3.4.5) has for all x ∈ X a
unique solution φ(t, x) = φ(t), t ≥ 0, and that f is Frechet differentiable in X with
differential f ′ such that for all h ∈ X the linear initial–value problem

dΦ

dt
(t) = f ′(φ(t, x))(Φ(t)), t > 0, Φ(0) = h ∈ X, (3.4.6)

has a unique solution φ′(t, x)(h) = Φ(t), t ≥ 0, where φ′(t, x) is the compact
Frechet derivative of x 7→ φ(t, x). We can think of (φ′(t, x)(h))t≥0 as the evolution
of an infinitesimal displacement along the trajectory (φ(t, x))t≥0 and of the num-
bers Vd(φ

′(t, x)) as the largest distortion of an infinitesimal d–dimensional volume
(element) produced by φ(t, x) (see Section 13.2 in [78] or Chapter V Section 2.1
and Section 2.3 in [93]). Now let A ⊆ X be a (compact), strictly φ–invariant set,
i.e. φ(t)A = A. The idea to bound the Hausdorff dimension of A from above is
to study the evolution of Vd(φ

′(t, x)), x ∈ A, and to find the smallest d such that
all Vd(φ

′(t, x)), x ∈ A, contract uniformly for t → ∞, i.e. we have to estimate
supx∈A Vd(φ

′(t, x)). To establish

sup
x∈A

Vd(φ
′(t, x)) ≤ k (3.4.7)

for any k ∈ (0, 1) and t ≥ t > 0 with some fixed t, d > 0, one usually uses the
trace formula due to Temam ([93] pp. 362–364). The trace formula asserts that
for n ∈ N, s ∈ [0, 1) the uniform expansion factors at time t ≥ 0 are given by

qn(t) := sup
x∈A

sup
hi∈X,
|hi|X≤1,
i=1,...,n

( t∫
0

trn(f ′(φ(s, x)) ◦Qn,h1,...,hn(s, x))ds
)
,

qn+s(t) := sqn+1(t) + (1− s)qn(t),

and
sup
x∈A

Vn+s(φ
′(t, x)) ≤ exp(qn+s(t)),

where Qn,h1,...,hn(s, x) is the orthonormal projector in X spanned by
φ′(t, x)h1, . . . , φ

′(t, x)hn and trn is the trace w.r.t. this subspace. Therefore, to
show (3.4.7), it is sufficient to prove that there is ε > 0 and t > 0 such that
qd(t) ≤ −εt < 0 for all t ≥ t.
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The next theorem now gives an estimate of the Hausdorff dimension of the random
D–attractor A.

Theorem 3.4.20. Let X be a separable Hilbert space and φ a C1–RDS over a met-
ric dynamical system (Ω,F ,P, (θ(t))t∈R). We assume that φ has a unique random D–
attractor A. Suppose that x 7→ φ(t, ω, x) has the compact Frechet derivative φ′(t, ω, x) in
x for all (t, ω) ∈ [0,∞)×Ω and there is a B([0,∞))⊗F–B([0,∞)) measurable function
ν : [0,∞)× Ω→ [0,∞) such that for all ε > 0 and (t, ω) ∈ [0,∞)× Ω

sup
u,v∈A(ω),|u−v|X≤ε

|φ(t, ω, v)− φ(t, ω, u)− φ′(t, ω, u)(v − u)|X
|u− v|X

≤ ν(t, ω)ε. (3.4.8)

In addition, we assume the existence of

• d > 0 and k ∈ (0, 1) such that d = n+ s for some n ∈ N0, s ∈ (0, 1) and

(d+ 1)
1
2k

1
d <

1

4
, βdk <

(
1

4

)d+1

, βd := 2n(n+ 1)
d
2 , (3.4.9)

• a positive random variable t : Ω→ [0,∞) such that

sup
x∈A(ω)

Vd(φ
′(t(ω), ω, x)) ≤ k < 1, ω ∈ Ω, (3.4.10)

• and a positive random variable m : Ω→ [0,∞) satisfying the conditions

m(ω)d ≥ k, sup
x∈A(ω)

|φ′(t(ω), ω, x))|L(X) ≤ m(ω), ω ∈ Ω. (3.4.11)

Further, we define the positive random variable

Z : Ω→ [0,∞), ω 7→ Z(ω) =

(
m(ω)n

k

) 1
s

ν(t(ω), ω)

and the F–F measurable mapping

θ̃ : Ω→ Ω, ω 7→ θ̃ω := θ(t(ω))ω.

We assume that θ̃ preserves P and

lim
i→∞

ln(max{1, Z(θ̃iω)})
i

= 0 P-a.s., θ̃i :=

id i = 0

θ̃ ◦ · · · ◦ θ̃︸ ︷︷ ︸
i

i ∈ N. (3.4.12)

Then the Hausdorff dimension of A is less than or equal to d P-a.s.
If the underlying metric dynamical system (Ω,F ,P, (θ(t))t∈R) is ergodic then the Haus-
dorff dimension of A is constant P-a.s.
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Proof. Theorem 3.2 and Remark 3.3 in [83].

Remark 3.4.21. (i) Crauel and Flandoli [19] first developed a method to bound the
Hausdorff dimension of random attractors. But their assumptions are very restric-
tive since they require the noise to be bounded.
Schmalfuß generalized in Theorem 3.4.20 the deterministic case in form of Theo-
rem 3.1 in Temam [93] and, in particular, by including assumption (3.4.12), he
overcomes the main difficulty that the Hausdorff measure of A(θ(t)ω) is time–noise
dependent and not uniformly bounded in t.
Similar to the results of Schmalfuß in Theorem 3.4.20 Debussche obtained in [25]
bounds of the Hausdorff dimension of the random attractor with weaker assump-
tions, but with an ergodic underlying metric dynamical system. In particular, a
closer look on the proof of Theorem 3.4.20 in [83] indicates that (3.4.8) can be
replaced by the assumption that there is a B([0,∞)) ⊗ F–B([0,∞)) measurable
function ν : [0,∞)×Ω→ [0,∞) and α > 0 such that for all (t, ω) ∈ [0,∞)×Ω and
u, v ∈ A(ω)

|φ(t, ω, v)− φ(t, ω, u)− φ′(t, ω, u)(v − u)|X ≤ ν(t, ω)|u− v|1+α
X (3.4.13)

and ν(t, ω) ≥ 1, and this assumption (among others) was used by Debussche in
[25]. But Debussche only derived results for d ∈ N and mentioned in Remark 2.6
in [25] that analogue assertions for d ∈ R+ might be established with the concept
of the Lyapunov dimension (see Remark V.3.5 in [93] for a definition). Since we
do not have a proof for Debussche’s theorem for d ∈ R+, we refer to Schmalfuß
instead of Debussche.
Finally, Langa and Robinson generalized in [50] the results of Debussche in [25] to
bound the fractal dimension of a random attractor.

(ii) The technical assumptions (3.4.8) and (3.4.13) are called uniform differentiability
(near trajectories on the attractor A). Such assumptions arise from the fact that
in order to study the evolution of the infinitesimal volume elements Vd(φ

′(t, ω, x)),
x ∈ A(ω), we have to study the evolution of the infinitesimal displacements along
the trajectory (φ(t, ω, x))t≥0 as described in Remark 3.4.19(ii).
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4. Stationary Fractional Ornstein–Uhlenbeck Process

As will be seen in Section 5.2, the stationary solution of our stochastic evolution equation
will be given by an infinite series of one–dimensional stationary fractional Ornstein–
Uhlenbeck (sfOU) processes. For that purpose we recall in Section 4.1 from [13] basic
characteristics and in addition establish to the best of our knowledge new properties of
the sfOU process. Section 4.2 is then devoted to introducing exact methods to simulate
stationary (centered) Gaussian processes and to investigate their applicability to the
sfOU process.

4.1. Properties of the Stationary Fractional Ornstein–Uhlenbeck Process

We consider the fractional Langevin equation

Xt = X0 − να
t∫

0

Xsds+ νH
√
λβHt , t ≥ 0, X0 ∈ R, (4.1.1)

where (βHt )t∈R is a fractional Brownian motion on a probability space (Ω,F ,P) with
Hurst parameter H ∈ (0, 1) and α, λ, ν > 0. The unique stationary solution of (4.1.1) is
given by the stationary fractional Ornstein–Uhlenbeck process

Yt := νH
√
λ

t∫
−∞

e−(t−u)ναdβHu , t ∈ R,

see [13]. The uniqueness has to be understood as uniqueness in law in the class of
stationary solutions adapted to the natural filtration generated by the two–sided fBm
βH . Notice also that we have f(·) = exp(−να(t − ·))1(−∞,t](·) ∈ Λ̃H , where t ∈ R, 1

denotes the indicator function and Λ̃H is defined in Definition 3.1.6(i). So we will mainly
work with the space Λ̃H .
First we start with an auxiliary lemma from [13].

Lemma 4.1.1. Let H ∈ (0, 1/2) ∪ (1/2, 1), δ > 0, γ < 0, N ∈ N0 and −∞ ≤ a < b ≤
c < d <∞.

(i) Then

E

 b∫
a

eδudβHu

d∫
c

eδvdβHu

 = H(2H − 1)

b∫
a

eδu
d∫
c

eδv(v − u)2H−2dvdu.

(ii) Then

ex
∞∫
x

e−yyγdy = xγ +

N∑
n=1

(
n−1∏
k=0

(γ − k)

)
xγ−n +O(xγ−N−1) (4.1.2)
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and

e−x
x∫

1

eyyγdy = xγ +
N∑
n=1

(−1)n

(
n−1∏
k=0

(γ − k)

)
xγ−n +O(xγ−N−1) (4.1.3)

as x→∞, where
∑0

n=1 = 0.

Proof. (i): Lemma 2.1 in [13].
(ii): Lemma 2.2 in [13].

The following proposition will be used several times in this work. For that recall the def-
inition of a short–/long–range dependent process from Definition 3.1.2 and the definition
of the gamma function Γ(·), hyperbolic cosine cosh(·) and the generalized hypergeomet-
ric function 1F2 in Appendix B. Further, we say that a function g : R→ R is of bounded
variation on R if

sup
−∞<a<b<∞

sup

{
n∑
i=1

|g(xi)− g(xi−1)|
∣∣∣a = x0 < x1 < · · · < xn = b, n ∈ N

}
<∞.

Proposition 4.1.2. Let Yt, t ∈ R, be the unique stationary solution to (4.1.1) and set
C(H) := Γ(2H + 1) sin(πH)/π > 0.

(i) Then for all t, s ∈ R we have

Cov (Yt, Ys) := E (YtYs) = C(H)
ν2Hλ

2

∞∫
−∞

ei(t−s)x
|x|1−2H

(να)2 + x2
dx

= C(H)
λ

α2H

∞∫
0

cos((t− s)ναx)
x1−2H

1 + x2
dx

=


λ

2αe
−να|t−s| if H = 1

2
λ

2α2H
cosh(να(t− s))Γ(1 + 2H)

− λ(ν|t− s|)2H

2
1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

) if H 6= 1
2

.

(4.1.4)

In particular, for all t ∈ R we have

V ar(Yt) := E
(
Y 2
t

)
=

λ

α2H
Γ(2H)H.

(ii) Fix T > 0. Then there is a constant C1(H,λ, ν, α, T ) > 0 such that for any
t, s ∈ [−T, T ] we have

C1(H,λ, ν, α, T )|t− s|2H ≤ E
(
|Yt − Ys|2

)
.
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(iii) Then for any γ ∈ (0, H] there is a constant C2(H, ν, γ) > 0 such that for any
t, s ∈ R we have

E
(
|Yt − Ys|2

)
≤ C2(H, ν, γ)λα2γ−2H |t− s|2γ . (4.1.5)

(iv) Let H ∈ (0, 1/2) ∪ (1/2, 1) and N ∈ N. Then for fixed t ∈ R and s→∞ we have

Cov(Yt, Yt+s) =
1

2
λν2H

N∑
n=1

(αν)−2n

(
2n−1∏
k=0

(2H − k)

)
s2H−2n +O(s2H−2N−2).

(4.1.6)
In particular, the following assertions are valid:

• (Yt)t∈R is short–range dependent for H ∈ (0, 1/2].

• (Yt)t∈R is long–range dependent for H ∈ (1/2, 1).

• Cov(Y0, Yt), r ∈ R, is absolutely integrable for H ∈ (0, 1/2],
i.e.

∫∞
−∞ |Cov(Y0, Yt)|dt <∞.

Moreover, if H ∈ (1/2, 1) then Cov(Y0, Yt) > 0 for all t ∈ R.

(v) If H ∈ (0, 1/2] then there is T > 0 such that Cov(Y0, Yt) is decreasing and convex
on [0, T ].
If H ∈ (1/2, 1) then there is T > 0 such that Cov(Y0, Yt) is decreasing and concave
on [0, T ].

(vi) Let H ∈ (0, 1/2) ∪ (1/2, 1). Then for fixed t ∈ R and s→∞ we have

d

ds
Cov(Yt, Yt+s) = −ν

2H−1λ

α
H(2H − 1)s2H−2 +O(s2H−4).

In particular, Cov(Y0, Yt), t ∈ R, is of bounded variation on R.

Proof. For the proof we set C(H) := Γ(2H+1) sin(πH)
π and fix without loss of generality

−∞ < s < t.

(i): Notice first that for all x ∈ R we have the Fourier transformation

̂e·να1(−∞,t](·)(x) =

∫
R

euνα1(−∞,t](u)eixudu =
e(να+ix)t

(να+ ix)

and

̂e·να1(−∞,t](·)(x)
( ̂e·να1(−∞,s](·)(x)

)∗
=
eνα(t+s)+ix(t−s)

(να)2 + x2

where
( ̂e·να1(−∞,s](·)(x)

)∗
is the complex conjugate of ̂e·να1(−∞,s](·)(x).

To calculate the (co)variance the space Λ̃H (Definition 3.1.6(i)) is more convenient than
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ΛH (Definition 3.1.6(ii)). We obtain

Cov (Yt, Ys) = λν2HE
( t∫
−∞

e−(t−u)ναdβHu

s∫
−∞

e−(s−u)ναdβHu

)

= λν2He−να(t+s)E
( t∫
−∞

euναdβHu

s∫
−∞

euναdβHu

)
= λν2He−να(t+s)(e·να1(−∞,t](·), e·να1(−∞,s](·))Λ̃H

= λν2He−να(t+s) Γ(2H + 1) sin(πH)

2π

∫
R

̂e·να1(−∞,t](·)(x)
( ̂e·να1(−∞,s](·)(x)

)∗|x|1−2Hdx

= C(H)
λν2H

2

∞∫
−∞

ei(t−s)x
|x|1−2H

(να)2 + x2
dx

y= x
να= C(H)

λ

2α2H

∞∫
−∞

eiνα(t−s)y |y|1−2H

1 + y2
dy

= C(H)
λ

α2H

∞∫
0

cos(να(t− s)y)
y1−2H

1 + y2
dy,

where we used that sin(·) and cos(·) are odd and even functions, respectively. Therefore,
we proved the second and third equality in (4.1.4). We only verify the fourth equality
in (4.1.4) for H 6= 1

2 since it is well–known for H = 1
2 . By using Lemma B.1(iii) with

b = |t− s|να, z = 1, β = 2− 2H and H 6= 1
2 we get

C(H)
λ

α2H

∞∫
0

cos(να(t− s)x)
x1−2H

1 + x2
dx

=
λ

α2H

Γ(2H + 1) sin(πH)

π

[π
2

cosh(να(t− s))
sin((1−H)π)

− Γ(−2H) cos((1−H)π)(να|t− s|)2H
1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)]
=: I1 − I2.

We remark here that Γ(−2H) is well–defined for H 6= 1
2 . In the following we simplify I1

and I2. First we start with I1.

I1 =
λ

α2H

Γ(2H + 1) sin(πH)

π

π

2

cosh(να(t− s))
sin((1−H)π)

=
λ

2α2H

Γ(2H + 1)

π

π

Γ(1−H)Γ(H)

Γ(H)Γ(1−H)

π
cosh(να(t− s))π

=
λ

2α2H
Γ(2H + 1) cosh(να(t− s)),
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where we used in the second equality the relation Γ(1−x)Γ(x)
π = 1

sin(πx) (see e.g. [40],

3.241.2, p. 319).

I2 =
λ

α2H

Γ(2H + 1) sin(πH)

π
Γ(−2H) cos((1−H)π)(να|t− s|)2H

× 1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)
= −λ(ν|t− s|)2H

2

Γ(2H + 1)

π
Γ(−2H) sin(2Hπ)1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)
= −λ(ν|t− s|)2H

2

Γ(2H + 1)

π
Γ(−2H)

π

Γ(1− 2H)Γ(2H)

× 1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)
= −λ(ν|t− s|)2H

2

Γ(2H)(2H)Γ(−2H)

Γ(−2H)(−2H)Γ(2H)
1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)
=
λ(ν|t− s|)2H

2
1F2

(
1;H +

1

2
, H + 1;

(να(t− s))2

4

)
,

where in the second equality we used the relation sin(πx) cos((1− x)π) = − sin(2πx)/2,

in the third equality Γ(1−x)Γ(x)
π = 1

sin(πx) and finally in the fourth equality Γ(1 − x) =

(−x)Γ(−x). Therefore, (4.1.4) is proved.
In particular, for t = s we have

V ar
(
Y 2
t

)
= E

(
Y 2
t

)
=

λ

α2H

Γ(2H + 1) sin(πH)

π

∞∫
0

x1−2H

1 + x2
dx

=
λ

α2H

B(1−H,H)Γ(2H + 1) sin(πH)

2π

=
λ

α2H

Γ(1−H)Γ(H)Γ(2H + 1) sin(πH)

2πΓ(1)

=
λ

α2H

Γ(2H + 1)

2
=

λ

α2H

Γ(2H)2H

2
=

λ

α2H
Γ(2H)H,

where we used in the third equality Lemma B.1(i) with ν = 2 > µ = 2 − 2H > 0,

in the fourth equality the relation B(x, y) = Γ(x)Γ(y)
Γ(x+y) for the beta function B(·, ·), in

the fifth equality the relation Γ(1−x)Γ(x)
π = 1

sin(πx) and in the sixth equality the relation

Γ(x+ 1) = Γ(x)x. Hence (i) is proved.
In addition, we note that in the case H > 1

2 we can calculate the variance also using the
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space |Λ|H instead of Λ̃H : In virtue of Theorem 3.1.8 we have

V ar
(
Y 2
t

)
= E

(
Y 2
t

)
= λν2He−2ναt(e·να1(−∞,t](·), e·να1(−∞,t](·))Λ̃H

= λν2He−2ναt(e·να1(−∞,t](·), e·να1(−∞,t](·))|Λ|H

= λν2HH(2H − 1)

t∫
−∞

t∫
−∞

e−(t−u)ναe−(t−v)να|u− v|2H−2dudv

=
λ

α2H
H(2H − 1)

∞∫
0

∞∫
0

e−xe−y|x− y|2H−2dxdy

=
λ

2α2H
H(2H − 1)

[ ∞∫
0

e−yy2H−2dy +

∞∫
0

e−xx2H−2dx
]

=
λ

α2H
H(2H − 1)Γ(2H − 1) =

λ

α2H
Γ(2H)H,

where we used in the sixth equality Lemma B.1(ii) (with p, q = 1 and f(x) = x2H−2)
and in the last equality the relation Γ(x+ 1) = Γ(x)x.

(ii)+(iii): By (i) and the change of variables z = (t− s)ναx we have

E
(
|Yt − Ys|2

)
= 2C(H)

λ

α2H

∞∫
0

(1− cos((t− s)ναx))
x1−2H

1 + x2
dx

= 2C(H)λ(ν(t− s))2H

∞∫
0

(1− cos(z))
z1−2H

((t− s)να)2 + z2
dz.

(4.1.7)

Lower bound: For any −T ≤ s < t ≤ T , where T > 0 is fixed, we obtain by (4.1.7)

E
(
|Yt − Ys|2

)
≥ 2C(H)λ(ν(t− s))2H inf

−T≤s<t≤T

∞∫
0

(1− cos(z))
z1−2H

((t− s)να)2 + z2
dz

= 2C(H)λ(ν(t− s))2H

∞∫
0

(1− cos(z))
z1−2H

(2Tνα)2 + z2
dz.

Upper bound: By (4.1.7) we have for all −∞ < s < t

E
(
|Yt − Ys|2

)
≤ 2C(H)λ(ν(t− s))2H sup

−∞<s<t

∞∫
0

(1− cos(z))
z1−2H

((t− s)να)2 + z2
dz

= 2C(H)λ(ν(t− s))2H

∞∫
0

(1− cos(z))z−1−2Hdz.
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Notice that
∫∞

0 (1 − cos(z))z−1−2Hdz = 2
∫∞

0 sin2(z/2)z−1−2Hdz and this indefinite
integral is finite. Indeed, this follows from the fact that we have 0 < H < 1 and
sin2(z) = | sin(z)− sin(0)|2 ≤ C(ε)z2ε for any ε ∈ [0, 1] and a constant C(ε) > 0.
It is left to prove the relation (4.1.5) for γ ∈ (0, H). By (4.1.4) and again using the
Hölder continuity of sin(·), we get

E
(
|Yt − Ys|2

)
= 2C(H)

λ

α2H

∞∫
0

(1− cos((t− s)ναx))
x1−2H

1 + x2
dx

= 4C(H)
λ

α2H

∞∫
0

sin2((t− s)ναx/2)
x1−2H

1 + x2
dx

≤ C̃(H, γ)λα2γ−2H(ν(t− s))2γ

∞∫
0

x1+2γ−2H

1 + x2
dx <∞,

for any γ ∈ (0, H) with a constant C̃(H, γ) > 0.

(iv): Statement (4.1.6) is proved in [13], Theorem 2.3. The additional assertions are
just a simple consequence of (4.1.6) and the proof of Theorem 2.3 in [13]. In particular,
we have by Lemma 4.1.1(i) for s > 0

Cov(Y0, Ys) = λν2HE
( 0∫
−∞

eναudβHu

s∫
−∞

e−(s−v)ναdβHv

)

= e−ναsλν2HE
( 0∫
−∞

eναudβHu

0∫
−∞

evναdβHv

)

+ e−ναsλν2HE
( 0∫
−∞

eναudβHu

s∫
0

eναvdβHv

)

= e−ναsV ar(Y0) + λν2He−ναsH(2H − 1)

0∫
−∞

eναu
s∫

0

eναv(v − u)2H−2dvdu

such that Cov(Y0, Ys) > 0 for all s ∈ R if H ∈ (1/2, 1).
(v): The case H = 1

2 is obvious.
Since the covariance function is continuous, V ar(Y0) ≥ Cov(Y0, Yt) for all t ∈ R and
Cov(Y0, Yt) → 0 as t → ∞ by (4.1.6), it is sufficient to prove that there is T > 0 such

that d2

dt2
Cov(Y0, Yt) is positive on (0, T ] for H ∈ (0, 1/2) and negative for H ∈ (1/2, 1).

Further, we remark that

d

dz
1F2(a1; b1, b2; z) =

a1

b1b2
1F2(a1 + 1; b1 + 1, b2 + 1; z).
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We have

d

dt
Cov(Y0, Yt) =

1

2
Γ(1 + 2H)λα1−2Hν sinh(ναt)

−Hλν2Ht2H−1
1F2(1;H + 1/2, H + 1; (ναt)2/4)

− 1

4(H + 1/2)(H + 1)
λα2ν2H+2t2H+1

1F2(2;H + 3/2, H + 2; (ναt)2/4)

and

d2

dt2
Cov(Y0, Yt) =

1

2
Γ(1 + 2H)λα2−2Hν2 cosh(ναt)

−H(2H − 1)λν2Ht2H−2
1F2(1;H + 1/2, H + 1; (ναt)2/4)

− H

2(H + 1/2)(H + 1)
λα2ν2H+2t2H1F2(2;H + 3/2, H + 2; (ναt)2/4)

− (2H + 1)

4(H + 1/2)(H + 1)
λα2ν2H+2t2H1F2(2;H + 3/2, H + 2; (ναt)2/4)

− 1

4(H + 1/2)(H + 1)(H + 3/2)(H + 2)
λα4ν2H+4t2H+2

1F2(3;H + 5/2, H + 3; (ναt)2/4).

(4.1.8)

The only important term in (4.1.8) as t→ 0 is −H(2H − 1)t2H−2. This term is positive
if H ∈ (0, 1/2) and negative if H ∈ (1/2, 1).

(vi): We will also use some ideas of the proof of Theorem 2.3 in [13]. Fix t ∈ R. For
s > 0 large enough we obtain by Lemma 4.1.1(i)

Cov(Yt, Yt+s) = Cov(Y0, Ys) = λν2HE
( 0∫
−∞

eναudβHu

s∫
−∞

e−(s−v)ναdβHv

)

= e−ναsλν2HE
( 0∫
−∞

eναudβHu

1/(να)∫
−∞

evναdβHv

)

+ e−ναsλν2HE
( 0∫
−∞

eναudβHu

s∫
1/(να)

eναvdβHv

)

= e−ναsλν2HE
( 0∫
−∞

eναudβHu

1/(να)∫
−∞

eναvdβHv

)

λν2He−ναsH(2H − 1)

0∫
−∞

eναu
s∫

1/(να)

eναv(v − u)2H−2dvdu
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w=ναu,x=ναv
= e−ναsλν2HE

( 0∫
−∞

eναudβHu

1/(να)∫
−∞

eναvdβHv

)

+
λ

α2H
H(2H − 1)e−ναs

0∫
−∞

ew
ναs∫
1

ex(x− w)2H−2dxdw

y=x−w,z=x+w
= e−ναsλν2HE

( 0∫
−∞

eναudβHu

1/(να)∫
−∞

eναvdβHv

)

+H(2H − 1)
λ

2α2H
e−ναs

{ ναs∫
1

y2H−2

y∫
2−y

ezdzdy

+

∞∫
ναs

y2H−2

2ναs−y∫
2−y

ezdzdy
}

= e−ναsλν2HE
( 0∫
−∞

eναudβHu

1/(να)∫
−∞

eναvdβHv

)

+H(2H − 1)
λ

2α2H
e−ναs

{ ναs∫
1

eyy2H−2dy −
ναs∫
1

e2−yy2H−2dy

+

∞∫
ναs

e2ναs−yy2H−2dy −
∞∫

ναs

e2−yy2H−2dy
}

and therefore

d

ds
Cov(Y0, Ys) =

d

ds

( λ

2α2H
H(2H − 1)e−ναs

{ ναs∫
1

eyy2H−2dy

+

∞∫
ναs

e2ναs−yy2H−2dy
})

+O(e−ναs)

= − λν

2α2H−1
H(2H − 1)

(
e−ναs

ναs∫
1

eyy2H−2dy + eναs
∞∫

ναs

e−yy2H−2dy
)

+O(e−ναs)

as s→∞. Using (4.1.2) and (4.1.3) in Lemma 4.1.1(ii) we get

d

ds
Cov(Y0, Ys) = −H(2H − 1)

λν2H−1

α
s2H−2 +O(s2H−4) (4.1.9)

as s → ∞. In particular, (4.1.9) implies that Cov(Y0, Ys) is of bounded variation on
R. Indeed, by (i) Cov(Y0, Ys) can be represented as a difference of monotone increasing
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functions on [0,∞) and by (iv) and (4.1.9) Cov(Y0, Ys) converges monotonically to 0 as
s→∞.

Remark 4.1.3. (i) The second equality in (4.1.4) is stated in Remark 2.4 in [13]. We
proved it here explicitly. However, to the best of our knowledge, the representation
of the covariance function in (4.1.4) in terms of cosh(·) and 1F2(·) as well as the
statements of Proposition 4.1.2(v) and (vi) seem to be new.

(ii) The idea for the proof of the assertions of Proposition 4.1.2(ii) and (iii) for γ = H
is based on some relations introduced in the proof of Lemma 2.5 in [55], where an
analogue statement as in Proposition 4.1.2(ii) is shown. For us it is very impor-
tant to derive the dependence of the right-hand side of (4.1.5) on λ and α since
this relation will determine the regularity properties of our random velocity field
introduced in Section 5.1.
Further, the assertion in Proposition 4.1.2(iii) with the help of Lemma 3.2.3 and
Lemma 3.2.4 implies that there is a version of the sfOU process which has P-a.s.
Hölder continuous paths with Hölder exponent strict less than the corresponding
Hurst parameter H.

Proposition 4.1.2(i) motivates to introduce the function f : DH ⊆ R→ R

x 7→ f(x) = C(H)
ν2Hλ

2

|x|1−2H

(να)2 + x2
(4.1.10)

where H ∈ (0, 1), C(H) = Γ(2H+1) sin(πH)
π , DH = R if H ∈ (0, 1/2] and DH = R \ {0}

if H ∈ (1/2, 1). We refer to this function as the (not normalized) spectral density of
the sfOU process. The reason why we use the term spectral density is that r(t) :=
Cov(Yt, Y0), t ∈ R, and f(·) are Fourier transform pairs. In particular, we have

r(t) =

∞∫
−∞

eitxf(x)dx, t ∈ R,

and

f(x) =
1

2π

∞∫
−∞

e−ixtr(t)dt, x ∈ DH . (4.1.11)

Notice that the right–hand–side of (4.1.11) is well–defined. Indeed, if H ∈ (0, 1/2] then
r(·) is continuous, absolutely integrable and of bounded variation on R by Proposition
4.1.2(i),(iv), (vi) such that (4.1.11) is satisfied (see [74] Chapter 4.7). For H ∈ (1/2, 1) we
know by Proposition 4.1.2(i),(iv),(vi) that r(·) is only continuous, of bounded variation
on R and lim|t|→∞ r(t) = 0. In this case the spectral density is unbounded in 0 and
(4.1.11) is still valid by Lemma 3.2 in [94]. This is typical for long–range dependent
processes.
Figure 1 shows sample paths of the sfOU process with fixed parameters λ = α = ν = 1
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and time increment 4t = 10−2 on [0, 100] associated to different Hurst parameters. To
simulate the sample paths we used the standard Cholesky method described in the next
subsection. If we increase the Hurst parameter, we observe smoother sample paths as
expected by Remark 4.1.3(ii).
Figure 2 and Figure 3 visualize the spectral density, whereas Figure 4 and Figure 5 show
the covariance function of the sfOU process for different Hurst parameters and λ = α =
ν = 1. As already mentioned, the spectral density has a pole in 0 for H ∈ (1/2, 1).
Further, we discover that in the case H ∈ [1/2, 1) the covariance function Cov(Y0, Yt)
is non–negative and monotonically decreasing to 0 for |t| → ∞, whereas in the case
H ∈ (0, 1/2) Cov(Y0, Yt) is negative for large |t| and also converges monotonically to 0
for |t| → ∞. These observed properties are partially proved in Proposition 4.1.2.
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Figure 1: Sample paths of the sfOU process with α = λ = ν = 1, 4t = 10−2 on [0, 100]
associated to different Hurst parameters H. a.) H = 1/10, b.) H = 1/4, c.)
H = 1/2, d.) H = 3/4.
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Figure 2: Spectral density of the sfOU process with λ = α = ν = 1 associated to different
Hurst parameters H: H = 1/10 with −, H = 1/4 with −−, H = 1/2 with ··.
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Figure 3: Spectral density of the sfOU process with λ = α = ν = 1 associated to different
Hurst parameters H: H = 2/3 with −, H = 3/4 with −−, H = 9/10 with ··.
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Figure 4: Covariance function of the sfOU process with λ = α = ν = 1 associated to
different Hurst parameters H: H = 1/10 with −, H = 1/4 with −−, H = 1/2
with ··.

55



Figure 5: Covariance function of the sfOU process with λ = α = ν = 1 associated to
different Hurst parameters H: H = 2/3 with −, H = 3/4 with −−, H = 9/10
with ··.
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4.2. Simulating the Stationary Fractional Ornstein–Uhlenbeck Process

In the following let (βHt )t∈R be a real–valued and normalized fractional Brownian motion
with Hurst parameter H ∈ (0, 1) on a probability space (Ω,F ,P).
To simulate the real–valued sfOU process

X(t) =
√
λνH

t∫
−∞

e−(t−u)ναdβH(u) , t ∈ R, (4.2.1)

with parameters λ, α, ν > 0 and covariance function

r(s) := E
(
X(0)X(s)

)
, s ∈ R,

we fix 4t > 0, n ∈ N0 and set Xn := X(n4t) and rn := r(n4t). Further, we denote by

Cn :=


r0 r1 · · · rn
r1 r0 · · · rn−1
...

. . .
...

rn rn−1 · · · r0

 (4.2.2)

the covariance matrix of X(n) :=
(
X0, X1, . . . , Xn

)′
, where (·)′ denotes the transpose.

We speak of an exact method to simulate X(n) if this method generates a random vector
Y(n) :=

(
Y0, Y1, . . . , Yn

)′
such that

X(n)
d
= Y(n)

where
d
= denotes the equality in distribution. In particular, we are interested in the

exact standard Cholesky method, the exact Durbin–Levinson method (Section 4.2.1) and
the exact circulant embedding method (Section 4.2.2). Our main references here are
[3, 10, 28].
We do not consider in this work approximate methods, i.e. Y(n) approximates X(n) in
some appropriate sense, such as wavelet–based methods. Here the reader is referred to
[26, 27] and references therein.

Remark 4.2.1. (i) For all n ∈ N the covariance matrix Cn is strictly positive definite.
This follows by Proposition 5.1.1 in [10] and the fact that limt→∞ r(t) = 0 by
Proposition 4.1.2(iv).
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(ii) By Proposition 4.1.2(i) we have r0 = λ
α2H Γ(2H)H and

rn = r(n4t)

=
λ

α2H

Γ(2H + 1) sin(πH)

π

∞∫
0

cos(xναn4t)x
1−2H

1 + x2
dx

=


λ

2αe
−ναn4t if H = 1

2
λ

2α2H
cosh(ναn4t)Γ(1 + 2H)

− λ(νn4t)2H

2
1F2

(
1;H +

1

2
, H + 1;

(ναn4t)2

4

) if H 6= 1
2

.

(4.2.3)

Relation (4.2.3) provides us on the one hand a nice representation of rn in terms of
the functions cosh and 1F2, on the other hand cosh(x) and 1F2(1;H + 1

2 , H + 1;x)
have an asymptotic exponential growth in x ∈ [0,∞) such that for large values
of ναn4t we have to evaluate a difference of very large numbers which leads to
numerical instabilities. Therefore, it is also important to note that there are several
stable integration methods to evaluate the Fourier integral

∞∫
0

cos(xναn4t)x
1−2H

1 + x2
dx,

e.g. an adaptive integration method for Fourier integrals provided by the GNU
Scientific Library ([41]) and we strongly recommend to use such stable methods.

(iii) For the case H = 1/2 the stationary Ornstein–Uhlenbeck process can be simulated
more efficiently, particularly in view of memory workload by rather using methods
which involve the independence of the increments of the process than the methods
introduced in this subsection. Such a scheme is described in [87], Section 4.1, and
we recommend to use it for this special case.

4.2.1. Standard Cholesky Method and Durbin–Levinson Method

First we introduce the standard Cholesky method and then an improved variant, the
Durbin–Levinson method. The methods are based on the Cholesky decomposition of the
covariance matrix Cn and its inverse C−1

n , respectively. Since Cn and therefore C−1
n are

strictly positive definite by Remark 4.2.1(i), it turns out that both methods are appli-
cable to simulate X(n) .

Since the covariance matrix Cn, defined in (4.2.2), is symmetric and strictly positive
definite, it admits a Cholesky decomposition

Cn = GnG
′
n,
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where Gn := (gij)i,j=0,1,...,n is square lower triangular, i.e. gij = 0 for j > i. The entries
of Gn are given by (see [3])

gij :=


0 if i < j√

(cii −
∑i−1

k=0 g
2
ik) if i = j

1
gjj

(cij −
∑j−1

k=0 gikgjk) if i > j

and therefore can be computed recursively.

The standard Cholesky method works now as follows: Let Z0, Z1, . . . , Zn be independent
and identically distributed standard normal random variables on (Ω,F ,P). We define
the random variables Y0, Y1, . . . , Yn by

Yi :=
i∑

k=0

gikZk , i = 0, 1, . . . , n.

Set Y(n) :=
(
Y0, Y1, . . . , Yn

)′
and Z(n) :=

(
Z0, Z1, . . . , Zn

)′
. We have

Y(n)
d
= X(n),

since

E
(
Y(n)Y(n)′

)
= E

(
GnZ(n)(GnZ(n))′

)
= GnInG

′
n = Cn = E

(
X(n)X(n)′

)
, (4.2.4)

where In denotes the n×n identity matrix. Therefore, to sample X(n) we sample Y(n).

Remark 4.2.2. (i) In view of (4.2.4) the standard Cholesky method is exact, i.e. no
approximation is involved.

(ii) The main drawback of this method is that it is slow because of the complexity
O(n3). Moreover memory could be a problem since we need to store all non–zero
gij .

(iii) The advantage of this scheme is that we do not need to set the time horizon in
advance. Further, the standard Cholesky method can also be used to simulate
non–stationary Gaussian processes. For more details the reader is referred to [3]
pp. 311–313.

As a second approach we introduce a recursive algorithm of generating Xn+1 given
X0, X1, . . . , Xn. Thus we need to know the conditional distribution of Xn+1 given
X0, X1, . . . , Xn. By a general formula for multivariate normal distributions, see Ap-
pendix A1 in [3], this distribution is normal with mean

µn+1 := (C−1
n Jnr1:n+1)′(X0, X1, . . . , Xn)′, µ0 := 0, (4.2.5)

and variance
σ2
n+1 := r0 − (Jnr1:n+1)′C−1

n Jnr1:n+1, σ2
0 := r0, (4.2.6)
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shortly
Xn+1|(X0, X1, . . . , Xn) ∼ N (µn+1, σ

2
n+1). (4.2.7)

Here we set r1:n+1 := (r1, r2, . . . , rn+1)′ and Jn = (jlk)l,k=0,1,...,n denotes the exchange
matrix with ones on the antidiagonal, i.e. jlk = 1 if l = n − k and jlk = 0 elsewhere,
l, k = 0, 1, . . . , n. Therefore, to generate (X0, X1, . . . , Xn+1)′ recursively, first we sample
X0 ∼ N (0, r0) and then Xi ∼ N (µi, σ

2
i ) recursively for i = 1, 2, . . . , n+1. Obviously, the

main task is to find an effective recursive algorithm which avoids the matrix inversion of
Cn in the calculation of µn and σ2

n such that we can effectively solve the linear system
Cnz = Jnr1:n+1.
For this purpose we introduce the Durbin–Levinson algorithm which computes recur-
sively the Cholesky decomposition

C−1
n = L′nD

−1
n Ln,

where Ln = (lij)i,j=0,1,...,n is unit lower triangular, i.e. lii = 1 and lij = 0 for j > i,
i, j = 0, 1, . . . , n, and Dn = (dij)ij=0,1,...,n is diagonal, i.e. dij = 0 for i 6= j, i, j =
0, 1, . . . , n. Recall that by Remark 4.2.1(i) Cn and C−1

n are strictly positive definite such
that dii > 0, i = 0, 1, . . . , n. Further, notice that

Cn+1 =

(
Cn Jnr1:n+1

r′1:n+1Jn r0

)
=

(
r0 r′1:n+1

r1:n+1 Cn

)
. (4.2.8)

Relation (4.2.8) yields with ψn+1 := −C−1
n Jnr1:n+1

C−1
n+1 =

1

σ2
n+1

(
σ2
n+1C

−1
n + ψn+1ψ

′
n+1 ψn+1

ψ′n+1 1

)
=

(
In ψn+1

0′(n+1)×1 1

)(
C−1
n 0(n+1)×1

0′(n+1)×1 1/σ2
n+1

)(
In 0(n+1)×1

ψ′n+1 1

)
=

(
L′n ψn+1

0′(n+1)×1 1

)(
D−1
n 0(n+1)×1

0′(n+1)×1 1/σ2
n+1

)(
Ln 0(n+1)×1

ψ′n+1 1

)
= L′n+1D

−1
n+1Ln+1,

(4.2.9)

where 0(n+1)×1 is the column vector with zeros. In particular, we have dnn = σ2
n and by

(4.2.5)
µ0 = 0, µn = −ψ′n(X0, X1, . . . , Xn−1)′, (4.2.10)

n ≥ 1!
The Durbin–Levinson algorithm computes ψn and σ2

n (and therefore Ln and D−1
n ) re-

cursively. More precisely, assume that ψn and σ2
n are known. From (4.2.9) one can

deduce

ψ1 = ρ1 = −r1/r0, ψn+1 =

(
0

ψn

)
+ ρn+1

(
1

Jn−1ψn

)
, n ≥ 1, (4.2.11)

and
σ2

0 = r0, σ2
n+1 = σ2

n(1− ρ2
n+1), n ≥ 0, (4.2.12)
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with

ρ1 := −r1/r0, ρn+1 := −(rn+1 + ψ′nr1:n)/σ2
n, n ≥ 1. (4.2.13)

A detailed derivation of (4.2.11)-(4.2.13) is given in [43]. The reader is also referred to
[95] and Proposition 5.2.1 in [10] for slight variations of the Durbin–Levinson algorithm.

We apply now this recursive procedure to generate Xn+1 given X0, X1, . . . , Xn:

We start with X0 ∼ N (µ0 = 0, σ2
0 = r0), ψ1 = ρ1 = −r1/r0, σ2

1 = r0(1 − r2
1/r

2
0),

µ1 = −ψ1X0 and X1 ∼ N (µ1, σ
2
1).

For 1 ≤ i ≤ n: Given ψi, σ
2
i and (X0, X1, . . . , Xi) we compute ρi+1, σ2

i+1, ψi+1, µi+1 and
Xi+1 according to (4.2.13), (4.2.12), (4.2.11), (4.2.10) and (4.2.7).

Remark 4.2.3. (i) Due to the definition of the Durbin–Levinson algorithm, the method
is exact.

(ii) The complexity of the Durbin–Levinson algorithm is O(n2). Therefore, it is faster
than the standard Cholesky method with complexity O(n3). But it is also known
that the Durbin–Levinson algorithm is more sensitive to computational inaccura-
cies like round–off errors than the standard Cholesky method.

(iii) We have

µn+1 = E(Xn+1|X0, X1, . . . , Xn)

and

σ2
n+1 = E((Xn+1 − µn+1)2),

where E(Xn+1|X0, X1, . . . , Xn) denotes the conditional expectation of Xn+1 given
X0, X1, . . . , Xn. Therefore the Durbin–Levinson method is closely related to pre-
diction in time–series analysis, where µn is the best (in mean–square sense) linear
predictor for Xn with prediction error σ2

n. In this context we should also mention
the innovation algorithm which as well computes recursively µn and σ2

n. For more
details the reader is referred to [10] Chapter 5 and [3] Chapter 11.

4.2.2. Circulant Embedding Method

Analogously to the Cholesky–based methods, introduced in the last subsection, the
circulant embedding method (CEM) tries to find a square root of a circulant matrix with
embedded covariance matrix Cn. A circulant matrix of dimension n ∈ N is a n × n
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matrix of the form

An :=



a0 an−1 · · · a2 a1

a1 a0 an−1 · · · a2

a1 a0 an−1
...

. . .
. . .

. . .
...

an−2
...

. . .
. . . an−1

an−1 an−2 · · · a1 a0


,

aj ∈ C, j = 0, 1, . . . , n− 1, where the eigenvalues of An are given by

φk =

n−1∑
j=0

aje
−2πi jk

n , k = 0, 1, . . . , n− 1, (4.2.14)

see e.g. Proposition XI.3.1 in [3]. Further, we recall that a one–dimensional discrete
Fourier transform (DFT) of a vector a(n) = (a0, a1, . . . , an−1)′ ∈ Cn is defined by

â(n) = Fna(n)/n, âk =
1

n

n−1∑
j=0

aje
2πi kj

n , k = 0, 1, . . . , n− 1, (4.2.15)

with one–dimensional inverse DFT

a(n) = nF−1
n â(n), ak =

n−1∑
j=0

âje
−2πi kj

n , k = 0, 1, . . . , n− 1, (4.2.16)

where i =
√
−1. Here Fn denotes the square Fourier matrix of order n with rows and

columns indexed by {0, 1, . . . , n − 1} and kj–th entry e2πi kj
n . F−1

n is its inverse given
by F∗n/n, i.e. by the complex conjugate of Fn divided by n. Computing (4.2.15) and
(4.2.16) via standard matrix multiplication has complexity O(n2). But if n = 2m for
some m ∈ N the fast Fourier transform (FFT) algorithm can be applied to calculate
(4.2.15) and (4.2.16) which uses some clever manipulation allowing one to reduce the
complexity to O(n log(n)) ([73]). Therefore, by (4.2.14) the FFT algorithm can be
applied to calculate the eigenvalues of An. Moreover, we have

An = FnΦnF∗n/n, (4.2.17)

where Φn is the diagonal matrix with, in general, complex numbers φk, k = 0, 1, . . . , n−1
on the diagonal, defined in (4.2.14).
The main idea of the CEM is to embed the covariance matrix Cn in the upper left corner
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of a symmetric circulant matrix of order 2n in form of

C̃2n :=



r0 r1 · · · rn−1 rn rn−1 rn−2 · · · r2 r1
r1 r0 · · · rn−2 rn−1 rn rn−1 · · · r3 r2

...
...

. . .
...

...
...

...
. . .

...
...

rn−1 rn−2 · · · r0 r1 r2 r3 · · · rn−1 rn
rn rn−1 · · · r1 r0 r1 r2 · · · rn−2 rn−1

rn−1 rn · · · r2 r1 r0 r1 · · · rn−3 rn−2

...
...

. . .
...

...
...

...
. . .

...
...

r1 r2 · · · rn rn−1 rn−2 rn−3 · · · r1 r0


, (4.2.18)

and under the assumption that C̃2n is in addition positive definite and in view of (4.2.17),
C̃2n admits the decomposition C̃2n = B2n(B∗2n)′, where

B2n :=
1√
2n

F2nΛ
1
2
2n (4.2.19)

and Λ
1
2
2n is the diagonal matrix with

√
λk, k = 0, 1, . . . , 2n− 1, on the diagonal, defined

by the non–negative numbers

λk =
2n−1∑
j=0

sje
−2πi jk

2n =
n∑
j=0

rje
−2πi jk

2n +
2n−1∑
j=n+1

r2n−je
−2πi jk

2n

= r0 + rn(−1)k + 2

n−1∑
j=1

rj cos(πjk/n),

(4.2.20)

k = 0, 1, . . . , 2n−1, with sj = rj , j = 0, 1, . . . , n, and sj = r2n−j , j = n+1, n+2, . . . , 2n−
1. Further, in case that C̃2n is positive definite, there is a mean zero Gaussian random
vector Ỹ(2n− 1) = (Ỹ0, Ỹ1, . . . , Ỹ2n−1)′ such that E(Ỹ(2n− 1)Ỹ(2n− 1)′) = C̃2n. Since
Cn is embedded in the upper left corner, the first (n+ 1) elements of Ỹ(2n−1) have the
desired covariance matrix Cn. To construct such a random vector it is more convenient to
work with complex–valued random variables. With this approach we will build a random
vector Y(2n − 1) = (Y0, Y1, . . . , Y2n−1)′ such that Y(0)(n − 1) = (Y0, Y1, . . . , Yn−1)′ has
the desired Gaussian distribution with mean zero and covariance matrix Cn−1.
For a given positive definite C̃2n (and n = 2m for some m ∈ N) the following CEM
algorithm taken from [15] uses twice the FFT algorithm:

1.) Compute λk, k = 0, 1, . . . , 2n− 1, defined in (4.2.20), via the FFT algorithm.

2.) Check that λk ≥ 0, k = 0, 1, . . . , 2n− 1.

3.) Generate independent standard Gaussian random variables U
(0)
k , k = 0, 1, . . . , 2n−1

and U
(1)
k , k = 1, 2, . . . , n−1, n+2, . . . , 2n−1 such that U (0) = (U

(0)
1 , . . . , U

(0)
2n−1) and

U (1) = (U
(1)
0 , . . . , U

(1)
n−1, U

(1)
n+1, . . . , U

(1)
2n−1) are mutually independent, and compute
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the complex–valued sequence

wk :=



√
2nλ0U

(0)
0 , k = 0

√
nλk(U

(0)
2k−1 + iU

(1)
2k ), 1 ≤ k ≤ n− 1

√
2nλnU

(0)
n , k = n

√
nλk(U

(0)
2n−k − iU

(1)
2n−k), n+ 1 ≤ k ≤ 2n− 1.

4.) Compute Y(2n− 1) = (Y0, Y1, . . . , Y2n−1)′ by

Yk =
1

2n

2n−1∑
j=0

wje
2πi kj

2n , k = 0, 1, . . . , 2n− 1, (4.2.21)

via FFT algorithm. Y(0)(n − 1) = (Y0, Y1, . . . , Yn−1)′ has the desired Gaussian
distribution.

The positive definiteness assumption for C̃2n is crucial for the CEM algorithm and we
have to investigate whether this is satisfied for the sfOU process. The next theorem
gives sufficient conditions to ensure this assumption. We will discuss the applicability of
these conditions to the sfOU process at the end of this subsection.

Theorem 4.2.4. Let n ∈ N, r0 > 0 and r1, . . . , rn ∈ R. Define Cn and C̃2n as in
(4.2.2) and (4.2.18) with r0, r1, . . . , rn.

(i) If r0, r1, . . . , rn form a sequence that is convex, decreasing and r0+rn+2
∑n−1

j=1 rj ≥
0, then C̃2n is positive definite.

(ii) If rk < 0, k = 1, . . . , n, then C̃2n is positive definite.

Proof. (i): Theorem 2 in [28] and the remark after that theorem.
(ii): Proposition 3.1 in [15].

Remark 4.2.5. (i) The CEM was first introduced by Davis et al. ([24]) and then
generalized by Dietrich and Newsam ([28]). For an extension of the CEM to sta-
tionary Gaussian vector fields the reader is referred to [98].

(ii) The advantage of the CEM is that it is an exact method with complexityO(n log(n))
since the FFT algorithm is involved. The drawback is that one needs to predefine
the simulation time horizon n.

(iii) The standard Cholesky method in mind, notice that in view of (4.2.15) and (4.2.19)

we compute Y(2n−1) =
√

2nB2nZ(2n−1) = 1
2nF2nΛ

1
2
2nZ(2n−1) in (4.2.21) where

Z(2n − 1) = (Z0, Z1, . . . , Z2n−1)′ = (w0/
√
λ0, w1/

√
λ1, . . . , w2n−1/

√
λ2n−1)′ and

Zk = 0 if λk = 0. But the matrix B2n defined in (4.2.19) is not the matrix one
would obtain via the Cholesky decomposition, since B2n is not lower triangular.
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(iv) The CEM can be used to simulate paths of a fractional Brownian motion (fBm)
(βHt )t≥0 with arbitrary Hurst parameterH ∈ (0, 1). More precisely, first one applies
the CEM to get a fractional Gaussian noise (fGn) sample, i.e. Xk = βHk+1−βHk , k =

0, 1, . . . , n−1 with covariance function E(XkX0) = (|k−1|2H−2|k|2H+|k+1|2H)/2,
then computes the cumulative sums and finally uses the self–similarity property of
the fBm to obtain a sample of the fBm (βHk4t), k = 0, 1, · · · , n − 1 with a desired
sample size 4t > 0. The applicability of the CEM to fGn for any n ∈ N can be
proved by verifying the assumption of Theorem 4.2.4(i) for H ∈ [1/2, 1) ([39]) and
Theorem 4.2.4(ii) for H ∈ (0, 1/2) ([15]).

(v) It should be noted that a strictly positive definite covariance matrix Cn of a general
stationary Gaussian process can always be embedded in some circulant matrix of
order m ≥ 2n. Here the reader is referred to the discussion at the beginning of
Section 3 in [28] and references therein. We leave the applicability of this approach
to the sfOU process for future work.

Finally, we discuss the applicability of the CEM to the sfOU process, i.e. in particular
whether the circulant matrix C̃2n defined in (4.2.18) is positive definite. Notice first that
by (4.2.2) and (4.2.3) the positive definiteness of the circulant matrix C̃2n is independent
of λ > 0. Further, if C̃2n is positive/negative definite with c = να > 0 for some fixed
ν, α > 0, then C̃2n is positive/negative definite for any ν, α > 0 such that να = c.

Case H = 1
2 : As easily checked, the covariance function r(s) = λe−ναs/(2α), s ≥ 0,

is convex, decreasing and non–negative such that the sequence r0, r1, . . . , rn is convex,
decreasing and non–negative for any n ∈ N, 4t > 0 and ν, α, λ > 0. Therefore, by
Theorem 4.2.4(i) the CEM is applicable for any n ∈ N, 4t > 0 and ν, α, λ > 0.
Case H ∈ (1/2, 1): Unfortunately, at least one assumption of the Statements (i)–(ii) of
Theorem 4.2.4 is (for 4t > 0 small enough) violated by Proposition 4.1.2(iv) and (v).
Nevertheless, we verify numerically that the CEM is applicable, i.e. for given 4t > 0,
n ∈ N, ν, α, λ > 0 and H we calculate the eigenvalues of the circulant matrix, given
by (4.2.20), using the fast Fourier transform algorithm and then check those for posi-
tiveness. In the first numerical experiment we fix 4t = 0.1, λ = α = 1, ν, H and
test whether all eigenvalues of C̃2n are positive (= 1) or at least one eigenvalue is strict
negative (= 0) in dependence on n ∈ N. Figure 6 with ν = 1, Figure 7 with ν = 0.5 and
Figure 8 with ν = 2 show the results associated to different values of H. We observe
that there is n0 ∈ N depending on 4t, ν, α and H such that for all n ≥ n0 the circulant
matrix C̃2n is positive definite. Further, in Figure 6–8 we discover that n0 increases if we
increase the Hurst parameter or decrease αν > 0. In the second numerical experiment
we fix λ = α = 1, ν, H and calculate the first n0 ∈ N, n0 ≥ 2, such that the circulant
matrix C̃2n0 is positive definite in dependence on 4t = 1/m, m ∈ N with 2 ≤ m ≤ 50.
Figure 9 with ν = 1 and Figure 10 with H = 0.6 show the results associated to different
values of H and ν, respectively. We notice in addition that n0 becomes larger if we
decrease 4t > 0 (i.e. increase m). Whereas Figure 9 b.), c.) and Figure 10 a.)–d.)
suggest a (piecewise) linear dependence of m on n0, Figure 9 d.) with H = 0.9 indi-
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cates a polynomial behaviour with exponent strict larger than 1. In particular, from the
numerical experiments we might conclude that the CEM for H ∈ (1/2, 1) is on the one
hand applicable, but on the other hand the CEM is probably not of practical use for
large Hurst parameters and low values of 4t and αν.
Case H ∈ (0, 1/2): Notice first that the assumptions of Theorem 4.2.4(i) are satisfied
by Proposition 4.1.2(v) at least for 4t > 0 and n ∈ N small enough. Therefore, we
may expect by repeating the first numerical experiment described above for the case
H ∈ (1/2, 1) that there exist n0 ∈ N and 4t > 0 small enough such that for all n ∈ N
with 1 ≤ n ≤ n0 the circulant matrix C̃2n is positive definite (= 1) and for n0 + 1 ≤ n
negative definite (= 0). But we observe in our numerical experiments for H ∈ (0, 1/2)
that the circulant matrix C̃2n is always positive definite, i.e. the resulting figures look
like Figure 6–9 a.) for the case H = 1/2. We could not detect an n ∈ N for suitable
choices of 4t, να > 0 and H ∈ (0, 1/2) such that C̃2n is negative definite.

It would be desirable to derive analytically an inequality f(4t, να,H) ≤ n with some
function f : (0,∞) × (0,∞) × (0, 1) → (0,∞) such that for all n ∈ N satisfying this
inequality the circulant matrix C̃2n is positive definite or even to prove analytically
that the CEM is always applicable for H ∈ (0, 1/2). Such inequalities are given in [28]
for different stationary Gaussian processes. Unfortunately, so far, we are not able to
accomplish this for the sfOU process.
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Figure 6: Positive (= 1) and negative (= 0) definiteness of C̃2n with 4t > 0 and λ =
α = ν = 1 in dependence on n ∈ N, associated to different values of H. a.)
H = 0.5, b.) H = 0.6, c.) H = 0.75, d.) H = 0.9.
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Figure 7: Positive (= 1) and negative (= 0) definiteness of C̃2n with 4t > 0, λ = α = 1
and ν = 0.5 in dependence on n ∈ N, associated to different values of H. a.)
H = 0.5, b.) H = 0.6, c.) H = 0.75, d.) H = 0.9.
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Figure 8: Positive (= 1) and negative (= 0) definiteness of C̃2n with 4t > 0, λ = α = 1
and ν = 2 in dependence on n ∈ N, associated to different values of H. a.)
H = 0.5, b.) H = 0.6, c.) H = 0.75, d.) H = 0.9.
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Figure 9: First n ∈ N, n ≥ 2, such that C̃2n is positive definite with λ = α = ν = 1 in
dependence on 4t = 1/m, m ∈ N, 2 ≤ m ≤ 50, associated to different values
of H. a.) H = 0.5, b.) H = 0.6, c.) H = 0.75, d.) H = 0.9.
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Figure 10: First n ∈ N, n ≥ 2, such that C̃2n is positive definite with λ = α = 1 and
H = 0.6 in dependence on 4t = 1/m, m ∈ N, 2 ≤ m ≤ 50, associated to
different values of ν. a.) ν = 0.1, b.) ν = 0.5, c.) ν = 1, d.) ν = 2.
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5. Inertial Particles in Fractional Gaussian Fields

5.1. The Model

The concrete model we study is the following system (M) of equations in non–dimensional
form:

τ ẍ(t) = v
(
x(t), t

)
− ẋ(t),

(
x(0), ẋ(0)

)
∈ T2 × R2, (M1)

v(x, t) = ∇⊥ψ(x, t) =

(
∂ψ

∂x2
(x, t),− ∂ψ

∂x1
(x, t)

)
, (M2)

dψt = νAψtdt+ νHQ
1
2dBH

t , ψ0 ∈ V, t ≥ 0, (M3)

where we assume that

Assumption 5.1.1. (i) τ, ν > 0.

(ii) V := {f ∈ L2,per(T2)|
∫
T2 f(x)dx = 0} is the separable Hilbert space with inner

product 〈f, g〉V :=
∫
T2 f(x)g∗(x)dx, f, g ∈ V , and with orthonormal basis (ONB)(

ek(·)
)
k∈K :=

(
ei〈k,·〉

)
k∈K , where k ∈ K := 2πZ2\{(0, 0)} and i denotes here and

in the following the imaginary unit.

(iii) A : D(A) ⊂ V → V is a linear self–adjoint operator such that there is a strictly
positive sequence

(
αk
)
k∈K ⊂ [c,∞) with c > 0, αk = α−k, Aek = −αkek and

αk →∞ for |k| → ∞.

(iv) Q
1
2 : V → V is a bounded linear self–adjoint operator such that there is a positive

sequence
(√
λk
)
k∈K ⊂ [0,∞) with

√
λk =

√
λ−k and Q

1
2 ek =

√
λkek.

(v)
(
BH
t

)
t≥0

is a cylindrical fractional Wiener process in V with Hurst parameter

H ∈ (0, 1) defined on a probability space (Ω,F ,P) by the formal series

BH(t) =
∑
k∈K

βHk (t)ek, t ∈ R, (5.1.1)

where
(
(βHk (t))t∈R, k ∈ K

)
is a sequence of complex–valued and normalized frac-

tional Brownian motions, each with the same fixed Hurst parameter H ∈ (0, 1),
i.e. βHk = 1√

2
Re(βHk ) + i 1√

2
Im(βHk ), where Re(βHk ) and Im(βHk ) are independent

real–valued and normalized fractional Brownian motions on R, and different βHk
are independent except βH−k = (βHk )∗.

We also will refer to the following assumption several times in this work.

Assumption 5.1.2. Suppose Assumption 5.1.1 holds and there is m ∈ N0 and γ ∈ (0, 1)
such that ∑

k∈K
λkα

2γ−2H
k |k|2m <∞ and

∑
k∈K

λkα
−2H
k |k|2m+2γ <∞.
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In this section we will show that the conditions on the sequences (βHk )k∈K , (λk)k∈K and
(αk)k∈K in Assumption 5.1.1, together with some growth conditions on (λk)k∈K and
(αk)k∈K , imply that ψ(x, t) and the components of v(x, t) = ∇⊥ψ(x, t) are real–valued.
By Assumption 5.1.1 A is a strictly negative, self–adjoint operator. So by Proposition
3.3.3 (νA) generates an exponentially stable analytic semigroup on V which in the
following will be denoted by (S(t))t≥0. In particular, we have |S(t)|L(V ) ≤ e−tν infk∈K αk ≤
e−tcν for all t ≥ 0.
The domain D(A) of A is given by

D(A) :=

{
f ∈ V |

∑
k∈K

α2
k|〈f, ek〉V |2 <∞

}
.

Further, we define here the fractional powers (−A)γ : D((−A)γ) ⊂ V → V , γ ≥ 0, of
the strictly positive operator (−A) by

D((−A)γ) :=

{
f ∈ V |

∑
k∈K

α2γ
k |〈f, ek〉V |

2 <∞

}
.

D((−A)γ) endowed with the inner product

〈(−A)γf, (−A)γg〉V =
∑
k∈K

α2γ
k 〈f, ek〉V 〈g, ek〉

∗
V =: 〈f, g〉(−A)γ

for f, g ∈ D((−A)γ), becomes a Hilbert space. Also notice that D(νA) = D(A) and
D((−νA)γ) = D((−A)γ) for any ν > 0 and γ ≥ 0. We similarly define D((−A)γ) for
γ < 0 as the completion of V for the norm | · |(−A)γ .
We are mainly interested in the special case when A = ∆, where ∆ denotes the Laplace
operator with periodic boundary conditions. Then αk = |k|2, k ∈ K, and

D((−∆)) = W 2,2(T2) ∩ V,

where W 2,2(T2) ∩ V denotes the Sobolev space of periodic functions on T2 whose weak
derivatives up to order 2 are in V . In particular, we have

D((−∆)γ) = W 2γ,2(T2) ∩ V

for γ ≥ 0.

We will only use the following concept of solutions to equation (M3).

Definition 5.1.3. A B([0,∞))⊗F–measurable V –valued process (ψ(t))t≥0 is said to be
a mild solution of (M3), if for all t ≥ 0

ψ(t) = S(t)ψ(0) + νH
t∫

0

S(t− s)Q
1
2dBH(s) (5.1.2)
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P-a.s., where the stochastic integral on the right hand side of (5.1.2) is defined by

νH
t∫

0

S(t− s)Q
1
2dBH(s) :=

∑
k∈K

√
λkν

H

t∫
0

e−(t−s)ναkdβHk (s) ek, (5.1.3)

provided the infinite series in (5.1.3) converges in L2(Ω, V ).

In particular, we are mainly interested in strictly stationary solutions of (M3), which
are ergodic.

Definition 5.1.4. We call a mild solution (ψ(t))t≥0 strictly stationary if for all k ∈ N
and for all arbitrary positive numbers t1, t2, . . . , tk, the probability distribution of the V k–
valued random variable

(
ψ(t1 + r), ψ(t2 + r), . . . , ψ(tk + r)

)
does not depend on r ≥ 0,

i.e.
Law (ψ(t1 + r), ψ(t2 + r), . . . , ψ(tk + r)) = Law (ψ(t1), ψ(t2), . . . , ψ(tk))

for all t1, t2, . . . , tk, r ≥ 0. Here Law(·) denotes the probability distribution.
We say that a strictly stationary mild solution (ψ(t))t≥0 of (M3) is unique if every
strictly stationary mild solution of (M3) which is adapted to the natural filtration gen-
erated by the two–sided infinite–dimensional fractional Brownian motion (5.1.1) has the
same distribution as (ψ(t))t≥0.
Further, we call a strictly stationary solution (ψ(t))t≥0 ergodic if for all measurable
functionals ρ : V → R such that E (|ρ(ψ(0))|) <∞ we have P-a.s.

lim
T→∞

1

T

T∫
0

ρ(ψ(t))dt = E(ρ(ψ(0))). (5.1.4)

Remark 5.1.5. (i) The definition of the ergodic mild solution is essentially taken from
[54], which is also our main reference for Theorem 5.2.1 in the next subsection.
The definition is motivated by Birkhoff’s theorem, which says that for a V -valued
strictly stationary process (X(t))t≥0 on (Ω,F ,P) and any measurable functional
ρ : V → R with E(|ρ(X(0))|) < ∞ there exists a measurable ζ : Ω → R such

that P-a.s. limT→∞
1
T

∫ T
0 ρ(X(t))dt = ζ. And (X(t))t≥0 is said to be ergodic

if ζ does not depend on ω ∈ Ω, i.e. ζ is deterministic and ζ = E(ρ(X(0))).
In particular, the unique ergodic mild solution (ψ(t))t∈R of (M3) realised (under
suitable conditions) on Ω̃ = C(R, Cm(T2)), m ∈ N0, with distribution Pψ and

group of shifts (θ(t))t∈R on Ω̃ will be used in Section 5.3 as source of randomness
for the random dynamical system generated by (M1), i.e. as a metric dynamical
system (MDS). The ergodicity of (ψ(t))t∈R implies the ergodicity of the MDS and
in view of the Birkhoff’s ergodic theorem for MDSs (see e.g. [2] p. 539), we can
replace ψ(t) in (5.1.4) by θ(t)ψ̃(0), ψ̃ ∈ Ω̃, Pψ-a.s.

(ii) The reader interested in more general (semi–)linear stochastic evolution equations
with additive fractional noise and different concepts of solutions is referred to the
articles [96, 29, 30, 61] and references therein.
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5.2. Existence, Uniqueness and Regularity of Solutions of the Model

We have the following existence and uniqueness result for equation (M3).

Theorem 5.2.1. Suppose Assumption 5.1.1 holds and assume that there is ε > 0 such
that ∑

k∈K
λkα

2(ε−H)
k <∞. (5.2.1)

Then there exists a unique ergodic mild solution ψ to equation (M3) given by

ψ(t) =
∑
k∈K

√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u)ek, t ∈ R. (5.2.2)

Proof. The existence of a strictly stationary mild solution to (M3), which is ergodic, is
ensured by Theorem 3.1 and Theorem 4.6 in [54], which have the assumptions that νA
generates an exponentially stable, analytic semigroup (S(t))t≥0 on V and

|S(t)Q
1
2 |L2(V ) ≤ Ct−γ t ∈ (0, T ] (5.2.3)

for some T > 0, C > 0 and γ ∈ [0, H). We have already mentioned that by Proposition
3.3.3 (νA) generates an exponentially stable, analytic semigroup (S(t))t≥0 on V and
(5.2.3) is also satisfied since we have

|S(t)Q
1
2 |L2(V ) = |(−νA)γ(−νA)−γS(t)Q

1
2 |L2(V ) = |(−νA)γS(t)(−νA)−γQ

1
2 |L2(V )

≤ |(−νA)γS(t)|L(V )|(−νA)−γQ
1
2 |L2(V ) = |(−νA)γS(t)|L(V )

(∑
k∈K

λk
(ναk)2γ

) 1
2

≤ Ct−γ
(∑
k∈K

λk
(ναk)2γ

) 1
2

<∞

for any γ ∈ [max{0, H − ε},∞), a constant C > 0 and any t > 0. Here we used (5.2.1)
and Theorem 3.3.6.
Now assume that we have two strictly stationary mild solutions ψ and ψ̃ to equation
(M3). Notice that

|ψ(t)− ψ̃(t)|V = |S(t)(ψ(0)− ψ̃(0))|V ≤ e−tν infk∈K αk |ψ(0)− ψ̃(0)|V → 0 for t→∞

P-a.s. and this implies uniqueness in the sense of our definition. The representation
(5.2.2) of the mild solution is just the consequence of the definition of a mild solution
and stationarity.

The next remark will be useful in this and the following sections.
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Remark 5.2.2. Let ψ be the unique ergodic mild solution to equation (M3) given by
(5.2.2). For any t ∈ R and k ∈ K we set in the following

ψ̂k(t) :=
√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u)

=

√
λk
2
νH

t∫
−∞

e−(t−u)ναkdRe(βHk )(u) + i

√
λk
2
νH

t∫
−∞

e−(t−u)ναkdIm(βHk )(u)

=: ψ̂k,Re(t) + iψ̂k,Im(t)

and therefore ψ(x, t) =
∑

k∈K ψ̂k(t)ek(x), t ∈ R, x ∈ T2. Further, observe that by
Assumption 5.1.1 we have

(ψ̂k(t))
∗ =

(√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u)
)∗

=
√
λkν

H

t∫
−∞

e−(t−u)ναkd(βHk )∗(u)

=
√
λ−kν

H

t∫
−∞

e−(t−u)να−kdβH−k(u) = ψ̂−k(t).

In particular, for any s, t ∈ R and k, k′ ∈ K we obtain

E
(
ψ̂k(t)(ψ̂k′(s))

∗) =

{
2E
(
ψ̂k,Re(t)ψ̂k,Re(s)

)
= 2E

(
ψ̂k,Im(t)ψ̂k,Im(s)

)
if k = k′

0 if k 6= k′

and

E
(∣∣ψ̂k(t)− ψ̂k(s)∣∣2) = 2E

(∣∣ψ̂k,Re(t)− ψ̂k,Re(s)∣∣2) = 2E
(∣∣ψ̂k,Im(t)− ψ̂k,Im(s)

∣∣2).
Therefore, to compute E

(
ψ̂k(t)(ψ̂k′(s))

∗) or E
(∣∣ψ̂k(t)−ψ̂k(s)∣∣2), we only have to compute

the associated real part and multiply it by two.

Now we turn to the path regularity of the unique ergodic mild solution of (M3).

Theorem 5.2.3. Suppose Assumption 5.1.2 holds with m ∈ N0 and γ ∈ (0, 1). Then
there is a unique ergodic mild solution ψ to equation (M3). Further, for all δ ∈ N2

0 with
|δ| ≤ m there is a version of Dδψ (again denoted by Dδψ) such that

Dδψ ∈ Cε
(
T2 × R

)
P-a.s. for any ε ∈ (0,min{γ,H}). In particular, Dδψ is real–valued.
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Proof. Since Assumption 5.1.2 holds, Theorem 5.2.1 implies the existence of a unique
ergodic mild solution ψ to equation (M3). Further, for all t ∈ R and x ∈ T2, ψ(x, t) is
real–valued, since (ψ̂k(t))

∗ = ψ̂−k(t) and therefore

(ψ(x, t))∗ =
(∑
k∈K

ψ̂k(t)e
i<k,x>

)∗
=
∑
k∈K

(ψ̂k(t))
∗(ei<k,x>)∗

=
∑
k∈K

ψ̂−k(t)e
i<−k,x> =

∑
k∈K

ψ̂k(t)e
i<k,x> = ψ(x, t).

Now let m ∈ N0 and δ = (δ1, δ2) ∈ N2
0 with |δ| = δ1 + δ2 ≤ m. By Assumption 5.1.2 it

is clear that the stochastic process (Dδψ(t))t∈R, defined by the formal Fourier series

Dδψ(t) =
∑
k∈K

√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u)Dδek, t ∈ R,

is a well–defined D((−A)ζ)–valued stochastic process for some ζ ∈ R. But Dδψ is, in
general, a function (and not only a generalized function) if ζ ≥ 0. However, 0 ≤ ζ ≤ γ
is already assured by

E
(
|Dδψ(t)|2(−A)ζ

)
≤
∑
k∈K

α2ζ
k E(|ψ̂(t)|2)|k|2m = Γ(2H)H

∑
k∈K

λkα
2ζ−2H
k |k|2m <∞,

where we used |Dδek(x)|2 ≤ |k|2m, Remark 5.2.2, Proposition 4.1.2(i) and Assumption
5.1.2. Notice also that Dδψ(x, t) is real–valued by using the same argument which leads
us to conclude that ψ(x, t) is real–valued. Again, by |Dδek(x)|2 ≤ |k|2m, Remark 5.2.2,
Proposition 4.1.2(iii) and Assumption 5.1.2 we obtain for all t, s ∈ R and x ∈ T2

E
(
|Dδψ(x, t)−Dδψ(x, s)|2

)
=
∑
k∈K

E
(
|ψ̂k(t)− ψ̂k(s)|2

)
|Dδek(x)|2

≤
∑
k∈K
|k|2mE

(
|ψ̂k(t)− ψ̂k(s)|2

)
≤ C(H, ν, ε)

∑
k∈K

λkα
2ε−2H
k |k|2m|t− s|2ε <∞

for any ε ∈ (0,min{γ,H}) and some constant C(H, ν, ε) > 0. Similarly, using Assump-
tion 5.1.2 and

|Dδek(x)−Dδek(y)| ≤ |k|m|ek(x)− ek(y)| ≤ C(η)|k|m+η|x− y|η

for any η ∈ (0, 1) and a constant C(η) > 0, we get for all t ∈ R and x, y ∈ T2

E
(
|Dδψ(x, t)−Dδψ(y, t)|2

)
=
∑
k∈K

E
(
|ψ̂k(t)|2

)
|Dδek(x)−Dδek(y)|2

≤ C(ε)Γ(2H)H
∑
k∈K

λkα
−2H
k |k|2m+2ε|x− y|2ε <∞
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for any ε ∈ (0, γ) and a constant C(ε) > 0. Therefore, we obtain for all t, s ∈ R and
x, y ∈ T2

E
(
|Dδψ(x, t)−Dδψ(y, s)|2

)
≤ C(H, ν, δ, ε)

(
|t− s|2ε + |x− y|2ε

)
for any ε ∈ (0,min{γ,H}) and a constant C(H, ν, δ, ε) > 0. As Dδψ(x, t) is a normal
real–valued random variable, we have by Lemma 3.2.3

E
(
|Dδψ(x, t)−Dδψ(y, s)|2n

)
≤ C(H, ν, δ, ε, n)

(
|t− s|2εn + |x− y|2εn

)
≤ C(H, ν, δ, ε, n)

(
|t− s|2 + |x− y|2

)εn
for all t, s ∈ R, x, y ∈ T2, n ∈ N, ε ∈ (0,min{γ,H}) and a constant C(H, ν, δ, ε, n) > 0.
Lemma 3.2.4 implies now that there is a version of Dδψ (again denoted by Dδψ) such
that P-a.s.

Dδψ ∈ Cε
(
T2 × R

)
for any ε ∈ (0,min{γ,H}).

Remark 5.2.4. In [61] Nualart and Viens established an analogue regularity assertion as
in Theorem 5.2.3 for the mild solution of the fractional stochastic heat equation on the
circle, but they did not consider the partial derivatives of the mild solution.

Corollary 5.2.5. Suppose Assumption 5.1.2 holds with m ∈ N0, γ ∈ (0, 1), and let ψ be
the unique ergodic mild solution to equation (M3). Then there is a version of ψ (again
denoted by ψ) such that P-a.s.

ψ ∈ C(R, Cm(T2)).

Further, for all −∞ < T1 < T2 <∞ and p ≥ 1 there is a positive random variable
K = K(H, ν,m, γ, T1, T2, p) : Ω→ [0,∞) with E

(
Kp
)
<∞, such that P-a.s.

|ψ(ω)|C([T1,T2],Cm(T2)) ≤ K(ω). (5.2.4)

Proof. Recall from the proof of Theorem 5.2.3 that for any δ ∈ N2
0, |δ| ≤ m, ε ∈

(0,min{γ,H}), k ∈ N with εk ≥ 1 and s, t ∈ R, x = (x1, x2), y = (y1, y2) ∈ T2 we have

E
(
|Dδψ(x, t)−Dδψ(y, s)|2k

)
≤ C(H, ν,m, δ, ε, k)

(
|t− s|ε2k + |x− y|ε2k

)
≤ C̃(H, ν,m, δ, ε, k)

(
|t− s|ε2k + |x1 − y1|ε2k + |x2 − y2|ε2k

)
for some constants C(H, ν,m, δ, ε, k), C̃(H, ν,m, δ, ε, k) > 0. By Theorem 1.4.1 in [48],
the so–called Kolmogorov’s continuity theorem for random fields, for l ∈ N, ε2l > 3,
−∞ < T1 < T2 <∞ and any

0 < β <
ε2l

2l

 3
3 1
ε2l

− 3

3
3 1
ε2l

 = ε

(
ε2l − 3

ε2l

)
< min{γ,H},
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there is a positive random variable K = K(H, ν,m, δ, ε, β, l, T1, T2) : Ω→ [0,∞) with

E
(
K2l

)
<∞ (5.2.5)

and a version of ψ (again denoted by ψ) such that for all t, s ∈ [T1, T2] and x =
(x1, x2), y = (y1, y2) ∈ T2 we have P-a.s.

|Dδψ(x, t)(ω)−Dδψ(y, s)(ω)| ≤ K(ω)
(
|t− s|β + |x1 − y1|β + |x2 − y2|β

)
.

In particular, for t, t0 ∈ [T1, T2] and x = (x1, x2), x0 = (x0,1, x0,2) ∈ T2 we have P-a.s.

|Dδψ(x, t)(ω)| ≤ |Dδψ(x, t)(ω)−Dδψ(x0, t0)(ω)|+ |Dδψ(x0, t0)(ω)|
≤ K(ω)

(
|t− t0|β + |x1 − x0,1|β + |x2 − x0,2|β

)
+ |Dδψ(t0, x0)(ω)|

and therefore P-a.s.

sup
t∈[T1,T2]

sup
x∈T2

|Dδψ(x, t)(ω)| ≤ K(ω)C(β, T1, T2) + |Dδψ(x0, t0)(ω)| (5.2.6)

for some constant C(β, T1, T2) > 0. The assertions of the corollary now follow by (5.2.5),
(5.2.6) and Lemma 3.2.3 since we have

E
(
|Dδψ(x0, t0)|2

)
=
∑
k∈K

λkν
2HE

∣∣ t0∫
−∞

e−(t0−u)ναkdβHk (u)
∣∣2 |Dδek(x0)|2

≤ Γ(2H)H
∑
k∈K

λk
α2H
k

|k|2m <∞

for every x0 ∈ T2, t0 ∈ R and δ ∈ N2
0, |δ| ≤ m, where we used Assumption 5.1.2,

Proposition 4.1.2(i) and Remark 5.2.2.

Remark 5.2.6. As already mentioned in Remark 5.1.5(i), the unique ergodic mild solution
ψ of (M3) realized under the assumptions of Corollary 5.2.5 on Ω̃ = C(R, Cm(T2)),
m ∈ N0, with associated Borel σ–algebra F , distribution Pψ and group of shifts (θ(t))t∈R
is used in Section 5.3 as a metric dynamical system for the random dynamical system
generated by (M1). The spaces C(R, Cm(T2)), m ∈ N0, are suitable for that purpose
since (see the discussion at the end of Section 1) endowing them with compact open
topology makes them to Polish spaces, whereas Cε(T2×R), ε ∈ (0, 1), are not separable,
which could lead to measurability problems. Moreover, the proof of Lemma 5.3.2(ii)
in Section 5.3 uses the fact from Corollary 5.2.5 that the right hand side of (5.2.4) is
integrable w.r.t. P. And Lemma 5.3.2(ii) is of particular importance since it provides
linear growth conditions for some functionals of ψ which are crucial to prove global
existence of solutions to (M1) and the existence of the random attractor of the random
dynamical system.
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We apply Corollary 5.2.5 to state an existence and uniqueness result for the transport
equation (M1). Consider the differential equation (M1) as a first order system

d

dt

(
x(t)

ẋ(t)

)
= fψ(ω),τ (t, (x(t), ẋ(t))),

(
x(0)

ẋ(0)

)
=

(
x

y

)
∈ T2 × R2, (5.2.7)

where τ > 0 and fψ(ω),τ : R× T2 × R2 → R4 is defined by

(t, x, y) 7→ fψ(ω),τ (t, x, y) =

(
y

1
τ (∇⊥ψ(x, t)(ω)− y)

)
. (5.2.8)

Here ψ(·, ·)(ω) with ω ∈ Ω denotes a realization of the ergodic mild solution of (M3).

Definition 5.2.7. We say that (M1) has a unique local Cm–solution P-a.s. for some
m ∈ N if for all (x, y) ∈ T2 × R2 there is an open interval I(ω) ⊆ R including 0 and a
function (

x(·)
ẋ(·)

)
∈ C1

(
I(ω), Cm

(
T2 × R2,T2 × R2

))
,

which uniquely satisfies the equation (5.2.7) for all t ∈ I(ω) P-a.s.
We say that (M1) has a unique global Cm–solution P-a.s. for some m ∈ N if (M1) has
a unique local Cm–solution with I(ω) = R P-a.s.

The unique local/global solution
(x(·)
ẋ(·)
)

to (5.2.7) is interpreted in such a way that we

extend fψ(ω),τ in the position coordinates x = (x1, x2) by periodicity to R2 and consider

the unique local/global solution
(x̃(·)˜̇x(·)

)
in the extended system whenever it exists. Then

we simply take x̃(t) mod 1 in each coordinate.

Corollary 5.2.8. Suppose Assumption 5.1.2 holds with m ∈ N, m ≥ 2, and γ ∈ (0, 1).
Then (M1) has a unique global Cm−1–solution P-a.s.

Proof. By Corollary 5.2.5 there is a version of the strictly stationary solution ψ to
equation (M3) (again denoted by ψ) such that ψ ∈ C(R, Cm(T2)) P-a.s.. This implies
that fψ(ω),τ ∈ C(R, Cm−1(T2×R2,R4)) where fψ(ω),τ is defined in (5.2.8). Therefore (see
e.g. Appendix B in [2]) (M1) has a unique local Cm−1–solution P-a.s. To establish P-a.s.
global solutions, we have to find locally integrable, positive functions αω, βω : R→ [0,∞)
which may depend upon the realization ω ∈ Ω such that P-a.s.

|fψ(ω),τ (t, x, y)| ≤ αω(t)|(x, y)|+ βω(t).

By Lemma 5.3.2(ii) (see Section 5.3 below) there is a constant K(ω) > 0 such that P-a.s.∣∣ ∂
∂x1

ψ(x, t)(ω)
∣∣2 +

∣∣ ∂
∂x2

ψ(x, t)(ω)
∣∣2 ≤ |ψ(t)(ω)|2C1(T2) ≤ (|t|+K(ω))2

for all t ∈ R. Hence, we have for all t ∈ R, x = (x1, x2) ∈ T2 and y = (y1, y2) ∈ R2

|fψ(ω),τ (t, x, y)|2 = y2
1 + y2

2 +
∣∣ ∂
∂x2

ψ(x, t)(ω)− y1

∣∣2 +
∣∣− ∂

∂x1
ψ(x, t)(ω)− y2

∣∣2
≤ 3(y2

1 + y2
2) + 2

(∣∣ ∂
∂x1

ψ(x, t)(ω)
∣∣2 +

∣∣ ∂
∂x2

ψ(x, t)(ω)
∣∣2)

≤ 3|(x1, x2, y1, y2)|2 + 2 (|t|+K(ω))2
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P-a.s. and in particular

|fψ(ω),τ (t, x, y)| ≤
√

3|(x, y)|+
√

2 (|t|+K(ω)) .
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5.3. The Model as a Random Dynamical System and the Existence of the
Random Attractor and of Invariant Measures

In this subsection we verify under appropriate assumptions that the system (M) defines
a random dynamical system. Further, we prove the existence of a unique random D–
attractor and an invariant forward Markov measure. Finally, we establish properties of
a modified model which suggest a volume contraction in the system.

Proposition 5.3.1. Suppose Assumption 5.1.2 holds with m ∈ N0 and γ ∈ (0, 1). Then
the quadruple (Ω,F ,P, (θ(t))t∈R) defines an ergodic metric dynamical system where

• Ω = C
(
R, Cm(T2)

)
equipped with the compact open topology given by the com-

plete metric d(ψ, ψ̃) :=
∑∞

n=1 |ψ − ψ̃|n/
(
2n(1 + |ψ − ψ̃|n)

)
, where |ψ − ψ̃|n :=

sup−n≤t≤n |ψ(t)− ψ̃(t)|Cm(T2),

• F is the associated Borel σ–algebra, which is the trace in Ω of the product σ–algebra
(B(Cm(T2)))⊗R,

• P is the distribution of the ergodic mild solution of (M3),

• (θ(t))t∈R is the group of shifts, i.e. θ(t)ψ(s) = ψ(t+ s) for all t, s ∈ R and ψ ∈ Ω.

Proof. By Corollary 5.2.5 the ergodic mild solution ψ to equation (M3) is realized on
Ω := C

(
R, Cm(T2)

)
. Endowing Ω with the compact open topology makes Ω a Polish

space, actually a Frechet space.
The group of shifts (θ(t))t∈R on Ω defined by θ(t)ψ(·) = ψ(t + ·) for t ∈ R satisfies the
flow property and is measure preserving, since P is the distribution of the ergodic mild
solution of the equation (M3).
Obviously, t 7→ θ(t)ψ is continuous for all ψ ∈ Ω and ψ 7→ θ(t)ψ is continuous for all
t ∈ R. Therefore, by Lemma 1.1 in [21] (t, ψ) 7→ θ(t)ψ is B(R)⊗F–F measurable.
Hence, (Ω,F ,P, (θ(t))t∈R) defines an ergodic metric dynamical system.

The next lemma will be used several times in this subsection.

Lemma 5.3.2. Suppose Assumption 5.1.2 holds with m ∈ N0, γ ∈ (0, 1), and let
(Ω,F ,P, (θ(t))t∈R) be the ergodic metric dynamical system introduced in Proposition
5.3.1. Then the following assertions are valid:

(i) For all −∞ < T1 < t < T2 < ∞ the mappings ψ 7→ |ψ(t)|Cm(T2) and ψ 7→
|ψ|C([T1,T2],Cm(T2)) are F–B(R) measurable and there is a constant
C = C(m,H, ν, γ, T1, T2) > 0 such that

E
(
|idΩ(t)|2Cm(T2)

)
≤ E

(
|idΩ|2C([T1,T2],Cm(T2))

)
≤ C, (5.3.1)

where idΩ : Ω→ Ω, ψ 7→ ψ.
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(ii) There is a (θ(t))t∈R–invariant set F 3 Ω0 = Ω0(m, γ,H, ν) ⊂ Ω (i.e. θ(t)−1Ω0 =
Ω0 for all t ∈ R) with P(Ω0) = 1 such that for all δ > 0, ψ ∈ Ω0 there is a constant
C(ψ) = C(ψ,m, γ,H, ν, δ) > 0 such that

|ψ(t)|Cm(T2) ≤ δ|t|+ C(ψ) (5.3.2)

for all t ∈ R. In particular, the mapping

ψ 7→

{∫ 0
−∞ e

s
τ |ψ(s)|2Cm(T2)ds for ψ ∈ Ω0

0 for ψ /∈ Ω0

with τ > 0 is well–defined and F–B(R) measurable.

(iii) There is a (θ(t))t∈R–invariant set F 3 Ω1 = Ω1(m, γ,H, ν) ⊂ Ω with P(Ω1) = 1
such that for all ψ ∈ Ω1 we have

lim
t→∞

1

t

t∫
0

|ψ(s)|2Cm(T2)ds = E
(
|idΩ(0)|2Cm(T2)

)
<∞.

Proof. (i): Since Ω is endowed with the compact open topology, the mappings ψ 7→
|ψ(t)|Cm(T2) and ψ 7→ |ψ|C([T1,T2],Cm(T2)) for all −∞ < T1 < t < T2 < ∞ are F–B(R)
measurable. Further, by Corollary 5.2.5 for any −∞ < T1 < T2 <∞ there is a positive
random variable K(T1, T2) = K(m, γ,H, ν, T1, T2) ∈ L1(Ω,FP,P), where FP denotes the
completion of F w.r.t. P such that P-a.s.

|ψ|C([T1,T2],Cm(T2)) ≤ K(T1, T2, ψ), (5.3.3)

since K may be measurable only with respect to the completed σ–algebra FP. So for all
−∞ < T1 < t < T2 <∞ we have

E
(
|idΩ(t)|Cm(T2)

)
≤ E

(
|idΩ|C([T1,T2],Cm(T2))

)
= EP(|idΩ|C([T1,T2],Cm(T2))

)
≤ EP(K(T1, T2)

)
<∞,

(5.3.4)

where EP is related to the extension of P to FP.
(ii): We have by (5.3.3)

sup
r∈[0,1]

|θ(r)ψ|C([T1,T2],Cm(T2)) = |ψ|C([T1,T2+1],Cm(T2)) ≤ K(T1, T2 + 1, ψ) (5.3.5)

and

E
(

sup
r∈[0,1]

|θ(r)idΩ|C([T1,T2],Cm(T2))

)
= E

(
|idΩ|C([T1,T2+1],Cm(T2))

)
= EP(|idΩ|C([T1,T2+1],Cm(T2))

)
≤ EP(K(T1, T2 + 1)

)
<∞.

(5.3.6)
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Taking (5.3.5) and (5.3.6) into account, Proposition 4.1.3 in [2] (the dichotomy of linear
growth for stationary processes) with the measurable mapping ψ 7→ |ψ|C([0,1],Cm(T2))

implies that

lim sup
t→±∞

|θ(t)ψ|C([0,1],Cm(T2))

|t|
= 0

on a (θ(t))t∈R–invariant set F 3 Ω0 ⊂ Ω with P(Ω0) = 1. Therefore, for any δ > 0,
ψ ∈ Ω0 there is a constant T (δ, ψ) = T (δ,m, ψ) > 0 such that

|ψ(t)|Cm(T2) = |θ(t)ψ(0)|Cm(T2) ≤ |θ(t)ψ|C([0,1],Cm(T2)) ≤ δ|t|

for |t| ≥ T (δ, ψ). Hence, by (5.3.3) for any δ > 0, ψ ∈ Ω0 we have

|ψ(t)|Cm(T2) = |θ(t)ψ(0)|Cm(T2) ≤ δ|t|+K(−T (δ, ψ), T (δ, ψ), ψ) (5.3.7)

for all t ∈ R. Therefore, for τ > 0 the mapping

ψ 7→

{∫ 0
−∞ e

s
τ |ψ(s)|2Cm(T2)ds for ψ ∈ Ω0

0 for ψ /∈ Ω0

is well–defined and F–B(R) measurable, since for τ > 0 and n ∈ N the mappings

ψ 7→

{∫ 0
−n e

s
τ |ψ(s)|2Cm(T2)ds for ψ ∈ Ω0

0 for ψ /∈ Ω0

are finite, F–B(R) measurable and the ψ–wise limits for n→∞ are finite by (5.3.7).
Finally, assertion (iii) follows by Birkhoff’s ergodic theorem (see e.g. [2] p. 539) and
the ergodicity of the metric dynamical system (Ω,F ,P, (θ(t))t∈R). The finiteness of

E
(
|idΩ(0)|2Cm(T2)

)
is assured by (5.3.1).

Remark 5.3.3. The idea for the proof of the assertion in Lemma 5.3.2(ii) is adopted from
the proof of Lemma 2.4 in the research article [53] by Maslowski and Schmalfuß where
an analogue statement was proven for increments of an infinite–dimensional fractional
Brownian motion with Hurst parameter H > 1/2. The same approach works also for
arbitrary H ∈ (0, 1), as mentioned in [38]. It was apparent for us that we can apply this
procedure in our context, too. Moreover, we emphasise that the linear growth condition
(5.3.2) is crucial to prove the global existence of particle paths (Corollary 5.2.8) and the
existence of the random D–attractor (Theorem 5.3.5).

Proposition 5.3.4. Suppose Assumption 5.1.2 holds with m ∈ N, m ≥ 2 and γ ∈ (0, 1).
Then the function φ : R× Ω× T2 × R2 −→ T2 × R2

(t, ψ, (x, y)) 7→ φ(t, ψ, (x, y)) := φ(t, ψ)

(
x

y

)
:=

(
x(t)

ẋ(t)

)
,
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defines a Cm−1–RDS over the ergodic metric dynamical system (Ω,F ,P, (θ(t))t∈R) in-

troduced in Proposition 5.3.1, where
(x(t)
ẋ(t)

)
∈ T2×R2 is the unique global Cm−1–solution

for τ > 0, ψ ∈ Ω and (x, y) ∈ T2 × R2 at time t ∈ R to

d

dt

(
x(t)

ẋ(t)

)
= fψ,τ (t, (x(t), ẋ(t))),

(
x(0)

ẋ(0)

)
=

(
x

y

)
, (5.3.8)

with fψ,τ : R× T2 × R2 → R4 defined by

(t, x, y) 7→ fψ,τ (t, (x, y)) =

(
y

1
τ (∇⊥ψ(x, t)− y)

)
.

Here we change Ω to Ω := Ω0 ∩ Ω1, i.e. to the intersection of the (θ(t))t∈R–invariant
sets Ω0 and Ω1 introduced in Lemma 5.3.2(ii) and (iii).

Proof. First notice that by Corollary 5.2.8 for all (x, y) ∈ T2 × R2, ψ ∈ Ω (i.e. ψ ∈
Ω0 ∩ Ω1) there is a unique global Cm−1–solution

(x(t)
ẋ(t)

)
to equation (5.3.8).

Since t 7→ φ(t, ψ)
(
x
y

)
is continuous for every (ψ, (x, y)) ∈ Ω × T2 × R2 and (x, y) 7→

φ(t, ψ)
(
x
y

)
is continuous for every (t, ψ) ∈ R× Ω, in order to prove the measurability of

φ, by Remark 3.4.3(ii) we only need to prove the measurability of ψ 7→ φ(t, ψ)
(
x
y

)
for

every (t, (x, y)) ∈ R × T2 × R2. But this measurability is obvious: Since Ω is equipped
with the compact open topology, ψ 7→ ψ(x, t) is measurable for every (x, t) ∈ T2 × R
and therefore also ψ 7→ φ(t, ψ)

(
x
y

)
.

The cocycle property is just a consequence of the uniqueness of the solution to equation
(5.3.8).

The next theorem ensures the existence of the random D–attractor and a φ–invariant
forward Markov measure.

Theorem 5.3.5. Suppose Assumption 5.1.2 holds with m ∈ N, m ≥ 2 and γ ∈ (0, 1).
Then the Cm−1–RDS φ defined in Proposition 5.3.4 has a unique random D–attractor
A where D is the universe of tempered sets of T2 × R2. Further, for any δ > 0

Bδ(ψ) :=

(x, y) ∈ T2 × R2
∣∣ |y|2 ≤ (1 + δ)

τ

0∫
−∞

e
u
τ |ψ(u)|2C1(T2)du

 , ψ ∈ Ω, (5.3.9)

is a D–absorbing and φ–forward invariant closed random set such that

A(ψ) =
⋂
t∈N

φ(t, θ(−t)ψ)Bδ(θ(−t)ψ), ψ ∈ Ω. (5.3.10)

In particular, all φ–invariant measures are supported on the random D–attractor and
there exists a φ–invariant forward Markov measure.
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Proof. To prove the existence of the random D–attractor, we only have to show in view
of Theorem 3.4.10 that for any δ > 0 the random set B(ψ) := Bδ(ψ) defined in (5.3.9)
is a D–absorbing and φ–forward invariant closed random set.
Notice here that ψ 7→

∫ 0
−∞ e

u
τ |ψ(u)|2C1(T2)du is measurable and finite for every ψ ∈ Ω.

This follows by Lemma 5.3.2(ii) and recall here again the change of Ω in Proposition
5.3.4. Further, the random set–valued map B takes values in closed bounded subsets of
T2 × R2 and is measurable. Therefore, B is a closed random set with compact values.
In the following, for any set C ⊆ T2 × R2 we set

πT2(C) := {πT2(x, y)|(x, y) ∈ C}, πR2(C) := {πR2(x, y)|(x, y) ∈ C},

where

πT2 : T2 × R2 → T2, (x, y) 7→ x, and πR2 : T2 × R2 → R2, (x, y) 7→ y.

Next we prove that ψ 7→ B(ψ) is φ–forward invariant, i.e. φ(t, ψ)B(ψ) ⊆ B(θ(t)ψ) for
all t ≥ 0, ψ ∈ Ω. So to prove the φ–forward invariance of B, we only have to show that

sup
(x,y)∈B(ψ)

∣∣πR2(φ(t, ψ)

(
x

y

)
)
∣∣2 = sup

(x,y)∈B(ψ)
{|ẋ(t)|2 | ẋ(0) = y} ≤ sup

(x,y)∈B(θ(t)ψ)
|y|2

for any t ≥ 0, ψ ∈ Ω, since πT2(B(θ(t)ψ)) = T2 for any t ≥ 0 and ψ ∈ Ω.
To estimate |ẋ(t)|2 for t > 0, we take the inner product of the equation

τ ẍ(s) = ∇⊥ψ(x(s), s)− ẋ(s)

with ẋ(s) and obtain

τ
1

2

d

ds
|ẋ(s)|2 = 〈ẋ(s),∇⊥ψ(x(s), s)〉 − |ẋ(s)|2 ≤ 1

2
|∇⊥ψ(x(s), s)|2 +

1

2
|ẋ(s)|2 − |ẋ(s)|2

=
1

2
|∇⊥ψ(x(s), s)|2 − 1

2
|ẋ(s)|2,

where we used 〈z1, z2〉 ≤ 1
2 |z1|2 + 1

2 |z2|2 for z1, z2 ∈ R2.

Multiplying by 2
τ e

s
τ on each side gives

d

ds

(
e
s
τ |ẋ(s)|2

)
≤ 1

τ
e
s
τ |∇⊥ψ(x(s), s)|2. (5.3.11)

By integrating the inequality (5.3.11) from 0 to t we get

e
t
τ |ẋ(t)|2 − |ẋ(0)|2 ≤ 1

τ

t∫
0

e
s
τ |∇⊥ψ(x(s), s)|2ds,
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so that

|ẋ(t)|2 ≤ e−
t
τ |ẋ(0)|2 +

1

τ

t∫
0

e−
(t−s)
τ |∇⊥ψ(x(s), s)|2ds

≤ e−
t
τ |ẋ(0)|2 +

1

τ

t∫
0

e−
(t−s)
τ |ψ(s)|2C1(T2)ds

u=s−t
= e−

t
τ |ẋ(0)|2 +

1

τ

0∫
−t

e
u
τ |ψ(u+ t)|2C1(T2)du.

Therefore

∣∣πR2(φ(t, ψ)

(
x(0)

ẋ(0)

)
)
∣∣2 = |ẋ(t)|2 ≤ e−

t
τ |ẋ(0)|2 +

1

τ

0∫
−t

e
u
τ |ψ(u+ t)|2C1(T2)du. (5.3.12)

Now by (5.3.12) and the definition of B(ψ), we obtain for t ≥ 0

sup
(x,y)∈B(ψ)

∣∣πR2(φ(t, ψ)

(
x

y

)
)
∣∣2 ≤ e− t

τ sup
(x,y)∈B(ψ)

|y|2 +
1

τ

0∫
−t

e
u
τ |ψ(u+ t)|2C1(T2)du

≤ (1 + δ)

τ
e−

t
τ

0∫
−∞

e
u
τ |ψ(u)|2C1(T2)du+

(1 + δ)

τ

0∫
−t

e
u
τ |ψ(u+ t)|2C1(T2)du

=
(1 + δ)

τ

−t∫
−∞

e
u
τ |ψ(u+ t)|2C1(T2)du+

(1 + δ)

τ

0∫
−t

e
u
τ |ψ(u+ t)|2C1(T2)du

=
(1 + δ)

τ

0∫
−∞

e
u
τ |ψ(u+ t)|2C1(T2)du

= sup
(x,y)∈B(θ(t)ψ)

|y|2.

So ψ 7→ B(ψ) is φ–forward invariant.
Finally, we prove that ψ 7→ B(ψ) is D–absorbing. For any D ∈ D we have

πT2(φ(t, θ(−t)ψ)D((θ(−t))ψ)) ⊆ πT2(B(ψ)) = T2
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and by (5.3.12)

sup
(x,y)∈D(θ(−t)ψ)

∣∣πR2(φ(t, θ(−t)ψ)

(
x

y

)
)
∣∣2

≤ e−
t
τ sup

(x,y)∈D(θ(−t)ψ)
|y|2 +

1

τ

0∫
−t

e
u
τ |ψ(u+ t− t)|2C1(T2)du

= e−
t
τ sup

(x,y)∈D(θ(−t)ψ)
|y|2 +

1

τ

0∫
−t

e
u
τ |ψ(u)|2C1(T2)du

(5.3.13)

for any t ≥ 0 and ψ ∈ Ω. By the definition of the set D, the first term on the right
hand side of (5.3.13) converges for t→∞ to zero. The second term tends for t→∞ to
1
τ

∫ 0
−∞ e

u
τ |ψ(u)|2C1(T2)du. Further, Lemma 5.3.2(ii) implies that

e−tc
(1 + δ)

τ

0∫
−∞

e
u
τ |ψ(u)|2C1(T2)du→ 0 as t→∞

for any c, δ > 0 and ψ ∈ Ω. This ensures B ∈ D, i.e. B is also D–absorbing. The
existence of the random D–attractor follows now by Theorem 3.4.10. The additional
assertions are verified by Theorem 3.4.15, since D is the universe of tempered sets of
T2 × R2 and the random D–attractor is F−–measurable by (5.3.9) and (5.3.10).

Remark 5.3.6. In Theorem 5.3.5 we generalized Sigurgeirsson and Stuart’s results in [89]
concerning the existence and uniqueness of the random attractor to the fractional noise
case with arbitrary Hurst parameter H ∈ (0, 1) and improved it in such a way that we
extended the universe of attracting sets from deterministic bounded sets to random tem-
pered sets with an explicit representation of a random tempered the universe absorbing
set. With these new information we were able to prove in addition the existence of a
φ–invariant forward Markov measure.

The next step would be to derive (upper) bounds of the Hausdorff dimension of the ran-
dom D–attractor. But as already mentioned, we cannot directly apply Theorem 3.4.20
to bound the Hausdorff dimension of the random D–attractor since on the one hand
in (M1) we have a two–dimensional torus T2 in the position coordinates and Theorem
3.4.20 does not cover this manifold case. On the other hand Theorem 3.4.20 would be
usable for the by periodicity extended system introduced in the following Remark 5.3.7
if we could prove the existence of a random attractor in this modified system, but this is
not the case. Nevertheless, in Theorem 5.3.8 below we verify properties of the modified
system which are very close to the assumptions of Theorem 3.4.20 and (3.4.13) in Re-
mark 3.4.21(i) to bound the Hausdorff dimension of the random attractor. This suggests
at least that some volume decrease is happening in the modified and presumably in the
original system (M), see Remark 5.3.9 below.
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Remark 5.3.7. In the following we extend v and the stationary mild solution ψ in (M2)–
(M3) by periodicity to ṽ and ψ̃ on R2 and replace (M1) by

d

dt

(
x̃(t)˜̇x(t)

)
= f̃

ψ̃,τ
(t, (x̃(t), ˜̇x(t))),

(
x̃(0)˜̇x(0)

)
∈ R4,

with f̃
ψ̃,τ

: R× R2 × R2 → R4 defined by

(t, x, y) 7→ f̃
ψ̃,τ

(t, (x, y)) =

(
y

1
τ (∇⊥ψ̃(x, t)− y)

)
.

In this modified system we can re–prove all assertions of Proposition 5.3.1, Lemma 5.3.2
and Proposition 5.3.4, whenever their assumptions are satisfied. But we are not able
to prove the existence of a random attractor as stated in Theorem 5.3.5. In particular,
in Proposition 5.3.1 we replace Ω by Ω̃ := C(R, Cm(R2)) endowed with compact open
topology with associated Borel σ–algebra F̃ , distribution P̃ and group of shifts (θ̃(t))t∈R.
Further, in the same way we can show that there are F̃–measurable (θ̃(t))t∈R–invariant
sets Ω̃0, Ω̃1 ⊆ Ω̃ satisfying the properties (ii)–(iii) of Lemma 5.3.2 and that φ̃ : R× Ω̃×
R2 × R2 −→ R4,

(t, ψ̃, (x, y)) 7→ φ̃(t, ψ̃, (x, y)) :=

(
x̃(t)˜̇x(t)

)
,

defines a Cm−1–RDS over the ergodic metric dynamical system(
Ω̃ := Ω̃0 ∩ Ω̃1, F̃ , P̃, (θ̃(t))t∈R

)
analogous to Proposition 5.3.4. Also notice that

|ψ̃|C([−T,T ],Cm(O)) = |ψ̃|C([−T,T ],Cm(T2)) for all T > 0, ψ̃ ∈ Ω̃ and any open, bounded

O ⊆ R2 with closure O and T2 = [0, 1]2 ⊆ O.

For convenience, in the rest of this subsection we will drop the tilde for denoting the
modified system introduced in Remark 5.3.7.

In the following for ψ ∈ Ω and t ∈ R we define

φ′(t, ψ, (x, y)) :=

(( ∂

∂xj
φi(t, ψ, (x, y))

)
1≤i≤4,1≤j≤2

,
( ∂

∂yj
φi(t, ψ, (x, y))

)
1≤i≤4,1≤j≤2

)
(5.3.14)

and

f ′ψ,τ (t, (x, y)) :=
1

τ


0 0 τ 0
0 0 0 τ

∂2

∂x1∂x2
ψ(x, t) ∂2

∂x22
ψ(x, t) −1 0

− ∂2

∂x21
ψ(x, t) − ∂2

∂x2∂x1
ψ(x, t) 0 −1

 , (5.3.15)

the Jacobians of the Cm−1–RDS φ(t, ψ) and fψ,τ (t, ·) at (x, y) ∈ R4 introduced in Remark
5.3.7 in the by periodicity extended system.
For the following theorem recall the definition of Vd(L) from Section 3.4.
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Theorem 5.3.8. Suppose Assumption 5.1.2 holds with m ∈ N, m ≤ 3, and γ ∈ (0, 1).
Let φ be the Cm−1–RDS introduced in Remark 5.3.7 in the by periodicity extended system
and φ′ be its Jacobian defined in (5.3.14). Further, we set Ft := σ(idΩ(r)| r ≤ t), t ≥ 0,
and

BH,ν,λ,α := E
(
|idΩ(0)|C2(T2)

)
.

Then the following assertions are valid.

(i) For all τ > 0 there are constants C1(τ), C2(τ) > 0 only depending on τ such that
the B([0,∞))⊗F–B([0,∞)) measurable mapping ξτ : [0,∞)× Ω→ [0,∞),

(t, ψ) 7→ ξτ (t, ψ) = C1(τ) exp
(
C2(τ)

t∫
0

(1 + |ψ(s)|2C3(T2))ds
)

(5.3.16)

satisfies for all t ≥ 0, (x, y), h ∈ R4 and ψ ∈ Ω

|φ(t, ψ, (x, y) + h)− φ(t, ψ, (x, y))− φ′(t, ψ, (x, y))h| ≤ ξτ (t, ψ)|h|
3
2

and ξτ (t, ψ) ≥ 1.

(ii) For any l ∈ (0, 1), τ > 0 and ε1 ∈ (0, 2
τ ) there is a finite (Ft)t≥0–stopping time

t1,τ : Ω→ [0,∞) depending on BH,ν,λ,α, τ, ε1, l such that

sup
(x,y)∈R4

V3+s1

(
φ′(t1,τ (ψ), ψ, (x, y))

)
≤ l, ψ ∈ Ω,

where s1 = s1(BH,ν,λ,α, τ, ε1) is defined by

0 ≤ max

{
0,
ε1 + 1

τ

(
BH,ν,λ,α − 1

)
+ τ

4
2
τ + 1

τ

(
BH,ν,λ,α − 1

)
+ τ

4

}
=: s1 < 1.

If in addition

BH,ν,λ,α < 1,

then for any l ∈ (0, 1), 0 < τ < τ∗ := 2
√

1−BH,ν,λ,α and any ε2 ∈
(
0, 1

τ (1 −
BH,ν,λ,α) − τ

4

)
there is a finite (Ft)t≥0–stopping time t2,τ : Ω → [0,∞) depending

on BH,ν,λ,α, τ, ε2, l such that

sup
(x,y)∈R4

V2+s2

(
φ′(t2,τ (ψ), ψ, (x, y))

)
≤ l, ψ ∈ Ω,

where s2 = s2(BH,ν,λ,α, τ, ε2), whenever BH,ν,λ,α < 1, 0 < τ < τ∗, is defined by

0 <
ε2 + 2

τBH,ν,λ,α + τ
2

1
τ

(
1−BH,ν,λ,α

)
− τ

4 + 2
τBH,ν,λ,α + τ

2

=: s2 < 1.
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(iii) We set

tτ := tBH,ν,λ,α,τ :=


t1,τ if BH,ν,λ,α ≥ 1{
t1,τ if τ > τ∗

t2,τ if τ < τ∗
if BH,ν,λ,α < 1

,

d(τ) := d(BH,ν,λ,α, τ) :=


3 if BH,ν,λ,α ≥ 1{

3 if τ > τ∗

2 if τ < τ∗
if BH,ν,λ,α < 1

,

0 < s(τ) := s(BH,ν,λ,α, τ, ε) :=


s1(BH,ν,λ,α, τ, ε1) if BH,ν,λ,α ≥ 1{
s1(BH,ν,λ,α, τ, ε1) if τ > τ∗

s2(BH,ν,λ,α, τ, ε2) if τ < τ∗
if BH,ν,λ,α < 1

,

where τ∗, tj,τ , sj(BH,ν,λ,α, τ, εj), j = 1, 2, are defined in (ii). Then for all τ > 0
the random variables mτ , Zτ : Ω→ [0,∞) defined by

ψ 7→ mτ (ψ) := exp
(
C3(τ)

tτ (ψ)∫
0

(1 + |ψ(s)|2C2(T2))ds
)
,

ψ 7→ Zτ (ψ) :=

(
mτ (ψ)d(τ)

l

) 1
s(τ)

ξτ (tτ (ψ), ψ)

with l ∈ (0, 1) and a constant C3(τ) > 0 only depending on τ satisfy the conditions

(a) (mτ (ψ))d(τ)+s(τ) ≥ 1, ψ ∈ Ω,

(b) sup(x,y)∈R4 |φ′(tτ (ψ), ψ, (x, y))|L(R4,R4) ≤ mτ (ψ), ψ ∈ Ω,

(c)

lim
i→∞

ln(max{1, Zτ (θ̃i(ψ)})
i

= 0 P-a.s., θ̃i :=


id i = 0

θ̃ ◦ · · · ◦ θ̃︸ ︷︷ ︸
i−times

i ∈ N ,

where ξτ is defined in (i) and the measure preserving random variable θ̃ : Ω → Ω
is defined by

ψ 7→ θ̃(ψ) := θ(tτ (ψ))ψ.

We will prove the assertions of Theorem 5.3.8 in several lemmas. Before proceeding, we
interpret the results of Theorem 5.3.8 in the next remark.

Remark 5.3.9. As mentioned in Section 1, in [8, 9] Bec calculated in the system (M)
with H = 1/2 numerically the Lyapunov dimension (LD) (see Remark V.3.5 in [93]
for a definition) which is in this system at most 4 and which is an upper bound of
the P-a.s. constant Hausdorff dimension of the random attractor in dependence on
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the Stokes’s number τ . He computed that LD ≈ 2 for τ ≈ 0, LD decreases in τ to
some minimum 1 < LDmin(τ̂) < 2 and then increases in τ with LD(τ) > LD(τ) = 2
for τ > τ > τ̂ > 0. In particular, these bounds are in accordance with the limiting
behaviour of the ODE (M1) for τ → 0 and τ → ∞, and give a numerical justification
of preferential concentration as a fractal clustering phenomenon. If we could prove the
existence of a random D–attractor in the by periodicity extended system introduced in
Remark 5.3.7, then the assertions of Theorem 5.3.8 would imply that the P-a.s. constant
Hausdorff dimension of the random D–attractor is bounded from above by

d :=


3 + s0

1(BH,ν,λ,α, τ) if BH,ν,λ,α ≥ 1{
3 + s0

1(BH,ν,λ,α, τ) if τ ≥ τ∗
2 + s0

2(BH,ν,λ,α, τ) if τ < τ∗
if BH,ν,λ,α < 1

,

where s0
1(BH,ν,λ,α, τ), whenever BH,ν,λ,α = E(|idΩ(0)|C2(T2)) ≥ 1 or BH,ν,λ,α < 1, τ ≥

τ∗ := 2
√

1−BH,ν,λ,α, is defined by

0 ≤ s0
1(BH,ν,λ,α, τ) := lim

ε1↓0
s1(BH,ν,λ,α, τ, ε1) =

1
τ

(
BH,ν,λ,α − 1

)
+ τ

4
1
τ

(
BH,ν,λ,α + 1

)
+ τ

4

< 1

and s0
2(BH,ν,λ,α, τ), whenever BH,ν,λ,α < 1, 0 < τ < τ∗, is defined by

0 < s0
2(BH,ν,λ,α, τ) := lim

ε2↓0
s2(BH,ν,λ,α, τ, ε2) =

2
τBH,ν,λ,α + τ

2
1
τ

(
1 +BH,ν,λ,α

)
+ τ

4

< 1,

where s1(BH,ν,λ,α, τ, ε1) and s2(BH,ν,λ,α, τ, ε2) are defined in Theorem 5.3.8(ii). Compa-
ring these upper bounds with the numerical results by Bec, they do not look impressive.
In particular, we do not have a bound strict less than 2. Also notice that in Theorem
5.3.8 only the statistical property BH,ν,λ,α < 1 is involved. Probably, one could derive
smaller upper bounds by using more statistical information of the underlying metric
dynamical system, i.e. of the noise. But that are just hypothetical conjectures since we
cannot prove the existence of the random D–attractor in the modified system. However,
the assertions of Theorem 5.3.8 suggest at least a volume contraction in the modified
and presumably in the original system (M). To see this, recall from Remark 3.4.19(ii)
that the numbers Vd(φ

′(t, ψ, (x, y))), d = 3 + s1, 2 + s2 in Theorem 5.3.8(ii) can be
interpreted as the largest distortion of an infinitesimal d–dimensional volume produced
by φ(t, ψ, (x, y)). Further, analogous to the autonomous deterministic case in Remark
3.4.19(ii) we have due to the trace formula

sup
(x,y)∈R4

Vd(φ
′(t, ψ, (x, y))) ≤ exp(qd(t, ψ)), t ≥ 0. (5.3.17)
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Here

q4(t, ψ) := sup
(x,y)∈R4

t∫
0

tr(f ′ψ,τ (s, (x(s), ẋ(s))))ds,

qn(t, ψ) := sup
(x,y)∈R4

sup
hi∈R4,
|hi|≤1,
i=1,...,n

( t∫
0

trn(f ′ψ,τ (s, (x(s), ẋ(s))) ◦Qn,h1,...,hn(s, ψ, (x, y)))ds
)
,

qn+s(t, ψ) := sqn+1(t, ψ) + (1− s)qn(t, ψ),

where s ∈ [0, 1), Qn,h1,...,hn(s, ψ, (x, y)), n ∈ N, 1 ≤ n ≤ 3, is the orthonormal projector
in R4 spanned by φ′(t, ψ, (x, y))h1, . . . , φ

′(t, ψ, (x, y))hn and trn is the trace w.r.t. this
subspace. In Lemma 5.3.11 below we will show that for all τ > 0 and ε1 ∈ (0, 2/τ)
there exist s1 = s1(BH,ν,λ,α, τ, ε1) ∈ [0, 1) which is defined in Theorem 5.3.8(ii) and
t1 = t1(BH,ν,λ,α, τ, ε1, ψ) ≥ 0 such that for all t ≥ t1 we have

q3+s1(t, ψ) ≤ −ε1t < 0 (5.3.18)

and if BH,ν,λ,α < 1 then for all 0 < τ < 2
√

1−BH,ν,λ,α and ε2 ∈
(
0, 1

τ (1−BH,ν,λ,α)− τ
4

)
there exist s2 = s2(BH,ν,λ,α, τ, ε2) ∈ (0, 1) which is defined in Theorem 5.3.8(ii) and
t2 = t2(BH,ν,λ,α, τ, ε2, ψ) ≥ 0 such that for all t ≥ t2 we have

q2+s2(t, ψ) ≤ −ε2t < 0. (5.3.19)

Therefore, in view of (5.3.17), (5.3.18) and (5.3.19) the volume elements Vd(φ
′(t, ψ, (x, y))),

d = 3 + s1, 2 + s2, are uniformly contracting as t→∞.

Lemma 5.3.10. Suppose the assumptions of Theorem 5.3.8 hold. Then assertion (i) of
Theorem 5.3.8 is valid.

Proof. We fix t ≥ 0, (x, y), h ∈ R4, ψ ∈ Ω and set

φ(t, ψ, (x, y)) =:

(
x(t)

ẋ(t)

)
, φ(t, ψ, (x, y) + h) =:

(
x̃(t)
˜̇x(t)

)
.
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We obtain

1

2

d

dt
|φ(t, ψ, (x, y))− φ(t, ψ, (x, y) + h)|2 =

1

2

d

dt

∣∣(x(t)

ẋ(t)

)
−
(
x̃(t)
˜̇x(t)

)∣∣2
= 〈
(
x(t)− x̃(t)

ẋ(t)− ˜̇x(t)

)
,

(
ẋ(t)− ˜̇x(t)

ẍ(t)− ˜̈x(t)

)
〉

= 〈x(t)− x̃(t), ẋ(t)− ˜̇x(t)〉+ 〈ẋ(t)− ˜̇x(t), ẍ(t)− ˜̈x(t)〉

= 〈x(t)− x̃(t), ẋ(t)− ˜̇x(t)〉 − 1

τ
|ẋ(t)− ˜̇x(t)|2

+
1

τ
〈ẋ(t)− ˜̇x(t),∇⊥ψ(x(t), t)−∇⊥ψ(x̃(t), t)〉

≤ τ

2
|x(t)− x̃(t)|2 +

1

2τ
|ẋ(t)− ˜̇x(t)|2 − 1

τ
|ẋ(t)− ˜̇x(t)|2

+
1

2τ
|ẋ(t)− ˜̇x(t)|2 +

1

2τ
|∇⊥ψ(x(t), t)−∇⊥ψ(x̃(t), t)|2

=
τ

2
|x(t)− x̃(t)|2 +

1

2τ
|∇⊥ψ(x(t), t)−∇⊥ψ(x̃(t), t)|2

≤ τ

2
|x(t)− x̃(t)|2 +

2

2τ
|ψ(t)|2C2(T2)|x(t)− x̃(t)|2

≤
(τ

2
+

1

τ

)
(1 + |ψ(t)|2C2(T2))|x(t)− x̃(t)|2

≤
(τ

2
+

1

τ

)
(1 + |ψ(t)|2C2(T2))

∣∣(x(t)

ẋ(t)

)
−
(
x̃(t)
˜̇x(t)

)∣∣2,

(5.3.20)

where in the first inequality in (5.3.20) we used Young’s inequality |ab| ≤ ε|a|2+ (2ε)−1

2 |b|2
with a, b ∈ R, ε = 1

2τ and 〈z1, z2〉 ≤ 1
2 |z1|2 + 1

2 |z2|2 for z1, z2 ∈ R2. The second inequality
in (5.3.20) follows by∑

1≤i≤2

∣∣∣∣ ∂∂xiψ(x(t), t)− ∂

∂xi
ψ(x̃(t), t)

∣∣∣∣2 ≤ 2|ψ(t)|2C2(T2)|x(t)− x̃(t)|2

since ψ(t) ∈ Cm(R2) for some m ≥ 3 and ψ(t) is periodic with period 1 in both variables.
So by Gronwall’s inequality we get

|φ(t, ψ, (x, y))− φ(t, ψ, (x, y) + h)|2 =
∣∣(x(t)

ẋ(t)

)
−
(
x̃(t)
˜̇x(t)

)∣∣2
≤ |h|2 exp

(
(τ +

2

τ
)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

and therefore

|φ(t, ψ, (x, y))− φ(t, ψ, (x, y) + h)| =
∣∣(x(t)

ẋ(t)

)
−
(
x̃(t)
˜̇x(t)

)∣∣
≤ |h| exp

(
C0,1(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
) (5.3.21)

94



with C0,1(τ) := 1
2(τ + 2

τ ). Further, notice that

|f ′ψ,τ (t, (x(t), ẋ(t)))|L(R4,R4)

=
1

τ
sup

a,b∈R4,
|a|,|b|≤1

〈


0 0 τ 0
0 0 0 τ

∂2

∂x1∂x2
ψ(x(t), t) ∂2

∂x22
ψ(x(t), t) −1 0

− ∂2

∂x21
ψ(x(t), t) − ∂2

∂x2∂x1
ψ(x(t), t) 0 −1

 a, b〉

≤ 1

τ

(
2τ + 2 +

2∑
i,j=1

| ∂2

∂xi∂xj
ψ(x, t)|

)
≤ C0,2(τ)

(
1 + |ψ(t)|C2(T2)

)
(5.3.22)

with C0,2(τ) := 2τ+3
τ and similarly

|f ′′ψ,τ (t, (x(t), ẋ(t)))|L(R4,L(R4,R4)) ≤
C

τ

2∑
i,j,k=1

| ∂3

∂xi∂xj∂xk
ψ(x(t), t)|

≤ C0,3(τ)|ψ(t)|C3(T2)

(5.3.23)

with C0,3(τ) := C
τ and some constant C > 0, where f ′′ψ,τ (t, (x(t), ẋ(t))) denotes the

second Frechet derivative of fψ,τ (t, ·) in (x(t), ẋ(t)) ∈ R4.
Moreover, φ′(t, ψ, (x, y))h = v(t) satisfies the equation

v(t) = h+

t∫
0

f ′ψ,τ (s, (x(s), ẋ(s)))v(s)ds

and the inequality

|v(t)| ≤ |h|+
t∫

0

|f ′ψ,τ (s, (x(s), ẋ(s)))|L(R4,R4)||v(s)|ds.

Gronwall’s inequality and (5.3.22) imply then

|φ′(t, ψ, (x, y))h| ≤ |h| exp
( t∫

0

|f ′ψ,τ (s, (x(s), ẋ(s)))|L(R4,R4)ds
)

≤ |h| exp
(
C0,2(τ)

t∫
0

(1 + |ψ(s)|C2(T2))ds
)

≤ |h| exp
(
C0,4(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

(5.3.24)
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with C0,4(τ) := 2C0,2(τ) = 4τ+6
τ .

Further, by Taylor’s theorem (see e.g. [100] Theorem 4.C on page 242) and (5.3.23) we
have

|fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
|

≤ 1

2
sup

0≤τ≤1
|f ′′ψ,τ

(
t, (x(t), ẋ(t)) + τ

(
(x̃(t), ˜̇x(t))− (x(t), ẋ(t))

))
((

x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

))((
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
|

≤ 1

2
sup

0≤τ≤1
|f ′′ψ,τ (t, (x(t), ẋ(t)) + τ((x̃(t), ˜̇x(t))− (x(t), ẋ(t))))|L(R4,L(R4,R4))

× |
(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
|2

≤ C0,3(τ)

2
|ψ(t)|C3(T2)|

(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
|2

= C0,5(τ)|ψ(t)|C3(T2)|
(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
|2

(5.3.25)

with C0,5(τ) :=
C0,3(τ)

2 .
For fixed t ≥ 0, (x, y), h ∈ R4, ψ ∈ Ω we define

4h(t, ψ) := φ(t, ψ, (x, y) + h)− φ(t, ψ, (x, y))− φ′(t, ψ, (x, y))h

=

(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
− φ′(t, ψ, (x, y))h.

Notice that 4h(t, ψ) satisfies the equations

d

dt
4h(t, ψ) = fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t))) + f ′ψ,τ (t, (x(t), ẋ(t)))4h(t, ψ)

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
,

4h(0, ψ) = 0 ∈ R4

and

1

2

d

dt
|4h(t, ψ)|2 = 〈fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
,4h(t, ψ)〉

+ 〈f ′ψ,τ (t, (x(t), ẋ(t)))4h(t, ψ),4h(t, ψ)〉
= I1 + I2 ≤ |I1|+ |I2|.
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In the following we estimate |I1|, |I2|. We start with |I1|.

|I1| = |〈fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
,4h(t, ψ)〉|

≤ |fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
||4h(t, ψ)|

= |fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
||
(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
− φ′(t, ψ, (x, y))h|

≤ |fψ,τ (t, (x̃(t), ˜̇x(t)))− fψ,τ (t, (x(t), ẋ(t)))

− f ′ψ,τ (t, (x(t), ẋ(t)))
((x̃(t)

˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
|
(
|
(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
|+ |φ′(t, ψ, (x, y))h|

)
≤ C0,5(τ)|ψ(t)|C3(T2)|

((x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

))
|2
(
|
(
x̃(t)
˜̇x(t)

)
−
(
x(t)

ẋ(t)

)
|+ |φ′(t, ψ, (x, y))h|

)

≤ C0,5(τ)|ψ(t)|C3(T2)|h|2 exp
(
2C0,1(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

×
(
|h| exp

(
C0,1(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

+ |h| exp
(
C0,4(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
))

≤ 2C0,5(τ)|ψ(t)|C3(T2)|h|3 exp
(
C1(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

(5.3.26)

with C1(τ) := 4C0,1(τ) + C0,4(τ), where we used (5.3.25), (5.3.21) and (5.3.24).
Next we estimate |I2|.

|I2| = |〈f ′ψ,τ (t, (x(t), ẋ(t)))4h(t, ψ),4h(t, ψ)〉| ≤ |f ′ψ,τ (t, (x(t), ẋ(t)))|L(R4,R4)|4h(t, ψ)|2

≤ C0,2(τ)(1 + |ψ(t)|C2(T2))|4h(t, ψ)|2

≤ C2(τ)(1 + |ψ(t)|2C2(T2))|4h(t, ψ)|2

(5.3.27)

with C2(τ) := C0,2(τ) + 2, where we used (5.3.22).
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Therefore, by (5.3.26) and (5.3.27) we obtain

1

2

d

dt
|4h(t, ψ)|2 ≤ |I1|+ |I2|

≤ 2C0,5(τ)|ψ(t)|C3(T2)|h|3 exp
(
C1(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

+ C2(τ)(1 + |ψ(t)|2C2(T2))|4h(t, ψ)|2.

Gronwall’s inequality implies

|4h(t, ψ)|2 ≤ 0 + 4C0,5(τ)|h|3
t∫

0

|ψ(s)|C3(T2) exp
(
C1(τ)

s∫
0

(1 + |ψ(r)|2C2(T2))dr
)

× exp
(
2C2(τ)

t∫
s

(1 + |ψ(r)|2C2(T2))dr
)
ds

≤ 4C0,5(τ)|h|3
t∫

0

|ψ(s)|C3(T2)ds exp
(
(C1(τ) + 2C2(τ))

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)

≤ C3(τ)|h|3 exp
(
C4(τ)

t∫
0

(1 + |ψ(s)|2C3(T2))ds
)

with C3(τ) := 4C0,5(τ) and C4(τ) := C1(τ) + 2C2(τ) + 2.
Finally, by Lemma 5.3.2(ii) and Remark 5.3.7 the mapping ξτ : [0,∞)× Ω→ [0,∞)

(t, ψ) 7→ ξτ (t, ψ) =
√
C5(τ) exp

C4(τ)

2

t∫
0

(1 + |ψ(s)|2C3(T2))ds


with C5(τ) := C3(τ)+1 is well–defined, B([0,∞))⊗F–B([0,∞)) measurable and satisfies
the assertions of Theorem 5.3.8(i).

Lemma 5.3.11. Suppose the assumptions of Theorem 5.3.8 hold. Then assertion (ii)
of Theorem 5.3.8 is valid.

Proof. To establish

sup
(x,y)∈R4

Vd(φ
′(t, ψ, (x, y)))) ≤ k, ψ ∈ Ω,

for k ∈ (0, 1) and certain t > 0, 0 < d ≤ 4, we use, as mentioned in Remark 5.3.9, the
trace formula due to Temam ([93] pp. 362–364). Recall again that the trace formula
asserts that the uniform volume expansion factors for ψ ∈ Ω and (x, y) ∈ R4 at time
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t ≥ 0 are given by

q4(t, ψ) := sup
(x,y)∈R4

t∫
0

tr(f ′ψ,τ (s, (x(s), ẋ(s))))ds,

qn(t, ψ) := sup
(x,y)∈R4

sup
hi∈R4,
|hi|≤1,
i=1,...,n

( t∫
0

trn(f ′ψ,τ (s, (x(s), ẋ(s))) ◦Qn,h1,...,hn(s, ψ, (x, y)))ds
)

and
sup

(x,y)∈R4

Vn(φ′(t, ψ, (x, y))) ≤ exp(qn(t, ψ)), (5.3.28)

where Qn,h1,...,hn(s, ψ, (x, y)), n ∈ N, 1 ≤ n ≤ 3, is the orthonormal projector in R4

spanned by φ′(t, ψ, (x, y))h1, . . . , φ
′(t, ψ, (x, y))hn and trn is the trace w.r.t. this sub-

space. f ′ψ,τ is defined in (5.3.15). Actually, it is more convenient to consider the quan-
tities qn(t, ψ)/t rather than qn(t, ψ) as will be seen later in this proof. By (5.3.28) we
have

1

t
ln
(

sup
(x,y)∈R4

Vd(φ
′(t, ψ, (x, y)))

)
=

1

t
ln
(

sup
(x,y)∈R4

(
Vn+1(φ′(t, ψ, (x, y)))sVn(φ′(t, ψ, (x, y)))1−s))

≤ s

t
qn+1(t, ψ) +

(1− s)
t

qn(t, ψ)

(5.3.29)

with n ∈ N, 1 ≤ n ≤ 3, s ∈ [0, 1) and d = n+ s.
We will show that for all τ > 0 there is ε1 > 0 such that for large t > 0 (depending upon
the realization ψ)

s1

t
q4(t, ψ) +

(1− s1)

t
q3(t, ψ) ≤ −ε1 < 0

for some s1 ∈ [0, 1) and under the additional assumption E
(
|idΩ(0)|C2(T2)

)
< 1 we will

show that there is τ∗ > 0 such that for all 0 < τ < τ∗ there is ε2 > 0 such that for large
t > 0 (depending upon the realization ψ)

s2

t
q3(t, ψ) +

(1− s2)

t
q2(t, ψ) ≤ −ε2 < 0

for some s2 ∈ (0, 1), since then for any k ∈ (0, 1) we can prove that there are families of
finite stopping times t1,τ : Ω→ [0,∞), τ > 0, t2,τ : Ω→ [0,∞), 0 < τ < τ∗, such that

sup
(x,y)∈R4

V3+s1(φ′(t1,τ (ψ), ψ, (x, y)))) ≤ k, ψ ∈ Ω,

for a fixed τ > 0 and

sup
(x,y)∈R4

V2+s2(φ′(t2,τ (ψ), ψ, (x, y)))) ≤ k, ψ ∈ Ω,

99



for a fixed 0 < τ < τ∗.
First we estimate q4(t, ψ), q3(t, ψ) and q2(t, ψ). Notice that for t ≥ 0, (x(t), ẋ(t)) ∈ R4

we have

tr(f ′ψ,τ (t, (x(t), ẋ(t)))) = tr
(1

τ


0 0 τ 0
0 0 0 τ

∂2

∂x1∂x2
ψ(x(t), t) ∂2

∂x22
ψ(x(t), t) −1 0

− ∂2

∂x21
ψ(x(t), t) − ∂2

∂x2∂x1
ψ(x(t), t) 0 −1

)

= −2

τ
(5.3.30)

and for any arbitrary orthonormal system ei = (ei1, e
i
2, e

i
3, e

i
4), i = 1, 2, 3, 4, in R4, j ∈

{1, 2, 3} and t ≥ 0 we estimate

4−j∑
i=1

〈f ′ψ,τ (t, (x(t), ẋ(t)))ei, ei〉

= tr
(
f ′ψ,τ (t, (x(t), ẋ(t)))

)
−

4∑
i=4−j+1

〈f ′ψ,τ (t, (x(t), ẋ(t)))ei, ei〉

= −2

τ
−

4∑
i=4−j+1

〈


ei3
ei4

1
τ

(
∂2

∂x1∂x2
ψ(x(t), t)ei1 + ∂2

∂x22
ψ(x(t), t)ei2 − ei3

)
− 1
τ

(
∂2

∂x21
ψ(x(t), t)ei1 + ∂2

∂x2∂x1
ψ(x(t), t)ei2 + ei4

)
 ,


ei1
ei2
ei3
ei4

〉

= −2

τ
+

4∑
i=4−j+1

(
− ei1ei3 − ei2ei4 +

(ei3)2

τ
+

(ei4)2

τ

+
1

τ

[
− ei3

( ∂2

∂x1∂x2
ψ(x(t), t)ei1 +

∂2

∂x2
2

ψ(x(t), t)ei2
)

+ ei4
( ∂2

∂x2
1

ψ(x(t), t)ei1 +
∂2

∂x2∂x1
ψ(x(t), t)ei2

)])
= −2

τ
+

4∑
i=4−j+1

(Ii1 +
1

τ
Ii2).

(5.3.31)
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Next we estimate Ii1 and Ii2 separately.

Ii1 = −ei1ei3 − ei2ei4 +
(ei3)2

τ
+

(ei4)2

τ

= −ei1ei3 − ei2ei4 −
(ei1)2

τ
− (ei2)2

τ
+

1

τ

≤ τ (ei3)2

4
+ τ

(ei4)2

4
+

(ei1)2

τ
+

(ei2)2

τ
− (ei1)2

τ
− (ei2)2

τ
+

1

τ

≤ τ

4
+

1

τ
,

(5.3.32)

where in the first inequality we used twice Young’s inequality, i.e. |ab| ≤ η|a|p +
(pη)1−q|b|q/q with p = q = 2, η = 1

τ , a = ei1, e
i
2 and b = ei3, e

i
4. Further,

Ii2 = −ei3
( ∂2

∂x1∂x2
ψ(x(t), t)ei1 +

∂2

∂x2
2

ψ(x(t), t)ei2
)

+ ei4
( ∂2

∂x2
1

ψ(x(t), t)ei1 +
∂2

∂x2∂x1
ψ(x(t), t)ei2

)
≤

∑
1≤l,m≤2

∣∣∣ ∂2

∂xl∂xm
ψ(x(t), t)

∣∣∣ ≤ |ψ(t)|C2(T2).

(5.3.33)

So by (5.3.31), (5.3.32) and (5.3.33) we obtain

3∑
i=1

〈f ′ψ,τ (t, (x(t), ẋ(t)))ei, ei〉 ≤ −2

τ
+
τ

4
+

1

τ
+

1

τ
|ψ(t)|C2(T2)

=
1

τ

(
|ψ(t)|C2(T2) − 1

)
+
τ

4

(5.3.34)

and

2∑
i=1

〈f ′ψ,τ (t, (x(t), ẋ(t)))ei, ei〉 ≤ −2

τ
+

2τ

4
+

2

τ
+

2

τ
|ψ(t)|C2(T2)

=
2

τ
|ψ(t)|C2(T2) +

τ

2
.

(5.3.35)

Therefore, by (5.3.30), (5.3.34) and (5.3.35) we have for t ≥ 0, ψ ∈ Ω,

q4(t, ψ) ≤ −2t

τ
,

q3(t, ψ) ≤ 1

τ

( t∫
0

|ψ(s)|C2(T2)ds− t
)

+
τt

4

and

q2(t, ψ) ≤ 2

τ

t∫
0

|ψ(s)|C2(T2)ds+
τt

2
.
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In particular, we obtain

s

t
q4(t, ψ)+

(1− s)
t

q3(t, ψ)

≤ −2s

τ
+

(1− s)
τ

(1

t

t∫
0

|ψ(r)|C2(T2)dr − 1
)

+
τ(1− s)

4

and

s

t
q3(t,ψ) +

(1− s)
t

q2(t, ψ)

≤ s

τ

(1

t

t∫
0

|ψ(r)|C2(T2)dr − 1
)

+
τs

4
+

2(1− s)
τt

t∫
0

|ψ(r)|C2(T2)dr +
τ(1− s)

2

for t ≥ 0, ψ ∈ Ω, s ∈ (0, 1). By Lemma 5.3.2(iii) and Remark 5.3.7 for any µ > 0 and
ψ ∈ Ω (recall here the change of Ω in Remark 5.3.7) there is t0(µ, ψ) ≥ 0 such that

1

t

t∫
0

|ψ(s)|C2(T2)ds ≤ E
(
|idΩ(0)|C2(T2)

)
+ µ

for any t > t0(ψ, µ). In the following we set

BH,ν,λ,α := E
(
|idΩ(0)|C2(T2)

)
.

This implies that for all τ > 0 and ε1 ∈ (0, 2
τ ) there is s1 = s1(BH,ν,λ,α, τ, ε1) ∈ [0, 1) and

for all ψ ∈ Ω there is t1(BH,ν,λ,α, τ, ε1, ψ) ≥ 0 and such that for t ≥ t1(BH,ν,λ,α, τ, ε1, ψ)

s1

t
q4(t, ψ) +

(1− s1)

t
q3(t, ψ)

≤ −2s1

τ
+

(1− s1)

τ

(
BH,ν,λ,α − 1

)
+
τ(1− s1)

4
= −ε1 < 0.

(5.3.36)

So s1 = s1(BH,ν,λ,α, τ, ε1) ∈ [0, 1) in (5.3.36) is defined by

max

{
0,
ε1 + 1

τ

(
BH,ν,λ,α − 1

)
+ τ

4
2
τ + 1

τ

(
BH,ν,λ,α − 1

)
+ τ

4

}
=: s1. (5.3.37)

For any k ∈ (0, 1), τ > 0 let t1,τ (ψ) be the first time such that

ln(k) = −2s1

τ
t1,τ (ψ) +

τ(1− s1)

4
t1,τ (ψ) +

(1− s1)

τ

( t1,τ (ψ)∫
0

|ψ(r)|C2(T2)dr − t1,τ (ψ)
)

(5.3.38)
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with s1 = s1(BH,ν,λ,α, τ, ε1) ∈ [0, 1) given by (5.3.37).
Now we assume that in addition

BH,ν,λ,α < 1. (5.3.39)

Notice that for τ1, τ2 > 0 such that

τ2 < τ∗ := 2
√

1−BH,ν,λ,α < τ1

we have by (5.3.39)
1

τ∗

(
BH,ν,λ,α − 1

)
+
τ∗
4

= 0

and
1

τ2

(
BH,ν,λ,α − 1

)
+
τ2

4
< 0 <

1

τ1

(
BH,ν,λ,α − 1

)
+
τ1

4
.

This implies that for all 0 < τ < τ∗ and ε2 ∈
(
0, 1

τ (1 − BH,ν,λ,α) − τ
4

)
there is s2 =

s2(BH,ν,λ,α, τ, ε2) ∈ (0, 1) and for all ψ ∈ Ω there is t2(BH,ν,λ,α, τ, ε2, ψ) ≥ 0 and such
that for t ≥ t2(BH,ν,λ,α, τ, ε2, ψ)

s2

t
q3(t, ψ) +

(1− s2)

t
q2(t, ψ)

≤ s2

τ

(
BH,ν,λ,α − 1

)
+
τs2

4
+

2(1− s2)

τ
BH,ν,λ,α +

τ(1− s2)

2
= −ε2 < 0.

(5.3.40)

Therefore, s2 = s2(BH,ν,λ,α, τ, ε2) ∈ (0, 1) in (5.3.40) is defined by

ε2 + 2
τBH,ν,λ,α + τ

2
1
τ

(
1−BH,ν,λ,α

)
− τ

4 + 2
τBH,ν,λ,α + τ

2

=: s2. (5.3.41)

For any k ∈ (0, 1), 0 < τ < τ∗ let t2,τ (ψ) be the first time such that

ln(k) =
s2

τ

( t2,τ (ψ)∫
0

|ψ(r)|C2(T2)dr − t2,τ (ψ)
)

+
τs2

4
t2,τ (ψ)

+
2(1− s2)

τ

t2,τ (ψ)∫
0

|ψ(r)|C2(T2)dr +
τ(1− s2)

2
t2,τ (ψ)

(5.3.42)

with s2 = s2(BH,ν,λ,α, τ, ε2) ∈ (0, 1) given by (5.3.41).
Finally, we show that t1,τ , t2,τ : Ω → [0,∞) are indeed finite (Ft)t≥0–stopping times,
where Ft := σ(idΩ(s)| s ≤ t). The above considerations ensure the finiteness of t1,τ
and t2,τ for any ψ ∈ Ω. Further, we have to prove the Ft–measurability of the events
{t1,τ ≤ t}, {t2,τ ≤ t} for any t ≥ 0. For that let Y1,τ (t, ψ), t ≥ 0, ψ ∈ Ω, be the
process defined by the right hand side of (5.3.38) and Y2,τ (t, ψ), t ≥ 0, ψ ∈ Ω, be
the process defined by the right hand side of (5.3.42) (with ti,τ (ψ), i = 1, 2, replaced
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by the time index t). To prove {t1,τ ≤ t}, {t2,τ ≤ t} ∈ Ft, t ≥ 0, we have to show
{infr∈[0,t] Y1,τ (r, ·) ≤ ln(k)}, {infr∈[0,t] Y2,τ (r, ·) ≤ ln(k)} ∈ Ft, since r 7→ Y1,τ (r, ψ), r 7→
Y2,τ (r, ψ) are continuous, Y1,τ (0, ψ), Y1,τ (0, ψ) = 0 for all ψ ∈ Ω and ln(k) < 0. Therefore
it is sufficient to prove that Y1,τ (r, ·), Y2,τ (r, ·) are Fr–measurable. But this measurability
is already assured by the definition of Y1,τ and Y2,τ .

Finally, we verify the last assertion of Theorem 5.3.8.

Lemma 5.3.12. Suppose the assumptions of Theorem 5.3.8 hold. Then assertion (iii)
of Theorem 5.3.8 is valid.

Proof. Notice that by (5.3.24) in the proof of Lemma 5.3.10 we have for (x, y) ∈ R4,
t ≥ 0, ψ ∈ Ω,

|φ′(t, ψ, (x, y))|L(R4,R4) ≤ exp
(
C(τ)

t∫
0

(1 + |ψ(s)|2C2(T2))ds
)
, (5.3.43)

where C(τ) := 4τ+6
τ .

For the following recall the definitions of tτ , d(τ) and s(τ) from Theorem 5.3.8(iii). We
define for a fixed τ > 0 the random variable mτ : Ω 7→ [0,∞)

ψ 7→ mτ (ψ) = exp
(
C(τ)

tτ (ψ)∫
0

(1 + |ψ(s)|2C2(T2))ds
)

(5.3.44)

with C(τ) := 4τ+6
τ . By (5.3.43) and the definitions of d(τ), s(τ), mτ we have for ψ ∈ Ω

(mτ (ψ))d(τ)+s(τ) ≥ 1, sup
(x,y)∈R4

|φ′(tτ (ψ), ψ, (x, y))|L(R4,R4) ≤ mτ (ψ).

So conditions (a)-(b) in Theorem 5.3.8(iii) are fulfilled.
Now, for a fixed τ > 0 we define the positive random variable

Zτ : Ω→ [0,∞), ψ 7→ Zτ (ψ) =

(
mτ (ψ)d(τ)

l

) 1
s(τ)

ξτ (tτ (ψ), ψ),

where l ∈ (0, 1) and ξτ (t, ψ) is defined in Theorem 5.3.8(i). So by (5.3.44) and (5.3.16)
there are constants C1, C2, C3 > 0 independent of ψ, but depending on τ , d(τ), s(τ) and
l such that

ln(Zτ (ψ)) ≤ C1 + C2

tτ (ψ)∫
0

(1 + |ψ(s)|2C2(T2))ds+ C3

tτ (ψ)∫
0

(1 + |ψ(s)|C3(T2))ds

≤ C1 + C4

tτ (ψ)∫
0

(1 + |ψ(s)|2C3(T2))ds

(5.3.45)
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with C4 := C2 + C3 + 2.
Further, we define recursively for ψ ∈ Ω

t0(ψ) := 0, ti(ψ) := tτ (θ(ti−1(ψ))ψ) + ti−1(ψ), i ∈ N,

and
θ̃iψ := θ(ti(ψ))ψ, i ∈ N.

By the definition of θ and since tτ is a (Ft)t≥0–stopping time with Ft = σ(idΩ(r)| r ≤ t),
the F–F measurable mapping

θ̃ := θ̃1 : Ω→ Ω, ψ 7→ θ̃ψ = θ(tτ (ψ))ψ

preserves P.
It is only left to prove

lim
i→∞

ln(max{1, Zτ (θ̃iψ)})
i

≤ lim
i→∞

1

i

tτ (θ̃iψ)∫
0

(1 + |θ̃iψ(r)|2C3(T2))dr

= lim
i→∞

1

i

tτ (θ(ti(ψ))ψ)∫
0

(1 + |θ(ti(ψ))ψ(r)|2C3(T2))dr = 0,

(5.3.46)

P-a.s.
By the definition of tτ , i.e. by the definition of t1,τ , t2,τ in (5.3.38), (5.3.42) in the proof
of Lemma 5.3.11 and by the recursive definition of ti, i ∈ N, there is a constant C > 0
such that

lim
i→∞

ti(ψ)

i
= C, ψ ∈ Ω. (5.3.47)

Therefore ti(ψ)→∞ for i→∞, ψ ∈ Ω, and

lim
i→∞

ti+1(ψ)

ti(ψ)
= lim

i→∞

ti(ψ)

ti+1(ψ)
= 1, ψ ∈ Ω. (5.3.48)

Indeed, this can be seen by adding up the equation (5.3.38) for
ψ, θ(t1(ψ))ψ, . . . , θ(ti−1(ψ))ψ, i ∈ N, ψ ∈ Ω, and dividing this sum by ti(ψ), i.e.

1

ti(ψ)

i−1∑
j=0

[(
− 2s1

τ
+
τ(1− s1)

4

)
t1,τ (θ(tj(ψ))ψ)

+
(1− s1)

τ

( t1,τ (θ(tj(ψ))ψ)∫
0

|θ(tj(ψ))ψ(r)|C2(T2)dr − t1,τ (θ(tj(ψ))ψ)
)]

=
1

ti(ψ)

[(
− 2s1

τ
+
τ(1− s1)

4

)
ti(ψ) +

(1− s1)

τ

( ti(ψ)∫
0

|ψ(r)|C2(T2)dr − ti(ψ)
)]

i→∞−−−→ −2s1

τ
+
τ(1− s1)

4
+

(1− s1)

τ

(
E
(
|idΩ(0)|C2(T2)

)
− 1
)
,
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where we used Lemma 5.3.2(iii), Remark 5.3.7 and the fact that
∑i−1

j=0 t1,τ (θ(tj(ψ))ψ) =

ti(ψ) = t1,τ (θ(ti−1(ψ))ψ) + ti−1(ψ). In an analogous way this can be done with equation
(5.3.42). Therefore, by (5.3.46), (5.3.47), (5.3.48) and Lemma 5.3.2(iii) (recall here again
the change of Ω in Remark 5.3.7) we finally deduce for ψ ∈ Ω

0 = lim
i→∞

[ 1

ti+1(ψ)

ti+1(ψ)∫
0

(1 + |ψ(r)|2C3(T2))dr −
1

ti(ψ)

ti(ψ)∫
0

(1 + |ψ(r)|2C3(T2))dr
]

= lim
i→∞

[ ti(ψ)

ti+1(ψ)

1

ti(ψ)

ti+1(ψ)∫
0

(1 + |ψ(r)|2C3(T2))dr −
1

ti(ψ)

ti(ψ)∫
0

(1 + |ψ(r)|2C3(T2))dr
]

= lim
i→∞

1

ti(ψ)

ti+1(ψ)∫
ti(ψ)

(1 + |ψ(r)|2C3(T2))dr

= lim
i→∞

1

ti(ψ)

tτ (θ(ti(ψ))ψ)+ti(ψ)∫
ti(ψ)

(1 + |ψ(r)|2C3(T2))dr

= lim
i→∞

1

ti(ψ)

tτ (θ(ti(ψ))ψ)∫
0

(1 + |θ(ti(ψ))ψ(r)|2C3(T2))dr

= lim
i→∞

1

i

tτ (θ(ti(ψ))ψ)∫
0

(1 + |θ(ti(ψ))ψ(r)|2C3(T2))dr

≥ lim
i→∞

ln(max{1, Zτ (θ̃iψ)})
i

= 0.
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6. Matching Desired Statistical Properties of the Velocity Field

This short section is devoted to verifying that the random velocity field v = ∇⊥ψ, where
ψ is the unique ergodic mild solution of (M3) introduced in Section 5.2, captures the
statistical properties of a turbulent fluid flow which were described in Section 2.
We suppose in this section that Assumption 5.1.1 in Section 5.1 holds and set A = ∆
(and thereby αk = |k|2, k ∈ K = 2πZ2\{(0, 0)}). Further, assume that∑

k∈K
λk|k|2+4γ−4H <∞ (6.1)

for some γ > 0. So by Corollary 5.2.5 there is a unique ergodic mild solution ψ of (M3)
and there is a version of ψ (again denoted by ψ) such that P-a.s. ψ ∈ C

(
R, C1(T2)

)
.

First notice that by the definition of the random velocity field v = ∇⊥ψ =
(
∂ψ
∂x2

,− ∂ψ
∂x1

)
,

the field is already incompressible and the components of v are real–valued by Theorem
5.2.3. In particular, we have

v(x, t) =

(
v1(x, t)

v2(x, t)

)
=
∑
k∈K

i

(
k2

−k1

)
ψ̂k(t)ek(x) =

∑
k∈K

v̂k(t)ek(x), t ∈ R, x ∈ T2, (6.2)

where we set v̂k(t) := i
(
k2
−k1

)
ψ̂k(t). Again recall here that

ψ̂k(t) =
√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u), k ∈ K, t ∈ R.

Since (ψ̂k(t))t∈R, k ∈ K, are mean zero Gaussian processes, independent, except (ψ̂k)
∗ =

ψ̂−k, v is a mean zero Gaussian random field.
The autocovariance function R : T2 × T2 × R× R→ R2×2 of v is given by

R(x, y, t, s) =
(
E
(
vi(x, t)vj(y, s)

))
1≤i,j≤2

=
∑
k∈K

(
k2

2 −k2k1

−k1k2 k2
1

)
λk|k|−4Hδk(t− s;H, ν) ek(x− y),

where we set

δk(t− s;H, ν) :=
Γ(2H + 1) sin(πH)

π

∞∫
0

cos((t− s)ν|k|2z) |z|
1 + z2

dz

and where we applied Proposition 4.1.2(i) and Remark 5.2.2. Therefore, v is stationary
and homogeneous.
For k ∈ K, the energy of the Fourier mode k is defined by

E(k) =
1

2
E (v̂k(t)(v̂k(t))

∗) =
1

2
E
(
|v̂k(t)|2

)
=

1

2
|k|2E

(
|ψ̂k(t)|2

)
=

1

2
|k|2E

(
|ψ̂k(0)|2

)
=

Γ(2H)H

2
λk|k|2−4H ,
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where we again applied Proposition 4.1.2(i) and Remark 5.2.2.
To ensure isotropy, we set λk := ζ(|k|), k ∈ K, for a suitable positive function ζ :
[0,∞) → [0,∞), but keep in mind that (6.1) should still be satisfied. Then the energy
of a Fourier mode k ∈ K depends only on the length of k, in that, E(κ) := E(k) = E(k′)
whenever κ = |k| = |k′| for k, k′ ∈ K. In such an isotropic random field of the form (6.2)
it is customary to define the energy spectrum in terms of total energy in all the Fourier
modes of the same length κ = |k| by E(κ) := #{k ∈ K

∣∣ |k| = κ} E(κ). Clearly, E(κ)
can be approximated by E(κ) ≈ CκE(κ) with some constant C > 0.
In general, the energy spectrum E(·) can be divided in three ranges:

• For small |k| where the energy is injected, E(·) increases in |k| algebraically.

• For large |k| where the energy dissipates, we just set λk and therefore the energy
spectrum to zero (ultraviolet cut–off ).

• For intermediate |k|, in the so–called inertial subrange, E(·) decays in |k| alge-
braically.

The spectrum (λk)k∈K of Q can be chosen so that the energy spectrum of v matches
experimentally observed energy spectra of a turbulent fluid flow. We introduce three
energy spectra which were used by Sigurgeirsson and Stuart in [89], see also [37] pp.
112:

• Kolmogorov spectrum: E(|k|) ∝ |k|−
5
3 and therefore E(|k|) ∝ λk|k|2−4H ∝ |k|−

8
3 ,

i.e. λk ∝ |k|−
14
3

+4H .

• Kraichnan spectrum: λk|k|2−4H ∝ |k|2e−|k|2 , i.e. λk ∝ |k|4He−|k|
2
.

• Karman–Obukhov spectrum, the so–called long–tail Kolmogorov spectrum:
λk|k|2−4H ∝ |k|2(1 + |k|2)−

7
3 , i.e. λk ∝ |k|4H(1 + |k|2)−

7
3 . This spectrum was

introduced to study Kolmogorov turbulence with a long −5
3 tail in the spectrum

for large |k|.

Obviously, the decay of the spectrum (λk)k∈K of Q as |k| → ∞ determines the regularity
of the velocity field v and by this also the regularity of the transport equation (M1).
From the physical point of view by applying Corollary 5.2.8 it is clear that for any
spectrum in the inertial subrange we have a unique global solution to (M1) due to
the ultraviolet cut–off. From the mathematical point of view it is interesting to ask
whether there is a (unique) solution to (M1) if we match the spectrum (λk)k∈K for all
modes without the cut–off. Since the Kraichnan spectrum decays exponentially fast,
we get again a unique global solution to (M1). In view of the Kolmogorov spectrum,
Karman–Obukhov spectrum and Assumption 5.1.2 in Corollary 5.2.5 we have

|k|−
14
3

+4H−4H+2m+4γ = |k|−2|k|−
8
3

+2m+4γ

and −8
3 + 2m + 4γ < 0 is satisfied for m = 1 and γ < 1

6 . So by Corollary 5.2.5
there is a version of ψ (again denoted by ψ) such that P-a.s. ψ ∈ C

(
R, C1(T2)

)
and
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v = ∇⊥ψ ∈ C
(
R, C(T2,R2)

)
. Hence, by the classic Peano existence theorem there is a

solution to (M1), but uniqueness may fail.

Further, recall that our main motivation to use fractional noise was to match the statis-
tical property

E
(
|v(x, t)− v(x, s)|2

)
∼ C |t− s|2H

for t, s ≥ 0, x ∈ T2 and some constant C > 0. We have the following result.

Proposition 6.1. Suppose Assumption 5.1.1 holds and that there is m ∈ N and ε > 0
such that ∑

k∈K
λk|k|2m+ε <∞. (6.3)

Then there is a unique ergodic mild solution ψ to equation (M3) and there is a ver-
sion of ψ (again denoted by ψ) such that P-a.s. ψ ∈ C

(
R, Cm(T2)

)
and v = ∇⊥ψ ∈

C
(
R, Cm−1(T2,R2)

)
. Further, there is a constant C(H, ν) > 0 such that for any t, s ∈ R

and x ∈ T2 we have

E
(
|v(x, t)− v(x, s)|2

)
≤ C(H, ν)|t− s|2H (6.4)

and for a fixed T > 0 there is a constant C(H, ν, T ) > 0 such that for any t, s ∈ [−T, T ]
and x ∈ T2 we have

C(H, ν, T )|t− s|2H ≤ E
(
|v(x, t)− v(x, s)|2

)
. (6.5)

Proof. The first assertion follows by Corollary 5.2.5 in view of (6.3). Further, by (6.2)
we have

E
(
|v(x, t)− v(x, s)|2

)
=
∑
k∈K
|k|2E

(
|ψ̂k(t)− ψ̂k(s)|2

)
|ek(x)|2

=
∑
k∈K
|k|2E

(
|ψ̂k(t)− ψ̂k(s)|2

)
for any t, s ∈ R and x ∈ T2. Statements (6.4) and (6.5) now follow by (6.3), Proposition
4.1.2(ii),(iii) and Remark 5.2.2.

Remark 6.2. It should be noted that (6.3) in Proposition 6.1 is very restrictive and not
satisfied for H ∈ [1

6 , 1) if m = 1 and if we use the Kolmogorov or Karman–Obukhov
spectrum. But in view of the ultraviolet cut–off in the region where the energy dissipates,
(6.3) is fulfilled for any energy spectrum in the inertial subrange.
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7. Numerical Simulation of the Long–Time Behaviour of
Inertial Particles

7.1. Introduction

In this section we describe how to accomplish numerical simulation of the system (M)
introduced in Section 5.1. We suppose that Assumption 5.1.1 in Section 5.1 with A = 4
(and thereby αk = |k|2, k ∈ K = 2πZ2\{(0, 0)}) holds. Further, we assume that

λk =

{
ξ(|k|) if |k| ≤ 2πR

0 else
, k ∈ K,

for a fixed R ∈ N and a suitable function ξ : [0,∞) → [0,∞) to obtain an isotropic
random velocity field v with a desired energy spectrum (see Section 6). So by Corollary
5.2.5 there is a unique strictly stationary mild solution ψ to (M3) such that there is a
version of ψ (again denoted by ψ) such that ψ ∈ C(R, C∞(T2)) P-a.s. and

v(x, t) =
∑

k∈K, |k|≤2πR

i

(
k2

−k1

)
ψ̂k(t)e

i<k,x>, x ∈ T2, t ∈ R, (7.1.1)

with v ∈ C(R, C∞(T2,R2)) P-a.s.
Here recall that

ψ̂k(t) =
√
λkν

H

t∫
−∞

e−(t−u)ναkdβHk (u)

=

√
λk
2
νH

t∫
−∞

e−(t−u)ναkdRe(βHk )(u) + i

√
λk
2
νH

t∫
−∞

e−(t−u)ναkdIm(βHk )(u)

= ψ̂k,Re(t) + iψ̂k,Im(t).

and
(
(βHk (t))t∈R, k ∈ K, |k| ≤ 2πR

)
is a sequence of complex–valued and normalized

fractional Brownian motions each with the same fixed Hurst parameter H ∈ (0, 1), i.e.
βHk = 1√

2
Re(βHk )+i 1√

2
Im(βHk ), where Re(βHk ) and Im(βHk ) are independent real–valued

and normalized fractional Brownian motions on R, and different βHk are independent,
except βH−k = (βHk )∗. This implies ψ−k = (ψk)

∗.
In particular, by Corollary 5.2.8 the random ordinary differential equation (M1) has a
unique global solution P-a.s.

In Section 4.2 we have already introduced and discussed the applicability of several exact
methods to simulate a real–valued stationary fractional Ornstein–Uhlenbeck process, i.e.
in particular the processes ψ̂k,Re, ψ̂k,Im and thereby ψ̂k = ψ̂k,Re+iψ̂k,Im for a fixed k ∈ K.
We here use for our numerical experiments the standard Cholesky method, because we
started to investigate the other methods thereafter.
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Giving the realisations of the coefficients ψ̂k, k ∈ K, |k| ≤ 2πR, we specify in Section
7.2 how to evaluate the finite series (7.1.1) using the fast Fourier transform (FFT)
algorithm. The trajectory of the inertial particle is then obtained by using the classic
fourth–order Runge–Kutta scheme.
Finally, we perform numerical experiments studying the effect of the different parameters
on particle distribution in the random field in Section 7.3.
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7.2. Simulating the Velocity Field and the Particle Movement

In the following we assume that the realisations of

(ψ̂k,Re(j4t))j=0,1,...,n, (ψ̂k,Im(j4t))j=0,1,...,n

and thereby of

ψ̂k(j4t)) = ψ̂k,Re(j4t)) + iψ̂k,Im(j4t)), j = 0, 1, . . . , n,

for a fixed 4t > 0, n ∈ N and k ∈ K = 2πZ2\{(0, 0)} with |k| ≤ 2πR for some fixed
R ∈ N are given. Further we define N := 2R+ 2.

To evaluate the random velocity field v defined by (7.1.1) at time j4t with fixed j ∈
{0, 1, . . . , n} and at space position (x1 = l1/N, x2 = l2/N) with fixed lm ∈ {0, 1, . . . , N −
1}, m = 1, 2, we have to calculate the finite series

v1(x1, x2, j4t) := v1(l1/N, l2/N, j4t) := v1(l1, l2, j)

:=
R∑

k1=−R

R∑
k2=−R

v̂1,k(j)e
2πi(k1

l1
N

+k2
l2
N

)

:=
R∑

k1=−R

R∑
k2=−R

2πik2ψ̂(2πk1,2πk2)(j4t)e
2πi(k1

l1
N

+k2
l2
N

)

(7.2.1)

and

v2(x1, x2, j4t) := v2(l1/N, l2/N, j4t) := v2(l1, l2, j)

:=
R∑

k1=−R

R∑
k2=−R

v̂2,k(j)e
2πi(k1

l1
N

+k2
l2
N

)

:=
R∑

k1=−R

R∑
k2=−R

(−2)πik1ψ̂(2πk1,2πk2)(j4t)e
2πi(k1

l1
N

+k2
l2
N

)

(7.2.2)

with ψ̂(2πk1,2πk1)(j4t) := 0 if (k1, k2) = (0, 0) or |(2πk1, 2πk1)| > 2πR and where we set

v̂1,k(j) := v̂1,(k1,k2)(j) := 2πik2ψ̂(2πk1,2πk2)(j4t),

v̂2,k(j) := v̂2,(k1,k2)(j) := (−2)πik1ψ̂(2πk1,2πk2)(j4t).

To evaluate the series (7.2.1) and (7.2.2), we use the fast Fourier transform (FFT)
algorithm. For that purpose recall that the two–dimensional inverse discrete Fourier
transform DFT, Z ∈ CM×M , for some fixed M ∈ N, of an element Ẑ ∈ CM×M is usually
defined as

Z(l1, l2) :=

M−1∑
m1=0

M−1∑
m2=0

Ẑme
2πi(m1

l1
M

+m2
l2
M

) (7.2.3)
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for l1, l2 = 0, 1, . . . ,M − 1.
We should be able to use (7.2.3) to compute (7.2.1) and (7.2.2). For that set m1 :=
k1 +R+ 1 and m2 := k2 +R+ 1. We obtain for p ∈ {1, 2}

vp(l1, l2, j) =
R∑

k1=−R

R∑
k2=−R

v̂p,k(j)e
2πi(k1

l1
N

+k2
l2
N

)

=
2R+1∑
m1=1

2R+1∑
m1=1

v̂p,(m1−R−1,m2−R−1)(j)e
2πi
(

(m1−R−1)
l1
N

+(m2−R−1)
l2
N

)

= e−πi(2R+2)(
l1
N

+
l2
N

)
2R+1∑
m1=1

2R+1∑
m1=1

v̂p,(m1−R−1,m2−R−1)(j)e
2πi(m1

l1
N

+m2
l2
N

)

= e−πiN(
l1
N

+
l2
N

)
N−1∑
m1=0

N−1∑
m1=0

Ẑp,(m1,m2)(j)e
2πi(m1

l1
N

+m2
l2
N

)

= (−1)l1+l2

N−1∑
m1=0

N−1∑
m1=0

Ẑp,(m1,m2)(j)e
2πi(m1

l1
N

+m2
l2
N

),

where we set

Ẑp,(m1,m2)(j) :=

{
0 if m1 = 0 or m2 = 0

v̂p,(m1−R−1,m2−R−1)(j) if 1 ≤ m1,m2 ≤ 2R+ 1

and where we used that

e−πi(l1+l2) = (e−πi)l1+l2 = (−1)l1+l2 .

Notice carefully that after taking the inverse DFT of Ẑp(j), we have to change the
sign of the elements for which l1 + l2 is odd, to obtain vp(j). For R ∈ N such that
N = 2R + 2 = 2p for some p ∈ N we obtain a complexity of O(N log(N)) with the
FFT algorithm. Further, recall again that because of the symmetry (ψ̂k)

∗ = ψ̂−k the
components v1 and v2 of the velocity field are real–valued. This symmetry can be used
to reduce the amount of work required by FFT almost by half. For our computation we
use a complex–to–real FFT provided by [33].

Now giving the velocity field (v(l1/N, l2/N, j4t))l1,l2∈{0,1,...,N−1},j∈{0,1,...,n}, we integrate
the trajectory of the inertial particle using the classic fourth–order Runge–Kutta scheme
with time step double of that used for the velocity field, where we apply bilinear inter-
polation of the velocity field at particle locations.
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7.3. Numerical Experiments

We now visualize the long–time behaviour of particle motions varying different parame-
ters.

Varying the time scale ratio τ

In the first experiment we simulate the motion of 104 particles uniformly distributed
on the unit square at time zero with zero velocities according to system (M) with the
Kolmogorov spectrum. We fix ν = 10−2, 4t = 10−1, R = 5 and the Hurst parameter,
but varying the values of τ . Figure 11, Figure 12 and Figure 13 with different fixed
Hurst parameters show the final positions of the particles in the phase space at time
T = 500 associated to four different Stokes’ numbers in form of τ . In all three figures
the clustering is distinctive for τ = 10−1 and τ = 1, but there is almost no clustering for
very low and large values of τ , i.e. for τ = 10−4 and τ = 102 in the experiment. Further,
given a realisation of the velocity field with ν = 10−2, H = 3/4 Figure 14b.) and d.)
show the final positions of 5000 particles at time T = 200 initially uniformly distributed
on the left rectangle (Figure 14a.)) and on the right rectangle (Figure 14c.)) on the
unit square with zero velocities, respectively. Despite the very different initial data the
clustering in Figure 14b.) and Figure 14d.) is almost indistinguishable. This indicates
that the particles have converged to a subset of the random attractor. Therefore, we
conclude that also the generalized model with fractional noise captures the clustering
phenomenon of preferential concentration. In addition, if we compare the pictures in
Figure 11–13, we discover that if we increase the Hurst parameter, the clustering seems
to become stronger. Unfortunately, we do not have an explanation for that. In Theorem
5.3.8 we proved assertions which suggest a volume decrease in the (modified) system (M)
and the volume decrease might be stronger if the functional BH,ν,λ,α = E(|ψ(0)|C2(T2))
in Theorem 5.3.8 is small. But we do not know how the Hurst parameter is involved in
this functional.
Stuart and Sigurgeirsson used in [88, 89] for their simulation the Karman–Obukhov
spectrum introduced in Section 6. Repeating the experiments with that spectrum under
same conditions produces analogues results for H = 1/2.

Varying the fluid correlation time ν

In the next experiment we fix τ and H, but vary now the values of ν. For that we
first derive limit equations of (M1) for ν → 0 and ν → ∞ using similar heuristic
arguments as Sigurgeirsson and Stuart in [88] and leave the rigorous derivation for future
study. In the following let XH(t) =

√
λνH

∫ t
−∞ e

−(t−s)ναdβHt , t ∈ R, with λ, ν, α > 0
be the stationary fractional Ornstein–Uhlenbeck process. By Proposition 4.1.2(i) with
C(H) = Γ(2H + 1) sin(πH)/π we have

E(XH(t)XH(s)) = C(H)
λ

α2H

∞∫
0

cos((t− s)ναx)
x1−2H

1 + x2
dx ≈ V ar(XH(0)),
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as ν ≈ 0. Therefore, we assume that for ν = 0, i.e. at infinite correlation time, the
velocity field v is frozen at its initial time value, i.e.

v̄(x) = ∇⊥ψ(x, 0) =
∑
k∈K

ψ̂k(0)∇⊥ek(x), x ∈ T2,

such that (M1) reduces to the autonomous system

τ ẍ(t) = v̄(x(t))− ẋ(t), (x(0), ẋ(0)) ∈ T2 × R2. (7.3.1)

Since (7.3.1) is dissipative, T2 compact and using some aspects of the proof of Theorem
5.3.5, it is clear that (7.3.1) admits a global attractor P-a.s.
Now we turn to the limit ν → ∞. Sigurgeirsson and Stuart argued for H = 1/2 in [88]
as follows: Since e−γ|t| ≈ 2δ(t)/γ for γ � 1 and therefore E(X 1

2
(t)X 1

2
(0)) = λ

2αe
−να|t| ≈

λ
να2 δ(t) for ν � 1, where δ(·) denotes the Dirac delta function, Sigurgeirsson and Stuart

supposed that X 1
2
(t) approximates (standard) Gaussian white noise with constant

√
λ
να2 ,

i.e. X 1
2
(t) ≈

√
λ
να2

dβ
1
2
t
dt . From this and

∑
k∈K

λk
α2
k

∇⊥ek(x)((∇⊥ek(x))∗)′ =
∑
k∈K

λk
α2
k

(
k2

2 −k1k2

−k1k2 k2
1

)
they assumed that

v(x, t) ≈ ṽ(x, t) :=
1√
ν

∑
k∈K

√
λk
αk

dβ
1
2
k (t)

dt
∇⊥ek(x)

for ν � 1 such that
τ ẍ(t) ≈ −ẋ(t) (7.3.2)

as ν → ∞. And for (7.3.2) they noted that a Liouville equation argument shows that
initially uniform particle distribution in position space will be preserved, provided the
velocities are chosen independently of positions. For the general case H ∈ (0, 1) we argue
similarly, but in spectral domain. From Section 4.1 we know that the not normalized
spectral density of (XH(t))t∈R is given by

f(x) = C̃(H)ν2Hλ
|x|1−2H

(να)2 + x2
, x ∈ DH ⊆ R,

where C̃(H) = C(H)/2, DH = R if H ∈ (0, 1/2] and DH = R \ {0} if H ∈ (1/2, 1). We
have

f(x) ≈ f̃(x) = C̃(H)
ν2H−2λ

α2
|x|1−2H

for ν � 1. f̃(·) is (up to some positive constant depending on H) the spectral density of

fractional Gaussian white noise
√

ν2H−2λ
α2

dβHt
dt with constant

√
ν2H−2λ
α2 (see Corollary 1
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in [77]). It should be noted that the term fractional Gaussian noise is often used (as in

[77]) to denote
dβHt
dt . Here we prefer the term fractional Gaussian white noise, because we

use in this work the term fractional Gaussian noise for the increments of the fractional
Brownian motion βHn+1 − βHn , n ∈ N0. Therefore, we also expect that

v(x, t) ≈ ṽ(x, t) = νH−1
∑
k∈K

√
λk
αk

dβHk (t)

dt
∇⊥ek(x)

for ν � 1 and τ ẍ(t) ≈ −ẋ(t) as ν → ∞. As anticipated, if we increase the Hurst
parameter, the decorrelation of the velocity field becomes slower.
In the numerical experiment we fix τ = 10−1, H, 4t = 10−1, R = 5, and match the
Kolmogorov spectrum, but now vary the values of ν. Figure 15 with H = 1/3 and Figure
16 with H = 3/4 show the final positions of 104 particles in the position space at time
T = 200 associated to ν = 10k, k = 1,−1,−2 and ν = 0. As seen in Figure 15d.) and
Figure 16d.) for the special case ν = 0, the particles converge to a finite number of
isolated periodic orbits. By increasing ν we recognize that the clustering becomes less
intensive for such initial data. Repeating the experiment for very large and very low
values of τ , i.e. for τ = 102 and τ = 10−4, we observe almost no clustering.
If we want that the particle notices the velocity field ṽ(x, t) for ν � 1, we have to look at
large times and rescale ν, τ in an appropriate way, as it was (also heuristically) done by
Sigurgeirsson and Stuart in [88] for H = 1/2. We postpone this as well as the analytical
investigation of the spacial case ν = 0 for future work.
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Figure 11: Snapshots of the final positions of 104 particles in the phase space with ν =
10−2 and H = 1/3 associated to different Stokes’ numbers τ . a.) τ = 10−4,
b.) τ = 10−1, c.) τ = 1, d.) τ = 102.
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Figure 12: Snapshots of the final positions of 104 particles in the phase space with ν =
10−2 and H = 1/2 associated to different Stokes’ numbers τ . a.) τ = 10−4,
b.) τ = 10−1, c.) τ = 1, d.) τ = 102.
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Figure 13: Snapshots of the final positions of 104 particles in the phase space with ν =
10−2 and H = 3/4 associated to different Stokes’ numbers τ . a.) τ = 10−4,
b.) τ = 10−1, c.) τ = 1, d.) τ = 102.
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Figure 14: Snapshots of the final positions (b.), d.)) of 5000 particles in the phase space
associated to τ = 10−1 and initial positions a.) and c.).
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Figure 15: Snapshots of the final positions of 104 particles in the phase space with τ =
10−1 and H = 1/3 associated to different values of ν. a.) ν = 10, b.)
ν = 10−1, c.) ν = 10−2, d.) ν = 0.

121



Figure 16: Snapshots of the final positions of 104 particles in the phase space with τ =
10−1 and H = 3/4 associated to different values of ν. a.) ν = 10, b.)
ν = 10−1, c.) ν = 10−2, d.) ν = 0.
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A. Fractional Calculus

The fractional Brownian motion is representable as a stochastic integral w.r.t a standard
Brownian motion where the integrands are some fractional integrals and derivatives, re-
spectively. Therefore, we recall some basic definitions and properties of the fractional
calculus. For a detailed presentation of these notions we refer to the monograph [79]
and [58].

Let α > 0. In the following Γ(·) denotes the gamma function.
The Riemann–Liouville fractional integrals on R are defined as

(Iα+f)(x) :=
1

Γ(α)

x∫
−∞

f(t)(x− t)α−1 dt

and

(Iα−f)(x) :=
1

Γ(α)

∞∫
x

f(t)(x− t)α−1 dt, (A.1)

respectively. We say that the function f ∈ D(Iα±), where the symbol D(·) denotes the
domain of the corresponding operator, if the corresponding integrals converge for a.a.
x ∈ R.
In particular, we have Lp(R) ⊂ D(Iα±) provided that 0 < α < 1 and 1 ≤ p < 1

α . Also
note that Iα+(Lp(R)) = Iα−(Lp(R)) if 1 < p < 1

α (see Corollary 1 of Theorem 11.4 in [79]).
Moreover, the following theorem holds.

Theorem A.1 (Hardy–Littlewood). Let 1 ≤ p, q < ∞, 0 < α < 1. Then the operators
Iα± are bounded from Lp(R) into Lq(R) if and only if q = p

1−αp and 1 ≤ p < 1
α .

Proof. Theorem 5.3 in [79].

The next result is evident.

Lemma A.2. Let 0 < α < 1, f ∈ Lp(R), 1 ≤ p < 1
α and Iα±f = 0. Then f = 0 for a.a.

x ∈ R.

Let p ≥ 1 and f ∈ Iα±(Lp(R)) be a function that can be represented as a Riemann–
Liouville integral, i.e. f = Iα±φ for some φ ∈ (Lq(R)), q ≥ 1. Then Lemma A.2 ensures
the uniqueness of such a function φ, more exactly, for 0 < α < 1 it coincides for a.a.
x ∈ R with the left– (or right–)sided Riemann–Liouville fractional derivative of f of
order α. These derivatives are denoted by

(I−α+ f)(x) = (Dα
+f)(x) :=

1

Γ(1− α)

d

dx

x∫
−∞

f(t)(x− t)−α dt
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and

(I−α− f)(x) = (Dα
−f)(x) :=

−1

Γ(1− α)

d

dx

∞∫
x

f(t)(t− x)−α dt, (A.2)

respectively. For 1 ≤ p < 1
α , 0 < α < 1, the class of functions f = Iα±φ, φ ∈ (Lp(R))

coincides (see Theorem 6.2 in [79]) with the class of those functions f ∈ (Lq(R)), q =
p

1−αp , for which the integrals

(Dα
±f)(x) = lim

ε→0 in (Lp)
(Dα
±,εf)(x), (A.3)

converge in Lp(R) as ε→ 0, where

(Dα
±,εf)(x) :=

α

Γ(1− α)

∞∫
ε

f(x)− f(x∓ t)
t1+α

dt.

The limit in (A.3) also exists almost everywhere and the integrals

(Dα
±f)(x) = α

Γ(1−α)

∫∞
0

f(x)−f(x∓t)
t1+α

dt are called Marchaud fractional derivatives.

Fractional integration admits the following composition formulas for fractional integrals
(see page 96 in [79]):

Iα±I
β
±f = Iα+β

± f

for f ∈ Lp(R), α > 0, β > 0 such that α+ β < 1
p .

If f ∈ Iα±(Lp(R)), 0 < α < 1, p ≥ 1, then

Iα±D
α
±f = f.

Moreover, for f ∈ L1(R) we have (see §6.2 in [79])

Dα
±I

α
±f = f.
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B. Some Definite Integrals

Here we give representations of some definite integrals which were used in previous
sections. In the following Γ(x) =

∫∞
0 sx−1 exp(−s)ds, x ∈ C, Re(x) > 0, denotes the

gamma function and B(x, y) = Γ(x)Γ(y)
Γ(x+y) , x, y ∈ C, Re(x), Re(y) > 0, denotes the beta

function. Here Re(z) represents the real part of z ∈ C. Further, the hyperbolic cosine is
defined by cosh(x) := (ex + e−x)/2, x ∈ C, and the generalized hypergeometric function

1F2 is given by

1F2(a1; b1, b2; z) :=
∞∑
k=0

(a1)k
(b1)k(b2)k

zk

k!
,

where (c)0 := 1, (c)k := c · (c + 1) · . . . (c + k − 1) for c ∈ C and k ∈ N denotes the
Pochhammer symbol, a1, b1, b2 are real or complex parameters of 1F2 such that none of
b1, b2 is a non–positive integer and z is the complex variable of 1F2.

Lemma B.1. We have

(i) 3.241.2, p. 322 in [40]:

∞∫
0

xµ−1

1 + xν
dx =

1

ν
B

(
µ

ν
,
ν − µ
ν

)
for Re(ν) > Re(µ) > 0.

(ii) 3.1.3.2, p. 567 in [75]:

∞∫
0

∞∫
0

f(|x− y|)e−px−qydxdy =
1

pq(p+ q)

[
p

∞∫
0

e−qyf(y)dy + q

∞∫
0

e−pxf(x)dx
]

for p, q > 0.

(iii) 2.5.9.2, p. 394 in [75]:

∞∫
0

xβ−1

x2 + z2
cos(bx)dx

=
πzβ−2

2

cosh(bz)

sin(πβ/2)
− Γ(β − 2) cos(πβ/2)b2−β1F2

(
1;

3− β
2

, 2− β

2
;
b2z2

4

)
with b, Re(z) > 0 and 0 < Re(β) < 3.
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