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Abstract

English

Turbulence is observed in most technical and natural environments in-
volving fluid motion. However, the theory behind is still not fully under-
stood. Due to the irregular, complex character of turbulence, it is treated
statistically since a deterministic approach is usually not possible.

Spatial structures in turbulence, known as eddies, are essential to describe
the turbulent flow. In this thesis, a new method proposed by Wang & Pe-
ters (2006) is employed to decompose turbulent scalar fields completely
and uniquely into small spatial sub-units. The approach is called Dissipa-
tion Element method. Gradient trajectories in the scalar field are traced in
ascending and descending directions where they inevitably reach a min-
imum and a maximum point, respectively. All trajectories leading to the
same pair of extremal points define a dissipation element (DE ).

In the present work, DE analysis is extended to the canonical wall-bounded
turbulent channel flow. Special focus will be given to the effect of the
wall boundaries with respect to the size of the DEs and their distribution
along the wall-normal direction of the channel. To obtain data for analy-
sis, Direct Numerical Simulations (DNS ) have been conducted at different
Reynolds numbers as presented in chapter 2 following a brief introduc-
tion in §1. Turbulent channel flow statistics are discussed in §3 which are
later addressed to interpret results from DE analysis. In chapter 4, three-
dimensional turbulent structures, called vortices, are presented which are
obtained with classical methods.

Classical turbulent length scales in Poiseuille flow are analyzed in §5 be-
fore the DE method is applied in chapter 6. Mean length of DEs and its
variation with the distance from the wall will be addressed extensively.
The influence of the Reynolds number and the choice of the scalar variable
is discussed. Marginal, joint and conditional probability densities (pdf ) of
the Euclidean distance and scalar difference between extremal points are
investigated. Employing Lie symmetry analysis, invariant solutions of the
pdf are obtained. Further, a log-normal model for the pdf is derived. In



addition to the classical Poiseuille flow, three different channel flows are
investigated by means of the DE method, namely channel flows with wall-
normal and streamwise rotations and wall transpiration.

Finally, streamline segments are examined in chapter 7 with respect to the
length and the velocity difference between their ending points. As in the
case of DEs , marginal and conditional pdfs, as well as the influence of the
wall-distance and Reynolds number are discussed.

German

Turbulenz ist ein allgegenwärtiges Phänomen, das sich fast überall dort
abspielt, wo Flüssigkeiten und Gase in Bewegung versetzt werden, und
stellt doch einen der letzten Bereiche der klassischen Physik dar, dessen
vollständige Erschließung bis heute aussteht. Aufgrund ihrer Komplexität
erlauben turbulente Strömungen keinen deterministischen Lösungsansatz.
Folglich stehen meist nur statistische Herangehensweisen zur Verfügung.

Bei der Beschreibung der Turbulenz kommt den darin enthaltenen Wirbel-
strukturen, den sogenannten Eddies, eine Schlüsselrolle zu. Im Rahmen
dieser Dissertation kommt eine neuartige Methode zum Einsatz, die das
skalare Turbulenzfeld vollständig und, was noch wichtiger ist, eindeutig
in kleinere räumliche Strukturen aufteilt. Die Methode heißt Dissipations-
Elemente-Methode und nutzt Gradiententrajektorien, die unweigerlich zu
einem Minimal- und Maximalpunkt führen. Sämtliche zu einem bestimm-
ten Extremalpunkte-Paar gehörigen Trajektorien bilden ein sogenanntes
Dissipations-Element (DE). Die Methode wurde erstmals von Wang & Pe-
ters (2006) eingeführt und von den Autoren vor allem in Zusammenhang
mit homogener Scherströmung eingesetzt.

Im Gegensatz dazu wird in dieser Arbeit eine wandgebundene turbu-
lente Kanalströmung Gegenstand der Untersuchung sein. Besonderes Au-
genmerk gilt dabei dem Einfluss fester Wände auf die Länge und räum-
liche Verteilung von Dissipations-Elementen. Die für die DE-Analyse er-
forderlichen Daten werden mit Hilfe von DNS (Direkte Numerische Sim-
ulationen) gewonnen, die im Anschluss an eine kurze Einführung (§1)
vorgestellt werden (Kapitel 2). In Kapitel 3 werden die turbulente Kanal-
strömung und ihre Statistiken behandelt, die im späteren Verlauf bei der
Interpretation von Ergebnissen aus der DE-Analyse herangezogen wer-
den. Anschließend werden in §4 räumliche turbulente Strukturen vorge-
stellt.
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In §5 werden Längenskalen der Turbulenz behandelt, bevor die angekün-
digte DE-Methode in Kapitel 6 erläutert wird. Die mittlere Länge der Ele-
mente und ihre Verteilung in wand-normaler Richtung werden ausgiebig
diskutiert. Dabei werden sowohl unterschiedliche Reynolds-Zahlen als
auch Skalarvariablen berücksichtigt.

Mit Hilfe von Lie-Symmetrie-Methode werden invariante Lösungen der
Wahrscheinlichkeitsdichte der DE-Längenskala hergeleitet. Wahrschein-
lichkeitsdichtefunktionen (pdf) der Länge und Skalardifferenzen zwischen
den Extremalpunkten werden ausgewertet, und ein log-normales Modell
für die marginale pdf vorgestellt. Drei weitere Konfigurationen der Kanal-
strömung werden ergänzend zur klassischen Poiseuille-Strömung unter-
sucht, nämlich Kanalströmungen mit Wandtranspiration und mit Rotation
in Strömungs- und wand-normaler Richtung.

Abschließend werden Stromliniensegmente hinsichtlich ihrer Länge und
Geschwindigkeitsdifferenz an den Endpunkten analysiert. Ähnlich wie
bei DEs werden marginale und konditionierte pdfs analysiert und der Ein-
fluss des Wandabstandes als auch der Reynolds-Zahl ausgewertet.
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Nomenclature

+ superscript denoting wall, or inner scaling

ℓ length of a dissipation element / streamline segment

ℓm mean element length

ǫ rate of kinetic energy dissipation

η Kolmogorov length scale

λ Taylor length scale

ν kinematic viscosity

ωx, ωy, ωz vorticity components

Φ scalar variable

P̃ invariant pdf

CL centerline

D molecular diffusivity

DE dissipation element

DNS Direct Numerical Simulation

h channel half height

k turbulent kinetic energy

L integral length scale

MPC multi-point correlation

N number of grid points



P pdf of the element length

pd f probability density function

Pr Prandtl number

Q second invariant of the velocity gradient

Re Reynolds number

Reλ Reynolds number based on Taylor length scale

Reτ Reynolds number based on friction velocity

Sij symmetric rate-of-strain tensor

uη Kolmogorov velocity

uτ friction velocity

urms root-mean-square of a fluctuating velocity

Wij skew-symmetric rate-of-rotation tensor

y+ wall-normal coordinate, made dimensionless with ν/uτ

11
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1 Introduction

1.1 Features of Turbulence

Turbulence is one of the most challenging and, at the same time, fascinat-
ing phenomena provided by physics. It plays a fundamental role in most
flows occurring in nature and technical applications. Air flow in the at-
mosphere of the Earth, river and ocean currents as well as the flows in the
wakes of aircrafts, cars and ships are turbulent. Turbulence is undesirable,
e.g., when it results in an increment of aerodynamic drag of a vehicle, but
useful for mixing the air and the fuel to ensure a more efficient burning in
a combustion chamber.

Although the balance equations describing turbulent motion have been in-
dependently introduced by Claude Louis Marie Henri Navier (1785-1836)
and George Gabriel Stokes (1819-1903) more than 150 years ago, it still re-
mains one of the biggest unsolved problems of the physics. While a deter-
ministic approach to the Navier-Stokes equations is possible for laminar
flows, turbulent flows with random fluctuations permit only the use of
statistical methods. Turbulence requires sufficiently high Reynolds num-
bers where non-linear convective forces overcome viscous forces. In ad-
dition, all turbulent flows share several features. They are always irregu-
lar, time dependent, rotational, three-dimensional, highly diffusive, dissi-
pative and non-local. With increasing Reynolds number, turbulence be-
comes more chaotic. Nevertheless, in this seemingly disorganized tur-
bulent state there exist organized spatial structures called coherent struc-
tures, e.g., hairpin vortices in the boundary layer flow.

1.2 Theory

To study the evolution of fluid variables, such as velocity, energy, temper-
ature and chemical concentrations the fluid can be modeled as finite fluid
particles with freedom to translate, rotate and deform. With the Lagrangian
and Eulerian description there exist two formulations to describe the fluid



motion. Lagrangian description is typically used in flows where fluid par-
ticles need to be traced, e.g., flows with solid particles and bubbles. On the
contrary, Eulerian description does not follow the fluid particles, but con-
siders the flow through a fixed spatial domain. The Eulerian description
is used most frequently and is also adopted in the present work.

Fluids obey the laws of conservation of energy, mass and momentum ac-
cording to the general laws of continuum mechanics. Conservation of
mass, energy and momentum are the laws of continuum mechanics which
describe fluid motion.

The conservation equations for continuity (1.1) and momentum (1.2) spec-
ify the Navier-Stokes equations,

∇ · U = 0, (1.1)
DU

Dt
=

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p + ν∇2U + f , (1.2)

where x, t, U and p are the position vector, time, the velocity vector and
pressure. The kinematic viscosity ν is the ratio of the dynamic viscosity µ
to the density ρ describing the resistance of a sheared fluid against defor-
mation. Assuming constant density, the set of these equations represents
the fluid motion of an incompressible Newtonian fluid.

The expression DU/Dt in Eq. 1.2, called the material derivative, is the time
rate of change following a fluid element and consists of a temporal and
a convective term. The non-linear, convective term denotes the transport
of the quantity due to fluid motion in general, and the acceleration of the
fluid particle if the velocity vector is regarded. Unlike the convective trans-
port which is due to the macroscopic fluid velocity, the diffusion transport
is caused by the random motion of fluid molecules at microscopic level. It
is represented by the term ν∇2U involving the viscosity ν that is respon-
sible for the resistance of the fluid to the flow. Viscosity, thus, produces
friction between the layers of the fluid due to the relative motion of the
particles. In Newtonian fluids, where the viscous stress and the deforma-
tion rate are linearly related, viscosity is a function of temperature only
and independent of shear rate.

The term f in Eq. 1.2 refers to forces that act upon fluid particles, namely
body forces, surface forces and surface tension. Gravity, for instance, is a typi-
cal body force without direct contact to the fluid volume. As such, it differs
from surface forces exerted to the surface of the fluid domain like pressure
or friction.
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Figure 1.1: Reynolds’ experiment on the transition from laminar to turbu-
lent flow in pipes.

Handling the Navier-Stokes equations, or in other words, the problem of
turbulence is a very big challenge. The equations are nonlinear because of
the advection term and nonlocal due to the pressure contribution. Exact
solutions are possible only with the aid of simplifications which are often
problematic from the point of view of physics.

Osborne Reynolds (1883) was the first to systematically study the transi-
tion process of fluid flow in a pipe. In the wake of these experiments, he
introduced the dimensionless Reynolds number (Re) as the ratio of inertial
forces to viscous forces

Re =
UL

ν
, (1.3)

using a characteristic velocity U, a typical length scale L and the kinematic
viscosity ν. These quantities are also used to obtain the dimensionless
form of the Navier-Stokes equations.

∂U

∂t
+ (U · ∇)U = −∇p +

1
Re

∇2U + f . (1.4)

The inverse of Re is introduced into the dimensionless Navier-Stokes equa-
tions (1.4) as prefactor of the viscous term. Thus, increasing Re damps the
influence of the dissipation term boosting turbulence intensity. Re of a
flow must exceed an individual critical number to cause transition from
laminar to turbulent state, e.g. Recrit ≈ 2300 in a pipe flow with the diam-
eter as L.
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Turbulent quantities are characterized by chaotic fluctuations which are
superimposed on mean values. These instantaneous quantities can be
decomposed into a time-averaged and a fluctuating part which is called
Reynolds decomposition,

U(x, t) = U(x) + u(x, t) , (1.5)

with u(x, t) ≡ 0, indicating that the average of velocity fluctuations must
vanish (see Figure 1.2). The same rule applies to the pressure variable p. In
index notation, velocity and space vectors can be expressed as Ui and xi,
respectively. Together with other Reynolds operators the above relation
can be used to arrive at the Reynolds-Averaged Navier-Stokes (RANS )
equations in final form as follows:

ρ
∂Ui

∂t
+ ρU j

∂Ui

∂xj
= ρ f i +

∂

∂xj

[
−pδij + µ

(
∂Ui

∂xj
+

∂U j

∂xi

)
− ρuiuj

]
, (1.6)

∂Uk

∂xk
= 0 . (1.7)

As a result of this procedure, the additional term ρuiuj, the so-called
Reynolds stress (RS) tensor, arises from averaging the nonlinear advection
term in the momentum equations. uiuj is a second order symmetric tensor

such that uiuj=ujui with i, j=1, 2, 3. The diagonal components u2
i denote

the normal stresses of the RS tensor whereas the remaining off-diagonal
components uiuj (i 6= j) are known as the shear stresses. The turbulent
kinetic energy k is proportional to the sum the of normal stresses as

k =
1
2

uiui . (1.8)

RS tensor can be understood as the influence of velocity fluctuations on
the mean flow. However, this term is unknown, so further equations must
be provided to close the problem. One attempt in this regard is to gener-
ate an equation for the velocity fluctuations ui by subtracting the RANS
equations from the Navier-Stokes equations. Unfortunately, in doing so,
one realizes that now third order moments of fluctuations emerge. Theo-
retically, such a hierarchy might be continued further to obtain moments
of order N. However, using this method, the moments of order N+1 will

15
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Figure 1.2: Instantaneous (dashed line) and mean (solid line) velocity pro-
files in turbulent channel flow.

always remain unknown. This is known as the closure problem of turbu-
lence.

A more practical option to overcome this difficulty is introducing empiri-
cal assumptions in order to model the unknown moments. Today, owing
to permanent development in the turbulence modeling community, there
are a vast variety of models available. Some of these enjoy great popular-
ity, especially in industrial fields. Notwithstanding, one must recall that
none of these models can be directly attributed to the Navier-Stokes equa-
tions, but rather they are phenomenological assumptions.

The concept of Reynolds equations has been succesfully applied to e.g.
the similarity hypothesis by von Kármán, the mixing length approach by
Prandtl and the Boussinesq approximation of the eddy viscosity, to name
only a few.

1.2.1 Richardson’s Energy Cascade

Richardson (1922) established a cascade theory according to which tur-
bulent flows are composed of spatial structures of different sizes. This

16



cascade contains all length scales between the integral (L) and the Kol-
mogorov (η) length scales where

η =

(
ν3

ǫ

)1/4

. (1.9)

Here, ǫ is the dissipation rate of energy defined as

ǫ =
1
2

ν

(
∂ui

∂xj
+

∂uj

∂xi

)2

. (1.10)

These structures are unstable and break into eddies of smaller size. Their
kinetic energy, which is extracted from the mean flow, is distributed to
these smaller eddies - not necessarily in equal parts. The latter are also
unstable and break up as well. Re is assumed to be high enough to ne-
glect the influence of the dissipation term. This process of energy transfer
continues successively towards smaller elements until the dissipative Kol-
mogorov scale η is reached. Here, the kinetic energy is dissipated into
heat due to the effect of molecular viscosity. There exists a balance of en-
ergy flux between the large and smallest scales. Under the equilibrium
conditions in the inertial subrange, the rate of energy transfers between
the energy containing and the dissipation range is equal to the dissipation
rate ǫ.

Richardson’s approach has been confirmed by many experiments and is
an inherent part of the turbulence theory.

1.2.2 Kolmogorov’s Theory

Based on Richardson’s concept of an energy cascade, Kolmogorov (1941)1

formulated new hypotheses to derive statistical conclusions about fully-
developed, homogeneous isotropic turbulence (hereinafter referred to as
K41 ). In spite of the restricted validity his so-called similarity hypotheses
are an outstanding contribution to the understanding of the turbulence
theory.

Turbulent motion is anisotropic at large scales. For sufficiently high Re,
K41 postulates that the anisotropic character of these motions is reduced

1Andrey Nikolaevich Kolmogorov, (25 April 1903 - 20 October 1987), Soviet mathe-
matician
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gradually during the process of the energy transfer, hence reaching a sta-
tistically isotropic state after a sufficient number of cascade steps. At this
isotropic level, turbulent motions lose their preferred spatial direction.
This is known as the local isotropy hypothesis .

First similarity hypothesis

K41 implies that, besides the directional information, basically all geo-
metrical information are lost which means that they are independent of
the boundary conditions and the mean flow field. In other words, in every
turbulent flow at high Re statistical properties associated with the small
scales of the velocity field will feature a universal form that is uniquely
determined by ν and ǫ. With dimensional analysis, one can obtain Kol-
mogorov length (equation 1.9), velocity and time scales using ν and ǫ.

uη = (ǫν)1/4 (1.11)

τη =
(ν

ǫ

)1/2
(1.12)

Once rescaled with the Kolmogorov scales, statistical properties of small
scales in any turbulent flow will be identical. The Kolmogorov Reynolds
number reads Reη =

(
uηη

)
/ν = 1.

Second similarity hypothesis

Energy is injected into a turbulent flow at large scales L. In fully-developed
flows, the energy cascade contains a broad spectrum of scales which are
smaller than L but considerably larger than η. Thus, Re of these inter-
mediate scales ℓ is large and independent of the viscosity. Accordingly,
Kolmogorov’s second similarity hypothesis states that statistics of turbu-
lent motions of scale ℓ (where L ≫ ℓ ≫ η) are universal and depend on ǫ
only - but not on ν. This intermediate range is called the inertial subrange.

One of the most significant findings from Kolmogorov theory is the energy
spectrum within the inertial subrange,

E(κ) = C2 ǫ2/3 κ−5/3 , (1.13)

with κ being the wavenumber. This relation has been verified through
many experiments. According to K41, C2 denotes a universal constant

18



to be defined via experiments. Structure functions are another outcome
stemming from dimensional considerations which are defined for a spatial
distance r,

Sq(r) = 〈∆u(r)q〉 =
∫ ∞

−∞
P(∆u) ∆uq d(∆u) , (1.14)

where ∆u is the velocity increment between two points and P(∆u) is their
probability distribution function. Following Kolmogorov’s postulate to-
gether with dimensional analysis, one yields for high Re

Sq(r) = Cq (ǫr)q/3 . (1.15)

For second order structure function (q=2) we arrive at an equivalent form
of equation 1.13. Additionally, the structure function of order three may
be inferred as

S3(r) = −4
5

ǫr (1.16)

where ǫr has the same dimension as S3, ensuring that C3 must be an
obviously universal constant as can be obtained from the von Kármán-
Howarth equation (Frisch (1995)).

Refined Similarity Hypothesis

Even though, equation 1.15 shows a good agreement for exponents up
to q = 3, higher order structure functions expose distinct deviations for
higher q suggesting some inconsistency of Kolmogorov’s theory with real
turbulence. In fact, in this case, the actual scaling exponents are smaller
than p/3 of K41, which is an indication of a variable pdf P(∆u) assigned
to the inertial subrange. In this view, the supposed universality of the
constants Cq must also to be questioned. Except for C3 from the equation
1.16, there is no evidence for a universal character of Cq.

The reason for the shortcoming of K41 is that these hypotheses ignore the
effect of spatial intermittency of the dissipation rate. K41 assumes a con-
stant energy transfer rate ǫ, such that the energy transfer to smaller eddies
should be in equal parts. However, this is clearly not the case. Further-
more, the energy and its dissipation rate vary in time and space by orders
of magnitude which are even more pronounced at higher Re. Figure 1.4

19
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Figure 1.3: Energy cascade.

shows instantaneous, local distributions of ǫ, k and u along a line in the
DNS case 2 (see table 2.1). In contrast to the fluctuation of the stream-
wise velocity u, the plots of the quantities ǫ and k have regions of very
high intensity in close proximity of low intensity areas, revealing their in-
termittent character. This may be a reason for the anomaly of the scaling
exponents in equation 1.15.

Accordingly, the intermittency effects in turbulence need to be accounted
for, which led Kolmogorov to propose his so-called Refined Similarity
Hypothesis (RSH ) in the work Kolmogorov (1962). He postulates a log-
normal model of fluctuations of the local dissipation rate in a fluid volume
(∼ r) ǫr as shown below.

P(ǫr) =
1

ǫrσr

√
2π

exp




(
ln
(

ǫr
ǫ

)
+ σ2

r
2

)2

2σ2
r


 (1.17)

σr is the standard deviation of the mean dissipation rate dependent on the
scale r with

σr ∼ −µ ln(r) . (1.18)
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Figure 1.4: Instantaneous profiles along a spanwise line with the corre-
sponding mean values (dashed lines).

where µ is an empirical constant, called the intermittency factor. With
this refinement, i.e. using equations 1.17 and 1.18, a correction term ∆q is
introduced to the scaling exponent q/3 as

∆q = − µ

18
q(q − 3) , (1.19)

hence,
ζq =

q

3
− µ

18
q(q − 3) . (1.20)

Compared to K41, the non-linear RSH scaling brings about significant im-
provements. However, note that the RSH scaling (1.20) cannot be strictly
valid because it will take negative values for large q which is seen as non-
physical. In figure 1.5 both Kolmogorov linear and refined scaling predic-
tions are compared with experimental data from Benzi, Ciliberto, Tripic-
cione, Baudet, Massaioli & Succi (1993) up to structure function of order
eight with rather good agreement with the refined scaling law.
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Figure 1.5: Scaling exponents ζq as predicted by Kolmogorov in compari-
son with experimental data (crosses) from Benzi et al. (1993).

Although Kolmogorov’s great contribution to the turbulence theory is un-
disputed, there are some legitimate objections. His hypotheses remain
basically heuristic because a direct derivation from first principles is still
missing.

1.3 Motivation

An important aspect of turbulence is the rich variety of the turbulent mo-
tions contained therein. Hence, it is essential to identify these structures,
also referred to as eddies, and the interplay between them. Accordingly,
great efforts have been made to investigate the geometrical structures of
turbulence in order to acquire statistical information. Most popular ap-
proaches use different quantities of turbulence to isolate spatial structures,
the so-called vortices. The main deficiency accompanied by such a proce-
dure is the lack of a clear, self-contained definition of the shape of these
vortices. Hence, the definition depends on the choice of certain random
parameters and remains arbitrarily. In chapter 4, some approaches to iden-
tify vortical structures will be presented.
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The alternative to this would be a method according which the turbulent
flow field is decomposed into small subunits using non-arbitrary condi-
tions which result directly from the physics of the flow. One very interest-
ing approach in this respect was the work by Gibson (1968) who investi-
gated the generation of critical points in turbulent scalar fields. Inspired
by his idea, Wang & Peters (2006) proposed the method of Dissipation
Elements (DE ) where critical points in turbulent scalar fields are used to
define spatial structures called dissipation elements. Gradient trajectories
starting from any point in the turbulent field in the directions of ascending
and descending scalar gradient will always reach a pair of extremal points,
i.e. maximal and minimal points. For details on the tracing algorithm see
Wang & Peters (2008). A dissipation element is defined by all trajecto-
ries belonging to the same pair of critical points. In a smooth turbulent
field, this approach ensures a space-filling and unique decomposition of
the scalar field without elements overlapping each other. DE method can
be applied to any turbulent scalar quantity such as the components of the
velocity and vorticity, turbulent kinetic energy and its dissipation rate.

In §6, this method is adopted to investigate the geometrical structures in
wall-bounded turbulent channel flows. Main focus will be on the clas-
sical turbulent Poiseuille flow. Moreover, three different types of chan-
nel flow are investigated additionally, namely channel flows with rota-
tion in streamwise and wall-normal directions and channel flow with wall
transpiration. For this, various Direct Numerical Simulations (DNS ) have
been performed to obtain data to be analyzed with the DE method which
are presented in §2. In chapter 3, statistics of wall-bounded turbulent flow
are discussed which are referenced as needed to interpret the results from
DE analysis. Parts of the chapters 5 and 6 have been published in Aldudak
& Oberlack (2012).

The scalar difference ∆φ and the Euclidean linear length ℓ between the
extremal points are used to construct statistics such as the marginal, con-
ditional and joint probability density functions pdf. The distribution of DE
length scales and the scaling behavior of the scalar differences will be the
subject of discussion. The influence of the Reynolds number, the choice
of the scalar variable and not least the distance from the wall boundary
will be examined in detail. A log-normal pdf model is derived for the
DE length taking into account the mentioned parameters of influence. DE
analysis is extended by the Lie group analysis which has been proved to
be an effective tool to derive new scaling laws. Employing group theoreti-
cal methods and known symmetries of Navier-Stokes equations, it will be
shown that, sufficiently far from the wall, the pdf of DE length exhibits
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an invariant functional form, in other words, self-similar behavior with
respect to the wall distance.

With the streamline segment analysis in §7, a different approach is used
to study the length scales in turbulent channel flow. Here, streamlines are
divided into segments bounded by zero-gradient points of the velocity
magnitude with respect to the curvilinear streamline coordinate s. Again,
pdfs and scalar differences are investigated, analogous to DE method.
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2 Direct Numerical Simulations

The highly complex nature of turbulence is described by the Navier-Stokes
equations (1.1, 1.2). However, in the absence of proper analytical tools
for solving this set of equations, numerical methods remain the only op-
tion to describe a turbulent flow. The use of such numerical methods is
aggravated by the complexity of the flow geometry and the increase of
the Reynolds number resulting in a wider spectrum of spatial and tem-
poral scales in turbulence. Fluid flows relevant to industrial applications
can only be calculated by means of e.g. Reynolds-averaged Navier-Stokes
(RANS) and, increasingly, Large Eddy Simulation (LES) methods, which,
to different degrees, make use of empirical turbulence models to reduce
computational cost. While in RANS method all turbulent scales are mod-
eled, in LES only small, isotropic scales have to be modeled whereas the
remaining larger scales are resolved providing more accuracy, yet at higher
computational cost. Contrarily, Direct Numerical Simulation (DNS) aban-
dons turbulence modeling and solves the Navier-Stokes equations directly.
Thus, it is superior to other approaches in terms of accuracy. In this case,
however, all spatial and temporal scales of the turbulence, ranging from
the smallest Kolmogorov scales to the large integral scales, must be re-
solved. Accordingly, the associated computational effort for DNS is very
high which makes it still far from being practical for most engineering
problems. Its application is limited to canonical flows in simple geome-
tries, such as channel and pipe flows, at relatively low Reynolds num-
bers. Notwithstanding, DNS is very prevalent in fundamental research of
turbulence allowing access to information that are sometimes difficult or
even impossible to obtain from real experiments. DNS is also subject of
the present work and will be highlighted below.

The first DNS of a plane channel flow has been performed by Kim, Moin
& Moser (1987), although it was already used earlier for 3D homogeneous
and isotropic turbulence (see Orszag & Patterson (1972), Rogallo (1981)).
Since then, a number of modified channel flow configurations could be
studied such as wall-bounded flows with rough solid boundaries, rota-
tion, transpiration and heat transfer, to name but a few. The largest DNS



so far were performed by Kaneda & Ishihara (2006) for homogeneous flow
and by Hoyas & Jiménez (2006) for channel flow.

The growing availability of computational resources combined with in-
vention of new efficient numerical methods will likely give rise to a broader
use of DNS. Since DNS is the underlying method which was used to obtain
data about inhomogeneous turbulence for further analysis, a brief discus-
sion is presented in the following.

Basically, the spatial and temporal scales are strongly influenced by the ge-
ometry and the Reynolds number of the turbulent flow. As a consequence,
DNS is required to meet certain resolution conditions, depending on the
physics of the flow, in order to resolve these scales accurately. The spatial
dimensions of the flow domain must be chosen large enough to account
for the energy-containing, large eddies which contribute most to the tur-
bulent kinetic energy. Those scales (integral length scale L) are usually in
the order of flow geometry.
At the same time, the size of the numerical grid ∆x has to be small enough
to resolve the Kolmogorov scales η = (ν3/ǫ)1/4. Kolmogorov scales, the
smallest scales of turbulence, are assumed to be universal and isotropic.
Thus, they depend solely on the dissipation rate ǫ and the kinematic vis-
cosity ν.

Depending on which kind of statistics are of interest, a coarser grid can
be sufficient. Given the fact that η underestimates the small scales to be
resolved, which are slightly larger, e.g. Yeung & Pope (1989) considers
∆x/η = 3 as adequate for low-order velocity statistics. Nevertheless, the
resolution condition ∆x ≤ η remains crucial if a high-resolution DNS is
aimed for.

In an analogous manner, time scales in turbulence influence the temporal
resolution, i.e. the advancing of the solution in time. The time step cannot
be chosen arbitrarily, since the numerical accuracy and the stability of the
solution may be affected. A fluid particle is allowed to move only a frac-
tion of the grid distance to avoid errors being introduced to small scales.
Pope (2000) states that the time step must satisfy the Courant number

√
k ∆t

∆x
=

1
20

. (2.1)

Choi & Moin (1994) concludes that the computational time step must be
less than the Kolmogorov time scale to maintain turbulence. Too large
time steps are reported to result in laminarization of the flow. From this
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it becomes evident that increasing the spatial resolution involves smaller
time steps which, in turn, means an increase of required computation time.

Bearing these restrictions in mind, the relevant aspect of the computational
effort of a DNS can be estimated for the case of homogeneous isotropic
turbulence. For wall-bounded turbulent flows the need for computation
resources is even more stringent considering the necessarily small grid
spacing towards the wall. The number of degrees of freedom depends
on the Reynolds number and is proportional to the ratio between integral
and Kolmogorov scales, L/η ∼ Re3/4. Re is the Reynolds number based
on the integral length scale. Hence, the number of grid points for three-
dimensional computation scales with Re9/4. Taking into account the CFL
constraint the total computational effort is in the order of Re3.

The Navier-Stokes equations (1.1, 1.2) are valid for any incompressible
flow. Therefore, boundary and initial conditions of the flow have to be
specified additionally for the system to be definite. Physical boundaries
are specified by natural conditions, i.e. solid walls with no-slip condi-
tion, while artificial boundaries, such as the periodic boundaries, must be
approximated appropriately. Periodic boundary conditions (PBC) are re-
alized by equalizing two different boundaries to simulate only a fraction
of a large system in order to reduce computational costs. In DNS of turbu-
lent flows they are common practice because in this way the number of the
degrees of freedom can be diminished drastically. Also, if desired, inflow
and outflow boundaries can be avoided by this means as is the case in the
present work. Other BCs include the Dirichlet and Neumann boundary
conditions. The former specifies the actual value of the variable on the
surface whereas the latter gives its normal derivative. In plane turbulent
channel flow no-slip BC applies to the walls at which the fluid clings to
and moves with the walls. If the wall is at rest and impermeable the fluid
velocity vanishes at this boundary. Regarding the pressure at the wall, the
Neumann BC applies.

In general, turbulence is unsteady and highly dissipative. Nevertheless,
one can assume that the simulation reaches a quasi-stationary state if the
simulation time is sufficiently long. A carefully chosen initial field for DNS
improves the simulation process considerably. One way to do this is to
use an instantaneous fully-developed DNS field that has been obtained
from other simulations. Thus, in the new initial field Reynold number,
numerical degrees of freedom and the channel size can be changed. This
method was used in this work with two different spectral codes (for details
see Lundbladh, Berlin, Skote, Hildings, Choi, Kim & Henningson (1999),
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Figure 2.1: Sketch of the channel flow geometry.

Skote (2001) and Hoyas & Jiménez (2006)) to calculate several cases of tur-
bulent plane Poiseuille flow. For this purpose, data in Fourier space from
the old field is mapped to the wavenumbers of the new one. Given that
the new field contains more Fourier modes, remaining wavenumbers are
simply filled with zeroes. After an initial recovering phase due to the tran-
sition, which is excluded from the statistics, the solution approaches the
new fully-developed state.

2.1 Numerical Methods and Algorithms

We investigate a pressure driven incompressible turbulent channel flow
(see figure 2.1) employing the Navier-Stokes equations in the dimension-
less form

∂U

∂t
+ (U · ∇)U = −∇p +

1
Re

∇2U, (2.2)

∇ · U = 0, (2.3)

where x, t, U and p are respectively the position vector, time, the veloc-
ity vector and pressure. All quantities have been non-dimensionalized by
the channel half width h and the friction velocity uτ =

√
τ/ρ where τ is

the mean wall friction, ρ is density and Reτ = uτh/ν is the friction based
Reynolds number. With this the no-slip and impermeable wall boundary
conditions at both channel walls read U(x, y = ±h, z) = 0. In the ho-
mogeneous streamwise (x) and spanwise (z) directions periodic boundary
conditions are applied and the pressure gradient in x-direction that drives
the flow is fixed to −1. The velocities in the streamwise, wall-normal and
spanwise directions are respectively denoted by U = (U, V, W).
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The first numerical code employed here uses well-established highly accu-
rate spectral methods to solve the three-dimensional time-dependent in-
compressible Navier-Stokes equations and was developed at KTH, Stock-
holm (for details see Lundbladh et al. (1999) and Skote (2001)). The code
adopts a spectral method with Fourier decomposition in the streamwise
and spanwise directions and discretization with Chebyshev polynomials
in the wall normal direction. Apart from the wall-normal integration the
numerical method is similar to the one used by Kim et al. (1987). Time
integration is performed using a third-order Runge-Kutta scheme for the
advective and forcing terms and second-order Crank-Nicolson for the vis-
cous terms. The transformation between physical and spectral space is
done by Fast Fourier Transform (FFT).

A second code has been used to perform calculations with higher numer-
ical resolution and Reynolds number (for details see Hoyas & Jiménez
(2006)). This code employing high-order compact finite differences in the
wall-normal direction provides more flexibility in the distribution of the
collocation points in this direction. Further, since it is MPI-parallelized,
more processors can be included in the computation.

The code integrates evolution equations for the wall-normal component
of vorticity ωy and for the Laplacian of the wall-normal velocity ϕ = ∇2v.
With the relations for vorticity ω and the helicity H

ω = ∇× U =
(
ωx, ωy, ωz

)
, (2.4)

H = (U × ω)− 1
2
∇ (U · U) = (H1, H2, H3) , (2.5)

the velocity-vorticity formulation of the Navier-Stokes equations can be
obtained from 1.2 and 1.1 consisting of a fourth-order equation for v, and
a second-order equation for ωy as follows:

∂ϕ

∂t
= hv +

1
Reτ

∇2ϕ , (2.6)

∂ωy

∂t
= hg +

1
Reτ

∇2ωy (2.7)

with

hv =
∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
+

(
∂2

∂x2 +
∂2

∂z2

)
H2 , (2.8)
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hg =
∂H1

∂z
− ∂H3

∂x
. (2.9)

The code adopts a spectral method with Fourier expansions in the stream-
wise x and spanwise z directions, as in the first code, but seven-point com-
pact finite differences in the wall-normal y direction.

In order to test the performance of the code, we conducted some test cases
regarding wall-time and memory requirements of the code with 128 cores
as shown in figure 2.2 on FUCHS Cluster at CSC, Frankfurt a. M. showing
a good scaling behavior.
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Figure 2.2: (a) Walltime per iteration and (b) used virtual memory as a
function of numerical collocation points for processor number
Nproc = 128.

- Reτ Lx Lz Nx × Ny × Nz ∆x+ ∆z+ ∆y+c ∆y+min
Case 1 180 2π π 512 × 257 × 256 2.2 2.2 2.2 0.01
Case 2 360 2π π 512 × 257 × 256 4.4 4.4 4.4 0.02
Case 3 720 2π π 1024 × 513 × 512 4.4 4.4 3.9 0.31
Case 4 1440 2π π 2048 × 513 × 1024 4.4 4.4 7.8 0.62

Table 2.1: Simulation parameters. Lx and Lz are the streamwise and span-
wise dimensions of the computational box normalized by the
channel half-height h. ∆y+c and ∆y+min are the dimensionless
wall-normal resolutions in the center of the channel and at the
wall, respectively.
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2.2 Simulations

We conducted direct numerical simulations of the turbulent channel flow
at four different Reynolds numbers to analyze the geometrical statistics of
the dissipation elements (see Table 2.1). In periodic horizontal directions
x and z, the numerical grid is distributed uniformly whilst the mesh is
refined in the vicinity of the wall in order to account for high turbulence
intensity created in this region. The minimum and maximum grid spacing
in the wall normal direction for each Re case are shown. Furthermore, in
Table 2.2, the numbers of grid points in the viscous sublayer near the wall
are given.

Reτ 180 360 720 1440
Points 20 14 9 7

Table 2.2: Number of points in the viscous sublayer for different Reynolds
numbers, i.e. in the range y+ < 5.
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3 Turbulent Channel Flow
Statistics

Kolmogorov’s spectral cascade theory is a milestone in the attempt to un-
derstand the theory of turbulence. But, one must not forget that the three-
dimensional homogeneous isotropic turbulence remains an idealized as-
sumption of an essentially very complex phenomenon. For a turbulent
flow to be homogeneous, spatial gradients of averaged quantities must
vanish, i.e. quantities must be invariant under translation. Isotropic tur-
bulence additionally requires that the flow is invariant under rotation and
that there is no mean flow as it would impose anisotropy. Strictly speak-
ing, of course, none of these assumptions are valid for real flows.

For further understanding of turbulence, wall-bounded turbulent channel
flow may serve as a more realistic case (see figure 2.1). Its relatively simple,
yet realistic geometry allows for a theoretical investigation of near-wall
turbulence.

Wall-bounded turbulent flows exhibit certain characteristic regions in the
wall-normal direction, based e.g. on the functional form of the mean pro-
file, where different turbulence phenomena are dominant to different de-
grees. Hence, all statistical quantities of these flows are inhomogeneous in
the wall-normal direction.

For the present case of a pressure driven turbulent channel flow, a canon-
ical member of this type of flow, four layers exist: a viscosity-dominated
sublayer, a buffer layer where production of turbulent kinetic energy and
the turbulence intensity itself reach their maximum, a logarithmic layer
where production and dissipation are of the same order of magnitude and
a core region, often denoted as defect layer Pope (2000).

Though a clear cut limit between layers is somewhat arbitrary, we now
adopt the following classification:

• viscous sublayer: y+ ≤ 5

• buffer region: 5 < y+ < 30

• log region: y+ ≥ 30, y/h < 0.3



• core region: 0.3 ≤ y/h < 1

where y+ = yuτ/ν is the dimensionless distance from the wall.

3.1 Velocity Profiles
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Figure 3.1: Mean velocity profile and its wall-normal gradient.

The mean velocity distribution is shown in figure 3.1 for different Re along
the wall-normal direction y/h. All curves appear to be satisfactorily sym-
metrical as expected. Starting from the wall boundaries, where velocity
vanishes, there is a limited near-wall region with very large gradients
dU/dy, i.e. mean shear. Mean shear is closely related to the anisotropy
of wall-bounded flows. With increasing Re these derivatives become even
larger. Moving away from the wall, they continue to decrease further to
become zero at the centerline of the channel, after which the same process
with reversed sign comes into effect, as can be seen from the lower picture.
Here, UC denotes the centerline velocity and is used to obtain an alterna-
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tive Reynolds number ReC. By analogy, Reb is the bulk Reynolds number
based on the bulk velocity Ub where

Ub =
1

2h

∫ h

−h
U(y)dy . (3.1)

As in the case of the friction Reynolds number Reτ, the last two Re are re-
lated to the channel half width h and the kinematic viscosity ν. According
to Dean (1978), the correlation between the mean centerline velocity and
the bulk mean velocity reads as follows:

UC

Ub
= 1.28 Re−0.0116

b . (3.2)
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Figure 3.2: Universal velocity profile versus distance from the wall, ex-
pressed in wall units.

In figure 3.2 the mean velocity profiles are given in wall units, i.e. non-
dimensionalized by the friction velocity uτ. It is striking how all velocity
profiles collapse near the wall, even though the Re are far apart. This self-
similar behavior can be derived analytically through dimensional analysis
(see e.g. Bradshaw & Huang (1995)). Under the assumption of plane,
smooth wall boundaries the mean velocity can be expressed in terms of
the wall shear stress τw, the wall-normal distance y, fluid density ρ and
viscosity µ. The wall-normal region in which this relation holds is called
the inner layer, the rest being the outer layer.

34



U+ =
U

uτ
= f

(uτy

ν

)
= f

(
y+
)

. (3.3)

In the very near-wall region, viscosity effects are dominant. Here, equation
3.3 yields a linear pattern.

By substituting ∂U/∂y for U, we obtain

∂U

∂y
=

uτ

y
g
(
y+
)

. (3.4)

Taking into account that the influence of the viscosity in far-wall regions is
negligible and, thereby, g(y+) is transformed into a constant, namely the
inverse of the Kármán constant (1/κ).

∂U

∂y
=

uτ

κy
. (3.5)

Finally, after integrating equation 3.5 one arrives at

∂U

∂y
=

1
κ

ln
uτy

ν
+ C or, (3.6)

U+ =
1
κ

ln y+ + B , (3.7)

with κ ≈ 0.41 and B ≈ 5.1. Besides the curves for different Reτ, figure 3.2
displays the linear scaling law in the viscous sublayer (3.3) and the loga-
rithmic law (3.6), also known as the log-law. The log-law is a popular tool
in describing the inner region of plane wall-bounded flows, such as the
channel, pipe and boundary layer flows. However, some authors raised
concerns regarding the existence of the logarithmic law, or the function
g(y+) being independent of Re. Barenblatt (1993), for instance, favors a
power law stating that the assumption of a velocity gradient independent
of Re in equation 3.4 may not be suitable.

Moreover, there are also works (e.g. Zagarola, Perry & Smits (1997)) sug-
gesting that both the logarithmic law and the power law are justified in
this region, albeit separated from each other. Based on experiments of
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smooth turbulent pipe flow measured in the Princeton University Super-
Pipe, the authors predict a power law following the buffer layer and a log-
arithmic law in the subsequent overlap region above. Contrary to Baren-
blatt (1993), they conclude that a logarithmic overlap region does exist at
sufficiently high Re, indicating a complete similarity in this region.

This finding is supported by Oberlack (2001) who derived both scaling
laws directly from Reynolds-averaged Navier-Stokes equations using the
Lie symmetry group approach.

Nonetheless, the logarithmic law is generally accepted by the turbulence
community and is also adopted in the present work. In accordance with
Kim et al. (1987), who notes that the logarithmic region exists even at the
lowest Reynolds number of Reτ = 180, in figure 3.2 our numerical exper-
iments show a good agreement wit the logarithmic law. Their agreement
with the log-law is particularly pronounced in the case of higher Re.

According to the velocity defect law of von Kármán (1930), the difference
between the velocity at the centerline UC and the local mean velocity U,
normalized by the friction velocity uτ, is a function of the distance from
the wall such that

UC − U

uτ
= G(y+) . (3.8)

Equating the velocity profiles in the velocity defect law and the law of the
wall (equation 3.3) to each other yields

UC − U

uτ
= −1

κ
ln
(y

h

)
+ B1 . (3.9)

This can be seen as an alternative approach to derive the logarithmic law.
Unlike in the log-law, the integration constant B1 is flow-dependent.

The Kármán constant can be obtained from equation 3.7 as

κ =

(
y+

dU+

dy+

)−1

. (3.10)

It is expected that κ will exhibit a constant course in the validity region of
the log-law. To review this statement, in figure 3.3 (a) we plot this quantity
as a function of non-dimensional wall-distance y+ at different Re. As can
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Figure 3.3: Log-law Kármán constant κ (a) and power law constant β (b).

be seen, all curves approximate the value of 0.41 in the region assigned to
the logarithmic layer, though to different degrees.

The counterpart is the examination in respect to possible power law evi-
dence. For this, 3.3 (b) shows the quantity β where

β =
y+

U+

dU+

dy+
. (3.11)

For the power law, i.e. U+ = F(y+)n, to be a better approach, β needs to
feature a constant stage of n in that region. The plot, however, reveals no
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objective evidence to suggest that a power law should be preferred over
log-law.

In conclusion, it can be stated that it is well justified to adopt the logarith-
mic law.

3.2 Turbulence Intensities

Figure 3.4 shows the root mean square (urms/uτ, vrms/uτ, wrms/uτ) of
velocity fluctuations or, in other words, the turbulent intensity profiles
versus dimensionless wall-normal distance y+. A strong dependency on
Reynolds number is observed for all three components increasing with
Re. It is interesting to note that all streamwise fluctuations u+

rms reach
a maximum within the near-wall buffer layer (5 < y+ < 30) before a
sudden decrease. Despite major gaps between the various Re, the pro-
files of u+

rms collapse nicely in this layer indicating a scaling with inner
variables. Mochizuki & Nieuwstadt (1996) find that the peak value of
the streamwise Reynolds stress is an essentially Re-independent constant
u2

max/u2
τ = 7.34. This is in good agreement with our results (u+

max ≈ 2.7),
although minor deviations can be detected with respect to Re. The loca-
tion of the maximum in terms of y+, however, may be weakly dependent
on Re, albeit always in the buffer layer.

This is rather different from the behavior of u+
rms if the wall distance y

is not expressed in wall units, but rather with channel half height h (see
figure 3.5). Besides the viscous sublayer, there is a strong Re impact on the
profiles up to the channel core region (y/h = 0.3). The location of the peak
is influenced by the Reynolds number. For higher Re, it is shifted towards
the wall boundaries alongside with the buffer layer.

Moving away from the wall, namely in the core region of the channel,
the curves of all velocity components approach each other for different
Re as illustrated in figure 3.5. Note that in the case of u+

rms the collapse
is particularly well, especially for the two higher Re indicating a universal
character. It can be assumed that this collapse is a high Re limit (see Moser,
Kim & Mansour (1999)) where rms profiles scale linearly with the wall-
normal distance y/h in the outer region 0.2 < y/h < 0.85, except for some
deviations in the low Re case.

The Re effect is more apparent for the wall-normal and spanwise velocity
components. In contrast to u+

rms, there is no indication for the existence of
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Figure 3.4: Turbulent intensity profiles normalized with wall variables
(uτ, ν/uτ).
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Figure 3.5: Turbulent intensity profiles versus wall-normal distance.
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a quasi constant peak value for different Re. Figures 3.4 and 3.5 illustrate
that both inner and outer scaling are unable to attain self-similar profiles in
the overlap region, including the logarithmic layer. Instead, it is justified
to adopt the viscous length scale ν/uτ for the inner region and the channel
half height h for the outer flow of the channel.

Furthermore, the normal component of the velocity decreases much faster
than the horizontal velocity components. Hence, the flow motion very
close to the wall boundaries takes place preferably in horizontal directions
x, z parallel to the wall.

3.3 Energy Dissipation Rate

Owing to the anisotropic, inhomogeneous character of wall-bounded tur-
bulence, the normalized profile of the energy dissipation rate (equation
1.10) ǫ+ = ǫν/u4

τ in figure 3.6 displays a strong impact of the distance
from the wall. In contrast to homogeneous flows, in channel flow the con-
tribution of the three velocity components is not identical as is evident
from figures 3.4, 3.5. In fact, the influence of the streamwise component is
dominant. The maximum amount of energy loss occurs close to the wall,
i.e. in the viscous sublayer up to y+ < 5, where viscous effects are most
influential. The peak value of ǫ+ is found to be in the range 0.165 to 0.251
and tending to an asymptotic value with increasing Reynolds number as
reported in Shih & Lumley (1993). This is in good agreement with present
results. Away from the wall the dissipation rate decreases fast before ris-
ing somewhat around to the buffer layer which is evident from the small
bump. This is best observed in the low Re case, but weakens for higher
Re.

Remarkable differences are apparent regarding the overall shape of the
profiles. With increasing Re the dissipation apparently decreases in the
outer region of the flow while increasing in near-wall regions, namely in
viscous and buffer layers. In the channel core the different dissipation
profiles become very small approaching each other towards the centerline.

Equation 1.10 for the energy dissipation rate involves a total of nine gradi-
ents of the velocity fluctuations in all three dimensions. In the presence of
inhomogeneous flows the contribution of each gradient is different along
the channel height. To illustrate this, figure 3.7 depicts normalized root-
mean-square values of the velocity derivatives with respect to the wall
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Figure 3.6: Normalized energy dissipation rate across the wall-normal di-
rection of the channel.

distance for the highest Reτ = 1440 case. Results at Reτ = 720 show sim-
ilar behavior. Black, red and blue curves represent the gradients of the
streamwise velocity u, wall-normal velocity v and spanwise velocity w,
respectively.

As expected, there are enormous differences between the components span-
ning orders of magnitude. The plots give also insight to the interesting
question as to which gradients are dominant within the budget of ǫ. The
gradient of the spanwise velocity w with respect to wall distance y appears
to be the leading part exceeding all other gradients by far. This is followed
by the wall-normal derivative of the streamwise velocity component u.
The contributions of both, in turn, exceed that of the wall-normal gradient
of v such that,

∂w

∂y
>

∂u

∂y
>

∂v

∂y
. (3.12)

∂yv is rather of the order of derivatives with respect to the streamwise
direction x. Latter three derivatives (∂xu, ∂xv, ∂xw) are seen to be more
or less comparable with each other. Velocity gradients with respect to the
spanwise direction z seem to be least influential as suggested by dotted
curves.

42



10
-6

10
-5

10
-4

10
-3

 0  0.2  0.4  0.6  0.8  1

δxu
+

δyu
+

δzu
+

δxv
+

δyv
+

δzv
+

δxw
+

δyw
+

δzw
+

(
∂jui

)+
rms

y/h

Figure 3.7: Normalized rms velocity gradients along wall-normal direc-
tion.

Roughly speaking, one can argue that wall-normal derivatives are highest,
followed by the streamwise and spanwise gradients (∂yui > ∂xui > ∂zui).

A more complete hierarchy reads as follows,

∂w

∂y
>

∂u

∂y
>

∂v

∂y
,

∂ui

∂x
>

∂u

∂z
>

∂v

∂z
,

∂w

∂z
. (3.13)

Another important observation is the behavior in relation to the distance
from the wall. Similar to the profile of ǫ, all gradients attain maximal val-
ues at the wall and decrease while moving away from the wall.

Apart from the energy dissipation rate, there are also other turbulent quan-
tities that are defined by all or some of these derivatives. Such quantities
include, for instance, the strain rate, vorticity, enstrophy and the second
invariant of the velocity gradient tensor, some of which will be discussed
in chapter 4.
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4 Instantaneous Fields

Instantaneous turbulent fields allow the study of interesting details closely
related to the geometrical structure of turbulent patterns. There are many
efforts to extract information about the behavior and the nature of these
spatial structures. Are they simply chaotic, or do they follow an ordered
structure? What is the role of the wall-induced anisotropy in their distri-
bution? Equally large are the numbers of approaches to identify turbulent
structures from a given instantaneous field.

Vortex identification plays a key role in characterizing organized struc-
tures. However, first one needs to provide a consistent definition of a spa-
tial pattern, called vortex. Despite its chaotic nature, turbulence is well
known to contain coherent small-scale structures making themselves ap-
parent through non-Gaussian intermittent behavior.

4.1 Vorticity

For the identification of small-scale turbulent structures, vorticity ω is a
useful quantity which is defined as the curl of the velocity vector.

ω = ∇× U

=




∂w
∂y − ∂v

∂z
∂u
∂z − ∂w

∂x
∂v
∂x − ∂u

∂y


 (4.1)

The vector ω can be understood as the rotation of a fluid element around
its own axis. In analogy to the Navier-Stokes equations (1.2), vorticity is
often used to describe the fluid motion instead of the primitive variables
such as pressure and velocity through the vorticity transport equation.

Dω

Dt
= ω · ∇U + ν∇2

ω (4.2)



Vorticity appears as vortex tubes in local regions with high intensity com-
posed of vortex lines which are tangent to the local vorticity. The circu-
lation around such a tube, which is a measure for its strength, remains
constant due to the divergence-free nature of vorticity.

4.2 Second Invariant of the Velocity Gradient

Another important quantity in aiding the study of turbulence dynamics is
the velocity gradient tensor Aij ≡ ∂ui/∂xj which determines the stretching
and rotation rates of material lines, surfaces and volumes. It is relevant to
important phenomena such as the vortex stretching, scalar mixing, surface
propagation and small-scale evolution in fluid flows.

The tensor can be decomposed into a symmetric rate-of-strain tensor and
an skew-symmetric rate-of-rotation tensor, respectively, as

Aij = Sij + Wij , (4.3)

where

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.4)

Wij =
1
2

(
∂ui

∂xj
−

∂uj

∂xi

)
. (4.5)

For Sij and Wij, the invariants QS, QW , RS can be derived (see Chong, So-
ria, Perry, Chacin, Cantwell & Na (1998)) which are non-zero with RS =
−1/3(SijSjkSki).

The second invariant Q = QS +QW is the most important since it is closely
linked to strain and vorticity with

QS = −1
2

SijSji (4.6)

QW =
1
2

WijWji . (4.7)

Note that QS is always negative whereas QW is positive. With this in mind,
the second invariant for incompressible flow yields,
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Q =
1
2

(
WijWji − SijSji

)

= −1
2

∂ui

∂xj

∂uj

∂xi
. (4.8)

Taking a closer look, one can notice that the components of Q are related
to the enstrophy ω

2 and the dissipation rate of the kinetic energy such that

ω
2 = 4 QW , (4.9)

ǫ = −4 ν QS . (4.10)

Hence, the second invariant Q is directly linked to both these well-known
turbulence quantities as follows

Q =
1
4

(
ω

2 − ǫ

ν

)
. (4.11)

Q can be positive or negative depending on the local balance between the
vorticity and dissipation as illustrated in equation 4.11. As a consequence,
local areas of high vorticity will result in high positive values of Q. Con-
trarily, large negative values of Q will be located in regions of high dissi-
pation intensity. Different levels of Q represent different types of flow pat-
terns. This is therefore a quantity well-suited to identify turbulent struc-
tures.

Accordingly, we plot the second invariant of the velocity gradient tensor Q
together with other turbulent quantities in order to observe the interplay
between them. Furthermore, the influence of the Reynolds number Re and
the wall boundary is examined.

In figure 4.1 Q alone is plotted in the channel showing two large positive
and negative levels at three different Re. The quantities are normalized
with inner layer scaling variables. It is interesting to note that regions
with large positives values of Q exhibit tube-like structures whereas large
negative values appear to be stretched sheets. Both, negative and positive
high intensity regions are located in the immediate vicinity of each other
indicating large gradients.
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Moreover, intense vortex tubes and vortex sheets are clustered with each
other in some areas attesting to coherence. This is well known for high Re.
However, there is evidence for such tendency even in the lower Re case
(top figure). Here, mostly quasi-streamwise vortices are present whose
wall-normal core location is in the range y+≈ 20 − 40 as also reported in
Tomkins & Adrian (2003). These vortices are slightly tilted from the wall.

In general, vortex structures are under strong influence of Re. While, for
instance, there exist fewer but much longer vortex tubes in the low Re case
for increasing Re a larger quantity of structures are created that are con-
siderably smaller. Furthermore, as Re increases, the type of the structures
also change. This means that in addition to the streamwise structures,
arch-type vortices are introduced.

So-called hairpin vortices which were proposed first by Theodorsen (1952),
consisting of two quasi-streamwise legs and a spanwise head part (also
known as horseshoe vortices) can also be seen. These vortex structures are
organized in hairpin packets aligned in the streamwise direction. Evolv-
ing along the streamwise direction, they spawn new hairpin vortices. Here-
by, these structures are being stretched streamwise by the mean shear
whereas their heads are lifted away from the wall due to self-induction.
They are believed to be closely related to the quasi-streamwise vortices
such that the latter represent the legs of the hairpin vortices. Hairpin vor-
tices are not restricted to regions very close to the wall, but can, in fact,
grow and be lifted up to logarithmic layer and above. Although often il-
lustrated symmetrically in idealized sketches, they are usually asymmetric
and even one-sided.

In general, vortices near the wall are smaller compared to those in the
outer layer of the flow. Tomkins & Adrian (2003) reports that mean values
of spanwise length scales increase linearly with distance from the wall.
This is similar to our findings in the context of Dissipation Element length
scales as will be discussed later.

In figure 4.2, high- and low-speed streaks (blue and green) of the stream-
wise velocity and quasi-streamwise vortices (brown) are displayed. The
isosurface of Q+ = 0.015 is brown as in previous figure 4.1. It is ob-
served that quasi-streamwise vortices are in close proximity to the low-
speed streaks. The latter are more elongated than the high-speed streaks.
Low-speed streaks are generated by the induction of the hairpin vortex
legs. High- and low-speed streaks appear to be different regarding their
size, i.e. high-speed streaks are markedly shorter. Similar to Q, an increase
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in Re results in increased irregularity of the shape of the velocity streaks
on the one hand, and causes shorter streaks on the other.

According to equation 4.11, vorticity plays an important role in the budget
of Q. To further investigate this assertion, both quantities are shown in
normalized form with high amplitudes (see figure 4.3). One observes that
tube-like vortices of Q with large positive amplitudes emerge mainly near
vorticity-dominated regions close to the wall. Consequently, regions of
strong strain will lead to large negative values of Q in the form of stretched
sheets.

One disadvantage of using vorticity is that tube-like vorticity structures
can only be obtained by displaying vortex lines. The radius of such vortex
tubes is typically of the order of Kolmogorov length scale. The relationship
between Q, i.e. quasi-streamwise vortices, and vortex lines is exposed in
figure 4.4 exemplarily for three vortices. Interestingly enough, it can be
deduced that vortex lines are clearly aligned with the direction of the re-
spective Q vortex in its core. Apparently, this only applies to the core,
where the magnitude of Q is high. One can see how the vortex lines enter
the tubes and move inside the core before exiting again in lower intensity
regions. They are well-organized within the vortex core but diverge grad-
ually while moving away. Hence, at low vorticity regions vortex lines are
highly random as is apparent from the figure.

In literature there is a large number of different vortex classifications. How-
ever, there is still no consensus as to which vortex structures are the most
significant with respect to turbulence dynamics. However, what they all
have in common is the arbitrary character. Since the extent of these struc-
tures arbitrarily depends on the chosen iso-surface level, a unique decom-
position of the turbulent field into such vortices is not possible.

In fact, there are other approaches to overcome this difficulty such as the
Dissipation Element method which is the main subject of the present work
and will be presented later.
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Reτ =180

Reτ =360

Reτ =720

Figure 4.1: Normalized second invariant of the velocity gradient Q for
different Re (Q+= −0.015, light blue; Q+= 0.015, brown).
Q+=±0.07 is chosen for Reτ = 720. The flow goes from left to
right.
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Reτ =180

Reτ =360

Reτ =720

Figure 4.2: The second invariant Q and streamwise low- and high-speed
streaks for different Re (Q+= 0.015, brown; u+=−3.7, green;
u+=3.7, blue). Q+=0.07 is chosen for Reτ =720.
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Reτ =180

Reτ =360

Reτ =720

Figure 4.3: Normalized second invariant Q and vorticity magnitude for
different Re (Q+= 0.015, brown; ω+= 0.6, gray). Q+= 0.07 is
chosen for Reτ =720
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Figure 4.4: Interaction between Q and vortex lines.
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5 Length Scales in Turbulent
Channel Flow

As discussed before, turbulence produces structures with a wide-ranging
spectrum of length. According to the classical theory of turbulence, this
spectrum is limited by the integral length scale L from above and the dis-
sipative Kolmogorov length η from below, respectively.

In the region far from the largest and the smallest scales local motions are
largely independent of boundary influences and viscosity. Among these
scales, the integral length scale is an estimate of the largest turbulent scales
which corresponds to the size of the largest eddies and is of the order of the
channel height in our case. Integral length scales are usually anisotropic,
in other words, they are different with respect to the sense of direction
as for any inhomogeneous flow. Since the characteristic velocity of these
eddies is of the same order of magnitude as the mean fluid velocity, their
Reynolds number is large and the direct effect of the viscosity can be ne-
glected in a statistical sense. As stated earlier, energy is injected into the
flow at very large scales. According to the energy cascade model large ed-
dies will break up due to their instability while transferring the energy ex-
tracted from the mean flow to smaller eddies until the stage of dissipative
scales is reached where energy dissipates into heat due to viscous effects.
This is true for any fluid flow at sufficiently high Reynolds number.

Obukhov (1949) and Corrsin (1951) independently extended the second
Kolmogorov hypothesis to the process of turbulent scalar mixing, assum-
ing that many aspects of turbulence are universally similar, although the
scalar hypotheses are complicated by the effects of Prandtl number,

Pr =
ν

D
, (5.1)

where D is the molecular diffusivity of the scalar. This provides a new
length scale Lc which is analogous to the definition for η. The case where
Prandtl number Pr ≤ 1 yields the Obukhov-Corrsin inertial-diffusive scale
as



Lc =

(
D3

ǫ

)1/4

. (5.2)

The case with Pr = 1, and accordingly ν = D, leads to the fact that the
Obukhov-Corrsin length scale is equal to the Kolmogorov scale.

For large Pr numbers with weakly diffusive scalars one obtains the Batch-
elor scale

LB =

(
D

γ

)1/2

=
η√
Pr

, (5.3)

where γ = (ǫ/ν)1/2 is the small-scale strain rate. For a given flow, the
Batchelor scale decreases with increasing Pr.

Beside these, considering pure hydrodynamic turbulence there is also the
intermediate Taylor length scale λ, with η ≪ λ ≪ L. This scale is pre-
ferred in the study of homogeneous turbulence and is defined as

ǫ = 15ν
u′2

λ2 , (5.4)

where u′ is the rms value of velocity fluctuation. Additionally, this is also a
good qualitative measure for anisotropic turbulence since the contribution
of the anisotropic part is very small. This expression yields

λ =

(
10ν

k

ǫ

)1/2

, (5.5)

where k = (3/2)u′2 is the turbulent kinetic energy associated with large
scale eddies. The physical meaning of the Taylor scale is still a subject of
discussions. Although it has no distinct physical interpretation, it can be
considered as the distance that a large eddy advects a small Kolmogorov
eddy during its turn-over time tη = (ν/ǫ)(1/2). It is assumed that the
inertial range with energy balance is extended from L to λ where viscosity
effects start to gain influence towards η.

Regarding turbulent length scales, the main focus of the present work is
the question of how they are affected by wall-bounded shear flows. While
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Figure 5.1: Kolmogorov length scale η as a function of wall-normal dis-
tance.

homogeneous turbulence yields solely an integral value for the entire tur-
bulent field, wall-bounded flows, e.g. channel flow, possess inhomoge-
neous length scale profiles as functions of the wall distance y as a results
of strong mean shear. This is due to the no-slip condition inducing a strong
anisotropy and mean velocity gradients along the channel height to differ-
ent degrees which is responsible for the anisotropic behavior of the statis-
tics.

5.1 Kolmogorov Length Scale

To begin exploring the influence of the walls, we recall the definition of
the Kolmogorov length scale

η =

(
ν3

ǫ

)1/4

,

which includes the dissipation rate of the kinetic energy ǫ (equation 1.10).
Figure 3.6 testifies to the strong dependence of the dissipation rate on the
wall-normal direction y. Thus, η will feature a wall-normal dependency
as well. In fact, the profiles for η at different Reynolds numbers in pic-
ture 5.1 approve this expectation. All curves show a local maximum at
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the position around the near-wall buffer region where the corresponding
ǫ profile exhibits a bump which disappears for high Re. Approaching the
outer flow region, η scales linearly with the distance y between the point
y/h ≈ 0.2 and the channel core region (y/h ≈ 0.8). In the core region,
however, it tends asymptotically to a constant centerline value dependent
on the Reynolds number Re. Hence, in relation to the wall-normal direc-
tion, three areas can be identified;

1. a near-wall region with no clear scaling property,

2. an intermediate region with linear scaling (0.2 . y/h . 0.8),

3. a nearly constant core region.

Furthermore, η declines when Re is increased throughout the entire chan-
nel height. It can be asserted that both the wall-normal distance y and Re,
exert a strong influence on Kolmogorov length scale, η(Reτ, y).

Continuing further, we derive analytical relations for the latter two scaling
regions with definable scaling properties. The linear scaling region can be
approximated as follows,

ηlin(Reτ, y) /h ≈ 0.62(
Re0.79

τ + 13
) + 0.72(

Re0.78
τ − 4.4

)
(y

h

)
. (5.6)

As can be seen from picture 5.2, equation 5.6 is a good approximation for
the linear region. In addition to our results, an even higher Reynolds num-
ber case with Reτ = 2003 from Hoyas & Jiménez (2006) is shown to evalu-
ate the quality of the approximation 5.6 indicating a very good match.

Similarly, an expression for the peak value of the Kolmogorov length at
the centerline of the channel has been found as stated below (filled circles
in figure 5.2). Fixing the position y at the centerline, η becomes a function
of Re only, thus, resulting in the rather simple relation,

ηCL(Reτ, y=yCL)/h ≈ 1.0 Re−3/4
τ . (5.7)

Note that the centerline position is the point with the least shear, i.e. being
closest to the homogeneity in a turbulent Poiseuille flow. The knowledge
of the size of Kolmogorov scale is of particular interest for the purpose of
grid spacing estimation ∆x/η. In wall-bounded flows, the distribution is
usually not equidistant, i.e. denser near the wall, in order to account for
the high wall-normal gradients mentioned before. Equations 5.6 and 5.7
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Figure 5.2: Kolmogorov length scale η compared with the approximations
for the linear region and the centerline (filled circles). The data
for Reτ = 2003 was taken from Hoyas & Jiménez (2006).

could be used to estimate the number and distribution of the grid points
especially with respect to the wall-normal direction allowing a more effi-
cient grid resolution.

5.2 Taylor Length Scale

Taylor length λ, as defined in equation 5.5, is depicted in figure 5.3, again
as a function of y for different Reynolds numbers. Wall influence is present
in this case as well. A strong linear rise at the origin is followed by a slower
increase up to the channel core where λ finally takes a constant value.

In homogeneous flows, Reynolds number based on the Taylor length scale,
Reλ, is the relevant parameter to characterize the flow as opposed to the
friction Reynolds number Reτ in channel flow. This makes it difficult to
compare these different flow regimes with respect to Re, since Reλ, too,
is a function of y. However, considering the single value of the Taylor
length scale at the channel centerline associated with the mean flow, a cor-
responding Reλ at the centerline can be obtained which allows a rough
comparison of both flows. In this sense, the Taylor micro-scale λ(Reτ) at
the centerline is calculated.
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Figure 5.3: Taylor length scale λ along wall-normal direction. Filled cir-
cles are estimates of centerline values according to equation
5.8.

λCL(Reτ, y=yCL)/h ≈ 11
4

Re−1/2
τ . (5.8)

Together with the definition for the Taylor Reynolds number,

Reλ =
λ (2/3k)1/2

ν
, (5.9)

based on Taylor length λ, equation 5.8 yields a direct approximative rela-
tion between the two important Reynolds numbers as follows.

(Reλ)CL =
11h

4 ν

(
2 k

3 Reτ

)1/2

CL

. (5.10)

Compared to the Kolmogorov length, Taylor length scale is an order of
magnitude larger. The relationship between the two length scales at the
centerline yields a scaling as function of Reynolds number as noted below,

(
λ

η

)

CL

=
11
4

Re1/4
τ . (5.11)
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6 Dissipation Element Analysis

Addressing the problem of real-life turbulence from a purely mathemati-
cal point of view is not productive. Instead, physical properties of a tur-
bulent flow may serve as an approach to characterize turbulence with its
chaotic nature on the one hand, and the coherence on the other. One
straightforward approach is the idea of reducing the complexity of the
system by decomposing the turbulent flow field into smaller spatial units
which are easier to investigate. The statistics obtained through such a de-
composition would allow for an assessment of the question as to whether
and how these structures are correlated.

The theory of hierarchy of turbulent scales (Richardson (1922), Kolmogorov
(1941)), which assumes the turbulent flow to be composed of spatial struc-
tures of different size, is a similar idea. However, in this context this cas-
cade bears a distinct disadvantage, namely the arbitrariness in the defini-
tion of a turbulent eddy. In fact, a natural definition of the geometrical
shape of an eddy is what is needed in order for the decomposition to be
non-arbitrary. With such a natural decomposition, the flow field could
be partitioned into sub-units with unique geometry stemming from the
physics or, in other words, determined by the turbulent field itself.

In the past there have been many approaches in this regard. For instance,
based on the pressure p and the second invariant of the velocity gradient Q
(equation 4.8) discussed in chapter 4, Wray & Hunt (1990) subdivided the
turbulent flow field into four types of space-filling regions. Nevertheless,
the decomposition of the field with this method remains artificial since the
displaying isosurface levels are chosen arbitrarily which can also be seen
from our results in figures 4.1 et seq.

A rather different but complementary way to classify and characterize tur-
bulent structures is to examine critical points of the turbulent field. C. Gib-
son Gibson (1968) was the first to analyze in detail these properties and
the behavior of points with zero-gradient and minimal gradient surfaces
in a passive scalar φ in a turbulent field. His motivation was to obtain
physical and geometrical information about the smallest scales and their
features in a turbulent scalar field. These are primarily determined by the



number and distribution of critical points where the scalar gradient vector
vanishes, i.e

∇φ ≡ 0 . (6.1)

Later, Gibson (see Gibson (1968)) also analyzed the mechanism by which
extremal points are generated. Convective motion alone is unable to gen-
erate extremal points, since without diffusion isoscalar surfaces in a tur-
bulent field will usually follow the fluid motion. Only a diffusion velocity
of the same order of magnitude as the local convective velocity is able to
restore the iso-scalar surfaces and to generate extremal points Wang & Pe-
ters (2006). From the conclusion that in scalar turbulent fields the local
convective velocity is of the order of the Kolmogorov velocity, and equat-
ing it with the balancing diffusive velocity, Gibson (1968) concluded that
extremal points are generated at scales of the Obukhov-Corrsin length.

Furthermore, Gibson (1968) supposed that the production of zero-gradient
points by direct distortion in regions of uniform scalar gradient is due only
to eddies larger than the Obukhov-Corrsin scale. For the case Pr ≫ 1, the
latter conclusion implies that any scale in the turbulent field is capable of
generating new extremal points from regions of uniform scalar gradient
since those length scales are the smallest. If Pr ≪ 1, the Obukhov-Corrsin
length scale is larger than the Kolmogorov length scale. Then, at the level
of smallest scales, velocity perturbations are too weak to generate new
zero-gradient points.

Gibson concluded that the dominant physical mechanism by which turbu-
lence produces the small-scale features of scalar fields is the local stretch-
ing of small gradient regions. This mechanism should equally apply to
strongly diffusive scalars, where the scalar diffusivity is much larger than
the viscosity, as well as to weakly diffusive scalars, where the viscosity is
much larger than the scalar diffusivity. Considering a 1D model problem,
he pointed out that the number of maximum and minimum points must
be equal whereas in 2D their sum equals the number of saddle points.

In 3D no theory is known but in the present DNS data we found that the
number of maximal and minimal points are of the same order of magni-
tude for a turbulent channel flow as shown in a companion publication
Aldudak & Oberlack (2009). However, a simple relation between critical
points does not exist.
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Figure 6.1: Schematic sketch of DE.

The present work is inspired by the work of Gibson (1968) and Wang &
Peters (2006) who analyzed the small-scale statistics from passive scalar
fields of homogeneous shear turbulence obtained from direct numerical
simulation (DNS) by means of the dissipation element (DE ) method. The
notion refers to the tracking of gradient trajectories starting from every
point in the directions of ascending and descending scalar gradients until
local minimum and maximum points of the fluctuating scalar field are
found (for details see Wang & Peters (2006)). The set of all points which
lie on the gradient trajectories leading to the same pair of extremal points
defines a dissipation element. Figure 6.1 shows a simplified illustration of
a dissipation element for the 3D case. In figure 6.2, a dissipation element
is illustrated using the streamwise velocity field.

Gradient trajectories, which travel along the normal direction ~n = ∇φ/|∇φ|
of isoscalar surfaces in 3D, can be traced in any scalar field φ(x, y, z) as long
as the field is smooth. The trajectory is uniquely determined everywhere
except at critical points, where the gradient ∇φ vanishes, marking the end-
ing points of the DE. The Euclidean distance ℓ between its extremal points
and the absolute value of the scalar difference ∆φ at these two points are
chosen to parameterize the geometry of a dissipation element.
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Figure 6.2: Example of DE.

DE are space-filling which means that any turbulent scalar field can be
completely decomposed into such elements without any blank regions.
This allows the reconstruction of certain statistical quantities of turbulence
rather different from classical length scale concepts in turbulence theory,
such as those based on Kolmogorov or integral length scales as discussed
above.

Although these spatial structures are far from being regularly shaped, the
choice of the above-mentioned parameters is reported to be appropriate by
Wang & Peters (2006). We, therefore, adopt the same classification here.
The authors postulate an integro-differential evolution equation for the
marginal pdf assuming a Poisson process for the cutting of linear elements
and a reconnection process due to molecular diffusion. The conditional
mean of the scalar difference is shown to closely follow the inertial-range
Kolmogorov scaling over a large range of length scales which is supported
by our findings. Later, Wang & Peters (2008) found that while the condi-
tional mean difference follows the inertial range Kolmogorov scaling for
the passive scalar field, this is not the case for the components of the ve-
locity.

In the latter work, the dissipation element methodology is extended to
other fields in turbulence. The length scale distribution function for var-
ious turbulent fields is compared with the model equation. From their
findings they concluded that the mean distance between extremal points,
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which corresponds to the mean length of the dissipation elements, is of
the order of the Taylor length λ. It is further reported that the distribution
function is essentially independent of the Reynolds number. Our findings
in Aldudak & Oberlack (2009) and Aldudak & Oberlack (2012) as well
as the present work strongly support both these conclusions (figures 6.4,
6.16).

In the following, Dissipation Element analysis will be conducted to inves-
tigate the geometric structure of turbulent flow patterns and their statis-
tics for various scalar fields and Reynolds numbers in the case of different
channel flow configurations. The emphasis is on the plane turbulent chan-
nel flow study which will be augmented by Lie symmetry group meth-
ods to find invariant functional solutions. Additionally, turbulent channel
flows with wall-normal rotation Ωy Mehdizadeh (2010), spanwise rotation
Ωz Weller (2007) and wall transpiration Avsarkisov, Oberlack & Khujadze
(2011) will be examined.

6.1 Plane Turbulent Channel Flow and Lie Group
Analysis

Lie symmetry methods have been proved to be extremely important in de-
riving scaling laws in turbulence. This was shown by Oberlack in Ober-
lack (1999), Oberlack (2000), Oberlack (2001) by directly deriving turbulent
scaling laws from principles only employing the infinite series of multi-
point correlation (MPC ) equations. In the frame work of Lie symmetry
theory, these special solutions are called invariant solutions. In the lat-
ter publications, he showed that in canonical geometries, e.g. in channel
flows, large-scale quantities, such as the logarithmic law of the wall, are
exact solutions of the MPC equations.

Recently (see Oberlack & Rosteck (2010)), these ideas have been consid-
erably extended due to the discovery that the MPC equations admit an
even wider set of symmetries compared to the set of groups which are im-
plied from the original set of equations, i.e. the Euler and Navier-Stokes
equations. Specifically, a new scaling group and translational groups of
the correlation tensors of all dependent variables have been discovered.
These new statistical groups have important consequences for our under-
standing of turbulent scaling laws, which may be exemplarily revealed
by two examples. First, it has been demonstrated that the logarithmic law
fundamentally relies on one of the new translational groups. Further, with
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these new symmetries at hand all higher MPC, which include classical
one-point quantities such as the turbulent stresses, may be derived. Sec-
ond, it was demonstrated that the recently discovered exponential decay
law of isotropic turbulence generated by fractal grids (see Hurst & Vas-
silicos (2007), Seoud & Vassilicos (2007)) is only admissible with the new
statistical scaling symmetry.

In particular, the latter result of an exponential decay cannot be derived
from the two classical scaling groups implied by the fundamental equa-
tions of fluid motion, which has dictated our understanding of turbulence
decay since the early 1930s, as implicated by the von-Kármán-Howarth
equation.

Employing commutator theory and generating three more sets of sym-
metries, the latter findings of new statistical Lie symmetry groups for the
MPC have been obtained which, together with the known symmetries of
Euler and Navier-Stokes equations form a Lie algebra (Rosteck & Oberlack
(2011)). These results will formally be applied to DE.

It is of particular interest to examine how the DE statistics change in wall
dominated shear turbulence. To do this, firstly, the channel half height h is
subdivided into wall-normal viscous, buffer, logarithmic and core regions
as described in §3 and secondly, h is partitioned equidistantly (hereafter re-
ferred to as the characteristic and equidistant layers). Both division types
are seen to be complementary. The first one is aimed to account for very
thin near-wall layers at high Reynolds number Re while the equidistant di-
vision results in finer layers in the broad core region, thus enabling a more
nuanced analysis. For instance, the buffer layer (5 < y+< 30) amounts
to only 1, 7% of the channel half height h at the highest Reτ = 1440 case,
the viscous sublayer with 0.4% even less. On account of this, the viscous
sublayer next to the wall is excluded from the analysis of the characteristic
layers.

In order to comprehend the scaling properties of the DE pdf, we should
first reconsider the scaling symmetries of the Navier-Stokes, or rather, the
Euler equations. In the large Reynolds number limit, the Navier-Stokes
equations (1.2) and (1.1) admit the two independent transformation groups
of scaling

T1 : t∗ = t ,
x∗ = ea1 x ,

U∗ = ea1U ,
p∗ = e2a1 p , (6.2)
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T2 : t∗ = ea2t ,
x∗ = x ,

U∗ = e−a2U ,
p∗ = e−2a2 p , (6.3)

where a1, a2 ∈ R are independent group-parameters. These transforma-
tions refer to symmetry groups, meaning that their substitution into the
Navier-Stokes equations (1.2) and (1.1) (in the limit 1/Reτ → 0) leads to
identical equations written in the new variables denoted by the asterisk.

Apart from the latter two groups, the Euler and Navier-Stokes equations
admit the group of translation, i.e. any shift of origin leaves these equa-
tions unchanged. The corresponding transformation reads

T3 : t∗ = t ,
x∗ = x + a ,

U∗ = U ,
p∗ = p , (6.4)

and, as is apparent, this is also a symmetry transformation of (1.1) and
(1.2). A complete list of all symmetries of the Euler and Navier-Stokes
equations is given in Oberlack (2000).

It is in particular the above two scaling groups, (6.2) and (6.3), and their
combinations that form the basis for many turbulent scaling laws in the
group theory, called invariant solutions (see e.g. Oberlack (1999), Ober-
lack (2000), Oberlack (2001), Oberlack & Rosteck (2010), Rosteck & Ober-
lack (2011)).

This is true both for small-scale turbulence and the Kolmogorov law (see
Ünal (1994)), as well as for scaling laws of large scale quantities such as
of wall-bounded shear flows. In particular, for a turbulent channel flow
it has been shown in Oberlack (2000), Oberlack (2001) that, both for the
log region and for the algebraic law in the core region, scaling of space
according to T1 with the group parameter a1 is the key property. In respect
to their scaling properties the two cases are distinguished by the scaling of
time T2.

This may best be observed by reconsidering the invariant surface condi-
tion for the mean velocity for wall-bounded plane shear flows which has
the form

dy

a1y + a3
=

dū

(a1 − a2)ū + a4
(6.5)
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(see Oberlack (2001)). Apparently, for the log-law we have a2 = a1 while
for the algebraic law we have a2 = na1 for a fixed given value of n. Re-
gardless of which mean flow scaling law is active in the respective flow
regime, we always have a scaling of space in the wall-normal direction
according to (6.2)

y∗ = ea1y (6.6)

which is in fact true for all length scales. Therefore, this is also valid for
the length scale of the DE

ℓ
∗ = ea1ℓ (6.7)

where ℓ is the Euclidean length of the DE.

From (6.4) we also obtain the translational group for y

y∗ = y + a3 , (6.8)

which will be employed subsequently.

For the analysis of the DE statistics Wang & Peters (2006) introduced the
pdf or, respectively, the conditional pdf as the main quantity. In the homo-
geneous flow, which was investigated therein, the pdf is only a function of
the DE length, Reynolds number and perhaps a time scale ratio between
turbulent and shear time scales.

As derived in Aldudak & Oberlack (2012), for the present flow case, any
statistical quantity depends on the wall normal distance y and the Rey-
nolds number Reτ as parameters, and hence the formal pdf for the length
scale distribution is of the form

P(ℓ; y, Reτ) (6.9)

where the Euclidean length ℓ is now referring to the sample space variable.

The usual pdf normalization condition
∫ ∞

0
P dℓ = 1 (6.10)

together with the length scale scaling (6.7) implies a scaling of the pdf of
the form

P∗ = e−a1 P. (6.11)

Further, defining the mean or expectation value for the DE

ℓm =
∫ ∞

0
ℓP dℓ (6.12)
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we instantly obtain the scaling

ℓ
∗
m = ea1ℓm. (6.13)

With the two key assertions of Lie symmetry theory one arrives at follow-
ing (see Aldudak & Oberlack (2012));

1. Any concatenation of two or more symmetry groups of a given prob-
lem or differential equation is again a symmetry group. However, it
is now a multi-parameter symmetry group. For example from (6.2)
and (6.3) we obtain the multi-parameter group:

T1,2 : t∗ = ea2t ,
x∗ = ea1 x ,

U∗ = ea1−a2U ,
p∗ = e2(a1−a2)p , (6.14)

which, implemented in (1.1) and (1.2), constitutes a symmetry group.

2. Any invariant under a given group, i.e. a quantity which does not
change form under a given symmetry group, may allow a reduction
of parameter space. E.g. the quantity Ũ = Ut is an invariant with
respect to the symmetry (6.3) since its implementation in the latter
leads to Ũ = Ut = U∗t∗ = Ũ

∗. These properties of groups are in fact
also true for any combination of symmetry groups. These may be
invoked as new independent variables, which then lead to invariant
solution under the above scaling group, often denoted similarity-
solution.

With these assertions in mind, we may now construct the invariant solu-
tion of the DE pdf by using (6.7), (6.11) and (6.13) to obtain the invariants
ℓ̃ = ℓ

ℓm
and P̃ = ℓmP. Solving for P yields the invariant solution

P =
P̃
(

ℓ

ℓm

)

ℓm
. (6.15)

Here, however, the y dependence is still hidden and we should now con-
sider the combined scaling and translational group of y, i.e. (6.6) and (6.8),
in conjunction with the selfsame scaling for ℓm, namely equation (6.13).
With this we obtain the invariant form of ℓm

ℓm ∼ y + c (6.16)
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where the constant c emerged due to the combined group parameters a1
and a3. With this at hand, we derive the alternative form of the pdf scaling
law (6.15) given by

P =
P̃
(

ℓ

y+c

)

y + c
. (6.17)

A complete derivation of the present theory based on the key quantities of
Lie theory such as infinitesimal transformations, invariant surface condi-
tion, etc. is given in appendix A.

6.1.1 Validation of the Dissipation Element Scaling Laws

Before investigating the new scaling laws above in detail, we first (a) ex-
amine the DNS data in table 2.1 with respect to isotropy or anisotropy of
the DE pdf and, in a second step (b), the Reynolds number dependence of
the DE pdf.

To understand both the issues (a) and (b), the figures in 6.3 and 6.4 illustrate
the marginal probability densities P̃(ℓ/ℓm) of the Euclidean length of the
DE of the entire channel. Here the scalar fields which are studied are the
turbulent kinetic energy k, its dissipation rate ǫ, and the fluctuations of the
velocity components (u, v, w) at four different Reynolds numbers (Reτ).
Here, the pdf have been properly normalized using (6.10), and all length
scales are rescaled by the mean length ℓm of the entire channel, according
to (6.12).

The distribution of the pdfs is essentially log-normal as it will be outlined
further below. The curves show a very steep algebraic rise with an increase
of the element size for small DE for all cases, and an exponential decay for
larger elements after reaching a maximum at around ℓ ≈ 0.6ℓm. Hence,
the DE length scale which is associated with the highest probability is, as
to be expected, in the order of the mean length.

Related to the issue (a) of isotropy/anisotropy above, it is also interest-
ing to note that the curves for all five scalars have remarkably coinciding
shapes. From the linear plot in figure 6.3, particularly, matching curves
are observed for k, u and ǫ. However, for large length scales, taken from
the semi-logarithmic plot, it appears that u and w profiles are closer to-
gether and apparently decay faster than the pdf for k, v, and ǫ. The pdf
of the wall-normal velocity component v shows a minor deviation from
other distributions. Still, a remarkable insensitivity related to the choice
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Figure 6.3: Comparison of the overall pdf of the entire channel for differ-
ent scalar variables.

of the scalar variable is observed, implying a large degree of DE isotropy
which is in fact true for small as well as for large scale of DE. This is, in
fact, a very interesting outcome considering the different natures of the
individual scalar variables such as the strong intermittent character of the
dissipation rate ǫ.

An even more remarkable insensitivity with respect to different Reynolds
numbers may be taken from the figure 6.4. Curves from all Re almost per-
fectly coincide which is also unexpected, since the considered Reynolds
number range is quite large. The lowest and highest Re are a factor of four
apart, thus justifying a general statement.

Below, we intend to validate the scaling laws (6.15) and (6.16) or respec-
tively (6.17) with the channel flow DNS data. To this end, we focus on
the region of validity of the above scaling laws, i.e. the log-region and
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Figure 6.4: Comparison of the overall pdf of the entire channel for differ-
ent Reτ.

the algebraic region in the core of the channel. Therein, we rescale the
data for the logarithmic and core regions, and plot them according to the
rescaled pdf P̃ = P̃(ℓ̃) in (6.15). In order to properly accentuate this be-
havior, we split the channel into five equidistant wall-normal layers with
an increment of 0.2 in the normalized wall distance y/h.

In figure 6.5, pdf profiles for five adjacent layers from the most wall ad-
jacent layer (0.0 < y/h < 0.2) to the channel center (0.8 < y/h < 1.0) are
displayed for highest Re case, Reτ = 1440.

While in the upper picture the pdf P is only normalized according to
(6.10), in the picture below the length scale has also been normalized by
the corresponding local mean length ℓm. In other words, we plot the simi-
larity variable P̃ from equation (6.15).
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Figure 6.5: Pdf for equidistant wall-normal layers where in (a) ℓ is not
normalized while in (b) ℓ is normalized with ℓm at Reτ = 1440.

When the length scale ℓ is not normalized, figure 6.5(a) indicates distinc-
tive differences in the pdf curves with respect to the distance to the wall.
Larger elements are seen to be located preferentially in the far-wall lay-
ers, as indicated by the pdf for the core region where the maximum peak
and the far-tail of the pdf are shifted to larger elements. By the same to-
ken, small elements will be found mostly near the wall. This is consistent
with the findings in figure 6.13 where the mean DE length ℓm is plotted
against the wall-normal distance. Its linear rise in layers away from the
wall is an indication of their wider spectrum of length scales compared to
regions closer to the wall, where the shape of the pdf becomes narrower.
Furthermore, the higher peak values of the pdf towards the wall suggest
that there are more DE approaching the wall. Note that the volume of
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each equidistant layer is equal. Recalling the space-filling character of DE,
thus, one can assume small, numerous elements close to the wall which
increase in size but decrease in quantity.

The strong influence of the wall is very obvious considering the relative
differences between neighboring layers. While the change from the first
near-wall layer to the next one is enormous, it is retarded with increasing
distance from the wall.
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Figure 6.6: Same as in figure 6.5. But for scalar u and Reτ = 720.

 0

 2

 4

 6

 0  0.2  0.4  0.6  0.8  1

Scalar: k

Reτ=360

0.0 < y/h < 0.2

0.2 < y/h < 0.4

0.4 < y/h < 0.6

0.6 < y/h < 0.8

0.8 < y/h < 1.0
P

ℓ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

Scalar: k

Reτ=360

0.0 < y/h < 0.2

0.2 < y/h < 0.4

0.4 < y/h < 0.6

0.6 < y/h < 0.8

0.8 < y/h < 1.0P̃

ℓ̃ = ℓ/ℓm

(b)

Figure 6.7: Same as in figure 6.5. But for Reτ = 360.
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Figure 6.8: Same as in figure 6.5. But for scalar w and Reτ = 180.

Figures 6.6(a), 6.7(a) and 6.8(a) without normalization confirm this behav-
ior for different Reynolds numbers. This is even true for the lowest Re
case, although less markedly.

In pictures 6.5(a) and 6.7(a), the same scalar variable, namely the kinetic
energy k, is shown for Reτ = 1440 and Reτ = 360, respectively. A di-
rect comparison of both figures gives the first evidence of the effect of the
Reynolds number. First, more elements are produced in the higher Re case
which can be deduced from the significantly larger peak values in all lay-
ers. Second, the elements become obviously smaller with increasing Re
as indicated by the shorter far-tails in 6.5. The pdf profiles in 6.6(a) and
6.8(a) illustrate exemplary the same characteristics for other variables such
as the velocity components u and w at different Re.

In contrast to this, figures (6.5, 6.6, 6.7 and 6.8)(b) show that if the DE
length is normalized with the mean length ℓm of the respective layer, the
curves coincide very well, especially for the region 0.2 ≤ y/h < 1.0. This
collapse is a strong indication for the invariant solution (6.15) or (6.17).
The pdf for the layer most adjacent to the wall is noticeably different from
the others due to the influence of the solid walls.

For further analysis of the pdfs, we investigate their behavior in distin-
guished characteristic channel flow layers mentioned above. Again, we
use for the normalization of the length scale the corresponding local mean
length ℓm of the current layer according to (6.15).
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Figure 6.9: Pdf for characteristic wall-normal layers at Reτ = 1440. Again,
in (a) ℓ is not normalized while in (b) ℓ is normalized with ℓm.
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Figure 6.10: Same as in figure 6.9. But for scalar v and Reτ = 720.

The same self-similar behavior of pdfs after normalization, as observed
in equidistant layers, can also be taken from pictures 6.9, 6.10, 6.11 and
6.12, which show a remarkable collapse of the pdf profiles for the log-
arithmic and the core regions of the channel. On the other hand, the
near-wall buffer layer departs significantly as a result of wall-boundary
effects which applies to all variables and Re. After normalization, the pdf
is shifted towards small elements, meaning that this layer contains more
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Figure 6.11: Same as in figure 6.9. But for scalar ǫ and Reτ = 360.
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Figure 6.12: Same as in figure 6.9. But for scalar k and Reτ = 180.

elements that are smaller than its local mean length scale compared to the
layers beyond y+ = 30. In general, the buffer layer seems to contain more
elements than the layers above. Interestingly, however, the dissipation
rate ǫ appears to be special in this respect, since it exhibits more elements
in the intermediate logarithmic layer (see figure 6.11(a)). Nonetheless, ǫ
too is subject to the self-similarity.

Figures 6.13(a),(b) depict the mean DE length ℓm versus the wall-normal
y direction. First of all, it can be deduced that all curves obey a charac-
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Figure 6.13: Mean length ℓm of DEs varying with the wall-normal direc-
tion y for different (a) scalar variables and (b) Re. Note that
h = 1 is the channel half-height.

teristic profile, that is, a sudden increase of the element size near the wall,
a subsequent linear rise and finally a nearly constant center region. The
wall, or the high turbulent intensity especially in the buffer layer, has a
strong impact on the course of the DE length in the wall vicinity. Here, ℓm

reaches a maximum after which it drops at around y+ = 20.

Despite these mutualities, in (a), where ℓm is plotted for several scalar vari-
ables at Reτ = 360, it can be seen that there exist enormous differences in
the DE size of different variables. Hence, considering the fact that the
length of a DE is the Euclidean length between its extremal points, one
can conclude that the production of these extremal points, where ∇φ = 0,
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is strongly coupled to the choice of the scalar variable φ which will be
discussed later in detail.

The scalar field u appears to have the largest elements for a given Reynolds
number, followed by the other two velocity components v and w, both
being very similar except in the near-wall region. The scalar field of the
dissipation rate has the smallest elements which conforms with its known
intermittent nature leading to a higher production rate of extremal points.
Since DEs are space-filling, one can simply argue that the smaller DEs are,
the higher their number will be.

The profiles of the mean DE length ℓm is reminiscent of the classical Kol-
mogorov (η) and Taylor (λ) length scales as functions of y as plotted in
pictures 5.1 and 5.3 in chapter 5. Similar to η and λ, the size of the DE
length scales decreases with increasing Reynolds number as can be seen
from figure 6.13(b) where the scalar variable is the kinetic energy k. The
key advantage of DE length scale compared to others is that their number
can be precisely determined since they completely occupy the domain.

The intermediate region with linear relation between ℓm and y has been
represented by equation (6.16). The latter is part of the basis for the pdf
scaling laws (6.15) or rather (6.17), and we also see that the linear scaling is
only confirmed in a region excluding the very center region of the channel
and, of course, the near-wall region.

Interestingly, the center section behavior implies a remarkable result, as it
gives rise to an extended similarity behavior for P̃(ℓ̃). The reason is that,
since similarity is clearly observed for all regions between 0.2 ≤ y/h ≤ 1.0
in figures (6.5, 6.6, 6.7, 6.8)(b), even for the very center layer, this is not
directly supported by the finding in figures 6.13(a),(b) in connection with
the scaling laws (6.15) or (6.17). Since (6.15) or (6.17) are based on the linear
scaling relating ℓm and y, one would expect a clear deviation for the pdf in
the very center layer. However, only a tiny variation from the pdfs taken
outside the central region is detected.

As shown above, ℓm is clearly a function of the wall-normal distance, the
Reynolds number and the choice of the scalar such that

ℓm = f (y, Reτ, φ) (6.18)

In the following, analytical expressions of the mean DE length are derived
for the linear scaling range where pdfs exhibit similarity behavior.
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Figure 6.14: Sketch of the DEs in a turbulent channel flow approximated
as cubes.

ℓm,k/h = 6.58 Re−0.66
τ + 9.71 Re−0.63

τ y/h (6.19)

ℓm,u/h = 20.65 Re−0.78
τ + 10.41 Re−0.62

τ y/h (6.20)

ℓm,v/h = 12.86 Re−0.72
τ + 7.98 Re−0.60

τ y/h (6.21)

ℓm,w/h = 12.47 Re−0.71
τ + 11.98 Re−0.65

τ y/h (6.22)

These equations containing all dependencies are needed later to formulate
a log-normal model for DE pdfs .

The property of DEs that they have a clear geometric definition of a three-
dimensional structure will subsequently be employed to estimate the num-
ber of DEs, N, as a function of the wall distance y. For this, we utilize the
linear scaling between ℓ and y and take the rather simplifying assumption
that DE fill cubic sub-volumes as shown in figure 6.14. From this figure,
we may take as a first step the relation between the nth element and the
distance to the wall which is a geometric series

2n − 1 ∼ y + c. (6.23)

Now, in a second step, counting the number of elements at the position n
we arrive at the number of DEs

N ∼ 22n, (6.24)
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where the proportionality factor is measure of the channel size. Combin-
ing (6.23) and (6.24), we find the scaling relation

N(y) =
b

(y + a)2 , (6.25)

where a and b are constants which are functions of Reτ and φ. This scal-
ing law is nicely validated in figures 6.15(a) and (b). N is rescaled with
channel dimensions, representing number of elements in a unit cube (13),
to allow for comparison of results from domains of different sizes. Weak
deviations are only visible in the near wall region and in the very center of
the channel, where the linear scaling is excluded regardless as is observed
in figures 6.13(a),(b).

The plots for the number of DE confirm the conclusions drawn earlier with
respect to the pdf and the mean length distribution ℓm depending on the
wall-normal distance. To this end, most elements are created always in the
vicinity of the wall due to the higher turbulence intensity. Is the channel
core approached, the number of elements drops significantly in connec-
tion with an increase of the size. Apart from the near-wall region where
deviations occur due to the anisotropy induced by the wall boundary (see
figures 3.4, 3.5 in chapter 3), all velocity components feature comparable
numbers of elements at a given Re (figure 6.15(a)). From figure 6.15(b),
one can argue that the generation of DEs clearly depends on the Re. As al-
ready deduced, with growing Re, i.e. degree of turbulence intensity, more
elements are created which on the other hand become smaller.

Having established that the generation of DEs and extremal point, respec-
tively, depends on the Re, the wall-normal direction y and the choice of the
scalar field φ together with the scaling relation 6.25, we can formulate the
following approximation for N (y, Reτ, φ) which is validated by the two
solid lines in the pictures 6.15(a),(b),

Nφ (y, Reτ) =
bφ(Reτ)
(
y + aφ

)2 . (6.26)

As pointed out, the length of a dissipation element is defined by the lin-
ear length between adjacent minimal and maximal points, respectively.
Hence, saddle points are not taken into account, though these too are
critical points with ∇φ = 0. Though simple relations between minimal,
maximal, and saddle points exist for one and two dimensions, no simple
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Figure 6.15: Number N of DE per unit cube (13) as function of the wall-
normal direction y (a) for different variables, (b) for different
Re. Solid lines represent the fit curve according the approxi-
mation 6.26.

Scalar φ k u v w

bφ(Reτ) 1.2·10−4Re2.04
τ 2.5·10−6Re2.50

τ 1.7·10−4Re1.87
τ 1.6·10−5Re2.21

τ

aφ 0.281 0.323 0.260 0.295

Table 6.1: Coefficients of the scaling relation 6.25 for N.

counting relations exist in three dimensions, not even for Morse fields (see
Peters & Wang (2006)). Hence, only statistical measures may be invoked
to count critical points for the present three-dimensional flow problem. In
fact, the DNS data clearly indicate that the number of minimal and maxi-
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mal points are identical. Additionally, they are indistinguishable from the
number of DE as plotted in figure 6.15. Hence, any further analysis of the
distribution of these points is omitted.
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Figure 6.16: Ratio of the mean DE length ℓm and Taylor length scale λ as
a function of the channel height (a) for different variables, (b)
for different Re.

In the context of DE analysis, a possible link between DE and classical
length scales, in particular the Taylor length scale, is investigated subse-
quently for the turbulent channel flow.

A first estimate in this respect was given in Wang & Peters (2006) where
it was concluded that the expectation value of the DE distribution is pro-
portional to the Taylor length scale, i.e.

ℓm ∼ λ , (6.27)
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specifying a link to classical turbulent length scales. In order to validate
this conclusion, we plot the ratio ℓm/λ as a function of the wall-normal
direction (figure 6.16). This nicely reveals that - especially in higher Re
cases - for a large portion of the channel height the mean length ℓm scales
very well with the Taylor length scale λ, substantiating the above relation
(6.27).

Sufficiently far from the wall, the plots show an essentially constant pro-
file up to the channel center. Nevertheless, on approaching the wall this
feature seems to vanish, such that the near-wall viscous and buffer layers
are excluded. It is interesting to note that in the subplot (a) the profiles of
all velocity components collapse at the centerline in spite of the deviations
near the wall. It can therefore be concluded that, for a fixed Re, DEs at
the centerline are to a strong degree independent of the direction of the
velocity. The lowest Reτ = 180 case is in reasonable, but less, agreement
with these findings, and low-Re effects are clearly noticeable.

Figure 6.16(b) suggests that by increasing the Reynolds number the pro-
files of ℓm/λ will approach each other further. Based on the two lower Re
cases, Aldudak & Oberlack (2012) argue that the plots for the same scalar
but different Re approximate each other towards the channel center. This
is further augmented by the two higher Re cases. The ratio ℓm/λ obviously
tends to a centerline value which can be assumed to be nearly constant, i.e.
weakly dependent of the Re. It is interesting that this tendency is observ-
able even for the smallest Re. This coincides with the fact that the channel
core region is the one most insensitive to the Re effects.

For the sake of completeness, the ratio between the DE and the Kolmogorov
length scales is depicted in figure 6.17 showing several variables at Reτ =
720. Compared to the counterpart figure 6.16(a), the scaling behavior is
less suitable.

6.1.2 Log-normal Pdf Model

As already noted above, the pdfs of DE length reveal a skewed distri-
bution rather than a bell-shaped, symmetrical Gaussian distribution. In a
characteristic manner, skewed distributions point out non-negative values
and large variances. A typical skewed distribution is the log-normal dis-
tribution, which fits the probability density of various processes in nature.
A random process is log-normally distributed, by definition, if its loga-
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Figure 6.17: Ratio of the mean DE length ℓm and Kolmogorov length scale
η against the wall-normal distance for different variables.

rithm agrees with the Gaussian distribution. Hence, all values are positive
and the curve of the pdf is shifted to the left.

The log-normal pdf of a random variable, here ℓ, is described as

P(ℓ) =
1

ℓσ
√

2π
exp

(
− (ln(ℓ)− µ)2

2σ2

)
, ℓ > 0 , (6.28)

where the parameters σ and µ are a measure of the expectation value and
the variance, respectively, and fully specify the shape of the pdf.

Under these conditions, we now examine the relation between DE length
and log-normal probability densities. As evident from figure 6.18, DE pdfs
closely fit the log-normal distribution. In figure 6.18 (a) overall pdfs of dif-
ferent scalar variables are displayed in a semi-logarithmic plot together
with the log-normal fit for the scalar u as an example. First of all, the
picture emphasizes that the DE pdf closely follows a log-normal distri-
bution. Minor deviations are only visible towards the origin, where the
element size is small. Upon logarithmic scaling of the horizontal axis, a
second important aspect makes itself apparent. All DE pdfs follow the
symmetrical, normal distribution of the log-normal pdf, limited deviations
notwithstanding.

The example in figure 6.18 (b) shows pdfs of equidistant wall-normal lay-
ers for u, highlighting an almost perfect fit by means of log-normal pdfs.
Adjusting the two shape parameters σ and µ, the pdf can be fitted properly
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Figure 6.18: (a) Overall pdf of different scalar variables in semi-log plot;
(b) pdf of equidistant wall-normal layers with related log-
normal fit.

for the respective wall-normal layer. As a result, it is examined whether
these shape parameters can be written as functions of y/h. This allows
us to derive a simple log-normal model which is also a function of the
distance from the wall and, thus accounts for the known wall-normal de-
pendence of the DE pdf.

In Aldudak & Oberlack (2012) we found for the Reτ = 360 case that the
parameter σ can be regarded as independent of the choice of the scalar
variable φ whilst µ scales logarithmically with the distance to the wall y.
The latter was, moreover, a function of φ. Presently, these findings are
supplemented with an additional Reynolds number dependence.

84



µ

σ

y/h

y/h

(a)

(b)

Figure 6.19: Shape parameters σ and µ as functions of y/h for two scalar
variables at different Re.

As shown in figures 6.3 and 6.4, overall pdfs representing the entire chan-
nel are insensitive to the choice of the scalar φ and Re when the pdf is
normalized according to the rescaled pdf P̃ = P̃(ℓ̃) in (6.15). This also
applies to the pdfs of individual wall-normal layers.

However, this is not true when pdfs are only normalized according to
(6.10), i.e. P(ℓ) is plotted. In that case, probability densities of different
Re and variables differ due to the different number of generated elements
in the respective layer (see figures 6.5, 6.6, 6.7, 6.8 (a)).
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This behavior can be best understood by looking at the mean length pro-
files ℓm and N in figures 6.13 and 6.15 for which we derived analytical
relations. Both quantities depend on y, Re and φ. Hence, the unscaled pdf
P(ℓ), which corresponds to the log-normal distribution, is expected to be
a function of these variables, too.

To verify this assertion, in figure 6.19 we investigate the shape parameters
σ and µ which are plotted against the wall distance y/h for the scalar fields
k and u at different Re. Note that these analytical relations again exclude
the near-wall and the channel core region. Figure 6.19(a) shows that while
σ remains basically constant for all Re and φ throughout this range, µ re-
veals a clear logarithmic dependency on y. Both results are in agreement
with the findings in Aldudak & Oberlack (2012). Furthermore, µ clearly
depends on Re and φ, i.e. decreasing for higher Re.

The parameters can be described as follows:

σ ≈ 0.563 ,
µφ (y, Reτ) = αφ(y, Reτ) ln

(
βφ(y, Reτ) y/h

)
. (6.29)

In addition to the wall-normal dependence of the coefficients of µ, it is
found that αφ is widely insensitive to Re variation, but is influenced by the
scalar field φ. βφ, however, is coupled to both Re and φ as given in table
6.2.

Scalar φ k u
αφ 0.402 0.369

βφ(Reτ) 445 Re−1.56
τ 1973 Re−1.72

τ

Table 6.2: Coefficients of the shape parameter µ (6.29) for N.

Using the findings for σ and µ in 6.29 with the log-normal distribution
(6.28), we may finally formulate a log-normal pdf model for DE length
which takes into account all dependencies such as the wall-normal dis-
tance y/h, the Reynolds number Re and the choice of the scalar variable in
the case of k and u.

P (ℓ, y, Reτ) =
h

ℓσ
√

2π
exp

(
− 1

2σ2 ln
(

ℓ

(βy)α

)2
)

, ℓ > 0 . (6.30)
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By inserting the respective coefficients from table 6.2, the unscaled DE pdf
at any Re can now be approximated by the above equation.

With the substitute ℓ = ℓ̃ ℓm obtained from the invariant solution, equation
6.30 can be transformed into the self-similar, rescaled form P̃(ℓ̃).

P̃
(
ℓ̃, y, Reτ

)
=

h

ℓ̃ ℓm σ
√

2π
exp

(
− 1

2 σ2 ln
(

ℓ̃ ℓm

(β y)α

)2)
, ℓ̃ > 0 . (6.31)

Note that the Re dependence of this log-normal pdf model is introduced
by ℓm (equations 6.19, 6.20) and β which are both functions of y and Re.

6.1.3 Conditional Mean of Scalar Differences

In this section, we examine the conditional mean of scalar differences be-
tween the values at the extremal points given the length of the correspond-
ing dissipation element for the instantaneous turbulent kinetic energy k.
Therefore, the first order conditional moment is investigated to measure
its scaling along the wall-normal distance. The first moment based on
gradient trajectories is non-zero since the value of the turbulent kinetic
energy, by definition, increases monotonically along a trajectory from the
minimum to the maximum point.

Considering this, the conditional mean of scalar difference, non-dimen-
sionalized with u2

η and u2
τ, i.e. the Kolmogorov and the friction velocity,

respectively, is plotted for five equidistant wall-normal layers and three
different Reynolds numbers. The Kolmogorov velocity scale is defined as

uη = (νǫ)1/4 . (6.32)

In figure 6.20 we focus on the center regions of the channel corresponding
to 0.2 ≤ y/h ≤ 1, where the least mean shear is present in the flow.
For sufficiently large DE , the double logarithmic plots reveals a power
law with a scaling exponent of 2/3 which is known from Kolmogorov’s
hypothesis (as discussed in §1.2.2). This applies to elements whose sizes
are close to the mean DE length ℓm, hence in the order of λ, and larger
(ℓ ≥ ℓm). It is noteworthy that even the three intermediate layers between
0.2 and 0.8 follow the 2/3 scaling. These layers collapse perfectly as a
consequence of the normalization while the central core region departs

87



10
-2

10
-1

10
1

10
2

Reτ = 360

0.2 < y/h < 0.4

0.4 < y/h < 0.6

0.6 < y/h < 0.8

0.8 < y/h < 1.0

〈∆
k
|ℓ

〉/
u

2 η

ℓ/η

∼ ℓ2/3

(a)

 10

 100

10 20 30

Reτ=720

0.2 < y/h < 0.4

0.4 < y/h < 0.6

0.6 < y/h < 0.8

0.8 < y/h < 1.0

〈∆
k
|ℓ

〉/
u

2 η

ℓ/η

∼ ℓ2/3

(b)

 10

 100

 10  100

Reτ=1440

0.2 < y/h < 0.4

0.4 < y/h < 0.6

0.6 < y/h < 0.8

0.8 < y/h < 1.0

〈∆
k
|ℓ

〉/
u

2 η

ℓ/η

∼ ℓ2/3

(c)

Figure 6.20: Conditional mean scalar differences for equidistant wall-
normal channel layers versus DE length for different Re.
Solid lines represent Kolmogorov’s 2/3 scaling exponent.
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somewhat from them. However, it must be noted that in the the highest Re
case (figure 6.20(c)) scalar differences do not follow the scaling exponent
exactly, but have a somewhat flatter slope.

Approaching the wall, this scaling is likely to break definitely under the
influence of strong shear-induced anisotropy. This is confirmed by the
semi-logarithmic plot 6.21. In the near-wall layer (0 ≤ y/h ≤ 0.2) consist-
ing of the buffer and logarithmic regions where turbulent kinetic energy
scales as u2

τ we may invoke the same Lie symmetry arguments as for the
mean velocity log-law (Oberlack (2001), Oberlack & Rosteck (2010)). For
this, we may rewrite the invariant equation for the mean flow equation
(6.5) in terms of the conditional mean scalar variance

dℓ
a1ℓ

=
d 〈∆k | ℓ〉

(a1 − a2) 〈∆k | ℓ〉+ a5
(6.33)

where a1 and a2 still refer to the scaling groups of space and time in equa-
tions (6.2) and (6.3), respectively, here combined to

t∗ = ea2t , x∗ = ea1 x , U∗ = ea1−a2U , p∗ = e2(a1−a2)p . (6.34)

a5, in fact, corresponds to a statistical group similar to a4 in equation (6.5)
(see Oberlack & Rosteck (2010)).
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Employing the velocity scale uτ as the symmetry-breaking parameter for
the velocity scale in (6.34), i.e. a1 − a2 = 0, we obtain from (6.33) the
logarithmic scaling

〈∆k | ℓ〉 = a5

a1
ln(ℓ) + C . (6.35)

Normalizing by wall coordinates yields

〈∆k | ℓ〉 = u2
τ

(
γ1 ln

(
ℓuτ

ν

)
+ γ2

)
. (6.36)

This is rather equivalent to the classical power spectrum E(K) ∼ uτK−1

in the logarithmic region, where K is the wave number (see e.g. Perry,
Henbest & Chong (1986)), which is nicely verified in figure 6.21. This log-
arithmic law is again valid for DE where ℓ ≥ ℓm.

The joint probability density function (jpdf ) for the parameters ∆φ and ℓ

can be written as P (∆φ; ℓ) which is the product of the marginal pdf and
the conditional probability density (cpdf ) of the scalar difference accord-
ing to Bayes’ theorem.

P(∆φ; ℓ) = P(ℓ) P(∆φ | ℓ) . (6.37)

The jpdf contains information that allows the reconstruction of statistics
such as the conditioned probability distributions and marginal pdfs. Equa-
tion 6.37, i.e. jpdf, is plotted in figure 6.22 for the difference of the stream-
wise velocity fluctuation u and the length between the ending points of
the elements. Plots in (a)−(e) show the profiles in the five vertical lay-
ers. The known influence of the wall distance y on the DE length ℓ is also
present in the case of the scalar differences, as is to be expected based on
the statistics examined in §3.

Accordingly, large values of ∆φ occur towards the wall due to higher tur-
bulence intensity. The steep profile flattens gradually approaching the core
consisting of larger elements with smaller scalar difference compared to
lower layers. In addition, the profile for the entire channel is shown in
picture ( f ) as a superposition of the five sections whose shape is more
symmetrical.

The conditional probability function P(∆φ | ℓ) can be obtained as the ratio
between joint and marginal pdfs, which can be interpreted as an analogous
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Figure 6.22: Joint pdf of the streamwise velocity difference and the DE
length at Reτ = 720. Pictures (a)−(e) show five equidistant
wall-normal layers beginning at the wall, ( f ) represents the
whole channel.
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moment to the structure function definition from equation 1.14 (discussed
in §1.2.2). Cpdf, however, is conditioned on the length of the DEs, thus, ac-
counts for the scalar difference on the ending points of the elements rather
than arbitrary points. The distance corresponds to the linear length of the
DEs. Moreover, unlike in classical structure functions, the scalar difference
(∆φ)

max−min
is positive because the gradient trajectories between the ending

points vary monotonously.

Although, Kolmogorov’s n/3-scaling law for the inertial range is met for
the kinetic energy field k (figure 6.20), scalar differences for the velocity
components reveal no clear agreement in this regard. Instead of the ex-
pected scaling 〈∆U | ℓ〉 ∼ r1/3, figure 6.23 shows a scaling exponent ≈ 0.5
for the streamwise velocity and ≈ 0.4 for the transversal velocities v, w.
This deviation is linked to the lack of sufficient degree of isotropy for
which Kolmogorov’s approach is valid. In conclusion, it can be stated
that for k being a scalar rather than a vector component may be the reason
why scalar differences of k show better agreement than that of the velocity
components.
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Figure 6.24: Sketch of the channel flow geometry with wall-normal rota-
tion.

6.2 Turbulent Channel Flow with Wall-normal
Rotation

In this chapter the dissipation element analysis will be applied to the plane
turbulent channel flow with rotation around the wall-normal direction y
as illustrated in 6.24. A detailed description of this flow type can be found
in Mehdizadeh (2010) and, hence, is omitted here. Instead, DE statistics
will be discussed.

Two calculations are performed at Reynolds number Reτ = 360 with ro-
tation rates Roy = 0.011 and Roy = 0.072, with Roy being the rotation
number with respect to the vertical direction y. The dimensionless rota-
tion number Ro is defined as

Roj =
2Ωjh

uτ
, with j = x, y, z , (6.38)

where Ωj, h and uτ are the dimensional rotation number, the channel half-
height and the friction velocity, respectively. Three-dimensional DNS files
from Mehdizadeh (2010) were advanced in time to obtain statistics.

It is shown in Mehdizadeh (2010) and Mehdizadeh & Oberlack (2010) that
wall-normal rotation strongly affects the flow. Due to the Coriolis force, a
non-zero mean spanwise velocity W along the channel height is induced.
Increasing the rotation rate Roy leads to a drop of the mean streamwise ve-
locity U and the wall-normal velocity v, but causes an initial increase of the
spanwise velocity w, before it too decreases. Furthermore, it is stated that
the turbulence intensity is reduced with an increasing rotation rate grad-
ually forcing the flow into a completely laminar state. The authors report
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that the fluid flow becomes fully laminar for rotation rates Roy ≥ 0.546.
Both cases investigated here are reportedly fully turbulent with symmet-
rical velocity profiles.

First, we examine the distribution of the mean DE length along the wall-
normal direction. In figure 6.25, three flow fields at Reτ = 360 with differ-
ent degrees of rotation rate are compared for u, v and w, hereafter referred
to as case 1 − 3 according to the rotation rate. The non-rotating case ana-
lyzed in §6.1 is used as reference. It is striking that the lower rotation case
possesses smaller elements for all scalar variables near the wall. Towards
the core region its mean length approaches that of the non-rotational case
(case 1) where they are more or less completely equal. Case 3 with the
highest rotation degree has more common with the non-rotating case near
the wall but deviates significantly above the buffer layer. Here, elements
in case 3 are considerably larger.

This is consistent with the mentioned finding that the turbulence intensity
is damped with increasing Ro since higher turbulence intensity results in
more extremal points, i.e. dissipation elements, which in turn are smaller
in size as already discussed.

An even greater influence of the rotation is observed in the case of the
spanwise velocity field w (picture (c)). While for u and v the profiles asso-
ciated with various Ro are similar in all cases, profile of case 3 for the ve-
locity field w features a significant anomaly especially beyond the buffer
layer. It can be deduced that, because of the weak turbulence intensity,
moving away from the wall the number of generated elements declines
very steeply. Hence, elements grow to almost 30% of the full channel
height in the core of the channel.

In contrast to the behavior exhibited by the other two components, near
the wall both rotation cases reveal similar element sizes for w. Again, in
the outer flow region, the intermediate rotation case (2) is indistinguish-
able from the non-rotating case for all variables which is also evident from
the number N of DEs in figure 6.26.

The anomalous behavior of the spanwise velocity field can also be ob-
served regarding N as depicted in figure 6.26(b). Much less DEs are pro-
duced here for the high Ro case, especially near the wall. Contrarily, these
differences in u field are weaker. Note that the number N is rescaled with
the channel volume.

Interestingly, at Ro = 0.072 both, number and mean length of the DEs
in w field, seem to be less than that of the reference case in the near-wall
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Figure 6.25: Mean DE length ℓm at different rotation rates.

95



10
0

10
1

10
2

 0  0.2  0.4  0.6  0.8  1

Scalar: u

Roy = 0

Roy = 0.011

Roy = 0.072

N

y/h

(a)

10
0

10
1

10
2

 0  0.2  0.4  0.6  0.8  1

Scalar: w

Roy = 0

Roy = 0.011

Roy = 0.072

N

y/h

(b)

Figure 6.26: Number N of DE per unit cube (13) along the wall-normal
direction for u and w.

region, 0 ≤ y/h ≤ 0.1, which actually contradicts previous observations,
namely that they are inversely proportional. The reason for this may lie
in the effect of laminarisation. Indeed, in Mehdizadeh & Oberlack (2010)
the cases above this rotation rate are classified as quasi-laminar. Thus, it
is possible that laminarisation effects make itself felt already in this rate of
rotation.

Further, in figures 6.27, 6.28, 6.29, DE pdfs are presented for five equidis-
tant wall-normal layers between the wall and the centerline of the channel
as before. For comparison, the non-rotating case is displayed with solid
lines in each plot. The self-similar behavior, which was observed for the
plane Poiseuille flow, apparently applies to the wall-normal rotation case
for the rescaled pdf P̃. Except for the first layer close to the wall, pdfs for
case 1 and case 2 show similar shapes. This is rather missing in compari-
son with case 3 particularly for the spanwise velocity field. The profiles of
case 3 in the center of the channel are more flat and very different from the
reference case.

In conclusion, it can be stated that the generation and distribution of tur-
bulent structures are strongly affected by the wall-normal rotation due to
the induced non-zero spanwise velocity and probably laminarisation ef-
fects towards relatively high rotation numbers.
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Figure 6.27: Pdf in equidistant layers for scalar u and Reτ = 360. Rotation
rate is Roy = 0.011. Solid lines represent the case without
rotation.
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Figure 6.28: Same as in 6.27, but for the rotation rate Roy = 0.072.

6.3 Turbulent Channel Flow with Streamwise Ro-
tation

Subsequently, turbulent channel flow rotating about the streamwise direc-
tion is investigated by means of dissipation element analysis. Similar to
the wall-normal rotating case, a cross-flow in the spanwise z direction is
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Figure 6.29: Pdf in equidistant layers for scalar w. (a) Roy = 0.011, (b)
Roy = 0.072. Solid lines represent the case without rotation.

induced by the Coriolis force (figure 6.30). This flow type has been exten-
sively addressed, e.g. by Oberlack, Cabot, Pettersson Reif & Weller (2006),
Weller & Oberlack (2006) and Weller (2007).

Oberlack (2001) has shown that, in analogy to the classical non-rotating
channel, self-similar mean velocity profiles can be found as following,

U = C1Ω1y + C2 , (6.39)
W = C3Ω1y + C4 . (6.40)

DNS data showed that the spanwise velocity profile is ‘S’-shaped with a
triple zero-crossing. Hence, the cross-flow appears to change the direc-
tion which is skew-symmetric about the centerline (see Weller & Oberlack
(2006)).

We consider the streamwise rotating case at Reτ = 215 with the rotation
rate Rox = 10. The latter parameter is defined according equation 6.38.

Mean element length ℓm is plotted in figure 6.31(a) for the tree compo-
nents of the velocity along the wall-normal direction. Their behavior at
the origin is very different from the classical channel flow case as they rise
much slower and uniformly up to y/h = 0.2. However, the profiles differ
significantly hereafter. The transversal components change dramatically
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Figure 6.30: Sketch of the channel flow geometry with rotation about the
streamwise direction.

at around y/h ≈ 0.61, i.e. a strong increase takes place. It is interest-
ing to note that this point corresponds to the wall-normal point where
the spanwise velocity W+(y/h) reaches a maximum between two zero-
crossing points as shown in figure 6.34(a). This observation is further aug-
mented by the results for the kinetic energy field. A sudden jump occurs
at y/h ≈ 0.46 where the profile k+(y/h) exhibits a saddle point (see fig-
ure 6.34(b)). Note that these statistics are plotted across the whole chan-
nel height 2h. The mentioned ’S’-shaped spanwise velocity profile is con-
firmed. The saddle point in the k+-profile is not reported for the classical
non-rotating case. Hence, it can be concluded that it is due to the stream-
wise rotation effects. These results confirm the highly complex character
of this flow type.

To recall the characteristic profile of the non-rotating case, ℓm for the Reτ =
360 case and the k-field is included. As such, it differs considerably from
the rotating case having a persistent linear scaling range.

In figure 6.33, numbers of produced elements for different scalar variables
are illustrated. The analytical approximation 6.26 for the non-rotating case
and the scalar w, which was derived earlier, is plotted for Reτ = 215 as
comparison. Near the wall, N seems to be comparable in both cases while
approaching the channel there are more DEs in the rotating case. Further,
in the core region there exist fewer elements for the u-velocity, which are
larger, than those of the other scalar variables. It can be concluded that,
compared with the non-rotating flow, more DEs are created leading to
smaller elements.
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Figure 6.31: Mean DE length ℓm for (a) velocity components and (b) ki-
netic energy as functions of the wall-normal direction. Verti-
cal lines denote extremal points of W(y) and k(y) in (a) and
(b), respectively (see figure 6.32).

Furthermore, it can be seen that N, as well, is affected by the extremal
points mentioned above (see figure 6.32) causing remarkable changes of
the curve characteristics.

The probability distributions of the DE length are seen to become very ir-
regular under the impact of streamwise rotation as apparent from figures
6.34 and 6.35. The first layer is very narrow for all variables containing
mainly small elements. All remaining far-wall layers, however, appear to
have rather similar shapes than a gradually widening profile as known
from the non-rotating case. The curves collapse especially for the two
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Figure 6.32: Spanwise velocity and kinetic energy in wall units as func-
tions of the wall distance. Dashed lines mark the extremal
points relevant to the changes in DE length profiles in figure
6.31.
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Figure 6.33: Number of DEs for various scalar fields. Blue line shows the
analytical approximation for the non-rotating case as compar-
ison.

transversal velocity components (see figure 6.35) which usually has been
observed only for the rescaled pdf P̃(ℓ̃). This can be explained by looking
at the mean length distributions in figure 6.31. For P(ℓ) to vary gradually
with y/h, ℓm(y) needs to possess a clear non-constant scaling behavior as
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Figure 6.34: Pdf in equidistant layers for Reτ = 215 and rotation rate
Rox = 10.
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Figure 6.35: Same as in 6.34, but for v and w.

is the case for the classical channel flow. Though, this is not the case here.
In fact, the mean lengths of v and w, in particular, fluctuate around a cer-
tain value which, at the end of the day, causes the observed collapse of the
pdf profiles. Consequently, in the absence of a clear scaling between DE
length and y, the self-similar attribute of the pdf P̃ is noticeably impaired
(not shown here).
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Figure 6.36: Sketch of the channel flow geometry with wall transpiration.

6.4 Turbulent Channel Flow with Wall Transpi-
ration

As the final flow type, turbulent Poiseuille flow with wall transpiration is
analyzed with the help of DE method. Figure 6.36 provides a schematic
view of the mentioned flow. Unlike the classical channel configuration, the
no-slip boundary condition at the walls is imposed only on the horizon-
tal velocity components. A constant mean vertical velocity is introduced
allowing a mass transfer normal to the porous wall boundaries (for more
details see e.g. Vigdorovich & Oberlack (2008), Avsarkisov et al. (2011)).
Here, the plane turbulent channel flow field at Reτ = 720 has been used as
initial restart file. The transpiration number v0/uτ = 0.027 was imposed.

Based on the velocity profile in figure 6.37(a), three different regions can
be distinguished, namely the injection wall, the core and the suction wall
regions. The shape of the velocity profile is asymmetric due to the changed
boundary conditions where the velocity is damped at the injection side
with higher degree of turbulence and grows towards the suction wall. The
above authors show that a logarithmic mean flow scaling prevails in the
outer flow region.

In figure 6.37(b), turbulence intensity statistics are seen to be asymmetrical
as well. The injection side is obviously more turbulent than the suction
side of the flow. These conclusions are important for the interpretation of
the DE statistics because the generation of the latter is directly linked to
turbulence activity. Hence, it is to be expected that at the injection side of
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the flow more elements are produced which are smaller than those located
at towards the suction side.
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Figure 6.37: (a) Mean velocity and (b) turbulence intensities in wall units
for turbulent channel flow with wall transpiration.

Indeed, figures 6.38 and 6.39 confirm these findings. The clear asymmetry
of the flow is reflected in unbalanced profiles of DE length and number,
respectively, across the channel height. As already assumed, the number
of DEs decreases steadily approaching the suction wall side. In fact, one
can notice a nearly perfect exponential decay. In the vicinity of the suction
wall (y/h = 2), where fluid is exhausted, there is a distinct jump in the
number of elements. In general, the profiles of all scalar variables appear
to be very similar in shape. The same applies to the mean length charac-
teristics which are relatively ordered and nearly linear for the most part of
the channel height. Due to the higher degree of turbulence, elements near
the injection side are considerably smaller.

It is interesting to note that these findings support the logarithmic nature
of the mean velocity profile in the same region postulated by the above
authors.

In the light of the conclusions obtained in previous flow cases, a clear
scaling behavior of the DE length is supposed to cause a collapse of the
rescaled pdf P̃(ℓ̃). Accordingly, one would expect the latter to be self-
similar throughout the whole channel height except for the two near-wall
layers, of course.
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Figure 6.38: Number of DEs for various scalar fields. Note that the whole
channel height is displayed.
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Figure 6.39: Mean DE length for various scalar fields.

According to figures 6.40 and 6.41, this assumption is indeed met. Note
that in (a) the non-scaled pdf is shown whereas (b) shows P̃ for ten equidis-
tant layers from 0 to 2h. For reasons of clarity, the labels are distributed
between the two plots (a) and (b) where the lines show the suction side
(> h) and symbols show the injection side (< h). Symbols and lines of the
same color illustrate the corresponding mirrored wall-normal layers.

The pdfs of the linear scaling region agree with each other very well for all
scalar variables considered here. This is interesting particularly because,
due to the asymmetry, the analyzed range is double as long as in the clas-
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sical case. Non-normalized pdfs for the velocity components v and w are
depicted in figure 6.42 for the sake of the completeness. The gradually de-
creasing and widening profiles in the direction of the suction wall are in
line with the above assertions indicating less/larger elements towards the
suction wall.

 0

 5

 10

 15

 0  0.2  0.4

Scalar: k

0.0 < y/h < 0.2
0.2 < y/h < 0.4
0.4 < y/h < 0.6
0.6 < y/h < 0.8
0.8 < y/h < 1.0P

ℓ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

Scalar: k

1.0 < y/h < 1.2
1.2 < y/h < 1.4
1.4 < y/h < 1.6
1.6 < y/h < 1.8
1.8 < y/h < 2.0P̃

ℓ̃ = ℓ/ℓm

(b)

Figure 6.40: Pdfs of k where ℓ is not-normalized in (a) and normalized
with ℓm in (b). Wall-normal layers of the injection and suction
side are represented by symbols and lines, respectively.
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Figure 6.41: Same as in 6.40, but for scalar u.
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Figure 6.42: Pdfs P of the wall-normal and spanwise velocities.
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7 Streamline Segments

The intention behind the Dissipation Element approach was to describe
the flow field in terms of non-arbitrary sub-units whose definitions raise
from the flow physics. With this in mind, other flow properties such as the
streamlines may be suitable as well. Unlike DEs , streamlines (SLs) are
associated with the velocity vector field where every fluid particle is sub-
ject to a distinct velocity magnitude and direction. In a three-dimensional
instantaneous velocity field, SLs are everywhere tangent to the velocity
vector defining the direction of the flow particles. Consequently, they do
not intersect each other since, otherwise, fluid at intersection points would
be multi-valued.

Following the direction of the local velocity vector at a given point in the
flow field the respective streamline can be identified. In general, stream-
lines do not end within a flow in motion but extend along the flow domain.
To obtain meaningful geometrical topologies from streamlines, one needs
a natural definition of their bounding points similar to the DE approach.
Wang (2010) proposed the idea of streamline segments defined as stream-
line fractions between two adjacent extremal points of the absolute veloc-
ity Um at the curvilinear s along the streamline. Thus, extremal points with
∂Um/∂s connect two adjacent SL segments. Unlike dissipation elements,
streamlines do not depend on the choice of the scalar but are related to the
velocity field. Furthermore, while gradient trajectories in turbulent flows
are of finite length, SLs theoretically can be infinitely long.

7.1 Numerical Algorithm

Extremal points of a segment, hence its ending points, are usually not lo-
cated at the numerical grid points exactly but are rather located within a
hexahedron (or cell) consisting of eight grid points at the corners. Thus, an
appropriate method is needed to determine the appointed position of the
sought point. To address this issue, we adopted a local tricubic interpola-
tion scheme in three-dimensions to trace streamlines along the direction of
the velocity vector. The advantage compared with trilinear interpolation
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Figure 7.1: Absolute velocity Um (solid line) and its derivative ∂Um/∂s
(dot-dashed line) along a streamline. Dashed black lines show
the bounding points of streamline segments.

is the improved accuracy while, at the same time, the method is compu-
tationally more expensive. Different to other tricubic interpolations which
combine three separate one-dimensional interpolations, the interpolation
method employed here is an integrated method first proposed by Lekien
& Marsden (2005).

Given that the values and the respective first and second derivatives at
the corners of the cell are known, a piecewise polynomial function f to be
interpolated inside the cell can be constructed as follows,

f (x, y, z) =
N

∑
i,j,k=0

aijk xi yj zk , (7.1)

where aijk are coefficients of the tricubic interpolant for the current cell.
A specific 64 × 64 matrix (see Lekien & Marsden (2005)) provides the re-
lationship between these coefficients and the derivatives at the corners of
the cell. This method is implemented into a FORTRAN 90 post-processing
code which integrates the streamline path using a Runge-Kutta 4th order
method.
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Figure 7.2: (a) Three-dimensional zero-gradient iso-surfaces of the ve-
locity magnitude. (b) zero-gradient iso-lines (black) separat-
ing high and low gradient areas (colored red and blue) with
streamlines (dark blue lines) in two-dimensions.
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7.2 Streamline Segment Statistics

Figure 7.1 illustrates three segments with the statistical parameters ∆Um

and the arc-length between the extremal points as examples. Solid line
shows the profile of the velocity magnitude alongside with its derivative
∂Um/∂s whose zero-crossing points represent the transition between two
SL segments as indicated by the dashed vertical lines. They can be further
divided into positive and negative segments according to whether the sign
of the derivative ∂Um/∂s is positive or negative.

In three-dimensional flows, ∂Um/∂s = 0 forms iso-surfaces, as shown in
figure 7.2(a), which separate the segments of the SLs penetrating them.
Picture (b) displays a two-dimensional snapshot of the interaction between
streamlines and, in this case, iso-lines of ∂Um/∂s = 0. Every intersection
point marks the beginning point of a new segment which is, at the same
time, the ending point of the preceding segment.

In the following, streamline segment analysis will be conducted in the case
of turbulent channel flow for various Re. As in the DE analysis, effects of
the Reynolds number and wall-distance variation will be examined. First,
we will verify the existence of a characteristic scaling region of the mean
segment length ℓm with respect to the wall-normal direction y. It is worth
remembering at this point that DEs reveal a self-similar behavior within
wall-normal layers where DE length scales linearly with y.
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Figure 7.3: Mean length ℓm of streamline segments along the wall-normal
direction y for different Re. Filled symbols: positive segments,
open symbols: negative segments.
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Indeed, a similar result is found from figure 7.3 for the SL segments. For
all Re considered here, the length of the segments seems to vary linearly
with the distance from the wall, practically, in the same region as dissi-
pation elements. Considering the similar shapes of the DE, SL segment
and Kolmogorov length scales (see §5), a linear scaling range located be-
tween the near-wall and centerline regions of the channel can be consid-
ered as universal in the turbulent channel flow. Near the wall, around the
buffer layer, the well-known maximum peak is observed which is more
pronounced compared to the DE length distribution. Moreover, the flat-
tening close to the centerline of the channel with relatively weak shear
effects is also typical.

One interesting feature with regard to SL segments is that positive seg-
ments (∂Um/∂s > 0) are always larger than the negative ones. Only
very close to the wall, the opposite is true, i.e. negative segments are
larger. However, the difference between them apparently decreases as Re
increases. SL segments are in average shorter at higher Re.

Next, marginal pdfs of SL segments are discussed separately for positive
and negative segments, hereafter denoted as P+ and P−. In figures 7.4 and
7.5, overall pdfs are plotted for different Reynolds numbers. The shape of
the pdfs is similar to the log-normal distribution of the DE pdf to a large
extent. However, revealing a very steep rise at the origin, their maxima
occurs at smaller length scales, i.e. at around ≈ 0.25ℓm which is ≈ 0.6ℓm

for DEs. In the far-tails pdfs decay exponentially as highlighted in semi-
logarithmic subplots.

As indicated by the linear scaling character of the mean length, the rescaled
pdfs P̃ collapse for all Re cases. Hence, as in the case of DE, probability
functions P̃ of SL segments are insensitive to Re as well. This is true for
both segment groups whereas the far-tail decaying exponent is somewhat
higher for the negative segments. Another difference between the two
segment groups is seen with respect to the peak value of P which is larger
and slightly shifted away from the wall for negative segments.

To investigate the influence of the wall distance, we split the channel in
five equidistant wall-normal layers as before. Again, P and P̃ of positive
and negative segments are plotted for different Re (figure 7.6).

The curves of unscaled pdfs show the strong influence of the wall-normal
distance y. Approaching the wall, pdfs become narrower while moving
towards smaller element sizes. After normalizing with ℓm of the respective
wall-normal layer the pdfs of the linear scaling range 0.2 < y/h < 0.8
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Figure 7.4: Overall pdfs of positive segment length for different Re. (a) ℓ
is not normalized while in (b) ℓ is normalized with ℓm.

collapse despite some minor deviations. This outcome is also analogous
to the findings from DE analysis.

In section §6.1.3, we showed that the pdf of DE length obeys the log-
normal distribution. Considering the similarity between both length scales,
it can be assumed that the distribution of SL segment length may sat-
isfy the log-normal distribution function as well (see equation 6.30). Both
shape parameters have been adjusted to account for the variation of the
wall-normal distance y such that σ = 0.92 and µ = 0.26 ln(1.4·10−5y/h).
As in the DE case, σ is nearly constant whereas µ is a function of y.

In figure 7.7, pdfs of wall-normal layers, where linear scaling is observed,
are displayed exemplarily for Reτ = 1440 alongside with the adapted log-
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Figure 7.5: Same as in 7.4, but for negative segments.

normal pdf fits. It can be seen that, despite minor deviations, the pdfs are
approximated satisfactorily for positive and negative segment length.

7.3 Conditional Mean Velocity Differences

Unlike gradient trajectories with positive definite scalar differences be-
tween their extremal points, velocity difference between the bounding
points of SL segments can be positive or negative corresponding to the
sign of the derivative ∂Um/∂s. Velocity differences conditioned on the
segment length ℓ are analyzed for both segment groups in different wall-
normal layers as depicted in figure 7.8. Three Re are represented. Upper
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Figure 7.6: Pdfs for wall-normal layers at Reτ = 1440; (a) positive, (b)
negative segments.

parts of the pictures show positive segments while negative segments are
seen in the lower parts.

First thing to be noted is that the profiles possess a distinct non-symmetry
with regard to different segment groups although the shapes are similar.
In all cases, the velocity differences show a linear behavior for large seg-
ments (∼ ℓm). Thereby, the mean velocity differences are larger for nega-
tive segments than for positive segments which is highlighted by the mean
slopes of the curves. The numbers represent the slopes in the first near-
wall (0 < y/h < 0.2) and the central core (0.8 < y/h < 1) regions. Near
the wall, the mean slope of negative segments is approximately 35% larger
at Reτ = 720 and 29% larger in Reτ = 1440 case. This discrepancy is even
more intense in the central core of the channel where the respective values
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Figure 7.7: Pdfs of positive and negative segment length approximated
with the log-normal distribution.

are 40% and 38%. This non-symmetric behavior can be seen as manifesta-
tion of a negative skewness of the conditioned velocity differences in the
present turbulent flow regime.

It can be added that in layers close to the wall, velocity differences are
larger as observed for DEs as well. Furthermore, the linear profiles of the
conditional pdfs reveal that ∆Um is larger for large elements.
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8 Summary

The geometrical structure of turbulence in several turbulent channel flows
employing the dissipation element approach has been investigated. There-
fore, DNS data covering a relatively broad Reynolds number range is an-
alyzed. The clear influence of solid walls at rest on the DE statistics has
been demonstrated. On this note, it could be shown that in the presence
of walls DE pdf, DE length ℓ and the number of created elements are
strongly coupled to the wall-normal distance y. In order to allow a deeper
insight, we examined pdfs with (P̃) and without (P) rescaling. It is re-
vealed that, particularly in the latter case, distinct deviations with respect
to the wall distance can be observed, whereas rescaling the pdfs leads to
a collapse of the pdfs at least for the outer flow regions. Near the wall,
however, the similarity is broken due to strong anisotropy. Consequently,
the number and the length of DEs are found to be functions of y.

This distinct behavior has been analyzed by Lie symmetry group methods
together with known symmetries of Navier-Stokes equations and utilized
for the core region of the flow, i.e. the flow region beyond the buffer layer.
Therein, the pdf of the DE distribution exhibits an invariant functional
form, in other words, self-similar behavior with respect to the wall dis-
tance. This is further enhanced by the scaling behavior of the mean DE
length scale, which evidences a linear scaling with the wall distance. We
outlined the relationship between DE and other classical length scales and
found that DE length is proportional to the Taylor length scale for the core
region of the channel.

Furthermore, the relations between DE statistics and the Reynolds num-
ber Re as well as the choice of the scalar variable φ were analyzed. If
rescaled, i.e. P̃, the pdfs show no dependency on both Re and φ and hence
exhibit an isotropic character. This is in strong contrast to classical Kol-
mogorov scaling laws which usually exhibit a strong dependence on shear
and anisotropy. Both usually limit the range of the scaling law.

Contrarily, without rescaling, due to different number of produced ele-
ments in different scalar fields, the DE length and pdf are very sensitive
to the choice of φ. This is also true for the choice of Re. Utilizing a geomet-



ric analogy, a relation between the number of DE, on the one hand, and y,
Re and φ, on the other hand, has been formulated and validated with the
statistics from DNS data. In addition to this, analytical relations for the
mean length of the DEs as functions of y, Re and φ were derived which
are used to formulate a pdf model.

It could be shown that the pdfs of the DE length are essentially log-normal
and derived a pdf model based on the log-normal distribution. Its shape
parameters have been adjusted for the scalar fields k and u so that the
model is a function of the wall-normal distance y/h and the Reynolds
number. In conclusion, for the conditional mean scalar differences be-
tween the extremal points of DE, it could be shown that in the center re-
gions of the channel Kolmogorov’s 2/3 hypothesis holds, whereas layers
close to wall feature a logarithmic law rather than a power law. However,
scalar differences of the velocity components show noticeable deviations.
Within these components, the transversal velocity differences are some-
what closer to 1/3 than the streamwise velocity.

It is known that flows are sensitive to rotation and transpiration effects. To
better understand their influence, three turbulent Poiseuille flow regimes
have been investigated in terms of DEs . The modifications include ro-
tation in streamwise and wall-normal directions as well as vertical wall
transpiration.
In the case of wall-normal rotating channel, the induced non-zero span-
wise velocity strongly affects the flow statistics which becomes more ob-
vious for higher rotation rates where laminarisation takes place. Interest-
ingly, the self-similar behavior of the pdfs is still preserved. Also, impos-
ing a spanwise rotation rate was shown to influence the flow characteris-
tics. In this case, the profiles of the mean length appear to be extremely
irregular as a consequence of which pdfs of the DE length are no longer
self-similar. As the last modification, turbulent channel flow with wall
transpiration has been studied. Different from previous cases, wall tran-
spiration breaks the symmetry of the flow statistics with respect to the
channel centerline as expected. Except for the near-wall regions, the size
of the DE length scales is shown to increase linearly towards the suction
side where the turbulence intensity is damped. Owing to this fact, pdfs of
the DE length are self-similar. In the same region, the number of the DEs
exhibits an exponential decay.

Furthermore, streamline segments have been analyzed based on their curvi-
linear length and the difference of the velocity magnitude between the
ending points. It could be shown that in general mean segments length has
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a similar characteristic as that of DEs with regard to both the wall-normal
direction and Re variation. A linear scaling range between the near-wall
and central core regions is observed. The slope of ℓm in this region de-
creases when Re is increased. Hence, segments are shorter in higher Re
case. The self-similar behavior of the marginal pdfs is also proven for SL
segments which is well approximated by the log-normal probability dis-
tribution. Finally, velocity scalar differences conditioned on ℓ have been
examined. It is found that 〈∆Um | ℓ〉 scales linearly with segment length ℓ

for large segments. The profiles are notably asymmetric for positive and
negative segments, whereas the mean slope of the velocity difference in-
creases towards the wall.

The streamline segment analysis could be applied to any vector field such
as the vorticity field. In an analogous manner, vorticity vector field defined
as the curl of the velocity vector U would be analyzed by dividing vortex
lines into vortex segments.
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A Lie theory for dissipation ele-
ments in wall-bounded shear
flows

The starting point of Lie symmetry analysis is based on the two groups in
the near-wall region of a turbulent channel flow, i.e.

1. scaling group (6.6) y∗ = ea1y which in operator form writes

X1 = y
∂

∂y
(A.1)

2. translation group (6.8) y∗ = y + a3 having the operator form

X2 =
∂

∂y
. (A.2)

The scaling group (A.1) together with (6.12) we may directly extend to the
scaling symmetry for the DE which yields

X(l) = y
∂

∂y
+ l

∂

∂l
+ lm

∂

∂lm
. (A.3)

For the DE pdf the scaling group is unknown and hence we may only
assume a very general scaling group

X(P) = nP
∂

∂P
. (A.4)

where n is to be specified subsequently.

Since Lie symmetries in infinitesimal form constitute a linear vector space
we have the combined symmetry

X = c1X(l) + c2X2 + cPX(P) (A.5)

where c1, c2 and cP are arbitrary constants.



The determination of n may in fact be done by applying the latter invari-
ance group to the normalization equation (6.10), i.e.

X

[∫ ∞

0
P dl − 1

]∣∣∣∣
eqn. (6.10)

= 0. (A.6)

From (A.2)-(A.5) we see that only the second part of X(l) and the group
X(P) is actively operating on (A.6). With this we get

cP = −c1 (A.7)

and hence, we obtain together with (A.5)

X = c1

[
y

∂

∂y
+ l

∂

∂l
+ lm

∂

∂lm
− P

∂

∂P

]
+ c2

∂

∂y
. (A.8)

Though an explicit equation for P is not known at this point we may still
construct invariant solutions. For this we apply X to the a priori unknown
solution P = F(l, y)

X [P − F(l, y)]|P−F(l,y)=0 = 0. (A.9)

The latter is in fact a hyperbolic equation and its characteristic solution
leads to the invariant surface condition in the form

dy

c1y + c2
=

dl

c1l
=

dP

−c1P
. (A.10)

The characteristics are in fact the invariants of the form

l̃ =
l

y + c
and P̃ = Pl. (A.11)

Since invariants may arbitrarily be combined we may rewrite the latter to
obtain the central solution (6.17)

P =
P̃
(

l
y+c

)

y + c
(A.12)

which may also easily extended to the alternative form (6.15) (see Aldudak
& Oberlack (2012)).
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