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Abstract

In medical imaging, large amounts of data are created during each patient examination, espe-
cially using 3-dimensional image acquisition techniques such as Computed Tomography. This
data becomes more and more difficult to handle by humans without the aid of automated or
semi-automated image processing means and analysis. Particularly, the manual segmentation
of target structures in 3D image data is one of the most time consuming tasks for the physician in
the context of using computerized medical applications. In addition, 3D image data increases the
difficulty of mentally comparing two different images of the same structure. Robust automated
organ segmentation and registration methods are therefore needed in order to fully utilize the
potentials of modern medical imaging.

This thesis addresses the described issues by introducing a new model based method for au-
tomated segmentation and registration of organs in 3D Computed Tomography images. In order
to be able to robustly segment organs in low contrast images, a volumetric model based approach
is proposed that incorporates texture information from the model’s interior during adaptation. It
is generalizable and extendable such that it can be combined with statistical shape modeling
methods and standard boundary detection approaches. In order to increase the robustness of
the segmentation in cases where the shape of the target organ significantly deviates from the
model, local elasticity constraints are proposed. They limit the flexibility of the model in areas
where shape deviation is unlikely. This allows for a better segmentation of untrained shapes and
improves the segmentation of organs with complex shape variation like the liver.

The model based methods are evaluated on the liver in the portal venous and arterial contrast
phase, the bladder, the pancreas, and the kidneys. An average surface distance error between
0.5 mm and 2.0 mm is obtained for the tested structures which is in most cases close to the inter-
observer variability between different humans segmenting the same structure. In the case of the
pancreas, for the first time, an automatic segmentation from single phase contrast enhanced CT
becomes feasible.

In the context of organ registration, the developed methods are applied to deformable regis-
tration of multi-phase contrast enhanced liver CT data. The method is integrated into a clinical
demonstrator and is currently in use for testing in two clinics. The presented method for auto-
matic deformable multi-phase registration has been quantitatively and qualitatively evaluated in
the clinic. In nearly all tested cases, the registration quality is sufficient for clinical needs.

The result of this thesis is a new approach for automatic organ segmentation and registration
that can be applied to various clinical problems. In many cases, it can be used to significantly
reduce or even remove the amount of manual contour drawing. In the context of registration, the
approach can be used to improve clinical diagnosis by overlaying different images of the same
anatomical structure with higher quality than existing methods. The combination of proposed
segmentation and registration therefore saves valuable clinician time in dealing with today’s 3D
medical imaging data.
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Zusammenfassung

Motivation

In der modernen medizinischen Bildgebung werden heutzutage enorme Mengen an Bilddaten
erzeugt. Dies betrifft vor allem die dreidimensionalen Bildgebungstechniken wie Computer-Tomo-
graphie, Magnetresonanz-Tomographie oder 3D-Ultraschall. Eine CT-Aufnahme besteht heutzu-
tage aus mehreren Hundert zweidimensionalen Schichtbildern. Die Handhabung der stetig stei-
genden Datenmengen in der klinischen Praxis wird für den Arzt mehr und mehr zum Problem.
Beispielsweise müssen in der Radiotherapie einzelne Zielorgane manuell in jedem Schichtbild
zeitaufwändig konturiert werden, in dem die Organe sichtbar sind. Aus den Konturen wird an-
schließend ein Bestrahlungsplan erstellt, in dem nur die Zielstruktur einer hohen Strahlungsdosis
ausgesetzt ist. Ein weiteres Beispiel ist die bildgestützte Operationsplanung von Teilresektionen
der Leber. Hier muss die Leber manuell in jeder Einzelschicht markiert werden, um Schnittlinien
zu planen sowie das verbleibende Lebervolumen nach dem Eingriff zu bestimmen.

Die beschriebenen Anwendungsbeispiele aus der klinischen Praxis bedeuten für den Arzt
einen hohen Zeitaufwand. Die Konturierung von mehreren Organen in der Radiotherapie kann
mehr als eine Stunde an Zeit beanspruchen [DMJ09]. Zusätzlich weisen manuelle Konturie-
rungen derselben Struktur — durchgeführt von unterschiedlichen Individuen oder von derselben
Person zu verschiedenen Zeitpunkten — stets signifikante Abweichungen auf [CBA∗03,SWM∗06,
RST∗11]. Es besteht daher ein hoher wissenschaftlicher und praktischer Bedarf an robusten
und zuverlässigen automatischen oder semiautomatischen Segmentierungsverfahren, welche
den Arzt bei Konturierungsaufgaben in der computerassistierten Diagnose oder bei der Ope-
rationsplanung unterstützen.

Neben der Betrachtung einer einzelnen Bildaufnahme oder eines Einzelvolumens spielen heute
Zeitserienbilder in einer immer höheren Anzahl klinischer Anwendungen eine große Rolle. In Zeit-
serienaufnahmen werden von demselben Patienten mehrere Aufnahmen zu unterschiedlichen
Zeitpunkten erstellt. Um beispielsweise einen Lebertumor zu klassifizieren, werden häufig diver-
se CT-Aufnahmen zu unterschiedlichen Zeitpunkten der Kontrastmittelanreicherung zur Bewer-
tung herangezogen. Diese CT-Aufnahmen zeigen dieselben anatomischen Strukturen sowie den
Tumor. Durch die unterschiedliche Verteilung des Kontrastmittels im Körper beziehungsweise im
Lebergewebe während der Aufnahme, werden allerdings bestimmte Strukturen unterschiedlich
dargestellt. Nur durch Betrachtung aller Aufnahmen kann schließlich der Tumor korrekt klassi-
fiziert werden.

Für den Arzt bedeutet der Umgang mit Zeitserienbildern ein Problem, da er die einzelnen
Bilder üblicherweise nebeneinandergestellt betrachtet. Das heißt, der Arzt muss die Strukturen
mental in Überlagerung bringen und so z.B. abschätzen, wie weit ein Gefäß, welches zu einem
bestimmten Zeitpunkt zu sehen ist, von einem Tumor entfernt ist, der zu einem anderen Zeit-
punkt kontrastiert ist (siehe Abbildung A). Dies ist allerdings meist sehr ungenau, da der Patient
zwischen den Aufnahmen atmet oder sich bewegen kann. Beim Vergleich von prä-operativen
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Abbildung A: CT-Bilder der Leber zu unterschiedlichen Zeitpunkten der Kontrastmittelaufnahme.
In der linken Aufnahme sind zwei Gefäße zu erkennen. In der rechten Aufnahme ist ein Tumor
sichtbar.

und post-operativen Bildern können zudem Veränderungen in der Anatomie hinzukommen —
beispielsweise, wenn ein Tumor in der Behandlung entfernt wurde.

Um diesen Problemen zu begegnen, sind automatische Registrierungsmethoden notwendig,
welche Bilder derselben anatomischen Struktur so deformieren, dass die Struktur in beiden
Bildern in eine perfekte Überlagerung gelangt. Um nicht rigide Verformungen, wie sie etwa durch
Atmung entstehen, zu korrigieren, müssen zudem lokal deformierende Registrierungsmethoden
verwendet werden. In den überlagerten Bildern kann dann genau ausgemessen werden, wie
weit die Zielstruktur von wichtigen Gefäßen entfernt ist.

Beide beschriebenen Probleme — die automatisierte Segmentierung und die Registrierung
von anatomischen Strukturen in medizinischen Bilddaten — sind eng miteinander verknüpft, da
Segmentierungsmethoden verwendet werden können, um den Registrierungsprozess zu unter-
stützen. Hierfür sind insbesondere modellbasierte Verfahren geeignet. Diese deformieren eine
Referenzform einer anatomischen Struktur so, dass die Form mit der Struktur in Überlagerung
kommt. Auf diese Weise wird eine Segmentierung der Struktur erzielt. Wird dieselbe Form an
zwei Bilddatensätze angepasst, kann zwischen beiden Bildern eine Transformation der Koordi-
natensysteme berechnet werden. Dieser Vorgang stellt eine Registrierung dar.

Modellbasierte Ansätze haben sich in der Segmentierung von zahlreichen Organen, wie der
Leber [HvGSea09, HM09, KLL07, WSH09] oder dem Herz [ZBG∗07, EPS∗08], bewährt. Modell-
basierte Ansätze haben daher das Potenzial, die beschriebenen Herausforderungen sowohl im
Bereich der Segmentierung als auch der Registrierung zu lösen.

Existierende modellbasierte Verfahren weisen jedoch Nachteile auf, die eine breite Anwendung
im klinischen Alltag erschweren. So kann eine Transformation zwischen einzelnen Bildern nur für
die bekannten Modellpunkte errechnet werden. Um ebenfalls eine hinreichende Registrierung
in Bereichen außerhalb der Modellpunkte zu erreichen, ist die Entwicklung von weitergehenden
Verfahren notwendig.

Ein weiterer Nachteil von modellbasierten Verfahren betrifft die Formbeschränkung des anzu-
passenden Modells. Das Ziel hierbei ist, eine genaue Anpassung an die Zielstruktur zu erreichen,
ohne dass unplausible Formen entstehen. Im Fall komplexer Formvarianzen, wie sie etwa bei
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der Leber zwischen Individuen auftreten [HM09, HvGSea09], werden häufig statistische Form-
modelle verwendet [CHTH93, CTCG95]. Statistische Formmodelle modellieren die Formvarianz
einer Struktur durch eine statistische Analyse von Beispielformen. Diese Beispielformen wer-
den üblicherweise erzeugt, indem die Struktur in einigen repräsentativen Datensätzen manuell
segmentiert wird. Das zu verformende Modell kann dann unter Berücksichtigung der model-
lierten Formvarianz so beschränkt werden, dass sich nur plausible Formen ergeben. Einige
Organe, wie die Leber, weisen allerdings eine so hohe Formvarianz auf, dass üblicherweise nicht
genügend Beispielformen erzeugt werden können, um eine genaue Anpassung des Modells an
die Daten zu gewährleisten. Durch die verwendete Dimensionsreduktion der Daten verliert das
Modell zudem an Genauigkeit, was eine exakte Anpassung, selbst unter Verwendung einer ho-
hen Anzahl an Formen, verhindert. Abbildung B zeigt einige exemplarische Leberformen von
unterschiedlichen Individuen1. Da statistische Formmodelle nicht alle Details modellieren kön-
nen, wird die Formbeschränkung normalerweise zu einem gewissen Zeitpunkt gelockert oder
aufgegeben [HM09]. Der Nachteil dieser Methode ist, dass die Form des Modells unplausi-
bel werden kann, je länger die Formbeschränkung aufgehoben wird. Es ist daher notwendig,
die bestehenden modellbasierten Verfahren weiterzuentwickeln, um eine robuste Segmentierung
auch bei Organen mit hoher Formvarianz zu erreichen.

Ein zusätzlicher Nachteil modellbasierter Verfahren betrifft die geometrische Repräsentation
der zu segmentierenden Strukturen. Die große Mehrzahl an Ansätzen verwendet oberflächen-
basierte Modelle. Das heißt, es wird ein dreidimensionales Oberflächenmodell an die Zielstruk-
tur in den Bilddaten angepasst. Es macht allerdings oft Sinn, volumetrische Modelle zu ver-
wenden, welche über eine reine Anpassung der Modellgrenzen hinausgehen. Volumetrische
Modelle berücksichtigen, neben den Bilddaten an den Modellgrenzen, zusätzlich die Bilddaten
im Modellinneren und können so beispielsweise Einschlüsse organfremden Materials erkennen.
In der Literatur werden verschiedene volumetrische Verfahren vorgeschlagen [TFCT98, PFJ∗03,
HM08,BPCO10,SLH11]. Diese Verfahren sind allerdings häufig komplex und daher recheninten-
siv. Zudem können Standardverfahren zur Detektion von Organgrenzen oder etablierte Verfahren
zur Formbeschränkung oft nicht mit diesen Ansätzen kombiniert werden. Es besteht daher ein
Bedarf an der Entwicklung effizienter und generalisierbarer volumetrischer Verfahren.

Beiträge

In dieser Arbeit werden verschiedene Verfahren entwickelt, um die beschriebenen Probleme
modellbasierter Ansätze zu adressieren und eine robuste Segmentierung und Registrierung von
Organen in CT-Aufnahmen zu erreichen. Im Folgenden werden die wichtigsten Beiträge dieser
Arbeit zusammengefasst.

Entwicklung einer neuen Klassifizierung für Segmentierungs- und

Registrierungsverfahren

Im Rahmen dieser Arbeit wird ein neues Klassifikationsschema für Segmentierungs- und Re-
gistrierungsverfahren vorgestellt. In dem vorgestellten Schema werden Methoden in ein Kon-
tinuum zwischen zwei Extremen eingeordnet: rein bildbasierten Verfahren und Verfahren, die
detailliertes, globales Formwissen über die zu segmentierende Struktur voraussetzen. Durch
Anwendung des Schemas auf bestehende Methoden wird gezeigt, dass Methoden mit globalem

1Die Datensätze stammen aus der 3D-IRCADb-01 Datenbank (http://www.ircad.fr).
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Abbildung B: Dargestellt sind Leberformen unterschiedlicher Individuen. Die Modellierung der
Leber mit statistischen Formmodellen stößt durch die hohe anatomische Formvarianz an ihre
Grenzen.

Vorwissen sowohl zur Segmentierung als auch zur Registrierung verwendet werden können.
Im Gegensatz zu bestehenden Klassifikationsschemata kann so direkt die Menge an Methoden
ermittelt werden, die sich zum Erreichen der in dieser Arbeit definierten Ziele anbieten.

Entwicklung einer Methode zur lokalen Formbeschränkung von deformierbaren

Modellen

Ein wesentlicher Beitrag dieser Arbeit ist die Weiterentwicklung von deformierbaren Modellen
zur Segmentierung medizinischer Bilddaten durch ein Verfahren zur lokalen Formbeschränkung.
Hierbei wird die Formanpassung eines Modells lokal definiert, indem dem Modell an jedem Ober-
flächenpunkt unterschiedliche Steifheitswerte zugeordnet werden. Die Steifheitswerte werden
durch Analyse von Beispielformen der jeweiligen Struktur bestimmt sowie durch Berücksichti-
gung der Krümmung der Form im Datensatz während der Anpassung. Abbildung C(a) zeigt ein
solches formbeschränktes Modell der Leber.

Entwicklung von Verfahren zur automatischen modellbasierten Segmentierung

Das vorgestellte Modell wird in einer neuartigen Segmentierungsmethode zur Segmentierung
von Organen in CT-Aufnahmen verwendet. Die Freiheitsgrade, welche das Modell während der
Anpassung besitzt, werden hier Schritt für Schritt erhöht, um eine robuste Anpassung des Mo-
dells auch bei nicht optimaler initialer Positionierung zu erlauben. Im Unterschied zu bestehenden
Anpassungsverfahren kann das Modell auf diese Weise mehrere Zentimeter von der optimalen
Position entfernt initialisiert werden, ohne dass sich eine Verschlechterung der Segmentierungs-
genauigkeit ergibt.

Zudem wird ein Verfahren zur Verbesserung bestehender Methoden zur Organgrenzen-De-
tektion entwickelt. Das Verfahren basiert auf der Entfernung von detektierten Punkten aus dem
Anpassungsprozess, von denen es unwahrscheinlich ist, dass sie auf den Organgrenzen liegen.
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Die Wahrscheinlichkeit eines Punktes auf einer Organgrenze zu liegen, wird dabei durch eine
histogrammbasierte Methode bestimmt. Das entwickelte Verfahren lässt sich mit bestehenden
Standardmethoden zur Organgrenzen-Detektion kombinieren.

Zur initialen Positionierung der Formmodelle in den Bilddaten wird ein zweidimensionaler his-
togrammbasierter Ansatz auf dreidimensionale medizinische Bilddaten erweitert und durch In-
tensitätsmerkmale ergänzt. Dadurch können grobe rechteckige Ausschnitte detektiert werden,
in denen sich die Organe befinden. Im Fall von fehlerhaften Ausschnitten werden anschließend
lernbasierte Verfahren benutzt, um jedem Organmodell genau eine initiale Position zuzuordnen.

Die entwickelten Verfahren zur Organsegmentierung werden anhand von CT-Aufnahmen der
Leber, der Nieren und des Pankreas evaluiert. Die durchschnittlichen Oberflächenabweichungen
zu manuell erstellten Segmentierungen betragen zwischen 0.5 mm und 1.7 mm. Die Abwei-
chungen sind daher in den meisten Fällen mit den Varianzen zwischen zwei manuell erstellten
Segmentierungen unterschiedlicher Individuen vergleichbar.

Entwicklung eines volumetrischen deformierbaren Modells

Im Rahmen dieser Arbeit wird ein Verfahren zur modellbasierten Segmentierung von Orga-
nen vorgestellt. Dabei wird ein neuartiges Volumenmodell verwendet. Das Modell besteht aus
mehreren identischen, miteinander verbundenen Schichten. Durch Verwendung des Modells
lassen sich Bildinformationen aus dem Inneren des Modells während der Anpassung berück-
sichtigen. Das vorgestellte Modell lässt sich zudem mit der im vorherigen Abschnitt beschriebe-
nen lokalen Formbeschränkung kombinieren. Abbildung C(b) zeigt ein entsprechendes Modell
der Leber. Durch die Verwendung des Modells lässt sich organfremdes Material im Inneren
erkennen. Daraufhin können Form und Positionierung des Modells verändert werden. Auf diese
Weise wird die Genauigkeit der Segmentierung vor allem in Datensätzen mit schlechtem Bild-
kontrast erhöht.

Im Vergleich zu bestehenden volumetrischen Methoden lässt sich das vorgestellte Modell mit
derselben Aufwandsklasse wie ein punktbasiertes Oberflächenmodell optimieren. Durch Re-
duzierung der Schichtanzahl kann darüber hinaus eine weitere Beschleunigung erfolgen. Ein
weiterer Vorteil der Methode ist, dass sich das Modell mit statistischen Formmodellen kom-
binieren lässt, was bei bestehenden Verfahren nicht möglich ist. Dadurch können auch Organe
mit hoher Formvarianz segmentiert werden. Außerdem können Standardverfahren zur Detektion
von Organgrenzen verwendet werden.

Das präsentierte Modell wird zur Segmentierung der Leber in der arteriellen Phase kontrast-
mittelverstärkten CTs sowie der Blase in nicht kontrastierten CT-Aufnahmen eingesetzt. Die
durchschnittliche Oberflächendistanz zu manuell erstellten Segmentierungen liegt in den durchge-
führten Tests bei 2 mm für die Leber und 1.3 mm für die Blase. Das vorgestellte volumetrische
Modell hat sich zudem als robuster gegenüber Fehlpositionierungen erwiesen als Oberflächen-
modelle.

Entwicklung eines Verfahrens zur Erzeugung von Formen mit

Punktkorrespondenzen

Ein weiterer Beitrag dieser Arbeit ist die Entwicklung eines Verfahrens zur Erzeugung von Trai-
ningsformen mit Punktkorrespondenzen für die Erstellung statistischer Formmodelle. Dabei wer-
den Oberflächenmodelle eines Organs vom Benutzer an die Bilddaten angepasst. Das Ober-
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(a) (b) (c)

Abbildung C: (a) Lokal formbeschränktes Lebermodell. Regionen hoher und niedriger Elastizität
sind rot beziehungsweise blau eingefärbt [ESW10]. (b) Mehrschichtiges Formmodell der Leber.
(c) Beispiele der erzeugten Modelle: Rückenwirbel (oben), linke Niere (links unten) und linker
Herzventrikel (rechts unten) [EKW09].

flächenmodell wird dabei ständig optimiert, sodass die Modellpunkte jeweils korrespondierende
Strukturen kennzeichnen. Die entstehenden Formen könnnen dann direkt zur Erzeugung statis-
tischer Formmodelle verwendet werden.

Durch das vorgestellte Verfahren entfällt die zeitaufwändige Korrespondenzsuche zwischen
Trainingsformen, die in bestehenden Verfahren notwendig ist. Diese Korrespondenzsuche kann
je nach Verfahren mehrere Tage in Anspruch nehmen. Mit der beschriebenen Methode kön-
nen darüber hinaus Modelle unterschiedlicher Topologie erstellt werden. Bestehende Verfahren
sind hier meist auf Flächen des Geschlechts 0 beschränkt. Dies ist beispielsweise bei kom-
plexen Strukturen wie den Rückenwirbeln nicht ausreichend. Durch das vorgestellte Verfahren
zur Erstellung von Trainingsformen lässt sich die Erzeugung statistischer Formmodelle erheblich
vereinfachen, da sich ein bestehendes Formmodell ohne aufwändige Neuoptimierung aller Kor-
respondenzen erweitern lässt.

Für die Evaluation des beschriebenen Verfahrens werden unterschiedliche Formmodelle ver-
wendet. Es werden Modelle des linken Herzventrikels, der linken Niere sowie eines Rücken-
wirbels erzeugt (siehe Abbildung C(c)). Hierbei wird jeweils ein Modell mit der beschriebenen
Methode erzeugt. Außerdem werden zum Vergleich für jede Struktur jeweils zwei Modelle mit
Standardmethoden zur Korrespondenzoptimierung erzeugt. Die Qualität der Korrespondenzen
wird sowohl qualitativ durch eine Visualisierung markanter anatomischer Merkmale evaluiert als
auch durch eine quantitative Analyse unter Verwendung von Standardmaßen zur Beurteilung
statistischer Formmodelle. Die Qualität der erzeugten Modelle liegt dabei meist über der Qualität
der Modelle, die mit den Vergleichsverfahren erzeugt wurden.

Entwicklung einer Methode zur deformierbaren Registrierung von

Leber-CT-Aufnahmen

Die in den vorigen Abschnitten beschriebenen modellbasierten Verfahren werden verwendet,
um Leber-CT-Aufnahmen miteinander zu registrieren. Bei Untersuchungen von Lebertumoren
werden üblicherweise mehrere Aufnahmen zu unterschiedlichen Zeitpunkten der Kontrastmittel-

xii



Abbildung D: Registrierung von kontrastmittelverstärktem CT der arteriellen Leberphase mit der
portalvenösen Phase. Die obere Reihe zeigt den Zustand vor der Registrierung und die untere
Reihe den Zustand nach der Registrierung. Beide Phasen sind hier jeweils wechselseitig
dargestellt.

aufnahme erstellt. Die Überlagerung solcher Bilddaten kann helfen, einen klinischen Eingriff
genauer als bisher möglich zu planen.

Das entwickelte Verfahren basiert auf der Extraktion der Leberformen aus der arteriellen Kon-
trastmittelphase sowie der portalvenösen Kontrastmittelphase. Hierbei wird für die Segmen-
tierung der Leber in der portalvenösen Phase das vorgestellte lokal formbeschränkte Oberflächen-
modell verwendet. Die Segmentierung der Leber in der arteriellen Phase wird durch Anpassung
des vorgestellten volumetrischen Modells erreicht, da der Kontrast an den Organgrenzen oft nicht
für eine hinreichend genaue Segmentierung mit Oberflächenmodellen ausreicht. Die Leberfor-
men werden anschließend miteinander rigide registriert, um die CT-Bilder grob miteinander zu
überlagern. Eine exakte Überlagerung findet anschließend durch eine neue Registrierungsme-
thode statt, welche sowohl Bildinformationen als auch Informationen über die Form der Leber in
beiden Bildern einbezieht. Zunächst findet hier eine Anpassung nur an diejenigen Organgrenzen
statt, die in beiden Phasen sichtbar sind. Die an den Rändern entstehenden Verformungskräfte
werden dann in das Innere der Leber propagiert.

Abbildung D zeigt beispielhaft das Ergebnis einer Registrierung, wobei hier der Zustand vor
und nach der Registrierung dargestellt ist. Zur Veranschaulichung der Registrierungsqualität
sind beide Datensätze jeweils wechselseitig dargestellt. Das vorgestellte Verfahren ist von Medi-
zinern evaluiert. In nahezu allen Fällen wird die Qualität der Registrierung als ausreichend für
die klinische Verwendung bewertet.
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Diskussion

In der vorliegenden Arbeit wird ein neues Verfahren zur Segmentierung und Registrierung von Or-
ganen in Aufnahmen der Computertomographie vorgestellt. Dabei wird zunächst ein neuartiges
Klassifikationschema zur Einordnung von Segmentierungs- und Registrierungsmethoden entwi-
ckelt. Hierauf aufbauend, werden modellbasierte Verfahren ausgewählt und weiterentwickelt, um
die Ziele dieser Arbeit zu erreichen. Hauptbeiträge sind die Entwicklung eines neuartigen volu-
metrischen Formmodells sowie die Entwicklung einer Methode zur lokalen Formbeschränkung
von punktbasierten Formmodellen. Durch die vorgestellten Verfahren lassen sich zwei wichtige
Probleme modellbasierter Segmentierung und Registrierung lösen: die robuste Segmentierung
und Registrierung schwach kontrastierter Strukturen in CT-Aufnahmen sowie eine robuste An-
passung an komplexe Formen, die von der Menge gelernter Beispielformen abweichen.

Die entwickelten Methoden werden anhand wichtiger klinischer Fragestellungen evaluiert. Im
Kontext der Segmentierung von Organen kann eine Genauigkeit erreicht werden, welche in den
meisten Fällen ausreicht, um einen Großteil der manuellen Konturierung zu ersetzen. Eine An-
wendung der Verfahren in der klinischen Praxis stellt für den Arzt eine Minderung des Zeitaufwan-
des für die Konturierung dar. Dies wiederum stellt in Aussicht, dass in Zukunft mehr Patienten
von den Fortschritten in der medizinischen Bildgebung und in computergestützten Applikationen
profitieren können.

Im Rahmen der Registrierung von Organen können Mehrphasen-CT-Aufnahmen der Leber ro-
bust miteinander registriert werden. Durch die präzise Überlagerung der Aufnahmen wird dem
Arzt der kognitiv hochkomplexe Vergleich von wechselseitig sichtbaren Strukturen abgenommen.
Dies stellt eine Verbesserung der Diagnose in der klinischen Praxis und somit eine patienten-
spezifischere Behandlung in Aussicht. Darüber hinaus können bestehende Planungssysteme
durch den Einbezug von Mehrphasenplanungsdaten ergänzt und verbessert werden.
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1. Introduction

1.1. Motivation

In medical imaging, huge amounts of data are created during each patient examination, espe-
cially using 3-dimensional or 2+1-dimensional image acquisition techniques such as Computed
Tomography (CT), Magnetic Resonance Tomography (MR) or 3D ultrasound. For example, a
single CT scan nowadays often comprises of several hundreds of 2-dimensional images. The
increasing amount of data becomes more and more difficult to handle by humans without the
aid of automated or semi-automated image processing means and analysis. As an example, in
radiotherapy, the boundaries of the target organ must be manually outlined in each image where
this organ appears. This is needed in order to create a safe treatment plan, where only the target
organ is exposed to a high radiation dose. Another example is liver resection planning, where the
liver boundaries must be outlined in order to calculate cutting lines and remaining organ volume
after resection.

The mentioned work is very time-consuming for humans. Drawing contours of multiple organs
in radiation therapy can take more than one hour [DMJ09]. Additionally, often a non trivial inter-
and intra-observer variability rate exists. That means, that different individuals or even the same
person may outline the boundaries of a structure differently, depending on the point in time or the
level of experience [CBA∗03, SWM∗06, RST∗11]. Therefore, there exists a strong scientific and
practical need for robust and reliable automated and semi-automated segmentation techniques

that support the human during diagnosis, treatment or operation planning.

Apart from examining a single data set, a second challenge in nowadays imaging is the han-
dling of images taken from different points in time which becomes more and more important in
all kinds of clinical applications. In this kind of imaging, several data sets of the same patient
showing the same anatomical structure are created. For example, in order to stage liver tumors,
often several images acquired at different stages of contrast agent saturation are used. These
images show the same anatomical structure, i.e. the tumor, but usually provide complementary
information due to the effect of the contrast agent on the physical imaging process.

The problem in handling these time series data is that the human has to mentally fuse the
image information when he examines the different images. For example, he needs to estimate
how far an important blood supply vessel shown in the portal venous contrast CT phase is away
from a tumor which is visible in the arterial contrast CT phase scan. Changes in the patient’s
position, respiration state or anatomy between the scans (e.g. between pre- and post-treatment)
can make this task very difficult or even impossible to perform correctly. Therefore, registration

methods are needed that automatically deform corresponding scans such that the structure of
interest is perfectly overlapping in all scans. In particular, deformable registration is needed to
cope with the non-linear changes, e.g. caused by respiration.

The two described challenges — automatic segmentation and registration of anatomical struc-
tures in medical images — are closely related, because segmentation methods can be used to
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1. Introduction

guide registration. In particular, model based segmentation approaches deform a template of the
structure to segment such that it fits to the image data. Once the template is adapted to the same
structure in two data sets, a correspondence, i.e. a registration, between the structure in both
data sets is already given by correspondence of the templates.

Model based approaches have also proven to be a robust technique for the segmentation of
solid organs such as the liver [HvGSea09,HM09,KLL07,WSH09] or the heart [ZBG∗07,EPS∗08].
Therefore, modal based approaches have the potential to address the described challenges in
both segmentation and registration.

However, open issues in model based approaches exist. Regarding registration, a correspon-
dence between images is only given at points where template information is available, for example
given by corresponding template surface points. In order to deform the images in regions without
template information, further registration or extrapolation strategies are required.

Another issue of model based segmentation approaches concerns the shape restriction of
the templates, i.e. the shape preserving strategy to avoid a non plausible deformation of the
templates during adaptation. Usually statistical shape information as introduced by Cootes et
al. [CHTH93,CTCG95] is used to restrict the template shape deformation in current approaches
for segmentation of abdominal organs such as the liver [HM09,HvGSea09]. The idea of statistical
shape models is that the typical shape of a structure can be statistically modeled using a set of so
called training shapes which are usually example shape samples of the structure to segment. For
example, a human may manually draw a contour of an organ in a couple of images to create those
shape samples. Using the statistical shape information from the training shapes the template’s
shape can be restricted to be similar to the training shapes. In this manner, a non plausible
deformation of the templates is avoided. However, the problem is that the shape restriction of
statistical shape models is too restrictive for organs that show a high shape variability such as the
liver. While it is expected that the generalizability of the templates increases with the amount of
training shapes, it is not possible to model all patient specific details. For example, the amount of
fat and surrounding tissue, the respiration state, treatment procedure and of course the disease
itself have an impact on the shape of an organ (cf. Figure 1.1 for an exemplary overview of liver
shapes from different individuals1). Statistical shape models are not able to model such detail.
Therefore, the statistical shape restriction is usually relaxed at some point during deformation of
the templates [HM09]. The drawback of this procedure and an unsolved problem so far is that the
template shape may become non plausible, thus losing the information from the learned shape
space. Therefore, techniques are needed that address this issue of model based segmentation
in order to provide reliable tools for the segmentation challenges described above.

Another issue of model based segmentation concerns the templates of the structures to seg-
ment. The majority of current state of the art model based methods use templates based
on surface representations, i.e. a 3-dimensional surface model is evolved towards the bound-
aries of the target organ or structure. However, it often makes sense to incorporate volume

information during the adaptation process in order to make the method more robust against
model initialization errors and to increase the robustness through detection of organ foreign
tissue that may not be detected when considering image information near the model’s surface
only. Different kinds of volumetric segmentation approaches have been proposed in the liter-
ature [TFCT98, PFJ∗03, HM08, BPCO10, SLH11]. However, those methods are often complex
and computationally expensive. Moreover, existing standard adaptation and shape preserving
strategies cannot be used within those models or must be adapted. Thus there is a need for

1Data sets are taken from the public 3D-IRCADb-01 database (http://www.ircad.fr).
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Figure 1.1.: Liver shapes from different individuals: Some parts of the organ may look completely
different between individuals which makes it difficult to precisely model the liver using
statistical shape methods.

computationally inexpensive 3-dimensional volumetric segmentation models that are easily com-
binable with said standard approaches.

1.2. Objectives of the thesis

The main objective of this thesis is the development of a 3-dimensional volumetric approach
for segmentation and registration of organs in 3-dimensional medical images. The approach
to be developed should address the open issues of current model based methods described in
Section 1.1. In particular, the approach should be principally applicable for the segmentation of
various organs. Since different human organs substantially differ in appearance, shape and tissue
characteristics it is expected that adaptations for specific organs have to be made. Therefore,
it is important that the approach allows that different existing standard adaptation and shape
preserving strategies can be incorporated. For example, it should be possible to incorporate
standard boundary detection methods based on trained gray level profiles [CT93] as well as
different statistical shape model methods [DTT08].

In order to address the problem of model based segmentation regarding shape restriction and
relaxation as described in Section 1.1, the approach should be flexible and robust in the sense
that the approach adapts well to unseen data without showing much leakage into organ foreign
areas.

Furthermore, the method to be developed should be an approach that incorporates volumetric
information of the organ rather than only boundary information. That means, the method should
incorporate information from the organ’s interior during the adaptation process. This should lead
to an increase of the robustness of the segmentation procedure regarding errors in model ini-
tialization. Additionally, it should help to detect organ foreign tissue inside the model template
in order to improve the quality of the segmentation outcome. Current state of the art volumet-
ric segmentation approaches are usually complex and therefore computationally expensive in
comparison to surface based segmentation methods. It is expected that due to the increase of
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information incorporated in a volumetric approach, the computation costs of the method to be
developed will also be higher than a standard surface based approach. However, the class of
complexity of the algorithm should be the same as in a standard surface based approach.

1.3. Main contributions

The main contributions of this thesis as presented in Chapter 3 and Chapter 4 are:

• the development of a new approach for building 3-dimensional shape templates with cor-
responding landmarks. The method combines manual segmentation and landmark corre-
spondence establishment in a single approach. The built templates can be directly used for
statistical shape model building without the need for applying time consuming optimization
strategies [EKW09,EKW10]. The method has been applied to different organs such as the
kidneys [ES10] and vertebra [WKEK10,WEKK11b,WEKK11a]

• the development of a new volumetric model based method for medical organ segmenta-
tion and registration — non-uniform deformable volumetric objects. The elasticity of the
model is defined locally which makes it more flexible and robust in comparison to standard
deformable models [ETS09,ES10,ESKW10]. The volumetric model extends existing para-
metric surface deformable models by using a layer based geometry [ESW10]. This makes
the proposed model computationally fast to optimize and easily combinable with standard
deformable model boundary search strategies.

• the development of a new generic segmentation method based on the developed model.
The approach uses a rule based outlier removal which can be combined with any proba-
bilistic boundary detection method. The outlier removal boosts the performance of simple
boundary detection approaches to be on a par with complex learning based methods.
A multi-tiered adaptation process with increasing degrees of freedom during adaptation is
proposed that is shown to be more robust to model initialization errors than standard statis-
tical shape model methods. The method is evaluated for various clinically important organs
including liver [DOLCE10,ESKW10], kidneys [ES10], bladder and pancreas [EKD∗11].

• the development of a new registration method for registration of liver CT scans from differ-
ent phases of contrast agent saturation as well as for registration of pre- and post-treatment
CT scans of the portal-venous phase based on non-uniform deformable volumetric ob-
jects [ESH∗11,EOLD∗12].

1.4. Structure of the thesis

This section lists the structures of this thesis sorted by chapters. The main topics are briefly
described and put into the context of the thesis.

• Chapter 2 describes the relevant medical fundamentals of this work and presents a new
classification scheme for segmentation and registration methods. Based on the scheme
the current state of the art of segmentation and registration techniques of organs is clas-
sified and put into context. Suitable methods for organ segmentation and registration are
selected and discussed in relation to the objectives listed in Chapter 1.2.

• Chapter 3 presents a new volumetric model based method for medical organ segmentation
and registration — non-uniform deformable volumetric objects — in order to address the
problem statements defined in Section 1.1 and Section 1.2.
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• Chapter 4 presents an organ registration framework for registration of multi-phase contrast
enhanced liver CT scans. Non-uniform deformable volumetric objects are used to guide a
deformable Demons based registration in order to overlay CT scans of different phases of
contrast agent saturation for clinical application.

• In Chapter 5, the methods proposed in this thesis are evaluated.

• Chapter 6 concludes the thesis by discussing and classifying the results. It also gives an
overview of open problems as well as an outlook on how to address these problems in
future work.
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2. State of the art and related work

The main task of this thesis is the development of an automatic 3-dimensional volumetric ap-
proach for organ segmentation and registration in CT images. Various kinds of segmentation and
registration approaches exist and are subject to ongoing research. In many cases, segmentation
techniques are used for or in combination with registration methods and vice versa. This makes
it difficult to distinguish between those methods and to classify them correctly in order to choose
the right technique for the given problem task. Furthermore, the nomenclature in the literature
is often not consistent or sometimes even misleading. For example, atlas based segmentation
is used for segmenting objects but practically it is a registration method. The main goals of this
chapter are twofold. Firstly, a proper classification scheme for existing segmentation and registra-
tion methods is found in order to be able to choose appropriate techniques for the problem task
of this thesis. Secondly, based on the scheme, current state of the art methods in segmentation
and registration will be described and classified. This chapter ends with a discussion about the
strengths and drawbacks of these methods regarding their applicability for organ segmentation
and registration.

2.1. Medical fundamentals

This section describes the medical fundamentals relevant for this work. First, the principle of
Computed Tomography (CT) is outlined followed by a description of contrast agent enhance-
ment techniques that are used in medical practice to pronounce certain structures like organs or
vessels in order to allow for a better visual discrimination.

2.1.1. Computed Tomography

The principle of Computed Tomography is based on the estimation of the density of an object
by sending X-rays from different directions through the object and measuring the attenuated
radiation behind the object using a detector device. The measurements are then used to mathe-
matically reconstruct density images that represent slice views of the object. Usually a stack of
equally aligned slices is reconstructed in a top-down manner in order to build a 3-dimensional
volume representation of the object.

Figure 2.1 shows the principle of an X-ray acquisition. A radiation source emits X-rays that are
focused by a collimator. The X-rays penetrate the body and are partially absorbed by the tissue.
At the opposite side, a detector measures the attenuated radiation. Source and detector are now
translated in order to send several parallel rays which build a profile of attenuated intensity at the
detector. Afterwards, a projection of the emitted radiation is computed as the logarithmic function
of the relation between the non-attenuated intensity at the borders and the attenuated intensity
after penetrating the body. This process is repeated at different angles of source and detector
until the projection is computed at every position around the body. The smaller the angle intervals
are chosen the better the reconstruction of the image slice gets.

7
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Figure 2.1.: Principle of CT image acquisition.

The projections from the different view points are now back-projected in order to compute the
density function of the body area that has been penetrated by the X-rays. Usually filtered back-
projection is used for that task. The resulting spatial distribution of the radiation attenuation is not
displayed directly, since its amount depends on the used radiation energy. In order to compare
images from different CT scanners, the attenuation is displayed relative to the attenuation of water
in the so called Hounsfield Unit (HU) system.

Figure 2.2 shows the Hounsfield scale which maps the attenuation of human tissue to HU. By
definition, water has a value of 0 HU. Air gets a value of -1000 HU. These two values define
the fix points of the Hounsfield scale. All other attenuation values are linearly mapped to this
scale. Using the Hounsfield scale, images that have been reconstructed using different radiation
energies can be compared. This also eases automated image processing of such images since
certain structures and organs are always located in the same intensity range. It must be noted
though that the Hounsfield scale often only allows for a rough classification of organ tissue. This
is mainly due to different tissue and anatomy characteristics between human individuals.

As can be seen in Figure 2.2, many organs share at least partially a common intensity interval.
This problem can be alleviated by using contrast agents that are introduced into the metabolism
in order to shift the intensity interval of a target structure upwards in the Hounsfield scale which
allows for a better discrimination of the structure. Section 2.1.2 outlines the use of contrast agent
in CT imaging for clinical diagnosis.

The Hounsfield scale is usually discretized to 12 Bit or 4096 gray values and ranges from -
1024 to 3071 HU. Since most output devices and more particularly the human perception cannot

8
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Figure 2.2.: The Hounsfield scale. The typical range of Hounsfield units is shown for selected
anatomical structures.

differentiate between that many intensity values, so called level-windowing is used. Here, an
intensity interval of a certain size (window) and a certain position (level) inside the Hounsfield
scale is specified. The intensity interval is chosen such that the intensity range of the structure of
interest, e.g. the liver, is fully contained in the interval. The HU values inside the chosen interval
are now linearly mapped to the full displayable gray value range. HU below or above the interval
are set to the lowest and highest displayable value, respectively. By this means, neighboring HU
will be displayed with a higher contrast, which makes it easier for a human to visually distinguish
between them.

2.1.2. Contrast agent application in Computed Tomography

As shown in Section 2.1.1, CT imaging is based on the principle of the interaction of X-rays with
tissue. Depending on the body part to be examined, more or less radiation is necessary to pen-
etrate the body and to generate an image of good visual quality. While body parts like the lung
only require a moderate radiation dose to be accurately reconstructed, abdominal soft tissue CT
usually requires a significantly higher radiation dose. The reason for this is that the density co-
efficients of different soft tissues like organs, fat or muscles are very similar. Therefore, more
radiation is needed to generate images with sufficient contrast between those structures. How-
ever, in order to protect the patient’s health, the radiation dose cannot be arbitrarily increased.
Therefore, contrast agents are used in clinical practice which increase or decrease the amount
of absorption of the X-rays in the medium they are introduced in. In CT, contrast agents are
most frequently used to increase the intensity of vessels (angiography), tumors or organs like the
bowel. Depending on the nature of the contrast agent (oral administration or injection into the
blood stream), other structures than the target structure will also be contrast enhanced, e.g. the
stomach for oral administration or vessels that are connected to the vessel system of the target
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(a) (b)

Figure 2.3.: Two commonly used CT contrast enhancement phases: (a) arterial phase, (b) portal-
venous phase.

structure in case of blood stream injection.

2.1.3. Liver angiography

One of the main target organs for the techniques developed in this thesis is the liver. In CT scans
of the liver, contrast agent is frequently used for diagnosing oncologic liver diseases. Since the
contrast agent is injected into the blood stream of the patient to visually enhance the different
vessel systems of the liver, this technique is called liver angiography. Depending on the point in
time the scan is performed after injection of the contrast agent, the appearance of liver vessels
and liver parenchyma differs significantly which has to be considered when developing techniques
for liver segmentation and registration.

In liver angiography usually iodine compounds are used as contrast agent since this element is
characterized by a high radiation absorption. Such a contrast agent is injected into the patient’s
blood stream during examination — for example through an arm vein. Shortly afterwards, the
contrast agent reaches the heart and is pumped into the aorta. From here, it reaches the liver
artery which is directly connected to the aorta. This point in time is denoted as the arterial

phase. Figure 2.3(a) shows a cross sectional view of a CT scan of the liver at this point in time.
As can be seen, a small vessel, the liver artery, is contrast enhanced inside the liver while the
surrounding tissue is not saturated. The arterial phase now fades. At the same time, contrast
agent saturated blood from the abdominal area reaches the liver from its second supply vessel:
the portal vein. This vein collects the contrasted blood that took a longer way from the aorta
through the abdomen. Figure 2.3(b) shows a CT scan at this point in time which is called portal

venous phase. In this phase, the large portal venous system of the liver is saturated by contrast
agent. Additionally, the liver parenchyma also gets saturated with contrast agent, because a
lot of blood reaches the liver through the portal vein. A later point in time when the portal vein
saturation and the liver parenchyma saturation starts to fade is called venous phase. Here, the
liver veins are relatively clearly saturated.
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2.2. Nomenclature

This section constitutes the nomenclature of the terms segmentation and registration as it will be
used within this thesis.

2.2.1. Segmentation

In this thesis, the term segmentation is interpreted as it is used in several literature survey publica-
tions [WZG07,HGM09,Erd09,ZOON11]. In general, the term segmentation denotes the process
of assigning sets of voxels to one or more distinct groups that are defined by the needs of the re-
spective image processing task. Regarding medical imaging, volumetric segmentation is based
on the classification of voxels to regions, which usually correspond to objects or organs in the
data set. For example, the visualization of the human body’s skeleton can be realized by dividing
a CT image into the two classes bones and not bones and then pass the result to a renderer.
Finding criteria to decide which voxels in the volume are similar or share a common property is
therefore the essential part of every segmentation technique. The result of segmentation is a
classification that labels every voxel to be part of a certain region. This is referred to as binary
segmentation since a voxel either shares a property with its neighbors or not. Because medical
imaging techniques like CT or MRI produce discrete volume grids, certain voxels may represent
two different materials, for example, on object boundaries. The so called partial volume effect
leads to an uncertainty whether the voxel has to be assigned to the one object or the other. In
contrast, fuzzy segmentation only computes a probability that a voxel belongs to a certain region.
In the remainder of this thesis the focus will lie on binary segmentation since most medical imag-
ing classification techniques target at a clear distinction of the detected structures. Furthermore,
most computer aided medical applications like radiation therapy planning applications require a
binary segmentation. For an overview of fuzzy segmentation techniques the reader is referred to
the book by Terry Yoo [Yoo04].

2.2.2. Registration

The term registration is used within this thesis analogous to well known survey literature in the
field [MV98,Zit03,Yoo04,CHH04].

In medical diagnosis and therapy, often several images of the same patient from different imag-
ing modalities or from different points in time are used. Having information from CT, MRI, PET
(positron emission tomography) or ultrasound combined enables the physician to make more
precise diagnosis, since all those acquisition techniques are sensible to different components of
human anatomy like bones, soft tissue or, as in the case of PET, show functional information
of anatomical structures. However, there are some problems that make a direct comparison of
the resulting images difficult. Usually the position and respiration state of patients change when
moving from one imaging modality to another. In addition, sometimes a significant amount of
time elapses between two recordings, so the patient may lose or gain weight. Furthermore, an
operation itself will change appearance and anatomy of the operated structures.

The general goal of registration is to provide a mapping between two different domains or coor-
dinate systems such that corresponding points in both domains are mapped. In the context of the
described medical scenarios, registration provides a mapping between images that show compa-
rable content such that for every voxel or point of interest in the first image, a corresponding voxel
or corresponding point of interest in the second image can be identified. Figure 2.4 shows this
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Figure 2.4.: The principle of registration in medical imaging. Two images, for example from the
same patient at different points in time, cannot be accurately overlaid, because of
differences in pose or respiration state. Registration finds a transformation T that
defines a mapping for every voxel in one image to a corresponding voxel in the other
images such that the same anatomical structures are matched.

basic principle. Finding an appropriate transformation between the images is the challenge of
creating a registration algorithm. Usually one image is called the reference image and the other
one the target image, whereby the target coordinates are mapped to the reference coordinates.
There are several approaches that basically differ in the way what kind of transformations are
used. For example, rigid registration only allows translation and rotation to map the images while
an elastic registration can deal with local deformations. Appropriate transformation parameters
are usually found by iteratively maximizing a similarity measure called registration metric between
the images. A detailed overview of well known registration transformations, metrics and optimiza-
tion schemes can be found in the surveys of Maintz and Viergever [MV98] and Zitova [Zit03]. A
report on non-rigid registration techniques is given by Crum et al. [CHH04].

2.3. Taxonomy of organ segmentation and registration methods

Medical Image segmentation and registration have been important research topics over the last
two to three decades and several state of the art surveys exist for segmentation [PP93, MT96,
PXP00, Yoo04, HGM09, ZOON11] as well as for registration techniques [MV98, Zit03, CHH04].
However, in the scope of this thesis, three open question statements exist that have not been
addressed so far.

The first question addresses possible similarities between segmentation and registration meth-
ods. Some registration approaches can be used to solve segmentation problems and vice versa.
Since the goal of this thesis is the development of a technique that can be used to address seg-
mentation and registration problems, it is necessary to determine the intersection set between
segmentation and registration methods for a state of the art literature research. The first question
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therefore is: what methods form the intersection set and which techniques are particularly suited
for automatic volumetric organ segmentation and registration?

The second question is a direct consequence of the first question. If an intersection set of seg-
mentation and registration methods exists, there is obviously an ambiguity in the current nomen-
clature of segmentation and registration approaches. This ambiguity makes it difficult both to
properly classify an approach and to perform literature research. The second question therefore
is: what is a proper taxonomy for segmentation and registration methods that does not have said
ambiguity?

The third question regards the need for a classification scheme that can be used to determine
the usability of a method for a given structure to segment or register. In the current literature,
methods are often classified based on the technical class of technique used, but not based on
the type of segmentation or registration problem that it can be applied for. In other words it is
described what a method does and not for what a method can be used for. While many seg-
mentation methods are very generic and can be applied to a variety of different segmentation
problems other approaches are very specialized and can only be used in a small application
domain. The third question is: what is an adequate classification scheme for determining the
usability of a method for a given anatomical structure to segment or register.

The taxonomy presented in this section tries to address the open questions described above.
In particular, a new classification scheme is proposed that comprises a new class of techniques
that can be used for segmentation and registration. It is called regmentation. Based on the
developed taxonomy, it is discussed what kind of methods are particularly suited to address the
given task of this thesis.

2.3.1. Classification of segmentation techniques

There are three main characteristics which influence the segmentation of an object in an image:
object boundaries, object homogeneity and object shape. Object boundaries and object homo-
geneity are image or signal based characteristics. Therefore they are affected by image specific
disturbances like noise or reconstruction artifacts. Furthermore, they are modality dependent.
For example, an object may have very dominant boundaries in a CT image and only poor bound-
ary representation in an ultrasound image. An object’s shape is image independent and in most
imaging modalities — apart from small deviations like perspectival mapping distortions — also
independent from the acquisition technique.

The concepts of object boundary, object homogeneity and object shape have a strong influence
on the development of segmentation methods. Segmentation techniques try to detect boundaries
and homogeneous regions in the images and incorporate shape information to restrict the shape
of the resulting segmentation. Some methods like thresholding or region growing rely more on the
image or signal information while other methods like model based approaches have a stronger
focus on modeling the object’s shape in the segmentation process. In the literature, segmentation
approaches are therefore often classified according to the amount of boundary, homogeneity or
shape knowledge they incorporate. Over the last three decades, several surveys about medical
image segmentation have been published. Nikhil et al. [PP93] distinguish threshold methods
from iterative pixel classification, surface based segmentation techniques, edge detection meth-
ods and fuzzy set theory methods. Hu et al. [HGM09] categorize segmentation techniques into
four groups whereas each group is defined by the image features used by the segmentation
technique: region-based, boundary-based, hybrid and atlas based. Zuva et al. [ZOON11] dis-
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tinguish between threshold, edge and region based methods. Pham et al. [PXP00] use eight
categories: thresholding approaches, region growing methods, classifiers, clustering methods,
Markov random field models, artificial neural networks, deformable models and atlas guided
methods. Thresholding, classifier, clustering and Markov random field methods are considered
as pixel classification methods.

Although the nomenclature used in the described literature is not fully consistent and some
single approaches have been assigned to different groups, two main classes of algorithms can be
identified: image based algorithms and shape based algorithms. The number of subcategories
used in the literature varies and hybrid categories are used in some articles to classify algorithms
which show characteristics of multiple categories.

In this thesis, a more generic view on the classification of segmentation approaches is pro-
posed. The proposed taxonomy is based on a continuum between two extremes: purely image
based algorithms and strong shape based methods. All segmentation algorithms are classified
inside this continuum according to the amount of shape information used by the method. An
aspect that derives from this view is the shape generalizability and shape specializability of an
algorithm. The more shape information an algorithm incorporates, the more specialized it gets.
For example, a geometric active contour or snake with a low elasticity can only be used to seg-
ment objects which smooth boundaries. In contrast, a threshold can be used to segment arbitrary
shapes with the same parameter setting. Figure 2.5 shows a schematic view of this taxonomy.

The proposed taxonomy contains four categories: voxel based methods, region based meth-
ods, methods with local shape priors and methods with global shape priors. The single cate-
gories will be explained in detail in the upcoming Sections 2.3.1.1 to 2.3.1.4. The categories
have been chosen, because they form clearly identifiable groups in the continuum between im-
age and shape based methods. Of course other ways to separate the continuum exist. There
will also be segmentation algorithms which can be argued to fall into one or another category.
However, in comparison to other classification schemes, all algorithms are embedded into the
same continuum and can therefore be clearly distinguished from each other and set into context
to other algorithms.

In many publications [PXP00, HGM09, ZOON11] machine learning techniques like clustering
and classification methods represent either separate classification categories [PXP00] or form
subcategories, for example sometimes they are considered as subcategories of region based
methods [HGM09,ZOON11].

In this thesis, machine learning methods are not considered part of the segmentation classifi-
cation scheme as described above, because they are not per se segmentation methods. Rather,
they can be used to support segmentation mainly by finding appropriate parameters for a seg-
mentation method. In Figure 2.5 it is indicated that the number of parameters of a segmentation
method increases with the amount of shape domain knowledge used. For example, purely image
based methods like thresholding or histogram based methods only need very few parameters —
in a simple thresholding case only one parameter exists that represents the threshold. For such
methods, it may be enough to examine some representative cases or to consult a domain ex-
pert. Model based approaches like mass spring models are characterized by many parameters,
since they model complex shape knowledge. Machine learning methods can be used to auto-
matically find appropriate parameters for such methods in order to increase their robustness on
a diverse test data base. They can therefore help to automate complex segmentation algorithms.
Furthermore, for structures with a strong shape variation like chromosomes [CW11], white mat-
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Figure 2.5.: Proposed classification scheme of methods for segmenting objects in medical im-
ages. The methods having the broadest application area concerning shape vari-
ability, i.e. showing the best shape generalizability are shown on the left. Those
methods usually have only few parameters, because they do not incorporate much
domain specific knowledge. The approaches shown on the right are highly special-
ized, i.e. they are often only suitable for one particular structure to segment and
incorporate a high amount of domain specific parameters. Nowadays, typically su-
pervised machine learning algorithms are used to cope with the high parameter count
by incorporating a training base of known cases that serves as a model for the given
problem statement [ESS12].
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(a) (b) (c)

Figure 2.6.: (a) the histogram of two different objects which are characterized by a broad and
a narrow distribution, respectively [Erd09]. (b) a CT image of the heart and (c) a
segmentation using the Otsu method [Erd09].

ter [SCDC11] or prostatic glands [PJE∗11] often multiple low parameter segmentation methods
are combined to extract a set of simple image features. Machine learning algorithms are then
used to cluster the image features such that a meaningful segmentation of the target structure
can be achieved. Section 2.4 gives an overview of frequently used machine learning methods in
medical imaging.

In the classification view presented in this thesis, machine learning algorithms are supportive
tools to help to automate segmentation methods or to support segmentation methods by perform-
ing statistical analysis on a set of data that is originally generated by the segmentation algorithms.
Machine learning methods can therefore be coupled with any existing segmentation algorithm.
However, such a coupling does not add a new level of complexity to the data and it does not
add any further image or shape domain knowledge to the existing segmentation algorithm. That
means, it does not change the classification of an algorithm according to the taxonomy presented
in this thesis. Therefore, machine learning methods are not part of the presented classification
scheme.

In the following sections, the four classification groups as shown in Figure 2.5 are discussed
in detail. A large number of medical image segmentation approaches have been proposed in
the literature working either on two-dimensional or three-dimensional data. In each classifica-
tion group, the most important methods for medical image segmentation are described. Often
complex segmentation methods consist of a whole pipeline using algorithms from different clas-
sification groups. In such a case, a method is classified by the algorithm, that uses the most
shape knowledge. For example, an approach that uses a thresholding followed by a model based
segmentation is considered a model based method.

2.3.1.1. Voxel based methods

The first classification group for image segmentation according to the taxonomy presented in the
previous section as well as in Figure 2.5 consists of voxel based methods. The voxel based
methods group consists of methods that purely rely on image information and do not incorporate
any prior shape knowledge about the structure to segment. That makes them suitable to segment
structures that strongly vary in shape and at the same time show good images contrast. However,
since they are purely based on image signal information voxel based methods are not very well
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able to deal with image noise, reconstruction artifacts or low object contrast. The following gives
an overview of well known voxel based methods that are used for medical image segmentation.

The simplest approach to address the segmentation problem is to classify a voxel solely based
on its intensity. Such methods do not incorporate any local relationships between the voxels.
From that perspective, a segmentation can be made by determining a value range that assum-
ingly uniquely contains the gray values of the structure to be segmented. This approach is called
thresholding and is often used by more sophisticated methods as a preprocessing step to build
a coarse-grained segmentation. Some medical image acquisition techniques like CT have the
advantage that it is roughly known a priori to which intensities different tissues will be mapped.
Thresholds can therefore be directly determined. However, the value ranges of tissues slightly
vary from scan to scan and between different patients, so a manual selection is generally not
sufficient. In order to automatically find suitable thresholds, usually the histogram of the image
is inspected and searched for two or more local maxima. The appropriate thresholds are then
determined by the minimum between them. Unfortunately, most of the time the gray value ranges
of different objects in images overlap. This has a direct impact on the appearance of the his-
togram, since the area of a local minimum is not necessarily the place with a minimum overlap
of two corresponding distributions. For example, Figure 2.6(a) shows the histogram of an im-
age that contains two different objects. One object has a very broad range of gray values (i.e.,
its histogram shows a wide distribution) while another is characterized by a high contrast to the
background (and shows a narrow distribution). Here, the place in the cumulative histogram where
both objects have an equal amount of misclassified voxels is not the local minimum between the
two peaks.

Machine learning algorithms can be used to find an optimal threshold. The clustering algorithm
k-means divides the histogram into k clusters such that a metric be tween the histogram’s ele-
ments and the centroids of the clusters is minimized. For example, an image is divided into two
clusters, one for an object and one for the background. First, the centroids of the clusters are, for
example, randomly initialized. As a metric one may choose the minimum gray level distance. The
intensity of each pixel is therefore compared to the mean intensity (centroid) of each cluster and
is then assigned to the most similar one. Afterwards, the mean intensities are updated and the
procedure starts anew until the algorithm converges. The result is a separation of the object from
the background. One can think of generalizing this procedure to work with n-dimensional data
vectors instead of just gray values. In addition, other metrics like the sum of the variance over all
clusters or the total distance between every value and their centroids can be used. While having
the advantage of being simple and fast, the major drawback of these algorithms is that they do
not necessarily always converge to the same result — a consequence of the random placing of
cluster centroids.

Another well known automatic thresholding technique is the Otsu method [Ots79] which auto-
matically divides the image into two or several (multilevel Otsu method) classes. The idea is to
find a threshold such that the gray value distribution in each cluster gets as narrow as possible.
Since the distribution of one cluster gets wider when another gets tighter, the goal is to minimize
the combined spread of all clusters. For example, a single object shall be segmented from the
image background. For a given threshold T the mean µback and µob ject for the two resulting clus-
ters is computed and weighted with the probabilities ωback and ωob ject of a voxel belonging to the
respective cluster. The following term is called the between-class variance:

σ2
between(T ) = ωback(T )ωob ject(T )

(

µback(T )−µob ject(T )
)2
. (2.1)
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The between-class variance is a measure of distance between the peaks of each distribution.
In order to minimize the combined spread the between-class variance has to be maximized.
However, practically every possible threshold would have to be tested by calculating the means
and then choose the maximal result, so this algorithm means a heavy computational burden.
Therefore the above formula is further simplified. It can be shown [sLsCcC01] that maximizing
the between-class variance is equal to maximize a modified between-class variance denoted as:

σ2
betweenModi f ied(T ) =

k

∑
j=1

ω jµ
2
j , (2.2)

where k is the number of object classes. Liao et al. [sLsCcC01] showed that it is possible
to precompute all sums of ω and µ in a look-up-table. The modified between-class variance
can then be recursively computed by adding up the precomputed results of the table. Using the
described improvements allows for a noticeable speedup making the algorithm interesting for
medical image processing. In Figure 2.6(b) and 2.6(c) the segmentation result of a cardiac CT
data set using the Otsu-method is shown.

In complex segmentation scenarios, thresholds and histogram based methods tend to pro-
duce either small islands that are not part of the object to be segmented (but share the same
gray value) or result in segmentation holes (because the threshold was set too high).

Voxel based methods are very simple and are usually not suited for complex segmentation
problems. They rely purely based on image content and do not include any shape specific
knowledge about the structure to segment. However, they are useful for segmenting structures
with a strong shape variation which at the same time show good image contrast. For exam-
ple, Aarle et al. [vABS11] propose a threshold selection strategy to segment dense objects in
tomographic images like phantom scans. Voxel based methods are used in cell image segmen-
tation [YLKC10,YBCK10] where tens to hundreds of single cells with varying shape can be seg-
mented simultaneously. Machine learning methods are often coupled with voxel based methods
to increase their flexibility and robustness on diverse test bases. For example, Zhang et al. use
voxel based methods together with several machine learning techniques to segment cervigram
images [ZHM∗10]. Yin et al. [YBCK10] apply classification methods together with voxel based
methods for cell image segmentation.

Voxel based are often used as a pre-processing step in more complex segmentation pipelines.
Sometimes, certain intensity areas in the image can be neglected, because the structure of
interest does not contain any gray values from that intensity area. Voxel based methods are a
simple and fast way to achieve that goal, helping to reduce the complexity of the segmentation
problem for further processing steps. Furthermore, because voxel based methods usually have
no prior shape knowledge and only few parameters to set, they can be easily automated.

2.3.1.2. Region based methods

The second classification group for image segmentation according to the taxonomy presented
in Figure 2.5 consists of region based methods. Region based methods are mainly based on
image signal information, but they incorporate local relationships between voxels, for example for
building contiguous regions.

One of the most prominent region based methods in 2D and 3D is the region growing algorithm.
Here, a segmentation grows from initially placed points called seeds by aggregating neighboring
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(a) (b)

Figure 2.7.: The region growing algorithm applied to segment the portal vein of the liver. (a) The
original image is shown on the left. The right image shows the resulting segmentation
that grew from a seed point at the position of the shown cross [ESS12]. (b) Three
dimensional view of a leaking of region growing caused by a high threshold [ERS08].

pixels or regions according to some similarity criterion. Region growing is often used to segment
homogeneous regions like vessels trees which vary in shape but share a similar intensity. Figure
2.7(a) (left) shows a cross sectional view of a CT image of the liver. The vessel tree is contrast
enhanced and clearly visible. The region growing can be used on such an image to segment
the vessels. First, a voxel inside a vessel is selected — either manually or automatically — as a
seed point. In addition, a gray value range is defined that covers all intensities that occur within
the vascular tree, i.e. a lower and an upper threshold, Tl and Tu, are defined as a measure of
similarity. The region growing iterates over all voxels that have been segmented so far, comparing
the current intensity with all direct neighbors and adding those voxels with an intensity between
Tl and Tu. As a result, a connected segmentation of the vessel is obtained (cf. Figure 2.7(a)
(right)). A problem arises if neighboring objects share a similar intensity to the structure to be
segmented or if the intensity range is set incorrectly. The algorithm then leaks into those areas
as Figure 2.7(b) shows. Nevertheless region growing is a widely used segmentation method due
to its computational simplicity and the fact that the connectivity of all voxels grown from a seed
point is ensured.

Another algorithm that iteratively groups pixels into regions is the so called watershed trans-

form. Its idea is inspired by the observation of rain falling on a non flat area with peaks and
valleys. Typically the water will pool at the local minima of the region and build small lakes. Ap-
plied to image processing, the gray values of an image can be thought of as height differences
on a rectangular surface. A segmentation is now created by picking the minimum gray value vmin

as the sources of basic catchment basins. In the next step all neighboring voxels with an intensity
of vmin + 1 are added to the basins. If a voxel with the according intensity does not adjoin to a
basin, a new one is created at that place. After some iterations the catchment basins will usually
meet. The borders between them are called watershed lines and form the boundaries of the
final segmentation. Because often the segmentation of whole objects is required, the algorithm
is usually applied to gradient images, where the edges denote the local maxima. Smoothing
the image is often used to remove local minima that may occur due to noise. More sophisti-
cated approaches to further improve the watershed segmentation were introduced by Meyer and
Beucher [BM93, Mey94] who developed methods to define a unique behavior in the presence of
plateaus.

A fully automatic region based segmentation method is known as the split and merge algo-

rithm. It starts considering the whole image as a single region. The region is then tested against
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(a) (b) (c)

Figure 2.8.: Example of vesselness filtering on a liver CT image [ERS08]. (a) original image. (b)
vesselness filter output. (c) rendered segmentation result of the portal venous vessel
tree after applying a region growing algorithm.

a homogeneity criterion. If the test fails, the segmentation is split into four smaller regions (eight
in three dimensions) of equal size. This procedure is recursively repeated until no further splitting
is necessary. In a subsequent merging step, adjacent regions are tested for similarity and merged
accordingly. The result is an irregular segmentation of single homogeneous regions. Since the
algorithm is splitting the image into equally sized blocks, it is suitable for segmenting local and
contiguous structures instead of fine objects like vessels which may be spread over the entire
data set.

Another category of region based methods are filtering methods. In medical imaging, image
filters are mainly used for point, edge or tube detection. In many literature overview publica-
tions [PP93,HGM09,ZOON11], such kind of methods form a separate category of segmentation
algorithms. However, like the region based methods described above filters are image based
methods that incorporate local relationships between voxels in order to classify a voxel in the
image. In the context of the shape knowledge driven taxonomy presented in Figure 2.5, they are
therefore classified as region based methods.

Edge detection is commonly used in medical image segmentation, because the boundaries
of anatomical structures are often characterized by an intensity difference between the tissues.
Such intensity discontinuities or edges can be found by computing the derivatives of the local im-
age intensity function. Usually those derivatives are approximated by convolving the volume with
filter masks . Several edge detection filters have been proposed, for example, the Canny edge
detection filter [Can86]. However, filter results frequently needs to be post processed, because
object contours are often not closed. While image filtering alone is in most cases not sufficient for
image segmentation, the concept of edge detection plays a central role in algorithms that incor-
porate additional shape information. In particular, a large amount of local and global model based
segmentation approaches as described in the upcoming Sections 2.3.1.3 and 2.3.1.4 incorporate
edge detection methods for searching object boundaries.

Another well known type of filtering methods is the class of filters proposed by Sato et al.
[SNA∗97] and Frangi et al. [FNVV98]. Those filters are based on second order derivatives of the
image and scale space theory [MVN06]. The approximated second order derivatives are com-
bined to form the local Hessian matrix around a voxel. Using eigenanalysis, the Hessian matrix
can be evaluated to detect tube like structures in an image. This property makes such filters
ideally suited to detect all kinds of vessels in an image, for example pulmonary vessels [KKE∗08],
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coronary and retinal arteries [KCBP04] or liver vessels [ERS08]. They are therefore sometimes
called vesselness filters. A subsequent segmentation can be achieved by thresholding the filter
output or by applying region growing methods [ERS08]. Figure 2.8 shows an example of vessel-
ness filtering on a liver CT image. The original image is shown in Figure 2.8(a) and the output of
the filter is shown in Figure 2.8(b). A region growing is then used to segment the vessel tree in
the image (cf. Figure 2.8(c)).

Region based methods have a lot of advantages. They are almost as flexible as voxel based
methods and can be applied to a large variety of different segmentation problems. However,
they incorporate neighborhood relations which is a very natural way of describing medical image
content since neighboring voxels are in most cases related. This makes region based methods
generally more robust than voxel based methods. They also do not incorporate complex shape
knowledge which limits the amount of parameters to set for a region based method.

Apart from their application to vessel detection and segmentation, they are widely coupled
with machine learning techniques to detect tumors or lesions of all kind. Usually filter based
methods are used to describe the local texture around a voxel. Using a set of positive and
negative examples, machine learning methods are then applied to automatically find the most
characteristic features for that neighborhood. Such strategies have been applied to retinal le-
sion detection [QRA11], pulmonary nodule detection [MHR10], the detection of hepatocellular
carcinoma [XS11] or the detection of white matter changes [SCDC11].

Generally, region based methods are very well suited for segmentation of objects that strongly
vary in shape. Apart from pathological structures, for example, they have been applied to hip-
pocampus segmentation [WSD∗11] and neuron membrane segmentation [JPW∗10]. However,
since they only incorporate direct neighborhood relations, they are mainly based on image ap-
pearance. This limits their applicability to objects that are homogeneous in terms of intensity or
texture pattern. They are therefore usually applied to small objects instead of complex structures
like organs.

2.3.1.3. Shape methods with local priors

The third classification group for image segmentation according to the taxonomy presented in
Figure 2.5 consists of segmentation methods that incorporate prior shape knowledge about the
structure to segment. However, this prior shape knowledge is modeled locally, for example by
enforcing that the surface of the object has a certain degree of smoothness. Furthermore, since
local prior shape methods do not have a global idea of the shape to be segmented, they are not
restricted to segment a specific shape but can be applied to various types of shapes.

A well known method for two dimensional image segmentation based on local shape priors
is the active contour or snake approach [TF88]. A snake is a contour or curve parametrically
defined in an image B(x,y) on the image plane (x,y) ∈ ℜ2 as ~s(p) = (x(p),y(p))T , with x(p)
and y(p) being the coordinate functions. p ∈ [0,1] is the parametric domain. The shape of the
snake is given by minimizing the energy functional

Σ(~s) = I(~s)+E(~s), (2.3)

where I(~s) and E(~s) are representations of two energies: the internal snake energy I and the
external snake energy E, respectively. The internal energy defines the rigidity and the tension of
the contour, i.e. it defines how smooth and flexible the snake is. The internal energy therefore

21



2. State of the art and related work

Figure 2.9.: Example of the snake algorithm applied to retinal vessel segmentation (image taken
from [MT95]).

is a local shape prior, that determines how the object to be segmented should locally look like.
The image driven part of the method is given by the external energy. It determines what kinds of
image features attract the contour.

An example for an internal energy is

I(~s) =
∫ 1

0
w1(p)
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d p, (2.4)

where w1 and w2 define tension and rigidity of the snake, respectively. As an attracting image
feature, often the image gradient is taken, i.e. the contour will evolve towards intensity differences
in the image. The external energy then is

E(~s) =
∫ 1

0
−|∇(GσB(x,y))|d p. (2.5)

Here, ∇ denotes the gradient of the image B smoothed by a Gaussian G. The standard deviation
σ controls the extent of edges that attract the contour. The minimum of (2.3) is usually found
using numerical algorithms as described in [MT96].

Snakes have been widely used for two dimensional image segmentation problems. The three
dimensional generalization of snakes is called deformable model or deformable surface [MT96].
The advantage of the snake formalism is that the shape prior is very intuitive and easy to control.
For example, if the structure to segment is a bone that does not contain any sharp edges, rigidity
and tension of the snake can be set high. That way the snake is less dependent on the image sig-
nal and therefore also less affected by noise or discontinuous and weak edges. On the contrary,
if the structure to segment does not comprise a smooth surface, the internal energy of the snake
can be set more versatile in order to adapt to the structure. Figure 2.9 shows an example of a
segmentation of retinal vessels using the very flexible snake variant called topologically adapt-

able snake [MT95] which is able to flow into complex shapes. The snake is initialized inside the
vessel tree and iteratively adapts to the borders of the vessels until the whole tree is segmented.

The image driven part of the snake is generally very flexible, since many different external
energies are possible. For example, snakes are used in ultrasound as well as in MR and CT
which are imaging modalities that have very different image characteristics. In consequence
of this flexibility, snakes are used to segment various kinds of anatomical structures including
spicules in Mammography [MBG∗10], tree structures [WNR11], the aorta in MRI [SsNC∗10] and
solid organs [MT96].

A disadvantage of snakes is their dependency on initialization. A snake will most likely get
stuck in local minima if initialized far away from the structure to segment. This complicates au-
tomation of the method in comparison to most voxel and region based methods which are often
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Figure 2.10.: Incorporation of local shape knowledge into the segmentation process. An image
driven term and a shape preserving term are combined by an optimizer such that
the shape representation is adapted to the image [ESS12].

easy to automate. Another drawback is that the flexibility of the snake is set globally for the whole
contour, i.e. the stiffness of the snake is the same at all of its parts. This often means that the
snake is not able to fully adapt to the structure in some parts while in other parts it may be already
too flexible and leak into neighboring structures.

Apart from snakes, there are many other ways to incorporate local shape knowledge in the im-
age segmentation process. The basic principle, however, remains the same. Figure 2.10 shows
a schematic view of this process. Generally, an image driven term and a shape preserving term
are defined. The image driven term is defined based on some image features. Image features
can be, for example, intensity, edges, points of interest or regional homogeneity. The shape pre-
serving term is defined based on the geometric shape representation used for adaptation. For
example, the shape could be represented by an interconnected point cloud (cf. Section 2.5 for
an overview of different shape representations). The shape preserving term could, for example,
enforce that the distance between points should not change much.

Both image and shape preserving terms are combined and balanced using some kind of op-
timization strategy. There are many ways how such an optimization can be performed. Often
the optimization problem is embedded into the well known frameworks of Graph Cuts [GPS89,
FKE∗10,EBK∗10,SPV∗10,APG11], Markov Random Fields [KSF∗10,XMM10,BSX∗10,FEK∗11]
or Graph based optimization [WLC∗10,HUKE10,SLL∗10,GGCH10,XNS∗11]. After optimization,
the geometric shape representation is updated. This process repeats until the structure of inter-
est is segmented.

Local prior shape methods are widely used in image segmentation. Due to the incorpora-
tion of local shape knowledge and in comparison to the mainly image based voxel and region
based methods, they can be used to segment objects with low contrast boundaries such as
lymph nodes [BSX∗10] in CT or the mitral annulus in 3D ultrasound [SPV∗10]. As mentioned
before in the example of snake segmentation, local shape prior methods are sensitive to initial-
ization. However, since the shape priors are only defined locally — for example by enforcing a
certain smoothness — they are usually flexible enough to adapt to a nearby structure if initialized
closely. This makes these methods ideal for interactive segmentation [AHS10, EBK∗10]. Other
applications of local shape prior methods include bone segmentation [APG11], cell segmenta-
tion [DvCE∗10] and detection of vessel-like structures [MST10,GGCH10].
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Figure 2.11.: Schematic view of the incorporation of global shape knowledge into the segmen-
tation process. In comparison to local prior shape methods, the shape preserving
term is additionally based on a reference shape representation that enforces the
shape representation to be similar to a group of reference shapes [ESS12].

Local prior shape methods are also used for interactive and automatic segmentation of whole
organs such as the kidneys [FKE∗10], the prostate [FEK∗11] or the bladder [SLL∗10]. However,
these organs have rather simple shapes and do not have strong shape variations between indi-
viduals. That is the reason why more complex organs like the liver or the heart are usually not
segmented using local shape priors.

2.3.1.4. Shape methods with global priors

The fourth and last classification group for image segmentation according to the taxonomy pre-
sented in Figure 2.5 consists of segmentation methods that incorporate global shape knowledge
about the structure to segment. These methods enforce the segmentation to be similar to one
or a group of reference shapes. This way, complex objects can be robustly segmented even on
low contrast images. Figure 2.11 outlines the principle of global prior shape methods which is
similar to the scheme of local prior shape methods presented in Figure 2.10. An image driven
term and a shape preserving term are combined by an optimizer such that the shape represen-
tation is adapted to the image. However, the shape preserving term is additionally based on a
representation of reference shapes as mentioned above.

There are mainly two kinds of global prior shape methods: geometric model based segmenta-

tion approaches and voxel atlas based segmentation methods. They mainly differ in terms of the
shape representation and adaptation process used.

Geometric model based segmentation In geometric model based segmentation, shape of sin-
gle organs is represented by geometric objects like point clouds and polygonal surfaces [KLL07,
HMW07, LZZ∗08, ZBG∗07, EPS∗08, ZHB06], simplex meshes [CDNA07], B-spline representa-
tions [SBB09], level set representations [AFAX11, CBMS11, WSH09, KUA∗09, CCBK07, FSK07],
geometric grids [BP05] or finite element triangulations [SLH11]. Section 2.5.1 gives a detailed
overview of shape representations used in geometric model based segmentation.
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Figure 2.12.: Principle of geometric model based segmentation [ESS12]. An organ is manually
delineated in a set of images. For each image a geometric representation of the
organ is built. The built shapes are averaged to build a mean model. This model is
then placed in an unseen data set and adapted to the image.

Figure 2.12 shows the principle of geometric model based segmentation. Based on the chosen
shape representation, an instance of the object to be segmented — hereafter called model — is
created that is used as an initial shape. For example, the initial shape can be the mean shape
of some representative shapes of the structures to be segmented — hereafter called templates
— or simply the shape of one particular case. The model is then placed in the image directly on
the structure to be segmented or with significant overlap. This is necessary, because geometric
model based segmentation is very sensitive to initialization. Unlike local prior shape methods,
the model must also be roughly aligned with the structure to segment in terms of orientation.
This is due to the fact that the adaptation of the model is in most cases performed based on
a local boundary search which makes the handling of strong orientation mismatches difficult.
Since geometric model based segmentation is usually used to segment complex shapes, often
automatic model initialization methods are used which estimate the pose of the model in the
image.

The initial model that has been placed in the data set adapts to the structure to be segmented
according to the scheme presented in Figure 2.11. Like for local prior shape methods, image
features like edges are searched in the image and integrated into an image term. Usually image
features are used that describe the boundary of the structure to segment. A detailed discussion
about boundary detection methods is given in Section 2.6.

As described above, the shape preserving term of geometric model based segmentation is
based on the geometric shape representation and on the template shape representation. There
are many ways to model a group of template shapes. The simplest way is to define a single object
to be the template. Frequently, three dimensional deformable model based approaches [MT96]
are initialized with a single template shape if the shape variance of the structure to segment is
not high. For example, lymph nodes [DSP∗06] are always spherical objects so in most cases
it is sufficient to use a sphere as initialization. The external energy is then set such that the
segmentation stays similar to the template shape.

However, for anatomical structures that strongly vary between individuals a single template
shape is not sufficient. For such structures, a representative set of template shapes is neces-
sary. Usually, several dozens of templates are used depending on the complexity of the struc-
ture to be segmented. However, using many templates also increases the complexity of the
decision process of whether the current model is similar to the template shape set. There-
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fore, usually dimension reduction techniques like principle component analysis are applied to
the template shape set in order to extract a limited amount of significant modes of variation
that sufficiently describe the template set. This technique is called statistical shape modeling
and has been proposed by Cootes et al. [CHTH93, CTCG95]. It is the most frequently used
method for geometric model based segmentation of complex anatomical structures with a high
amount of shape variation. Statistical shape modeling has been applied to segment the liver in
CT [KLL07, HMW07, LZZ∗08, SBB09], the heart and heart chambers in CT [ZBG∗07, EPS∗08],
the prostate in MR [TSM11] or bone structures in X-ray fluoroscopy [WKFH11]. Section 2.5.3
gives a detailed introduction into statistical shape modeling.

Because geometric model based segmentation depends on knowing the expected shape of
the structure to segment a-priori, it is less suited for segmenting objects that can have arbitrary
shapes like tumors. Here, local prior model based segmentation methods are more appropriate,
since they only require the surface of the object to meet some local smoothness criteria. Instead,
geometric model based segmentation is used to segment complex shapes that vary in shape,
but are not completely arbitrary. Here, the incorporation of global shape knowledge prevents the
segmentation to leak into neighboring structures and to generate non plausible shapes. They are
therefore especially suited for organ segmentation, since organs typically have complex shapes
that vary in certain limits between individuals.

However, open issues in model based approaches exist. An issue concerns the shape restric-
tion of the model, i.e. the shape preserving method to avoid a non plausible deformation of the
models during adaptation. Usually statistical shape information as described above is incorpo-
rated for organ segmentation. However, the problem is that the shape restriction of statistical
shape models is too restrictive for organs that show a high shape variability such as the liver.
While it is expected that the generalizability of the model increases with the amount of template
shapes, it is not possible to model all patient specific details. For example, the amount of fat and
surrounding tissue, the respiration state, treatment procedure and the disease itself influence the
shape of an organ. Statistical shape models are not able to model such complex detail. There-
fore, the statistical shape restriction is usually relaxed at some point during deformation of the
model [HM09]. The drawback of this procedure and an unsolved problem so far is that the model
shape may become non plausible, thus losing the information from the learned shape space.

Another issue of model based segmentation concerns the shape representation of the struc-
tures to segment. The majority of current state of the art model based methods use models
based on surface representations, i.e. a 3-dimensional surface model is evolved towards the
boundaries of the target organ or structure. However, it often makes sense to incorporate vol-

ume information during the adaptation process in order to make the method more robust against
model initialization errors and to increase the robustness through detection of organ foreign tis-
sue that may not be detected when considering image information near the model’s surface
only. Different kinds of volumetric segmentation approaches have been proposed in the litera-
ture [TFCT98,PFJ∗03,HM08,BPCO10,SLH11]. However, those methods are often complex and
computationally expensive. Moreover, existing standard adaptation and shape preserving strate-
gies cannot be used within those models or must be adapted. In Section 2.5.2, a detailed outline
of existing volumetric model based approaches is given.
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Figure 2.13.: Principle of voxel atlas based segmentation [ESS12]. A labeled image (the atlas) is
registered with an input image. The labels from the atlas are then overlaid with the
deformed input image so the segmented structures of the atlas are also available in
the input image.

Voxel atlas based segmentation The second main type of global prior shape methods is voxel
atlas based segmentation. Figure 2.13 outlines its basic principle1. In voxel atlas based seg-
mentation, two images — a reference image called atlas and the input image to segment — are
registered based on the voxel representation of both images. In the atlas image, the structures
to segment are already contoured. After registration, both images are in alignment such that the
segmented structures in the atlas image can be directly transferred to the input image. That way,
all structures in the input image that are labeled in the atlas are segmented.

The quality of voxel atlas based segmentation mainly depends on two aspects: the atlas build-
ing strategy and the registration method that is applied to register an input image with the at-
las [CM06]. There are many ways to build an atlas. In some applications, it is sufficient to use
a single image as the atlas, for example in intra-patient atlas segmentation. Here, all images to
be segmented stem from the same patient. The atlas is then created from the first image that is
taken during treatment. All following images are directly registered with this first image. However,
this means, that for each new patient, a new atlas has to be created. Therefore, usually the atlas
is constructed more generically such that it fits not only to one patient but a group of individuals. A
simple way to create a generic atlas is to average several representative non-pathologic images
from different patients. However, it has been shown that patient variability is too high for most
anatomical structures for an average atlas to work well [CGM08]. Possible solutions are popu-
lation specific atlases where an average atlas is built for several population groups, for example
based on gender or age [BM07]. Another approach tries to select the most similar image from a
labeled data base of known cases as the atlas [CM07,WRLG∗07]. Aljabar et al. [AHH∗09] extend
this method by selecting a set of the most similar images and registering each image individually

1Thanks to Sebastian Steger for providing the head and neck images.
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with the input image. The segmentation results from every individual registration are afterwards
combined to improve the overall segmentation for the input image.

After building an appropriate atlas, the registration with the input image is performed. Since
this step is independent from the atlas building or labeling, generally any registration method can
be used. In fact, this step solves a pure registration problem according to the definition in Section
2.2.2. Therefore, rigid, locally rigid or deformable registration methods can be applied depending
on the structure to segment.

Voxel atlas based segmentation is the method with the highest amount of prior global shape
knowledge according to the taxonomy presented in Figure 2.5. This is, because not only infor-
mation about the shape of a single organ is considered, but implicitly there is information about
every visible structure and its relation to all other visible structures available in the atlas. By regis-
tering the atlas with an input image, the relation between the structures — for example the heart
is above the liver and is neighboring the lungs — is implicitly considered. That means, the seg-
mentation of a single structure like the heart cannot leak too much into neighboring structures,
because the neighboring structures themselves claim space in the input image during registra-
tion. Another interesting property of voxel atlas based segmentation is the ability to map arbitrary
regions from the atlas to the input image. For example, in head and neck radio therapy, it is
necessary to delineate the lymph node regions in order to limit radiation exposure to these areas.
These lymph node regions do not correspond to any anatomical structures but are conglomer-
ates of lymph nodes, fat, glandular tissue and vessels. However, the regions can be delineated
in the label image of the atlas. Since the atlas is registered with the input image, arbitrary regions
can then be mapped from the atlas label image to the input image. This strategy is used in many
atlas based approaches for lymph node segmentation [CGM08,SIG∗09].

Voxel atlas based segmentation has many advantages, because of the high amount of prior
global shape knowledge they incorporate. However, this ability also makes them less flexible in
practice. While a single structure can be modeled globally in an efficient way, for example using
geometric model based segmentation as described above, a group of different structures and
their relations are very difficult to model globally. Each image that is used for atlas building stems
from only one specific patient. That means, it is just a snapshot of all possible variations in terms
of organ shape, organ positions, organ orientations, respiration state or heart cycle. A complete
global view of the whole body therefore would require an immense amount of images to build
the atlas. However, even if enough images would be available, appropriate selection strategies
are missing that can handle such amounts of data. Therefore, voxel atlas based segmentation is
in practice limited to certain anatomical regions like the head and neck region [IDB∗08, CGM08,
SIG∗09,RCM10] where the amount of variation is relatively low and a small amount of images is
sufficient to build a complete atlas. Another way to utilize voxel atlas based segmentation is to
use it as a coarse initialization method for other segmentation approaches. This way the missing
accuracy of the atlas in areas of high variation is compensated, for example by a local prior shape
method [GT11].

2.3.2. Regmentation: a new view of segmentation and registration methods

As mentioned in the beginning of this chapter, similarities between segmentation and registration
methods exist. Some registration approaches can be used to solve segmentation problems and
vice versa. In the literature, those hybrid approaches are usually either assigned to be registra-
tion or segmentation methods depending on the scope within the methods are used. Additionally,
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Figure 2.14.: Principle of solving a registration problem with geometric model based segmenta-
tion methods. The set of template shapes is regarded as an atlas. A mean model
is constructed from the atlas and is adapted to two different data sets. Transforma-
tions from the atlas to the mean model are known as well as the transformations
from the mean model to the adapted model (continuous arrows). Therefore, implic-
itly, the transformation between both adapted models is also known (dotted arrows),
thus solving the registration problem between both images [ESS12].

sometimes the terms segmentation for registration and registration for segmentation are used to
classify them in further categories. However, this point of view leads to an ambiguity, because
some methods fall into multiple categories. For example, voxel atlas based segmentation would
fall into the category segmentation, because it is used to solve a segmentation task. Further-
more, it would be classified as a registration method, because the technique used to solve the
segmentation problem is a registration method. Lastly, it would also be classified as a registration

for segmentation method for the same reason.

The reason why this ambiguity exists is that a method is classified based on two characteristics
that are not related. The first characteristic is the problem statement that a methods tries to solve,
for example a segmentation problem. The second characteristic is the technique that a method
uses to solve the problem. Both characteristics are individual and unrelated but are often used at
a single criterion for classification. In the scope of this thesis, this point of view on registration and
segmentation is not appropriate, because the goal of this thesis is to develop a method for organ
segmentation and registration. The classification scheme used to select appropriate methods
should therefore be based on the problem statement to be solved.

The shape driven taxonomy for segmentation methods presented in the previous section allows
for a new view on segmentation and registration methods. This new view resolves the ambiguity
of current segmentation and registration classification schemes by proposing a new class of
algorithms which will be called regmentation in the following.

The introduction of global shape knowledge in segmentation as described in Section 2.3.1.4
plays a key role in regmentation. Since information about the shape of one or multiple structures
is available in a global context, global prior segmentation methods can also be used to solve the
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problem statement of registration for these structures. Figure 2.14 illustrates this process. For
example, model based segmentation uses geometric shape models that are adapted to objects
which are visible in the image. The models are constructed based on template shapes that all
have been aligned in a certain coordinate system. The set of template shapes defined in this
coordinate system could therefore be regarded as an atlas. Furthermore, the geometry of the
model is globally defined, that means, for example, the lower peak of the left cardiac ventricle
stays the lower peak after adaptation and is not adapted to the top border of the ventricle. This
means, if a model from the atlas is adapted to two different data sets, a correspondence between
both data sets is given in the adapted state. Naturally, a correspondence between the model in
the atlas and the adapted model is also given. Therefore, a mapping between both data sets can
be established by using the correspondence chain from the adapted model in the first data set
to the atlas and back to the adapted model in the second data set. Such a mapping is in fact a
registration. Global prior segmentation methods are therefore both segmentation and registration
methods. In other words, they are regmentation methods, because they cannot be differentiated
from the problem statement solving point of view.

The presented view of regmentation leads to a new classification scheme for segmentation and
registration methods that consists of three categories. The first category is represented by pure
segmentation methods. According to the scheme presented in in Figure 2.11, these are voxel and
region based segmentation methods as well as local shape prior methods. These approaches
can solely be used to solve a segmentation problem, since they lack of global knowledge. No
correspondence establishment and therefore no registration is possible. The second category
consists of pure registration methods. These methods are classical registration approaches that
are able to establish a mapping between two data sets, but lack an atlas in which structures are
segmented. If such an atlas is added, they become regmentation methods which form the third
category. This category consists of all global prior segmentation approaches.

The benefit of the described scheme is that the built categories are disjunct. All segmentation
and registration algorithms can be classified as being exclusively part of one category. Further-
more, the proposed classification is a problem solving driven scheme, that means, it does not
matter, which kind of technique is used to solve the problem. Appropriate techniques for solving
a segmentation and registration problem can be directly taken from the regmentation category.
The applicability of the proposed scheme is demonstrated in the following section by a compre-
hensive classification of articles from international medical imaging journals and conferences of
the last two years (2010-2011).

2.3.3. Classification of existing methods

This section demonstrates the practical applicability of the taxonomy presented in Section 2.3.1
and Section 2.3.2 in comparison to the classical view of segmentation and registration methods.
It also aims at demonstrating the current direction of research in the field of medical image seg-
mentation and registration. 855 articles from 6 renowned international medical imaging journals
and conferences of the last two years (2010-2011) have been investigated and classified 2. The
conferences and journals were mainly chosen by their impact factor and relevance to the medical

2The work of classifying state of the art methods from international journals and conferences of the last two years
following the developed classification scheme presented in Section 2.3 has been shared with Sebastian Steger,
Fraunhofer IGD.
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imaging community.
The conferences investigated have been:

• Medical Image Computing and Computer-Assisted Intervention (MICCAI), in the year 2010
(96 articles). The MICCAI conference is one of the most renown conferences in the field of
medical imaging.

• IEEE Conference on Computer Vision and Pattern Recognition (CVPR), in the years 2010
(13 articles) and 2011 (6 articles). CVPR is one of the top ranked conferences in the field
of Computer Vision and Pattern Recognition. Usually a significant amount of articles in the
field of medical imaging are published every year.

• IEEE International Symposium on Biomedical Imaging (ISBI), in the years 2010 (126 arti-
cles) and 2011 (220 articles). The ISBI conference is one of the biggest biomedical imaging
conferences and contains comprehensive tracks on segmentation and registration regard-
ing all imaging modalities.

• SPIE Medical Imaging, in the years 2010 (132 articles) and 2011 (116 articles). SPIE Med-
ical Imaging is one of the biggest conferences which focus solely on advances in medical
imaging.

The journals chosen for the study were:

• IEEE Transactions on Medical Imaging, volume 29, issues 1-12 in 2010 (56 articles) and
volume 30, issues 1-8 in 2011 (33 articles). Transactions on Medical Imaging has an impact
factor of 3.5 (2010) and is one of the most renown medical imaging journals.

• Medical Image Analysis, volume 14, issues 1-8 in 2010 and volume 15, issues 1-4 in 2011.
Total articles: 57. Medical Image Analysis has an impact factor of 4.2 (2011) and is one of
the most renown medical imaging journals.

Figure 2.15 (a) shows the classical four categories of segmentation and registration from the
literature. The category segmentation denotes all segmentation approaches presented in Section
2.3.1 including voxel and region based methods as well as local and global prior segmentation
approaches. The category registration consists of pure registration methods and is identical to
the registration category of the scheme proposed in Section 2.3.2. The category segmentation

for registration is formed by segmentation methods that are used to solve a registration task.
The category registration for segmentation is formed by methods that address the inverted task.
In order to ease the comparison of the classical with the proposed classification scheme, the
described four classical categories have been made disjunct. Here, the last two categories had
priority, that means, a method that would have been assigned to be a segmentation for registration

method and a segmentation method is considered as a segmentation for registration method. The
category registration for segmentation is treated analogous. As it can be seen in Figure 2.15 (a),
in the classical scheme, the majority of investigated methods are segmentation methods followed
by pure registration approaches. The hybrid categories consist of comparable few articles. This
view suggests that the intersection set of segmentation and registration methods is relatively
small. However, as it will be shown in the following, the opposite is true.

In the four described classical categories, the segmentation approaches are now further inves-
tigated by applying the proposed sub-classification of Figure 2.5. That means, in each classical
category, the segmentation methods are classified as being either voxel based methods, region
based methods, local prior or and global prior shape methods. Moreover, the sub-category global

prior shape methods lists voxel atlas based segmentation approaches separately, since their
incorporation of global shape knowledge significantly differs from the other global prior shape
methods. The subdivision of the classical categories will answer the question of how much shape
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knowledge is used in current state of the art approaches. Finally, it will reveal that the classical
classification scheme can be easily transformed into the proposed classification.

Figure 2.15 (b) shows the distribution of methods in the classical category segmentation. It can
be seen that most of the current segmentation approaches make use of prior shape knowledge.
Purely voxel based methods are only used in very few methods whereas the amount of region
based approaches is comparable to local or global prior shape methods.

In Figure 2.15 (c), the segmentation methods used in the classical category registration for

segmentation are sub-classified. Global prior shape methods form by far the largest class. All
other classes are only represented by a small amount of methods. Among the global prior meth-
ods, voxel atlas based approaches are the most dominant technique.

Figure 2.15 (d) shows the distribution of segmentation approaches in the classical category
segmentation for registration. Again, the majority of methods use prior shape knowledge while
the largest single category is formed by region based methods. This is due to the fact that many
registration methods rely on a detection of feature points in the image which in turn are often
segmented using region based approaches. Voxel based methods only play a minor role in this
category.

By building the proposed sub-categories of segmentation methods in each classical category,
the classical classification view can be transferred into the scheme proposed in this thesis. Here,
all global prior based methods from each classical category are moved to the new category reg-

mentation, because they can be used to address segmentation and registration problems. The
classical hybrid categories segmentation for registration and registration for segmentation are
moved to the categories registration and segmentation, respectively, because they address ei-
ther registration or segmentation problems. Figure 2.16 shows the resulting classification. In
comparison to the classical scheme in Figure 2.15 (a), it is now evident that a large amount of re-
cently published methods can be used to address both segmentation and registration problems.
In fact, more articles about regmentation techniques have been published than classical regis-
tration approaches which shows that regmentation plays a key role in current medical imaging
research.

2.3.4. Discussion

In this section, a new shape knowledge driven taxonomy for the classification of segmentation
and registration methods has been presented. For the goal of this thesis — the development
of an automatic volumetric organ segmentation and registration approach — several conse-
quences can be drawn. Global prior segmentation methods are well suited for the segmentation
of structures with complex shapes like organs. Moreover, through the incorporation of global
shape knowledge, they are the best available technique for segmenting certain organs like the
liver [CC07,HvGSea09] which are often not well separated from neighboring tissue. Those facts
are also supported by the literature classification in Section 2.3.3 which showed that global prior
shape methods are dominating the current research in the field of medical image segmentation.

The developed taxonomy also revealed that global prior shape methods are suited to solve
both segmentation and registration problems. In other words, segmentation techniques become
registration techniques if enough shape knowledge is incorporated. This makes global prior
shape methods very well suited to address the goal of this thesis.

Among the global prior shape methods, two main categories have been identified: geometric
model based segmentation approaches and voxel atlas based techniques. As it has been shown,
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Figure 2.16.: Proposed classes of segmentation and registration approaches according to the
taxonomy developed in this thesis. The segmentation category consists of methods
that can be used to solve segmentation problems. The category registration clas-
sifies methods for registration tasks. Approaches that can be used to solve both
problems fall into the category regmentation [ESS12].

voxel atlas based segmentation incorporate the highest amount of global shape knowledge, be-
cause they implicitly model relations and dependencies between different labeled structures to
be segmented. However, it also has been shown that voxel atlas based methods are less flexi-
ble to segment complex soft tissue structures with a lot of shape variation (cf. Section 2.3.1.4).
Therefore, they are in practice limited to the segmentation of certain anatomical regions like the
head and neck region where the amount of variation is relatively low and a small amount of im-
ages is sufficient to build a complete atlas. Another often used application is to use a voxel atlas
as a coarse initialization for other methods where high accuracy is not needed. Due to these
limitations voxel atlas based segmentation is not considered for use in this thesis.

Geometric model based approaches are suited for addressing the goal of this thesis, because
they can better cope with complex shape variation (cf. Section 2.3.1.4). However, as it has been
shown, open issues in geometric model based approaches exist. One problem is that the shape
variability of highly shape varying organs like the liver or the pancreas can not be sufficiently
learned. Here, an extremely large number of representable reference shapes would be necessary
for a complete modeling. However, even if enough reference shapes would be available, current
statistical shape modeling methods are not able to retain all detail of the training set, because
dimensionality reduction techniques are used to reduce the complexity of the shape modeling
process. However, this prevents current geometric model based approaches to robustly segment
shapes that differ a lot from the trained reference shapes.

Another issue of model based segmentation concerns the shape representation of the struc-
tures to segment. The majority of current state of the art model based methods use models
based on surface representations, i.e. a 3-dimensional surface model is evolved towards the
boundaries of the target organ or structure. However, it often makes sense to incorporate vol-

ume information during the adaptation process in order to make the method more robust against
model initialization errors and to increase the robustness through detection of organ foreign tis-
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sue that may not be detected when considering image information near the model’s surface
only. Different kinds of volumetric segmentation approaches have been proposed in the litera-
ture [TFCT98,PFJ∗03,HM08,BPCO10,SLH11]. However, those methods are often complex and
computationally expensive. Moreover, existing standard adaptation and shape preserving strate-
gies cannot be used within those models or must be adapted. In Section 2.5.2, a detailed outline
of existing volumetric model based approaches is given.

In order to give a deeper insight into the strengths and drawbacks of current state of the art ge-
ometric model based approaches, the following sections discuss the three basic elements of ge-
ometric model based segmentation. Dimensionality reduction and machine learning techniques
used for modeling a set of training shapes or used for automatic model initialization methods
are outlined in Section 2.4. Shape representation and preservation techniques are described in
Section 2.5. Boundary detection methods are presented in Section 2.6.

2.4. Machine learning approaches

Machine learning methods have become very popular in the medical imaging community over the
last decade. Pattern recognition techniques like clustering, support vector machines, principle
component analysis or boosting help to cope with the analysis of nowadays massive amount
of data produced with current medical imaging techniques. It is also a key enabler for coping
with increasingly complex segmentation and registration techniques which are usually defined
by a multitude of parameters. Determining those parameters for a given problem statement in
a heuristic manner is time consuming and error prone. Machine learning techniques allow to
estimate the optimal parameters by learning from previously seen data of the same problem
statement. For example, in order to determine an appropriate threshold for segmenting the skull
in a CT image, a human could investigate a couple of images trying different thresholds until the
skull is sufficiently well separated from surrounding tissue. As the number of images increases,
it will become more and more difficult to find the optimal threshold since a human usually has to
iterate over all images again when trying a new value. As an alternative, the optimal threshold
could be found using machine learning approaches.

A detailed introduction to the field of pattern recognition and machine learning methods can be
found in the book by Christopher Bishop [Bis06]. This section describes the pattern recognition
based approaches that have been used in this thesis. In particular, principle component analysis
(PCA), boosting and binary decision trees are explained.

Machine learning approaches usually start with a set of input values, the so called feature

vector. The goal is to assign the feature vector ~v ∈ D, with D being the input domain, to one
or multiple classes c ∈ C based on the input values. This process is called classification if the
classes are discrete, i.e. a discrete value is assigned to the feature vector for every class. If the
classes are continuous, the process is called regression. In medical image segmentation, it is
usually sufficient to work with two discrete classes c ∈ {0,1}, for example organ and non-organ
so the focus of this section lies on binary classification methods.
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Figure 2.17.: Example of supervised learning for determining a threshold for skull segmentation
in CT. From a labeled image, positive samples inside the labeling and negative
samples outside the labeling are taken. Supervised learning determines a threshold
that separates positive and negative samples. The found threshold is applied to the
same image. The skull is in most areas well segmented in comparison to the ground
truth labeling.

2.4.1. Supervised and unsupervised learning

There are two important categories of binary machine learning classification approaches fre-
quently used in medical imaging: supervised and unsupervised methods.

Supervised learning In supervised learning, a set of n positive feature vectors T+= {(~v1,1), ..,-
(~vn,1)} and a set of m negative feature vectors T− = {(~vn+1,0), ..,(~vn+m,0)} are built. The goal
of the learning approach is now to find an appropriate function g : D →C from the input domain D

to the output domain C = {0,1} to correctly classify all feature vectors as positive or negative. In
the example of finding a threshold to segment the skull in a CT image, the input domain would be
the 12 Bit Hounsfield range of gray values D = −1024, ..,3071. In this case, one feature vector
~v would be computed for every voxel and would contain only a single value — the gray value of
the voxel. The assignment of the feature vectors to the positive and negative sets T+,T− could
be done manually, by delineating the skull in a couple of CT images, i.e. by labeling every voxel
as skull c1 = 1 and as not skull c2 = 0. A possible function g : D → 0,1 could be:

g(~v) =

{

+1 i f v1 ≥ 300

0 else
(2.6)

In this case the threshold for segmenting the skull would be 300 Hounsfield units which may
be sufficient to correctly assign the majority of training feature vectors to their class. In Figure
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2.17, an example of the described process is given. It is very unlikely though that a function
g exists that performs the correct classification for all training vectors. Furthermore, there will
be probably an amount of training vectors which contain the same Hounsfield value, but were
assigned to different classes. This is due to the fact, that the classification problem in this example
— segmenting the skull — is too complex to address using a single feature — a threshold — only.
For example, in Figure 2.17, the spine is also segmented by applying the computed threshold.
The aim of a supervised learning approach therefore is to find the function g that solves the
classification problem using the available features in the best approximate way. What the best
way is depends on the problem statement. For example, it could be desirable to maximize the
distance between the centers of the positive and negative feature vector clusters. Other problems
may require to have a low false positive rate, for example if the classification task concerns tumor
detection.

Popular supervised learning methods are support vector machines, classification and regres-
sion trees or boosting methods.

Unsupervised learning In unsupervised learning, the input feature vectors used for training are
unlabeled, i.e. there is only one training set T = {~v1, ..,~vn}. That means, the function g : D →C

from the input domain D to the output domain C = {0,1} cannot be estimated using the training
feature vectors alone. Instead, there needs to be some a-priori assumption about the structure
of the input data. For example, the assumption could be that there exist two classes of feature
vectors (describing organ and not organ) and that the feature vectors of the same class are similar
to each other. A metric defining the similarity could simply be the euclidean distance between the
vectors in feature space. So the unsupervised learning algorithm would take the input vectors
and group them in two classes such that the metric is optimized. In that way any feature vector
can be classified to be in one of this two built classes.

Unsupervised learning methods include clustering methods like k-means clustering, dimen-
sionality reduction techniques like principle component analysis and neural network models.
However, some of those algorithms can also be adapted to work with labeled training data mak-
ing them supervised techniques.

The advantage of unsupervised methods in comparison to supervised methods is that they do
not need labeled training data. In terms of medical imaging this is an important aspect since here
typically huge amounts of data is produced and the training data often has to be created manually
which is very time consuming. Furthermore, since the labeling task itself is for many anatomical
structures not trivial, often only medical experts are able to perform this task. However, in unsu-
pervised learning, it is often not easy to define proper a-priori assumptions about the structure
of the data. Sometimes the statistical nature of the data is not known so standard models like
Gaussian data distribution are used which often are not the best solution.

Supervised learning methods have the advantage that the classification method can be trained
to approximate the training data arbitrarily precise without knowing the statistical structure of the
data3. The idea is that the more training data is available, the more accurately the method will also
be able to classify unseen data of the same type. However, there are some practical limitations of
this idea. First, it is often not possible to acquire enough training data for the problem statement,
which might be complex and involving a lot of statistically independent parameters. Secondly,

3It is of course advantageous to know the statistical distribution of the data in order to choose an appropriate model
for estimating the function g : D →C.

37



2. State of the art and related work

supervised learning targets at precisely classifying the training data. A problem that arise in this
context is over-fitting. Over-fitting means that the classifier is able to correctly classify the training
data, but weakly performs on unseen data. This typically occurs if some of the chosen features
are not statistically relevant to describe the problem. For example, using the Hounsfield value at a
voxel as a feature for classification in skull and not skull in a CT image is a good feature, because
the gray values of the skull are always inside a certain gray value range in CT images. This feature
is therefore descriptive. However, using the same feature to classify a voxel in skull and not skull
in a magnetic resonance image is a bad feature. In contrast to the normalized Hounsfield scale
the absolute gray values in magnetic resonance imaging do not have a significance for describing
a structure and may be completely different from one scan to the other. If the gray value is used as
a feature, the classifier still might find some similarities for the skull in the training data. However,
this similarity is most likely completely random if transferred to unseen images. In this case, the
classifier is over-fitted and therefore worthless for a general application. A way to test whether a
classifier is over-fitted is to compare the training error with the error in unseen data. If the error
for the unseen data is significantly higher than for the training data over-fitting is likely.

Another source for over-fitting is the selection of non representative training data. For example,
if many pathologic cases are used to train a classifier for detecting the hip bone, the classifier will
likely perform badly on healthy bones. Furthermore, it is important that the labeling of the training
data is consistent in all images. For example, if in the case of skull segmentation the nose is
included in some training data and not in some others images, the performance of the classifier
will suffer. A way to see if the data used for training is representative is cross fold validation where
the training and the test data is mutually changed and the classification errors are compared.
If the errors differ significantly, the training data is likely to be not representative for the given
problem statement.

2.4.2. Binary decision trees

Binary decision trees are a well known concept in computer science and they are widely used in
the context of supervised learning mainly because of their simplicity, their performance and their
robustness for predicting useful outcomes based on sparse data. Popular types of decision trees
are CHAID (chi-squared automatic interaction detection) [Kas80], classification and regression
trees [BFOS84] or QUEST (quick, unbiased, efficient, statistical tree) [LS97].

The idea of binary decision trees in supervised learning is the following: As explained in Sec-
tion 2.4.1, a set of n positive feature vectors T+ = {(~v1,1), ..,(~vn,1)} and a set of m negative
feature vectors T− = {(~vn+1,0), ..,(~vn+m,0)} is built. All feature vectors have the same number k

of entries (also called features). The first node in the decision tree — the root — is built by iterating
over all training vectors~v ∈ {T+,T−} and search for the feature vi that is best suited for correctly
grouping the training vectors into the classes C = {0,1}. For example, let us assume the goal is
to segment the skull in a CT image and k = 2 features are used for every feature vector~v. Those
features could be the Hounsfield unit at a voxel and the image gradient at a voxel. That means
for every voxel in the image a feature vector with those two entries is created. From the manual
labeling it is known for every vector whether it belongs to c = 0 or c = 1. Over all training vectors,
the feature is selected to perform the best possible split compared to the ground truth sets T+

and T−. Most likely, the Hounsfield units will be that best feature, because the skull has a very
characteristic intensity in CT images. That means, in the root node, a threshold for the Hounsfield
unit is selected, for example 300 that splits the training data into two parts. In an ideal situation,
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Figure 2.18.: Example of binary decision trees used for skull segmentation in CT. Positive and
negative tuple samples are taken from labeled intensity and gradient images. A
binary decision tree is built. The first split is done by using an intensity threshold
of HU = 300 to separate positive from negative samples. One resulting node is
considered impure and therefore split again. This time the split is done using the
gradient feature G = 5 which results in two pure nodes. The segmentation can be
obtained by traversing the tree for every voxel in the image.

this split is already sufficient to correctly classify all training vectors. In that case, the second fea-
tures — the image gradient — would not appear in the tree and therefore would not play a role for
the decision procedure when testing unseen data. This is one of the strengths of decision trees.
They aim at selecting the most significant features for a proper prediction and neglect features
that have only low predictive value. However, in the example of skull segmentation, it is unlikely
that the image intensity alone is sufficient to correctly classify all training vectors, so some of
the training vectors belonging to c = 0 would be classified as c = 1 and vice versa. The node
is therefore called impure. A popular measure for this impurity is the Gini coefficient [BFOS84]
which is 0 in case all vectors in the node fall into the same class. In case of an impure node, it is
recursively split into two new nodes followed by again selecting the best feature to split the data.
The procedure stops if a node after a split has a sufficient purity. In order to avoid over-fitting and
to keep the tree reasonably small, additional criteria are used in praxis. Usually the maximum
depth of a tree is specified a-priori. Also splitting is stopped if the number of training vectors in a
node is smaller than a pre-defined threshold. If the number of training vectors in a node is low,
the statistical significance of any selection criteria is low and further splitting would probably lead
to over-fitting. Sometimes it happens that a split does not generate a better discrimination than a
random choice. In that case further splitting is avoided as well, since the data obviously cannot
be separated any more using the given features. After creation of the tree, any unseen feature
vector can be classified by traversing the tree and following the splitting criteria in every node.

Binary decision trees have many advantages. They apply a simple set of splitting rules which
are easy to understand by humans. This makes binary decision trees a white box method. Fur-
thermore, they are relatively fast to train and very performant on classification of large datasets.
By automatically selecting appropriate features for tree splitting, binary decision trees avoid over-
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fitting. By selecting additional stopping criteria, they can also be flexibly adapted to different
application scenarios, for example, if a certain runtime or accuracy is required.

2.4.3. Boosting

Boosting is a frequently used method to improve the quality of supervised machine learning
techniques. Its idea is to combine several single classifiers to create a committee that is more
powerful than each single classifier. In this context the single classifiers are usually called weak

classifiers. A popular choice for weak classifiers are binary decision trees as described in the
previous section.

There are several variants of boosting [Bis06]. One of the most popular boosting algorithms
is adaptive boost (AdaBoost) proposed by Freund and Schapire [FS96]. Consider a set of
n positive feature vectors T+ = {(~v1,1), ..,(~vn,1)} and a set of m negative feature vectors
T− = {(~vn+1,−1), ..,(~vn+m,−1)} with n+m = N and T = {T+,T−}. For each feature vec-
tor, a weight wi exists that is set to 1

N
at the beginning of the algorithm. Furthermore, a set of M

weak classifiers {c1(~v), ..,cM(~v)} exist which map the input vectors to {−1,1}. The weak clas-
sifiers are now trained one by a time on the positive and negative feature vectors weighted by w.
After training of the first classifier c1, its classification error J1 on all feature vectors is computed
as

J1 =
N

∑
j=1

w jI(c1(~v j)), (2.7)

where I(c1(~v j) is a function that yields 1 if the classification of~v j is correct and 0 otherwise. The
error J1 is now divided by the sum of all weights w which gives the weighted error

ε1 =
J1

∑N
j=1 w j

. (2.8)

The weighted error is now used to weight c1 by

α1 = ln

{

1− ε1

ε1

}

. (2.9)

So far, the first classifier c1 has been trained on the data set and — depending on its classification
error — has been weighted by α1. α1 is now used to update the weights w1 to become the weights
w2 as

wi
2 = wi

1exp(α1I(c1(~vi))). (2.10)

That means, the weights for misclassified training vectors are increased so the next classifier c2

will put emphasis on correctly classifying those vectors. The process of creating the next clas-
sifier, computing its weighted error and updating the weights continues until all weak classifiers
have been built. Afterwards, {c1(~v), ..,cM(~v)} are combined to form the strong classifier

C(~v) := sign

(

M

∑
i=1

αici(~v)

)

. (2.11)

C is a weighted vote of all weak classifiers. A positive sign means that a vector ~v is part of the
positive feature class and a negative sign means the inverse.
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(a) (b)

Figure 2.19.: (a) Principle component analysis on sample data {x1, . . . ,xM}. The coordinate sys-
tem with the axes c1,c2 is transformed into the orthogonal coordinate system p1, p2.
p1 is aligned to the data such that it accounts for the highest variance. p2 accounts
for the second highest variance. (b) Samples in space p1, p2 can be restricted to
have a maximum distance to the mean x̄ on each principle component, that means
they are projected into the shown ellipe.

2.4.4. Principle component analysis

Principle component analysis (PCA) is a mathematical technique widely used in medical imaging
in the context of supervised learning. Particularly, in geometric model based segmentation, it is
often used for dimensionality reduction of a set of reference shapes such that an arbitrary input
shape can be efficiently compared to the reference shape set.

Principle component analysis uses an orthogonal coordinate transformation to transfer a co-
ordinate system of possibly correlated coordinate axes to a coordinate system of uncorrelated
coordinate axes given a number of data samples defined in the correlated coordinate system.
The uncorrelated coordinate axes are called principle components. The principle components
are orthogonal to each other and also ordered. They are defined such that the data samples
have the highest variance along the first principle component. That means, along this axis, the
largest distance between two data samples occurs (cf. Figure 2.19(a)). The second principle
component maps the second highest variance and so on. Note that the data has to be normally
distributed in order to guarantee that the principle components are uncorrelated.

Principle component analysis is often used for dimensionality reduction. Since the principle
components are ordered by the amount of variance of the sample data they map, the idea is to
discard some of the last principle components that only account for a small amount of variance in
the data. The result is a coordinate system of lower dimension, that means, the same data can
be represented by fewer variables which is beneficial for many applications. In geometric model
based segmentation, PCA is used to reduce the dimensionality of a set of reference shapes in
order to efficiently compare an arbitrary input shape with the reference shape set. This process
is called statistical shape modeling and is explained in detail in Section 2.5.3.

Mathematically, the principle components can be found by computing the eigenvectors and
eigenvalues of the covariance matrix of the data [DTT08]. Consider a set of data samples defined
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in the same N-dimensional space. A single data sample is represented as the vector xi ∈RN . A
total of M sample vectors {x1, . . . ,xM} exist. The mean

x̄ =
1

M

M

∑
i=1

xi (2.12)

and the covariance matrix

C =
1

M−1

M

∑
i=1

(xi − x̄)(xi − x̄)T (2.13)

are computed. The eigenvectors p1, . . . , pN of C and their corresponding eigenvalues λ1 ≥ . . .≥
λN are obtained through diagonalization of C. Here, the eigenvectors are ordered by decreasing
eigenvalues. The eigenvalue λi describes the variance along the principal component pi.

In order to reduce the dimensionality of the principle component space, axes that account only
for a small variance can be excluded. For example, the smallest dimension t can be computed
such that ∑t

i=1 λi captures a certain percentage of the variance of the sample data. Depending
on the application, this value can be set for example to 90%.

Using the reduced principle component space, an arbitrary sample x̂ in this space can be
expressed as

x̂ = x̄+Pb (2.14)

where P = (p1| . . . |pt) is a matrix that contains all remaining eigenvectors that have not been
discarded by the dimensionality reduction.~b is a t-dimensional parameter vector with parameters
bi. This vector of reduced dimensionality now represents x̂.

The principle component space can not only be used for dimensionality reduction, but also for
an easy way to compare input samples to the mean of the whole data set. Since the variance
of the data along each principle component is given, a sample can be considered similar to the
mean if its distance to the mean is, for example, three standard deviations on each principle
component. In principle component space, this spans an ellipse inside which all samples are
considered similar to the mean (cf. Figure 2.19(b)). Moreover, a sample that is outside of the
ellipse can be projected to the borders of the ellipse. This can be done as follows. The parameters
bi in (2.14) can be restricted to be in a certain interval, whereas the interval defines the extents
of the ellipse. An interval could be, for example, [−3

√
λi,3

√
λi] which means, that the radii of the

ellipse are three times the standard deviation of the data along each principle component.

2.5. Shape representation and modeling strategies

This section describes different state of the art strategies to represent and to model shape
in model based segmentation. Generally, shape can be represented in different dimensions.
For example, the contour of an organ in a two-dimensional image can be modeled by a one-
dimensional spline. In a three-dimensional image, the surface of an organ can be modeled by a
two-dimensional representation.

2.5.1. Shape representation

In Medical Imaging, mainly two kinds of shape representations are used: implicit shape rep-
resentations and explicit or parametric shape representations. Implicit shape representations
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Figure 2.20.: Different representations of shape. From left to right: liver shape represented by
zero entries in a distance map as it is used in level set segmentation. A bladder
represented by a point cloud that is connected using simplex meshing (image taken
from [CDA07]). A polygonal tessellation of a point cloud representing the cardiac
left ventricle.

define the shape of the model through an embedding function while in explicit shape representa-
tion the shape is defined by a parametric representation such as a spline or a polygonal mesh.
Both representations are widely used in medical image segmentation [HvGSea09] and both ex-
hibit advantages and disadvantages. In the following, the two most popular implicit and explicit
representations are outlined: level set methods and interconnected point clouds.

Level set methods The application of level sets in medical image segmentation has been
proposed in the early 90’s in the context of two-dimensional contour evolution by Malladi et
al. [MSV94, MSV95] and Caselles et al. [Cas95]. Since then level sets have been extended
to three-dimensional image segmentation and are nowadays applied to all kinds of medical seg-
mentation problems. A detailed introduction into the field of different level set methods and their
optimization can be found in the reviews by Suri et al. [SLS∗02] and Cremers et al. [CRD07].
The idea of level sets is to represent the shape of an object implicitly by using a function that
is of higher dimension than the representation of the object. For example, a three-dimensional
surface can be represented by a four-dimensional function whereas one parameter of the four-
dimensional function has a certain value, usually zero. The three dimensional surface is then
called the zero level set of the higher dimensional function. In practice, a shape at a certain point
in time during the adaptation is represented by a distance map and the zero level set or boundary
of the shape is defined by the zero entries in this map (see Figure 2.20 left). A drawback of this
representation is that signed distance maps do not form a linear space, which may result in non
plausible shapes during adaptation.

The embedding of a shape in a higher dimensional space has the advantage that the shape
may change its topology during adaptation. This dynamics make level set approaches very
generic regarding the kind of structure to segment. In fact they have been applied to segment cel-
lular images [WS11], genus-1 surfaces like the vertebra [AFAX11], thin surfaces like the bladder
wall [CBMS11] as well as solid and quasi-solid organs like the liver [WSH09, KUA∗09, CCBK07,
FSK07] and the prostate [TYW∗03]. Because of their flexibility, they are also very popular in
vessel segmentation, for example in the context of carotid arteries [UAW∗11].
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Interconnected point clouds Many explicit shape representation are based on a set of points
— also called control points or landmarks — which are somehow interconnected, for example by a
spline or a polygonal tessellation. One of the first who proposed to use such interconnected point
clouds for image segmentation were Terzopoulos et al. [TF88] with the introduction of snakes
(cf. Section 2.3.1.3). They proposed a method for adapting two-dimensional contours which
were defined by a set of points and adapted to the data set using image driven forces — the
external forces — and shape preserving forces — the internal forces. The method has been later
adapted to three-dimensional image segmentation [MT96] and is now used in several variants for
segmentation of organs like the liver [KLL07, HMW07, LZZ∗08, SBB09, HvGSea09] or the heart
[ZBG∗07, EPS∗08, ZHB06]. Most of current approaches use a polygonal tessellation [KLL07,
HMW07, LZZ∗08, ZBG∗07, EPS∗08, ZHB06] or a simplex mesh [CDNA07] to interconnect the
point clouds (cf. Figure 2.20 middle and right).

Comparison of implicit and explicit shape representations Both implicit and explicit shape
representations have their advantages and drawbacks. Implicit representations can naturally deal
with topological changes which is not straightforward to achieve with explicit representations.
They are less dependent on initial positioning and do not have problems like self intersection. On
the contrary, implicit representations are computationally complex and the mathematical frame-
work of front evolution driven by partial differential equations makes it difficult to integrate local
shape constraining functionalities. Explicit representations do not have such problems, since
they are efficient to optimize and easily locally controllable through manipulation of control points.
As noted by Suri et al. [SLS∗02], implicit representations like level sets cannot deal with gaps
in boundaries, as they are prominent in imaging modalities like ultrasound or MR. Furthermore,
so called shocking problems may occur on places in the image like corners, protrusions and
indentations.

Advantages of explicit representations are their low computational optimization cost, their abil-
ity to easily incorporate different shape preserving strategies through control point manipulation.
The surface of an explicit shape is usually smooth which makes it possible to avoid leakage into
gaps caused by the imaging modality. However, this makes them also less flexible. Furthermore,
the amount of local adaptation is limited by the amount of control points. In order to alleviate this
problem re-meshing strategies have to be applied, for example in order to increase the amount of
control points in areas of high curvature. Another drawback of explicit shapes is self-intersection.
Usually explicit shapes are adapted individually for every point and afterwards optimized to fulfill
some smoothness criteria. This makes it very difficult to detect self-intersections of the surface
during adaptation which is a problem for shapes that contain a lot of protrusions and indentations.
Furthermore, explicit shapes are in praxis limited to segment genus-0 shapes. Although there ex-
ist approaches that can deal with higher order genus types [BP05] implicit shape representations
are used in the vast majority of cases, because topological changes are easy to handle.

Many drawbacks of implicit representations are the strengths of explicit representations and
vice versa. As noted before, implicit shape representations are commonly used for all kinds of
segmentation problems including totally different structures like vessels, solid organs and other
soft tissue. Explicit shape representations are mainly used for solid or quasi-solid organs like the
heart, liver, bladder, prostate or lungs. For those organs, many of the drawbacks of explicit shapes
become irrelevant, because most of the solid organs are genus-0 shapes and have a relatively
smooth surface. Therefore, explicit representations are widely used in this area of medical image
segmentation.
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Figure 2.21.: Examples of multi-component surface models. From left to right: Two-component
model of the cardiac left ventricle. Complete model of the heart (four chambers and
main vessels). Four chamber heart model. Images are taken from [ZHB06,EPS∗08,
ZBG∗07] (left to right).

2.5.2. Volumetric approaches

This section gives an overview about how implicit and explicit shape representations can be used
to create volumetric models, i.e. models which go beyond a single surface representation.

2.5.2.1. Multi-component surface models

A natural way to extend common surface based model representation is to couple several single
surfaces together in order to robustly segment complex structures. The most popular application
of such multi-component surfaces is modeling the heart and its chambers. Zambal et al. [ZHB06]
use a two-component model of the cardiac left ventricle that is based on two explicit paramet-
ric surface representations of the inner and outer wall of the ventricle. Figure 2.21 (left) shows
this model. By coupling the outer an inner wall of the ventricle, additional global prior knowl-
edge is incorporated which improves the segmentation quality on low contrast data. Zhen et
al. [ZBG∗07] created a four chamber model of the heart which showed a significant advantage
over standard single surface chamber models in terms of segmentation accuracy (cf. Figure 2.21,
right). Ecabert et al. [EPS∗08] use single surfaces to built a complete model of the heart includ-
ing the four chambers, myocardium and the main vessels (cf. Figure 2.21, middle). A general
framework for coupling single surfaces in a common deformation has been proposed by Franz et
al. [FWK∗08].

2.5.2.2. Active nets and topological active volumes

With the success of snakes and deformable surfaces, the idea emerged to extend the common
parametric curve or surface representation to a net or grid like structure. A straight forward
extension to deformable surfaces has been proposed by Morten Bro-Nielsen [Bn95] and is called
active cubes. Like in deformable surfaces, an external and an internal energy are used to adapt
the model to an object. However, the external energy is different for nodes that are inside the
model than for nodes that are on the boundary of the model. For example, the internal nodes are
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(a) (b)

Figure 2.22.: (a) 3D active cube mesh adapted to a head in a CT scan (image taken from [Bn95].
(b) Adaptation of a finite element deformation based active volume for segmentation
of the lungs (images taken from [SLH11].

(a) (b)

Figure 2.23.: (a) Topological active volume represented by a cubic (left) and tetrahedral mesh
(right). (b) Topological change of an active volume. Nodes not belonging to the
object are removed in order to split the model or to adapt it to holes. Images are
taken from [BPCO10].

attracted by high intensities in order to segment bone structures. Figure 2.22(a) shows the active
cube grid adapted to a head in a CT scan. A two dimensional variant of this approach is the active
net method [IBSP09]. It integrates region features for the internal nodes and edge features for the
boundary nodes. Additionally, an active net is able to change its topology, that means, it can be
split apart to segment multiple objects in one step and it can be used to segment complex shapes
with holes. The extension to 3D is called topological active volume [BP05, BPCO10]. Figure
2.23(a) shows two different explicit shape representations: a cubic mesh (left) and a tetrahedral
mesh (right). Figure 2.23(b) gives an example of the topology change abilities of topological
active volumes. During adaptation, nodes are removed which do not correspond with the target
object material.

Topological active volumes have been mainly applied to segment several types of bone struc-
tures [Bn95, IBSP09, BP05, BPCO10] or other structure that show high image contrast like the
lung in CT [IBSP09].

2.5.2.3. Metamorphs

A class of volumetric deformable models using an implicit shape representation are metamorphs

[HMC04, HM08]. Like in level sets, the model’s shape is embedded into a higher dimensional
space of distance transforms. The deformation of the model is parameterized using a free form
deformation framework based on B-splines, i.e. the deformation is based on a regular grid of
control points with B-spline interpolation. Metamorphs have been applied in 2D for lung seg-
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mentation in MR, for cardiac left ventricle segmentation in MR and for lesion segmentation in
ultrasound of the breast [HM08].

2.5.2.4. Active volume models

Recently, the so called active volume models [SLH11] have been proposed. Note that the naming
is very similar to the topological active volume methods described above. However, both are in-
dependent approaches. Active volumes use an explicit shape representation in form of a polyhe-
dron mesh (for example, tetrahedrons, octahedrons or icosahedrons can be used). Additionally,
an implicit shape representation is used to incorporate boundary and regional information. Both
representations are coupled in a finite element framework to adapt the model to the image. Fig-
ure 2.22(b) shows an example of an active volume segmentation. The model is initialized with a
very generic shape and iteratively adapted to the lung. Active volumes cannot deal with topology
changes so they are only used for solid objects. Active volumes have been extended to multiple
surface active volumes [SH09] to be able to segment more complex shapes like the heart. Here,
each chamber is modeled individually by a polyhedron mesh. The adaptation is then constrained
such that the models do not overlap.

2.5.3. Statistical shape models

A special type of geometric model based approaches are the so called statistical shape models

introduced by Cootes et al. [CHTH93, CTCG95]. Like in all model based approaches, their idea
is to limit the shape of an object to be similar to a set of known reference shapes. They achieve
this goal by drastically reducing the complexity of the reference set using statistical analysis. This
way, a low dimensional shape space is created. An arbitrary shape of the same type as the
reference shapes can be projected into this space. Inside the low dimensional shape space, the
shape can be easily restricted to be similar to the reference shapes. During the adaptation of a
model to an object in the image, the model is constantly projected into the learned shape space
in order to avoid a non plausible deformation.

Statistical shape modeling starts with a set of reference shapes, often represented by point
clouds. The reference shapes are usually created manually, by labeling a set of images of certain
representable individuals. Hereby, it is important that all reference shapes need to have the same
number of points. Moreover, the points of a single reference shape must correspond to points in
the other reference, that means they must be placed at the same part of the object. For example,
a point that is placed on the peak of the lower liver lobe must be placed on this peak in all other
reference shapes as well. This is necessary in order to reduce the complexity of the reference
set and in order to compare single shapes with each other.

The first statistical shape models were constructed from points which were manually placed
on training images [CTCG95]. This manual annotation process is very time-consuming and
regarded as intractable in 3D, due to the size and complexity of most shapes. Therefore, re-
search focused on the development of algorithms that establish correspondence automatically
or semi-automatically. Recent overviews of automatic correspondence algorithms can be found
in [DTT08, HM09]. In typical semi-automatic methods, a sparse set of manual landmarks is
defined which corresponds to predominant and unambiguously identifiable features. Additional
landmarks are then automatically placed in between, either equally spaced according to the con-
tour length in 2D [RGPA06] or by subdivision surfaces in 3D [SRN∗03].
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(a)

(b)

Figure 2.24.: (a) Problem of defining correspondences on complex shapes. (b) Principle of sta-
tistical shape model adaptation. The mean model is initialized in the image. The
candidate shape is projected into the shape space and further projected to the el-
lipse of valid shapes. The result is back projected to the image which results in the
restricted shape.
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A basic problem that all correspondence algorithms share is that no definition exists what
a good correspondence is. For simple shapes or for shapes that have clearly corresponding
anatomical features, the correspondence might seem obvious. However, for complex shapes like
the liver, this is not trivial. Figure 2.24(a) shows an example of the problem of defining correspon-
dence on two different liver shapes. Often, measures like DetCov [KT97] or minimum description
length MDL [DTC∗02] are used for automatic optimization of correspondences. However, it re-
mains unclear whether those methods really produce correct correspondences in the anatomical
context.

After having defined a set of reference shapes with corresponding points, the complexity of
the set is reduced. This is usually done using principle component analysis (cf. Section 2.4.4).
Consider a set of reference shapes with N corresponding points. A single reference shape can
be represented as a training vector xi ∈ R3N , where xi is the concatenation of the 3D coordi-
nates of all points. This means, the space in which the reference shapes are defined is very high
dimensional. Usually a structure like an organ is modeled by several thousands of 3D-points.
In the common space, each point accounts for 3 additional dimensions. However, the single
points are not independent from each other. Since organs are structures with relatively smooth
surfaces, neighboring points are very likely to be close. In fact, it is impossible that they differ
more than a certain distance. Therefore, PCA can be used to drastically reduce the dimensions
of the shape space without losing much information about the reference set. Before applying
PCA, the shapes are aligned into a common coordinate system, i.e. the representation becomes
independent of translation, scaling and rotation. Afterwards, PCA is used according to Section
2.4.4 to extract the main principle components. For example, the first t components may be kept.
All shapes x̂ with the same number of landmarks as the reference shapes can now be modeled
as x̂ = x̄+Pb, where P = (p1| . . . |pt) is the matrix of retained eigenvectors, x̄ is the mean of all
reference shapes and~b is the t-dimensional shape parameter vector that represents the shape
in the low dimensional space (cf. Section 2.4.4).

The adaptation of the statistical shape model is done as shown in Figure 2.24(b). First, the
model is initialized with the mean shape in the image. For every point, the best fitting image
feature is searched for. Those candidate points form a new candidate shape xc that is projected
into the shape space according to (2.14). The shape parameters bi are restricted to be in a
certain interval in order to create an ellipse around the mean shape inside the shape space.
This means, after projection, xc will be inside the valid ellipse. Afterwards, xc is projected back
into the image. Due to its restriction in the shape space, the points of xc will most likely not be
identical with the found candidate points, but be somewhere between the initial model points and
the candidate points. This process is now iteratively repeated until the shape of the model does
not change significantly or a certain number of iterations has been reached.

2.6. Boundary detection

Among shape representation and shape preservation, boundary detection is a main factor which
influences segmentation quality in model based segmentation. Generally, the more accurate the
boundary detection model can predict the true boundaries of the structures to segment, the less
prior shape knowledge is necessary to be included in the segmentation process. However, in
most imaging modalities, typically a large number of anatomical structures exhibit only low image
contrast. Therefore, numerous boundary detection methods have been proposed that aim at
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dealing with the complex boundary appearance of such structures. Boundary detection is mainly
based on two types of image features: boundary image features and regional image features,
whereas boundary image features are defined in a local context of the model’s boundary and
regional image features are defined in a local or global context of the model’s interior.

2.6.1. Boundary image features

Boundary image features are detected in a local neighborhood of the model. Using explicit shape
representations, the neighborhood in which boundary features are determined is often tied to the
control points of the shape. For example, a model that is represented by a tessellated point cloud
will search for boundary image features in a neighborhood around every point. Usually the fea-
tures are only searched along the surface normal of the point in order to avoid self-intersections
of the surface during adaptation. The boundary detection than choses the best boundary image
features for every point and the model will adapt towards these features.

The simplest way to detect the boundary of an object is to search for the strongest gradient
in the local neighborhood. However, this leads to leakage of the segmentation in areas with low
image contrast, for example, if a neighboring structure shares the same intensity values with the
object to segment. Ecabert et al. [EPS∗08] use simulated search on a set of training images to
obtain an optimal gradient magnitude threshold separately for every model point.

Usually, additional image information around the boundary is integrated into the detection pro-
cess. A very popular method is the sampling of so called profiles at a model point position. Such
a profile is an array of image based values and certain length that is centered at the point and that
is oriented along the point’s normal direction. The image based values can be intensities, gradi-
ents or similar at corresponding positions in the image. During adaptation, a profile of a model
point is shifted along the point’s normal direction. The best fit of the profile with the boundary
determines the new position of the point.

Kainmüller et al. [KLL07] created a heuristic to determine whether a sampled profile at a certain
point lies on the boundary of the object or not. It is mainly based on defining valid intensity and
gradient intervals in which the profile entries are required to fit. However, the created heuristic
is especially designed for detecting the liver boundary only and has therefore little generalization
capabilities.

The most popular way to determine whether a profile lies on the object boundary or not is
based on profile training. Like in statistical shape modeling (cf. Section 2.5.3), a set of reference
profiles is created, for example using manually delineated images. The dimensionality of the
space in which the reference profiles are defined can also be reduced, for example using PCA
(cf. Section 2.4.4). An appropriate metric for comparing profiles is defined in order to compare
an input profile with the reference set. Cootes and Taylor [CT93] compared profiles of intensities
with gradient profiles and their normalized counterparts. It turned out that normalized gradient
profiles performed best. However, PCA based profile detection assumes a Gaussian distribution
of the data. However, for complex anatomical structures this is not true. For example, parts of
the upper liver area adjoin the lung as well as the heart. In CT, the mean intensity between both
structures is not characteristic for either of the structures so the Gaussian assumption does not
hold. Wimmer et al. [WSH09] select the k nearest neighbor profiles in the training set to create
a probability of the profile being at the object boundary. In their work, they use intensity profiles.
Zhen et al. [ZBG∗07] use boosting to model non Gaussian boundary characteristics. Instead of
one dimensional profiles, they sample a three dimensional grid around every point. Furthermore,
they use steerable features as image features which are a set of scaled and oriented simplified
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gradients. Heimann et al. [HMW07] also use a three dimensional sampling pattern around every
point. They sample an cylinder oriented along the point’s normal direction. The histograms of the
parts of the cylinder that are inside and outside the reference shape boundary are concatenated
into a single vector. Mean shift clustering is then used to determine profile clusters of similar
appearance.

2.6.2. Region based image features

Region based image features are computed based on image characteristics of the model interior
and/or exterior. The idea behind this is that a structure can be segmented more robustly if the
intensity distribution inside the structure is considered in addition to the boundary features as
described above. For example, some structures like the non contrast enhanced bladder in CT
are very homogeneous. However, if the interior of the model is inhomogeneous, the model is
probably misplaced. Region based image features can be defined as global or local. Global
region based image features compute a single matching value for the whole model from its current
position. Local region based image features compute several matching values for different areas
or positions inside the model, i.e. they can be used to determine the exact position of a match or
mismatch of image characteristics.

A popular method to incorporate global regional image features are active appearance models
proposed by Cootes et al. [TFCT98, CT04]. The voxel intensity values of the interior model area
in a set of reference images is sampled and normalized such that a single vector of a fixed length
can be used to model the interior area in each reference image. The vector can then be treated
analogous to a profile as described above, that means PCA can be used for dimensionality re-
duction and the same metrics can be used for comparing an input vector with the trained vectors.
However, even if dimensionality reduction is used, active appearance model do not scale well on
3D data. In principle, each voxel of the model’s interior region accounts for an own dimension.
Therefore, active appearance models are usually either applied to images that are resampled to
lower resolutions or to very small structure that do not contain much voxels. Furthermore, active
appearance models use global regional image features. Therefore, they only have a global view
on the accuracy of the current model fit. Wimmer et al. [WSH09] model the local texture around a
voxel by using Haar features. The Haar features are trained on reference images using a boosted
classifier cascade. This way a classification for every voxel of the model interior is given whether
it is part of the object or not. Because of the huge amount of training data (one sample per voxel)
training such a classifier cascade can take several days. Huang et al. [HM08] assign a probability
to every interior voxel based on its similarity to all interior voxels. Here, a Gaussian distribution is
considered for all interior voxels, so the probability is highest if a voxel’s intensity is equal to the
mean of all interior voxels.

Volumetric models that consist not only of surface points but also of internal points can be
used to easily incorporate local regional information. In case of a detection of foreign tissue, it
is therefore possible to determine the exact internal area of mismatch. Barreira et al. [BPCO10]
sample a three dimensional cube around every internal node. The intensity of the local cube is
integrated into the external energy in order to determine whether a point has to be removed from
the model.
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Table 2.1.: Overview of state of the art model based segmentation approaches.

Method volumetric
approach /
optimiza-

tion
efficiency

boundary
features

region
fea-
tures

shape
preservation

generalizability
/ extensibility

1: Cootes et
al. [CT93]

no trained profiles no SSM ++ / ++

2: Kainmüller
et al. [KLL07]

no gradient/intensity
heuristic

no SSM + free
form

– / ++

3: Heimann et
al. [HMW07]

no trained local
histograms

no SSM + free
form

++ / ++

4: Wimmer et
al. [WSH09]

no trained profiles local SSM + free
form

++ / +

5: Zhen et al.
[ZBG∗07]

no trained
steerable
features

no SSM ++ / ++

6: Ecabert et
al. [EPS∗08]

no trained gradient
threshold

no affine
transformation

+ SSM

+ / ++

7: Cootes et
al. [CT04]

no trained profiles global SSM ++ / ++

8:Huang et al.
[HM08]

yes /
medium

gradient/intensity
heuristic

global single
reference

+ / –

9: Ibanez et
al. [IBSP09]

yes / high gradient/intensity
heuristic

local single
reference

+ / –

10: Shen et al.
[SLH11]

yes /
medium

online intensity
estimation

local single
reference

++ / –

11: Barreira et
al. [BPCO10]

yes /
medium

gradient/intensity
heuristic

local single
reference

– / –

2.7. Discussion

In Table 2.1, state of the art model based segmentation approaches are classified based on
model representation, boundary detection, incorporation of regional features, shape preservation
strategy as well as generalizability and extensibility. Some of the chosen algorithms are repre-
sentative for a class of similar algorithms that have been proposed in the literature. For example,
the active appearance model approach by Cootes et al. [CT04] has inspired numerous methods
that model regional appearance by statistical analysis. The category volumetric approach defines
whether an algorithm uses a volumetric shape representation or not. In case such a volumetric
representation is used, the optimization efficiency on three dimensional medical data is given.
The generalizability category defines how well a method can be applied to the segmentation of
other structures. The extensibility category determines the modularization capabilities of an ap-
proach, i.e. it determines whether single modules like boundary detection or shape preservation
strategies can be exchanged without major changes to the general approach.
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Figure 2.25.: Classification of the model based methods of Table 2.1 to surface based methods
(top row) and volumetric methods (bottom row). The other axis shows the type of
regional image appearance that is incorporated. The combination of a volumetric
model without region features is excluded, since it stands in contrast with the idea
of using volumetric models.

The optimal method for the goal of this thesis — a volumetric segmentation technique for organ
segmentation and registration — has the following characteristics. It incorporates a volumetric

shape representation in order to consider image information inside the structure to segment. In
the best case, the optimization complexity of this shape representation is comparable to the op-
timization of surface based methods. Furthermore, the regional information to be incorporated
is local. That means, it is possible to detect the position of object foreign material inside the
object in opposition to global regional information that is only able to detect a mismatch of the
whole interior intensity distribution. The shape preservation strategy incorporates shape knowl-

edge learned from a set of shapes instead of simply using a single reference of the structure to
segment. Moreover, the ideal method is generalizable to other structures and extensible such
that the method can be easily extended to other application scenarios.

As can be seen in Figure 2.25, the majority of surface based segmentation methods is modular
and well generalizable. However, since no volumetric shape representation is used, regional infor-
mation is usually not incorporated. The volumetric approaches on the other hand all incorporate
regional information, but have only weak generalization capabilities and are less modular. This
is often due to the fact that volumetric methods are more complex and therefore use boundary
detection and shape preserving strategies specifically adapted to the used model. Particularly, of-
ten well established boundary detection methods cannot be directly applied to such models which
limits their application to well contrasted structures like bones or the lung in CT [HM08,BPCO10].
The biggest drawback of current volumetric model based segmentation however is that they can-
not be easily coupled with statistical shape modeling methods. Statistical shape modeling has
been a key enabler for segmentation of complex structure like the liver [HvGSea09]. This draw-
back relativizes many of the advantages of volumetric methods and prevents their broader appli-
cation in current organ segmentation.
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As it has been discussed in this chapter, several open issues in model based segmentation
and registration exist. One problem is to find a proper way to leave the trained shape space dur-
ing model adaptation in order to adapt the model to unseen cases without losing too much prior
shape information during that process. This is especially challenging for structures of complex
shape like the liver, where an adaptation in the learned shape space alone is not sufficient for an
accurate segmentation. Another major challenge is to combine the flexibility, modularizibility and
computational performance of current state of the art surface based methods with the capabili-
ties of volumetric approaches to incorporate regional information in order to detect cavities and
organ foreign tissue. The next chapter outlines the methods proposed in this thesis to address
the described issues in order to create a robust volumetric segmentation technique for organ
segmentation and registration.

Parts of this chapter are based on publications of the author [ERS08,Erd09,ESS12].
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This chapter describes the methods developed in this thesis for automatic organ segmentation
and registration. It is structured as follows: first, the proposed general segmentation and regis-
tration pipelines are outlined. An analysis about the variance of object boundaries, object homo-
geneity and object shape for the most important organs and structures as visible in CT is given in
Section 3.2. Based on this analysis, the surface and volume based geometric models developed
in this thesis are presented in Section 3.3. Afterwards, the model adaptation process is outlined
in Section 3.4. The optimization of surface and volume based models is described in Section 3.4.
The chapter concludes with the proposal of an automatic model initialization method in Section
3.6.

The main contributions of this chapter are

• the incorporation of local elasticity constraints in model based segmentation described in
Section 3.3.2,

• a new method for combining ground truth label building and point correspondence estab-
lishment for statistical shape models outlined in Section 3.3.3,

• the proposal of a new volumetric multi-layer model for image segmentation and registration
as described in Section 3.3.4,

• a rule based outlier removal for boundary detection of organs outlined in Section 3.4.2,

• the adaptation of an optimization scheme for surface and volumetric point based models
presented in Section 3.5,

• a new automatic model initialization method based on 3D histograms of oriented gradients
described in Section 3.6.

3.1. Overview

This section gives an overview about the general segmentation and registration pipelines devel-
oped in this work in order to address the challenges of model based organ segmentation and
registration described in the previous chapter. Figure 3.1(a) shows the proposed model based
segmentation pipeline. First, the organ to be segmented is coarsely detected in the image by de-
tecting a bounding box that contains the organ. This process is described in detail in Section 3.6.
The model is then initialized in the middle of the bounding box. It follows a step wise adaptation
with increasing degrees of freedom of the model. The process of model adaptation and model
optimization can be found in Section 3.4 and Section 3.5. The described segmentation pipeline
can be executed using two different types of models: a surface model and a multi-layer model.
The multi-layer model has been developed in order to incorporate information from the organ’s
interior during adaptation. The construction process for both models is outlined in Section 3.3.

The described model based segmentation pipeline can be used to register two images of the
same patient. This process is shown in Figure 3.1(b). In each image the organ is extracted. The
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(a) (b)

Figure 3.1.: (a) Overview of the proposed model based segmentation pipeline. The model is first
initialized in the image. The adaptation of the model to the contours of the organ is
done step wise with increasing degrees of freedom. (b) Overview of the registration
process that uses the model based adaptation shown in (a). Shapes are extracted
from two images. They are then used together with the image information to register
both images.
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shape information of both organs is then used to elastically register both images. This way, a
precise registration can be performed without having to rely on matching image features inside
of the organ. This is particularly important for organs with different appearances in both images.
For example, in multi-phase CT of the liver, different vessel trees are saturated in the images
leading to a different image contrast. A matching of image features in the interior of the live would
therefore likely cause mismatches. Section 4.5 describes the registration process in detail.

3.2. Anatomical structures in CT

As it has been discussed in the previous chapter, there are mainly three main characteristics
which influence the segmentation of a single object in an image: object boundaries, object ho-
mogeneity and object shape. Furthermore, in case of medical images, target structures are not
always at the same position in the image but vary in terms of position according to the anatom-
ical variance inside the human body between individuals. That means, the positional variance
of the structure to segment also plays a role when it comes to the development of an automatic

segmentation approach of that structure.

However, different organs also strongly differ in the described characteristics. For example, the
skull in a CT image appears with a strong image contrast. Its shape variability is less complex
than the shape variability of the liver and so on. Since the goal of this thesis is the development of
an automatic method for segmentation and registration of organs, it is first necessary to give an
overview of the shape variance, appearance variance and positional variance of different organs
in the human body. Based on such an analysis, appropriate methods are developed to address
the goal of this thesis for challenging organs that show strong variance in one or more of the
described main characteristics.

This thesis focuses on Computed Tomography as the imaging modality, because it is one of
the most widespread modalities for imaging of whole organs and the main imaging modality for
important clinical applications such as computer aided diagnosis and treatment planning of can-
cer. The appearance based methods to be developed will therefore be based on that modality.
However, since the concept of shape is generic, the shape based methods to be developed will
be applicable to other imaging modalities such as MRI or 3D-ultrasound.

Figure 3.2 shows a classification of selected representative anatomical structures of the human
body regarding their shape variability ans well as their relative positional variance in the body.
Three types of anatomical structures are distinguished: 1.) bones, 2.) organs and 3.) other
structures. Solid structures like the bones show the least shape variability since their shape
does not vary in images of the same patient, but only between individuals due to their rigid
characteristics. That means, they are not affected by respiration, weight loss or gain, cardiac
movement or blood and body fluid movement. They also show the least positional variance,
since the human skeleton defines a relative consistent reference frame. Soft tissue organs differ
a lot in shape and position, but have generally less variability in comparison to structures like
lymph nodes or vessels. Tumors represent the limits within this classification, since their shape
and position inside the human body are close to being arbitrary.

As can be seen, inside the group of organs, the liver and the pancreas show the most shape
variability while the kidneys, lung and bladder are usually of relatively stable shape. However,
regarding the positional variance in the human body, the kidneys and the pancreas are the most
challenging organs. Those organs are rather small and embedded into a soft tissue anatomical
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Figure 3.2.: Classification of selected representative anatomical structures regarding their shape
variability as well as their relative positional variance in the human body. Three types
of anatomical structures are distinguished: 1.) bones, 2.) organs and 3.) other
structures. Solid structures like the bones show the least shape variability since their
shape does not vary in images of the same patient, but only between individuals
due to their rigid characteristics. They also show the least positional variance, since
the human skeleton defines a relative consistent reference frame. Soft tissue organs
differ a lot in shape and position, but have generally less variability in comparison
to structures like lymph nodes or vessels. Tumors represent the limits within this
classification, since their shape and position inside the human body are close to
being arbitrary.
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Figure 3.3.: Classification of anatomical structures regarding their image contrast at boundaries
in CT. Some structures may have boundary parts that exhibit better contrast than
other boundary parts. In this figure, the average boundary contrast for a structure
is given. The arrows indicate the possible contrast span over different CT images.
The contrast span is mostly influenced by contrast agent application and different
embeddings of the structure. Structures like the lung or the bones usually have very
good contrast at their boundaries. The main abdominal organs like liver, spleen and
the kidney have medium to good contrast if contrast agent is used. The pancreas
generally has very bad contrast at its boundaries even if contrast agent is used.

context which makes their position dependent on the shape of larger neighboring organs, respi-
ration state, surrounding fat storages etc.

Figure 3.3 shows a classification of the same anatomical structures as shown before, but in the
context of their average image contrast at organ boundaries in CT. The arrows indicate the pos-
sible contrast span over different CT images. The contrast span is mostly influenced by contrast
agent application and different embeddings of the structure. For example, a lymph node may be
embedded into fat or other soft tissue like muscles or glandular tissue which leads to different
boundary contrasts. Structures like the lung or the bones usually have very good contrast at their
boundaries. The main abdominal organs like liver, spleen and the kidneys have medium to good
contrast if contrast agent is used. The pancreas generally has very bad contrast at its boundaries
even if contrast agent is used.

Figure 3.4 shows the average amount of intensity heterogeneity of the discussed structures in
CT, i.e. it shows whether the intensity inside of a structure varies a lot or not. Again, the arrows
indicate the possible span over different CT images. For example, different types of tumors exist
that may appear very homogeneous in CT or be totally heterogeneous. The use of contrast agent
also has a huge impact on the homogeneity of a structure in CT. Generally, structures like the
skull, vessels or pancreas are relatively homogeneous, i.e. their intensity does not vary much
inside the structure. Organs like the kidney or the liver are often acquired using contrast agent
which makes interior vessels visible thus leading to a certain degree of inhomogeneity. However,
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3. Non-uniform deformable volumetric objects

Figure 3.4.: Classification of anatomical structures regarding their intensity heterogeneity in CT
images. The arrows indicate the possible span over different CT images. Structures
like the skull, vessels or pancreas are relatively homogeneous. In contrast, organs
like the kidney or the liver are often acquired using contrast agent which makes in-
terior vessels visible thus leading to a certain degree of inhomogeneity. However,
those organs can also be acquired without contrast agent. In this case they are very
homogeneous.

those organs can also be acquired without contrast agent. In this case they are very homoge-
neous. Therefore, those organs are the most challenging structures regarding interior intensity
variance.

The given analysis shows that the pancreas is in most categories the most challenging organ
to segment because of its strong shape variance, poor image contrast and positional variance.
The liver shows a little better boundary contrast but its interior is generally more heterogeneous
depending on contrast agent saturation. The kidneys exhibit a strong positional variance and
their image appearance is very dependent on contrast agent saturation. The lung is the easiest
organ to segment, mainly because of its good image contrast and small variance in position. The
methods to be developed in this thesis, therefore, will be mainly applied and evaluated on the
challenging organs, in particular, the liver, the pancreas and the kidneys.

The analysis also shows that the image contrast of all considered organs except the lung can
strongly vary between scans. This is mainly due to different states of contrast agent saturation.
Without contrast agent, most organs will usually have very little or no boundary contrast in CT.
For example, current research in liver segmentation [HvGSea09] focuses on the segmentation
of the liver in the portal-venous phase where the parenchyma is saturated with contrast agent
which leads to a better boundary contrast. However, the less saturated arterial phase also has a
strong clinical value, for example in the case of cancer diagnosis. The methods to be developed
will therefore also target at such difficult cases where so far no robust methods for segmentation
exist.
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(a) (b)

Figure 3.5.: (a) An organ model of the cardiac left ventricle represented by a three-dimensional
point cloud and visualized by a polygonal tessellation. (b) Manually created binary
segmentation of the liver shown as an overlay with the original CT image in three
cross-sectional views.

3.3. Model construction

The first step in building a model based segmentation approach is the model construction, i.e.
it must be decided how shape is represented and how reference shapes are incorporated in
order to restrict the model to plausible shapes. In Section 2.5.1, commonly used shape rep-
resentations in model based segmentation are described. In this thesis, the model is explicitly
represented by a set of points defined in a three-dimensional space (cf. Figure 3.5(a)). In the lit-
erature, those model points are also often called landmarks. In the remainder of this thesis, both
terms will be used synonymously. The 3D points are defined to lie on the surface of the model
and are interconnected by a polygonal tessellation. As it has been discussed in Section 2.5.1
both explicit and implicit shape representations are used in the current state of the art of model
based organ segmentation and have their strenghts and drawbacks. The reason for choosing
an explicit landmark representation is the following: in contrast to implicit representations, in-
terconnected point clouds are efficient to optimize. They are easily locally controllable through
manipulation of single points, i.e. different shape preserving strategies can be easily applied.
Furthermore, the strengths of implicit representations — topology changes and avoidance of self
intersections of the model’s surface — have only minor relevance to the segmentation of organs,
since solid organs are genus-0 shapes and have a relatively smooth surface. Moreover, the
best performing methods in model based segmentation of organs with complex shapes are often
using interconnected point clouds as the model representation. For example, in a recent com-
petition on liver segmentation [HvGSea09], the top performing method uses an interconnected
point cloud [KLL07]. In current research on heart segmentation, the two approaches with the
highest accuracy and the largest test base [ZBG∗07,EPS∗08] also use the same representation.
Lastly, the method to be developed will also be used for registration of organs. Here, correspon-
dences must be established after model adaptation. Those correspondences are naturally given
in explicit representations but only difficult to obtain in implicit representations.

The second element in model construction is the choice of a suitable reference shape rep-
resentation. As it has been discussed in Section 2.3.1.4, single representative shapes can be
used as the reference. In case of complex shape variation, usually a group of reference shapes
modeled by statistical analysis (cf. Section 2.5.3) is used. In Section 3.2, it has been shown that
the shape variability strongly differs between different organs. Therefore, in this thesis, single
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(a) (b)

Figure 3.6.: (a) Exemplary generated mesh models from manually created reference segmen-
tations: vertebra (top), kidney (lower left) and cardiac left ventricle (lower right)
[EKW09]. (b) Reference shape of the left kidney. The surface of the renal cap-
sule is significantly smoother than the region where vessels and ureter connect to
the kidney.

reference shapes are used for organs with low shape variation like the bladder (cf. Section 3.2)
and statistical shape modeling is used for organs with large shape deviation like the liver.

3.3.1. Surface model shape geometry

The geometry of the organ models is constructed based on clinically validated reference segmen-
tations. Those reference segmentations are binary labels defined in 3D images of representative
clinical cases (cf. Figure 3.5(b)). Only healthy organ shapes are considered as references, i.e. no
exterior tumors or partial resections are visible. In case more than one reference segmentation
for an organ is available, a model for each reference is created. Afterwards, the geometric mean
of all models is taken as the reference shape for the organ.

The binary segmentation images are first resampled in order to remove typical staircase ar-
tifacts resulting from image reconstruction in the original CT or MRI. Secondly, morphological
closing and opening is applied to close holes inside the organ (e.g. vessels that have not been
classified as organ tissue by the expert). Afterwards, the Marching Cubes Algorithm [LC87] is
used to generate a polygonal tessellation from the binary mask. Since the points of the resulting
mesh are in most cases not regularly distributed, a Laplacian smoothing is iteratively applied until
all polygons are of comparable size. Figure 3.6(a) shows the results of the model generation of
vertebra, kidney and cardiac left ventricle.

3.3.2. Local shape constraints

As it has been discussed in Chapter 2 and Section 3.2, the target shapes may strongly differ
from the shapes taken as the reference to build the model. Even if statistical shape modeling
(cf. Section 2.5.3) is used to capture the anatomical variance of an organ over representative
datasets, the trained shape space is usually left at some point in order to adapt to unseen cases.
In order to avoid the formation of implausible shapes during model adaptation, in this thesis, a new
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Figure 3.7.: Color coded editing of stiffness constraints [EKW10]. The local stiffness of the organ
model is modified by a paint brush tool in the 2D and 3D views.

method for restricting the model to plausible shapes is proposed that can be used in conjunction
with standard landmark based model based segmentation.

Some organs like the kidneys have clearly identifiable areas where the boundaries show high
frequency oscillation while other regions are more or less smooth. For example, the kidney’s
capsule is a smooth area while the region where the ureter and vessels connect to the cap-
sule is rather rough (cf. Figure 3.6(b)). Other organs like the liver have more complex shapes.
However, in most cases, areas can be identified where the local curvature is relatively constant
between individuals. Inspired by these anatomical properties, an extension to current model
based segmentation approaches is proposed. Common models used for adaptation exhibit the
same elasticity over the whole shape, i.e. the amount of shape restriction is not modeled locally
but only globally. The shape preserving term of model based segmentation (cf. 2.3.1.4) therefore
cannot distinguish between areas that should be smooth and regions that should be rough. In or-
der to build a model with locally defined elasticity, for every landmark in the model, local weights
wi ∈ [0,∞) are defined that model the local stiffness of that point in relation to its neighbors.
That means, in case of a high weight the relative position of the point to its neighbors should be
preserved. In case of a weight of 0, the point is free to move anywhere without penalizing the
shape preserving term.

For organs like the kidneys that consist of clearly identifiable regions of different curvature, the
local weights can be set interactively. Therefore, a 2D/3D paint brush tool has been developed to
add weights to every landmark of a model. Figure 3.7 shows the paint brush to set the stiffness
constraints in the 2D views or in a 3D visualization for the left kidney. Here, weights from 0 to
100 can be set, where 0 (red) denotes a soft connection of a point to its neighbors and 100 (blue)
denotes a stiff connection. The user defines a weight value and a paint brush size and edits
the area of interest. In case of Figure 3.7, the area of the ureter and vessel connections of the
kidney are defined to be more flexible than the region of the kidney capsule. In order to assure
a smooth deformation behavior of the model between regions of different stiffness, new weights
are alpha-blended with the current constraint values of the model (see color blending in Figure
3.7).

For organs with more complex shape variance like the liver, the local weights are automatically
determined in a training step. As has been described in Section 2.4.4, statistical shape model-
ing methods cannot reconstruct local details of the training set due to the performed dimension
reduction. Therefore, the reconstructed shapes will be smooth. This smoothness prevents a pre-
cise local adaptation of the model to the data. Therefore, the local weights have be set such that
they allow the model to further adapt in areas where smoothness is not likely. Such areas can be
identified by computing the mean curvature in every point of the model over the training set. A
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(a) (b)

Figure 3.8.: (a) Geometric mean organ model of the liver generated from a set of reference
shapes. (b) Color coded stiffness constraints of the same liver model [ESW10]. Dark
blue areas are stiff regions where the model can only slightly deform whereas red
areas are very flexible.

high mean curvature at a certain point indicates that the shape of the organ in this area is likely to
be not smooth while a low mean curvature indicates that the area is generally smooth and does
not need to be further adapted.

The process of automatic determination of the local weights using the mean curvature of the
reference dataset is done as follows: for each manually labeled reference dataset, a model with
corresponding landmarks is created. At this point, it is assumed that all created models comprise
the same amount of points and that correspondence is already established (see Section 3.3.3 for
the process of correspondence establishment on reference shapes). At each point ti of all training
shapes the Gaussian curvature Cg(ti) = κ1κ2 is computed, where κ1κ2 is the minimum and max-
imum principle curvature. Afterwards the mean curvature over all training shapes is computed as
weight wi and stored for every point pi in the geometric mean model x̄ (cf. Figure 3.8(a)) of all
training shapes to encode regions of different elasticity. Using this method, several anatomically
plausible regions of similar curvature can be distinguished. Figure 3.8(b) shows the result for a
model of the liver where the different regions are color coded. As can be seen, the upper areas
of the liver are coded as dark blue which denotes low local curvature. In this region the lung
adjoins the liver. Therefore, usually the liver surface is very smooth in this area. The ends of the
liver lobes on the other hand show higher curvature. Also in the area where the portal vein enters
the liver (yellow-red area in the middle of Figure 3.8(b), right) a high amount of curvature can be
observed.

Section 3.5 shows, how the local weights can be integrated into a model based segmenta-
tion optimization framework. In Section 4.2, trained local curvature constraints are combined
with constraints derived from the model adaptation process. An integration into the common
framework of statistical shape modeling is shown in Section 4.2.3. The application of locally re-
stricted deformable models to the segmentation of the kidneys, liver, pancreas and bladder will
be demonstrated in Section 4.1, 4.2, 4.4, 4.3 and 4.5, respectively.

3.3.3. Shape model reference set creation using smart manual landmarking

As it has been discussed in Section 2.5.3, the so-called correspondence problem has to be
solved in order to build a statistical shape model from a set of training shapes that represent the
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organ to model. This means, that all point clouds representing the organ must contain the same
number of points, and for two different point clouds each point of data set A is required to have a
corresponding point in data set B, both representing the same anatomical feature.

The first statistical shape models were constructed from landmarks which were manually
placed on training images [CTCG95]. This manual annotation process is very time-consuming
and regarded as intractable in 3D, due to the size and complexity of the shapes. Therefore, many
researchers focused on the development of algorithms that establish correspondence automat-
ically or semi-automatically. Recent overviews of automatic correspondence algorithms can be
found in [DTT08, HM09]. In typical semi-automatic methods, a sparse set of manual landmarks
is defined which corresponds to predominant and unambiguously identifiable features. Additional
landmarks are then automatically placed in between, either equally spaced according to the con-
tour length in 2D [RGPA06] or by subdivision surfaces in 3D [SRN∗03].

Beyond the tractability problem, the process of manual landmarking is often criticized for
suffering from inter- and intra-observer variability. However, this does not imply that manu-
ally placed landmarks have lower quality than their automatically determined counterparts, as
it remains unclear whether the objective functions applied in automatic methods really measure
true correspondence. Evaluation studies give an inconsistent picture: In the study of Styner et
al. [SRN∗03], a semi-automatic method based on manually defined landmarks and subdivision
surfaces produced worse landmarks than optimization algorithms based on DetCov [KT97] and
MDL [DTC∗02]. It is unclear whether the manually defined landmarks or rather the automatic
subdivision scheme accounts for the poor performance of the semi-automatic method in this
evaluation. On the other hand, in a study from Ericsson and Karlsson [EK07], models learned
from manually defined landmarks performed better than those constructed from automatically es-
tablished landmarks. Though the latter study was restricted to 2D shapes and therefore excluded
all complications that occur in 3D, the results indicate that manual landmarks may be better than
their reputation.

(Semi-)automatic algorithms require that the training shapes are provided as surfaces. In
practice, these surfaces are reconstructed from segmentations, which requires that either an ex-
pert delineates contours on training images manually or that automatic segmentation algorithms
are used. Manual delineation is time-consuming and tedious, though by far easier than consis-
tently placing landmarks. If the segmentations are generated automatically, the resulting training
shapes are restricted by the accuracy of the applied segmentation algorithm.

While segmentation of training shapes and establishing correspondence are treated indepen-
dently in case of (semi-)automatic correspondence algorithms, manual placement of landmarks
integrates both aspects. Hence it is promising to develop tools which support the user during
placement of landmarks, thereby making the process tractable.

As a contribution of this thesis, a method for simultaneous segmentation and point correspon-
dence establishment for statistical shape models is presented. In this approach, a reference
mesh is manually deformed and at the same time optimized in real time to preserve point cor-
respondence. The resulting meshes can be directly used for building a shape model. In addi-
tion, statistical shape models of arbitrary topology can be easily constructed using the method,
whereas many automatic, parameterization-based methods are either restricted to shapes of
specific topology, like genus-0 surfaces [HM09], or require an artificial decomposition of the train-
ing shapes into several patches [SKH∗08]. In the latter approach, correspondence is established
independently on the patches and the results are merged afterwards, which introduces disconti-
nuities at the cuts.
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3. Non-uniform deformable volumetric objects

Figure 3.9.: Workflow of shape model generation [EKW09]. One triangulated reference mesh
is created for every organ. The reference mesh is deformed by the user and si-
multaneously optimized to enforce correspondence of the deformed models with the
reference shape. The resulting surfaces are then used as training data input for the
shape model generation.

3.3.3.1. Workflow

An overview of the shape model generation process is given in Figure 3.9. The first step is the
construction of a polygonal reference organ model that can be taken as a basis for all training data
sets of the shape model. The next step is a user guided segmentation. Here, the mesh is three
dimensionally deformed by the user to match the organ boundaries in the data set. In order to
ensure that points in the reference mesh and the deformed mesh denote the same feature points
and therefore correspond to the same region, the mesh is globally optimized in each deformation
step. The results are deformed training meshes with regularly distributed points that can be
directly taken for shape model generation in the last step.

3.3.3.2. Reference Mesh Construction

In order to create a segmentation by using manual mesh deformation, a reference model is
needed for every organ that can be adapted to the data set by the user. This model should be
represented by a regularly distributed point cloud with an adequate number of points in order to
ensure that all local organ features in the current data set can be mapped to the shape model.
The organ reference models are built as described in Section 3.3.1.

In order to preserve an anatomic correct shape during deformation and to prevent the user
from mapping smooth regions to areas of high curvature, local weight constraints are added to
the kidney model (compare Figure 3.10(a), larger points mean higher weight). This is done using
the constraint editing method described in Section 3.3.2. Here, the kidney capsule is modeled
with a 5 times higher rigidity than the area containing ureter and vessel connections. This leads
to a more robust adaptation while being able to adapt to the regions of high frequency boundaries
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(a) (b) (c)

Figure 3.10.: (a) 3D mesh deformation using a Gaussian weighting force [EKW09]. (b) Global
shape preservation during lateral movement [EKW09]. (c) Local weights on the
kidney shape: a soft area which maps the vessel and ureter connection region is
embedded into a stiff capsule [EKW09].

at the same time. In case of the cardiac left ventricle model, all constraints are set to 50, since
the local curvature of the ventricle does not change much in the heart cycle.

3.3.3.3. User Guided Adaptation

The first step of the manual segmentation process is the selection of an organ and the placement
of the according model in the data set by the user. After placement, the model can be scaled and
rotated in order to ease the adaptation and to roughly align important feature points of the model
to the underlying data (e.g. inferior and superior renal capsule, which denote the lower and upper
boundaries of the kidney capsule, respectively).

The subsequent step is a fine grained segmentation by directly deforming the mesh. This is
done by pulling the boundaries of the mesh towards the real image boundaries in the three 2D
standard views of medical imaging (axial, sagittal and coronal image planes). The user driven
force at a given point is propagated to adjacent points using a 3D Gaussian Gσ(x,y,z) (compare
Figure 3.10(b)). The user can switch between three different scales of the standard deviation σ

of Gσ. Initially, it is suitable to select the highest value of σ, which results in a non-local or stiff
deformation of the mesh around the user movement vector (Figure 3.11(a)). In order to adapt to
areas of high curvature, σ may be lowered which results in a softer deformation until only points
in a vicinity are affected (Figure 3.11(b)). This procedure is repeated in a couple of different slices
using the standard views and changing the value of σ until the mesh is properly fitted to the data
(Figure 3.11(c)).

In order to keep areas of corresponding points matched during the deformation process, lateral
movement should not change the global shape of the organ. That means, if lateral user force is
applied on the model’s surface, local deformation should be propagated along the direction of the
force (compare Figure 3.10(c)). This prevents self-intersection or folding of the surface. In order
to achieve this, the user force propagation to the 3D Gaussian is computed for every interaction
frame independently of the previous frame.
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(a) (b) (c)

Figure 3.11.: Mesh adaptation in axial view [EKW09]. (a) Mesh after placement, scaling and
rotation. The user forces the mesh into the real boundaries using stiff deformations
(arrows). (b) Fine adaptation using soft mesh deformation. (c) End result of manual
segmentation.

3.3.3.4. Mesh regularization

Relying only on the described mesh deformation would lead to highly irregularly distributed point
clouds after adaptation. Moreover, the quality of the resulting meshes would directly depend on
the number of refinement steps, since point correspondences would get worse with every step.

In order to use the user guided segmentation meshes as training input for the shape model
generation, all point coordinates are optimized in real time such that the global shape of the
reference mesh as well as the point distances are preserved.

Similar to [LB06], two energies Eshape and Eforce are defined to regularize the mesh deforma-
tion. Eshape denotes a shape preservation energy defined as

Eshape = ∑
i∈P

wi ∑
j∈N(i)

((pi − p j)− (ri − r j))
2 , (3.1)

with p and r being the points of the deformed model and reference model respectively. The set of
point indices P is the same for both r and p. N(i) denotes the set of all direct neighbors of point
pi. wi is a weight, that adds locally variant stiffness to the model as described in Section 3.3.3.2.
The described term ensures that the point distances in the deformed mesh remain similar to the
distances in the reference mesh.

The energy Eforce contains the user movement force towards the boundaries of the organ and
is defined as

Eforce = ∑
i∈P

(pi − si)
2 , (3.2)

where s is the new point position resulting from the user force and weighted by Gσ without opti-
mization.

The final point coordinates are now obtained minimizing

E = Eforce +Eshape. (3.3)
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Equation (3.3) can be transformed into a linear system by setting the partial derivatives δE
δpi

and
δE
δp j

to zero and bringing the resulting system to the form A~p =~b, with ~p containing the new point
coordinates of the mesh. This overdetermined system can be solved in a least squares sense
(cf. Section 3.5.1). Its solution is obtained by solving the normal equations

(

ATA
)

~̂p = AT~b with

~̂p denoting the optimal solution vector for the new point coordinates. For performance reasons,
x-,y- and z-coordinates are computed separately.

Since every point in the model mesh has a very limited number of direct neighbors (usually
less than 7), most entries of A (and also ATA) will be zero. Therefore, sparse linear system
solver [SG06] can compute the result very efficiently. Also note that matrix ATA and AT can be
precomputed and loaded together with the model, because vector ~b contains all non-constant
expressions. The whole optimization for a mesh of 2500 points is 70 ms on a 2.4 GHz Quad
Core PC. The deformation can therefore be performed in real time which allows for a very smooth
editing of the meshes. This is also very important for the use and acceptance of the application by
the user since accuracy and speed should not be lower than a comparable conventional manual
segmentation system.

3.3.3.5. Shape Model generation

With the described procedure, a set of training meshes is created. As described in Section 2.5.3
a statistical shape model is built using the training meshes. Here, the shapes are aligned into a
common coordinate system, i.e. the representation becomes independent of translation, scaling
and rotation. Afterwards, Principal component analysis (PCA) is used in order to capture the
statistics of the aligned training shapes (cf. Section 2.4.4 and Section 2.5.3).

In order to reduce the dimensionality of the model, axes with small variance are excluded from
the model. The smallest dimension t is chosen such that ∑t

i=1 λi captures 95% of the variance
of the training data set, where eigenvalue λi describes the variance along the principal axis pi.
In model based organ segmentation, usually ≥ 95% variance of the training set is kept [HM09],
because the last principal modes are suspected to contain mainly noise. For a kidney model with
16 training meshes, PCA as described above leads to 11 principle axes. For the model of the
cardiac left ventricle with 10 training meshes, 8 principle axes are retained.

The set of shapes modeled by the statistical shape model are all shapes x̂ in the form x̂ =
x̄+Pb, where P = (p1| . . . |pt) is the matrix of retained eigenvectors and x̄ is the mean shape.
The shape parameters bi are restricted to be in the interval [−3

√
λi,3

√
λi] which is three times

the standard deviation from the mean in each direction on each principle axis. As x̄ and P are
fixed, each shape x̂ can be uniquely defined by the t-dimensional parameter vector~b.

Figure 3.12 shows the principal modes of variation for the built statistical shape models using
smart landmarking. For each model, the mean (middle) is shown as well as the variation of the
two largest Eigenmodes between −3

√
λi (left) and 3

√
λi (right).

Assuming a Gaussian distribution of the anatomical shape variance of organs, the interval to
restrict the shape parameters accounts for 99.7% of all possible shapes for the selected organ.
Theoretically, this would be enough to precisely adapt to almost every plausible shape of the mod-
eled organ. However, some information is lost by the dimensionality reduction of the linear PCA.
Furthermore, usually not enough training shapes are available to accurately model the whole
distribution of possible shapes. Lastly, it can be argued that the anatomical variance of organs is
not Gaussian distributed. Kirschner et al. [KBW11] constructed a statistical shape model of a ver-
tebra mixing lumbar with thoracic vertebrae in the training set. Here, a non Gaussian distribution
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(a) (b)

Figure 3.12.: Principal modes of variation for the SSMs of the LV (a) and kidney (b) using
smart landmarking [EKW10]. The variation of the two largest eigenmodes between
−3

√
λi (left) and 3

√
λi (right) are shown together with the mean mesh (middle).

could be observed and therefore the use of non linear statistical shape modeling methods is pro-
posed. It could be argued though, that modeling the lumbar and thoracic vertebrae independent
from each other in a separate model could lead to a different result. In Section 5.3.4, the effect of
applying non linear statistical shape models on landmark based models is discussed in detail. It
will be shown that certain organs with high anatomical shape variation like the liver approximately
follow a Gaussian distribution. In such cases, using linear statistical shape modeling is sufficient.
Therefore, in this thesis linear PCA as described above is used for statistical modeling of organs.

The proposed smart manual landmarking method for building reference sets with correspond-
ing landmarks in the context of statistical shape modeling as described in this section is evaluated
in detail in Section 5.2.

3.3.4. Multi-layer geometry model

As it has been discussed in Chapter 2, surface model based approaches are the state of the
art in segmentation of various organs [ZBG∗07, ZHB06, CDNA07, EPS∗08, WSH09, HvGSea09].
However, since only boundary information is used for deformation, a good initialization is needed
and often problems with low contrast images occur. This is problematic since both points cannot
be guaranteed in clinical scenarios. For example, in multi-phase CT of the liver usually several
scans are taken at different time points of contrast agent saturation. At the early arterial phase,
the liver parenchyma generally shows only very low contrast to other structures like muscles or
stomach. Dealing with such kind of scans requires additional information beyond the standard
surface-driven approaches used so far.
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(a) (b)

Figure 3.13.: (a) Liver mean model created from a training base of reference shapes and (b)
generated multi-layer model with depth links [ESW10].

As it has been shown in Chapter 2, several volumetric methods have been proposed that incor-
porate the organ’s interior intensity information into the deformation process in order to make the
segmentation process more robust. However, these approaches have only weak generalization
capabilities and are often not compatible with standard boundary detection and shape preserv-
ing strategies. This often limits their applicability to well contrasted structures like bones or the
lung in CT [HM08,BPCO10] which stands in contrast to the goal of volumetric models — making
the segmentation of weakly contrasted structures more robust. Most methods are also computa-
tionally very demanding. Furthermore, current volumetric model based segmentation cannot be
easily coupled with statistical shape modeling methods which has shown to be a requirement for
robust segmentation of complex structures like the liver [HvGSea09]. Therefore, the majority of
model based methods is still based on surface representations.

In this thesis, these points are addressed by the development of a multi-layer volumetric model
that can detect inhomogeneities in the model’s interior. In order to be able to combine the model
with standard boundary and shape preserving strategies, it is based on an explicit landmark
representation. Several ways exists to extend a landmark based surface model to incorporate
image information from the model’s interior. Barreira et al. [BPCO10] create a volumetric grid
by adding additional points in the model’s interior. Such a model has several advantages. It
can be efficiently optimized and it allows for the direct local manipulation of the model in case a
cavity or organ foreign tissue is detected around an interior point. However, since the number of
interior points varies from shape to shape statistical shape modeling cannot be easily integrated.
Additionally, exterior forces on the model’s surface cannot be linearly propagated into the model’s
interior since often no straight connections exist between an interior point and a point on the
surface where the force applies. The proposed model therefore consists of several layers with
an identical amount of points in each layer. This enables the model to be coupled with statistical
shape modeling, since every model for a certain organ consists of the same amount of points
regardless of its shape. Corresponding points between layers are interconnected in order to
propagate forces from the surface to the interior. The distance between layers and the total
amount of layers can be limited in order to further reduce the computationally burden.
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(a) (b)

Figure 3.14.: (a) Mean local Gaussian curvature over all training shapes [ESW10]. (b) Local
stiffness constraints mapped to all layers of the model (blue=stiff, red=flexible). It
can be seen that shape variance can be differentiated well over the single areas of
the liver [ESW10].

In order to build the multi-layer geometry model, a set of reference shapes is aligned using
Procrustes alignment in order to transfer each shape into a common coordinate system. After-
wards, a geometric mean mesh is generated (see Figure 3.13(a)) that is used as the basis for the
layer model generation.

Starting with the geometric mean, additional depth layers are added to the model by scaling the
model with the factor f in inverse normal direction −~ni for every point pi. The distance between
the resulting layers should match the point normal’s search length used for boundary detection
(cf. Section 3.4) in order to guarantee a complete sampling of the model’s interior. The new point
coordinates for the kth layer Lk are given by lki = (−~ni f + pi). In order to avoid self intersections
of the resulting layers, Lk is manually optimized using the mesh deformation method of Section
3.3.3.

This procedure is repeated for the desired number of layers NL. Afterwards corresponding
points lki and lk+1,i in the layers are connected by depth links. The resulting layer model LM for
a liver is shown in Figure 3.13(b).

In order to incorporate locally defined stiffness constraints into the multi-layer model, at each
point of all training shapes the Gaussian curvature Cg(ti) = κ1κ2 is computed as shown in Sec-
tion 3.3.2 in context of the surface model. The mean Gaussian curvature over all training shapes
is computed for every point (see Figure 3.14(a)). Since the multi-layer model consist of several
layers, but the training data only provide information about the shape of the surface, the stiff-
ness constraints from the outer surface layer are inherited in the internal layers. Furthermore,
the multi-layer model distinguishes surface links between neighboring points from depth links be-
tween corresponding points of neighboring layers. In order to be able to treat both surface and
depth links separately in the deformation and optimization stage, the stiffness constraints are now
assigned to the links rather than to the model points. On that account, the stiffness values for two
connected points in the layer model are interpolated. The corresponding layer link then stores
this interpolated value as a link weight. The link weights control the local amount of stiffness of
the model during deformation. Figure 3.14(b)) shows the resulting multi-layer model with local
shape constraints.
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(a) (b)

Figure 3.15.: (a) Color coded image gradient magnitude of a training image of the liver [ESW10].
Areas of fuzzy boundaries are shown in red. (b) Multi-layer model of the liver with
color coded local intensity constraints denoting risk regions of potentially low con-
trast (e.g. the heart transition in the upper right lobe shown in yellow/red) [ESW10].

Setting the stiffness constraints for the internal layers as described above assumes that the
elasticity of the organ’s interior is the same as the elasticity of the organ’s surface. While this
assumption yielded satisfactory results for the cases tested in this work, it is a simplification. For
example, the elasticity of interior vessels is likely to be different from the remaining organ tissue.
Therefore, in the future, the stiffness constraints should be set based on elasticity experiments of
the target organ to be segmented.

3.4. Model adaptation

In this section, the adaptation process of the surface model and the multi-layer model to the
underlying image data is described. The key to robust model adaptation is finding appropriate
image features that lie on the boundary of the structure to segment. In a landmark based model,
usually for every point pi one candidate point or attractor point ai is defined based on the found
image features. In the optimization stage, a new point position is computed that lies between
pi and ai according to the defined shape preserving and the image driven forces (cf. Section
2.3.1.4).

3.4.1. Local appearance priors

In CT, many organs display areas that potentially contain a fuzzy boundary with the neighboring
structures. In order to prevent the model from leaking, a local gradient threshold vi is added to
every model point pi as well as an adaptation weight αi which represents the quality of a found
boundary point ai in the deformation. Using non-pathologic cases of the training base, for every
point ti in each ground truth mesh the image gradient ∇g in the corresponding training image is
computed (cf. Figure 3.15(a)). The threshold vi for model point pi is given by µi(∇g)− sdi(∇g),
with µi(∇g) and sdi(∇g) being mean and standard deviation of the gradient at ti over the training
set, respectively. Figure 3.15(b) shows the gradient thresholds color coded in a multi-layer model
of the liver. αi ∈ [0,1] is the current image gradient during deformation of pi mapped linearly to
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[µi(∇g)± sdi(∇g)]. During adaptation, αi may be set to 0 by the boundary detection in order
to deactivate the adaptation of point pi if no valid boundary point is found or the quality of the
boundary point is insufficient.

3.4.2. Rule based local boundary search

Figure 3.16.: Intensity distribution of the interior of a liver model that is perfectly adapted to the
image (top) and intensity distribution of a liver model that is roughly aligned with the
liver in the same CT image. The Gaussian distributed histogram peak denoting liver
parenchyma is still prominent in the case of the roughly aligned model.

As it has been discussed in Section 2.6, several boundary detection methods exist. These
methods are based on sampling local intensity patterns and the subsequent assignment of a
fitness value to decide whether a point lies on the boundary or not [HM09, HvGSea09, WSH09,
KUA∗09, HMW07, ZBG∗07]. In this thesis, this scheme is enhanced by a rule based system
that deactivates boundary points in the adaptation in order to remove outliers. The remaining
point positions are interpolated by the model optimization. The reason for developing such a
scheme is the following: The rule based scheme can be combined with any standard boundary
detection method that computes fitness values for boundary points. Therefore, different boundary
detection methods for different application areas can be easily integrated. Furthermore, it boosts
the performance of simple but generic and performant boundary detection methods.

The rule based scheme is based on a performant estimation of model points to be inside
or outside the target organ. For that, image specific intensity constraints are calculated during
adaptation, i.e. without prior training, by first thresholding the image to a rough intensity interval
L1 from that it is known that the target organ’s intensity values will be inside. After examination
of the intensity distribution of several organs like liver, kidneys, spleen, bladder and pancreas in
ground truth segmentations, it is concluded that the intensity distribution of these organs in CT is
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approximately Gaussian. Figure 3.16 shows an example of the intensity distribution of the liver.
It can be seen that even if the model is only roughly aligned with the liver a prominent Gaussian
can be observed in the corresponding histogram. From model initialization, it is assumed that
there is a significant overlap of the model with the liver visible in the image so the histogram H

of the model’s interior clamped to L1 contains a major peak representing liver tissue. Using H,
a rough liver intensity range is estimated which is defined as L2 = [µH ± sdH ] with µH and sdH

being mean and standard deviation of H, respectively.

Figure 3.17 shows the distinguished cases of the rule based scheme. A model point pi can
either be in the state inside or outside (denoted as I and O in Figure 3.17) depending on whether
Li = [µHi

± sdHi
] is ⊆ L2, with Hi being the local histogram of an isotropically interpolated 9x9x9

neighborhood around pi. Samples along the point’s normal are then taken (−/+ denote the
direction towards the model’s interior and exterior in Figure 3.17). If a point is outside, only
search direction ’−’ is applied. If the fitness value is too small, but Li ⊆ L2 at all sample positions,
a default boundary point at the end of the normal (5 mm) is set (D in Figure 3.17) in order to avoid
that the model’s boundary stuck to local minima. If Li ⊆ L2 and the fitness value is sufficient, a
boundary point (B in Figure 3.17) is assigned. The adaptation weight αi of an inside point is
set to 0 if Li 6⊆ L2. This case denotes a contradiction during the search, i.e. the state of pi is
inside but something is found inside of the model that was not classified as organ tissue. Since
it cannot be decided whether this is a vessel/tumor or some organ foreign structure, the point is
deactivated in the adaptation.

Figure 3.17.: Rule based boundary detection [ESKW10]. A model point either gets a default
boundary point D, a regular boundary point B or a deactivated boundary point N

assigned depending on the search direction +/− and its state (inside/outside of
estimated organ).

In this thesis, the local gradient is used as fitness criteria and the weights r from Section
3.4.1 are used as fitness thresholds. However, any other fitness criteria like the Mahalanobis
distance between sampled profiles [DTT08] can be used without changing rules. This makes
the system simpler and more generic in comparison to other rule based boundary approaches
[KLL07]. Section 5.3.3 gives a comparison between standard profile based boundary search and
gradient based boundary search in combination with the proposed rule based outlier removal. As
it is shown, there is no benefit of using a profile based search over using the local gradient as
fitness criteria if outlier removal is performed. This enables the use of the simple and performant
gradient as fitness criteria.

75



3. Non-uniform deformable volumetric objects

3.4.2.1. Multi-layer model adaptation Logic

(a) (b)

(c) (d)

Figure 3.18.: Cases handled by the deformation logic according to point states (empty point =
inside target tissue, cross-point = outside target tissue) [ESW10]. (a) Two cases
where all points are inside of the target structure: (l.) an attractor A is found for a
boundary point and (r.) no attractor is found and the default energy D is applied in-
stead. (b) The target structure can not be found on one or more layers so attractors
are assigned to points on lower layers which match the target structure. In the case
where there is no match on any layer and within search range, a default attractor D

is assigned (r.). (c) The flexibility of the model is dynamically adjusted to be able to
adapt to a cavity. The flexibility ws of surface links is increased while flexibility wd for
depth links is decreased. (d) The layer-model detects the boundary between two
organs. Points on the lowest layer represent the new attractors.

Since the multi-layer model consists of several interior layers, a complexer adaptation logic can
be applied in order to detect organ foreign tissue and in order to adapt the model to cavities.
The adaptation logic evaluates samples taken from the model’s interior and defines the forces for
deforming the model’s boundary: first, the outer layer searches for attractor points A on the target
organ boundaries. The attractors may be found by standard gray value profile search [CTCG95]
or gradient based boundary search [EPS∗08,KLL07] as it has been discussed above. In case no
attractor can be found along the surface’s normal direction within 10 mm a default attractor D is
assigned at the end of the normal.
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The inner layer points now take gray value samples around an isotropic 9x9x9 neighborhood
and indicate if they are inside or outside of the organ according to the same scheme as for
the surface outlier removal. Figure 3.18 shows the cases handled according to the point states
(inside/outside) defined before. The standard case is shown in Figure 3.18(a) where all interior
points are inside of the organ. Surface points have either found an attractor A or got an default
attractor D assigned. Since the model’s interior is sufficiently homogeneous, all adaptation forces
for internal points can be deactivated. Therefore, the force adaptation weight αi is set to zero for
the internal points and to one for surface points.

In Figure 3.18(b) the target structure cannot be found on one or more layers so attractors are
assigned to points on lower layers which match the target structure. In the case where there is
no match on any layer and within search range, a default attractor D at the end of the most inner
point’s normal is applied to the corresponding surface point.

In order to let the model adapt to small cavities, the flexibility of the mesh is dynamically
adapted in case all points along a depth link are outside of the target structure (cf. Figure 3.18(c)).
In this case the flexibility ws of the surface links and wd for the depth links is increased and de-
creased respectively by adding constants ∆ and Φ. In the tests made in this thesis a change of
20% (∆ =−0.2,Φ = 0.2) was found to give the best results.

Using the described adaptation logic, the model is also able to recover from bad initialization
by detecting the boundary in the model’s interior as Figure 3.18(d) shows.

3.5. Model optimization

This section demonstrates how the surface model and the volumetric model with local shape
priors as described in the previous sections can be optimized in a landmark model based seg-
mentation regularization framework.

3.5.1. Surface model optimization

As described in Section 2.3.1.4, global prior shape methods incorporate a shape and an image
term which are balanced by an optimization strategy in order to modify the shape representation,
i.e. in order to deform the model. In terms of landmark model based segmentation, this rela-
tionship is commonly formulated mathematically as an energy minimization problem. The image
term defines an external energy Eext while the shape term represents an internal energy Eint. By
minimizing the weighted sum of both energies

E = Eext +Eint, (3.4)

the new point coordinates of the model are determined. The internal energy is usually based on
a point-neighbor regularization of the model’s mesh. That means, a certain point of the model is
only allowed to move according to some penalty function that depends on the first or nth direct
neighbors of the point. For example, the penalty function can enforce that the angles between
neighboring points are preserved [HMW07]. A popular type of point-neighbor regularization has
been introduced by Lorenz et al. [LB06]. Here, the internal energy is defined as

Eint = ∑
i∈P

∑
j∈N(i)

((pi −n j)−T (ri − r j))
2 , (3.5)

with p and r being the points of the current model and reference model respectively. The set
of point indices P is the same for both r and p. The points n are the direct neighbors of point
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pi. N(i) is the set of point indices of n. T is a rigid transformation matrix and ensures that the
deformed model can rotate and scale globally. This energy formulation has the advantage that it
can be linearly optimized and does not contain any trigonometric expressions leading to a very
efficient optimization even if the model consists of thousands or ten thousands of points. It also
has been successfully applied to complex organ shapes like the heart [LB06,EPS∗08]. Therefore,
the model optimization proposed in this thesis is based on this formulation.

The external energy is denoted as

Eext = ∑
i∈P

αi (pi − si)
2 , (3.6)

where si is the attractor point position for point pi and αi the confidence value for the same point
according to the boundary search of Section 3.4.

The local shape constraints proposed in Section 3.3.2 are integrated into the described internal
energy as

Eint = ∑
i∈P

wi ∑
j∈N(i)

((pi −n j)−T (ri − r j))
2 . (3.7)

Here, wi denotes the weight stored at point pi in the training stage. Combining (3.6) and (3.7),
an optimum for (3.4) can be found as follows: (3.4) can be written as

E = ∑
i∈P

((

((pi −n1)−di,1)
2 +((pi −n2)−di,2)

2 + ...+
(

(pi −n|Ni|)−di,|Ni|

)2
)

wi +αi (pi − si)
2
)

,

(3.8)
where di, j = T (ri − r j). |Ni| denotes the number of neighbors for point pi. Since di, j does
not depend on p or n, it can be precomputed before every iteration. In order to determine the
minimum of (3.7), the partial derivatives ∂E

∂pi
and ∂E

∂n j
of (3.4) are computed and set to zero. The

partial derivative with respect to pi is

∂E

∂pi

= ∑
i∈P

(2wi(pi −n1 −di,1)+2wi(pi −n2 −di,2)+ ...

+2wi(pi −n|Ni|−di,|Ni|)+2αi(pi − si)) = 0. (3.9)

The partial derivative with respect to n j is

∂E

∂n j

= ∑
i∈P

(2wi (pi −n j −di, j)) = 0. (3.10)

(3.9) can be further written as

∑
i∈P

(

(|Ni|wi +αi) pi −win1 −win2 − ...−win|Ni|

)

= ∑
i∈P

(

wi

(

di,1 + ...+di,|Ni|

)

+αisi

)

(3.11)

and

∑
i∈P

(

(|Ni|wi +αi) pi −win1 −win2 − ...−win|Ni|

)

= ∑
i∈P

(

wi ∑
j∈N(i)

di, j +αisi

)

. (3.12)

(3.10) can be written as

∑
i∈P

(wi pi −win j) = ∑
i∈P

(widi, j) . (3.13)
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The linear system resulting from (3.12) and (3.13) can be brought to the form A~p =~b, with ~p
containing the new point coordinates of the mesh:

















(|N{i}|w1 +α1) ... −w1 ... −w1 ...
w1 ... −w1 ... ... ...
w1 ... ... ... −w1 ...
... ... ... ... ... ...
... ... ... ... ... ...
... ... ... ... ... ...



























p1

p2

p3

...











=







w1 ∑ j∈N(i) d1, j +α1s1

w1d1, j
...






. (3.14)

This overdetermined system can be solved in a least squares sense. Its solution is obtained
by solving the normal equations

(

ATA
)

~̂p = AT~b with ~̂p denoting the optimal solution vector for
the new point coordinates.

A drawback of the point-neighbor regularization from Lorenz et al. [LB06] is that absolute
lengths between points are used in the formulation. Using the rigid transformation T the model
is only able to scale globally, but not locally. In case the model points have to move a lot from
their position in the reference model such an absolute distance point-neighbor relation is too re-
strictive. As it will be shown in Section 4.2, some organs show strong local shape deviation from
the learned training space. Therefore, in this thesis it is proposed to replace said point-neighbor
relation with the Laplacian differential mesh operator

L(pi) = pi −
1

|Ni| ∑
j∈N(i)

n j. (3.15)

This operator was proposed by Lipman et al. [LSCO∗04] for interactive mesh editing. L measures
the deviation of a vertex from the centroid of its neighbors and thus preserves local detail proper-
ties of the surface. Furthermore, it is scale independent which allows for a better local adaptation.
Integrating (3.15) into (3.7) yields

E = ∑
i∈P

wi (L(pi)−L(ri))
2 −αi (pi − si)

2 . (3.16)

L(ri) can be precomputed in every iteration. The partial derivatives of (3.16) with respect to pi

and n j are

∂E

∂pi

= ∑
i∈P

wi

(

pi −
1

|N(i)|(n1 +n2 + ...+n|N(i)|)−L(ri)

)

+αi(pi − si) = 0 (3.17)

and

∂E

∂n j

= ∑
i∈P

wi

(

pi −
1

|N(i)|(n1 +n2 + ...+n|N(i)|)−L(ri)

)(

− 1

|N(i)|

)

= 0, (3.18)
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respectively. The resulting linear system is



















w1 +α1 ... − 1
|N(i)|w1 ... − 1

|N(i)|w1 ...

− 1
|N(i)|w1 ... 1

|N(i)|2
w1 ... 1

|N(i)|2
w1 ...

− 1
|N(i)|w1 ... 1

|N(i)|2
w1 ... 1

|N(i)|2
w1 ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...





























p1

p2

p3

...











=











w1L(r1)+α1s1

− 1
|N(i)|w1L(r1)

− 1
|N(i)|w1L(r1)

...











. (3.19)

3.5.2. Multi-layer model optimization

Since the volumetric model proposed in Section 3.3.4 extends standard landmark based surface
models by adding additional interconnected layers, it can be optimized using a point-neighbor
relation analogous to the formulation in (3.7). However, since the multi-layer model needs the dif-
ferentiation between surface and depth links, local weight constraints are defined as link weights
rather than point weights. The proposed local Laplacian optimization of (3.16) for surface models
cannot be applied to multi-layer models, because in the Laplacian formulation no explicit links
between points exist. Therefore, a point-neighbor relation with link weights is proposed for opti-
mizing all points of the multi-layer model.

Using wi, j as the link weight between point pi and n j (3.7) becomes to

Eint = ∑
i∈P

∑
j∈N(i)

wi, j ((pi −n j)−T (ri − r j))
2 . (3.20)

The partial derivative of (3.4) with respect to pi is

∂E

∂pi

= ∑
i∈P

wi,1(pi−n1−di,1)+wi,2(pi−n2−di,2+ ...+wi,|Ni|(pi−n|Ni|−di,|Ni|+αi(pi− si) = 0

(3.21)
and can be written as

∂E

∂pi

= ∑
i∈P

(αi+wi,1+wi,2+ ...+wi,|Ni|)pi−wi,1n1−wi,2n2− ...−wi,|Ni|n|Ni| =wi,1di,1+ ...+αisi.

(3.22)
The partial derivative with respect to n j is

∂E

∂n j

= ∑
i∈P

wi, j(pi −n j −di, j) = 0. (3.23)
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The resulting linear system is
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p1

p2

p3

...











=











w1,1d1,1 +w1,2d1,2 + ...+αisi

w1,1d1,1

w1,2d1,2
...











. (3.24)

3.6. Model initialization

An important step concerning the automization of a model based approach is model initialization.
Though manual interaction is the most reliable method to place a model over the structure to
segment and usually takes less than a minute to perform, automatic model initialization has
many advantages. It enables the analysis of several scans in a row, for example in case the
approach is applied to an existing clinical database. Furthermore, since no user interaction is
required, segmentation or registration can be applied as part of data pre-processing. That means,
such methods can be applied as soon as the image is acquired by the imaging modality which
saves valuable clinician time. Lastly, automatic initialization enables accurate evaluation with
reproducible results.

Figure 3.19.: Manual rigid placement of a liver model in a CT scan. The user moves, scales and
rotates the three-dimensional model in the three standard cross-sectional views un-
til it approximately fits to the data. Subsequently, the model may be further manually
adapted using the mesh adaptation approach described in Section 3.3.3.

In this work, both manual and automatic initialization have been developed, since it cannot be
guaranteed in a clinical scenario that automatic initialization always yields correct results. Figure
3.19 shows the manual initialization user interaction interface. The user first selects the model
of the structure to segment. The three-dimensional model is then displayed in the center of
the image in the three standard cross-sectional views. In each view, the model can be moved,
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scaled and rotated until a sufficient overlay with the target structure is reached. In case the or-
gan segmentation procedure fails or produces unsatisfactory results — e.g. in cases of strong
pathologies — the mesh editing method described in Section 3.3.3 can be applied to manually
adapt the model to the data. However, in most cases this is not necessary.

The goal of automatic initialization is to place the model in the image with at least a partial
overlap with the target structure as well as with approximately correct orientation in the dataset.
The needed amount of overlap and orientation quality depends on the robustness of the model
based method used subsequently. Model based segmentation is based on detecting the bound-
aries of the structure to segment. As it will be shown in Chapter 5, standard statistical shape
model adaptation is sensitive to model initialization errors. The multi-tiered adaptation method
with increasing degrees of freedom during the adaptation process presented in Section 3.1 and
Section 4.2.3, however, is more robust to such errors. Therefore, simpler, faster and more generic
initialization methods in comparison to existing automatic model based approaches can be used.

In this work, a machine learning based initialization approach is proposed. Depending on
the used features, learning based methods are very generic, computationally efficient and — if
trained on a representative and sufficiently large training base — they are also very robust. In
3D medical imaging, usually the amount of training data is limited. The used features therefore
must be discriminative and at the same time of relatively low dimensionality. The features used in
this thesis are based on histograms of oriented gradients (HOG) which have been proposed by
Dalal and Triggs [DT05] in 2D for human detection. The advanced variant of HOG features, called
co-occurrence histograms of oriented gradients (Co-HOG) [RHZ∗10] is not considered, because
it would lead to a very high dimensional features vector if applied to 3D problems. The amount of
required training data would therefore exceed the available resources in most clinical scenarios.

In the original approach, a 2D bounding box around the structure to detect is drawn manually
in a set of training images. The bounding box is divided into a number of equally sized sub-
boxes. In the case of human detection eight sub-boxes are used. For every pixel in each box, the
local gradient direction is computed and discretized into one of eight directions (d1 = 0◦− 45◦,
d2 = 45◦−90◦, d3 = 90◦−135◦, d4 = 135◦−180◦, d5 = 180◦−225◦, d6 = 225◦−270◦, d7 =
270◦−315◦, d8 = 315◦−360◦). Afterwards, a normalized histogram of the discretized gradients
is calculated for each sub-box. The feature vector representing the structure to segment consists
of a concatenation of the histograms of all sub-boxes.

Being histogram based features, the advantage of HOG features in the context of 3D medical
imaging is their robustness against scale changes and local deformations. Furthermore, in con-
trast to scale and rotation dependent features like Haar-features [SBZ∗09], HOG features can be
calculated in a single pass, since no rotated and scaled instances of the bounding boxes have
to be applied to the image. This makes HOG features also computationally performant. It has
to be noted though that HOG features are not rotationally invariant if the original bounding box
is subdivided. However, in the context of CT or MRI imaging, the patient is usually recorded in
a supine and head first manner which implies that all patients are roughly rotationally aligned.
Additionally, in case of scans in prone position, the image can be mirrored before classification. If
mirroring alone is not sufficient, a second classifier for prone position can be trained separately.

In this work, the original HOG approach is extended to 3D and applied to medical images.
Since in CT a normalized intensity scale exist, the HOG feature vector is also enhanced by local
intensity histograms. The resulting feature is therefore called 3D-HOGI (histograms of oriented
gradients and intensities) in the remainder. The original bounding box is divided into 27 equally
sized sub-cubes as shown in Figure 3.20. For each sub-box, a 26 bin histogram of discretized
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Figure 3.20.: Computation of 3D HOGI features. A bounding box around the structure to detect
is subdivided into 27 sub-boxes. In each sub-box, a normalized histogram of gra-
dient and intensity values is computed. The resulting feature vector consists of the
concatenation of all histograms.

Figure 3.21.: Region detection of six exemplary structures in a CT image. Left: training image
with ground truth bounding boxes and corresponding box centers. Middle: detected
bounding boxes of the heart after running the classifier. Right: final detection result
of all six structures after optimization.

gradients is computed. The directions are discretized analogous to the 2D variant in 45◦ steps.
In order to suppress image noise and to encode homogeneous areas which often occur inside
organs, an additional zero-direction bin is added to all local direction histograms. This bin stores
all gradients which magnitudes are below a threshold. Furthermore, for each sub-box a 20 bin
histogram of intensities is computed. In tests, this value yielded good results. An increase of
the number of bins resulted in a decrease of detection performance which indicates an overfitting
problem. The HU values are first clamped to the interval [−500,500] and then linearly mapped
into the intensity histogram. It can be argued that a non-linear mapping with a closer sampling
in the soft tissue range in which most organs are visible would lead to superior results. However,
tests showed a slightly inferior performance using non-linear mapping. This could be an overfitting
problem since the absolute HU values of CT images can vary on different scanners and on
different patients. The described procedure leads to a vector of 26+1+20 = 47 entries for each
sub-box. Concatenation of all sub-box vectors yields the final feature vector for the structure to
segment which consists of 1269 entries (cf. Figure 3.20).
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Figure 3.22.: Concept of the removal of outliers. From left to right: Centers of gravity of the
candidates of all detected structures are computed. Centers of gravity are back-
projected into the training space. Outlier removal is performed by discarding the
box which is most distant to the back projected center of gravity (crossed circles).
The process is repeated until only one box for each detected structure is left.

The 3D HOGI features are now used to train and detect structures in CT images. In a set
of training images bounding boxes around the structures to segment are manually placed and
adapted (cf. Figure 3.21 (left)). As an alternative, the ground truth bounding boxes can be au-
tomatically computed in case a binary ground truth segmentation of the structure of interest is
already available. In this case, the bounding box is created axis aligned at the borders of the
ground truth segmentation. The position, size and center of each box is stored. Negative feature
samples for a certain structure are computed by shifting a bounding box of the same size as the
ground truth box over the corresponding CT image. At each position, a 3D HOGI feature is com-
puted and stored as a negative sample. During shifting, the box is not allowed to intersect with
the ground truth box in order to avoid creating samples that partly show the structure of interest.
Positive samples are created using the position of the ground truth box. In case a binary seg-
mentation is available, additional positive samples are computed by randomly creating discrete
directions in the area that is inside the ground truth box and outside the structure of interest.
Using this procedure, artificial positive samples are created by variation of the neighborhood of
the structure to segment inside the ground truth box. At the end, several hundreds positive and
negative samples are created for each structure to segment in each training image.

For each structure, a classifier is trained in order to detect the bounding boxes in unseen im-
ages. Classification and regression trees [BFOS84] are used to create the classifier as described
in Section 2.4.2. Classification and regression trees avoid over-fitting, are fast to train and per-
formant on the classification of large datasets. Adaptive boost [FS96] is used as described in
Section 2.4.3 in order to create a single strong classifier for every structure to detect. Here,
200 classification and regression trees with a maximum depth of 5 are combined to create the
boosted classifier.
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3.7. Discussion

An exemplary detection result of a heart classifier can be seen in Figure 3.21 (middle). As
can be seen, the heart has been detected. However, some false positives as well as many
boxes with a partial overlap of the heart have also been detected. In order to remove such
outliers, the relative positions between the structures to detect are taken into account. In the
training step, the ground truth box centers of all structures have been computed for every training
image. The concatenated center coordinates of all structures are stored in a single feature vector
for every image. All feature vectors from training are aligned in a common coordinate system
using Procrustes method. Principle component analysis is applied on the aligned vectors as
described in Section 2.4.4. 95% variance of the training data is kept and the shape parameters
are restricted to be in the interval [−3

√
λi,3

√
λi] with λi being the eigenvalue of the ith principle

axis. This allows for a back projection of arbitrary input vectors of the same size to the trained
ellipsoid spanned by the given interval. Generally, the accuracy of the outlier removal process
increases with the number of structures being added, since more information about the relative
positions is available.

Figure 3.22 shows the outlier removal process. From the set of candidates of all detected
structures (cf. Figure 3.22(left)) centers of gravity are computed (cf. Figure 3.22(middle-left)). The
centers are projected into the trained space of box centers and further projected to the borders
of the spanned ellipsoid in case they are outside of the ellipsoid. This leads to a movement of
some of the centers of gravity (cf. Figure 3.22(middle-right)). Outliers are removed by discarding
the box candidate which is most distant to the projected center of gravity for the corresponding
structure (cf. Figure 3.22(right)). The process is repeated until only one box for each detected
structure is left. Figure 3.21 (right) shows an exemplary detection result of six target structures
(heart, kidneys, spleen, bladder and upper liver part).

3.7. Discussion

In this chapter, a new model based approach has been proposed that can be applied to seg-
mentation and registration problems in medical imaging. As it has been discussed in Chapter 2,
volumetric models are able to incorporate more image information during adaptation than surface
based models. However, existing volumetric models are often computationally demanding, not
easily extendable and not generalizable. Therefore, a multi-layered model has been proposed
that can be combined with standard shape preserving methods and boundary detection strate-
gies. Furthermore, it can be efficiently optimized at the same level of complexity as standard
surface models.

Another common problem of model based methods is finding a proper way to leave the trained
shape space during model adaptation such that the model may adapt to unseen cases without
deforming into a non plausible shape. In order to address this problem, local shape constraints
have been proposed that penalize the adaptation of the model locally, based on a prior statistical
analysis of the training shapes. The local shape constraints can be either combined with standard
surface based models or with the proposed multi-layered model. For both types of models, an
optimization scheme has been described that incorporates the shape constraints.

Another issue of model based approaches is that the enhancement of shape models by the
incorporation of new training shapes is usually very time-consuming. For each new training shape
that is added, point correspondences have to be established again for the whole training set. A
smart manual landmarking approach has been proposed to address this issue. It allows the
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3. Non-uniform deformable volumetric objects

creation of reference sets where point correspondences have already been established. That
way, new shapes can be easily incorporated to enhance an existing shape model.

Regarding model adaptation, a rule based outlier removal has been proposed that removes
points with a low probability of being part of the organ’s boundary. The outlier removal can be
combined with any standard probabilistic boundary detection method.

Since the goal of this thesis is the development of an automatic model based method, an ini-
tialization scheme for the models has been proposed. It is based on a 3-dimensional extension of
histograms of oriented gradients. The approach learns the relative positions between anatomical
structures in order to determine the correct locations of organ centers and anatomical landmarks
in the human body. The detected landmarks can then be used as starting positions for the models.

The developed methods are applied to common medical image segmentation and registration
problems in the next chapter. Frameworks for automatic segmentation of the kidneys, the liver,
the pancreas as well as low contrasted structures will be proposed. Furthermore, a deformable
registration framework for multi-phase liver CT images based on the developed model based
methods will be presented.

Parts of this chapter are based on publications of the author [EKW09, ETS09, EKW10, ES10,
WKEK10,WEKK11b,WEKK11a,ETS09,ES10,ESKW10,ESW10].
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4. Application to segmentation and

registration

In this chapter, the application of the developed automatic model based methods to clinical use
cases is demonstrated by solving segmentation and registration problems in CT. Several ab-
dominal organs have been selected. In Section 4.1, a method for segmentation of the kidneys
from contrast enhanced CT images is presented. Section 4.2 outlines a new approach for auto-
matic segmentation of the liver in contrast enhanced CT data. Section 4.4 presents an automatic
method for segmentation of the pancreas in contrast enhanced CT data.

The segmentation of low contrast structures is important for many clinical applications. There-
fore, the applicability of the developed methods on such structures is demonstrated by segment-
ing the liver in arterial contrast phase images and the bladder in non contrasted CT scans (cf.
Section 4.3).

In Section 4.5, the developed model based methods are used to register different contrast
phase CT scans of the liver as well as pre-treatment and post-treatment CT liver scans.

The main contributions of this chapter are

• the proposal of a method for combining learned shape priors with observed shape deviation
as demonstrated in Section 4.2.2,

• a multi-tiered adaptation method for model based organ segmentation outlined in Section
4.2.3,

• a method for automatic segmentation of the pancreas in contrast enhanced CT images
presented in Section 4.4,

• an approach for segmentation of low contrast structures in CT data using a volumetric
model as described in Section 4.3,

• an automatic approach for deformable registration of multi-phase liver CT images as well
as pre-/post-treatment liver CT images outlined in Section 4.5.

4.1. Kidney segmentation in contrast enhanced CT scans

Kidney segmentation is an important medical image processing task needed for computer as-
sisted navigation, computer aided diagnosis (CAD), or epidemiological research. However, time-
consuming manual contouring is mostly used in practice due to the lack of automated and robust
segmentation methods. In order to improve the clinical work flow, supportive tools for robust
segmentation are therefore needed.

Model based techniques are frequently used to address this issue. Recently, Spiegel et
al. [SHD∗09] published a study of kidney segmentation using a statistical shape model that is
initialized by a user defined seed point. A total of 41 CT scans of kidney pairs were available
where 10 to 20 pairs were used to train the model and the remaining datasets were used for
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4. Application to segmentation and registration

(a) (b)

Figure 4.1.: (a) Overview of the kidney segmentation workflow [ES10]. Optional user interaction
is possible at every main step of the workflow. (b) Kidney model with schematic
internal point weights [ES10]. A dense and flexible area mapping ureter, veins and
arteries is embedded into a stiff kidney capsule.

testing. An automatic hybrid region-based and model-based approach evaluated on a data base
of 30 patients was published by Lin et al. [LLH06]. They report an average dice correlation coeffi-
cient of 88% compared to manual ground truth segmentation. Tsagaan et al. [TSK∗01,TSKM02]
proposed a deformable model of the kidney based on a non-uniform rational B-spline (NURBS)
surface representation. They constrain their internal adaptation energy using statistical informa-
tion about the local shape of the organ. In their work an average degree of correspondence to
the gold standard of around 87% for a manual placement of the model is reported.

In this thesis, a segmentation framework based on locally constrained surface models as de-
scribed in Chapter 3 is proposed. In order to prevent the model from deforming into implausible
shapes, the local shape constraints described in Section 3.3.2 are used. They correspond to the
local variability of the kidney, but do not constrain the global shape of the model. This knowledge
is directly derived from the anatomy of the kidneys and the surrounding organs. The proposed
framework also provides the possibility of real time manual refinement as described in Section
3.3.3 at every step of the segmentation process in order to allow an application in a clinical envi-
ronment.

4.1.1. Workflow

Figure 4.1(a) gives an overview of the workflow of the kidney segmentation framework. A ge-
ometric mean model is generated and positioned in the data set. The positioning can be done
by the user or using the automatic model initialization method presented in Section 3.6. Subse-
quently the model is automatically adapted using affine and constrained free form deformation
steps. Since the shape variation of the kidney is not very high, a two step adaptation turned out
to be sufficient in the tests. Therefore, no statistical shape information is incorporated.
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4.1. Kidney segmentation in contrast enhanced CT scans

4.1.2. Kidney model construction

Since in contrast enhanced CT the kidney appears as a highly inhomogeneous organ, a surface
model representation is used. The kidney model consists of two parts: a geometric surface
mean shape that is constructed from a set of ground truth manual delineations of the organ as
described in Section 3.3.3.2 and a per-point definition of local constraints that are used to weight
the internal energy in the adaptation process as described in Section 3.3.2.

In order to build a representative geometric mean model, 30 ground truth data sets of the left
and right kidney are generated. As a result, 30 polygonal meshes for each organ with the same
number of corresponding points are created. Using Procrustes method, the shapes are rigidly
aligned in the same coordinate space. Afterwards, the point positions are averaged which results
in the geometric mean (cf. Figure 4.1(b) for the left kidney). The final model consists of 1002

points.

Areas of low shape variance (encoded as gray weights in Figure 4.1(b)) are modeled with
a 5 times higher rigidity w = 100.0 than regions containing high frequency boundaries w = 20

(shown as red in Figure 4.1(b)). The renal capsule (gray weights in Figure 4.1(b)) always has a
smooth surface without any sharp frequencies. In addition, this area also adjoins structures of
similar intensity (e.g. the transition to the spleen). This region needs a strong form preservation
and a smaller influence of adaptation forces.

In addition to the shape preservation, the adaptation weight α penalizes the adaptation pro-
cess per point (cf. Section 3.4.1). The value of α is determined using the set of ground truth
segmentation meshes together with the original CT images. Images that show kidney patholo-
gies have been sorted out. Since pathologies may occur at any point of the kidney, their intensity
information is not useful for local image appearance analysis.

Local appearance priors v are computed according to Section 3.4.1. The coarse intensity
interval for the rule based boundary search (cf. Section 3.4.2) is defined as L1 = [30 HU,290 HU].
In case of contrast agent saturated CT scans, the kidney’s intensity values are usually inside this
interval.

4.1.3. Kidney model adaptation

In order to remove noise and preserve the quality of edges, a median filter is applied to the input
image. Afterwards, the image is rescaled to isotropic voxels. The new isotropic resolution is set
to the minimum spacing of the x-,y- and z-direction in the original dataset.

The model adaptation is done in a two step process. First, only affine deformations are allowed.
The point coordinates p are optimized by minimizing the following expression:

∑
i∈P

(TA(pi)−ai)
2 , (4.1)

where a are the attractor points found in the boundary detection (cf. Section 3.4), TA is an affine
transformation and P is the set of point indices. In this way, the model coarsely adapts to the real
boundaries without getting stuck in local minima. Figure 4.2 (a-f) shows an exemplary adaptation
of the locally constraint kidney model using the proposed rule-based boundary search with the
affine deformation described above. The initial placement of the model is shown in Figure 4.2
(a-c). The model after affine optimization is shown in Figure 4.2 (d-f).

After affine transformation, the model shape is coarsely aligned to the data set and is used
as reference shape in the a constrained free form deformation step. The final segmentation is
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4. Application to segmentation and registration

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2.: Stepwise segmentation of the left kidney: (a-c) initial model positioning. (d-f) after
affine transformation. (g-i) final result after constrained free form deformation [ES10].

gained by iteratively minimizing E = Eext +Eint as described in Section 3.5.1. Such a problem
can be solved in a least squares manner. Using a sparse linear system solver [SG06] the result
can be obtained in 40 ms on a 2.93 GHz Intel Quad Core for the given mesh of 1002 points. After
some iterations of the free form deformation, the result only varies minimally and the adaptation
process is stopped.

Figure 4.2 (g-i) shows an exemplary result of the constrained free form adaptation after the
affine transformation step. At any step of this pipeline the user has the opportunity to refine the
result if necessary using 3D mesh refinement tools (see Figure 4.3). This generally makes the
segmentation more accurate in cases with prominent pathologies. The refinement tool is based
on the interactive mesh editing method described in Section 3.3.3.

4.2. Automatic segmentation of the liver in contrast enhanced CT

Fully automatic liver segmentation in CT images plays an important role in medical imaging since
it is a key enabler for many computer aided diagnosis applications. Furthermore, intervention
planning and computer assisted navigation need a segmentation of the liver as a prerequisite
for further procedures. In this Section, an automatic liver segmentation framework for contrast
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4.2. Automatic segmentation of the liver in contrast enhanced CT

(a) (b) (c) (d)

Figure 4.3.: (a) and (b) the user drags the mesh in the 2D standard views to add a lesion to the
segmented kidney tissue [ES10]. (c) and (d) the resulting force is weighted by a
Gaussian to deform the mesh three dimensionally [ES10].

enhanced CT images is outlined. In clinical diagnosis, usually the arterial and portal venous
contrast phase are acquired. The portal venous contrast phase is easier to segment, since the
liver parenchyma is typically contrast enhanced during that phase. In the arterial phase, usually
only the liver artery is well contrast enhanced while the parenchyma shows only little saturation.
This makes the segmentation of the arterial phase very difficult, since boundaries are often only
barely visible. Therefore, most liver segmentation approaches focus on segmentation of the por-
tal venous phase. In this thesis, a segmentation system for both arterial and portal venous phase
is presented. The segmentation of the liver in the portal phase is addressed in this Section while
the arterial phase is addressed in Section 4.3.

Despite the fact that portal venous liver segmentation is easier to perform than other contrast
phases, robust automatic liver segmentation is still an unsolved problem. This is because shape
and appearance of the liver may highly vary between scans due to the presence of pathologies,
variation in patient pose and breathing cycle and due to a per se high anatomical variation.
These issues are addressed by a multi-tiered model based framework that constantly increases
the model’s degrees of freedom. Figure 4.4 gives an overview of this workflow. As Ecabert et
al. [EPS∗08] do for the segmentation of the heart, the model evolution is started with an affine
registration. Then classical statistical shape model adaptation [CTCG95, DTT08] is performed
(cf. Section 2.5.3). The final segmentation is computed by a two-step adaptation that combines
statistical shape modeling with learned and observed local curvature constraints.

4.2.1. Locally constrained shape model

A statistical shape model of the liver is built on 220 reference shapes of the liver with N = 3612

corresponding landmarks using the approach of Cootes et al. [CTCG95] (cf. Section 2.5.3). In
order to reduce the dimensionality of the model, axes with small variance are excluded. The
smallest dimension t has been chosen such that ∑t

i=1 λi captures 98% of the variance of the
training data set, where λ1 ≥ . . .≥ λ3N are the eigenvalues of the according covariance matrix C.
The set of shapes modeled by the statistical shape model are all shapes x̂ in the form x̂ = x̄+Eb,
where E = (e1| . . . |et) is the matrix of retained eigenvectors and x̄ is the geometric mean, i.e.
the initial shape to be adapted to the image. The shape parameters bi are restricted to be in the
interval [−3

√
λi,3

√
λi] as discussed in Section 3.3.3.5.
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4. Application to segmentation and registration

Figure 4.4.: Workflow of the proposed liver segmentation framework in contrast enhanced CT.

Figure 4.5.: Trained local shape constraints define regions of differing elasticity (model after adap-
tation) [ESKW10].
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4.2. Automatic segmentation of the liver in contrast enhanced CT

(a) (b)

Figure 4.6.: (a) Weighting function to combine trained local Gaussian curvature constraints w

with observed local curvature u during adaptation [ESKW10]. (b) Using such local
constraints, the multi-tiered model (dark outline) leaves the learned space (bright
outline) without leaking into other neighboring structures [ESKW10].

4.2.2. Local shape and appearance priors

Local shape variation is incorporated into the deformation term according to Section 3.3.2. Since
an explicit shape representation is used, correspondence is given through landmarks. At each
point ti of all 220 training shapes the Gaussian curvature Cg(ti) = κ1κ2 is computed, where κ1κ2

is the minimum and maximum principle curvature. Afterwards the mean curvature over all training
shapes is stored as weight wi for every point pi of x̄ to encode regions of different elasticity (Figure
4.5).

Since a particular image may considerably deviate from trained samples, image specific shape
constraints are directly derived from the current position of the shape model in the image. For
every point pi of the model during deformation the current local Gaussian curvature ui in point pi

is combined with the trained curvature wi and stored as

δi = 1− ((π/2+ arctan(β(wi +ui − s0)))

e−|(wi−ui)/σ|γ(wi/π)).

(4.2)

The weight function of (4.2) is plotted in Figure 4.6(a). It ensures that the resulting weight δi

becomes 1−wi if ui ≈ wi >> 0 and 1 otherwise. That means the adaptation is restricted to
those regions which show a high curvature wi in the training and a similar high curvature ui in the
model shape after adapting to the statistical shape model space. High curvature is defined as
wi,ui > 0.4 and the similarity of ui and wi as ui −wi < 0.3. This results in the parameter settings
s0 = 1.2 and σ = 0.2. In tests these values yielded the best results and were used for evaluation.
γ and β control the smoothness of the function and are set to high values, e.g. 10 in order to
clearly separate areas of high and low curvature.

In contrast to using only trained constraints the described combination of trained and observed
Gaussian curvature allows the model to better adapt to shapes not fully covered by the training
space (Figure 4.6(b)) while at the same time prevents the model from leaking into neighboring
structures.

Both image specific shape and intensity constraints are updated in every iteration, i.e. with
every deformation of the model.
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4. Application to segmentation and registration

4.2.3. Multi-tiered model adaptation

The model is initially placed in the dataset using the automatic initialization method presented in
Section 3.6. In case no training data is available for the learning based approach, alternatively,
the model can be placed axis-aligned below the right lower lung lobe. For automatic detection
of the lobe simple voxel-counting operations similar to Kainmüller et al. [KLL07] are used. First,
the background is extracted from the image by thresholding the image at −900 HU. The largest
connected component is considered as the background. Another thresholding at −600 yields
the lungs as the largest connected components. Assuming the patient is recorded in a head-first
supine position, the component representing the right lung lobe can be directly selected.

A multi-tiered adaptation pipeline corrects translational errors and determines the correct ori-
entation of the model as described in the following.

After initialization, the model is adapted to the image by a four-step evolution. The degrees of
freedom are accordingly increased in every step in order to allow a robust adaptation to shapes
which differ a lot from the initial model in terms of position, orientation and local shape.

Step one In the first step, only 12 degrees of freedom are allowed. That is, an affine transforma-
tion TA to register the found boundary points a described in Section 3.4.2 with the current model
points p is determined minimizing ∑i∈P (TA(pi)−ai)

2, with P being the set of point indices. This
step is iteratively repeated until the sum of squared differences between corresponding points of
two successive iterations does not differ significantly. The same stopping criteria will be used for
the upcoming steps.

Step two The second step is a conventional statistical shape model guided segmentation using
the restricted shape parameters bi as defined before in order to approximate the real boundaries.
The new model points S(p) are determined by

S(p) = x̄+Eb. (4.3)

Step three The third step consists of step two coupled with the free-form deformation described
in Section 3.5.1. However, the free-form deformation is additionally constrained by the extended
shape priors δi defined in Section 4.2.2 which combines trained and observed local curvature
constraints. The new coordinates for p are calculated by minimizing

E = ∑i∈P δi ∑ j∈N(i) ((pi − p j)− (S(pi)−S(p j)))
2

−αi (pi −ai)
2 ,

(4.4)

with N(i) denoting the set of all neighbors of point pi. After convergence, the model already
has a good alignment with the image. However, strong deviations from the trained space are
still problematic. Some liver lobes are extremely long (cf. Figure 4.6(b) left). Since (4.4) uses a
neighbor-distance-based regularization the model cannot evolve to such regions.

Step four For the fourth step, said regularization is replaced with the Laplacian differential
mesh operator defined in 3.15 (cf. Section 3.5.1). The new model coordinates are calculated by
minimizing

E = ∑i∈P δi (L(pi)−L(S(pi)))
2 −αi (pi −ai)

2 (4.5)

After convergence of this last step, the segmentation is finished. Equations (4.4) and (4.5) form
linear systems and can be solved very efficiently in a least squares sense (cf. Section 3.5.1).
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4.3. Segmentation of low contrast structures in CT

Figure 4.7.: Left and middle: arterial contrast phase CT scans of the liver. The liver parenchyma
shows a weak contrast to neighboring structures such as muscles or the stomach.
Right: CT scan of the bladder.

4.3. Segmentation of low contrast structures in CT

In CT scans, many organs show only low contrast at their boundaries to neighboring structures.
Contrast agent application usually improves the contrast, but means a burden to the patient.
Furhermore, for diagnosis of certain diseases no or little contrast agent is given.

This Section presents a framework for automatic segmentation of low contrast structures in
CT based on two exemplary organs — the liver in the arterial contrast phase and the bladder
in native non contrasted scans. Figure 4.7 (left and middle) shows a CT scan of the liver in the
arterial phase. The liver interior is relatively homogeneous. Only some small vessels are con-
trast enhanced. Figure 4.7 (right) shows a CT scan of the bladder which also shows a relatively
homogeneous intensity pattern in its interior. In order to segment these organs robustly in such
low contrast images, the volumetric model presented in Section 3.3.4 is applied.

Figure 4.8 shows the built multi-layer models. For the bladder a 3-layer model has been created
with a distance of 10 mm between layers which yielded the best results in the tests. Here,
additional layers did not improve the segmentation results. The distance between layers has
been chosen to match the search radius of the boundary detection in order to produce samples
in the whole model’s interior. For the liver model a 4-layer model has been created, because the
liver is significantly larger than the bladder. 4 layers are not enough to completely sample the
liver’s interior. However, in tests more layers did not improve the results. The reason for this is
probably that the area in the center of the liver does not add much information to the boundary
adaptation of the model.

In case of the liver 220 training shapes were used. For the bladder 14 shapes were used.
All training shapes have been created using the method described in Section 3.3.1. Using Pro-
crustes alignment, each shape is transferred into a common coordinate system. Afterwards, a
geometric mean mesh is generated that is used as the basis for the layer model generation de-
scribed in Section 3.3.4. Local shape and appearance priors are set according to Section 3.4.1.

In clinical practice, usually both an arterial phase and a portal venous CT scan are acquired
shortly after another. That means, both images are already coarsely aligned and the shape
of the liver only differs by respiratory deformations. In such a case, the multi-layer liver model
can be initialized with the shape of the portal venous segmentation result. This improves the
segmentation quality of the liver in the arterial phase, because the portal phase segmentation
is usually relatively accurate and can therefore be used as a good starting point. In case, only
an arterial phase scan is available, the multi-layer model is initialized with the mean shape of
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4. Application to segmentation and registration

Figure 4.8.: Top row: 3-layer model of the bladder. Bottom row: 4-layer model of the liver. The
first column shows the single layers of the models as a cross-sectional view. The
second and third columns show the landmarks and links of both models.

the training set. Both liver and bladder models are positioned in the image using the method
described in Section 3.6.

After placement in the datasets, the models are adapted to the image using the boundary
detection procedure described in Section 3.4.2.1. During iterations, the models are optimized
using the regularization term (3.20) defined in Section 3.5.2.

4.4. Segmentation of the pancreas in contrast enhanced CT scans

Automatic segmentation of the pancreas is a highly demanded tool for clinical practice, since it
enables or can improve a variety of clinical applications. Pancreatic cancer like ductal adeno-
carcinoma has a high mortality rate (5-year survival below 5%) and is one of the most difficult
cancers to treat [GCN08]. Patients are commonly examined using portal phase abdominal CT.
Automatic delineation can support the clinician in tedious contouring work in order to cope with
high-resolution data available nowadays. Furthermore, through exclusion of pancreas it can sig-
nificantly help to develop automatic segmentation methods for other abdominal structures like
intestine or enlarged abdominal lymph nodes for which no robust automatic segmentation solu-
tions exist.

Segmentation of pancreas tissue in CT is difficult even for a human, since the pancreas head is
always directly connected to the small bowel and can in most cases not be visually distinguished.
This is also the area with the highest human observer variability. Furthermore, the small bowel
may also contact the pancreas at any other place. Surrounding organs like liver, stomach and
spleen are also problematic though contrast agent saturation can help to differentiate these or-
gans from the pancreas. Figure 4.9 outlines the described problems on exemplary images.

Up to now, only few publications on automatic pancreas segmentation exist. Shimizu et al.
[SOI∗07] proposed a simultaneous segmentation framework for 12 organs including pancreas
based on a combination of atlas-guided segmentation and level-sets. Evaluation on 10 non-
contrast CT scans showed an average overlap of 32.5% for the pancreas. As the authors note,
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4.4. Segmentation of the pancreas in contrast enhanced CT scans

Figure 4.9.: Two exemplary axial views showing the difficulties in separating pancreas and con-
tacting small bowel. Expert validated segmentation of the pancreas is marked in
red [EKD∗11].

the algorithm would need major revisions to make it applicable to contrast enhanced CT. The
authors recently proposed a fully automatic pancreas segmentation system using three-phase
contrast enhanced CT data [SKK∗09]. They first register the three CT phases to a common
space followed by a landmark based deformable registration with a certain patient chosen as
reference. A rough segmentation is gained through a patient-specific probabilistic atlas guided
segmentation. An intensity based classifier is used together with morphological operations for
the final segmentation. This algorithm was also the winner of the medical image processing
competition in Japan in the category pancreas [MSN∗10]. Evaluation on 20 cases showed an
average Jaccard index of 57.9%. As the authors conclude, their approach requires three-phase
CT, because more signal information is available to guide segmentation. Kitasaka et al. [KSM∗08]
proposed a method to extract the pancreas region from four-phase CT based on estimation of
organ distributions using expectation maximization and subsequent fine segmentation using a
modified region growing algorithm. Using a three-point scale on 22 cases, segmentation quality
was jugded based on visual inspection as FINE in 12 cases, MEDIUM in 6 cases and POOR in 4

cases, where FINE means little over- and under-extraction and POOR no overlap at all.

4.4.1. Support structure detection

Since pancreas tissue often cannot be visually distinguished from the small bowel, physicians
incorporate prior knowledge about the

1. pathway of the pancreas relative to the splenic and superior mesenteric vein. The head
of the pancreas always contact the superior mesenteric vein while body and tail follow the
pathway of the splenic vein (cf. Figure 4.10(a)).

2. expected shape of the pancreas. The head of the pancreas is roughly spherical. Its body
and tail are of tubular shape.
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4. Application to segmentation and registration

(a) (b)

Figure 4.10.: (a) Pancreas following the vessel path from superior mesenteric to splenic vein
[EKD∗11]. (b) Extracted liver, spleen and vessel path [EKD∗11].

In this thesis, the same clinical knowledge is incorporated using a learning based approach. In or-
der to segment the pathway of 1.), liver and spleen are segmented. Vessel enhancement filtering
is then used to segment the vessel system between both organs. The system is transformed into
a graph representation from which the desired pathway is extracted. Subsequently, a classifier
is built that learns the spatial relation between pancreas tissue and the segmented pathway as
well as incorporates local texture patterns around the pathway. In order to incorporate the shape
knowledge of 2.), a constrained statistical shape model as described in Section 4.2 is used after
classification to yield the final segmentation.

4.4.1.1. Automatic organ segmentation and vessel detection

In order to utilize the described anatomical information, liver and spleen are automatically de-
tected and used as starting points for detection of splenic and mesenteric veins. Liver and spleen
are automatically segmented by adapting the constrained surface models to the data using the
approach described in Section 4.2. The axis-aligned bounding boxes ~l and ~s of the liver and
spleen masks are computed and a pancreas region bounding box ~p is generated. ~p is parame-
terized by its minimum and maximum axes-coordinates:

~p = ((~lxmax −~lxmin)/2,min(~lymin,~symin),

min(~lzmin,~szmin),(~sxmax −~sxmin)/2,

max(~lymax,~symax),max(~lzmax,~szmax)).

(4.6)

All subsequent calculations are limited to the region described by ~p.

The vessel system between liver and spleen is detected including portal, splenic, superior
mesenteric vein and connected vessels in ~p. Region-Growing approaches usually lead to leakage
in the abdominal area. In order to enhance tube-like structures, the vessel enhancement filter
described in [ERS08] is applied since it uses a parameter-free vesselness function and provides
a mathematical basis to automatically compute optimal filter thresholds for the type of vessel to
detect. The vesselness response for scale σ is computed as

Sopt(σ) = σ− 3
2 ·κ · (2

3
λ1 −λ2 −λ3), (4.7)

98



4.4. Segmentation of the pancreas in contrast enhanced CT scans

where λ1,λ2,λ3 are the eigenvalues of the local Hessian sorted by size. Note that σ is equal
to the vessel diameter to be detected. κ is an isotropy factor to avoid detection of plate like
structures [ERS08]:

κ = 1− ||λ2|− |λ3||
|λ2|+ |λ3|

∈ [0,1]. (4.8)

Three different scales σ ∈ Σ = {2,3,4}[mm] are used to ensure the whole vessel system of
interest is detected. At each position the scale with the maximum output is taken as the final
output. The optimal response [ERS08] computed for scale σ is:

r = d · γ = d ·κ ·
√

6

5
π

3
4 σ

3
2 . (4.9)

The only unknown in (4.9) is d which is the radial vessel gradient. Since the filter is applied
to the whole area in ~p, d will vary depending on the surrounding tissue. A window of valid
responses is defined as χ = [hl,hu]. hu can be easily computed as hu = (mmax −mmean) · γ, with
mmax and mmean being the maximum and mean intensity inside the liver. This is the response
for a small radial gradient from contrasted liver tissue to contrasted vessel. The lower bound
hl = (mmax − fmean) · γ denotes the response for a big radial gradient from fat tissue fmean to
contrasted vessel. In the experiments fmean was set to −120 HU. Using χ on the output of
max(Sopt(σi))∀i yields a binary mask of the vessel system while suppressing responses from
other tube-like structures. In order to select only the vessel system connected to the portal vein,
the largest connected component starting inside the liver is selected. The result is a binary mask
Mv that contains the vessel system between liver and spleen.

4.4.1.2. Graph creation and landmark detection

The pancreas closely follows two vessel branches: the superior mesenteric vein and the splenic
vein. These branches have to be extracted from the before segmented vessel system Mv. In
particular, three branch points p1, p2, p3 need to be identified. p1 denotes the first major branch
point of the superior mesenteric vein, p2 is the branch point between portal and splenic vein and
p3 denotes the end of the splenic vein. p3 can be directly computed without further processing as
the intersection point of the binary mask Mv with the spleen segmentation mask. For detecting
p1 and p2, a graph representation of Mv is built. Using the method described in [DOL10] Mv

is decomposed to a set of sub-branches B = (~b0,~b1, ...,~bn−1). Each branch contains two end
points. From B, the branch~bl that origins from the liver mask is selected. The end point of~bl

that is not inside the liver is selected as p2. From p2, there is one direct branch to p3 and an
additional branch denoting the superior mesenteric vein. Therefore, the end point of this second
branch is p1. Mv is accordingly cropped from p1 to p3 which yields the desired vessel pathway.
Figure 4.10(b) shows the extracted vessel path together with the segmented organs.

4.4.1.3. Spatial anatomy descriptor

Global appearance based features successfully used for classification of other organs are gener-
ally inaccurate for pancreas detection, because its tissue often is indistinguishable from the small
bowel. In order to overcome this problem, in this work, it is proposed to learn the spatial rela-
tionship between the before extracted vessel path and the pancreas position. The vessel path
~v(l) ∈ ℜ3 from p1 to p3 is parameterized by its normalized length l ∈ {0,1, ...,100}. Let ~D(~t) be
the vector field of the distance transform of Mv at position~t ∈ ℜ3 and d(~t) the signed distance
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4. Application to segmentation and registration

from~t to the closest point in Mv. Let~v(L(~t)) be the intersection of −~D(~t) with the vessel path. A
feature vector:

~F(~t) = (~D(~t),d(~t),L(~t)) (4.10)

encodes the local spatial relationship between vessel path and pancreas tissue needing only a
small set of features. For efficiency reasons, ~F(~t) is only computed for d(~t) < N mm. In the
experiments N = 80 always fully covered the pancreas and also included a large safety region
around it. The advantage of this encoding in contrast to probabilistic atlas based registration
[SKK∗09] is two-fold. First, no time consuming and potentially error prone deformable registration
is needed. Additionally, the feature space of ~F(~t) exhibits a better de-correlation of the data
compared to the Cartesian coordinate system of a probabilistic atlas. Since the distance of the
pancreas to~v(l) does not deviate much over l, the length-distance representation of (4.10) yields
a much more compact data distribution. Therefore, simpler classification models can be used to
achieve a good classification.

4.4.1.4. Appearance texture descriptors

In order to describe the pancreas tissue around the vessel path~v(l), meaningful texture features
are needed. In contrast to [SKK∗09], local features are applied, i.e. the features are computed
along perpendicular vectors around~v(l) (cf. Figure 4.11(a)). The idea is that the pancreas always
lies near ~v(l) so the variance of the local texture between ~v(l) and a position~t should depend
directly on the distance of~t to ~v(l). Two descriptors are built that encode dominant frequency
characteristics of the local texture around ~v(l). Let ~P(~t) be a vector of length N with sampled
intensities from~v(L(~t)) to~t. ~P(~t) is padded with zeros if d(~t)< N. A frequency descriptor ~Φ(~t),

~Φk(~t) =
N

∑
n=1

~Pn(~t)cos
( π

N
k(n+0.5)

)

(4.11)

is built to map the intensity distribution along ~D(~t) by computing the discrete cosine transform of
the intensity profile. In the experiments, the largest k = 0, ..,10 coefficients were kept to build ~Φ.
Since the pancreas tissue is relatively homogeneous and lies nearby the vessel path ~v(l), the
proportion of high frequencies should be low at small distances from~v(l) and larger if the texture
becomes inhomogeneous, e.g. between a transition from pancreas to small bowel.

The second texture descriptor ~W (~t) encodes the amount of intensity variation peaks along ~D(~t)
by applying the Mexican hat wavelet on the volume V and integrating its negative and positive
responses separately. Let the mapping c : [0,1]→ℜ3 be defined as~c(p) =~t − p~D(~t).

~W±
η (~t) =

∫ 1

p=0
[V (~c(p))∗∇2G(~c(p))]±d p, (4.12)

where G = 1√
(2π)3η3

e−
x2+y2+z2

2η2 is a Gaussian and ∇2 is the Laplace operator. The standard

deviation of G is varied using two scales η ∈ {1,2}[mm]. The idea of this descriptor is that it will
accumulate more responses the more different the tissue between~t and~v(l) is. Pancreas tissue
usually only leads to two strong responses: one from vessel or fat to pancreas and the other from
pancreas to other tissue.

The final pancreas tissue feature vector is built as

~Z(~t) = {~F(~t),~Φ(~t), ~W−
η (~t), ~W+

η (~t), ~H(~t)}, (4.13)

with ~H containing low level features at~t like intensity, gradient and nonlinear combinations as
described in [ZBG∗07].
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4.4. Segmentation of the pancreas in contrast enhanced CT scans

(a) (b)

Figure 4.11.: (a) Sampling of intensity profiles along the splenic vessel in order to detect tran-
sitions between pancreas and other tissue. (b) Mean model of the pancreas with
color coded local elasticity constraints.

4.4.1.5. Final detector

In a first detection stage, a boosted classifier is built using AdaBoost (cf. Section 2.4.3) with 200
classification and regression trees of maximum depth 5 as weak classifiers. The strong classifier
is trained with ~Z(~t) to learn the probability p(l = 1|~Z(~t)). Figure 4.12 (upper right) shows a plot
of this probability. Simple thresholding p(l = 1|~Z(~t)) > ε leads to an incoherent labeling since
no neighborhood relations between voxels are considered. In order to find a globally optimal
classification belief propagation is used. A term Ξ is defined incorporating the probability of the
classifier and global priors from the segmentation masks as well as a term ϒ to incorporate voxel
neighborhood relations. The labels q ∈ {0,1,2} have to be found that satisfy

argmin
q

E(q) =
|I|

∑
i

Ξ(~Ii,qi)+
|I|

∑
i

Ni

∑
j

ϒ(qi,q j), (4.14)

with |I| being the number of voxels in V and ~I ∈ ℜ3|I| being the set of voxel coordinates. Ni

denotes the set of neighbors of the voxel at position~Ii. Ξ is defined as

Ξ(~t,q) = p(l = 1|~Z(~t))+G(~t,q), (4.15)

with

G(~t,q)

{

1, if q ∈ {1,2} and~t in Mv

0, else.
(4.16)

ϒ is defined as ϒ(q1,q2) = |q1−q2|2 to penalize transitions between non-neighboring classes. A
multi-scale approach [FH06] is used to solve (4.14) in linear time. The resulting label q2 denotes
the classification of the pancreas tissue (cf. Figure 4.12 for an example of the classification
process on an unseen test case).

4.4.1.6. Shape space adaptation

In order to yield the final segmentation, knowledge about the expected pancreas shape is incor-
porated. A statistical shape model with ∆ = 1692 landmarks is built according to Section 2.5.3.
The smallest dimension ρ is chosen such that ∑

ρ
i=1 λi captures 98% of the variance of the train-

ing data set, where λ1 ≥ . . . ≥ λ3∆ are the eigenvalues of the corresponding covariance matrix.
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4. Application to segmentation and registration

Figure 4.12.: Pancreas with segmented vessel (upper left). Classifier output (upper right) and
final detector (bottom: bright outline) on an unseen test case [EKD∗11].

Local shape constraints are added to the model according to Section 3.3.2. Figure 4.11(b) shows
the mean of the statistical shape model with color coded shape constraints.

Label q2 is transformed into a mesh using the Marching Cubes algorithm [LC87]. The mesh
consists of a point set M = {m1, . . . ,mK}. In order to register the statistical shape model with
M, an extended version of the Iterative Closest Point (ICP) algorithm is used. The classical ICP
algorithm [BM92] rigidly registers a point set P = {p1, . . . ,pM} with M. In each iteration i of the
classical approach, a correspondence function Ci : P → M between points from P and M is
estimated, which is defined by the formula Ci(p) = argminm∈M‖(Rip+ ti)−m‖. Here, Ri and
ti denote the estimates of the rotation matrix and translation vector in iteration i. On the basis of
Ci, the updated estimates Ri+1 and ti+1 can be derived using the method of Horn [Hor87].

In the approach of Kirschner and Wesarg [KW11] used in this work, an extension of the ICP
algorithm is able to register a complete statistical shape model with M, instead of a static point
set. It starts with initializing a vector x ∈ R3ρ with the mean shape x̄ of the statistical shape
model. This vector x acts as the point set P in the original approach. In each iteration i, after
the new pose parameters Ri+1 and ti+1 have been estimated, x is deformed using the function
Ci. The pose parameters are used to project the deformed vector x into the shape model space,
where x is constrained to a plausible shape. This plausible shape is then reprojected to world
space coordinates, and the next iteration begins. In contrast to the classical ICP algorithm, also
a scale factor using Horns method [Hor87] is estimated. By using a k-d-tree to determine Ci in
each iteration, the algorithm is very efficient.

After registration of the statistical shape model with M, a constrained free-form deformation is
applied as described in Section 4.2 to yield the final segmentation of the pancreas.
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4.5. Automatic deformable registration of the liver in CT data

Figure 4.13.: Liver CT scan of the portal venous phase (left) and the arterial phase (right). 3
different lesions are shown in both images. Lesion 1 and lesion 3 are visible only in
the arterial phase while lesion 2 is only visible in the portal venous phase.

4.5. Automatic deformable registration of the liver in CT data

Multi-phase liver registration has great potential improving computer aided diagnosis or operation
planning since it allows for the fusion of complementary information from routinely gathered CT
scans. Usually physicians have to compare the different phases slice-by-slice and map them
mentally. This is especially problematic if precise knowledge about the location of structures is
needed, e.g. the distance of a vessel to a tumor which are not visible in the same phase. Figure
4.13 shows an example of a liver CT scan in the portal venous phase (left) and the arterial phase
(right). A total of three lesions is visible in the scans. Of these lesions, two are visible in the
arterial phase and one is visible in the portal venous phase only. Furthermore, lesion 2 and
lesion 3 are very close to each other. Lesion 1 is very close to a vessel which can only be seen
in the portal venous phase. This example makes clear that a precise registration of both phases
is necessary in order to plan an operative treatment of the lesions.

Most multi-phase registration methods rely on the liver’s internal structure in the corresponding
phases in order to register the volumes. Kwon et al. [KYLL08] use a B-spline elastic registration
based on 3D features that are extracted and matched in different phases for 5 patients. However,
since vessels like the liver arteries and the portal vein are very close to each other and are
usually only visible in one phase it is likely that features will be selected that incorrectly match
those different trees. Xiaoyang et al. [HWC∗08] use a method based on a joint histogram to
rigidly register the intra-hepatic vessels on 2 patients. However, since different respiration states
will introduce local deformations rigid registration is not sufficient for a high accuracy matching.
Heldmann and Zidowitz [HZ09] extract the vessel trees of one patient to define a penalty term
in order to avoid overlapping of complementary vessels. However, segmenting a specific vessel
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4. Application to segmentation and registration

Figure 4.14.: Workflow of the automatic registration framework. The liver is extracted in the por-
tal phase. The resulting mesh position is used as initialization for the extraction of
the arterial phase. Afterwards shapes are registered based on their correspond-
ing landmarks. The final registration is computed using a voxel based deformable
registration that incorporates the distance of every voxel to the extracted shapes.

tree in one phase is very difficult since in most cases the contrast agent also saturates part of
the other trees. Additionally, internal structures like tumors or ablations often prevent an accurate
extraction of the vessel trees which may lead to false registration afterwards.

In this work a novel approach for automatic matching of multi-phase CT images is presented.
First, the liver is automatically segmented in all phases. Subsequently, landmark based registra-
tion is performed to coarsely align the livers. The respiration forces are simulated by a Demon
algorithm using a speed function that linearly penalizes the distance to the shape boundaries.
Using the method, different phases can be registered fully automatically with high accuracy and
without having to rely on error-prone matching of internal structures.

4.5.1. Workflow

Figure 4.14 outlines the registration workflow. First, the liver is extracted in the portal phase. The
resulting mesh position is used as initialization for the extraction of the arterial phase. Afterwards
shapes are registered based on their corresponding landmarks. The final registration is computed
by a distance based deformable registration.
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4.5. Automatic deformable registration of the liver in CT data

Figure 4.15.: Segmentation results of different liver phases [ESH∗11]. The portal venous phase
is segmented using a constrained statistical shape surface model (left). For the
arterial phase, a multi-layered model is applied (middle, right).

4.5.2. Automatic liver segmentation

Liver segmentation of the portal venous phase is done using the approach described in Section
4.2. Figure 4.15 (left) shows an exemplary result of this segmentation step.

For segmenting the arterial phase, the method described in Section 4.3 has been applied
(cf. Figure 4.15 (right)). Additionally, the model is initialized at the position of the portal phase
segmentation result which helps to improve accuracy, since the liver boundaries are usually only
shifted by some centimeters between phases. Figure 4.15 (middle) shows an exemplary result of
the arterial phase segmentation.

4.5.3. Image Registration

Since the landmarks pa and pp of the extracted arterial and portal shape correspond to each

other they can be efficiently registered minimizing ∑i∈P

(

TA(pa
i )− p

p
i

)2
, with P being the set of

landmark indices and TA being an affine transformation. The resulting transform is then applied to
the arterial phase image. Both images are now coarsely aligned. In order to treat local deforma-
tions caused by respiration, elastic registration is performed based on the algorithm proposed by
Thirion [Thi98]. However, its assumption that corresponding points to be matched share similar
intensities does not hold for the liver’s interior between phases. The original approach is modi-
fied as follows: a point’s speed is penalized according to its position in fixed and moving image
relative to the liver boundary. The displacement field at the N-th iteration is computed as

DN(X) = DN−1(X)− ΨN−1(X)(m(X +DN−1(X))− f (X))∇ f (x)

||∇ f ||2 +(m(X +DN−1(X))− f (X))2/K
, (4.17)

with

ΨN−1(X) =















1, if ΦN−1
f (X) and ΦN−1

m (X) > 0

0, if ΦN−1
f (X) and ΦN−1

m (X) < 0

||ΦN−1
f (X)|−|ΦN−1

m (X)||

|ΦN−1
f (X)|+|ΦN−1

m (X)|
, otherwise.

(4.18)

Φ f (X) and Φm(X) being the distance maps from fixed and moving image, f and m, respectively.
K is the mean squared value of pixel spacings and ∇ f is the fixed image’s gradient. The dis-
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4. Application to segmentation and registration

Figure 4.16.: Deformation penalty in different regions of overlapping liver shapes. Outside of
both shapes the deformation speed function is not penalized. Inside both shapes
no matching is allowed. In areas that are inside one shape only, the deformation
speed function is penalized by Φ(X).

placement field is smoothed between iterations by a Gaussian using a standard deviation σ = 3

in order to propagate boundary forces to the liver’s interior.

Figure 4.16 illustrates the deformation speed penalty (4.18) during one iteration. Both arterial
and portal venous liver shapes are partly overlapping. Outside both shapes, the deformation
speed is not penalized, i.e. a matching of neighboring structures is allowed. Inside both shapes,
no deformation speed is allowed, in order to avoid the matching of unrelated structures. That
means, the deformation field will not contain any displacements in this area. In the regions that
are inside one shape only, the deformation speed of a voxel is penalized according to its dis-
tance to both shapes. This way, the deformation speed function is stronger penalized at positions
that are far away from both boundaries. However, voxels that are close to both boundaries or
directly on a boundary are less penalized, since boundaries are visible in both scans and should
be matched. After computation of the deformation field for all areas, the deformation field is
smoothed as described above. By repeating the above process of deformation force computa-
tions and smoothing, the deformation forces are propagated from the boundaries to the interior
of the shapes. After a number of iterations, the deformation field only varies minimally and the
registration is stopped. In the performed tests, usually an iteration count of 100 was sufficient.

The described elastic registration allows for a high accuracy matching of liver boundaries while
internal structures are matched by the interpolation of the displacement field. This allows for a
natural deformation of the organ’s interior since respiration forces are also propagated approxi-
mately linearly to the liver’s interior. An exemplary registration result of arterial phase and portal
venous phase can be seen in Figure 4.17(a).

In addition to the multi-phase registration described in the previous Section, the registration
can also be applied to register pre-treatment and post-treatment CT scans of the portal venous
phase. Figure 4.17(b) shows an example of the registration of two portal venous CT images. In
the pre-treatment image (left), a tumor is visible. This tumor has been ablated during treatment.
In a follow-up CT scan, the result of the treatment is examined. Using the described registration
framework, the physician can measure the distance of the original tumor area to the boundaries
of the ablated area in order to assure that enough tissue has been burned to avoid a relapse.
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(a)

(b)

Figure 4.17.: Split views of registration results: (a) Multi-phase registration of arterial and portal
contrast enhancement phase. (b) Pre-treatment (left) and post-treatment (right)
registration. Arrows indicate initial lesion in pre-treatment scan (left) and ablated
area in post-treatment scan (right) [EOLD∗12].

4.6. Discussion

In this chapter, the model based methods developed in this thesis have been applied to common
medical image segmentation and registration problems. Segmentation frameworks for the kid-
ney, the liver and the pancreas in contrast enhanced CT data have been proposed. A multi-tiered
adaptation method has been presented with a stepwise increase of the model’s degrees of free-
dom in order to allow for a robust segmentation in the case of model initialization errors. The local
shape constraints proposed in the last chapter have been combined with the model’s curvature
during model adaptation. This way, deformation is limited to model areas where high curvature is
excepted from the training stage and observed during current adaptation.

In the case of pancreas segmentation, new types of texture features have been proposed that
classify pancreas tissue around the splenic vein. The features are integrated into a pancreas
tissue classifier. Combined with the proposed model based approaches, an automatic segmen-
tation of the pancreas from single phase contrast enhanced CT has been presented.

In order to allow the segmentation of low contrast structures, the proposed volumetric model
has been used to segment the bladder in low contrast CT and the liver in the arterial contrast
CT phase. The segmentation of the liver in the arterial contrast phase led to the proposal of a

107



4. Application to segmentation and registration

fully automatic scheme for registration of multi-phase liver CT images. In this scheme, the liver
is segmented from portal venous and arterial contrast CT phases. Afterwards, a voxel based
deformable registration is proposed that incorporates the shape information of the liver during
adaptation. This way, a matching of complementary structures as visible inside the liver during
the different phases is avoided.

The next chapter presents an evaluation of the methods proposed in this thesis based on the
segmentation and registration problems addressed in this chapter.

Parts of this chapter are based on publications of the author [ES10, WKEK10, WEKK11b,
WEKK11a,ETS09,ES10,ESKW10,ESW10,ESH∗11,EOLD∗12,OLDE∗12].
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In this chapter, the methods developed in Chapter 3 and Chapter 4 are evaluated and put into
context with existing methods. First, the quality measures used to assess the developed methods
are described in Section 5.1. The smart manual landmarking method described in Section 3.3.3
is evaluated in Section 5.2. The model adaptation process is evaluated in Section 5.3. It includes
evaluation of model initialization, evaluation of the robustness of the boundary detection as well as
a comparison between linear and nonlinear shape models. The kidney segmentation framework
presented in Section 4.1 is evaluated in Section 5.4. The multi-tiered liver segmentation method
proposed in Section 4.2 is evaluated in Section 5.5. It follows the evaluation of the segmentation
accuracy of bladder, arterial phase liver and pancreas in Section 5.6 and Section 5.7. Section
5.8 concludes the chapter with an evaluation of the registration of multi-phase liver CT images.

5.1. Quality measures

In order to evaluate the methods developed in this thesis, several well known quality measures
are used. In the context of segmentation, the goal is to maximize the true positive area (TP)
between the computed segmentation and a reference labeling as Figure 5.1 shows.

The used measures are:

• the volumetric overlap error (abbreviated as VOE in the remainder) in percent. The VOE
is defined as (1− T P

FN+T P+FP
)100. This value becomes 0 in case of a perfect overlap

between computed segmentation and ground truth labeling and 100 in case no overlap
exists.

• the volume difference (abbreviated as VD in the remainder) in percent. The VD is defined
as 100((T P+FP)− (FN +T P))/(FN +T P). A value of 0 indicates that segmentation
and reference have the exact same volume. Negative values denote under-segmentations
and positive values denote over-segmentations. Since this measure only computes the dif-
ference between the total volume of a segmentation to the reference, a value of 0 does not
necessarily characterize a good segmentation. However, in conjunction with other mea-
sures, it indicates whether an algorithm tends to oversegment or undersegment structures.

• the average symmetric surface distance (abbreviated as ASD in the remainder) in millime-
ters. The ASD is computed determining the border voxels of segmentation and reference.
A border voxel is a voxel that has at least one neighbor (18 neighborhood) which is not
labeled. For each voxel in one border set, the voxel with the minimum Euclidean distance
in the other border set is determined. All minimum distances for both border sets are aver-
aged to compute the ASD. The ASD is 0 for a perfect overlap between segmentation and
reference.

• the root mean square symmetric surface distance (abbreviated as RMS in the remainder) in
millimeters. The RMS is similar to the ASD, but computes the squared Euclidean distances
between border voxel sets. The squared distances are averaged. The square root of the
average is the RMS. The RMS is 0 for a perfect overlap of segmentation and reference.
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Figure 5.1.: Comparison of a computed segmentation (yellow circle) with a reference (blue circle).
False negative (FN), true positive (TP) and false positive (FP) areas are shown.

• the maximum symmetric surface distance (abbreviated as MD in the remainder) in millime-
ters. The MD is defined as

MD(A,B) = max(h(A,B),h(B,A))

with h(A,B) =maxa∈Aminb∈B||a−b|| and with A = T P+FP and B = FN+T P are sets of
voxels. ||a−b|| denotes the Euclidean distance in millimeters and is computed in physical
coordinates in order to account for non isotropic resolutions. The MD is 0 for a perfect
overlap of segmentation and reference.

• the dice similarity coefficient (abbreviated as DC in the remainder). The DC is defined as

DC(A,B) = 2|A∪B|/(|A|+ |B|)

with A = T P+FP and B = FN +T P being sets of voxels. This measure becomes 0 in
case no overlap between computed segmentation and reference exists and 1 in case of a
perfect match.

• the positive predicive value (abbreviated as PPV in the remainder). The PPV is defined
as PPV = TP/(TP+ FP). The PPV becomes 0 in case no overlap between computed
segmentation and reference exists and 1 in case of a perfect match.

5.2. Smart manual landmarking

In this section, the method presented in Section 3.3.3 for building a statistical shape model using
smart manual landmarking is evaluated. First, the quality of the correspondence establishment is
demonstrated on several anatomical structures using a visual correspondence scheme. It follows
a quantitative evaluation using standard statistical shape model quality measures.

5.2.1. Correspondence visualization

The approach has been evaluated by building statistical shape models for three different anatomi-
cal structures of varying topology (left kidney, vertebra and cardiac left ventricle). For the vertebra
and kidney, static volume data from CT was used (10 and 16 data sets, respectively) while the
cardiac left ventricle is represented by 20 dynamic images provided as 3D cine MRI data re-
constructed along the ventricle’s main axis. An average user needs around 5 to 10 minutes for
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(a) (b)

(c)

Figure 5.2.: Principal modes of variation for the statistical shape model of the cardiac left ventri-
cle (a), left kidney (b) and vertebra (c). The variation of the two largest eigenmodes
between −3

√
λi (left) and 3

√
λi (right) are shown together with the mean mesh (mid-

dle) [EKW09].

segmenting a kidney and a vertebra sufficiently precise and around 7 minutes for a ventricle.
These times are comparable to other manual segmentation systems. Therefore, the proposed
segmentation step is suitable to be used in practice.

The deformed meshes were directly used for the shape model generation as described in
Section 3.3.3.5. Figure 5.2 shows the principal modes of variation for all built statistical shape
models. For each model, the mean (middle) is shown as well as the variation of the two largest
eigenmodes between −3

√
λi (left) and 3

√
λi (right). As can be seen in Figure 5.2(a), the first

mode maps the deformation of the ventricle as it is visible in the cine MRI data. A comparison
between Figure 5.2(c) and Figure 5.3 (showing the set of training shapes of the vertebra) shows
that the variation of the training shapes is well mapped to the first two modes of the generated
shape model.

In order to support visual evaluation of correspondence, a color coded visualization technique
is used1. Coarse correspondence of regions is obtained by a color transfer function which maps
landmark indices to hue in HSV space. Value is fixed to 1.0, and saturation to 0.4, which avoids
loud colors. The technique requires that adjacent landmarks have similar indices. If this is not the
case, a renumbering of the landmark indices is necessary. In the implementation, the index 0 is
assigned to an arbitrarily selected landmark, and then a breadth first search is started from this

1The correspondence visualization has been developed by Matthias Kirschner (TU-Darmstadt).
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Figure 5.3.: Color coded visualization of point-to-point correspondence of the vertebra training
set [EKW09]. Points evenly placed on features of locally high curvature are shown
as glyphs.

landmark on the graph induced by the connectivity structure of the model. New landmark indices
are determined by the order in which they are discovered during the breadth first search.

Visualization of correspondence on a fine-grained level of detail is achieved by means of
glyphs. Since visualizing all landmarks would obstruct perception, a subset S is determined
automatically. The approach aims at finding landmarks corresponding to predominant features,
which at the same time cover approximately uniformly the whole surface of the training meshes.
The landmarks are sorted by decreasing Gaussian curvature on a single, arbitrarily selected
training mesh M. It follows an iteration over the sorted landmarks. A landmark is added to S if its
Euclidean distance on M to the landmark that was previously added to S is larger than a specified
threshold. All landmarks in S are visualized by spherical glyphs. In order to assign color to the
glyphs, a similar transfer function as described above is used, where a saturation of 1.0 is set to
obtain a better accentuation.

Figure 5.3 shows the correspondence visualization for the training sets of the vertebra. On
the vertebra, prominent feature points are well visible and therefore mismatching points can be
identified easily using the visualization approach. As can be seen, correspondence in terms of
mapping areas from one shape to the other is established well. In addition, the feature points
mapping local high curvature are also placed on corresponding positions over the set of training
shapes. In case of the kidney, the correspondence cannot fully reach the quality of the vertebra
models. This is due to the fact that the kidney does not have many uniquely identifiable points
compared to the vertebra. The correspondence of the cardiac left ventricle models is comparable
to the vertebra. Over all cine images, the position of the ventricle does not change. This eases
the adaptation process and removes the error that may be introduced to a wrong initial orientation
of the model.

5.2.2. Comparison with automatic correspondence optimization

The smart landmarking approach is compared against two fully automatic algorithms: The first
algorithm, which is outlined in Section 5.2.2.1, is based on the iterative closest point (ICP) algo-
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rithm [BM92]. ICP-based algorithms are frequently used in the literature and reported to produce
sufficient results in many applications. In Section 5.2.2.2, a second algorithm is described which
uses population-based optimization.

Both algorithms receive a set of training meshes as input. These input meshes were recon-
structed from binary volumes – segmentations of the test data sets – using the marching cubes
algorithm [LC87].

5.2.2.1. ICP-based correspondence

ICP-based correspondence algorithms establish correspondence by aligning the training meshes
using the ICP point set registration algorithm [BM92]. A well-known shortcoming of ICP-based
approaches is the use of the Euclidean distance as a correspondence measure, because pairs of
closest points in registered shapes do not necessarily correspond. This shortcoming is alleviated
to some extent by extracting the landmarks from consistent spherical parameterizations, which
were computed using parameter space propagation [KW10]. While this approach also builds
upon the ICP algorithm, it improves the quality of the correspondence through anisotropic scaling
and fuzzy instead of fixed point correspondences. Furthermore, the parameter space represen-
tation of the meshes allows for easy interpolation of landmarks from the whole surface of the
mesh, which means that the resulting landmark positions are not restricted to the mesh points of
the input meshes.

The parameter space propagation method [KW10] works as follows: A reference mesh Mref is
selected from the training set, and an area-preserving spherical parameterization of Mref is com-
puted. All other meshes are anisotropically scaled such that the variances on their principal axes
is identical to the variances on the principal axes of the reference meshes. The scaled meshes
are aligned with the reference mesh using the ICP algorithm in order to derive a common coordi-
nate system. Then a fuzzy correspondence between points of each mesh M and points of Mref is
established, where the degree of correspondence between two points is determined by weights
which are dependent on the Euclidean distance of the points in the common coordinate system.
Using this fuzzy correspondence, parameter space coordinates for M are computed by interpolat-
ing parameter space coordinates of corresponding points of Mref. A subsequent correction step
handles overlapping triangles on the spherical parameterization of M, such that the mapping from
parameter space to the world space becomes bijective. Note that the anisotropic scaling is only
used in order to derive the correspondence relation and is undone once the parameterization is
propagated.

Corresponding landmarks are then extracted from the spherical parameterization using the
simple icosahedron sampling technique: The faces of a unit icosahedron are subdivided, and all
points of the subdivided icosahedron are then normalized to obtain sampling points on the unit
sphere. Using the parameterization of a mesh M, sampling points can be mapped to world space
in order to obtain the positions of the landmarks for the respective training example M.

5.2.2.2. Optimization-based correspondence

The optimization-based algorithm treats the problem of establishing correspondence as a prob-
lem of reparameterization, as proposed by Kotcheff and Taylor [KT98]. For a detailed description
of the general approach, the reader is reffered to the book by Davies et al. [DTT08] and the
survey of Heimann et al. [HM09]. The DetCov function [KT98] is used as target function of the
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optimization algorithm, which explicitly favors compact models. This function performed well in
the study of Styner et al. [SRN∗03].

The procedure is started with computing consistent spherical parameterizations using param-
eter space propagation [KW10]. This means that the ICP-based correspondence solution from
Section 5.2.2.1 is the starting solution of the optimization scheme. However, in contrast to the
former approach, the positions of the sampling points which are used for remeshing are iteratively
optimized. As proposed by Davies et al. [DTT08], only the sampling points of a single shape in
one iteration are manipulated using clamped plate spline warps reparameterizations [DTT08].
For each data set, a fixed number of 3000 iterations is used after which the objective function did
not change significantly.

5.2.2.3. Shape model evaluation

For a quantitative evaluation of smart manual landmarking, two statistical shape models of differ-
ent anatomical structures have been built. The first model is a statistical shape model of the left
kidney using 16 static CT datasets from a Siemens Somatom Sensation scanner as the basis.
The in-plane spacing of the CT scans is 0.74 mm. The slices were reconstructed with a thick-
ness of 5 mm. The second statistical shape model has been built from 10 dynamic images of the
cardiac left ventricle’s heart cycle. The scans are provided as 3D cine MRI data reconstructed
along the ventricle’s main axis and consist of 4 mm slices with an in-plane spacing of 1.36 mm.

The left kidney mesh consists of 1002 points while the cardiac ventricle mesh consists of 480

points. Generating the training set using ICP-based correspondence establishment takes less
than a minute on a desktop computer with 2.4 GHz processor and 3 GB Ram. The population-
based optimization requires 45 minutes for establishing correspondence on the ventricle data set
and 95 minutes on the kidney data set using the same machine. Both automatic correspondence
algorithms produce meshes of 1002 points (kidney) and 492 points (cardiac ventricle) in order to
allow a fair comparison with the manual method.

In order to evaluate the quality of the constructed shape models, the common statistical shape
model evaluation measures specificity S and generalization G are computed [DTT08]. They are
defined as

S =
1

ns

ns

∑
A=1

maxi(Ψ(A, i)) and G =
1

M

M

∑
i=1

maxA(Ψ(A, i)). (5.1)

Ŷ = {yA : A = 1, ...ns} is a set of shapes sampled from the model’s probability density function
and X̂ = {xi : i = 1, ...M} is the set of training shapes. Ψ(A, i) denotes a function to compare
shape yA with xi. As Heimann et al. [HWM06] pointed out, it is more meaningful to calculate the
similarity based on the resulting binary segmentations instead of using the landmark positions,
because in image analysis one is most often interested in the volume encompassed by the model
and not in the mesh itself. Therefore, the volumetric overlap Ψ(A, i) = |YA ∩Xi|/|YA ∪Xi| is used
as a similarity measure with XA and Yi being the sets of voxels enclosed by yA and xi. In this
case S = 1 and G = 1 with S ∈ [0,1] and G ∈ [0,1] denote a perfect specificity and generalization
respectively.

In order to have a comparable data basis, the training meshes generated with the smart land-
marking method are converted to binary volumes. The binary masks are then taken as input to
the automatic landmarking algorithms.

For the 6 largest modes of variation, a set of sample shapes Ŷ is generated. Every set consist
of 500 random samples. Using these sets, the generalization ability as well as the specificity
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Figure 5.4.: (a) Generalization and (b) specificity measures for the built statistical shape model
of the kidney [EKW10]. The metric used to compare the shapes is the volumetric
overlap between the labeled voxel segmentations. A value of 1.0 denotes a perfect
overlap.

of the generated statistical shape models is calculated. The analysis for each model takes 5.7
hours on a 2.4 GHz Quad Core Intel processor with Windows XP and 4GB of memory. Figure
5.4 shows the results of the evaluation for the built kidney model using smart landmarking in
comparison to the ICP-based method and to the DetCov method while Figure 5.5 shows the
same calculations for the cardiac left ventricle model. As can be seen, the smart landmarking
approach performs better in terms of generalization (Figure 5.4(a)) and specificity (Figure 5.4(b))
in case of the statistical shape model of the kidney. The cardiac left ventricle model confirms the
advantage of the smart landmarking for the generalization ability (Figure 5.5(a)) while it performs
slightly worse in terms of specificity (Figure 5.5(b)). However, in the latter case the performance
of all algorithms is very similar.

5.2.3. Discussion

The results show that smart landmarking is in most cases superior to the standard correspon-
dence establishment methods using ICP-based correspondence and DetCov population-based
optimization. An explanation for this outcome is that smart landmarking does not contain any
preprocessing and directly work on the generated meshes. The other approaches rely on binary
segmentations and therefore apply a smoothing step to remove staircase artifacts, which reduces
the degree of match between the generated training sets and the binary segmentations.

It could be argued that other objective functions, for example based on Minimum Descrip-

tion Length [HWM06] would probably improve the results of the automatic correspondence algo-
rithms. However, more sophisticated methods also need considerably more time — especially
for large training sets. For example, the statistical shape models of the liver (cf. Section 4.2.1)
used in this thesis were constructed from over 200 training meshes. Using smart landmarking, no
additional work is required apart from the segmentation step. This is especially useful when an
existing statistical shape model is improved by adding new training data. Here, new shapes can
be directly included in the training base and the statistical shape model can be created. Since the
process of creating the statistical shape model is very fast, this procedure can be repeated for
every new training shape without a negative impact on the overall workflow. The developed tool
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Figure 5.5.: (a) Generalization and (b) specificity measures for the built statistical shape model
of the cardiac left ventricle [EKW10]. The metric used to compare the shapes is the
volumetric overlap between the labeled voxel segmentations. A value of 1.0 denotes
a perfect overlap.

can therefore be integrated into clinical practice when a physician needs to segment a structure
manually. This way a very large amount of training meshes can be easily generated.

As the results point out, human guided landmarking is feasible in 3D and also suitable to pro-
duce statistical shape models of good quality. However, human interaction always introduce a
potential error source. An unexperienced user may not be able to identify all corresponding fea-
tures of a particular organ. Therefore, the quality of the training shapes may suffer. Furthermore,
even the same user may generate different outcomes for the same organ.

5.2.4. Summary

A method for statistical shape model generation based on preserving point correspondences dur-
ing user guided segmentation has been proposed. In order to perform a visual evaluation of the
degree of correspondence between different data sets, a color coded visualization based on local
curvature has been used. From tests on three different anatomical structures it is concluded that
the resulting correspondences established during the manual mesh deformation can be directly
used to build statistical shape models even for structures of varying topology.

A quantitative evaluation for the kidney and cardiac left ventricle confirmed the results of visual
analysis. It has been shown that the proposed approach yields better results than standard ICP-
based correspondence establishment both in terms of generalization capability and specificity
and also performs well in comparison to a population-based optimization method. The process
of shape model generation can therefore be reduced to a single step which eliminates potential
errors introduced in the common landmarking and correspondence estimation steps and also
means a considerably speed up of the whole procedure. Another main advantage of the method
is its potential to handle arbitrary topologies. Most automatic approaches cannot deal with shapes
of complex topologies like the surface of the vertebra. Since the presented method can use an
arbitrary model as reference shape, topology changes are unproblematic.
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Table 5.1.: Detection errors of selected anatomical structures averaged over 30 test images. Er-
rors are measured between detected bounding box centers and ground truth bounding
box centers.

Structure average error [mm] standard deviation [mm]

LEFT KIDNEY 25.9 12.0
RIGHT KIDNEY 34.6 11.3
TOP OF THE LIVER 55.7 16.2
BLADDER 32.5 14.9
HEART 42.5 11.1
LOWER LIVER LOBE 51.2 13.1
PORTAL VEIN / SPLENIC VEIN 34.6 12.8
SPLEEN 56.9 19.5

5.3. Model adaptation

In this section, the single model adaptation methods presented in the last chapters are evaluated.
In Section 5.3.1, the automatic initialization of organ models is evaluated. Since it cannot be
guaranteed that the model is always positioned at the exact location, the robustness of the model
adaptation to model initialization errors is evaluated in Section 5.3.2 for the surface model as well
as for the multi-layer model.

The ability of the presented outlier removal process to correct significant errors of the boundary
detection is given in Section 5.3.3. The benefit of using nonlinear statistical shape models on the
segmentation of the liver is demonstrated in Section 5.3.4.

5.3.1. Model initialization

The automatic model initialization described in Section 3.6 has been evaluated on 30 thoracic /
abdominal CT scans with an axial spacing of 5 mm. Another 30 CT datasets have been used
to train the organ classifiers and the relative organ center positions. Test and training set were
disjunct. For evaluation, 8 structures have been trained (right kidney, left kidney, spleen, top of
the liver, lower liver lobe, portal vein / splenic vein branch, heart and bladder. The detection time
range from 1.7 seconds to 7.2 seconds depending on the structure. Larger objects like the heart
have longer computation times, since more voxels are processed.

Figure 5.6 shows exemplary results of the detection of the heart, bladder and spleen (from top
to bottom row). The crosses mark the detected organ centers. As can be seen, the selected
structures are roughly enclosed by a bounding box. In Table 5.1, quantitative results are shown
for the 30 test images. The average displacement error between detected bounding box center
and ground truth bounding box center is between 25 mm for the left kidney and 56 mm for the
spleen.

Given the high anatomical variance of the selected organs and structures, it can be expected
that the error will further decrease if the classifiers are trained on more data. However, since
the developed model based approaches only need a rough partial overlap to adapt to the target
structure, the present accuracy is already sufficient.
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Figure 5.6.: Exemplary results of automatic organ initialization. The first row shows the detected
bounding box of the heart. The second row shows the bounding box of the bladder
and the last row shows the bounding box of the spleen (yellow box). The crosses
denote the corresponding bounding box centers.

5.3.2. Robustness to model initialization errors

In this section, the proposed adaptation methods as described in Section 4.2.3 and Section 3.3.4
are evaluated regarding their robustness to initialization errors. Usually, automatic initialization
approaches do not yield good results in every case. The model adaptation, therefore, must be
robust enough to cope with a model misplacement of several centimeters.

5.3.2.1. Surface model

A benefit of the multi-tiered adaptation presented in Section 4.2.3 is its increased robustness
to model initialization errors compared to a standard statistical shape model adaptation with full
degrees of freedom. In order to evaluate this benefit, the segmentation quality using the proposed
adaptation is compared to statistical shape model adaptation as follows: given a set of ground
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Table 5.2.: Starting model deformation independently at the center of gravity of ground truth and
at the automated calculated position results in the listed deviation of the final seg-
mentation (cf. Section 5.1 for metrics). The first row shows the deviation for classical
statistical shape model (SSM) adaptation, the second row shows the results for the
multi-tiered approach. The results are averaged over 76 test scans [ESKW10].

Method VOE Dev.
[%]

VD Dev.
[%]

ASD Dev.
[mm]

RMS Dev.
[mm]

MD Dev.
[mm]

SSM 1.02 1.31 0.35 0.85 5.39
MULTI-TIERED 0.23 0.15 0.09 0.24 0.85

truth segmentations, the models are initialized at the center of gravity of the ground truth labelings.
This positioning is assumed to be a ground truth initialization, since the model’s surface is very
close to the real boundaries of the structures to segment in the image [YS09]. The models are
then adapted to the images using both adaptation approaches. Quality measures are computed
after adaptation for each test image. Afterwards, the same test is performed again, but using the
heuristic based automatic initialization method described in Section 4.2 for both approaches.

The positioning error of the heuristic initialization method compared to ground truth initialization
has been computed based on 76 CT scans of the liver. The resulting average positioning error is
39.6 mm with a standard deviation of 14.6. That means, the heuristic initialization is around 4 cm
away from the ground truth position which can be significant depending on the shape deviation
of the model and the organ in the image. In order to evaluate how well both standard statisti-
cal shape model and the proposed multi-tiered adaptation can handle this error, the deviation
of quality measures are computed between ground truth initialization and heuristic initialization.
The results are listed in Table 5.2. The first row shows the deviation in segmentation quality for
a classical statistical shape model using automatic and ground truth initialization. The average
maximum distance error is 5 mm. The second row shows the same results for the multi-tiered ap-
proach. With an average maximum distance error below 1 mm and an average surface distance
deviation below 0.1 mm, there is almost no segmentation quality difference between the ground
truth initialization and the automatic initialization.

It can be concluded that the multi-tiered adaptation presented in Section 4.2.3 is more robust
to model initialization errors than standard statistical shape model adaptation. Since current
automatic initialization methods do not yield perfect initialization results, possible errors can be
well handled by the proposed method.

5.3.2.2. Multi-layer model

An advantage of the multi-layer model presented in Section 3.3.4 compared to standard surface
based methods is their ability to detect organ foreign tissue in the model’s interior during adap-
tation. That should increase their robustness to model initialization errors in difficult settings like
low contrast datasets.

Therefore, for evaluation, the bladder as a structure with low contrast boundaries to neighboring
tissue has been selected as test organ. 10 CT scans of the bladder with an axial spacing of 5

mm have been used. Segmentation accuracy is evaluated using VOE, PPV, ASD, RMS and MD
(cf. Section 5.1 for quality measures). Smaller values mean better results except for PPV.

119



5. Evaluation

-40 -30 -20
 0

 20  30  40X-Offset [mm] -40
-30

-20

 0

 20
 30

 40

Y-Offset [mm]

 1.2
 1.5
 1.8
 2.1
 2.4
 2.7

 3

ASD [mm]

 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2

-40 -30 -20  0  20  30  40X-Offset [mm] -40
-30

-20

 0

 20
 30

 40

Y-Offset [mm]

 1.2
 1.5
 1.8
 2.1
 2.4
 2.7

 3

ASD [mm]

 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6

(a)

-40 -30 -20  0  20  30  40

X-Offset [mm]
-40

-30
-20

 0

 20
 30

 40

Y-Offset [mm]

-7
-6
-5
-4
-3
-2
-1

VD [%]

-6.5
-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2

-40 -30 -20  0  20  30  40

X-Offset [mm]
-40

-30
-20

 0

 20
 30

 40

Y-Offset [mm]

-7
-6
-5
-4
-3
-2
-1

VD [%]

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5

(b)

-40 -30 -20
 0

 20  30  40
X-Offset [mm] -40

-30
-20

 0

 20
 30

 40

Y-Offset [mm]

 8
 10
 12
 14
 16
 18
 20
 22

MD [mm]

 8
 10
 12
 14
 16
 18
 20
 22

-40 -30 -20
 0

 20  30  40
X-Offset [mm] -40

-30
-20

 0

 20
 30

 40

Y-Offset [mm]

 8
 10
 12
 14
 16
 18
 20
 22

MD [mm]

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

(c)

Figure 5.7.: Segmentation accuracy for different initial model positions (x-,y-offset of ±40 mm).
The ground truth initialization has an x-,y-offset of 0. The left column shows quality
measures for a surface model while the right row shows the same measures for a
multi-layer model (cf. Section 5.1 for a description of measures). (a) and (c): lower
values are better. (b): higher values are better.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8.: Decrease of segmentation accuracy with increasing distance of the initial model
placement to ground truth model initialization (x-,y-,z-offset of ±40 mm). Results
are averaged over all test scans and over x-,y-,z-direction. A multi-layer model and
a standard surface model have been used. (a)-(e): a value of 0 denotes a perfect
segmentation. (f): a value of 1 denotes a perfect segmentation.

For the tests, a 3-layer multi-layer model of the bladder has been built. Beginning with a ground
truth initialization at the center of gravity of the reference labeling, the model is shifted in x-,y- and
z-direction in the range of ±40 mm. For each shift, segmentation quality measures are computed.
The same procedure is done using a non volumetric surface model. Figure 5.7 shows plots of
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quality measures ASD, VD and MD at the z = 0 plane for x/y shifts averaged over all test scans.
The remaining measures showed similar results. As can be seen, the multi-layer model shows
better segmentation accuracy in the whole shift range.

Figure 5.8 shows the decrease of segmentation accuracy with increasing distance of the model
placement from the ground truth initialization. The results are averaged over all test scans and
over the shift range of ±40 in x-,y-,z-direction. The multi-layer model’s accuracy shows a smaller
drop of accuracy with increasing distance in comparison to the surface model. Additionally, the
standard deviation of the multi-layer model is significantly lower which indicates a robust behavior
over all test scans.

It can be concluded that the multi-layer model is more robust to model initialization on low con-
trast images like CT scans of the bladder than surface based models. Both overall segmentation
accuracy and initialization robustness could be increased using the proposed multi-layer model.

5.3.3. Robustness of boundary detection

As it has been discussed in Section 3.4.2, the proposed rule based outlier removal method can
be combined with any standard boundary detection approach that computes fitness values for
boundary points. Furthermore, the multi-tiered adaptation presented in Section 4.2.3 prevents
that the model deviates too much from the reference shape in the early stages of the adaptation
process where the model’s surface is typically far away from the real boundaries. The benefit of
the proposed outlier removal and model adaptation is evaluated by using two different boundary
detection methods. The first method is a simple, fast and generic gradient computation as a
boundary fitness value. In contrast, a learning based boundary detection method is used that
learns the distribution of sampled profiles along the surface’s normal at each model point.

Usually, it is assumed that the learning based boundary detection outperforms the simple gra-
dient boundary detection, because it incorporates more sophisticated knowledge about the ap-
pearance of the boundary. In the current literature, profile based boundary sampling is therefore
used in the majority of applications. However, the proposed outlier detection and multi-tiered
adaptation should decrease the difference between both approaches in terms of the resulting
segmentation accuracy.

Therefore, 17 CT scans of the liver have been segmented using the method proposed in Sec-
tion 4.2. The same scans were then segmented using the same method, but with a learning
based boundary detection module. The learning based boundary detection is performed as fol-
lows: using a set of training data, at each point of the model an intensity profile is sampled along
the surface’s normal. These profiles are taken as positive samples for the corresponding points.
Negative samples are acquired by sampling additional profiles with an offset at each point. For
each point, a boosted classifier is built based on AdaBoost (cf. Section 2.4.3) and classification
and regression trees (cf. Section 2.4.2). In the detection step on an unseen dataset instead of
using a majority vote, the normalized positive and negative votes of the weak classifiers are taken
as a probability for a point being on the boundary or not.

In comparison to standard profile based boundary detection [Coo01], the described approach
does not assume a Gaussian distribution of profile samples, but is able to capture arbitrary distri-
butions. This improves boundary detection in areas where the mean profile is not representative.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9.: Segmentation accuracy differences between gradient based boundary search and
boosted profile based boundary search for 17 scans of the liver. Positive values de-
note better performance of the gradient boundary search and negative values denote
the contrary. Both boundary search methods are combined with the outlier detection
presented in Section 3.4.2 and the multi-tiered adaptation presented in Section 4.2.3.
In all listed measures, only marginal differences can be observed.

Both boundary detection methods are applied to the test cases and VOE, VD, ASD, RMS, MD
and PPV are computed on the segmentation results (cf. Section 5.1). Figure 5.9 outlines the dif-
ferences between both methods in terms of segmentation accuracy. Positive values denote better
performance of the gradient boundary search and negative values denote better performance of
the learning based boundary detection. As can be seen, both approaches only marginally differ
in terms of accuracy. For most datasets the average surface distance only varies less than 0.4
mm. Moreover, in some cases the gradient boundary search shows slightly better performance
and in some cases the learning based boundary detection shows superior results.
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Table 5.3.: Segmentation accuracy of different statistical shape model of the liver averaged over
46 datasets (cf. Section 5.1 for metrics).

Method PPV DC VOE [%] VD [%] ASD
[mm]

RMS
[mm]

MD [mm]

PCA 0.88 0.86 19.66 -8.27 5.86 8.62 40.21
RELAXED

PCA
0.88 0.87 18.97 8.83 5.45 8.17 41.01

KPCA 0.82 0.82 25.31 34.12 7.09 11.09 57.60

5.3.3.1. Discussion

The evaluation of this section shows, that there is almost no difference between a simple gradient
boundary search and a state of the art learning based boundary detection in terms of segmen-
tation accuracy if combined with the outlier detection presented in Section 3.4.2 as well as the
multi-tiered adaptation presented in Section 4.2.3. It can therefore be concluded that the pro-
posed methods allow the usage of very simple, fast and generic boundary detection methods
without loosing segmentation accuracy. This result implies that the significant information about
correct boundaries is encoded in the outlier detection and adaptation process and not in the local
boundary detection method. Since local organ boundaries are often not unique in the image, local
boundary detection methods may produce a lot of false positives. However, a large part of these
false positives can be easily eliminated by incorporation of additional knowledge as presented in
this work. In this regard, the result can be interpreted analogous to the result of the model initial-
ization process presented in Section 5.3.1. Here, the main information about the position of the
correct bounding boxes for each organ does not come from the simple local classifiers but from
the global high level information about the relative positions of each organ to all other organs.

5.3.4. Linear and nonlinear shape models

As it has been discussed in Section 2.5.3, standard statistical shape models assume a Gaussian
distribution of organ shapes. It can be argued though, that some organs with complex shape
variation like the liver may not be Gaussian distributed. Recently, Kirschner et al. [KBW11] inves-
tigated the benefit of landmark based statistical shape model segmentation using standard linear
PCA and nonlinear Kernel PCA (KPCA). They showed that nonlinear statistical shape models
can improve the segmentation accuracy on structures where the mean is not representative for
the distribution of shapes. In their tests, a statistical shape model mixing lumbar and thoracic
vertebrae has been created, where the mean shape is neither a lumbar nor a thoracic vertebra.

In order to evaluate whether the model based segmentation methods proposed in this thesis
benefit from a nonlinear statistical shape model, three different statistical shape models of the
liver have been built based on 220 training meshes. The first model uses standard PCA as de-
scribed in Section 2.5.3. The second model uses a recently proposed relaxed PCA model, which
is able to leave the trained PCA subspace [KW11]. This approach has been evaluated by the
authors on liver CT data and showed superior segmentation results compared to standard PCA.
The third model uses a Kernel PCA shape energy as described in [KBW11]. It is therefore a
nonlinear statistical shape model. The scale factor for the Gaussian kernel has been set to 0.3,
since this value yielded the best results in the tests.
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5.3. Model adaptation

Figure 5.10.: Projection of the training shape set of the liver to the first two principle components.
The first row shows the single projected training shapes. The second row shows
the log-likelihood function of the shape energy where brighter shading means higher
probability of a shape to be a plausible liver shape.

For evaluation, 46 CT scans of the liver with slicing between 1.0 mm and 5.0 mm have been
used. The models were initialized at the center of gravity of the ground truth labellings in or-
der avoid bias from bad model positioning. For boundary detection, the method described in
Section 4.2 has been applied. Furthermore, no multi-tiered adaptation has been used, but solely
statistical shape model evolution. This has been done in order to evaluate the benefit of the differ-
ent statistical shape models only instead of the whole segmentation pipeline. Quality measures
according to Section 5.1 have been computed for all three models. Table 5.3 shows the seg-
mentation results of the tests. For most measures the relaxed PCA model shows slightly better
performance than the standard PCA model. The KPCA model, however, performed worse than
its nonlinear counterparts. This could indicate that the shape distribution of the liver is Gaussian
distributed and that the KPCA models some non representative nonlinearities that appear in the
training data.

Figure 5.10 shows the projection of the training shape set to the first two principle components.
The shading encodes the probability of a shape to be a plausible liver shape according to the log-
likelihood function of the shape energy. As can be seen, the training shapes cluster around the
point with the highest probability. That means, the mean shape is very representative for the
single training liver shapes. In this case, a linear model can be assumed to be sufficient to model
the training set. The visualization of the distribution of the training shapes also supports the
qualitative results presented in Table 5.3.
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Table 5.4.: Quantitative results for segmentation of the left and right kidney averaged over 30 CT
scans (cf. Section 5.1) [ES10].

LEFT KIDNEY DC VOE [%] ASD [mm] MD [mm]

Mean 0.94 0.12 0.40 5.72
Standard deviation 0.02 0.04 0.13 1.93
Worst 0.90 0.17 0.57 9.84
Best 0.97 0.05 0.18 3.16
RIGHT KIDNEY DC VOE [%] ASD [mm] MD [mm]

Mean 0.92 0.13 0.61 6.56
Standard deviation 0.05 0.08 0.59 4.77
Worst 0.77 0.37 2.46 20.85
Best 0.96 0.04 0.23 3.16
Mean total 0.93 0.12 0.51 6.14

5.3.4.1. Discussion

The tests showed that linear PCA is even for a complex shape like the liver sufficient to model
the training distribution. It can be argued though, that nonlinear models may perform better when
trained with a larger database. However, since the used training base already consists of 220

shapes, deviations from the Gaussian distribution are likely to be small.

Nonlinear statistical shape modeling did not show superior results to standard linear models.
At the same time it led to computation times that are several magnitudes higher than for lin-
ear models, especially when many training shapes are used. Therefore, in this thesis, a linear
statistical shape model has been applied.

5.4. Kidney segmentation

In this section, the kidney segmentation framework as proposed in Section 4.1 is evaluated. 30

patients have been randomly selected from a database (26 cases without visible lesions in the
kidneys, 4 cases with lesions up to 3.5 cm in diameter) of CT images acquired by a Siemens
Sensation scanner. The in-plane spacing of the CT data was 0.74 mm. The slices were recon-
structed with an axial spacing of 5 mm. For the tests, the kidneys have been initialized using a
user defined point in the middle of the kidneys.

The segmentation accuracy is evaluated by computing DC, VOE and MD (cf. Section 5.1).
Table 5.4 lists the mean and standard deviation of the above measures for the left and right
kidney averaged over the used data sets as well as the best and worst result for each category.
Exemplary qualitative segmentation results are shown in Figure 5.11.

The total segmentation time on a system with a 2.93 GHz Intel Quad Core processor, 8 GB
RAM and Windows 7 for the given datasets is below 6 seconds.

5.4.1. Discussion

The results show a slightly better performance for the left kidney. An explanation for this outcome
is the neighborhood of the right kidney to the liver. The liver’s shape has a strong influence on the
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5.4. Kidney segmentation

position and orientation of the right kidney. Furthermore, if the right kidney has direct contact with
the liver, often no clear boundary is present which makes the adaptation process less robust.

Showing a mean dice similarity coefficient of 93% and a mean overlap of 87% on 30 patients,
the segmentations generated by the proposed method are in most cases comparable to manual
delineation. In comparison to the study of Lin et al. [LLH06] the dice similiarity coefficient on the
tested datasets could be increased by around 4%. However, the approach of Lin et al. has been
evaluated using an automatic initialization.

The proposed approach also yielded good results compared to Tsagaan et al. [TSKM02] who
also evaluated their approach using manual placement of the model. They reported a mean
overlap of 86%. It must be noted though that their experiments have been performed on low
resolution data with an axial spacing of 10 mm.

A major advantage of the proposed framework is the speed and ease of use. Since a seg-
mentation is done very quickly, it can be easily integrated into clinical practice. Even concerning
complicated cases (e.g. with severe pathologies) the framework can reduce the clinician’s time
by providing an acceptable segmentation to start with. The user may then choose to edit the
segmentation based on his needs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.11.: Exemplary segmentation results of left and right kidney in axial (1st column), sagittal
(2nd column) and coronal (3rd column) views [ES10].
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5.5. Liver segmentation

Figure 5.12.: Exemplary cases of the challenging IRCAD data base [ESKW10]. Left: scan with
20 tumors inside of the liver. Right: a huge tumor at the lower liver lobe leads to a
very uncommon liver shape. In such a case a precise segmentation of the liver is
impossible if only trained shape priors are used.

5.5. Liver segmentation

In the context of the liver segmentation competition held at a conference workshop of MIC-
CAI 2007 [HvGSea09], a data base of CT images was made publicly available in order to let
teams compare their approaches. The majority of the best automatic methods use statisti-
cal shape knowledge [HvGSea09]. Recent results show that both implicit [WSH09] and ex-
plicit shape representations [KLL07] are equally suited to segment the liver with high accu-
racy (1.37/1.02 mm mean error). Instead of using the 10 test cases for online competition,
some teams are using the provided 20 training sets for evaluation [KUA∗09, SBB09]. How-
ever, most methods are evaluated on a small amount of test cases (usually between 10 and
25 [WSH09, KUA∗09, KLL07, HMW07, SBB09]). A test on a larger data base (174 scans) was
performed in [LZZ∗08] with a reported 1.59 mm mean error after a manual removal of outliers
(1.76 mm without outlier exclusion). However, a non-public data base from a single vendor was
used for evaluation so it is unclear how the method would perform on the highly heterogeneous
scans from the public competition data bases. It is also unclear how many high and low resolution
scans were used. This is especially crucial since only the average surface distance was used as
a metric for evaluation.

The automatic liver segmentation approach presented in Section 4.2 has been evaluated using
4 non-overlapping sets consisting of 86 CT liver scans differing in resolution, contrast enhance-
ment and present pathology. None of the test sets were used for training. Set MTEST is the test
set of the MICCAI’07 liver challenge (10 scans), cf. [HvGSea09]. Set MTRAIN is the training set
of the same challenge (20 scans). Instead of using this set as a training set it is used as an
additional test set. This is done in order to compare the method to other approaches which also
use this set for evaluation [KUA∗09,SBB09].

In order to add very challenging datasets to the evaluation the public 3D-IRCAD data base
(www.ircad.fr) built for comparison of segmentation algorithms has been used (test set IRCAD).
75% of the 20 provided scans (axial spacing between 1 and 4 mm) having hepatic tumors, which
makes a robust segmentation extremely difficult. Figure 5.12 shows a 3D rendering of an exam-
plary dataset of this testbase with large visible lesions.
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Table 5.5.: Mean and standard deviation of volume and surface errors (cf. Section 5.1) for the
86 scans listed separately for each test set using the proposed fully automatic liver
segmentation approach [ESKW10].

Num. scans /
test set

VOE
[%] ±SD

VD [%]
±SD

ASD [mm]
±SD

RMS [mm]
±SD

MD [mm]
±SD

10/MTEST 8.62 ±1.49 1.32 ±2.04 1.54 ±0.44 3.13 ±0.99 25.90
±7.28

20/MTRAIN 7.54 ±1.18 1.28 ±2.15 1.30 ±0.33 2.67 ±0.97 26.52
±10.07

20/IRCAD 10.34
±3.11

1.55 ±6.49 1.74 ±0.59 3.51 ±1.16 26.83
±8.87

36/LOWRES 12.35
±1.98

-4.53 ±4.05 1.85 ±0.34 3.27 ±0.68 23.09
±5.62

Since most liver segmentation algorithms are only tested on high-resolution data a test set
LOWRES has been added which consists of 36 thorax/abdomen scans from a Siemens Sensation
scanner with the standard slice spacing for abdominal control scans of 5 mm.

A total of 86 scans were taken to evaluate the overall segmentation accuracy using the mea-
sures described in Section 5.1. For evaluating the initialization robustness, MTEST is excluded
since the ground truth is only available to the challenge initiators.

The final segmentation results are listed in Table 5.5 and shown in Figure 5.13 for exemplary
scans of the test sets. MTEST was submitted to the organizers of the challenge. It can be seen
that the combination of trained shape constraints with observed shape deviation allows the model
to robustly leave the trained space without leaking into neighboring structures. The fully automatic
segmentation of one case takes in average 45 seconds on a 2.93 GHz Quad Core CPU.

5.5.1. Discussion

A fully automatic multi-tiered statistical shape model segmentation for the liver has been pre-
sented that combines learned local shape constraints with observed shape deviation during
adaptation. The said combination allows the model to leave the trained space without leaking
into neighboring structures. In comparison with using only trained local curvature constraints
[KUA∗09] the presented method yields significantly superior results (71.3 to 66.7 MICCAI chal-
lenge score). With a mean surface distance of 1.3 to 1.54 mm for the commonly used [HvGSea09]
evaluation sets MTRAIN and MTEST the approach places among the top automatic methods
[HvGSea09,WSH09,KUA∗09,KLL07,HMW07,LZZ∗08].

However, in contrast to other methods [HvGSea09, WSH09, KLL07, HMW07] (10 test scans),
the approach has been evaluated using a large heterogeneous test set of 86 scans. Adequate
comparability between methods is only possible if evaluation is performed on publicly available
test cases. Therefore, the 3D-IRCAD data base (www.ircad.fr) has been included. This database
has been used since it is a very challenging data base for segmentation. Some scans con-
tain up to 46 tumors (Figure 5.12 left), some of them being extremely large (Figure 5.12 right).
Nevertheless the approach is able to segment this set with high accuracy. Because most meth-
ods [HvGSea09,WSH09,KUA∗09,KLL07,HMW07] are mainly tested on high-resolution data, the
approach has been evaluated using 36 scans with the standard slice spacing for abdominal con-
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5.5. Liver segmentation

Figure 5.13.: From left to right: qualitative segmentation results for test sets MTRAIN, IRCAD and
LOWRES. Each column shows transversal (top), sagittal (middle) and coronal (bot-
tom) view [ESKW10].
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trol scans of 5 mm. The approach is also able to segment this data with high accuracy which
emphasizes the broad applicability of the method.

5.6. Segmentation of low contrast structures

(a)

(b)

(c)

Figure 5.14.: (a) Segmentation result for a 4-layer model [ESW10]. (b) Comparison of final seg-
mentation using a single surface model (dark outline) and a 4-layer MLDM (bright
outline) [ESW10]. (c) Segmentation result of a bladder using MLDM (bright outline)
compared to ground truth (dark outline) [ESW10].

In order to evaluate the method for segmenting low contrast CT structures as proposed in Section
4.3, 20 CT scans of the liver with an axial spacing between 1 and 5 mm as well as 10 CT scans
of the bladder with an axial spacing of 5 mm has been used. Segmentation accuracy has been
evaluated using VOE, PPV, ASD, RMS and MD (cf. Section 5.1). Smaller values mean better
results except for PPV. For the tests, a 3-layer bladder multi-layer model and a 4-layer multi-layer
model of the liver have been built. Using more layers did not significantly improve segmentation
accuracy but had a negative impact on the computation time. The optimization time of a layer
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5.6. Segmentation of low contrast structures

Table 5.6.: Mean and standard deviation of volume and surface errors (cf. Section 5.1) for 20
scans of the liver and 10 scans of the bladder using a 1-layer surface model and a
multi-layer model [ESW10].

Method VOE
[%] ±SD

PPV [%]
±SD

ASD [mm]
±SD

RMS [mm]
±SD

MD [mm]
±SD

1-LAYER (LIVER) 11.74
±3.09

94 ±2 2.18 ±0.80 3.87 ±1.75 31.05
±12.81

4-LAYER (LIVER) 10.56
±3.39

95 ±2 1.96 ±0.84 3.81 ±1.88 31.76
±12.56

1-LAYER (BLADDER) 19.21
±8.12

91 ±9 1.61 ±0.91 2.77 ±1.39 11.52
±5.34

3-LAYER (BLADDER) 17.58
±6.46

95 ±5 1.31 ±0.53 2.35 ±0.84 10.38
±3.74

model of 10000 points is 48 ms on a 2.93 GHz Intel Quad Core CPU. A single iteration takes
around 7 seconds. The total adaptation takes an average of 121 seconds per case.

In order to evaluate the benefit of using multiple layers, all tests have also been run using
a multi-layer model with a single layer. The models have been initialized at the same position
using the center of gravity of the ground truth [YS09]. The results are shown in Table 5.6 for the
liver and the bladder averaged over the test scans. It can be seen that the segmentation accuracy
improves when multiple layers are used. Figure 5.14(a) shows the adapted multi-layer model after
convergence. A qualitative comparison between a multi-layer model with 1 layer (dark outline)
and 4 layers (bright outline) is shown in Figure 5.14(b). As can be seen, the 4-layer multi-layer
model does not leak into neighboring structures (arrows). Figure 5.14(c) shows an exemplary
segmentation result using a multi-layer model for a bladder scan (bright outline) compared to
ground truth (dark outline).

5.6.1. Discussion

The multi-layer deformable model has been applied to the segmentation of low contrast structures
in CT. Evaluation using 20 CT images of the liver and 10 bladder scans showed that the approach
improves single surface segmentation especially in areas of low contrast boundaries and yields
state of the art segmentation results [CDNA07, HMMW07, OSS∗07]. Given the linear nature of
the optimization framework and the possibility to limit the amount of layers in the model, the total
computation time could be limited to an average of 121 seconds which is very fast compared to
other volumetric methods (cf. [SH09] ca. 1000 seconds).

Furthermore, the incorporation of statistical shape knowledge is naturally given through cor-
responding landmarks between layers. Therefore, the model can be directly applied to enhance
existing statistical shape model based approaches which only use a single surface [ZBG∗07,
KLL07,HMMW07,HM09]. This is especially important for structures with a strong shape variabil-
ity like the liver.
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Table 5.7.: Mean and standard deviation of volume and surface measures (cf. Section 5.1) for
the proposed pancreas segmentation method using threefold cross-validation on 40
datasets. Results are shown using the tissue detector only and using the whole seg-
mentation pipeline [EKD∗11].

Process VOE
[%] ±SD

VD [%]
±SD

ASD [mm]
±SD

RMS [mm]
±SD

MD [mm]
±SD

PPV [%]
±SD

Detector
only

47.8±10.31 10.53
±3.73

2.58 ±0.77 4.69 ±1.15 23.62 ±5.45 74.9±10.7

Final re-
sult

38.8±9.08 5.62
±3.47

1.70 ±0.71 3.10 ±1.13 16.13 ±5.18 81.07
±11.2

Table 5.8.: Performance results of the proposed method compared to state of the art pancreas
segmentation systems. Unpublished/unavailable information is marked as —. The
best score in each category is marked bold [EKD∗11].

Method Tested
scans

Run time Needed CT
scans per

case

Accuracy

Shimizu et al. level-set
[SOI∗07]

10 — 1

(non-contrast)
32.5 % overlap

Shimizu et al. atlas
[SKK∗09]

20 45 min. 3
(multi-phase)

57.9 % overlap

Kitasaka et al.
[KSM∗08]

22 — 4 (multi-phase
+

non-contrast)

visual inspection: 12 high
overlap, 6 medium overlap,

4 no overlap
Proposed method 40 20.4 min. 1 (contrast) 61.2 % overlap

5.7. Pancreas segmentation

In order to evaluate the pancreas segmentation framework proposed in Section 4.4, abdominal
early parenchyma single phase CT data from 40 cases was acquired. Inter-slice spacing was 5
mm abdominal control standard protocol whereas spacing within an axial slice varied between
0.6 mm and 0.7 mm. Manual delineation from experienced radiologists was taken as the gold
standard. Threefold cross validation was used for performance evaluation. For each fold, the
statistical shape space as well as the classifiers were learned on the training data and evaluated
on the test data.

Table 5.9.: Run time in seconds for each step of the proposed pancreas segmentation method
[EKD∗11].

organ seg-
mentation

Vessel
segmen-

tation

Landmark
detection

Feature
computation

+
classification

Belief prop-
agation

Model
adaptation

Total

90 5 3 1069 35 25 1224
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5.8. Automatic registration of liver CT scans

Figure 5.15 shows exemplary qualitative results separately for the detector and final segmen-
tation. While using the detector only (middle row) already shows good accuracy compared to
ground truth (bright outline), the incorporation of statistical shape space further improves the
quality (bottom row). Generally, there is very limited leakage into neighboring structures (bottom
row) given the low contrast of pancreas boundaries (upper row).

Table 5.7 shows quantitative results of the proposed method using the metrics described in
Section 5.1. The results are shown using the detector only and using the full proposed processing
pipeline including shape model adaptation. The average surface distance to the gold standard
is 1.7 mm for the final segmentation. Given such a small distance error, the average overlap of
61.2% seems to be underperforming. However, considering that the pancreas is a very small
organ mapped to the given resolution, few missclassified voxels can account for a big overlap
difference.

A comparison to the state of the art is given in Table 5.8. The proposed single-phase method
is about twice as accurate as the best method using single-phase CT [SOI∗07] and even out-
performs the best method using multiple phase scans [SKK∗09]. It is also the method with the
most datasets tested. Since no time consuming atlas-based registration is used, the proposed
method is also more than twice as fast. Table 5.9 shows the runtime results in seconds for each
processing step.

5.7.1. Discussion

An approach for fully automatic segmentation of the pancreas in single-phase contrast enhanced
CT images has been presented. Pancreas segmentation is a very challenging task due to often
non-visible borders to surrounding structures. In contrast to prior work, not only tissue appear-
ance is considered, but also a high amount of anatomical knowledge — knowledge which is also
used by the clinician to distinguish pancreas from tissue having the same texture. This is done
by detecting clinically meaningful support structures and building a classifier that models local
spatial relationships between the pancreas and the support structures.

Furthermore, performant texture descriptors based on wavelets and cosine transform have
been proposed to model local appearance. The resulting classification is used to guide a sta-
tistical shape model for fine segmentation. Cross-validation on 40 datasets showed high quality
results while needing only a single abdominal contrast CT scan per patient. This method even
outperforms available automatic approaches that need multi-phase CT data and is in some cases
similar to interactive segmentation. Since the approach is fully automatic and uses single-CT, it
can be easily used to improve detection rates for other challenging abdominal structures, espe-
cially malign lymph nodes and intestine.

5.8. Automatic registration of liver CT scans

For evaluation of the automatic registration of liver CT scans described in Section 4.5, 22 CT
volumes of 11 patients showing arterial and portal phase contrast agent saturation have been
used. The inter-slice spacing varied between 1.0 and 1.25 mm. All volumes were acquired by a
GE Light Speed Ultra CT scanner. Figure 5.16(a) (top row) shows the result of the portal phase
segmentation. Figure 5.16(a) (bottom row) outlines the result of the deformed arterial phase. It
can be seen that the transformed borders of the arterial phase now match the boundary shape
of the portal phase. An exemplary registration result is shown using split views in Figure 5.16(b).
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Figure 5.15.: Exemplary segmentation results of the pancreas on unseen data [EKD∗11]. Original
datasets (left column), detector output (blue, middle column) and final segmentation
result (red, right column). The outline marks the ground truth.
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5.8. Automatic registration of liver CT scans

(a) (b)

Figure 5.16.: (a) Segmented portal shape overlayed with the portal phase (top row) and with
the deformed arterial phase (bottom row) [ESH∗11]. (b) Split views of registration
results. Interior vessels and outer liver shape are well matched [ESH∗11].

Figure 5.17.: Registration of liver phases allow the fusion of complementary structures in one
image [ESH∗11]. Left: portal phase. Middle: registered arterial phase. Right: fused
result that shows burned liver tissue (dark) and liver lesion (bright) together.

Both vessels (top) and boundaries (bottom) are well aligned. Figure 5.17 shows a fusion of an
arterial and portal phase CT scan. Both lesion (bright) and burned liver tissue (dark) are clearly
visible in the fused image (Figure 5.17 right).

Since quantitative validation of deformable registration is generally problematic, two experi-
ments have been performed by experienced radiologists to judge matching of outer shape and
interior structures. The registration quality of the interior structures has been validated using a
5-point scale (1 = excellent alignment, 5 = insufficient alignment). Table 5.10 shows the corre-
sponding scores. Most cases show good to high scores except of one case that included a lot
of artifacts caused by breathing during scanning. However, the misalignment was higher towards
the liver boundaries while the middle of the liver was well matched.

In another experiment, the registration quality of the outer shape has been evaluated. The
liver was divided into three parts, covering the upper, middle and lower third of the liver in order
to see how well the deformation is compensated in each area. Radiologists were then judging
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Table 5.10.: Validation scores of deformable registration based on interior structure given by ra-
diologists (1 = excellent alignment, 5 = insufficient alignment) [ESH∗11].

Patient 1 2 3 4 5 6 7 8 9 10 11 Mean

Score 1 2 1 1 2 4 2 1 2 2 1 1.72

Table 5.11.: Average displacement error of the outer liver shapes in cm after deformable registra-
tion of lower (L), middle (M) and upper (U) liver parts judged by visual inspection of
radiologists [ESH∗11].

Patient 1 2 3 4 5 6 7 8 9 10 11 Mean

L 0.8 0.0 1.0 0.0 0.5 0.2 1.2 1.0 0.0 0.0 0.2 0.45
M 0.5 0.2 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.2 0.23
U 0.0 0.5 0.3 0.0 0.0 0.0 0.8 0.5 0.0 0.0 0.3 0.22

the average displacement error of the parts by visual inspection after deformable registration had
been performed. Table 5.11 shows the results for the tested cases. As can be seen, the highest
deviation between phases remains in the lower part while the middle and upper part are in most
cases well registered. The reason that the registration accuracy of the lower liver part is inferior
to the other parts is due to the lower segmentation accuracy at that position. The lower liver lobe
usually shows a lot of inter-patient deviation which makes it difficult to segment that lobe in some
cases. However, the middle and upper liver part are usually of higher medical importance since
they contain the most volume and vessels.

The fully automatic segmentation and registration for one case takes approximately 7 minutes
on a 2.93 GHz Intel Quad Core processor with 8 GB RAM and Windows 7 using a cropped area
around both livers. A multi-scale image pyramid has been used for acceleration of the registration
part. Using the full image content, the required time raises by a factor of 4-8 dependent on the
original dimensions of the scan. However, for diagnosis and operation planning usually only the
liver is of interest so working with the cropped area is sufficient.

5.8.1. Discussion

A novel multi-stage approach for automatic registration of the liver in contrast enhanced CT vol-
umes has been presented. The method is based on an automatic pre-segmentation of the liver
in the different phases utilizing the extracted shape information for registration. The method has
been evaluated using 22 CT volumes from 11 patients. The matching quality of outer shape and
internal structures was validated by experienced radiologists. The results suggest the applicabil-
ity of the method in clinical practice.

In contrast to existing methods, the approach allows for a high accuracy natural deforma-
tion without having to rely on error-prone extraction or matching of the liver’s internal structure.
Furthermore, since shape information of the liver is given in all phases, registration can be signifi-
cantly speed up. However, the registration accuracy of the method depends on the segmentation
error of the liver extraction steps. While small segmentation errors can be compensated by the
registration step, high deviations of the extracted shape to the real liver boundaries may introduce
matching errors.
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5.9. Discussion

In this chapter, the model based methods for segmentation and registration that have been pre-
sented in this thesis have been evaluated. Here, standard quality measures have been used to
compare the segmentation accuracy of the proposed methods against ground truth labels cre-
ated by humans. Clinical routine CT images of the liver in the portal venous and arterial contrast
phase, the bladder, the pancreas, and the kidneys have been used. An average surface distance
error between 0.5 mm and 2.0 mm has been obtained. This is close to the inter-observer variabil-
ity between different humans segmenting the same structure [HvGSea09]. For most structures,
the segmentation accuracy could be significantly increased by using the proposed methods in
comparison to existing approaches. Furthermore, referring to the diversity of the test sets, it
can be concluded that the presented methods deal well with anatomical shape variance between
human individuals.

As it has been shown, the proposed volumetric model exhibited a higher robustness against
model initialization errors than standard surface models and a higher segmentation accuracy in
low contrast data sets. The use of the volumetric model also enabled the fully automatic regis-
tration of multiphase CT data. Here, a qualitative and quantitative clinical evaluation has been
performed. In nearly all tested cases, the registration quality has been judged to be sufficient for
clinical needs.

Based on the results of this chapter, it can be concluded that the goals of this thesis have
been met. The proposed methods extend the state of the art of model based methods in sig-
nificantly increasing the robustness of organ segmentation and registration in common medical
imaging scenarios. Advances in model initialization robustness, boundary detection robustness
and adaptation accuracy have the potential to save valuable clinician time in dealing with today’s
3D medical imaging data.

Parts of this chapter are based on publications of the author [ES10, ETS09, ES10, ESKW10,
ESW10,ESH∗11].

139



5. Evaluation

140



6. Conclusions and future work

Today’s high resolution 3-dimensional medical image acquisition techniques enable sophisticated
clinical diagnosis and patient specific treatment that would have been infeasible two decades ago.
With this great potential, however, also comes the burden of coping with the huge amount of data
produced. Manual contouring of target structures and mental fusion of images from different time
series are respectively two of the most time consuming and mentally most complex challenges in
clinical practice.

In this thesis, significant advances to address these challenges have been made. Methods
for the automatic organ segmentation and registration in Computed Tomography have been pro-
posed to alleviate the time consuming manual contouring work of several organs as well as to
allow a registration of CT liver images taken from different points in time.

A major contribution of this work is the development of a volumetric model based method for or-
gan segmentation and registration. In contrast to other volumetric methods, the proposed model
has the same class of complexity as standard surface based landmark models and can therefore
be optimized very efficiently. It is generalizable and extensible such that it can be combined with
statistical shape modeling methods and standard boundary detection approaches. The volumet-
ric model shows superior segmentation performance on low contrasted structures like the liver in
the arterial contrast phase in comparison to surface based methods.

As another contribution, a locally constrained statistical shape model has been proposed that
addresses a major drawback of statistical shape modeling. The incorporation of local elasticity
constraints combined with the curvature of the model during adaptation enables the model to ro-
bustly leave the trained space without leaking into neighboring structures. This allows for a better
segmentation of unseen structures which is a benefit for organs with complex shape variation
like the liver. The method has been integrated into an application framework and is currently
being tested in clinical use on real patients. Tests show an average segmentation error that is
comparable to the human inter-observer variability1. Similar results are obtained for segmenting
the kidneys and the bladder.

Another methodological advancement is made in the context of automatic pancreas segmen-
tation. The proposed method uses a new form of texture features that are integrated into a
pancreas tissue classifier. Combined with the constrained shape model as described above, for
the first time, an automatic segmentation of the pancreas from single phase contrast enhanced
CT becomes feasible. The presented method may enable new applications in computer aided
diagnosis and operation planning in the future. For example, it can be used for the detection of
abdominal lymph nodes which are presently only classified by excluding surrounding abdominal
structures.

1Inter-observer variability denotes the differences between the outcomes of different human individuals segmenting
the same structure.
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In the context of organ registration, a method for the automatic deformable multi-phase con-
trast enhanced liver CT registration has been proposed. The method combines the volumetric
model based approach described above with an image based deformable registration scheme.
The presented method for automatic deformable multi-phase registration has been quantitatively
and qualitatively evaluated in the clinic. The method has been integrated into an application that
is currently in use for testing in two clinics. In nearly all tested cases, the registration quality was
sufficient for clinical needs.

In this work, several contributions to standard model based segmentation techniques in the
context of shape model building, model adaptation and boundary detection have been made.
These proposed methods can be either combined with standard surface based landmark models
or with the volumetric model proposed in this thesis. In particular,

• a multi-tiered adaptation framework with increasing degrees of freedom has been proposed
that is more robust to model initialization errors than standard statistical shape model adap-
tation frameworks.

• a method for combining ground truth label creation with shape model correspondence es-
tablishment has been presented. This method deals with arbitrary topologies and consid-
erably speeds up the shape model generation, since there is no need for an independent
correspondence establishment step.

• a rule based outlier removal for landmark boundary detection has been presented. The
method can be combined with any probabilistic boundary detection method. In tests, it has
been shown that the outlier removal boosts the performance of simple boundary detection
approaches to be on a par with complex learning based methods. This allows for the
application of more simple, fast and generic algorithms in boundary detection.

With the presentation of the described methods, the objectives of this thesis have been fulfilled.
For most of the algorithms, the transfer into clinical demonstrators has already been made. The
application in clinical practice will ensure sustainability and maturity of the presented methods. It
will also display strengths and weaknesses in long term use. In the context of a thesis, only a
limited amount of real images can be considered for evaluation. It is therefore important to see
how the proposed methods perform in a clinical scenario with a large amount of patients and
different diseases.

6.1. Improvement of the developed methods

In order to extend the methods presented in this work to other application scenarios as well as to
broaden their applicability on large and diverse test bases, several improvements and extensions
are possible.

The multi-layer model as described in this work can be combined with local elasticity con-
straints analogous to the surface model. The elasticity constraints for the internal links are in-
herited from the elasticity constraints of the first layer, i.e. they are copies of the surface link
constraints. In the tests performed in this thesis for segmentation and registration of organs like
the liver and the bladder, this procedure yielded satisfactory results. However, it is a simplifi-
cation, because some organs are non-homogeneous in their interior. While the filled bladder
without contrast agent saturation can be regarded as homogeneous, the interior of the liver con-
sists of several tissues with potentially different elasticity. For example, vessel trees of varying
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size represent a significant amount of the whole liver volume. Additionally, pathologies like cysts
or tumors often exhibit a different density in comparison to the normal liver tissue. Furthermore,
the density of the liver tissue differs between individuals and between scans depending on the
amount of contrast agent saturation and the amount of fat stored in the liver.

In order to account for the different materials present inside of organs, experiments should
be made in order to determine the correct elasticity constraints of the internal links of the multi-
layer model. Such experiments may involve human or animal cadaver specimens of the organ.
However, if such specimens are not provided, the elasticity for a specific patient could also be de-
termined based on the adaptation of the multi-layer model in previous CT images of the patient.
In case the multi-layer model is already adapted in two or more images of the same patient, the
elasticity constraints for the internal links can be calculated based on the corresponding internal
and external points of the adapted models. If another scan of the same patient is made, the same
constraints can be used. Furthermore, this procedure can be repeated for a number of patients
to estimate the best average parameters of the model.

An application scenario of the multi-layer model that has not been addressed in this work is the
auto-detection of pathologies in the organ interior using the internal points. These points store
information about the expected tissue characteristics at their position inside of the organ. In case
a tumor is located somewhere in an organ, the majority of points will led to a proper adaptation
of the model. However, some points will indicate a mismatch of tissue appearance. These areas
could then be marked for further examination by the physician. Furthermore, tissue classification
methods could be used to automatically classify the tissue as tumor as an alternative.

The multi-tiered adaptation pipeline step wise increases the degrees of freedom of the model
during adaptation. The same principle could also be applied to the geometry of the model. Here,
a level of detail hierarchy could be implemented where the number of points of the model in-
creases with the degrees of freedom. This could lead to better adaptation in areas where only
few points and sharp boundaries are present.

The initialization of the model in the image is done by detecting axis aligned bounding boxes
of the structure to segment. In the context of CT or MRI imaging, the patient is usually recorded
in a supine and head first manner which implies that all patients are roughly rotationally aligned.
However, single organs like the kidney still may have different orientations between patients. This
issue could be addressed by defining object aligned bounding boxes in the training stage. In the
detection stage, the images can be rotated in order to account for different orientations. Another
option is to train several classifiers for different positions. In case of scans in prone position, the
image can also be mirrored before classification.

The bounding boxes used in the presented initialization method are rectangles, because the
method should be applicable to a variety of different structures without changing parameters.
However, organs are not rectangular. While it could be argued that the surrounding of an organ
also exhibits unique characteristics that can be learned inside the box, for organs with a strong
shape variance it makes sense to use other shapes for detection, for example the mean shape
of the organ.

An important issue regards the absence of an organ. For example, the spleen or a single
kidney may be operationally removed and therefore do not appear in the image. In this case, the
presented method will select the box that has the highest probability of being the organ according
to the classifier and at the same is near the estimated position relative to the other organs. This
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box will not be the correct one since the organ is not present in the dataset. Such a case could
be treated by evaluating the image characteristics of the final detected bounding box. In case the
probability of this box is too low to be the organ, the correct bounding box could be marked red
in order to be corrected or approved by the physician.

The extensibility of the presented methods is another important factor. In clinical application
scenarios, new patients will be treated every day and several images will be generated that can
be used to improve the existing training database. For example, after applying the model based
segmentation methods, the physician could inspect the segmentation result and approve the
shape to be added to the statistical shape model. Such a supervised strategy will improve the
generalizability of the training shape set. The effort to include such new cases depends on the
method. The statistical shape model can be easily extended. The training process of the ini-
tialization, however, may take some hours on very large training sets. Since this process is fully
automatic, it can be performed e.g. once a day in the night.

Regarding the registration of organs, an improvement of the registration quality could be
achieved for liver CT images that stem from the same contrast agent saturation phase. Here, the
same vessel tree is contrasted which means additional information that can be used for matching
the images. Based on the segmentation of the liver shapes, a segmentation of the vessel tree
could be performed and branching points could be determined. These points could be used in the
registration process as additional correspondences. This should improve the registration quality
in the organ’s interior, since vessel trees like the portal vein cover a large area inside the or-
gan. However, since the contrast agent saturation will most likely not be identical in both images,
methods are needed that can cope with different amounts of branching points. Additionally, other
vessel trees may be slightly saturated in a single contrast phase and vessel segmentation may
not be perfect for every case which also complicates correspondence establishment between im-
ages. Here, graph matching algorithms could be used to address these problems and to lead to
a correspondence quality sufficient for registration needs.

An application scenario for the registration of multi-phase CT data that has not been addressed
in this work is the detection of tissue abnormalities by incorporation of the contrast agent uptake
value at a certain point in the organ. In the prostate, the contrast uptake ratio computed from
different images of the same treatment is already a standard measure to detect certain cancer
types. The registration of multi-phase liver CT data could be used to calculate an analogous
measure for the detection of liver tumors.

The target imaging modality of this thesis is CT. However, many of the developed algorithms
can be modified or directly used in other modalities like MRI or 3D ultrasound. Since the shape
of an organ is image independent, all shape based methods do not need to be modified. Im-
age based characteristics are used in the model initialization process as well as in the boundary
search. In order to use the model initialization and boundary search for MRI images, a new
training image database for MRI needs to be created. Moreover, the images need to be nor-
malized, for example such that mean and variance of all images is the same. Additionally, bias
field estimation methods could be used to correct irregular intensity distributions. In case of 3D
ultrasound, intensity based training is likely to fail. Therefore, the initialization method could be
modified to solely use the gradient part of the feature vector. That way only edges in the image
would be considered for detection. Furthermore, in 3D ultrasound of large organs like the liver, it
is likely that only parts of the organ are visible in the image. The position of model points that are
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outside of the image could be left unchanged. Alternatively, an adaptation weight of zero could be
assigned to the model points. In this case, the number of model points with a weight of non-zero
needs to be larger than the number of columns in the system of linear equations that is built in
the optimization.

6.2. Future work

The methods developed in this thesis build a basis towards a fully automatic segmentation and
registration of the whole thoracic and abdominal area of the human body. Future work in this field
points in several directions.

A general observation from reviewing the literature of the past two decades as well as from
reviewing the results of this work is the improvement of segmentation and registration quality by
incorporating prior knowledge. The first automatic approaches were mainly purely image based
methods which did not take any prior shape or statistical knowledge into account. The accuracy
of these approaches has usually been too low for clinical use. Nowadays, it is possible to model
shape and appearance variability of complex organs like the liver accurately enough to allow an
application in clinical practice. However, the quality of human cognition is still undisputed in many
cases. Automatic methods often fail in the case of strong pathologies or cases that deviate a
lot from trained instances. The reason for this is that most approaches target the segmentation
or registration of a single structure. They therefore treat the problem in isolation and do not
incorporate all information that is available in the image. In contrast, a physician always has
knowledge about the anatomy of the whole body in mind which he can use to verify his decisions.
For example, many low contrasted structures like lymph nodes, vessels or certain tumors are
classified by exclusion and not because of prominent visual characteristics.

To this respect, a complete modeling of the whole body or at least a modeling of the area in
which the target structure is embedded promises to further improve the quality of segmentation
and registration methods. However, since the interrelation of soft tissue regarding shape, size
and position in the human body is very complex, up till now, such solutions do not yet exist. In the
latest literature, already some approaches have been proposed in the context of simultaneous
multi-organ segmentation where the correlation of neighboring structures is incorporated into
the segmentation process [CGHM11, SKWar]. These approaches are, however, either limited
to rigid structures or only consider the interrelation of few selected organs. The extension of
these methods to simultaneous segmentation of soft tissue organs like the liver, heart and spleen
is promising to improve the segmentation quality in areas of low contrast, for example in the
transition between liver and spleen.

A main problem for developing a method that accurately models the interrelation of many or-
gans and other anatomical structures is the huge amount of training data that would be necessary
to learn the interrelations. As it has been shown in this work, the anatomical variance of a single
organ like the liver is hard to model accurately by statistical means alone — even if two hundred
training images are incorporated. Furthermore, in the context of statistical shape modeling of a
single structure, usually scale and rotational variance do not need to be modeled. This drasti-
cally reduces the degrees of freedom of the resulting model. In a complete multi-organ model,
scale and rotational variance would have to be included in the model since every change in scale,
rotation, position and shape influences the shape of the surrounding organs. Assuming only 20
structures are considered, a huge amount of training data would be needed to create an accurate
model with such many degrees of freedom.
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A solution could be to reduce the complexity of the modeling by building statistical meaningful
groups of interrelations between structures. For example, the effect of deformation forces on an
organ’s shape caused by respiration could be modeled independently from the anatomical shape
variance of organs between individuals. Furthermore, machine learning solutions already exist
that are able to reveal statistical dependencies between the different degrees of freedom of the
model. Such methods could be used to significantly reduce the complexity of the modeling prob-
lem. Furthermore, a stronger focus on building separate disease, age and sex specific models
could reduce the amount of necessary training data and could lead to more robust and mean-
ingful models. Still, a high amount of training data — probably in the scale of ten thousands or
hundred thousands of images — would be needed for an accurate model. From the technical
point of view, this problem could already be handled nowadays. Modern datacenters and com-
puting clusters are able to provide the necessary storage space and computing power. Gathering
such an amount of images and the cost involved are by far the bigger issues. However, given the
possible benefits for society, these efforts seem to be worth it.
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