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Abstract

Decomposition-based methods are widely used for multiclass and multilabel classifi-
cation. These approaches transform or reduce the original task to a set of smaller
possibly simpler problems and allow thereby often to utilize many established learning
algorithms, which are not amenable to the original task. Even for directly applicable
learning algorithms, the combination with a decomposition-scheme may outperform
the direct approach, e.g., if the resulting subproblems are simpler (in the sense of
learnability). This thesis addresses mainly the efficiency of decomposition-based
methods and provides several contributions improving the scalability with respect to
the number of classes or labels, number of classifiers and number of instances.
Initially, we present two approaches improving the efficiency of the training phase
of multiclass classification. The first of them shows that by minimizing redundant
learning processes, which can occur in decomposition-based approaches for multiclass
problems, the number of operations in the training phase can be significantly reduced.
The second approach is tailored to Naive Bayes as base learner. By a tight coupling of
Naive Bayes and arbitrary decompositions, it allows an even higher reduction of the
training complexity with respect to the number of classifiers. Moreover, an approach
improving the efficiency of the testing phase is also presented. It is capable of reducing
testing effort with respect to the number of classes independently of the base learner.
Furthermore, efficient decomposition-based methods for multilabel classification
are also addressed in this thesis. Besides proposing an efficient prediction method,
an approach rebalancing predictive performance, time and memory complexity is
presented. Aside from the efficiency-focused methods, this thesis contains also a
study about a special case of the multilabel classification setting, which is elaborated,
formalized and tackled by a prototypical decomposition-based approach.






Kurzfassung

Multiklassen- und Multilabel-Klassifikationsprobleme werden h&ufig durch zerle-
gungsbasierte Anséitze gelost. Zerlegungsbasierte Ansétze haben gemeinsam, dass
sie das urspriingliche Problem auf eine Menge von kleineren potentiell einfacheren
Problemen abbilden. Oft erméglichen solche Ansétze die Wiederverwendung von
vielen bewihrten Lernalgorithmen, die nicht direkt auf das urspriingliche Problem
anwendbar sind. Dariiber hinaus kénnen auch fiir direkt anwendbare Lernalgorithmen
die zerlegten Teilprobleme einfacher (im Sinne der Lernbarkeit) sein, so dass ein zerle-
gungsbasierter Ansatz insgesamt eine héhere Vorhersagequalitét besitzen kann als die
direkte Losung des Problems. Diese Dissertation beschéftigt sich hauptséichlich mit
der Effizienz der zerlegungsbasierten Methoden und erarbeitet mehrere Ansétze mit
einer besseren Skalierbarkeit beziiglich Anzahl der Klassen bzw. Labels, Klassifizierer
und Instanzen der Daten.

Es werden zunichst zwei Ansétze vorgestellt, welche die Trainingsphase fiir Multi-
klassenprobleme beschleunigen. In dem ersten Ansatz wird gezeigt, dass durch Mini-
mierung von redundanten Lernvorgéngen, die oft in zerlegungsbasierten Multiklassen-
Klassifikationsansétzen vorkommen konnen, Einsparungen in der Trainingsphase
moglich sind. Der zweite Ansatz ist speziell auf Naive Bayes als Basislerner ausge-
richtet und ermdglicht durch die Ausnutzung spezieller Eigenschaften in diesem Fall
eine noch groflere Reduktion der Lernkomplexitét beziiglich der Klassifiziereranzahl.
Es wird zusétzlich ein Ansatz prisentiert, welches die Klassifikationsphase fiir Mul-
tiklassenprobleme beschleunigt. Dieses Verfahren ist unabhéngig vom verwendeten
Basislerner und reduziert die Klassifikationskomplexitét beziiglich der Klassenanzahl.

Dartiber hinaus werden in dieser Dissertation auch Multilabelprobleme behandelt
und dafiir neben einer effizienten Klassifikationsmethode auch ein Ansatz vorgestellt,
welches die Vorhersagequalitéit, den Zeitaufwand und die Speicherkomplexitéit neu
abwigt. Neben den effizienzfokussierten Ansétzen beinhaltet diese Dissertation auch
eine Studie, die einen Spezialfall von Multilabel-Klassifikationsproblemen vorstellt,
formalisiert und mittels einem prototypischen zerlegungsbasierten Ansatz zu losen
versucht.
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1 Introduction

The classification task is one of the most elementary problems in machine learning.
The automatic learning of a predictor function from a given set of training instances,
which maps unseen test instances to its corresponding true class was studied exten-
sively since the beginning of machine learning. The distinct formulation and easy
comprehensibility of the underlying setting have certainly contributed to this high
attention. It is a testbed from which many successful learning algorithms evolved,
e.g., RIPPER/SLIPPER (Cohen, 1995; Cohen and Singer, 1999), C4.5 (Quinlan, 1993)
and SVM (Vapnik, 1998).

It is apparent that automatic classification also has a high direct practical value.
The possibility to learn an accurate predictor in domains such as speech recognition,
optical character recognition or spam classification improves the convenience for
humans. Though these tasks are in principle trivial for humans, in light of the
increasing mass of digital information, manual classification becomes infeasible for
large scale datasets and efficient automatic classification methods grow in importance.
Another aspect is the automatic analysis of data, which may complement the human
analysis and provide an alternative view — the rules of a learned classifier may expose
previously unknown insights about the data. The aspired discovery of these so-called
“nuggets”, i.e. new patterns or rules inherent in data, provides a strong incentive for
research in machine learning or data mining in general respectively.

Multiclass and multilabel classification are special cases of the above-mentioned
classification task and impose different restrictions on the target output variable. For
multiclass classification the target variable has to be one of a given set of identifiers,
called classes. An example is the task of optical character recognition, where the
target variable is one of the alphabetic or numeric characters. For the multilabel case,
the target variable is a subset of a given set of classes. This means more than one
class (in this context typically called labels) can be associated with the instance. A
German movie m categorized as an action-film with comedy-elements may be seen as
the multilabel instance (m, {german, comedy, action}).

These tasks are commonly tackled by so-called decomposition-based approaches,
which transform the problem into a set of smaller possibly simpler problems. For
instance, a k-class classification problem can be transformed to a set of binary (2-
class) problems. This makes many classification algorithms which are only applicable
for 2-class problems amenable for this task. Decompositions allow to reuse learn
algorithms readily in more complex tasks by applying an appropriate transformation
scheme. Besides this practical convenience, the decompositions to simpler problems
can also lead to a better predictive and efficiency performance compared to the direct
approach (Ghani, 2000; Hsu and Lin, 2002; Fiirnkranz, 2002).



1 Introduction

1.1 Motivation

In contrast to classical computer science algorithms such as sorting algorithms, where
the only acceptable correctness is fully sorted and algorithm research was focused in
minimizing time and memory complexity, in machine learning a perfect (predictive)
result is seldom feasible. It is apparent to prioritize the predictive performance over
time and memory complexity. Thus, predictive performance is the predominant
measure considered in multiclass and multilabel methods.

However, in light of the growing amount of data which needs to be processed, the
time and memory complexity increased in its importance. At the latest, in extreme
cases, where the memory or time complexity presents an infeasible bottleneck for the
whole task, a reprioritization of these factors is necessary.

Furthermore, as previously described, classification is one of the basic components,
which is often employed in a modular way for more complex machine learning tasks.
For example, throughout this thesis, multiclass and multilabel classification will be
tackled by an ensemble of binary classifiers. In general for multiclass classification, we
will be concerned with so-called error-correcting output codes (ECOC) which provide
a unified framework for common decomposition-based ensemble types. Efficiency
bottlenecks of base classifiers can drastically accumulate throughout the ensemble
or the whole framework. This means also that efficiency improvements on the base
classifier level may have a drastic overall reduction to the whole task.

Besides the illustrated extreme case, improving the efficiency can also implicitly
improve the predictive performance. The sheer capability of processing more data in
a fixed time means obviously to increase the sample-size and, therefore, to strengthen
the statistical power of the underlying statistical learning algorithms or at least of
the various employed statistical measures.

1.2 Contributions

In this thesis, we present mainly efficiency and partly efficacy improvements for
decomposition-based multiclass and multilabel classification methods.

Multiclass Classification

Efficient ECOC Training by Exploiting Code-Redundancies
ECOC-based classifier ensembles can have overlapping training processes. We
develop a training schedule, which tries to minimize these redundant learning
processes. This schedule based learning is directly applicable for genuine
incremental learners, but we also develop modifications for the genuine batch
learner SVM to be applicable for this approach.

Efficient ECOC Training with Naive Bayes
A simple tight combination of Naive Bayes and ECOC is presented, which
reduces the training effort significantly compared to the straight-forward
combination. This is mainly done by an alternative equivalent computation
scheme exploiting some special relations in this setting.



1.3 Structure of this thesis

Efficient ECOC Prediction
Here, we present an efficient prediction/decoding scheme for ECOC classifiers.
It is based on the fact, that it is not always necessary to consider all classifier
evaluations for the decoding phase. Although we do not give a theoretical
average-case analysis, extensive empirical evaluations indicate the significance
of this approach in practice.

Multilabel Classification

Efficient Pairwise Multilabel Prediction
Two efficient prediction algorithms for the calibrated label ranking approach for
multilabel classification are presented. The prediction phase of the underlying
ensemble of pairwise classifiers (special type of binary classifiers) is similarly
improved as for the case of ECOC classifiers in multiclass prediction.

Combination of Multilabel Classification Decompositions
Here, the efficiency and also the predictive performance of the above approach is
further improved in combination with the HOMER, approach, which transforms
the original multilabel problem into a set of smaller multilabel problems.

Multilabel Classification with Label Constraints
We consider a variant of the multilabel setting and elaborate on the existence
of constraints, or at least, dependencies among labels in real data. Besides
using association-rule learning to find such constraints, we experiment with
two methods on incorporating them into the learning process.

1.3 Structure of this thesis

This thesis is divided into two parts: Part I is dedicated to multiclass and Part II
to multilabel classification. Each part begins with its own preliminaries chapter
(Chapter 3 and Chapter 7), which briefly recapitulates the setting, measures and
common decomposition-based methods. Except for the introduction (Chapter 1),
the introductory chapter on binary classification (Chapter 2) and the summary
(Chapter 11), each of the remaining chapters is dedicated to one contribution, which
in turn is based on a publication. The corresponding references are shown in the
following list. Please note, that the basics chapters are also mainly based on these
publications.

Part I Multiclass Classification

Chapter 4, Efficient ECOC Training by Exploiting Code-Redundancies
(Park, Weizsédcker, and Fiirnkranz, 2010)

Chapter 5, Efficient ECOC Training with Naive Bayes
(Park and Firnkranz, 2011)

Chapter 6, Efficient ECOC Prediction
(Park and Firnkranz, 2012)




1 Introduction

Part II Multilabel Classification

Chapter 8, Efficient Pairwise Multilabel Prediction
(Loza Mencia, Park, and Fiirnkranz, 2010)

Chapter 9, Combination of Multilabel Classification Decompositions
(Tsoumakas, Loza Mencia, Katakis, Park, and Fiirnkranz, 2009)

Chapter 10, Multilabel Classification with Label Constraints
(Park and Firnkranz, 2008)




2 Binary Classification

Contents
2.1 Binary Setting . . . . . . ... .. 5
2.2 Classification Evaluation and Variants . . . .. ... .. .. ... 6
2.2.1 Standard Measures and Methods . . . . .. .. ... ... 6
2.2.2  Cost-Sensitive Classification . . . . . . . . ... ... ... 7
2.2.3 Area under the ROC Curve (AUC) . . . . ... ... ... 8
2.3 Learning Algorithms . . . . . . ... .. ... ... ... ..., 8
2.3.1 Rule Learning . . . . . .. ... ... ... ... .. 10
2.3.2 Decision Trees . . . . . . . . . .. ... .. 10
2.3.3 Perceptrons . . . . . . ... o o 11
2.3.4  Support Vector Machines (SVM) . . . .. ... ... ... 12
235 NalveBayes. . .. .. .. ... ... ... ... 12

Binary classification refers to the task of automatically mapping input instances to
their most probable class or category, where the number of classes is restricted to two
classes. A multitude of approaches based on different learning concepts originated for
these binary problems.

This chapter contains a brief recapitulation of basic knowledge about binary
classification and standard learning algorithms for this task.

2.1 Binary Setting

In the binary classification setting, we consider a set of instances/examples X =
{Z; |i=1...t}, where each instance is associated to one of two classes. One often
speaks of the positive and the negative class in this context, similarly also for instances,
i.e. positive instances are instances which true class is the positive class and vice
versa. Thus, we consider instance-class pairs (Z,y), where y € K = {cpos, Cneg} OF
{+, —}. Furthermore, each instance is represented as a vector ¥ = (ai,...,a4) in a
feature space RY.

Typically, a subset of instances X C X along with their corresponding true class
associations is given, i.e. we have given a set of pairs (Z,y);, which are used to learn
a classifier f(.) : X — K. This classifier is supposed to predict for previously unseen
instances Z; the correct class, such that some performance criterion (e.g., classification
accuracy) is maximized.



2 Binary Classification

In the following, we will often neglect the vector notation of instances for convenience
reasons, i.e. we will use x synonymously with T, except for cases, where we particularly
focus on the features a; of an instance. Furthermore, if it is clear from the context,
that the same instance x; is addressed, we will often also omit the index.

2.2 Classification Evaluation and Variants

2.2.1 Standard Measures and Methods

We will provide a short description of standard performance measures and methods
used in binary classification.

Accuracy

The following measure describes the empirical accuracy of classifier f for a given set
of instances X, which is the predominant predictive evaluation measure in binary
classification.

t

S OI(f(@) =)

i=1

Acc(f, X) =

~ | =

where I(.) denotes the indicator function, which returns 1 if the statement is true and
0 otherwise. It represents the fraction of correctly predicted instances. Usually, one is
interested in obtaining a classifier, which optimizes this measure for unseen related
instances. This task is typically viewed in the following way: the given (training-) set
of instances X represents only a subset of an unknown complete, possibly infinite set
of instances X and we are rather interested in a classifier which optimizes Acc(f, X).
Thus, instances € X, which are not necessarily members of X can appear during
the prediction phase. In probabilistic terms, the general objective is to maximize

E(m,y)NXI(f(x) = y)

The expected value of the complementary event, i.e. I(f(x) # y), is also called the
true risk of a classifier f.

True Negative Rate and True Positive Rate

The true negative rate (TNR) and true positive rate (TPR) describe the accuracy
only for one of the two classes, i.e. it describes the fraction of correctly predicted
negative or positive instances respectively. The computation is similar to accuracy
except that one iterates only over the negative or positive instances respectively.

False Negative Rate and False Positive Rate

The false negative rate (FNR) describes the fraction of positive instances which were
incorrectly classified as negative ones, or shorter, the fraction of incorrectly predicted
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positive instances. This equals 1 — TPR or can be computed similarly as the TPR by
considering only positive instances and determining the fraction of mispredictions,
e, I(f(w:) # ).

Similar to the false negative rate, the false positive rate (TPR) describes the ratio
of incorrectly predicted negative instances, i.e. which were predicted as positive.
Again, it can be computed by 1 — TNR or if TNR is not given in a straight-forward
manner.

Cross-Validation

Since, in practice, the complete set of instances is not known or not finite, one can only
approximate the true risk or other similar measures of a classifier. One well-known
approach for evaluating the generalization property of a classifier is cross-validation.
This method repeatedly trains and tests on disjoint subsets of the given data such that
each instance serves at least once as training instance as well as testing instance. First,
the dataset is equally divided into n folds. Then, the classifier is typically evaluated
by using n — 1 folds for training and the remaining fold for testing. This process
is repeated n-times, such that each fold is used exactly once for testing. Finally,
the multiple evaluation results are combined by averaging. This process is called
n-fold cross validation and if the folds are additionally sampled according to the class
distribution of the set of training instances, one speaks of stratified cross-validation.
Furthermore, the special case of n = ¢, i.e. considering each single instance as a fold,
is called leave-one-out validation.

2.2.2 Cost-Sensitive Classification

Cost-sensitive classification is a variant of the basic setting. Until now, accuracy
treated each class as equally important. This is sometimes not the case in real-world
problems. For instance, the prediction of not cancer of a patient, who has cancer
is obviously a more severe error than the reverse case. So, in this setting different
importance among classes and the severity of their mispredictions are tackled by
associating different cost-values v, 5 for each pair of classes (true class a and predicted
class b). Thus, the objective in this case is to minimize a cost-weighted error measure:

t
Cost(f,X) = %Zf(y} #Yi) - Yy, Where g; = f(x;)
i=1

For the multiclass classification setting, which will be introduced in the next chapter
and involves more than two classes, the cost matrix v, € REXE allows not only
to associate different cost values for the misprediction between classes, e.g., that a
misprediction of the diagnosis not cancer is more costly than the misprediction of
cancer. It is also possible to differentiate between different mispredictions for each
class, for instance in weather forecasting (posed as a 3-class problem) that for the
true event hot, the misprediction of cold is associated with a higher cost than mild.
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Note that the cost-sensitive classification setting is actually a generalization of
the standard classification setting. By setting all elements of the cost matrix to 1,
the objective is reduced to accuracy. Actually, it is sufficient when the non-diagonal
elements are set to 1. Here, the diagonal elements are essentially ignored, since the
indicator function returns in these cases (correct predictions) a value of zero.

2.2.3 Area under the ROC Curve (AUC)

Besides accuracy and cost-weighted errors, in some related tasks, one is interested in
the ranking capability of classifiers. Here, classifiers are assumed to return a score
s € R which quantifies the degree of class-membership of an instance. Classification
can be achieved by using an appropriate thresholding value, which divides the space
of score values into positive and negative class spaces (in the two-class case). To assess
such ranking capabilities of a classifier /ranker f the area under the ROC curve (AUC)
is commonly used. The receiver operating characteristic (ROC) curve has its origin
from signal theory and was adapted to the machine learning field. Foremost, it is a
graphical 2-d plot, which shows the false positive rate (x-axis) and the true positive
rate (y-axis) of a binary classifier for varying thresholding values. If the classifier f is
a good ranker, i.e. if positive examples are mostly ranked before negative examples
with respect to their score, the ROC curve should ideally be convex, lie clearly above
the diagonal (which represents a random ranker) and close as possible to the axis
parallels of the unit square. The area under the ROC curve, i.e. the integral of the
ROC curve, summarizes these criteria roughly in a single value.

2.3 Learning Algorithms

Before we provide superficial descriptions of some common learning algorithms, we
will recapitulate in the following text a brief general view of learning algorithms
based on (Mitchell, 1997; Witten et al., 2011).

It is not an easy task to give a general unified view over the multitude of various
learning algorithms for classification. Some textbooks regard the learning process
as a search process to provide a simple unified view for introductory purposes. A
large portion of learning algorithms are covered by this perspective (but not all),
particularly if one considers that optimization problems can be viewed as a search
problem similarly. So, we make use of the same perspective here. Assuming an
enumerable space of all learnable classifier functions (e.g., linear or axis-parallel
decision boundaries in the feature space) for a given learning algorithm, the task is
to find a classifier function which maximizes some criterion on the training data. A
simple algorithm which enumerates over all possible classifier functions and determines
thereby the maximizer might represent a sufficient learning algorithm, if the search
space is finite and small enough. But, this is seldom the case, such that typical
learning algorithms employ different more efficient but also not necessarily globally
optimal methods to be practical.
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One important concept related to the generalization property of classifiers is the
inductive bias, which consists of a set of assumptions or restrictions related to the
learning process. To generalize, we have to make some assumptions about the classifier
function and the data. Amongst others, we have to precisely define in which form
we generalize. An overly simplified but illustrative example which is often used for
describing inductive reasoning is the following:

Socrates is a human. Induction
} All humans are mortal.

Socrates is mortal.

Now, there is no real justification for generalizing the mortal property to all humans.
It is equally valid to infer that, e.g., 2 human beings are mortal or only the next
encountered human is mortal. As one might have noticed, the generalization is
obviously influenced by the choice of operators and/or quantifiers we allow and in
general by the language in which statements are formed.

The previous simple example shows that the form of generalization can differ,
and that there is no general right choice. But it is clear that these kind of decisions
have to be made eventually during learning. Another example is to fit a line to a
set of observed 2-dimensional points. Here, we make the assumption that the x,y
coordinates have a linear relationship and have restricted the model to lines, excluding
arbitrary functions. In general, we have no guarantee that the “true” relationship
which generated these points might not have been a very spiky curve. Of course, by
using the assumption that the examples are independent and identically distributed,
we get a different situation. But, also here, in the extreme case, where we do not
restrict the classifier function, we may end up with a function which represents the
total memorization of the points, if we are primarily searching for a classifier function
which matches the most with the training data. This kind of overly adapting the
model to the training data and therefore losing its generalization capabilities is called
overfitting. In total, it is essential to the learning process to impose some restrictions
and make assumptions on the classifier function as well as on the data.

Consider the set of arbitrary classifier functions, then, different actual learning
algorithms can be superficially characterized by imposing different explicit and
implicit biases/restrictions distinguished in three categories:

e description language or model: What is the underlying representation
language used by the classifier? For rule learning, it might be arbitrary proposi-
tional logic formulas. For perceptrons, the search space consists of all possible
hyperplanes of the feature space.

e search-method, optimization and details: In which order, if any, is the
search space examined. Is a greedy method, e.g. gradient descent, applied?
Which additional criteria are used during search?

e overfitting-avoidance method: Are there separate mechanics for this pur-
pose? In which form are they integrated?
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In the following, we will provide only a brief overview of some common learning
algorithms in its most basic form. Detailed knowledge about these algorithms are
in general not necessary for this thesis, since the contributions in the following
chapters are mostly independent of the used base learner. However, if the details
of a particular learning algorithm are relevant, a more detailed description will be
provided in the corresponding chapter (SVMs in Chapter 4, Naive Bayes in Chapter 5
and perceptrons in Chapter 8).

2.3.1 Rule Learning

In this context, the objective is to learn a set of rules in the following form:
IF attribute-value condition(s) THEN class y

The conditions which are formed by conjunctions of propositions using the given fea-
ture representation are typically learned within the separate-and-conquer framework.
Starting from the empty rule, i.e. the set of attribute-value conditions is empty, one
tries to determine the best attribute-test according to some measure on the resulting
partitioning and is added to the set of conditions. This process is repeated until some
stopping criterion is met. Then, the implication of the rule is associated with the
majority class of the covered instances, i.e. the instances which satisfy the conditions.
Afterwards, all instances which are covered by this rule are removed from the training
set (SEPARATE). The process repeats by learning the next rule (CONQUER), until,
again, some stopping criteria is met. Some rule learning algorithms try to learn only
rules for one class and conclude the set of rules with a so-called default-rule, which
classifies all remaining instances with the other class.

Within this thesis, our choice of a rule learner in various experiments is Ripper
(Cohen, 1995) in its implementation of the Weka-framework (Hall et al., 2009), called
JRip.

2.3.2 Decision Trees

The generation of decision trees can be viewed as a learning process, which generates
non-overlapping rules arranged in a tree. Starting with all training instances, an
attribute is determined according to some criterion which generates a partitioning
of the training data corresponding to the values of this attribute. The attribute
is represented as a node in a graph, from which directed edges are connected to
child nodes, one for each different attribute value. These child nodes represent the
partitions, which satisfy the corresponding attribute-value test. This process is
recursively repeated on the child nodes until all remaining instances are members of
one class or met some stopping criterion. Now, if you consider each path from the
root node to the leaf, it represents a rule consisting of the conjunction of attribute-
value tests and an implication to a particular class. The non-overlapping property
follows by considering that for each pair of distinct root-leaf paths, there is exactly
one attribute-test, in which they exclude each other. This kind of recursive explicit

10
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excluding process is commonly referred to as the divide-and-conquer approach in
contrast to the separate-and-conquer approach from rule learning, where different
rules can cover the same instance.

The above-mentioned criteria to select the next attribute is typically minimizing the
spread of instances of each class to different partitions. Examples of measures which
address this issue are Information Gain and the Gini-Index (Breiman et al., 1984).
In the following chapters, we will mainly use the implementation of C4.5 (Quinlan,
1993) in Weka (Hall et al., 2009), called J48, as a representative for decision tree
learners.

Hoeffding Trees

Hoeffding Trees (Domingos and Hulten, 2000) are a special kind of decision trees,
which make use of the so-called Hoeffding-bound. It is a result known from statistics,
which provides an upper bound on the probability, that the empirical mean of random
variables deviates from its expected value by some value t. Consider the previously
mentioned attribute-selection criterion for decision trees evaluating each attribute
by a numeric value v, in an incremental manner. Using the bound it is possible to
make the statement after observing a portion of the instances, that the current best
attribute is with a specifiable probability really the best attribute, if the mean of
its corresponding value vpest has a larger distance to the mean of the second best
attribute value vgecong than t. Roughly speaking, the mean of the random variable
Upest Stabilizes with increasing number of observations. The Hoeffding bound allows
to compute the number of necessary observations or instances, after which it is very
unlikely that the deviation is higher than the distance to the second best attribute
value. So, it is possible to select attributes and therefore build a decision tree in an
incremental manner instead after observing all instances. In total, this results in a
very fast incremental decision tree learner with anytime properties, i.e. it is possible
to classify during the learning process. One of its main features is that its prediction
is guaranteed to be asymptotically nearly identical to that of a corresponding batch
learned tree.

2.3.3 Perceptrons

Perceptrons or artificial neurons (McCulloch and Pitts, 1943; Rosenblatt, 1958) are
based on the human neurons in the brain. Human neurons are inter-connected and
influence each other. The activation or excitation of a neuron, which can be caused for
instance by seeing something, is distributed in different strengths among its connected
neurons, where each neuron may react differently to the input signals. The actual
functionality of a neuron is modeled in perceptrons as a simple linear combination of
its input signals accompanied with a thresholding function. The weighted sum of the
input signals have to satisfy some threshold to forward an activation signal and the
learning task is essentially to learn the weights.

11
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For the learning of complex functions, typically a network of artificial neurons
are utilized, which are called artificial neural networks. However, a single artificial
neuron is also often used as a classifier model, i.e. a linear function is learned which
(by thresholding) discriminates one class against another one, often visualized as a
hyperplane of the feature/input space, which separates instances of different classes.

2.3.4 Support Vector Machines (SVM)

Roughly speaking, support vector machines (Vapnik, 1998) also learn a linear separator
but include two significant techniques. First, it is possible to alter the working feature
space in an efficient way by using so-called kernel functions, i.e. it is possible to learn
a linear separating function in some projected feature space in feasible time. Since
it is nearly always possible to learn a linear separable function in a sufficient high-
dimensional feature space for a given set of training instances, this technique makes
a powerful tool. However, because of the resulting massive flexibility of the model,
the probability of overfitting increases. One integral approach of SVMs which tries to
address this issue, is to select the one separator from the possibly infinite set of linear
separators, which maximizes the margin, i.e. the distance between the hyperplane to
the nearest positive example plus the distance from it to the nearest negative example.
This margin-maximization principle has to be shown to have desireable properties
with respect to generalization (Shawe-Taylor et al., 1998; Smola et al., 2000).

In this thesis, we will utilize three different implementations/variants of SVMs:
an SVM implementation in Weka called SMO, the implementation of LibLinear
(Fan et al., 2008) and the one from LibSVM (Chang and Lin, 2011).

2.3.5 Naive Bayes

Naive Bayes is one of the probabilistic approaches to classification. It is assumed,
that there exists a joint probability distribution of instance-class pair events and
the classification objective is to return the most probable class, after observing a
test instance. Thus, basically, the learning of such a model is primarily focused with
estimating relevant probabilities from training data. Since the estimation of the prob-
ability distribution requires a very large number of instances, the direct approach is in
general not practical. Naive Bayes makes a probabilistic model amenable by imposing
a strong assumption about the distribution. It uses a “naive” assumption, namely
that the attributes are conditionally independent given the class. In combination
with the Bayes Theorem, this makes the training process tremendously efficient and
feasible.

Again, we used in this thesis the Naive Bayes implementation of Weka, denoted by
NB.

12
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Multiclass classification extends binary classification by considering more than two
classes. For multiclass classification problems, besides direct multiclass-capable learn-
ing algorithms, the common approaches are so-called decomposition-based approaches,
which reuse binary learners from the previous chapter.

This chapter contains a brief recapitulation of basic knowledge about multiclass clas-
sification and decomposition-based approaches for this task. We will focus particularly
only on necessary information for this thesis.

3.1 Multiclass Setting

The multiclass classification setting is identical to the binary classification setting
except that now the set of classes K = {¢; | i =1...k} is not anymore restricted
to two classes, i.e. k > 2 instead of £ = 2. It is assumed, that there exists at
least one instance for each class. Moreover, the number of instances t is typically
significantly greater than the number of classes k in order to make any reasonable
induction.

One typical example of multiclass classification problems is optical character recog-
nition. Here, the task is to recover a text, which is given in an image-representation.
Seen as a classification task, a natural approach is to consider each alphabetic and
numeric character as a class. This task becomes non-trivial for hand-written texts
and also for machine-generated texts, e.g., by considering the multitude of different
font styles.

15
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3.2 Multiclass Evaluation and Variants

Nearly all previously introduced measures and setting variants for binary classification
apply straight-forwardly also for multiclass classification. We will briefly describe the
few exceptions in the following text.

The previously introduced measures true positive rate and true negative rate, which
were essentially class-based accuracy values apply also for the multiclass setting.
However, there is no more the distinction between the positive and the negative class,
such that both notions lose the association to a particular class. The underlying
semantic becomes essentially redundant if we neglect this. Thus, often only one term,
the true positive rate regarding a particular class ¢, is used to denote the class-based
accuracy of ¢,.

Similarly, the semantics of the notions of false negative and false positive rates
have to be slightly altered. Again, the semantic for both notions changes. Not the
misprediction rate of positive or negative instances are determined respectively, but
all mispredictions predicting a particular class. Here also, one usually agrees on one
term, the false positive rate regarding a particular class, to denote the measure in
this sense.

Regarding the AUC, there is no consensus for the multiclass case, but various
approaches which tackle the multiclass ROC analysis by projecting them to binary
ones were proposed in the literature (Hand and Till, 2001; Provost and Domingos,
2003).

3.3 Common Decomposition-Based Approaches

Many learning algorithms can only deal with two-class problems. For multiclass
problems, they have to rely on binary decomposition (or binarization) procedures that
transform the original learning problem into a series of binary learning problems. In
the following, we will recapitulate the well-known one-against-all and one-against-one
decompositions, which will be used throughout this thesis. Afterwards, in the next
section, we will describe a general framework for decomposition-based approaches.

3.3.1 One-Against-All (OAA)

A standard solution for this problem is the one-against-all approach, also known as
one-against-rest, which constructs one binary classifier f; for each class ¢;, where the
positive training examples are those belonging to this class and the negative training
examples are formed by the union of all other classes, i.e. all remaining examples. An
illustration of this decomposition scheme is shown in Figure 3.1a on the facing page.

At prediction time, all classifiers are queried on the given test instance. If exactly
one classifier f; predicts the instance as positive, the corresponding class ¢; is returned
as the overall prediction. For the other cases, i.e., if more than one or none classifier
predicts the instance as positive, usually two solutions are possible. If the classifiers
return score, confidence or probability values instead of a binary value (negative or
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Figure 3.1: One-against-all and pairwise binarization (Firnkranz, 2002)

positive), one can return the class, which corresponding classifier maximizes this
measure. In the case, that the maximal value is not unique, or the classifiers return
only binary values, one usually applies a random tie-breaking, i.e. randomly selecting
one class among the set of predicted classes.

3.3.2 Pairwise Classification (OAO)

Pairwise classification also known as round-robin classification (Firnkranz, 2002;
Wu et al., 2004) and one-against-one is besides one-against-all one of the well-known
decomposition schemes. This approach has been shown to produce more accurate
results than the one-against-all approach for a wide variety of learning algorithms
such as support vector machines (Hsu and Lin, 2002) or rule learning algorithms
(Fiirnkranz, 2002). Further support is given by a recent extensive experimental study
of Galar et al. (2011).

The key idea of pairwise classification is to learn one classifier for each pair of
classes. At classification time, the prediction of these classifiers are then combined
into an overall prediction.

Training Phase

A pairwise or round robin classifier trains a set of k(k — 1)/2 binary classifiers f; ;,
one for each pair of classes (c;,¢;), ¢ < j. Each binary classifier is only trained on
the subset of training examples belonging to classes ¢; and c;, all other examples are
ignored! for the training of f;, ;- An example of this procedure is shown in Figure 3.1b.

1 Several extensions of the pairwise approach, such as Tri-Class SVMs (Angulo et al., 2006) and
Pairwise Correcting Classifiers (Moreira and Mayoraz, 1998), also integrate the remaining examples
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We will refer to the learning algorithm that is used to train these classifiers f; ; as
the base learner. We will also say that classifier f; ; is incident to classes ¢; and c;.

It is important to note that the total effort required to train the entire ensemble of
the k(k —1)/2 classifiers is only linear in the number of classes k, and, in fact, cheaper
than the training of a one-against-all ensemble. It is easy to see this, if one considers
that in the one-against-all case each training example is used k times (namely in
each of the k binary problems), while in the round robin approach each example is
only used k — 1 times, namely only in those binary problems, where its own class is
paired against one of the other k — 1 classes (cf. also Fiirnkranz, 2002).

Typically, the binary classifiers are class-symmetric, i.e., the classifiers f; ; and f;;
are identical. However, for some types of classifiers this does not hold. For example,
standard rule learning algorithms will always learn rules for the positive class, and
classify all uncovered examples as negative. Thus, the predictions may depend on
whether class ¢; or class ¢; has been used as the positive class. As has been noted
in (Fiirnkranz, 2002), a simple method for solving this problem is to average the
predictions of f; ; and f;;, which basically amounts to the use of a so-called double
round robin procedure, where we have two classifiers for each pair of classes.

Prediction Phase

At classification time, each binary classifier f;; is queried and issues a vote (a
prediction for either ¢; or ¢;) for the given example. This can be compared with
sports and games tournaments, in which each player plays each other player once. In
each game, the winner receives a point, and the player with the maximum number of
points is the winner of the tournament.

In this thesis, we will assume binary classifiers f; ; that return class probabilities
plci | ¢iVe;) and p(cj | ¢; Vej) if not stated otherwise. These can be used for weighted
voting (also called max-wins), i.e., we predict the class ¢* that receives the maximum
weighted number of votes:

Other choices for decoding pairwise classifiers are possible (cf., e.g., Wu et al.,
2004; Hastie and Tibshirani, 1997), but voting is surprisingly stable. For example,
one can show that weighted voting, where each binary vote is split according to the
probability distribution estimated by the binary classifier, minimizes the Spearman’s
rank correlation coefficient with the correct ranking of classes, provided that the
classifier provides good probability estimates (Hiillermeier et al., 2008). Also, empiri-
cally and theoretically, weighted voting seems to be a fairly robust method that is
hard to beat with other, more complex methods (Hiillermeier and Fiirnkranz, 2004;
Hiillermeier and Vanderlooy, 2010).

into the training process. In several experiments, this has lead to an improved performance, which
has to be paid with a considerable increase in training time, and more complex decision boundaries
for the involved classifiers.
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3.3.3 Efficient Pairwise Prediction (QWeighted)

Although the training effort for the entire ensemble of pairwise classifiers is only
linear in the number of examples, at prediction time we still have to query a quadratic
number of classifiers, which can be very inefficient for a high number of classes k. In this
section, we discuss a recently proposed algorithm (Park, 2006; Park and Filirnkranz,
2007) that allows to significantly reduce the number of classifier evaluations in practice
without changing the prediction of the ensemble.

Key Idea

Weighted or unweighted voting predicts the top rank class ¢* by returning the class
with the highest accumulated voting mass after evaluation of all pairwise classifiers.
During such a procedure there exist many situations where particular classes can be
excluded from the set of possible top rank classes, even if they reach the maximal
voting mass in the remaining evaluations. Consider the following simple example:
Given k classes and an arbitrary number j € N with j < k, if, currently, class ¢; has
lost j votings and class ¢, has received more than k — j votes, it is impossible for ¢
to achieve a higher total voting mass than c,. Thus further evaluations involving ¢
can be safely ignored for the comparison of these two classes.

To increase the reduction of evaluations we are interested in obtaining such
exploitable situations frequently. Pairwise classifiers will be selected depending on a
loss value, which is the amount of potential voting mass that a class has not received.
More specifically, the loss I; of a class ¢; is defined as I; := p; — v;, where p; is the
number of evaluated incident classifiers of ¢; and v; is the current vote amount of ¢;.
Obviously, the loss will begin with a value of zero and is monotonically increasing.
The class with the current minimal loss is one of the top candidates for the top rank
class.

The QWeighted Algorithm

Algorithm 1 on the next page shows the QWEIGHTED algorithm, which implements
this idea. First, the pairwise classifier f,; will be selected for which the losses [, and
ly of the relevant classes ¢, and ¢, are minimal, provided that the classifier f,; has
not yet been evaluated. In the case of multiple classes that have the same minimal
loss, there exists no further distinction, and we select a class randomly from this set.
Then, the losses [, and [}, will be updated based on the evaluation returned by f,
(recall that vy, is interpreted as the amount of the voting mass of the classifier fq
that goes to class ¢, and 1 — vy is the amount that goes to class ¢p). These two steps
will be repeated until all classifiers for the class ¢,, with the minimal loss has been
evaluated. Thus the current/estimated loss I, is the correct loss for this class. As all
other classes already have a greater or equal loss and considering that the losses are
monotonically increasing, ¢, is the correct top rank class or among the set of equal
classes with minimal loss.

19



3 Multiclass Preliminaries

Algorithm 1 QWEIGHTED

Require: pairwise classifiers f; ; with 1 <17 < j <k, testing instance x € X

1. [eRF+0 # loss values vector

2: ¢* < NULL

3: G+ # keep track of evaluated classifiers

4: while ¢* = NULL do

5: Cq ¢ argmin [; # select top candidate class
cEK

6: cp < argmin [; # select second

CjEK\{Ca}, fa7j¢G
if no ¢, exists then

'+ cq # top rank class determined
9: else # evaluate
10: Vab < fap() # one vote for ¢, (vep = 1) or ¢ (Vg = 0)
11: lo < lo+ (1 —vg) # update voting loss for ¢,
12: lp < lp + vap # update voting loss for ¢,
13: G+ GU fap # update already evaluated classifiers

14: return c*

Theoretically, a minimal number of comparisons of k — 1 is possible (best case).
Assuming that the incident classifiers of the correct top rank c¢* always return the
maximum voting amount (I* = 0), ¢* is always in the set {¢; € K | l; = mingex i}
In addition, ¢* should be selected as the first class in step 1 of the algorithm among
the classes with the minimal loss value. It follows that exactly k — 1 comparisons will
be evaluated, more precisely all incident classifiers of ¢*. The algorithm terminates
and returns ¢* as the correct top rank.

The worst case, on the other hand, is still k(k — 1)/2 comparisons, which can,
e.g., occur if all pairwise classifiers classify randomly with a probability of 0.5. In
practice, the number of comparisons will be somewhere between these two extremes,
depending on the nature of the problem.

QWEIGHTED will always predict the same class as the full pairwise classifier except
for ambiguous predictions, but the actual runtime complexity of the algorithm is
close to linear in the number of classes, in particular for large numbers of classes,
where the problem is most stringent. For very hard problems, where the performance
of the binary classifiers reduces to random guessing, its worst-case performance is
still quadratic in the number of classes as mentioned before, but even there practical
gains can be expected. These properties of QWEIGHTED are based on empirical
evaluations done in (Park and Firnkranz, 2007) and will be re-validated later in
Section 6.2.1 on page 63 on extended experiments.

Alternative Approaches

The loss [;, which we use for selecting the next classifier, is essentially identical to the
voting-against principle introduced by Cutzu (2003a,b), who also observed that it
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3.4 Error-Correcting Output Codes (ECOCs)

allows to reliably conclude a class when not all of the pairwise classifiers are present.
For example, Cutzu claims that using the voting-against rule one could correctly
predict class ¢; even if none of the incident pairwise classifiers f; ; (j=1...k,j # 1)
are used. However, this argument is based on the assumption that all base classifiers
classify correctly. Moreover, if there is a second class ¢; that should ideally receive
k — 2 votes, voting-against could only conclude a tie between classes ¢; and c¢;, as
long as the vote of classifier f; ; is not known. The main contribution of his work,
however, is a method for computing posterior class probabilities in the voting-against
scenario.

The voting-against principle was already used by Platt et al. (1999) earlier in the
form of DDAGs (Decision Directed Acyclic Graphs), which organize the binary base
classifiers in a decision graph. Each node represents a binary decision that rules out
the class that is not predicted by the corresponding binary classifier. At classification
time, only the classifiers on the path from the root to a leaf of the tree (at most k — 1
classifiers) are consulted. While the authors empirically show that the method does
not lose accuracy on three benchmark problems, it does not have the guarantee of
QWEIGHTED, which will always predict the same class as the full pairwise classifier.
Intuitively, one would also presume that a static evaluation routine that uses only k—1
of the k(k—1)/2 base classifiers will sacrifice one of the main strengths of the pairwise
approach, namely that the influence of a single incorrectly trained binary classifier is
diminished in a large ensemble of classifiers (Fiirnkranz, 2003). Our empirical results
(presented in Section 6.2.1 on page 63) will confirm that DDAGs are only slightly
more efficient but less accurate than the QWEIGHTED approach.

3.4 Error-Correcting Output Codes (ECOCs)

Error-correcting output codes (ECOCs) (Dietterich and Bakiri, 1995) are a general
framework for decomposition-based multiclass classification methods. This frame-
work unifies common approaches such as the previously described one-against-one
and one-against-all. ECOCs have its origin in coding and Information Theory
(MacWilliams and Sloane, 1983; Gallager, 1968), where it is used for detecting and
correcting errors in suitably encoded signals. In the context of classification, we
encode the class variable with an n-dimensional binary code word, whose entries
specify whether the example in question is a positive or a negative example in the
corresponding binary classifier.

3.4.1 Binary ECOCs

Formally, each class ¢; (i = 1...k) is associated with a so-called code word c; €
{—=1,1}" of length n. We denote the j-th bit of cw; as b; ;. In the context of ECOC,
all relevant information is summarized in a so-called coding matriz (m; ;) = M €
{-1, 1}’”", whose i-th row describes code word cw;, whereas the j-th column repre-
sents a classifier f;. The set of all such classifiers is denoted as C' = {f1,..., fn}.
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3 Multiclass Preliminaries

Furthermore, the coding matrix implicitly describes a decomposition scheme of the
original multiclass problem. In each column j the rows contain a (1) for all classes
whose training examples are used as positive examples, and (—1) for all negative
examples for the corresponding classifier f;.

1 1 1 -1 -1 -1
1 -1 -1 1 1 -1
-1 -1 -1 1 -1 1
-1 -1 1 -1 1 1

M =

The previous example shows a coding matrix for 4 classes (rows), which are encoded
with 6 classifiers (columns). The first classifier uses the examples of classes 1 and 2
as positive examples, and the examples of classes 3 and 4 as negative examples.

At prediction time, all binary classifiers are queried, and collectively predict an n-
dimensional vector, which must be decoded into one of the original class values, e.g., by
assigning it to the class of the closest code word. More precisely, for the classification
of a test instance x, all binary classifiers are evaluated and their predictions, which
form a prediction vector p'= [fi(x), fa(x), ..., fn(x)], are compared to the code words.
The class ¢* whose associated code word ct.+ is “nearest” to p according to some
distance measure d(.) is returned as the overall prediction, i.e.

¢ = argmin d (ct, p)
C

For computing the similarity between the prediction vector and the code word, the
most common choice is the Hamming Distance, which measures the number of bit
positions in which the prediction vector p differs from a code word cw;.

N = m;; —Pj
dp (i 7) = Y i P (3.1)
j=1

Typically, the number of classifiers exceeds the number of classes, i.e., n > k. This
allows for longer code words, so that the mapping to the closest code word is not
compromised by individual mistakes of a few binary classifiers. Thus, ECOCs not
only make multiclass problems amenable to binary classifiers, but may also yield a
better predictive performance than conventional multiclass classifiers.

The good performance of ECOCs has been confirmed in subsequent theoretical and
practical work. For example, it has been shown that ECOCs can to some extent correct
variance and even bias of the underlying learning algorithm (Kong and Dietterich,
1995). An exhaustive survey of this area can be found in (Windeatt and Ghaderi,
2003).

3.4.2 Ternary ECOCs

Conventional ECOCs as described in the previous section always use all classes and
all training examples for training each binary classifier. Thus, binary decompositions
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3.4 Error-Correcting Output Codes (ECOCs)

which use only parts of the data (such as pairwise classification) can not be modeled
in this framework.

Allwein et al. (2000) extended the ECOC approach to the ternary case, where code
words are now of the form cw; € {—1,0,1}". The additional code m; j = 0 denotes
that examples of class ¢; are ignored for training classifier f;. We will sometimes also
denote a classifier f; as fp; n;, where P is the set of classes that are used as positive
examples, and NN; is the set of all classes that are used as negative examples. We
will adapt the notion of incidency (from pairwise classifiers) and say that a ECOC
classifier f; = fp, n; is incident to a class ¢;, if the examples of ¢; are either positive
or negative examples for f;, i.e., if ¢; € P; or ¢; € Nj, which implies that m; ; # 0.

This extension increases the expressive power of ECOCs, so that now nearly all
common multiclass binarization methods can be modeled. For example, pairwise
classification (Section 3.3.2 on page 17), where one classifier is trained for each pair
of classes, could not be modeled in the original framework, but can be modeled with
ternary ECOCs. Its coding matrix has n = k(k — 1)/2 columns, each consisting of
exactly one positive value (41), exactly one negative value (—1), and k — 2 zero
values (0). Below, we show the coding matrix of a pairwise classifier for a 4-class
problem.

1 11 0 0 O
-1 0 0 1 1 0

M= 0 -1 0 -1 0 1 (3.2)
0O 0 -1 0 -1 -1

The conventionally used Hamming decoding can be adapted to this scenario
straight-forwardly. Note that while the code word can now contain O-values, the
prediction vector is considered as a set of binary predictions which can only predict
either —1 or 1. Thus, a zero symbol in the code word (m;; = 0) will always increase
the distance by % (independent of the actual prediction).

Many alternative decoding strategies have been proposed in the literature. Along
with the generalization of ECOCs to the ternary case, Allwein et al. (2000) proposed
a loss-based strategy. Escalera et al. (2006) discussed the shortcomings of traditional
Hamming distance for ternary ECOCs and presented two novel decoding strategies,
which should be more appropriate for dealing with the zero symbol. We will address
them in Section 6.1.5 on page 60.

3.4.3 Code Design for (Ternary) ECOCs

A well-known theorem from coding theory states that if the minimal Hamming
Distance between two arbitrary code words is h, the error detection and correction
framework is capable of correcting up to L%j bits. This is easy to see, since every
code word cw; has a L%J neighborhood, for which every code in this neighborhood
is nearer to cw; than to any other code word. Thus, it is obvious that good error
correction crucially depends on the choice of a suitable coding matrix.
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Unfortunately, some of the results in coding theory are not fully applicable to the
machine learning setting. For example, the above result assumes that the bit-wise error
is independent, which leads to the conclusion that the minimal Hamming Distance is
the main criterion for a good code. But this assumption does not necessarily hold in
machine learning. Classifiers are learned with similar training examples and therefore
their predictions tend to correlate (as noted in Dietterich and Bakiri, 1995). Thus, a
good ECOC code also has to consider, e.g., column distances, which may be taken as
a rough measure for the independence of the involved classifiers, since they resemble
to some extent training set overlaps.

In the machine-learning literature, a considerable amount of research has been
devoted to code design for ternary ECOCs (see, e.g., Crammer and Singer, 2002b;
Pimenta et al., 2008), but without reaching a clear conclusion. We want to emphasize
that this thesis does not contribute to this discussion, because we will mainly not be
concerned with comparing the predictive quality of different coding schemes.

Nevertheless, we will briefly review common coding schemes, which will be used in
experimental evaluations in some of the following chapters.

Exhaustive Ternary Codes

These codes cover all possible classifiers involving a given number of classes I < k. More
formally, a (k, [)-exhaustive ternary code defines a ternary coding matrix M, for which
every column j contains exactly I non-zero values, i.e., Vj € {1,...,n}. >, Imij| =
[. Obviously, in the context of multiclass classification, only columns with at least one
positive (+1) and one negative (—1) class are useful. The following example shows a
(4, 3)-exhaustive code.

(3.3)

O = =
O =
— O~
— O =
_ O = =
— = O
— = O
_ = O =
—_ == O
—_— = = O
HP—‘}LO

1
1
-1
0

The number of classifiers for a (k,1) exhaustive ternary code is (’;) (21=1 —1), since the
number of binary exhaustive codes is 2/~ —1 and the number of combinations to select
[ row positions from k rows is (];) These codes are a straight-forward generalization
of the exhaustive binary codes, which were considered in the first works on ECOC
(Dietterich and Bakiri, 1995), to the ternary case. Note that (k,2)-exhaustive codes
correspond to pairwise classification.

In addition, we define a cumulative version of exhaustive ternary codes, which
subsumes all (k,7)-exhaustive codes with ¢ = 2,3,...,] up to a specific level [. In
this case, we speak of (k,[)-cumulative exhaustive codes, which generate a total of
22:2 (]f) (2¢=1 —1) columns. For a dataset with k classes, (k, k)-cumulative exhaustive
codes represent the set of all possible binary classifiers.
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3.4 Error-Correcting Output Codes (ECOCs)

Random Codes

We consider two types of randomly generated codes. The first variant allows to control
the probability distribution of the set of possible symbols {—1,0,1} from which
random columns are drawn. By specifying a parameter 7., € [0, 1], the probability for
the zero symbol is set to p({0}) = r;p, whereas the remainder is equally subdivided
to the other symbols: p({1}) = p({—1}) = (1 — r;,)/2. This type of code allows
to control the sparsity, i.e. the fraction of the zero symbol in the coding matrix,
which will be useful for evaluating which factors determine the performance of our
ECOC-based algorithms.

The second random code generation method selects randomly a subset from the set
of all possible classifiers C. This set of classifiers C equals the cumulative ternary code
matrix where the used level [ equals the number of classes k. Obviously, this variant
guarantees that no duplicate classifiers are generated, whereas it can occur in the
other variant. We do not enforce this, because we wanted to model and evaluate two
interpretations of randomly generated codes: randomly filled matrices and randomly
selected classifiers.

Coding Theory, BCH Codes

Many different code types were developed within coding theory. We pick the so-called
BCH Codes (Bose and Ray-Chaudhuri, 1960) as a representative, because they have
been studied in depth and have properties which are favorable in practical applications.
For example, the desired minimum Hamming distance of M can be specified, and
fast decoding methods are available. Note, however, that efficient decoding in coding
theory has the goal to minimize the complexity of finding the nearest code word given
the received full code word. In the following chapters, we are mainly interested in
minimizing the classifier evaluations, and this relates to using the minimum number
of bits of the receiving code word to estimate the nearest code word respectively class.
Although some concepts of efficient decoding in coding theory seem to be transferable
to our setting, they lack the capability to be a general purpose decoding method for
arbitrary coding matrices.

BCH codes represent a special class of cyclic codes, i.e. codes (a mapping from
one alphabet to another one, here called code words) for which cyclic shifts of
any code word is again a specified code word. So, if ctv = (cwy, cws, ..., cw,) is a
specified code word, then shift(ct) = (cwy, cwy, ..., cw,_1) is also a specified code
word. Furthermore, every cyclic code has a special code word cwg, called generator
polynomial g(x), such that each code word is a multiple (in finite field arithmetic) of
cwe and that for every multiple of ctvg there exists a corresponding code word. The
polynomial term is due to the commonly used representation form for elements of
finite fields, i.e. the corresponding polynomial for code word ¢ = (cwy, cws, .. ., cwy)
is denoted by cw(z) = cw; + cwox + - - - + cw,z™ 1. Now, if the generator polynomial
g(x) satisfies certain properties then one can show that the resulting code words have
a prespecified minimum distance.
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3 Multiclass Preliminaries

Definition (Binary BCH code)
A cyclic code of length n over GF'(2) is a binary BCH code of designed distance 4 if,
for some integer b > 0,

g(x) =lem(M"(z), M* T (2), ..., MPTO~2(2))

where lem(.) denotes the least common multiple of its arguments and M*(x) denotes
the minimal polynomial of z*, i.e. the least-degree polynomial with M*(z") = 0.

This brief description of BCH codes is based on (MacWilliams and Sloane, 1983),
to which we also refer for a detailed description of this code family and further
information regarding error-correcting codes.

Domain-Dependent Codes

The previous code-types have in common, that the actual data is neglected. Only the
number of classes k from the data at hand is used in the code generation process.

In contrast, domain-dependent codes project data-specific relationships or expert
knowledge explicitly to the coding matrix. For example, the knowledge of an inherent
hierarchy or order among the classes can be used to model classifiers which exploit
this information (e.g., Melvin et al., 2007; Cardoso and da Costa, 2007). Another
interesting direction of generating a data-based code is considered by Pujol et al.
(2006). Their proposed algorithm DECOC tries to generate a coding matrix, whose
columns consist of the best discriminating classifiers on the considered dataset. By
applying only classifiers with the maximum discriminative ability, they expect to
maximize the overall prediction accuracy. Also, it seems to be rather efficient, since
they restrict the length of the coding matrix.
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In this chapter, we will present our first contribution. We focus on the training
phase of ECOCs, where overlaps of training instances in highly redundant codes are
reduced, and therefore its overall training complexity, without altering the models.
This is done by identifying shared subproblems in the ensemble, which need to be
learned only once, and by rescheduling the binary classification problems so that
these subproblems can be reused as often as possible. This approach is directly
feasible in conjunction with incremental base learners, but its main idea is still
applicable for the more interesting case when SVMs are used as base learners, by
reusing computed weights of support vectors from related subproblems and applying
an adapted ensemble caching strategy.

We will discuss the redundancies within ECOCs in Section 4.1 and present an
algorithm to exploit them in Section 4.2. The performance of this algorithm is then
evaluated for Hoeffding Trees and for SVMs as base classifiers (Section 4.3). Finally,
we will discuss the results and elaborate on the limitations of this approach.

4.1 Code Redundancy in ECOC

Many code types specify classifiers which share a common code configuration. For
instance, in the case of (k,l)-cumulative exhaustive codes with k& > [ > 3, we can
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construct a subclassifier by setting some +1 bits and/or some —1 bits of a specified
classifier to zero. Clearly, the resulting classifier is itself a valid classifier that occurs
in the ECOC matrix of this cumulative code. Furthermore, every classifier f of length
' <1, is subclassifier of exactly 2 - (k — ') classifiers with length I’ + 1, since there
are k — I’ remaining classes and each class can be specified as positive or negative!.
Such redundancies also occur frequently in random codes with a probability of the
zero-symbol smaller than 0.5, and therefore also in the special case of random dense
codes, where the codes consists only of 41 and —1 symbols. On the other hand, the
widely used one-against-one code has no code redundancy, and the redundancy of
the one-against-all code is very low.

In general, the learning of a binary classifier is independent of the explicit specifi-
cation, which class of instances is regarded as positive and which one as negative (cf.
class-symmetric property in Section 3.3.2 on page 17). So, from a learning point of
view, the classifier specified by a column m; = (my;, ..., my;) is equivalent to —m;.

Definition (Code Redundancy)

Let f; and f; be two classifiers and (mu;,...,my;) and (myy, ..., my;) their cor-
responding (ternary) ECOC columns. We say f; and f; are p—redundant, if for
ac{l... .k},

P = max (Ha | Mai = Maj, Mai 7 0}, [{a | Mai = —Mmaj, Mai # O}D

To elaborate, let d = max(dg (ni;, m;), dg (=i, 1ij)), where dp is the Hamming
distance. Two classifiers f; and f; are p-redundant, if and only if £ —p = d —
Ha € {1...k} | ma =0 A mg; = 0}’ Thus, in essence, classifier redundancy
is the opposite of Hamming distance except that bit positions with equal zero
values are ignored. For convenience, similarly to the symmetric difference operator
A of sets, we denote for two classifiers f; and f; the set of classes which are only
involved in one of their code configurations m; and m; as f; 7 f;. More precisely,
fivfi= {ca |a e {1l.. .k} Almal| + |ma;| = 1}. In addition, we speak of a specified
classifier, if there exists a corresponding code-column in the given ECOC matrix.

4.2 Exploitation of Code Redundancies

Code redundancies can be directly exploited by incremental base learners, which
are capable of extending an already learned model on additional training instances.
Then, repeated iterations over the same instances can be avoided, since shared
subclassifiers only have to be learned once. The key issue is to find a training protocol
that maximizes the use of such shared subclassifiers, and therefore minimizes the
redundant computations. Note that the subclassifiers do not need to be specified
classifiers, i.e., they do not need to correspond to a class code in the coding matrix.

1 Here, the length of a classifier is understood as the number of classes, which are used for learning
the classifier, i.e. the number of incident classes.
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|B| +|C|
4] +C

4~ AlC
Al + |B| +|C| /
|B| |A]

Figure 4.1: Training graph example: Three classifiers f; = A|BC, fo = AB|C and f3 = B|C
are specified. The non-specified classifier f4 = A|C is added because it is the maximal common
subclassifier of f; and f>. For each edge e;; = (n;,n;) the weights depict the training effort
for learning classifier f; based on classifier f; (JA| is the no. of training instances of class A).

This task may be viewed as a graph-theoretic problem. Let G = (V, E) be a
weighted directed graph with V' = {n,} U{fi} U{fs}, i.e., each classifier f; and each
possible subclassifier fs are in the set of nodes V. Furthermore, the special root node
n, is connected to every other node n; € V' with the directed edge (n,,n;). Besides,
for each two non-root nodes n; and n;, there exists a directed edge (n;,n;), if and
only if n; is subclassifier of n;. The weight of these edges is f; </ f;. For all edges
(n,n;), which are incident to the root node, the weight is the number of training
instances involved in classifier f;.

To elaborate, incident edges to the root node depict classifiers which are learned by
batch learning. All other edges (n;, n;), which are edges between two (sub)-classifiers,
represent incremental learning steps. Based on the learned model of classifier f;, the
remaining training instances of f; 7 f; are used to learn classifier f;. The multiple
possible paths to one particular classifier represents the possible ways to learn it.
Each of these paths describe a different partitioning of training costs, represented by
the number of edges (number of partitions) and edge weights (size of the partitions).
Considering only one classifier, the cost for all paths are identical. But, by considering
that paths of different redundant classifiers can overlap, and that shared subpaths
are trained only once, the total training cost can be reduced. Another view at this
graph is the following: every subgraph of G which is an arborescence consisting of all
specified classifiers is a valid scheme for learning the ensemble, in the sense that it
produces exactly the specified set of classifiers.

In this context, our optimization problem is to find a minimum-weight subgraph of
G including all classifier nodes f;, which relates to minimizing the processed training
instances for the set of specified classifiers and therefore total training complexity of
the ECOC ensemble. Note, this problem is known in graph theory as Steiner problem
in a directed graph, which is NP-hard (Wong, 1984).
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Figure 4.1 shows an example of such a training graph for a 3-class problem, where
three classifiers fj = A|BC, fo = AB|C and f3 = B|C are specified by a given
ECOC matrix. A, B, C are symbol representatives for classes and A|B describes the
binary classifier which discriminates instances of class A against B. The standard
training scheme, which learns each classifier separately, can be represented as a
subgraph G; C G consisting of Vi = {n,,n1,n9,n3} and Ey = {e;1, €2, €r3}. This
scheme uses 2| A| 4 3|B| + 3|C| training instances in total. An example where fewer
training instances are needed is Go = (V1, Eq) with Ey = {e,1, e,3, €32}, which exploits
that classifier fo can be incrementally trained from f3, resulting in training costs
2|A| + 2|B| 4 2|C|. Another alternative is to add a non-specified classifier f4 = A|C
to the graph, resulting in Gg = (V, E3) with E3 = {e,4, €41, €42, €;3} with training
costs |A| 4+ 3|B| 4 2|C|. Tt is easy to see that either G2 or G5 is the optimal Steiner
tree in this example and that both process fewer training examples than the standard
scheme. Whether G or G3 is optimal, depends on whether |A| > |B].

Since the optimal solution is in general hard to compute, we use a greedy approach.
We first have to generate the training graph. Then, we iteratively remove local
non-optimal edges, starting from the leaf nodes (specified classifiers) up to the root.
Both methods are described in detail in the following subsections.

4.2.1 Generation of Training Graph

We consider an algorithm which is particularly tailored for exhaustive and cumulative
exhaustive codes. Let C' be the set of all classifiers f of a specific length [, which is
successively decreased from k down to 2. For each pair (f;, f;) € C' x C' the maximal
common subclassifier f; is determined and eventually integrated into the graph. Then,
these classifiers are marked as processed (seen(f) = 1) and are not considered in the
following steps of the generation algorithm. Level [ is decreased and the algorithm
repeats. The processed classifiers can be ignored, because for the systematic codes
(exh. and cumulative exh.) all potential subclassifiers can be constructed using its
immediate subclassifiers. This algorithm does not find all edges for random codes
or general codes, but only for their inherent systematic code structures. For the
sake of efficiency and also considering that we employ a greedy Steiner tree Solving
procedure afterwards, we neglect this fact.

A pseudo code is given in Algorithm 2 on the next page. Note that there, the set
C is populated with classifiers of length greater equal than [ instead of exactly I,
considering the special case that there can be multiple levels with zero classifiers or
only one classifier. Also, classifiers should only be flagged as processed if they were
actually checked at least once. The complexity of this version is exponential, but
it will be later reduced to quadratic in combination with the greedy Steiner tree
algorithm.

In the beginning, for each specified classifier f; a corresponding node n; is generated
in the graph and connected with the root node by the directed edge (n,,n;). In the
main loop, which iterates over [ = n down to 2, for each pair (f;, f;) of classifiers of
length [ the maximum common subclassifier f, is determined. If it is valid (i.e., it is

30



4.2 Exploitation of Code Redundancies

Algorithm 2 Training Graph Generation
Require: ECOC Matrix M = (mi;) € {-1,0, 1} binary classifiers fi, ..., fn

1.V {nr}
2: B+ 0
3:
4: for each f; do
5: V+VuU{n;} # Integration of all specified classifiers
6: eri < (np,n;)
7 w(en) < I(fi)
8: E+ FU {6”'}
9:
10: for [ < k downto 2 do # level-wise subclassifier generation
11: F < {n € V\{n,} | length(n) > 1, seen(n) = 0}
12:
13: for each pair (n;,n;) € F' x F with i # j do
14: ns <— intersection(n;, n;) # generate shared subclassifier of f; and f;
15: if ng is valid then
16: if ng ¢ V then
17: V +VU{ns} # classifier is new
18: ers < (Np, M)
19: w(ers) < I(fs)
20: E <+ EU{ers}
21: esi (N, M) , €sj  (Ng,nj)
22: w(esi) — I(fs \V4 fz)
23: w(esj) — I(fs \V4 f])
24: E<+ FU {631, esj}
25: Vn € F.seen(n) =1 # mark as processed, see also note in text
26:

27: return G = (V, E, w)

non-zero and contains at least one positive and one negative class), two cases are
possible:

e a corresponding node to fs already exists in the tree: f; and f; are included to
the set of childs of f,, that means, two directed edges e,; and ej; with weights
I(fi~ fs), I(fj 7 [s) respectively are created, where I(.) denotes the total
number of training instances for a given code configuration.

e There exists no corresponding node to the subclassifier fs: fs is integrated into
the tree by creating a corresponding node and by linking it to the root node
with edge e,s of weight I(fs). In addition, the same steps as in the first case
are applied.
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Algorithm 3 Greedy Steiner Tree Computation

Require: Training Graph G = (V, E,w), binary classifiers fi,..., fy
: let @ be an empty FIFO-queue
V0, E+ 0

: for each f; do R )
Q.push(n;) , V<V U{n;}

while !Q.isEmpty() do
n; < Q-pop()
(ng,n;) < argming, .. cp w((ng,ni))
E <+ EU(ng,ng), V< VU{ng}

© X TP Ty

=
N = O

if n, # n, then
Q.push(n,)

—_
W

— =
AN~

. return G = (V, E,w)

4.2.2 Greedy Computing of Steiner Trees

A Steiner tree is, essentially, a minimum spanning tree of a graph, but it may contain
additional nodes (which, in our case, correspond to unspecified classifiers). Minimizing
the costs is equivalent to minimizing the total number of training examples that
are needed to train all classifiers at the leaf of the tree from its root. As mentioned
previously, we tackle this problem in a greedy way.

Let f; be a specified classifier and F; the set of incident incoming edges. We compute
the minimum-weight edge and remove all other incoming edges. The outgoing node
of this minimum edge is stored to repeat the process on this node afterwards, e.g.,
by adding it into a FIFO-queue. This is done until all classifiers and connected
subclassifiers have been processed. Note that some subclassifiers are never processed,
since all outgoing edges may have been removed. A pseudocode of this simple greedy
approach is depicted in Algorithm 3. In the following, we will refer to it as the
min-redundant training scheme and to the calculated approximate Steiner tree as G.

This greedy approach can be combined with the generation method of the training
graph, such that the resulting Steiner Graph is identical and such that the overall
complexity is reduced to polynomial time. Recall the first step of the generation
method: all pairs of classifiers of length k are checked for common subclassifiers and
eventually integrated into G. After generating O(n?) subclassifiers, for each classifier
fi (of length k) the minimal incoming edge? is marked. All unmarked edges and

2 The weights of the edges are identical to the corresponding ones in the fully generated training
graph, since it only depends on the total number of training instances, computable by the code
configuration of the subclassifier, and not on the actual partitioning.
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also the corresponding outgoing nodes, if they have no other child, are removed. In
the next step of the iteration, [ = k — 1, the number of nodes with length [ — 1 are
now at most n, since only maximally n new subclassifiers were included into the
graph G. This means, for each level, O(n?) subclassifiers are generated, where the
generation/checking of a subclassifier has cost of ©(k), since we have to check k bits.
So, in total, each level costs O(n? - k) operations. And, since we have k levels, the
total complexity is O(n? - k?). The implementation of the combined greedy method
is straight-forward, so we omit a pseudocode and we will refer to it as GSTEINER.

4.2.3 Incremental Learning with Training Graph

Given a Steiner tree of the training graph, learning with an incremental base learner
is straight-forward. The specific training scheme is traversed in preorder depth-
first-manner, i.e. at each node, the node is first evaluated and then its subtrees are
traversed in left-to-right order. Starting from the root node, the first classifier f; is
learned in batch mode. In the next step, if f1 has a child, i.e. fi is subclassifier of
another classifier fo, f1 is copied and incrementally learned with instances of fs <7 f1,
yielding classifier fo and so on.

After the learning process, all temporary learned classifiers, which served as sub-
classifiers and are not specified in the ECOC matrix, are removed, and the prediction
phase of the ECOC ensemble remains the same.

In this work, we use Hoeffding Trees (cf. Section 2.3.2 on page 11) as an example for
an incremental learner and used the implementation in the Massive Online Analysis
Framework (Bifet et al., 2010).

4.2.4 SVM Learning with Training Graph

While incremental learners are obvious candidates for our approach to save training
time, the problem actually does not demand full incrementality because we always
add batches of examples corresponding to different classes to the training set. Thus,
the incremental design of a training algorithm might retard the training compared
to an algorithm that can naturally incorporate larger groups of additional instances.
Therefore, we decided to study the applicability of this approach to a genuine batch
learner, and selected the Java-implementation of LIBSVM (Chang and Lin, 2011).
The adaption of this base learner consists of two parts: First, the previous model
(subclassifier) is used as a starting point for the successor model in the training graph,
and second, the caching strategy is adapted to this scenario.

Reuse of Weights

A binary SVM model consists of a weight vector @ containing the weights w; for each
training instance (Z;,y;) and a real-valued threshold b. The latter is derived from
w and the instances without significant costs. The weights w are obtained as the
solution of a quadratic optimization problem with a quadratic form w7 (¢7 Hij)w that
incorporates the inputs through pairwise evaluations H;; = x(Z;, Z;) of the kernel
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function k. The first component to speed up the training is to use the weights w of
the parent model as start values for optimizing the child weights w. That is, we set
w; = wj, if instance ¢ belongs to the parent model and w; = 0 otherwise.

The mutual influence of different instances on their respective weights is twofold.
There is a local mutual influence due to the fact that an instance can stand in
the shadow of another instance closer to the decision boundary. And there is a
weaker, global mutual influence that also takes effect on more unrelated instances
communicating through the error versus regularization trade-off in the objective.

If we add additional instances to the training set we might expect that there is
only a modest alternation of the old weights, because many of the new instances will
have little direct effect on the local influence among previous instances. On the other
hand, if the new instances do interfere with some subsets of the previous instances,
the global influence can strongly increase as well. In any case, we are more interested
in the question whether the parent initialization of the weights does speed up the
optimization step.

Cache Strategy

It is well-known that caching of kernel evaluations provides significant speed-up for
the learning with SVMs (Joachims, 1999). LIBSVM uses a least-recently-used (LRU)
Cache, which stores columns of the matrix H respective its signed variant Q = 3! Hy.
Since we use an ensemble of classifiers which potentially overlap in terms of their
training instances and therefore also in their matrices H, it is beneficial to replace
their local caches, which only keep information for each individual classifier, with an
ensemble cache, which allows to transfer information from one classifier to the next
one.

Typically, each classifier receives a different subset of training instances T; C T,
specified by its code configuration. In order to transfer common kernel evaluations H,
from classifier f; to another classifier f;, the cached columns have to be transformed,
since they can contain evaluations of irrelevant instances. Each H,, has to be removed,
if instances a or b are not contained in the new training set and also the possible
change in the ordering of instances has to be considered in the columns. The main
difficulty is the implementation of an efficient mapping of locally used instance ids to
the entire training set and its related transformation steps, otherwise, the expected
speed-up of an ensemble caching strategy is undone.

Two ensemble cache strategies were evaluated, which are based on the local cache
implementation of LIBSVM. The first one reuses nearly all reusable cached kernel
evaluations from one classifier to another. For each classifier, two mapping tables
me(.) and m,(.) are maintained, where m, associates each local instance number
with its corresponding global instance number in order to have a unique addressing
used in the transformation step. The table m, is the mapping table from the previous
learning phase. Before using the old cache for the learning of a new classifier, all
cached entries are marked (as to be converted). During querying of the cache two
cases can occur:
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e a cached column is queried: If the entry is marked, the conversion procedure
is applied. Using the previous and actual mapping table m,, mg, the column is
transformed to contain only kernel evaluations for relevant instances, which
can be done in O(|m,| - log|m,|). Missing kernel evaluations are marked with
a special symbol, which are computed afterwards. In addition, the mark is
removed.

e an uncached column is queried: If the free size of the cache is sufficient,
the column is computed and normally stored. Otherwise, beforehand, the least
recently used entry is repeatedly removed until the cache has sufficient free
space.

Since the columns are converted only on demand, unnecessary conversions are avoided
and their corresponding entries are naturally replaced by new incoming kernel evalu-
ations due to the LRU strategy. But, this tradeoff has the disadvantage that kernel
evaluations that have been computed and cached at some point earlier may have
to be computed again if they are requested later. The marked entries are carried
maximally only over two iterations, otherwise it would be necessary for each addi-
tional iteration to carry another mapping table. We denote this ensemble caching
method as Short-Term Memory (STM). One beneficial feature is the compatibility
to any training scheme, in particular to the standard and the min-redundant training
scheme.

The second ensemble caching method is particularly tailored to the use with a min-
redundant training scheme. It differs from the previous one only in its transformation
step. Recall that the learning phase traverses the subgraph in preorder depth-first
manner. That means that during the learning procedure only the following two cases
can occur: either the current classifier f; is the child of a subclassifier f;, or the
current classifier is directly connected with the root node.

This information can be used for a more efficient caching scheme. For the first case,
the set of training instances of f; is superset of f;, i.e. Tj C T;. That means, |T}| rows
and columns can be reused and also importantly without any costly transforming
method. The columns and rows have to be simply trimmed to size |T}| for the reuse
in the current classifier. Trimming is sometimes necessary, since they can contain
further kernel evaluations from previously learned sibling nodes, i.e. nodes which
share the same subclassifier f;. So, the cache for the current classifier is prepared
by removing Qg with a > |T;| V b > |Tj|. In the second case, we know beforehand
that no single kernel evaluation can be reused in the actual classifier. So, the cache
is simply cleared. We denote this ensemble cache method as Semi-Local (SL) cache.

4.3 Experimental Evaluation

4.3.1 Experimental Setup

As we are primarily concerned with computational costs and not with predictive
accuracy, we applied pre-processing based on all available instances instead of building
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a pre-processing model on the training data only. First, missing values were replaced

by the average or majority value for numeric or ordinal attributes respectively. Second,

all numeric values were normalized, such that the values lie in the unit interval.
Our experiment consisted of following parameters and parameter ranges:

e 642 multiclass classification datasets, where 6 relatively small datasets
in terms of instances (up to ca. 4000) were used in conjunction with LIBSVM
and two large-scale datasets, pokerhand and covtype consisting of 581,012 and
1,025,010 instances, were used with Hoeffding Trees. The number of classes
lie in the range between 4 and 11. All datasets are available from the UCI
repository (Asuncion and Newman, 2010).

e 3 code types: (k,l)-exhaustive and -cumulative exhaustive codes, random
codes of up to length 500 with [ = 3,4 and r,, = 0.2,0.4

e 2 learn methods: min-redundant and standard training scheme

e 2 base learners: incremental learner Hoeffding Trees and batch learner LiB-
SVM (no parameter tuning, RBF-kernel) for which following parameters were
evaluated:

— 3 cache methods: two ensemble cache methods, namely STM and SL,
and the standard local cache of LIBSVM

— 4 cache sizes: 25 %, 50%, 75%, 100% of the number of total kernel
evaluations

All experiments with LIBSVM were conducted with 5-fold cross-validation and for
Hoeffding Trees a training-test split of 66 % to 33 % was used. The parameters of
the base learners were not tuned, because we were primarily interested in their
computational complexity.?

4.3.2 Hoeftfding Trees

Table 4.1 on the next page shows a comparison between the standard training scheme
and the greedy computed min-redundant scheme with respect to the total amount
of training instances. It shows that even with the suboptimal greedy procedure a
significant amount of training instances can be saved. In this evaluation, the worst
case can be observed for dataset covtype with 3-level exhaustive codes, for which
the ratio to the standard training scheme is 22 %. In absolute numbers, this relates
to processing 3.8 million training instances instead of 17.2 million. In summary, the
improvements range from 78 % to 98 % or in other words, 4 to 45 times less training
instances are processed.

3 Tuning of the SVM parameters of the base learners can be relevant here because it may affect the
effectiveness of reusing and caching of models. However, this would add additional complexity to
the analysis of total cost and was therefore omitted to keep the analysis simple.
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Table 4.1: Total number of processed training instances of standard and min-redundant
training scheme. The italic values show the ratio of both. The datasets pokerhand and
covtype consist of 581,012 and 1,025,010 instances respectively, from which 66 % was used
as training instances.

dataset standard min-redundant standard min-redundant

CUMULATIVE EXHAUSTIVE CODES

=3 =4
pokerhand 79,151,319 9,429,611 (0.119) 476,937,435 10,479,451 (0.022)
covtype 19,556,868 3,807,748 (0.195) 73,242,388 5,354,720 (0.073)

EXHAUSTIVE CODES

=3 =4
pokerhand 73,062,756 9,429,591 (0.129) 397,786,116 10,478,523 (0.026)
covtype 17,256,060 3,796,818 (0.220) 53,685,520 5,191,055 (0.097)

RANDOM CODES
T = 0.4 rap = 0.2

pokerhand 258,035,711 10,205,330 (0.040) 311,051,271 8,990,547 (0.029)
covtype 153,519,616 6,744,692 (0.044) 95,483,532 5,300,005 (0.056)

Table 4.2 on the following page shows the corresponding total training time. It
shows that the previous savings with respect to the number of training instances do
not transfer directly to the training time. One reason is that the constant factor in
the linear complexity of Hoeffding Trees regarding the number of training instances
decreases for increasing number of training instances. Furthermore, some overhead is
incurred for copying the subclassifiers before each incremental learning step. In total,
exploiting the redundancies yields a run-time reduction of about 44.6 % — 85.8 %.

The running-time for GSTEINER (constructing the graph and greedily finding the
Steiner tree, without evaluation of the classifiers) is depicted in Table 4.3 on the next
page. For the systematic code types, exhaustive and its cumulative version, the used
time is in general negligible compared to the total training time. The only exception
is for dataset pokerhand with random codes and r,;, = 0.2: About 106 seconds were
used and contributes therefore one-fifth to the total training time in this case.

4.3.3 LibSVM

Table 4.4 on page 39 shows a comparison of training times between LIBSVM and
its adaptions with weight reusing and ensemble caching strategies. M1 and M2 use
the standard training scheme, where M1 is standard LIBSVM with local cache and
M2 uses the ensemble caching strategy STM. M3 and M4 utilize a min-redundant
training scheme with STM and SL respectively. The underlined values depict the best
value for each dataset and code-type combination. The results confirm that the weight
reuse and ensemble caching techniques can be used to exploit code redundancies for
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Table 4.2: Training time in seconds. This table shows training performances for the standard
and the min-redundant learning scheme. The italic values shows the ratio of both.

dataset standard min-redundant standard min-redundant

CUMULATIVE EXHAUSTIVE CODES

=3 =4
pokerhand 261.27  127.33 (0.487) 1530.06  542.57 (0.355)
covtype 118.70  40.89 (0.844) 463.09  93.71 (0.202)

EXHAUSTIVE CODES

[=3 =14
pokerhand 236.52 131.12 (0.554) 1337.00 522.18 (0.591)
covtype 101.50  34.65 (0.841) 330.97  83.58 (0.253)

RANDOM CODES
T = 0.4 rap = 0.2

pokerhand 896.41  356.43 (0.398) 1089.99  537.11 (0.493)
covtype 1106.48 157.61 (0.142) 695.84 107.12 (0.154)

Table 4.3: GSTEINER running time in seconds

CUMULATIVE EXH. EXHAUSTIVE RANDOM
=3 =4 =3 =4 rp»=04 r,;=02
pokerhand 0.82 4.63 4.56  3.57 22.09 105.97
covtype 0.24 3.01 0.14 0.17 0.67 0.52

LiBSVM. For exhaustive codes and its cumulative variant, M4 dominates all other
approaches and achieves an improvement of 31.4 % — 78.4 % of the training time.
However, the results for random codes are not so clear.

For the datasets vowel and yeast both methods employing the min-redundant
training schemes (M3 and M4) use significantly more time. This can be explained
with the relative expensive cost for generating and solving the Steiner tree in these
cases, as depicted in Table 4.5 on the next page (89 and 52 sec for vowel and yeast).
Contrary to the results on optdigits, for these datasets the tree generation and solving
has a big impact on the total training time. Nevertheless, this factor is decreasing for
increasing number of instances, since the complexity of GSTEINER only depends on
k and n. Besides, based on the results with various cache sizes (cf. Tables A.2, A.3
and A.4 in the Appendix) the cache size has a greater impact on the training time for
random codes than for the systematic ones. Table 4.6 on page 40 shows as an example
the performance for random codes with a cache size of 75 %. Notice the reduction of
the training time for the different methods in comparison to Table 4.4 on the next
page, where a cache size of 25 % was used. M4 achieves the best efficiency increase
and by subtracting the time for generating and solving the tree, M4 dominates again
all other methods.
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Table 4.4: Training time in seconds (cache size: 25 %)

optdigits page-blocks segment solar-flare-c vowel yeast
CUMULATIVE EXHAUSTIVE CODES
=3
M1 92.28+0.36 8.73+£0.19 6.56+0.05 3.47+£0.07 580+0.02 5.43+0.03
M2 80.70£0.37 8.32+£0.37 6.00+0.03 4.30£0.08 4.90+0.02 5.62+0.02
M3 76.93+0.60 6.90£0.18 6.944+0.05 3.13£0.16 6.284+0.04 5.77+0.03
M4 53.37+0.40 2.934+0.27 4.19£0.05 1.70£0.25 3.51+0.01 2.9840.02
=4
M1 833.12+£14.98 24.66+0.43 33.98+0.21 18.61+£0.35 47.61+0.08 40.42+0.09
M2 666.024+1.54 21.194+0.80 28.69+0.14 22.94+0.52 36.72+£0.08 41.19+0.11
M3 680.75+8.23 18.30+0.51 36.91+£0.39 15.08+£1.71 51.61+0.15 41.794+0.10
M4 41044 4+6.08 5.324+0.53 17.18 £0.13 8.59+1.27 25.26 +0.06 22.01 +0.10
EXHAUSTIVE CODES
=3
M1 87.424+0.35 7.63+0.39 6.02£0.03 3.17£0.05 551+0.03 5.114+0.02
M2 75.28 +£0.29 6.76 £0.12 548+0.03 3.95+0.07 4.58+0.03 5.284+0.01
M3 75.61+1.04 7.09+£0.27 6.91+0.04 3.13+0.14 6.254+0.03 5.83+0.05
M4 53.13+0.39 2.90+0.21 4.13+0.03 1.71+0.25 3.48+0.02 3.0040.02
=4
M1 735.76 +£9.63 15.31+0.49 27.13+0.31 15.14+0.28 41.78 +0.09 34.99 4+ 0.08
M2 570.69+1.93 12.724+0.45 22.76 £0.13 18.72+0.42 31.92+0.06 35.73 +0.06
M3 646.6 £11.98 16.39+0.44 34.24+0.36 14.69+1.59 49.75+0.10 41.09 +0.10
M4 397.794+5.07 4.76+046 15.88+0.09 845+1.17 24.55+0.10 21.71 +0.06
RANDOM CODES
Ty = 0.4
M1 1654.0 +22.6 25.7+1.1 1565+ 1.7 34.7+1.5 37.5+0.6 46.9+1.2
M2 142444328 243£05 162.9+0.8 46.1£1.9 39.7+£0.7 52.1+£1.3
M3 1609.2 +44.3 226+£03 190.6 3.8 399+54 65.8 £ 2.3 79.1£2.0
M4 1378.84+34.4 5.74+0.3 140.6 £3.0 25.9+ 3.7 57.1+£2.5 64.5+24
rp = 0.2
M1 2634.6 +59.5 10.2+0.3 123.0+0.9 48.2£2.0 49.6 £04 67.2+£1.2
M2 2281.7 +29.6 8.6+£0.5 129.7+14 63.2+3.1 53.0£04 74.1+£1.3
M3  3049.0 +-48.3 12.74+0.2 15794+14 57.6+13.3 153.0+£2.0 157.5+2.1
M4  2594.0 +64.8 3.6+0.2 1285+24 39.14+94 1446+£1.7 144.0+2.2
Table 4.5: GSTEINER running time for random codes in seconds
optdigits page-blocks segment solar-flare-c  vowel yeast
T.p = 0.4 8.93 < 0.01 0.12 0.50 15.10 8.56
Top = 0.2 53.60 < 0.01 0.12 1.26 89.34  52.80
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Table 4.6: Training time in seconds of random codes (cache size: 75 %)

optdigits page-blocks segment solar-flare-c vowel yeast

RANDOM CODES, CACHE=75%
rp =04

M1 1603.4 £22.2 25.8+£0.5 153.7£1.5 343+£15 36.0+06 456+1.1
M2 1317.4+16.3 23.0+£04 1369+1.0 451+£19 359+£06 51.2+1.3
M3 1364.6 £53.6 224+02 1487+£1.3 35.8+45 609+20 826+22
M4 1162.6 +27.6 55+03 70.3+£04 79+08 428+20 274+12

T.p = 0.2

M1 2507.0 £+ 33.8 10.3+0.3 119.8+1.2 47620 476+04 65.3+1.2
M2 1826.2+21.3 8.5+£0.6 98.7£0.6 61.3+£3.1 443+£04 70.6+1.2
M3  2093.7 £ 38.6 124+0.2 1169+0.8 51.0£11.0 1399+£1.8 163.7+2.6
M4  1632.5 £ 40.2 39£01 56.8+£0.3 10.0+1.6 118.6+1.6 87.7+2.2

Table 4.7: Comparison of LIBSVM optimization iterations. The values show the ratio of
optimization iterations of a min-redundant training scheme with weight reusing to standard
learning.

CUMULATIVE EXH. EXHAUSTIVE RANDOM
1=3 1=4 1=3 Il=4 7r,=04 r,=02
0.673 0576 0.768 0.745 0.701 0.773

Table 4.7 shows the number of optimization iterations of LIBSVM, which can be
seen as an indicator of training complexity. The ratio values are averaged over all
datasets and show that the reuse of weights in the pseudo-incremental learning steps
lead to a reduction of optimization iterations.

Once again, the effect on the ensemble caching strategy can be seen in Table 4.8
on the facing page, showing a selection of the results, here for cache sizes 25 % and
75 %. The first column of each block describes the number of kernel evaluation calls.
The consistent reduction for min-redundant schemes M3 and M4 is accredited to the
weight-reusing strategy. Except for random codes with 7, = 0.2 and cache size=25 %
all methods using an ensemble cache strategy (M2, M3 and M4) outperform the
baseline of LIBSVM with a local cache. Among these three methods, M3 and M4
both outperform M2 in absolute terms, but not relative to the number of calls. For
the special case (random codes, 7., = 0.2, M3, M4), one can again see the increased
gain of a bigger cache size for the min-redundant training schemes.

Even though all ensemble caching strategies almost always outperform the baseline
in terms of hit-miss measures, the corresponding time complexities of Table 4.4 on the
previous page show that only M4, which uses a min-redundant training scheme and
the SL caching strategy, is reliably reducing the total training time. The rather costly
transformation cost of STM is the cause for the poor performance of M2 and M3.
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Table 4.8: Cache efficiency and min-redundant training scheme impact: averaged mean
ratio values of kernel evaluation calls (first column) and actual computed kernel evaluations
(second column) to the baseline: standard LIBSVM (M1). The values of M1 are set to 1 and
the following values describe the ratio of corresponding values of M2, M3 and M4 to M1.

CUMULATIVE EXH. EXHAUSTIVE RANDOM
1=3 1=14 =3 1=4 P =04 1, =02

CACHE = 25%

M2 1.00 0.68 1.00 061 100 066 1.00 060 1.00 0.83 1.00 0.84
M3 0.78 0.56 0.71 052 0.87 0.63 0.88 0.67 0.84 083 095 1.01
M4 0.8 056 0.71 051 0.87 063 0.8 065 0.84 0.83 095 1.00

CACHE = 75%

M2 1.00 0.59 1.00 048 1.00 0.56 1.00 044 1.00 0.64 1.00 0.56
M3 0.78 043 0.71 034 0.87 047 088 042 0.84 041 095 0.47
M4 0.8 044 071 032 0.87 048 0.88 041 0.84 042 095 049

4.4 Related Work

In (Blockeel and Struyf, 2003), an efficient algorithm for cross-validation with decision
trees is proposed, which also exploits training set overlaps, but focuses on a different
effect, namely that in this case the generated models tend to be similar, such that
often identical test nodes are generated in the decision tree during the learning process.
This approach is not applicable here, since during the incremental learning steps,
the inclusion of new classes may lead to significant model changes. Here, a genuine
incremental learner or in the case of LIBSVM different approaches are necessary.
However, the main idea, to reduce redundant computations is followed also here.

Pimenta et al. (2007) consider the task of optimizing the size of the coding matrix so
that it balances effectivity and efficiency. Our approach is meant to optimize efficiency
for a given coding matrix. Thus, it can also be combined with their approach if the
resulting balanced coding matrix is code-redundant.

4.5 Conclusions

We studied in this chapter the possibility of reducing the training complexity of ECOC
ensembles with highly redundant codes such as cumulative exhaustive, exhaustive and
random codes. We proposed an algorithm for generating a so-called training graph,
in which edges are labeled with training cost and nodes represent (sub-)classifiers. By
finding an approximate Steiner tree of this graph in a greedy manner, the training
complexity can be reduced without changing the prediction quality. An initial
evaluation with Hoeffding Trees, as an example for an incremental learner, yielded
time savings in the range of 44.6 % to 85.8 %. Subsequently, we also demonstrated
how SVMs can be adapted for this scenario by reusing weights and by employing an
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ensemble caching strategy. With this approach, the time savings for LIBSVM ranged
from 31.4 % to 78.4%. In general, we can expect higher gains for incremental base
learners whose complexity grows more steeply with the number of training instances.
The presented approach is useful for all considered high-redundant code types, and
also for random codes, for which the impact of the GSTEINER algorithm decreases
with increasing training instances. In addition, the generation of a min-redundant
training scheme could be seen as a pre-processing step, such that it is not counted or
only counted once for the total training time of an ECOC ensemble, because it is
reusable and independent of the base learner.

However, this approach has its limitations. GSTEINER can be a bottleneck for
problems with a high class count, since its complexity is O(n? - k?) and the length n
for common code types such as exhaustive codes grow exponentially in the number
of classes k. And, this work considers only highly redundant code types, which are
not unproblematic. First, usually in conjunction with ECOC ensembles, one prefers
diverse classifiers, which are contrasting the redundant codes in our sense. The more
shared code configurations exist in an ensemble, the less independent are its classifiers.
Secondly, these codes are not as commonly used as the low-redundant decompositions
schemes one-against-all and one-against-one.

Another point is, that we implicitly assumed that the incremental learners are
independent with respect to the order of examples. This is usually not the case, also
for the used Hoeffding Tree algorithm. Though we observed only negligible deviations
regarding the predictive performance in our experiments, an appropriate base learner
should satisfy this property.
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While the original motivation for the development of the ECOC framework was
to make multiclass classification problems amenable to binary base classifiers, it
is also known that the resulting multiclass classifier may benefit from the error-
correcting properties of this framework. In particular, several authors have shown
that the Naive Bayes algorithm can benefit from the ECOC framework, especially
for text-classification (Berger, 1999; Ghani, 2000).

In this chapter, we will show that a simple tight combination of these two methods
allows a significantly more efficient learning procedure for a ternary ECOC-based
classifier with Naive Bayes, without any change in predictive performance in compar-
ison to the straight-forward approach. The key idea is the realization that binary
decompositions of a Naive Bayes classifier can be computed very efficiently from the
estimated conditional probabilities of the original Naive Bayes procedure.

Though Naive Bayes as a natural incremental learner is compatible to the approach
from the previous chapter, we will show that in this case an exploitation of redundant
operations is applicable on a substantially deeper and more effective level, namely in
some sense on the feature level instead of the level of shared subclassifiers.

First, we briefly recapitulate Naive Bayes in Section 5.1 and derive the efficient
computation of ECOC ensembles with Naive Bayes base classifiers in Section 5.2.
Then, in Section 5.2.3, we present a suitable precalculation method for discrete, normal
and kernel density estimation methods. Finally, we provide empirical support for the
method in Section 5.3, and end with the conclusion in Section 5.4.
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5.1 Naive Bayes

Though Naive Bayes (NB) is capable of directly learning multiclass predictors,
results in the literature indicate that its predictive performance can be increased in
combination with ECOC methods. Especially for text classification it seems to be
promising (Berger, 1999; Ghani, 2000).

Naive Bayes is essentially an application of the Bayes Theorem with the so-called
naive-independency assumption. In the following, we recapitulate the derivation,
which, although commonly known, is helpful for the presentation of the alternative
computation scheme. Let ai,...,a, denote features or attributes and c¢ be the
class-variable which has k values. Using Bayes Theorem, we can compute the class

probability as
P(c)-P(a1,...,aq | c)

P(c|ai,...,aq9) =

P(al,. . .,ag)
Since the denominator of the right hand side is constant for a given test instance
x = (ai,...,aq), we can ignore this term, and focus on the numerator. More precisely,

for the case of classification, the following holds:

argmax P(c | a1, ...,ay) = argmax P(c) - P(a1,...,aq | €)
C C
Using the class-conditional independence assumption P(a;|c, a;) = P(a; | ¢) for
two arbitrary attributes a;, a; and ¢ # j, we can estimate the class-conditional
probability P(aq,...,a, | ¢) with

P(ay,...,an | c)= ] Plai|o)

i=1...g

P(a; | ¢) and P(c) are estimated from the training data.

5.2 Computation of ECOC for Naive Bayes in a single
pass

In this section, we describe the key idea of this approach. We first show that all
probability estimates that are conditioned on a mutually exclusive group of classes are
additive (Section 5.2.1), and that this can be used for faster probability estimation
in ECOC codes (Section 5.2.2). Finally, we discuss how the idea can be implemented
for nominal and numeric data (Section 5.2.3).

5.2.1 Reduction to Base Probabilities

The key idea behind the efficient computation of arbitrary class-based decomposition
schemes such as ECOC is that all constituent classifiers of a class-based decomposition
can be reduced to the estimation of the parameters of the Naive Bayes classifier,
P(a; | ¢) and P(c).
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Let cJDr ={c1,...,c} be the set of classes defined as positive given by a decompo-
sition D, e.g., from a column of a ECOC matrix. Then it holds that

P(ch) =) P(c) (5.1)

and
P(a; | cg) =P(a; |aa V- V@)

P(ai/\(cl\/---\/cl))
Plav - va)

P(ai/\cl)—k---—i-P(ai/\cl)
Zé‘:l P(c;)
_ Yoy Plai Acy)
Zé’:l P(cj)

(5.2)

since the events of P(c) are mutually exclusive. The probabilities P(cp,) and P(a; | ¢p)
for the negative class can be reduced analogously.

Equations 5.1 and 5.2 simply show, that all necessary values P(c},) and P(a; | cf)
can be computed using P(c) and P(a; | ¢), as computed by the standard Naive Bayes.
Therefore, different decompositions within the ECOC-Framework can be applied with
Naive Bayes without employing further probability estimation steps from training
data, since they would involve redundant computations.

This tight combination of Naive Bayes and ECOC, i.e. applying standard Naive
Bayes learning and computing the appropriate probabilities using Equations 5.1
and 5.2, will be called ECOC-NB in the following text, for convenience. Note, there
exist code types, for which the binary decomposition in conjunction with voting
aggregation (which is in principle identical to Hamming Decoding, addressed in the
next chapter in Section 6.1.1) is equivalent to standard Naive Bayes. For example, in
(Sulzmann et al., 2007) it was shown that a one-against-one decomposition of Naive
Bayes is equivalent to Naive Bayes.

5.2.2 Complexity

Instead of n iterations over the dataset for estimating the corresponding estimations
of P(a; | ¢f;) and P(c}) for an n-bit ECOC scheme, only one pass is necessary. The
usual training complexity of O(n -t - g) can thus be reduced to O(t - g), where n is
the number of classifiers, ¢ the number of training instances and g the number of
features. This is possible by applying standard Naive Bayes to estimate P(a; | ¢)
and P(c) followed by utilizing Equations 5.1 and 5.2 at classification time for each
decomposed classifier and test instance.
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Note, however, that although the training complexity is significantly decreased in
comparison to the straight-forward application of the ECOC framework, the cost is
moved to the prediction phase, because we now have to perform more calculations
for estimating the class-probabilities of an example. In particular, for a problem with
a large number of attributes and classifiers, this can lead to a significant increase of
testing complexity.

5.2.3 Precalculation

We will show in this section that the above-mentioned drawback can be solved by
precalculating the probability distributions needed by the classifiers, i.e precalculating
the combined probability distribution P(a; | c},), instead of always aggregating over
a series of part-probabilities according to Equation 5.2 for each test instance. This
approach results in a training complexity of O((n + t) - g) and the same testing
complexity as the standard approach.

First, we take a closer look into probability estimation methods for common
attribute types which are used in conjunction with Naive Bayes. Then, we show how
to precalculate the needed probability distributions.

Discrete / Nominal Attribute

For discrete attributes, i.e. a; € A;, where A; is a finite set of distinct values, the
following frequency based model is usually used:

a; N\ ¢
P(a; | cj) = M
I
where |z| denotes here the number of observed instances which satisfy statement

x. Also: P(a; A ¢j) = W and P(cj) = %, where n is the number of observed
instances, so far. So for Equation 5.2,

!
Zj:l |ai A\ ¢
l
Ej:l 5]
This leads to (|A;| + 1)k additions and |4;| divisions for generating the pseudo

probability estimator. Note, this complexity is not dependent on the number of
training instances.

P(a; | cf) =

Numeric Attribute

For numeric attributes, the following two estimation procedures are commonly applied:

e Normal Density Estimation The conditional probability P(a; | ¢;) is in this
case usually modeled as a normal distribution:
1 _(a=p)?

flx)= exp 202
@) 2702
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whereas the mean value y = % >, x; and corresponding standard deviation
in following particular calculation formula

- \/ S a? - (S @)

is updated for each incoming training instance by maintaining the number of
observations n, the sum of observed attribute values ) " | z; and the sum
of squared values )", .%‘ZQ These values can be analogously summed up for
representing the pseudo probability distribution, which computational cost is
also independent of the number of instances and dependent of the number of
attributes.

e Kernel Density Estimation Here, the probability density model is in contrast
to the previous two models not represented by a rather small number of model
parameters. Simply said, kernel density estimators maintain all observed data
values and, depending on their distance to a requested value, contribute to its
probability estimate, which results in a somewhat smooth and not necessary
unimodal probability density function. The definition is

f@) = nthlK (”;f)

where K(.) is some kernel (often a standard Gaussian function with mean
zero and variance one) and h is a smoothing parameter, called the bandwidth.

In our context, the straight-forward method to combine these probability
distributions is to merge the observations, which can be done in O(¢). In
contrast to the previous estimation techniques, the overall worst-case is
therefore equivalent to the straight-forward ECOC method.

But, there is still an advantage of this precalculation of kernel density estima-
tors compared to the straight-forward ECOC. For this, we have to recapitulate
a bit more the implementation of f(x), as it is, e.g., realized in the WEKA
software (Hall et al., 2009). Each distinct observed attribute value is stored in
a sorted array along with its number of occurrences (or weight). The merging
complexity of an arbitrary partition of z values in this representation (sorted
arrays of distinct values with their weight) is O(w), where w is the number
of actual distinct observed values of z. If this w is very small compared to
the number of instances ¢ (which is an upper bound for the maximal number
of distinct values), the precalculation method is superior to the straight-
forward method. Carried on to the whole dataset, we denote the ratio w/z
as diversity-value of a dataset, where w is summed over all attributes and
z=1t-g.
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Algorithm 4 ECOC-NB training scheme

Require: ECOC Matrix (m;;) € {—1,0, 1}’”", training set T = (z,y),
1: for each training instance (z,y;) do
ePrior.OBSERVE(1) # P(c;)
for each attribute a; of z do
eCond; j.OBSERVE(valueOf(a;)) # P(aj | )

: for each classifier f; do
k
P(C—"D_j) «— Zi:l,mij>0 P(CZ)

— k
P(CDJ-) — Zi:l,mij<0 P(CZ)
for each attribute a; do

precalculate P(ay, | chSj) and P(ay | CB]_) according to attribute type and

estimation technique

© ® >k

—
—= o

Algorithm 5 ECOC-NB testing scheme

Require: mij,P(cEj),P(ch),P(ak | c}Sj),P(ak ] ch), instance = (ai,...,aq)
1: for each classifier/column f; do
2: bj MAKETERNARY(P(ch) 11 Pla | ch)) # compute bit-prediction
3: return argmax; Z?:l m;j - bj # weighted decoding

5.2.4 ECOC-NB Algorithm

Algorithms 4 and 5 show in pseudocode the simple combined algorithm. The first
four lines of Algorithm 4 correspond to standard Naive Bayes training, whereas the
remaining lines represent the precalculation scheme using Equations 5.1 and 5.2. The
testing phase depicted in Algorithm 5 is in principle identical to the one of standard
ECOC. The function MAKETERNARY maps the prediction of each classifier into the
interval [—1, 1] to be in line with the ternary ECOC framework using an appropriate
mapping function, for instance f(z) = (z — 0.5) - 2.

5.3 Experimental Evaluation

5.3.1 Experimental Setup

ECOC-NB was implemented within the WEKA framework (Hall et al., 2009). For
the evaluation, we mainly focused on text-classification problems and used a freely
available package of 19 text-classification datasets (19MclassTextWel), from which we
selected 17 datasets. The remaining two datasets were excluded because one yielded
a very low accuracy (< 1%) and the other had a relatively high time complexity,
which would unnecessarily increase the overall time for the experiments without

1 http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html
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5.3 Experimental Evaluation

gaining any increased insight (both with standard Naive Bayes). This collection is
composed of well-known benchmark datasets such as TREC and OHSUMED. For
a detailed description, we refer to (Forman, 2003). Table 5.5 on page 54 shows the
dataset characteristics and the last column shows the diversity of each dataset.

In our experiments, we follow prior work in Naive Bayes text classification (Ghani,
2000), and use BCH codes (cf. Section 3.4.3 on page 25). Each of the k classes is
initialized with a randomly selected vector which is then multiplied with the generator
polynomial to yield the code word for this class, similar to (Dietterich and Bakiri,
1995). In our evaluation, we used the bchpoly routine of Gnu Octave? to generate
binary BCH codes of lengths 15,31, 63,127,255,511 and 1023 with maximal designed
minimum Hamming distance respectively. In the usual notation, we used BCH
codes (15,5,7), (31,6,15), (63,7,31), (127,8,63), (255,9,127), (511, 10,255) and
(1023,11,511), where the parameters describe (in this order) the code word bit-
length, the bit-length for coded information, and the minimal Hamming distance
between any pair of code words.

For all experiments, 10-fold Cross-Validation was applied and they were conducted
on a 2.4 GHz AMD Opteron 250 system with 8GB RAM. For kernel density estimation,
a Gaussian kernel with mean zero and variance one was used. No feature selection
was applied, since we are mainly interested on the training complexity, which is more
interesting with a high number of features. But this comes with the disadvantage,
that the accuracy performances may not represent the optimal values. So, in this
regard, the following accuracy results should be viewed with reservation.

In the following performance tables, some cells are empty, because for these partic-
ular combinations of dataset and BCH bit-length, the BCH code generation process
could not generate a valid ECOC matrix, which satisfies some machine learning
relevant properties: The code generation process randomly picks k& BCH code words
of the specified length as the ECOC matrix and checks for every column, if there is
at least one (+1) and one (—1) symbol, respectively. Furthermore, no two columns
must be identical. The code generation process is aborted after 100,000 iterations. It
is clear, that the lower the number of classes, the lower the possibility to generate a
suitable ECOC-matrix with high bit-length.

Note, that we used weighted decoding (Dietterich and Bakiri, 1995) instead of
Hamming decoding, because it performed slightly better with respect to accuracy in
our setting in some preliminary tests.

5.3.2 Accuracy Evaluation

Tables 5.1 and 5.2 show the accuracy performance for Naive Bayes compared to
ECOC-NB with various bit-lengths, using normal density estimation (Table 5.1 on
the following page) and Kernel density estimation (Table 5.2 on page 51). In general,
Naive Bayes and ECOC-NB without kernel density estimators perform better on
these datasets. Furthermore, as can be seen in Table 5.1, ECOC-NB yields superior

2 Octave is a free alternative to MatlLab available from http://www.gnu.org/software/octave/.

49


http://www.gnu.org/software/octave/

5 Efficient ECOC Training with Naive Bayes

Table 5.1: Accuracy of Naive Bayes and ECOC-NB with different BCH code lengths. Both
use normal density estimators. Bold values depict the best performance for the dataset in
row and the underlined values among Tables 5.1 and 5.2.

data NB 15 31 63 127 255 511 1023

fbis 62.61 54.77 5895 6135 64.15 64.60 64.80 65.33
lal 75.06 75.25 76.03 - - - - -
la2 74.89 73.79 T75.22 - - - -
oh0 79.66 79.06 80.65 80.95 81.05 80.95 80.75 -
oh) 77.88 76.68 78.97 80.06 79.73 80.06 79.62 -
ohl0 72.67 7190 7286 74.10 73.90 73.90 74.38 -
ohl5 7524 76.56 76.88 78.09 79.41 78.53 78.75 -
re0 57.51 59.71 62.70 64.70 67.56 65.29 69.55 68.55
rel 66.33 6892 71.94 7230 74.29 73.87 73.63 74.17
trll 54.83 48.34 56.54 55.57 57.98 57.74 - -
tr12  54.67 55.95 57.25 59.10 61.98 -
tr21  46.39 37.50 39.87 - - - - -
tr23  55.79 34.19 37.19 - - - - -
tr31  80.69 82.95 83.61 84.57 - - -
tr41  85.65 85.32 86.91 87.14 8737 87.82 87.59 -
tr45  65.51 58.26 62.32 66.38 66.09 67.39 67.39 -
wap 72.76 6135 66.54 65.51 67.50 6827 67.76 68.40

results than standard Nalve Bayes, except for the worse performance on datasets
tr21, tr23 and wap. Using kernel density estimators (Table 5.2 on the facing page),
we can observe a different result. Both methods seem to be competitive, with some
deviations in favor of both methods.

We can also view the choice of the density estimator as an additional parameter in
the parameter tuning phase. So, if we focus on the best performance for each datasets
across both tables (depicted by underlined values), only in 4 of 17 datasets, namely
lal, tr21, tr23 and wap, the traditional Naive Bayes outperforms ECOC-NB.

5.3.3 Run-time Evaluation

The corresponding training times are shown in Tables 5.3 and 5.4. For bit-lengths
15, 31, 63 and 127 the second column in both tables show the training time of the
straight-forward ECOC implementation, which should serve as a sanity check and
for exposition purposes. The training time increase for the straight-forward ECOC
method compared to Naive Bayes corresponds very closely to the number of used
ECOC bits respectively classifiers. Furthermore, one can clearly observe the very
mild increase of the training time for ECOC-NB for increasing bit-length.

Also, using kernel density estimators, we can observe only a relative slight increase
for increasing number of classifiers (Table 5.4 on page 53). As previously mentioned,
the worst-case training complexity is still the same as the baseline in this case. But,
if the dataset has a very small ratio of distinct values compared to the number of
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Table 5.2: Accuracy of Naive Bayes and ECOC-NB with different BCH code lengths. Both
use kernel density estimators. Bold values depict the best performance for the dataset in row
and the underlined values among Tables 5.1 and 5.2.

data NB 15 31 63 127 255 511 1023

tbis 56.27 43.36 49.49 50.14 51.23 51.56 52.45 51.93
lal 78.59 74.63 77.75 - - - - -
la2 75.02 7431 175.35 - -
oh0 79.95 79.06 80.06 79.76 80.26 80.16 80.36 -
oh) 74.29 7255 7330 7450 7417 7505 74.39 -
ohl0 6943 67.05 68.10 69.24 68.86 69.43 69.62 -
ohl5 70.32 69.22 70.10 6998 70.31 70.20 69.98 -
re0 66.42 63.90 64.69 64.76 64.96 64.83 65.03 64.90
rel 69.16 70.91 71.52 72.84 7254 7296 7236 72.72
tr11  49.30 4229 49.06 46.88 48.08 48.33 - -
tr12 47.62 4859 48.34 52.42 52.44 -
tr21  44.33 39.30 41.36 - - - - -
tr23  53.33 30.31 3281 -
tr31 66.66 70.12 70.87 71.73 - - -
tr4l1 76.66 T77.46 79.62 80.87 80.75 80.98 80.98 -
tr4d 54.93 49.71 54.78 5391 54.64 55.65 55.22 -
wap 7417 69.23 70.13 70.58 71.28 7147 71.67 71.47

instances, it is significantly smaller. This is also the case here, the last column of
Table 5.5 on page 54 shows the ratio of the sum of distinct values over all attributes
to the number of instances times the number of features, which are all far away from
the worst-case scenario. In addition, the tight combination of ECOC and Naive Bayes
may benefit also from the reduced overhead on the programming language level, e.g.,
less function calls and I/O operations.

Note for discrete and normal density estimation, the difference of training time
between ECOC-NB to NB is independent of the number of instances ¢. For instance,
if dataset fbis had far more instances, the training time of ECOC-NB with 31-bit
BCH codes will still only last about 1 sec longer than standard Naive Bayes.

5.4 Conclusions

In this chapter, we presented a simple combined computation of ECOC ensembles
with Naive Bayes as base learner. Compared to the straight-forward method with a
training complexity of O(n -t - g) its complexity using normal and discrete density
estimation methods is reduced to O((n +t) - g).

In conjunction with kernel density estimators the worst-case complexity remains
the same, but, in contrast, it can benefit from a low number of distinct feature values.
We show some empirical evaluations supporting this statement and expect similar
training complexity reduction also on the majority of real-world datasets, which, in
our experience, typically exhibit such a low diversity.
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Table 5.5: Dataset characteristics. This table shows the number of instances ¢, the number
of features g, the number of classes k and the diversity of a dataset.

data  #instances #features #classes diversity

fois 2463 2000 17 0.0050
lal 3204 31472 6 0.0013
la2 3075 31472 6 0.0013
oh0 1003 3182 10 0.0038
ohs 918 3012 10 0.0038
ohl10 1050 3238 10 0.0043
ohl5 913 3100 10 0.0042
rel 1504 2886 13 0.0023
rel 1657 3758 25 0.0022
tril 414 6429 9 0.0127
tri2 313 5804 8 0.0151
tr2l 336 7902 6 0.0184
tr23 204 5832 6 0.0294
tr31 927 10128 7 0.0058
trql 878 7454 10 0.0049
tr4d 690 8261 10 0.0076
wap 1560 8460 20 0.0022

A possible disadvantage of the decomposition approach is the need for tuning
parameters such as the bit-length. However, with the efficient computation scheme
proposed in this chapter, the cost of such a parameter tuning has become feasible.
Furthermore, ECOC-NB can benefit naturally from sophisticated or more specialized
code types in the future, which is an active research topic (e.g., Pujol et al., 2006).

In summary, we have shown that the combination of Naive Bayes with error-
correcting output codes is almost as fast as a conventional Naive Bayes classifier.
ECOC are thus a viable technique for improving the predictive performance of Naive
Bayes on large-scale datasets.
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Pairwise classification may be viewed as a special case of ternary error-correcting
output codes which are a general framework for describing different decompositions of
a multiclass problem into a set of binary problems. Although not strictly necessary, the
number of the generated binary classification problems typically exceeds the number
of class values (n > k), for many common general encoding techniques by several
orders of magnitude. For example, for the above-mentioned pairwise classification,
the number of binary classifiers is quadratic in the number of classes. Thus, the
increase in predictive accuracy comes with a corresponding increase in computational
demands at classification time.

For pairwise classification the recently proposed algorithm QWEIGHTED was able
to reduce the computational costs at prediction time to some extent. In this chapter,
we generalize this algorithm to allow for quick decoding of arbitrary ternary ECOC
ensembles. The resulting predictions are, similar to Q WEIGHTED, guaranteed to be
equivalent to the original decoding strategy except for ambiguous final predictions. In
addition, we will show that the algorithm is applicable to various decoding techniques.

6.1 Efficient ECOC Decoding

In this section, we will generalize the QWEIGHTED algorithm to arbitrary ternary
ECOC matrices. We will then discuss the three key modifications that have to be
made: first, Hamming decoding has to be reduced to a voting process (Section 6.1.1),
second, the heuristic for selecting the next classifier has to be adapted to the case
where multiple classifiers can be incident with a pair of classes (Section 6.1.2), and
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finally the stopping criterion can be improved to take multiple incidences into
account (Section 6.1.3). We will then present the resulting QUICKECOC algorithm
for Hamming decoding in Section 6.1.4. Finally, we will discuss how QUIcCKECOC
can be adapted to different decoding techniques (Section 6.1.5).

6.1.1 Reducing Hamming Distances to Voting

Obviously, pairwise classification may be considered as a special case of ternary
ECOCs, where each column of the coding matrix contains exactly one positive, one
negative, and k — 2 ignore values, as shown in Example 3.2. Thus, it is natural to
ask the question whether the QWEIGHTED algorithm can be generalized to arbitrary
ternary ECOCs.

To do so, we first have to consider that ECOCs typically use Hamming distance for
decoding, whereas pairwise classification typically uses a simple voting procedure. In
voting aggregation, the class that receives the most votes from the binary classifiers
is predicted, i.e.,

€ 1= argmax Z fij
GER i cieK
where f; ; is the prediction of the pairwise classifier that discriminates between classes
¢; and c;.

Traditional ECOC with Hamming decoding predicts the class ¢* whose code
word ¢+ has the minimal Hamming Distance dg(ctwer, p) to the prediction vector
P = (p1,...,Pn)- A certain analogy between both methods can be seen easily and
was further examined by Kong and Dietterich (1995) and has a relation to correla-
tion decoding from coding theory (Gallager, 1968). However, we briefly repeat with
following lemma which shows that the minimization of Hamming distances reduces
to voting aggregation:

Lemma 1 Let v;; := (1 — M) be the vote that classifier f; gives to class c;,
then .
argmin d g (c;, p) = argmax Z Vi

i=1..k i=l.k 55

Proof Recall that
 |ewi, = Pal _ ~ [Mia — Pal
— ia ~ Pal i,a — Pa
e, ) = 32 1 3 e el
a=1 a=1
Let b; 4 := W“ai_pa‘ Since for each codebit b; 4 € [0, 1],

n n n
argmin Z b; o = argmax Z(l —bia) = argmaxz Via

i=1...k i=1...k i=1...k

a=1 a=1 a=1

holds and we obtain the proposition.
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6.1 Efficient ECOC Decoding

6.1.2 Next Classifier Selection

The QWEIGHTED algorithm always pairs the class with the least amount of voting
loss I; with the class that has the least amount of voting loss among all remaining
classes with which it has not yet been paired, and evaluates the resulting classifier.
This choice is deterministic because, obviously, there is only one classifier that is
incident with any given pair of classes.

General ECOC coding matrices, on the other hand, can have more then two non-
zero entries per column. As a result, a pair of classes may be incident to multiple
binary classifiers. This has the consequence that the selection of the next classifier
to evaluate has gained an additional degree of freedom. For instance, consider a
4-class problem (c1,co,c3,cq4) using 3-level ternary exhaustive codes, as shown in
Example 3.3. If classes ¢; and ¢y are those with the current minimum voting loss,
we could select any of four different classifiers that discriminate the classes ¢; and co,
namely fo = fr13) (2}, f3 = fry 28y f5 = fra,ep and fo = fry 2.4

QUICKECOC uses a selection process conforming to the key idea of QWEIGHTED:
Given the current favorite class c;,, we select all incident classifiers Cj,, i.e.,

Cio = {ij,Nj eC ’ Cip € Pj V¢, € Nj} (6.1)

Let K; denote the set of classes, which are involved in the binary classifier f; =
Ip; N;, but with a different sign than ¢, i.e.,

Kj: P] i'fCZ'OENj
Nj lfCiOGPj

In other words, K; contains all rows ¢ of column j in the coding matrix M, for which
m;,j 7 Miy,; and m; j # 0 hold. We then compute a score

s()= Y k—(a)

CiEKj

for every classifier f; € Cj,, where 7(c;) denotes the rank of class ¢; when all classes are
increasingly ordered by their current votings (or, equivalently, ordered by decreasing
distances). Finally, we select the classifier f;, with the maximal score s(jo). Roughly
speaking, this amounts to selecting the classifier which discriminates ¢;, to the greatest
number of currently highly ranked classes.

We experienced that this simple score-based selection was superior among other
tested methods, whose presentation and evaluation we omit here. One point to note
is, that for the special case of pairwise codes, this scheme is identical to the one used
by QWEIGHTED.

6.1.3 Stopping Criterion

The key idea of the algorithm is to stop the evaluation of binary classifiers as soon
as it is clear which class will be predicted, irrespective of the outcome of all other
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6 Efficient ECOC Prediction

classifiers. Thus, the QUICKECOC algorithm has to check whether ¢;,, the current
class with the minimal Hamming distance to p, can be caught up by other classes at
the current state. If not, ¢;, can be safely predicted.

A straight-forward adaptation of the QWEIGHTED algorithm for pairwise clas-
sification would simply compute the maximal possible Hamming distance for c;,
and compare this distance to the current Hamming distances I; of all other classes
¢i € K\ {¢i,}. The maximal possible Hamming distance for ¢;, can be estimated by
assuming that all outstanding evaluations involving ¢;, will increase its Hamming
distance by 1 and all remaining outstanding (non-incident) classifiers will increase
its distance by 0.5 (according to the definition of hamming distance for ternary code
words). Thus, we simply add the number of remaining incident classifiers of ¢;, and
one half of the number of remainder classifiers to its current distance l;,.

Note, however, that this simple method makes the assumption that all binary
classifiers only increase the Hamming distance of ¢;,, but not of the other classes.
This is unnecessarily pessimistic, because each classifier will always equally increase
the Hamming distance for all (or none) of the incident classes that have the same sign
in the coding matrix (positive or negative). Thus, we can refine the above procedure
by computing a separate upper bound of /;, for each class ¢;. This bound does not
assume that all remaining incident classifiers will increase the distance for ¢;, by 1,
but only those where ¢; and ¢;, are on different sides of the training set. For the
cases where either ¢; or ¢;, was ignored in the training phase, % is added to the
distance. If there exist no class which can overtake ¢;,, the algorithm returns c;, as
the prediction.

Note that the stopping criterion can only test whether no class can surpass the
current favorite class. However, there may be other classes with the same Hamming
distance. As the QUICKECOC algorithm will always return the first class that
cannot be surpassed by other classes, this may not be the same class that is returned
by the full ECOC ensemble. Thus, in the case, where the decoding is not unique,
QUICKECOC may return a different prediction. However, in all cases where the code
word minimal Hamming distance is unique, QUICKECOC will return exactly the
same prediction as ECOC.

We also defined a second criterion, which simply stops when all classifiers of the
favorite class c;, have already been evaluated. Strictly speaking, this is a special case
of the first stopping criterion and could be removed. However, we found that making
this distinction facilitated some of our analyses (presented in Section 6.3 on page 78),
so we leave it in the algorithm.

6.1.4 Quick ECOC Algorithm

Algorithm 6 on the facing page shows the pseudocode of the QUICKECOC algorithm.
The algorithm maintains a vector [ = (li,lg,...,1lg) € R*, where ; is the current
accumulated Hamming distance of the prediction vector p to the code word cw; of
class ¢;. The [; can be seen as lower bounds of the distances dg(cw;, p), which are
updated incrementally in a loop which essentially consists of four steps:
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6.1 Efficient ECOC Decoding

Algorithm 6 QuickECOC

Require: ECOC Matrix M = (mij) € {—1,0,1}]””, binary classifiers C =
{fi,.-., fn}, testing instance & € X

L1eRF 0 # Hamming distance vector
2: ¢* < NULL

3: O« C

4: while ¢* = NULL do

5 1 eSELECTNEXTCLASSIFIER(M,f)

6: p < fi(Z) # Evaluate classifier
7 for each i € K do

8 li <~ 1; + w

9 O C"\{fj}
10: M« M\ M

11: Ci, < argminl;

G EK

12: # First stopping criterion
13: abort < true

14: for each ¢; € K \ {¢;,} do

15: Nyl < ‘{f] e | mij - Mig.j = —1}‘

16: N Half < Hfﬁ e’ | mij - Mig,j = 0 and My 5 + My, j 75 O}‘

17: if lio + Ny + %nHalf > [; then

18: abort < false

19: # Second stopping criterion
20: if abort or Vf; € C' : m;,; = 0 then
21: c* ¢y

22: return c*

(1)

(2)

(3)

Selection of the Next Classifier:

First, the next classifier is selected. Depending on the current Hamming distance
values, the routine SELECTNEXTCLASSIFIER returns a classifier that pairs the
current favorite ¢;, = argmin, cy l; with another class that is selected as
described in Section 6.1.2. In the beginning all values I; are zero, so that
SELECTNEXTCLASSIFIER returns an arbitrary classifier f;.

Classifier Evaluation and Update of Bounds Ik

After the evaluation of fj, [is updated using the Hamming distance projected
to this classifier (as described in Section 6.1.1) and f; is removed from the set
of possible classifiers.

First Stopping Criterion:

Starting with Line 12, the first stopping criterion is checked. It checks whether
the current favorite class ¢;, can already be safely determined as the class with
the maximum number of votes, as described in Section 6.1.3.
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(4) Second Stopping Criterion:
Starting with Line 19, the algorithm stops when all incident classifiers of ¢;,
have been evaluated. In this case, since it holds that [;, <; for all classes ¢;
with [;, fixed and considering that [; can only increase monotonically, we can
safely ignore all remaining evaluations.

6.1.5 Adaption to Different Decoding Strategies

As briefly discussed in Section 3.4.2 on page 22, various decoding strategies have
been proposed as alternatives to Hamming decoding. In this section, we show how
QUICKECOC can be adapted to a variety of domain-independent encoding strategies
via small modifications to the basic algorithm.

In general, there are two locations where adaptations are needed. First, the statistics
update step and the first stopping criteria have to be adapted according to the used
distance measure. Second, some decoding strategies require a special treatment of
the zero symbol, which can, in general, be modeled as a preprocessing step.

In the following, we review some important decoding strategies and show how
QUICKECOC can be adapted to deal with each strategy.

Euclidean Distance

The Euclidean Distance dg computes the distance between the code-word and the
prediction vector in Euclidean space.

n

dp (i, §) = ||ci — A, = | Y (miy — pj)? (6.2)
j=1

For minimizing this distance we can ignore the root operation and, instead, minimize
the sum of squared bit-wise differences of both vectors. This can again be computed
incrementally, by substituting the update statement of the pseudocode (Line 8) with:

li 1 + (mij — p)°
Consequently, in the sum in Line 17, the weight for n gy is changed to 1 and the one
for npyy to 4.

Attenuated Euclidean/Hamming Distance

These measures, introduced by Escalera et al. (2006), work analogously to the Ham-
ming Distance and the Euclidean distance, but distances to zero symbols in the
coding vector are ignored (which is equivalent to weighting the distance with |m; ;).
The attenuated Euclidean distance is thus defined as

(mij — p;)° (6.3)

n
dap (s, p) = (| Y [ma
=1
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The analogue version for the Hamming distance is:

n

) mis - p;

dam (i, p) =) \mi,jliy =5 i (6.4)
j=1

The modifications to Lines 8 and 17 are analogous to the previous case.

Loss-based Decoding

In loss-based decoding (Allwein et al., 2000) we assume a score-based base classifier,
and want to take the returned score f(.) into consideration. The similarity function
dy, is then defined as

dr, (civg, p) = > L(mij - ;) (6.5)

J=1

where [(.) is a loss function, such as [(s) = —s or the exponential loss [(s) = e™*.

For both loss functions, we assume that we have given a normalizing function w(.)
which projects f;(z) into the interval [—1,1], e.g.,!

= z2>0
’LU(Z) _ ma;cz ;O
| min z| <

For the linear loss, we substitute Line 6 with

p < w(fj(x))
and the update in Line 8 with

L —p-mi,

i
li l; + 5

and remove the occurrences of n ggyy.

For the exponential loss, we have to change Line 6 as above and the update step
with

l; < l; + e PMig,

In addition, the weights in Line 17 are set to e' for np,; and to e? =1 for n Half-

1 Note that we did not use such a normalizing function in our actual evaluation since we used a
decision tree learner which already returns scores in the right range. Although the normalization
of score-based functions, such as SVMs, is not a trivial task, the sketched function w(.) could be
possibly determined by estimating min f(z) and max f(z) during training time (e.g., saving the
largest distances between instances to the hyperplane for each classifier).
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Laplace Strategy

The Laplace Strategy (Escalera et al., 2006) interprets the zero symbol in a different
way: If a code word cw; consists of more zero symbols than cws, the number of
“reasonable” predictions is smaller, so every non-zero symbol prediction of ¢ty should
be given a higher weight.

E+1  dag (c,p)+1
E+C+T 0 mij|+T

dra (c;, p) = (6.6)

where C' is the number of bit positions in which they are equal and E in which they
differ. So, roughly speaking, depending of the number of zero symbols of cw;, every
bit agreement contributes more or less to the distance measure. T is the number
of involved classes, in our case T" = 2, since we employ binary classifiers. Thus, the
default value of dp4(.) is %

This strategy can be used by incorporating a class- respectively row-based incre-
menter. Note that each error bit between a code word cw and the prediction vector
P contributes 1/(b+ T') to the total distance dp4(cw,p), where b is the number of
non-zero bits of ciw. This incrementer denoted by I; for class ¢; can be computed as
a preprocessing step from the given ECOC Matrix. So, the update step in Line 8
has to be changed to

1+ I;

and the weight of ng,; in the sum in Line 17 changes to I;. Besides, np,y can be
removed.

Beta Density Distribution Pessimistic Strategy

This measure also proposed by Escalera et al. (2006) assumes that the distance is a
Beta-distributed random variable parametrized by C' and E of two code words. The
Beta distribution is here defined as

W(z B,C) = %zE(l _ e

Its expected value is E(v¢;) = %
Let Z; := argmax_c[o1)(¢i(2)) and a; € [0, 1] such that

Zita; 1
L e =5

dpp(x,y) = Z; + a; (6.7)

The value a; is regarded as a pessimistic value, which incorporates the uncertainty of
Z; into the distance measure.

Here, we use an approximation of the original strategy. First, similar to the Laplace
Strategy, an incrementer is used to determine Z; = % And second, instead of using

then we define
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a numerical integration to determine Z; + a;, its standard deviation is added, which
is in compliance with the intended semantic of this overall strategy to incorporate
the uncertainty. The incrementer I; is again set during a preprocessing step and we
change the update step (Line 8) to

l; < l; + min (1, (Ii + Ul))

The weight for np,; has to be changed to I; and n gy has to be removed. In practice,
this approximation yielded in all our evaluations the same prediction as the original
strategy.

Remarks

The presented decoding techniques were just a few examples, which we have empirically
tested. Other techniques can be adapted in a similar fashion. In general, a distance
measure is compatible to QUICKECOC if the distance can be determined bit-wise or
incremental, and the iterative estimate of I; has to be monotonically increasing, but
must never over-estimate the true distance.

6.2 Experimental Evaluation

In this section, we show the results of the empirical evaluation of our algorithms. We
focus on the number of classifier evaluations that have to be performed in order to
compute a prediction. We typically do not compare our results in terms of predictive
accuracy, because our algorithms make the same prediction as their respective versions
that use all classifiers. Nevertheless, unless mentioned otherwise, the reported results
are averages of a 10-fold cross-validation, in order to get more reliable estimates.

Before we present the results on QUICKECOC in Section 6.2.2, we will provide
supplemental evaluations regarding QWEIGHTED, which extend previous experiments
in (Park and Fiirnkranz, 2007) by using parameter-tuned classifiers, addressing large
scale datasets and providing an analysis on the computational overhead. Since,
QWEIGHTED resembles in principle a special case of QUICKECOC in conjunction
with pairwise codes, this helps to determine the overall performance of QUICKECOC
including pairwise codes.

6.2.1 Pairwise Classification - Evaluation of QWeighted
UCI Datasets

We start with a comparison of the QWEIGHTED algorithm with the full pairwise
classifier and with DDAGs on seven arbitrarily selected multiclass datasets from
the UCI database of machine learning databases (Asuncion and Newman, 2010).
We used four commonly used learning algorithms as base learners (the rule learner
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RIPPER,? a Naive Bayes algorithm (NB), the C4.5 decision tree learner (J48), and
a support vector machine (SMO) all in their implementations in the WEKA machine
learning library (Hall et al., 2009). Each algorithm was used as a base classifier
for QWEIGHTED, and the combination was run on each of the datasets. A mild
parameter tuning was applied to each base algorithm, which does not necessarily
help to answer the question of the choice for best predictive combination on these
datasets because of its non-exhaustive conducting, but were rather applied to take
the fact into account that the predictive performance has an impact on the efficiency
of the QWEIGHTED algorithm. Inner 5-fold cross-validation tuning® was applied for
following base learners and parameters:

e NB:

— with or without kernel density estimators (cf. Section 5.2.3 on page 46)

e SMO:
— complexity {0.1,0.2,...,1}
— exponent of polynomial kernel {0.5,1,1.5,2}

e J48:
— confidence factor {0.02,0.04,...,0.5}

— minimum number of instances per leaf {1,2, 3,4}

o JRIP:
— folds for pruning {2, 3,4}
— minimum total weight of instances per rule {1, 2,3}

— number of optimization runs {1,2,3}

All results are obtained via a 10-fold cross-validation except for letter, where the
supplied testset was used. The same experiments were already performed without
parameter tuning and can be found in (Park and Fiirnkranz, 2007).

Table 6.1 on the next page shows the results. With respect to accuracy, there are
only 5 cases in a total of 28 experiments (4 base classifiers x 7 datasets) where
DDAGS outperformed QWEIGHTED, whereas QWEIGHTED outperformed DDAGs
in 20 cases (3 experiments ended in a tie). Even according to the very conservative
sign test, this difference is significant with p = 0.004. This and the fact that, to the
best of our knowledge, it is not known what loss function is optimized by DDAGs,
confirm our intuition that QWEIGHTED is a more principled approach than DDAGs.

With respect to the number of comparisons, it can be seen that the average number
of comparisons needed by QWEIGHTED is much closer to the best case than to

2 We used a double round robin for Ripper for both, the full pairwise classifier and for QWEIGHTED.
In order to be comparable to the other results, we, in this case, divide the observed number of
comparisons by two.

3 The CVParameterSelection method implemented in WEKA was used for parameter tuning.
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Table 6.1: Comparison of QWEIGHTED and DDAG with different base learners on seven
multiclass datasets. The right-most column shows the number of comparisons needed by
a full pairwise classifier (k(k — 1)/2). Next to the average numbers of comparisons 7 for

QWEIGHTED we show their trade-off %@i) between best and worst case (in brackets).
Accuracy @ Comparisons
dataset k learner QWEIGHTED DDAG QWEIGHTED DDAG full
vehicle 4 NB 61.24 + 4.66 61.12 + 4.75 4.11 (0.370) 3 6
SMO 80.62 £ 4.30  81.09 £ 4.57  3.70 (0.233)
J48 71.40 £ 3.06  70.70 £ 2.64  3.94 (0.314)
JRIP 69.63 £ 7.30  69.99 £ 6.36  4.00 (0.335)
glass 7 NB 51.88 £ 7.77  51.43 £ 7.11  9.68 (0.245) 6 21
SMO 62.66 £ 5.89  63.59 £ 6.29 10.03 (0.269)
J48 70.09 £ 7.43  68.25 £ 5.60  9.81 (0.254)
JRIP 68.27 £ 10.39 66.43 £ 10.11  9.77 (0.251)
image 7 NB 85.76 £ 1.20 85.76 £ 1.20  8.95 (0.197) 6 21
SMO 96.58 £ 1.14  96.62 £ 1.13  8.04 (0.136)
J48 95.84 £1.29 96.36 £ 1.08  8.65 (0.177)
JRIP 96.67 £ 1.32  96.45 + 1.48  8.77 (0.185)
yeast 10 NB 59.16 + 3.58  58.96 + 3.46 15.96 (0.193) 9 45
SMO 58.28 £ 4.05  58.15 + 3.83  15.48 (0.180)
J48 58.96 + 3.58  58.29 + 3.75 15.61 (0.184)
JRIP 58.89 + 3.59  57.81 + 3.31 15.68 (0.185)
vowel 11 NB 71.41 £ 557  71.31 £ 5.43 17.19 (0.160) 10 55
SMO 08.59 + 1.28  98.38 £ 1.66  14.88 (0.108)
J48 82.73 £ 3.48  78.79 £ 4.07 16.99 (0.155)
JRIP 83.64 £ 528  77.88 £ 6.01 17.64 (0.170)
soybean 19 NB 92.96 £ 1.83  92.96 £ 1.83 27.70 (0.063) 18 171
SMO 93.40 +£ 2.63  93.11 £ 2.70  28.36 (0.068)
J48 93.55 £ 2.63  91.36 £ 2.55 28.98 (0.072)
JRIP 93.70 £ 1.97  92.67 £ 2.30 29.79 (0.077)
letter 26 NB 73.93 73.88 43.77 (0.063) 25 325
SMO 91.70 91.13 41.49 (0.055)
J48 91.10 85.90 47.86 (0.076)
JRIP 90.23 85.83 47.33 (0.068)
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Figure 6.1: a) Efficiency of QWEIGHTED in comparison to a full pairwise classifier, b)
Distribution of votes for vowel (11-class problem, base learner SMO). The x-axis describes
the ranking positions.

the worst case. Next to the absolute numbers, we show the trade-off between best
and worst case (in brackets). A value of 0 indicates that the average number of
comparisons is k — 1, a value of 1 indicates that the value is k(k — 1)/2 (the value
in the last column). As we have ordered the datasets by their respective number
of classes, we can observe that this value has a clear tendency to decrease with
the number of the classes. For example, for the 19-class soybean and the 26-class
letter datasets, only about 6 — 7% of the possible number of additional pairwise
classifiers are used, i.e., the total number of comparisons seems to grow only linearly
with the number of classes. This can also be seen from Figure 6.1a, which plots the
datasets with their respective number of classes together with a curve that indicates
the performance of the full pairwise classifier.

Finally, we note that the results are qualitatively the same for all base classifiers.
QWEIGHTED does not seem to depend on a choice of base classifiers.

Simulation Experiment

For a more systematic investigation of the complexity of the algorithm, we performed
a simulation experiment. We assume classes in the form of numbers from 1...k, and,
without loss of generality, 1 is always the correct class. We further assume pairwise
base pseudo-classifiers f; ;, which, for ¢ < j, return ¢rue with a probability 1 — € and
false with a probability e. For each example, the QWEIGHTED algorithm is applied
to compute a prediction based on these pseudo-classifiers. The setting € = 0 (or
e = 1) corresponds to a pairwise classifier where all predictions are consistent with a
total order of the possible class labels, and € = 0.5 corresponds to the case where the
predictions of the base classifiers are entirely random.
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Table 6.2: Average number 7 of pairwise comparisons for various number of classes and

different error probabilities € of the pairwise classifiers using QWEIGHTED, and for the full

pairwise classifier. Below, we show their trade-off A—(k—1)

max—(i=T) between the best and worst

case, and an estimate of the growth ratio % of successive values of 7.
k=5 k=10 k=25 k =50 k=100
— 0.0 5.43 14.11 42.45 91.04 189.51
= 0.238 — 0.142 1.378 0.067 1.202 0.036 1.101 0.019 1.058
¢ — 0.05 5.72 16.19 60.01 171.53 530.17
o 0.287 — 0.200 1.501 0.130 1.430 0.104 1.515 0.089 1.628
=01 6.07 18.34 76.82 251.18 900.29
e 0.345 — 0.259 1.595 0.191 1.563 0.172 1.709 0.165 1.842
— 0.2 6.45 21.90 113.75 422.58 1,684.21
= 0.408 — 0.858 1.764 0.325 1.798 0.318 1.893 0.327 1.995
c— 023 6.90 25.39 151.19 606.74 2,504.54
e 0.483 — 0.455 1.880 0.461 1.974 0.474 2.005 0.496 2.045
c—04 6.93 27.73 182.58 776.98 3,265.56
e 0.488 — 0.520 2.000 0.575 2.057 0.619 2.089 0.653 2.071
05 7.12 28.74 198.51 868.25 3,772.45
= 0.520 — 0.548 2.013 0.6532 2.109 0.697 2.129 0.757 2.119
full 10 45 300 1,225 4,950

Table 6.2 on this page shows the results for various numbers of classes (k = 5,
10, 25, 50, 100) and for various settings of the error parameter (¢ = 0.0, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5). Each data point is the average outcome of 1000 trials with the
corresponding parameter settings. We can see that even for entirely random data, our
algorithm can still save about 1/4 of the pairwise comparisons that would be needed
for the entire ensemble. For cases with a total order and error-free base classifiers,
the number of needed comparisons approaches the number of classes, i.e., the growth
appears to be linear.

To shed more light on this, we provide two more measures below each average:
the lower left number (in italics) shows the trade-off between best and worst case,
as defined above. The result confirms that for a reasonable performance of the base
classifiers (up to about € = 0.2), the fraction of additional work reduces with the
number of classes. Above that, we start to observe a growth. The reason for this
is that with a low number of classes, there is still a good chance that the random
base classifiers produce a reasonably ordered class structure, while this chance is
decreasing with increasing numbers of classes. On the other hand, the influence
of each individual false prediction of a base classifier decreases with an increasing
number of classes, so that the true class ordering is still clearly visible and can be
better exploited by the QWEIGHTED algorithm.
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This can also be seen in Figure 6.1b on page 66, which shows the distribution of
the votes produced by the SVM base classifier for the dataset vowel. As shown on
the scale to right, different shades of gray are used for encoding different numbers
of received votes. Each horizontal line in the plot represents one example, the left
shows the highest number of votes, the right the lowest number of votes. If all classes
receive the same number of votes, the area should be colored uniformly. However,
here we observe a fairly clear change in the color distribution, the dark areas to the
left indicating the top-rank class often receives nine or more votes, and the bright
areas to the right indicating that the lowest ranking class typically receives less than
one vote (recall that we use weighted voting).

We tried to directly estimate the exponent of the growth function of the number
of comparisons of QWEIGHTED, based on the number of classes k. The resulting
exponents, based on two successive measure points, are shown in bold font below the
absolute numbers. For example, the exponent of the growth function between k =5
and k = 10 is estimated (for e = 0) as % ~ 1.378. We can see that in the
growth rate starts almost linearly (for a high number of classes and no errors in the
base classifiers) and approaches a quadratic growth when the error rate increases.*

Datasets with a Large Number of Classes

In addition to the small datasets from Table 6.1 on page 65, we evaluated the
QWEIGHTED algorithm on three more real-world datasets with a relative high
number of classes:

Uni-label RCV1-v2

RCV1-v2 (Lewis et al., 2004) is a dataset consisting of over 800,000 categorized
news articles from Reuters, Ltd. For the category topic multiple labels from a
total of 103 hierarchically organized labels are assigned to the instances. We
transformed this original multilabel dataset to a multiclass dataset by selecting
the assigned label with the greatest depth in the hierarchical tree as the class
label. We applied this procedure on the provided trainset and testset no. 0 by
Lewis et al. (2004) resulting to a multiclass dataset with 100 classes, 23,149
train- and 199,328 test-instances, with at least one positive example for each
of the 100 classes. We selected 2,000 features according to a y?-based feature
selection (Yang and Pedersen, 1997). We will refer to this created dataset as
urcvl-v2.

ASTRAL 2 & 3
These datasets describe protein sequences retrieved from the SCOP 1.71 protein
database (Murzin et al., 1995). We used ASTRAL (Brenner et al., 2000) to
filter these sequences so that no two sequences share greater than 95 % identity.

4 At first sight, it may be surprising that some of the numbers are greater than 2. This is a result
of the fact that k(k — 1)/2 = k?/2 — k/2 is quadratic in the limit, but for low values of k, the
subtraction of the linear term k/2 has a more significant effect. Thus, e.g., the estimated growth

of the full pairwise classifier from k =5 to k = 10 is lfogé(‘lfo/ /150)) ~ 2.17.
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6.2 Experimental Evaluation

Table 6.3: Results of QWEIGHTED for datasets with a relative high number of classes. In

parentheses, we show their trade-off %@1_)1) between the best and worst case (base learner
J48).

dataset k QWEIGHTED full Accuracy

urcvl-v2 100 312.62 (0.0440) 4,950 62.1

astral2 971  9,490.81 (0.0018) 470,935 24.8

astral3 1,588  28,476.20 (0.0213) 1,260,078 20.8

The class labels are organized in a 3-level hierarchy, consisting of protein
folds, superfamilies and families (in descending order). astral3 consists of 1,588
classes and contains the original hierarchy. To fill the gap between datasets
urcvl-v2 and astral3 in terms of number of classes, we constructed a second
dataset astral2 by limiting the hierarchical depth to 2. So, two instances which
previously shared the same superfamily x are now assigned to superfamily x as
new class label. By decreasing the depth, the number of classes were reduced to
971. Both datasets have 13,006 instances and 21 numeric attributes (20 amino
acids plus selenocysteine).

Table 6.3 shows the results of these experiments. For astral2 and astral3, 66 percent
of all instances were used for training and the rest for testing. Once again, trade-off
values were estimated for the average number of pairwise comparisons. As these
values show, QWEIGHTED uses only a fairly small amount compared to a full voting
aggregation and is much closer to the best case than to the worst case (k(k —1)/2
comparisons). One can see an increasing growth of the trade-off values between
astral2 and astral3. However, this effect can be explained with the general poor
classification accuracy of protein sequences. According to the simulation results, there
exist a correlation between performance of QWEIGHTED and performance of the
underlying base classifiers. The decreased accuracy on astral3 compared to astral2
(right-most column) indicates weaker base classifiers, which leads to a increasing
number of needed pairwise comparisons.

In summary, our results indicate that the QWEIGHTED algorithm always increases
the efficiency of the pairwise classifier: for high error rates in the base classifiers,
we can only expect improvements by a constant factor, whereas for the practical
case of low error rates we can also expect a significant reduction in the asymptotic
algorithmic complexity.

Overall Complexity

Besides the complexities for the comparisons, the overall complexity of the algorithm
including the inherent overhead of the algorithm, e.g., estimating the next classifier f,
and so on, can be stated as g(k) - (k+p) operations, where g(k) denotes the number of
comparisons in dependence of k and p describes the cost of one comparison (prediction)
in terms of basic operations. The summand k is here understood as the operations for
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Figure 6.2: Approximate computational savings for p = 20 and assumed average complexity
of k -logk of QWEIGHTED

the overhead involving additions, value associations and argmin operations, which can
be implemented in an incremental manner with O(k) by maintaining a sorted vector
of classes (for the limits ;) updated after each comparison and using a 2-dimensional
boolean array which maintains the status of the classifiers (evaluated/not evaluated).

Given the empirical evidences, lets assume g(k) = k - log k. This results in a total
of k? -logk + p - k - log k operations. Obviously, the overall asymptotic complexity of
QWEIGHTED is worse than the complexity for standard voting of O(k?), such that
for very large k the complexity of the standard voting is favored. But, in practice for
reasonable assumptions, e.g p > 1 (keep also in mind that p can increase for some
learning schemes, e.g., in dependence of the number of training instances), there exist
an upper limit k& € N such that k2 - logk + p - k - log k is significantly smaller than
p- %_1) for k < k.

To give a clearer picture, consider Figure 6.2, where the difference of both quantities,
le.p- w — (k-logk- (k+p)) is plotted for p = 20 (20 atomar operations needed
for one prediction). The graph shows the saved number of operations by using
QWEIGHTED in contrast to standard voting procedure in dependence of k. The left
figure shows the savings up to the critical class count ko~ 22,000 and the right
figure shows the same plot for the selected range k& = [1,1000], which corresponds
approximately to the typical range in real-world datasets.

6.2.2 ECOC C(Classification - Evaluation of QuickECOC

In this section, we evaluate the performance of QUICKECOC for a variety of different
codes. In addition, we were interested to see if it works for all decoding methods
and whether we can gain insights on which factors determine the performance of
QUICKECOC. In particular, we investigated the effects of the sparsity and length of
the codes.
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Experimental Setup

In contrast to the results presented in the previous section, we only used the decision
tree learner J48 with default parameters as a base learner to restrict the already
large number of the experiments. Besides, the results in Section 6.2.1 on page 63 gave
no indication that the performance in terms of the number of needed comparisons
depends on the choice of the base classifier. Thus, we are quite confident that the
presented results are representative for other base classifiers.

Our setup consisted of

e 5 encoding strategies: BCH Codes and two versions each of exhaustive and
random codes.

e 7 decoding methods: Hamming, Euclidean, attenuated Euclidean, linear loss-
based, exponential loss-based, Laplacian Strategy and Beta Density Probabilistic
Pessimistic

e 7 multiclass datasets selected from the UCI Machine Learning Repository.

For the encoding strategies, we also tried several different parameters. Regarding the
exhaustive codes, we evaluated all (k,[) codes ranging from [ = 2 to [ = k per dataset
and analogously for the cumulative version. For the generation of the first type of
random codes the zero symbol probability was parametrized by r., = 0.2,0.4,0.6,0.8
and the dimension of the coding matrix was fixed to 50 % of the maximum possible
dimension with respect to the number of classes. The second type of random codes
was generated by randomly selecting 20 %, 40 %, 60 % and 80 % from the set of all valid
classifiers respectively columns (all columns of an (k, k) cumulative ternary coding
matrix) without repetition. Regarding BCH Codes, we generated 7,15, 31,63, 127
and 255-bit BCH codes and randomly selected n rows matching the class count of the
currently evaluated dataset. For the datasets machine and ecoli where the number of
classes is greater than 7, we excluded the evaluation with 7-bit BCH codes.

For the evaluation of QUICKECOC, the seven datasets were selected to have
a rather low number of different classes. The main reason for this limitation was
that for some considered code types the number of classifiers grows exponentially.
Especially for the datasets with the maximum number of eight classes (machine and
ecoli), the cumulative ternary exhaustive codes generates up to 3025 classifiers. In
addition, we evaluated all possible combinations of decoding methods, code types
with various parameters, which we can not present here completely (in total 1246
experiments) because of lack of space. Nevertheless, we performed experiments with
a few of more efficient codes on datasets with a larger number of classes as well.
These will be shown in Section 6.2.2 on page 75.

Because of the high number of experiments, we cannot present all results in detail,
but will try to focus on the most interesting aspects. In addition to assess the general
performance of QUICKECOC, we will analyze the influence of the sparsity of the
code matrix, of the code length, and of different decoding strategies.
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Table 6.4: QUICKECOC performance using Hamming Decoding and Exhaustive Ternary
Codes. The maximal relative standard deviation for all values is 8.65 % with mean 3.88 %.

I vehicle derm. auto glass 200 ecoli machine

2 3.82 63.7 712475 795879 999 /7.6 948 /5.1 11.75 42.0 11.60 41.}
3 7.91 65.9 26.05 /3. 42.86 /0.8 4347 /1.4 41.64 39.7 58.85 35.0 57.90 3/.5
4 5.65 80.8 46.30 44.1 115.22 7.0 116.45 /7.5 107.03 /3.7 199.31 40.7 194.81 39.8
43.11 47.9 163.67 52.0 163.98 52.1 148.50 47.1 369.06 43.9 355.23 42.8
16.54 53./ 114.87 52.9 116.77 53.8 102.41 /7.2 394.25 /5.4 369.19 2.5
34.24 5/.8 37.84 60.1 31.52 50.0 234.80 46.6 218.09 43.3

62.17 /9.0 57.27 45.1

o J O Ot

Reduction in Number of Evaluations

Table 6.4 shows the reduction in the number of classifier evaluations with QUICK-
ECOC on all evaluated datasets with Hamming decoding and ternary exhaustive
codes. In every column, the average number of classifier evaluations is stated with its
corresponding ratio to the number of generated classifiers in italics (the lower the
better). The datasets are ordered from left to right by ascending class-count. As the
level parameter [ is bounded by the class-count &, some of the cells are empty.

One can clearly see that QUICKECOC is able to reduce the number of classifier
evaluations for all datasets. The percentage of needed evaluations ranges from about
81 % (vehicle, l = 4) to only 35 % (machine, [ = 3). At first glance, these improvements
may not seem striking, because a saving of a little less than 40 % for the small
datasets does not appear to be such a large gain. However, one must put these
results in perspective. For example, for the vehicle dataset with a (4, 3)-exhaustive
code, QUICKECOC evaluated 65.9 % of all classifiers. A (4, 3)-exhaustive code has
12 classifiers, and each individual class is involved in 75 % of these classifiers (cf.
the example in Section 3.4.3 on page 24). Thus, on average, QUICKECOC did not
even evaluate all the classifiers that involve the winning class before this class was
predicted.

Furthermore, one can observe a general trend of higher reduction by increasing class-
count. This is particularly obvious if we compare the reduction on the exhaustive codes
(the last line of each column, where [ = k), but can also be observed for individual
code sizes (e.g., for [ = 3). Although we have not performed a full evaluation on
datasets with a larger amount of classes because of the exponential growth in the
number of classifiers, a few informal and quick tests supported the trend: the higher
the class-count, the higher the reduction.

Another interesting observation is that except for dataset vehicle and auto the
exhaustive ternary codes for level [ = 3 consistently lead to the best QUICKECOC
performance over all datasets. We will provide later on a possible explanation based
on a “combinatorial trade-off” in Section 6.3 on page 78.

The results for BCH codes are shown in Table 6.5 on the next page. Again, we can
observe an improved performance in all cases. This result is particularly interesting
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Table 6.5: QUICKECOC performance on BCH Codes. The maximal relative standard
deviation for all values is 10.2 % with mean 5.64 %.

vehicle derm. auto glass zoo  ecoli machine

7 0.764  0.774 0.851 0.880 0.834 - -
15 0.646  0.656 0.699 0.717 0.659 0.670 0.648
31 0.571  0.564 0.607 0.662 0.581 0.602 0.558
63 0.519  0.506 0.567 0.616 0.517 0.540 0.509
127 0.489  0.447 0.522 0.565 0.477 0.493 0.459
255 0.410 0.380 0.450 0.467 0.397 0417 0.388
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Figure 6.3: QUICKECOC performance on random codes

because for BCH-codes, all coding matrices are dense, i.e., they do not have any zero
entries. Even in this case, we see that there was no situation, where all classifiers were
needed for multiclass classification. And again, we observe that for higher dimensions
(increasing the length of the BCH bit code) higher reductions can be observed.

For random codes, we obtained qualitatively the same results. We do not show
them here, but some of them will appear in the following sections.

Sparsity of Coding Matrices

We define the sparsity of the ECOC matrix as the fraction of zero values it contains.
Random codes provide a direct control over the matrix sparsity (as described in
Section 3.4.3 on page 25), and are thus suitable for analyzing the influence of the
sparsity degree of the ECOC matrix for QUICKECOC. Note, however, that the
observed influences regarding sparsity and dimension of the matrix on the QUICK-
ECOC performance can also be seen in the evaluations of the other code types, but
not as clearly as with the random codes presented in this section.

Figure 6.3a shows QUICKECOC applied to random codes with varying matrix
sparsity. A clear trend can be observed that the higher the sparsity of the coding
matrix the better the reduction for all datasets. Keep in mind that the baseline
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performance (evaluating all binary classifiers) is a parallel to the x-axis with the y-
value of 1.0. Note that the absolute reduction tends to be minimal over all considered
datasets at datasets with higher class-counts i.e machine at 80 % sparsity, and the
lowest reduction can be seen for the dataset vehicle with the smallest number of
classes k = 4 at 20 % sparsity.

The main effect of an increase of sparsity on the coding matrices is that for each
class the number of incident classifiers decreases. For sparsity 0, all classes are involved
in all classifiers, for sparsity 0.5, each class is (on average) involved in only half of the
classifiers. This will clearly affect the performance of the QUICKECOC algorithm.
In particular, the second stopping criterion essentially specifies that the true class is
found if all incident classifiers for the favorite class ¢;, have been evaluated. Clearly,
the algorithm will terminate faster for higher sparsity levels (ignoring, for the moment,
the possibility that the first stopping criterion may lead to even faster termination).

Code Length

The second type of random codes, which were generated by randomly selecting a
fixed number from the set of all possible binary classifiers can be seen in Figure 6.3b
on the previous page. All coding matrices for a k-class dataset have nearly the same
sparsity, which relates to the average sparsity of (k, k) cumulative exhaustive codes
and differ only in the length of the coding matrix (in percent of the total number of
possible binary classifiers). This allows us to observe the effect of different numbers
of classifiers on the QUICKECOC performance. Here, we can also see a consistent
relationship, that higher dimensions lead to better performance, but the differences
are not as remarkable as for sparse matrices.

For a possible explanation, assume a coding matrix with fixed sparsity and we
vary the dimension. For a higher dimension the ratio of number of classifiers per
class increases. Thus, on average, the number of incident classifiers for each class also
increases. If we now assume that this increase is uniform for all classes, this has the
effect that the distance vector  is multiplied by a positive factor = > 1, i.e., =1
This alone would not change the QUICKECOC performance, but if we consider that
classifiers are not always perfect, we can expect that for a higher number of classifiers,
the variance of the overall prediction will be smaller. This smaller variance will lead
to more reliable voting vectors, which can, in turn, lead to earlier stopping. It also
seems reasonable that this effect will not have such a strong impact as the sparsity
of the coding matrix, which we discussed in the previous section.

Different Decoding Strategies

As previously stated, because of the large number of experiments, we can not give a
complete account of all results. We evaluated all combinations of experiments, that
includes also all mentioned decoding methods. All the previously shown results were
based on Hamming decoding, since it is still one of the commonly used decoding
strategies even for ternary ECOC matrices. However, we emphasize, that all obser-
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Table 6.6: QUICKECOC performance on the 8-class ecoli dataset with all decoding methods
and Cumulative Exhaustive Ternary Codes. The first two columns show the number of
non-zero code values for each class and the number of resulting classifiers. The maximal
relative standard deviation for all values is 3.76 % with mean 2.69 %.

o~

|C| Hamming Euclidean A. Euclidean LBL LBE Laplace BDDP

2 28 0420 0.420 0.420 0.399 0.398  0.406  0.426
3196 0.331 0.331 0.31 0.385 0.350  0.332  0.333
4 686  0.377 0.377 0.377 0.383 0.402  0.37,  0.875
5 1526 0.400 0.400 0.400 041 0.439  0.399  0.401
6 2394  0.421 0.421 0.421 0.457 0466 0419  0.418
7 2898  0.427 0.427 0.427 0.444 0475 0426  0.425
8 3025  0.428 0.428 0.428 0.446 0477 0427  0.426

vations on this small subset of results can also be found in the experiments on the
other decoding strategies. As an exemplary data point, Table 6.6 shows an overview
of the QUICKECOC performance for all decoding strategies for the dataset ecoli
using cumulative exhaustive ternary codes. It can be seen that the performance is
quite comparable on all datasets. Even the optimal reduction for [ = 3 can be found
in the results of all decoding strategies.

Datasets with a Large Number of Classes

The previous sections evaluated and analyzed QUICKECOC on a broad spectrum
of various code types and decoding methods. This was only feasible for datasets
with a smaller number of classes. In this section, we will evaluate QUICKECOC on
datasets with a larger number of classes. As the code length of most coding strategies
is exponential in the number of classes k, we selected a few codes which generate a
comparably low number of classifiers:

1. (k,3)- and (k,4)-exhaustive ternary codes
2. (k,4)-cumulative exhaustive ternary codes
3. random codes of type 1 with fixed sparsity of 66 %

4. random codes of type 2

For both random code types the code length was set to the equivalent of the number
of (k,4)-cumulative exhaustive codes, i.e. n = 2?22 (l:) (271 —1).

Table 6.7 on the following page shows the results for Hamming decoding. Each cell
shows the average number of classifier evaluations of QUICKECOC and, in italics,
its corresponding ratio to the full number of classifiers. First, we can observe a
considerably higher improvement than with the results on the datasets with lower

number of classes. The best reduction can be found for the (19, 3)-exhaustive code for
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Table 6.7: QUICKECOC performance on datasets with high number of classes. The maximal
relative standard deviation for all values is 2.37 % with mean 1.65 %.

k exh.l=3 exh.l=4 cum.exh. [ =4 random1 random?2

yeast 10 105.92 0.294 524.13 0.3567 631.02 0.8337 844.02 0.296 1351.94 0.474
vowel 11 139.42 0.282 797.32 0.345 937.43 0.8328 880.89 0.306 1388.74 0.482
soybean 19 443.89 0.158 5351.90 0.197 5804.73 0.192 8481.74 0.282 12964.83 0.431

the soybean dataset, where QUICKECOC only performs about 15 % of the evaluation
in order to determine the winning class.

Moreover, one can clearly see an increasing reduction for increasing number of
classes k, especially for the first three columns respectively code types. For these code
types, the sparsity increases with &, since the number of non-zero values per column
stays fixed whereas the number of rows (the number of classes k) of the corresponding
ECOC matrix is increased. This observation confirms our results of Section 6.2.2
on page 73, which showed that a high sparsity is beneficial for the performance of
QuUICKECOC.

We can also confirm our results regarding the influence of the code length. Both
types of random codes, shown in the last two columns, have a fixed sparsity level. In
both cases, although a small improvement can be observed (just as in Figure 6.3b on
page 73), the improvement is small in comparison to the improvement resulting from
increased sparseness. For example, on datasets yeast (k = 10) and soybean (k = 19),
QUICKECOC applies for the second type of random codes in average 47 % and 43 %
classifier evaluations, which is a relative reduction/ratio of about 10 %, whereas for
(k, 3)-exhaustive codes a relative reduction of 0.153/0.294 ~ 48 % is gained.

Simulation Experiment

We also conducted a simulation experiment for QUICKECOC, similar in spirit to
the pairwise case (Section 6.2.1 on page 66). Again, we consider classes 1...k and
always assume that class 1 is the correct class and further assume that pseudo base
classifiers f; return the desired prediction with probability e, i.e., with probability
¢, they predict the same sign in the ECOC matrix as the smallest incident class of
fi. We simulate the efficiency of QUICKECOC using exhaustive ternary codes of
level 3 for various class counts k£ and error probabilities €. Table 6.8 on the facing
page shows the results.

In contrast to pairwise classification, we can observe that the base-classifier accuracy
now has a stronger influence on the efficiency. In the case of random classifiers € = 0.5,
we can observe almost no reduction, as was the case for pairwise classification (though
for greater k, it might converge to the worst-case there too). But, for € < 0.5, focusing
on the ratio values, one can see an increasing reduction trend for increasing k, which
slowly loses its steepness. The growth values suggest that only in the near optimal
case € < 0.05, a super-linear reduction with the number of classes can be expected.
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Table 6.8: Average number 7 of comparisons for various number of classes and different
error probabilities € of ECOC classifiers using QUICKECOC with exhaustive ternary codes
of level 3, and for the full ensemble of classifiers. Below, we show the ratio to the full number

of comparisons and an estimate of the growth ratio % of successive values of 7.
k=5 k=10 k=25 k =50 k=100
c—00 13.00 93.00 783.00 3,433.00 14,358.00
e 0.433 — 0.258 2.839 0.113 2.325 0.058 2.132 0.030 2.064
— 0.05 14.31 101.18 951.28 7,432.19 61,244.02
e= 0.477 — 0.281 2.822 (.138 2.446 0.126 2.966 0.126 3.043
c—01 15.95 114.85 1,734.24 14,588.86 119,232.96
o 0.532 —  0.319 2.848 0.251 2.963 0.248 3.072 0.246 3.031
c— 02 19.78 177.30 3,296.39 27,589.68 223,472.28
e 0.659 — 0.492 3.164 0.478 3.190 0.469 3.065 0.461 3.018
=03 24.62 249.87 4,733.95 39,396.05 319,798.78
e 0.821 — 0.694 3.343 0.686 3.210 0.670 3.057 0.659 3.021
c—04 27.71 309.34 5,993.48 50,121.35 407,887.14
e 0.924 — 0.859 3.481 0.869 3.235 0.852 3.064 0.841 3.025
c— 05 29.08 336.05 6,635.10 57,502.71 478,871.55
e 0.969 — 0.93%3 3.530 0.962 3.255 0.978 3.115 0.987 3.058
full 30 360 6900 58,800 485,100

However, in absolute terms, the reduction can be significant for predictors with
high computational complexity. Furthermore, this analysis was based on one of many
applicable code types which can be used with ECOC. Other code types, e.g., codes
with beneficial error-correcting ability or codes which may not grow exponentially in
k like the considered exhaustive ternary code, may perform differently.

Overall Complexity

Since the QUICKECOC algorithm is more general than QWEIGHTED, its overhead
is significantly greater. The stopping criteria depicted in Algorithm 6 on page 59
can be implemented in an incremental manner such that the complexity is O(k),
by maintaining for each class a variable storing the potential worst-case Hamming
distance and updating only the relevant values after each comparison (prediction).
All in all, the overhead is linear in k except for the Next Classifier Selection Scheme
(cf. Section 6.1.2 on page 57), the complexity of which is O(nk). Therefore, the
computational savings diminishes in this case far more quicker as in the case of
QWEIGHTED for pairwise classification.

A reduction of operations is still possible for problems up to about £ = 10 and
depending of the actual prediction complexity and code type. But for greater class
counts the overhead starts to dominate the overall complexity such that the efficiency
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is worse than standard voting. In these cases, a reasonable choice is to work with
alternative selection schemes, which check only a fixed number of classifiers incident
of the current best class. Or selecting an unevaluated classifier randomly from the
set of incident classifiers to the current best class is an alternative, with a slight
decrease in comparisons efficiency but important increase in overall efficiency of the
algorithm. Note, this passage holds for code types which grow exponentially in k,
e.g., exhaustive ternary codes. In cases of more practicable code types, such as BCH
codes, the overhead of the algorithm remains still in the tolerable range.

6.3 Analysis of (k,3)-Exhaustive Ternary Codes

Since we are interested in conditions under which QUICKECOC performs well (cf.
Section 6.2.2 on page 70), this special case of exhaustive ternary codes was further
investigated. In this regard, we examined the reduction effects of the two stopping
criteria separately with varying levels on several datasets.

It is easy to see that the performance regarding the second stopping criterion is
strongly dependent on the incidency of the ECOC matrix. Considering that the
selection process of QUICKECOC always selects incident classifiers of the current
best class ¢, the number of classifier evaluations can be estimated as |Iy| + | Ry
whereas [; is the set of incident and R; C C'\ I; is a subset of non-incident classifiers
of ¢;.> These remaining classifiers R can be caused by initial random pairings until
a classifier involving the true class ¢y is evaluated. Even then, depending on the
accuracy of the classifiers, still some non-incident classifiers can be falsely selected
and evaluated in the next steps. In this context, the second stopping criterion can
be seen as a reduction method which tries to minimize the non-incident classifier
evaluations. Considering that for increasing level I the incidency of exhaustive ternary
codes is constantly increasing, the reduction performance of the second criterion
alone is decreasing percentagewise.

On the other hand, the first stopping criterion also tries to reduce the number of
incident classifier evaluations. But this comes with a price: in general more evaluations
of classes different from ¢y have to be evaluated to enable an earlier cut. But this case
comes naturally by increasing the level, since each classifier involves an increasing
number of classes, so that already with fewer evaluations, a reasonable amount of
votes have been distributed. So in short, by increasing the level I, which increases
the incidency, the reduction performance of QUICKECOC is more and more due to
the first stopping criterion whereas the impact of the second criterion decreases.

These considerations can be confirmed in Figures 6.4 and 6.5. Figure 6.4 on the
facing page shows the performances of QUICKECOC with both stopping criteria,
without the first criterion, and the incidency of the ECOC matrix for a given exhaustive
ternary code level using the example of the dataset ecoli (k = 8). The differences
between the two QUICKECOC variants (dashed and dotted curves) depict the

5 Actually, for exhaustive ternary codes, it holds |I;| = |I;| and |R;| = |R,| for arbitrary ¢;,c; € K
and fixed level [. Thus, |I| and |R| are in this case only dependent on ! and k.
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Figure 6.5: Impact of stopping criteria for reduction under varying level of exhaustive
ternary codes (ecoli)

additional improvement caused by the first stopping criterion, which can be seen also
separately in Figure 6.5a. In line with the above considerations, one can see that the
performance of QUICKECOC without the first criterion is similar to the number of
incident classifiers for a given level, it almost converges to it. Thus, the amount of
non-incident classifiers R seems to decrease.

We can observe that the first criterion begins to reduce the evaluations at [ = 3
and the gain increases with increasing level (see also Figure 6.5a). This additional
improvement for [ = 3 is nevertheless not the only reason for the best performance,
since the improvement is too small. However, observing the figure, the right question
seems rather why QUICKECOC does perform so much worse for [ = 2 rather than
why [ = 3 yields the best performance. For the sake of simplicity, it seems sufficient
to consider only the second stopping criterion for this matter in the following.

For this case we describe a model which approximates the observed effect and
therefore could yield a possible explanation. Assume that all classes form a linear
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Figure 6.6: Comparison of simplified QUICKECOC versus actual performance ignoring the
first stopping criterion (ecoli)

order with respect to their votes, i.e. v(c1) > v(c2) > -+ > v(cg) and that every
classifier f returns a prediction in favor to the class with the highest (true) votes
among the incident classes, i.e. the evaluation of f votes for the classes ¢;, whose
signs equal the one of class ¢* = argmax,,c;n () v(ci) and IN(f) represents the set
of incident classes of f. In addition, we reduce QUICKECOC to a simple method
which follows the only rule: Pick as the next classifier a remaining one which involves
the classes with the lowest count of lost games. Now, we consider the worst case of
classifier evaluation sequences, the maximal number of evaluations, until the true best
class ¢g has been evaluated once as an estimate for R. It turns out that this count is
k —1 for a given level [ of exhaustive ternary codes. Then, because of our assumptions,
the following holds: if a classifier involving the true class ¢ is evaluated, all remaining
classifiers will be an incident classifier of ¢g. So, the worst case complexity of this
setting is k —1+|Ip(1)|. As stated before, the cardinality of Iy is given by [ and k, more
precisely [Io(1)] = |I(1)] = Ln(k,1). This simplified model provides a surprisingly
close fit to the empirical values, as one can see in Figure 6.6.
One can show that
k—1 k—1

2 = argmax = argmax

tef2..ky (K1) o k) W

and in particular

E—=2+100(2)] _ k=34 1o(3)| k—1+4|Io(])]
n(k,2) n(k,3) n(k,1)

where k > [ > 3 for k > 4.

So, the ratio of non-incident classifiers R has yet a significantly strong influence
on the reduction for [ = 2, in fact, it is the only case where R exceeds the constant
increase of Iy for the next level [ = 3, i.e. nlzl;,z) > A% = % This yields a minimum

of (|[R|+ |I|)/n for | = 3, since R has an exponential decay, thus its influence for
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the overall reduction diminishes very fast (cf. Figure 6.6 on the preceding page or
the differences of solid and dashed curves in Figure 6.4 on page 79), whereas |I| is
constantly increasing. Here, the quantity of non-incident classifiers R was explained
as the possible maximum amount of classifier evaluations avoiding the class cg.

6.4 Conclusions

In this chapter, we have presented an algorithm that allows to speed up the prediction
phase for binary decomposition methods such as pairwise classification and, more
generally, ternary ECOC classifiers. Both variants only need to evaluate a fraction
of the classifiers, but are guaranteed to make the same prediction as the original
version using all classifiers. In general, this gain increases with the complexity of the
problem, i.e., with the number of classes, with the sparsity of the coding matrix, and
(somewhat less) with the length of the code words of the ECOC classifiers. But even
for very hard problems, where the performance of the binary classifiers reduces to
random guessing, practical gains can be expected.

For the general case of ternary ECOC matrices, which subsume nearly all possible
binary decomposition schemes, we have demonstrated this gain for a wide variety of
coding and decoding strategies. Regardless of the used code, QUICKECOC improves
the overall prediction efficiency, but, depending on the coding strategy, the amount of
improvement is not always as striking as for the pairwise case, where we could observe
a reduction from k? to k -log k. One must keep in mind that in ECOC codings, each
class has a much larger number of incident classifiers, and thus a higher number of
evaluations must be expected to determine the winning class. Moreover, for code types
whose code length grows exponentially with the number of classes, the overhead of
QUICKECOC (in its presented form) can dominate the gained reduction of classifier
evaluations, thus resulting in a worse performance than standard voting. However,
we briefly described alternative more overhead-efficient approaches which allow to
adjust QUICKECOC to the problem at hand such that a beneficial reduction can
still be expected. In general, we recommend the practitioner to carefully pre-assess
the parameters of the present problem, such as the number of classes k, code type
and prediction complexity in terms of base operations, integrate them into the overall
complexity model and to adjust the selection scheme to maximize the efficiency
performance.

One could argue that typically the training phase is more expensive than the
classification phase, and that the gains obtained by QUICKECOC are negligible in
comparison to what can be gained by more efficient coding techniques. While this is
true, we note that QUICKECOC can obtain gains independent of the used coding
technique, and can thus be combined with any coding technique. In particular in
time-critical applications, where classifiers are trained once in batch and then need
to classify on-line on a stream of in-coming examples, the obtained savings can be
decisive.
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Another point to consider is that in applications where the classification time is
crucial, a parallel approach could be applied effectively because each classifier defined
by a column of the ECOC matrix can be evaluated independently. QUICKECOC loses
this advantage because the choice of the next classifier to evaluate depends on the
results of the previous evaluations. However, QUICKECOC can still be parallelized
on the instance level instead of the classifier level. Given n processors or n threads
we want to utilize, we select n incoming test instances and apply QUICKECOC for
each of them. Basically by paralleling the decoding process on the instance level,
we avoid the problem that QUICKECOC can not be directly parallelized on the
classifier level for one instance. This method is still very efficient, since every CPU is
constantly utilized. Considering that in total, the number of evaluations is decreased
by using QUICKECOC, a higher speed up can be expected as with a straight-forward
parallelization of ECOC.

Recently, Hsu et al. (2009b) presented an efficient ensemble approach for multilabel
classification. They exploit the general label sparseness in target vectors of real-world
multilabel problems to reduce the number of the labels to O(log k) using techniques
from compressed sensing. Instead of learning k£ one-against-all regression predictors
for generating a multiclass predictor, they only need to learn (and therefore to predict)
about log k regression predictors. Since multiclass classification is a special case of
multilabel classification (by limiting the label size to 1) and noting that it poses
a maximal label-sparse multilabel problem, their results naturally also apply to
multiclass classification. However, it is not entirely clear how their ensemble approach
consisting of a one-against-all decomposition with regression base-learners performs
in comparison to the commonly studied classification-based ensemble approaches with
respect to predictive performance. Moreover, input or output data transformations
yield often to a reduction of the comprehensibility of the learned models, which is
disadvantageous for the acceptance in real-world applications, where a white-box
property of the system is favored. A direct comparison of this work to conventional
classification-based decompositions is certainly interesting and overdue, but beyond
the scope of this work, where our goal was to improve the classification time of well
established ensemble techniques.

Besides pairwise classification and ECOCs, a variety of other decomposition-based
approaches have been proposed for the multiclass classification task. It was not the
goal of this chapter to contribute to the discussion of their respective virtues—for
a recent survey on this subject we refer to (Lorena et al., 2008). Our contribution
to this on-going debate was to solve one of the most severe problems with two of
the most popular decomposition methods, namely by improving their classification
efficiency without changing their predictive quality.
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Multilabel classification refers to the task of learning a function that maps instances
z € X to label subsets P, C L, where L = {A1,..., A} is a finite set of predefined
labels, typically with a small to moderate number of alternatives. Thus, in contrast
to multiclass learning, alternatives are not assumed to be mutually exclusive, such
that multiple labels may be associated with a single instance.

A prototypical application scenario for multilabel classification is the assignment
of a set of keywords to a document, a frequently encountered problem in the text
classification domain. With upcoming Web 2.0 technologies this domain is extended
by a wide range of tag suggestion tasks (e.g., Tsoumakas et al., 2008; Katakis et al.,
2008). This kind of problems are often associated with a large number of instances
or classes which demand for an efficient processing. The Reuters-2000 dataset for
instance is composed of over 800,000 documents and 103 classes and the EUR-Lex
database consists of almost 4000 classes. Other tasks include protein classification
and semantic multimedia annotation.!

7.1 Multilabel Setting

The multilabel classification setting is similar to multiclass classification with the
exception, that each instance can be associated with multiple classes instead of exactly
one class. We often speak of labels instead of classes in this context. In addition,
we will use a different notation for the labels and the set of labels to allow an easy
distinction from the multiclass setting.

1 A collection of datasets can be found at http://mlkd.csd.auth.gr/multilabel.html
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To be more precise, each instance x; is associated with a set of relevant labels
P; C L, a subset of a given set of k possible classes/labels L = {\1,...,Ax}. The
remaining labels are regarded as irrelevant and are denoted as N; = L\PF;. For
multilabel problems, the cardinality |P;| of these labelsets is not restricted, whereas
for multiclass problems it is exactly one. Multilabel learning algorithms are trained
on a training set D = {(z;, B;) | i =1...t}.

Note that we will use two types of indexing conventions for P and N: P, is the
true labelset for instance x and P; is meant to be the true labelset for instance x;.

The task of multilabel classification is to find a function f : X — 2% which
takes as input an instance x and returns a set of labels P, C L as output. This
function f should typically minimize the empirical risk for some labelset loss function

1:2b x 2k 5 RE
> U f@), ) =Y U(P P)

r;€X r;€X

7.2 Multilabel Evaluation

There is no generally accepted single measure for evaluating multilabel classifications.
Thus, evaluations consider typically various measures. Furthermore, if the task is
divided into a label ranking problem (which returns a sorted ranking of labels from
most relevant to most irrelevant) in combination with a thresholding function (which
defines the splitting point, between relevant and irrelevant labels) to compute the
labelset prediction ]5, additional ranking-based measures are often also considered. In
the following, we will give a brief recapitulation of common labelset and ranking-based
measures.

7.2.1 Labelset Loss Functions

Probably the most direct approach for evaluation is to consider a multilabel classifi-
cation problem as a meta-classification problem where the task is to separate the
set of possible labels into relevant labels and irrelevant labels. Let P, denote the
set of labels predicted by the multilabel classifier and N,=1L \ P, the set of labels
that are not predicted by the classifier. Thus, we can, for each individual instance zx,
compute a two-by-two confusion matrix C'M,, of relevant/irrelevant vs. predicted/not
predicted labels:

CM, predicted not predicted
relevant | |P, N By [Py N N | | Py
irrelevant | |N, N P, IN, NN | | Nl
|2, || L=k

From such a confusion matrix C'M,, we can compute several well-known measures:
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Hamming Loss (HammULoss)

The Hamming loss computes the percentage of labels that are misclassified, i.e.,
relevant labels that are not predicted or irrelevant labels that are predicted. This
basically corresponds to the error in the confusion matrix.

HammLoss (CM;) = (7.1)

The operator A denotes the symmetric difference between two sets and is defined as
AAB:=(A\B)U(B\A),ie. Py A P, has all labels that only appear in one of
the two sets.

Precision (Prec)

Precision computes the percentage of predicted labels that are relevant.

PN P,
PREC (CM,) = ||}2" (7.2)

Recall (Rec)

Recall computes the percentage of relevant labels that are predicted.

P.NP,

F1-Measure (F1)

The measures precision and recall considered in isolation have some shortcomings.
Precision considers only which fraction of the predicted labels is actually relevant
and ignores the misprediction of the remaining true labels. So, the “false negative”
prediction of labels, i.e. predicting a true relevant label as irrelevant, does not
contribute to this measure. Recall, on the other hand, takes this into account,
but ignores the “false positive” ones, i.e. predicting an irrelevant label as relevant
(note that a simple perfect recall predictor is to predict always all labels). Thus, a
combination of both measures is commonly used.

The Fl-measure is the harmonic mean between precision and recall. For the case
of a zero denominator, a common convention is to define the result as zero.

2 _ 2REC(CM,;) PrEC (CM,)

1 1 ~ REc (CM,) + PrEC (CM,)

F1(CM,) :=
Rec(CM,) T Pruc(CMG)

(7.4)
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7.2.2 Ranking-Based Loss Functions

Some multilabel methods decompose the learning problem into two components:

1. learning of a ranking function f, which returns for a given test instance z a
sorted list of all labels from relevant to irrelevant

2. given such a ranking 7, learning of a thresholding function g(7), which allows
to separate relevant from irrelevant labels

It is possible to evaluate the ranking function f separately from ¢ in a meaningful
way. Although, there is typically no information of degree of relevance in the given
(multilabel) data, it is clear, that the true relevant labels should be ranked very high.
The accurate prediction of relevance degrees can not be evaluated and is also not
necessary here, since arbitrary deviations from a supposed true relevance degree
have no effect on the multilabel performance, as long as the irrelevant labels still
receive a lesser value. This isolated evaluation (ignoring the thresholding function g¢)
is helpful, because it allows a more detailed evaluation of the learning system at hand.
Deviations from the ideal case are differently measured in the following measures
and captivate therefore different aspects.

We use the following notational conventions: For a given instance z, let 7()\;)
denote the position of ); in the predicted ranking and 7-'(i) the label X that is
assigned to the position i, i = 1... k. Moreover, 7(\;) < 7(};) indicates, that A; has
a higher degree of relevance/is higher ranked than A;.

Average Precision (AvgPrec)

Average precision is commonly used in information retrieval and computes for each
relevant label the percentage of relevant labels among all labels that are ranked
before it, and averages these percentages over all relevant labels.

T(\) < T

1 NeP,
AVGPREC (P, 7) i= == 3 X € | o
.

= (7.5)
|Pxl \eP;

Ranking Loss (RankLoss)

The ranking loss computes the average fraction of pairs of labels which are not
correctly ordered:

H(AX) € Py x Ny | 7(A) > 7(N)}

RANKLOSS (Py, 7) := AIRA

(7.6)

This measure is related to Kendall’s rank correlation coefficient, which measures
the correlation between two rankings.

An example computation of RANKLOSS and AVGPREC along with a visualization
is shown in Figure 7.1 on the next page.
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Figure 7.1: Diagrams of predicted label rankings (Loza Mencia, 2006). Rectangles denote
true relevant labels and circles irrelevant labels. First ranking: perfect classification, all
relevant labels are ranked over irrelevant ones, RANKLOSS = 0, AVGPREC = 1. Second and
third ranking: labels on position 4 and 6 are misplaced, thus 5 of 12 possible pairs of labels
are not correctly ordered, top label is correct, RANKLOSS = 5/12, AVGPREC = 2/3.

One-Error Loss (OneErr)

The one-error loss determines whether the top-ranked label is relevant or not, and
ignores the relevancy of all other labels.

1 if771(1) € Py,

] (7.7)
0 otherwise.

ONEERR (P, T) := {

Margin Loss (Margin)

The margin loss returns the normalized number of positions between the worst
(lowest) ranked relevant and the best (highest) ranked irrelevant label. This is directly
related to the number of wrongly ranked labels, i.e. the relevant labels that are
ordered below a irrelevant label, or vice versa. We denote this set by F'.

F:={Xe P, |3N € Npr(N) <N} U{N €N, | IN € Pp.r(N) <7(N)} (7.8)

MARGIN (P, 7) 1= X (0, max {7(A) | A E}fx_}l— min {7(\') | A" € N, }) (7.9)

Ranking Error (RankErr)

If a true ranking 7* is given, the ranking error is commonly used to evaluate the
predicted ranking 7. It returns the normalized sum of squared position differences for
each label in the predicted and true ranking. It is O for a ranking which is identical
to the true ranking and 1 for a complete reversed ranking.

RANKERR (7}, 7,) := n(k) 3_ [7*(A) — 7(A) (7.10)
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where n refers to the normalizing constant in dependence of the number of classes k.
This error corresponds to the Spearman’s rank correlation coefficient between two
rankings.

7.2.3 Averaging Methods

These labelset and ranking-based measures are computed for each example x. For
averaging a measure f over a set of instances (x;, P;), i = 1...t we have two principal
options:

Macro-average is the average value of each measure over all examples
1
Jmac = ; z; f (CMrz) (7'11)
1=

Micro-average is the value of the measure computed over a confusion matrix that
is the sum of all confusion matrices CM,.

t
=1

The difference between these two approaches is that macro-averaging gives equal
weight to each instance, while micro-averaging gives equal weight to each relevant
label, i.e., instances with more relevant labels have a larger influence on the average.

In this thesis, if not stated otherwise, we will perform micro-averaging over all
measures. To combine the results of the individual folds of a cross-validation, we
average the estimates fivg, 7 =1...¢ over all ¢ folds.

7.3 Decomposition-Based Approaches

In the following, we will recapitulate common and recently proposed decomposition-
based multilabel classification schemes.

7.3.1 Binary Relevance (BR)

In the binary relevance method, a multilabel training set with k& possible classes is
decomposed into k binary training sets that are then used to train & binary classifiers
fj. So for each pair (x;,F;) in the original training set &k different pairs (z;, \;;) with
7 =1...k are generated as follows:

1 M\, eP
No= T MER (7.13)
’ —1 otherwise

Note, that all of these & decomposed training sets are of the same size as the original
training set. A brief visual description of this technique is available in Figure 7.2 on
the facing page.
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Figure 7.2: Subproblems in binary relevance for multilabel classification: original three-class
problem (A, B and C, shown as overlapping clouds in the left-most picture) is divided into A
vs. rest (second picture), B vs. rest (third) and C' vs. rest two-class subproblems. Separating
hyperplanes, denoted by a straight line, have to respect all examples (inside the clouds).
Clouds of negative examples have dashed lines.

Figure 7.3: Subproblems in pairwise multilabel classification: original three-class problem
is divided into A vs. C' (second picture, dashed examples are ignored), A vs. B (class C is
ignored) and B vs. C two-class subproblems. Separating hyperplanes have to respect only
examples from two classes in contrast to BR in Figure 7.2. Dashed lines denote the ignored
class.

So, each of the k classifiers is trained in order to determine the relevance of one
particular label. In consequence, the combined prediction of the BR classifier for
an instance x would be the set {\; | f;j(z) = 1}. Self-evidently, if the classifiers are
capable of returning probability estimates or score-based predictions due to the used
learning algorithm, one can obtain a ranking of classes according to their relevance.

7.3.2 Multilabel Pairwise Learning (MLP)

In the pairwise binarization method for multiclass classification (previously described
in Section 3.3.2 on page 17), one classifier is trained for each pair of classes, i.e., a
problem with k different classes is decomposed into k(k; D smaller subproblems. For
each pair of classes (A, Ay), only examples belonging to either A\, or A, are used to
train the corresponding classifier f, ,. All other examples are ignored.

In the multilabel case, and assuming u < v, an example x is added to the training
set for classifier f,, if A, is a relevant class and A, is an irrelevant class or vice
versa, i.e., if (Ay, A\y) € Py X N, or vice versa (Ay, \y) € N, X P, with N, = L\ P, as
negative labelset (cf. Figure 7.3). Thus training examples of class A\, will receive a
training signal of +1, whereas training examples of class A, will be classified with —1.
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fie=1 |fo1=-1 fs1=-1  fa1=-1 fs1=-1
fiz=1 1 fs2=-1
fia=1 =1 fs3=-1
fis=1 ; 1 ) f5,4 =-1

111:4 ’U2—3 U3:2 U4—1 U5—O

Figure 7.4: MLP voting (Loza Mencia and Firnkranz, 2008a): an example x is classified
by all 10 base classifiers f; j,% # j, A\i; A; € L. Note the redundancy given by f; ; =
The last line counts the positive outcomes for each class.

_ g
g,

Furthermore, the number of training instances regarding a classifier f, , is always
less than or in the worst case equal to the number of total training instances.

During classification, the predictions or votes of the base classifiers f, , can be
interpreted as preference statements that predict for a given example which of the
two labels A, or A, is preferred. In order to convert these binary preferences into a
class ranking, we use simple weighted voting (cf. Section 3.3.2 on page 18), which
interprets each binary preference as a vote for the preferred class. Classes are then
ranked according to the number of received votes after the evaluation of all @
classifiers. Ties are broken randomly in our case.

Figure 7.4 shows a possible result of classifying the sample instance of Figure 7.5a
on the facing page. Classifier fi 5 predicts (correctly) the first class, consequently A\;
receives one vote and class A5 zero (denoted by fi5 =1 in the first and f5; = —1 in
the last row). All 10 classifiers (the values in the upper right corner can be deduced
due to the assumed symmetry property of the classifier) are evaluated though only
six are ‘competent’ since only they were trained with the original example.

This may be disturbing at first sight since many non-competent classifiers, i.e.
classifiers discriminating A\, and A, for a given instance z with Ay, \, € P, or
Au, Ay € N, are involved in the voting process: fi 2 is asked though it cannot know
anything relevant in order to determine if x belongs to A\; or A since it was neither
trained on this example nor on other examples belonging simultaneously to both
classes A1 and Ay (or to none of both). In the worst case the resulting noisy votes
(votes from non-competent classifiers) concentrate on a single negative class, which
would lead to misclassifications. But note that any class can at most receive k — 1
votes, so that in the extreme case when the competent classifiers all classify correctly
and the non-competent ones concentrate on a single class, a positive class would
still receive at least k — |P| and a negative at most k — |P| — 1 votes. Class Az in
Figure 7.4 is an example for this: It receives all possible noisy votes but still loses
against the positive classes A1 and Aso.

The pairwise binarization method is often regarded as superior to BR because
it profits from simpler decision boundaries in the subproblems (Fiirnkranz, 2002;
Hsu and Lin, 2002). These subproblems can be significantly smaller in terms of
training instances compared to subproblems of BR,, which always use the complete
training set for learning. Typically, this goes hand in hand with an increase of the
space where a separating hyperplane can be found. An intuitive visualization of
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SOV TOO: &3%

(a) MLP training: arrows rep- (b) Calibration: mtroducmg (c) CLR training: the complete
resent the classifiers fi1 3, f1,4, virtual label Ao that separates set of classifiers for which z is
fi.5, f2.3, f2,4, fa,5, for which P and N. Classifiers f1,0, f2,0, used for training.
is used during training. fo,3, fo,a, fo,5 are additionally

trained.

Figure 7.5: Graphical representation of MLP Training, Calibration and CLR Training
(Brinker et al., 2006). Here, let P, = {A1, A2} and N, = {A3, A4, A5} for a given example z.

this aspect can be found in Figure 3.1 on page 17 for the multiclass case (where
one-against-all is identical to the binary-relevance decomposition) and in Figure 7.3
on page 91 for the multilabel case, in contrast to the BR binarization depicted in
Figure 7.2 on page 91. A simple example also illustrates this: imagine you repeatedly
insert points around two points on a line. The distance between the two sets will
inevitably monotonically decrease with increasing number of points. Thus it is very
likely for a subproblem to have a larger margin than the full problem.

7.3.3 Calibrated Label Ranking (CLR)

To convert the resulting ranking of labels into a multilabel prediction, the calibrated
label ranking approach (Brinker et al., 2006; Fiirnkranz et al., 2008) can be used.
This technique avoids the need for learning a threshold function for separating
relevant from irrelevant labels, which is often performed as a post-processing phase
after computing a ranking of all possible classes. The key idea is to introduce an
artificial calibration label )y, which represents the split-point between relevant and
irrelevant labels. Thus, it is assumed to be preferred over all irrelevant labels, but all
relevant labels are preferred over A\g. This introduction of an additional label during
training is depicted in Figure 7.5b, the combination with the normal pairwise base
classifiers is shown in Figure 7.5c¢.

As it turns out, the resulting k additional binary classifiers { fio | ¢ = 1...k}
are identical to the classifiers that are trained by the binary relevance approach.
Thus, each classifier f;o is trained in a one-against-all fashion by using the whole
dataset with {z | \; € P} C X as positive examples and {z | \; € N} C X as
negative examples. At prediction time, we will thus get a ranking over k + 1 labels
(the k original labels plus the calibration label). Then, the projection of voting
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fo1=-1 1 fao=-1 fso=-1
fop2=-1 1 fa1=-1 fs1=-1
foz=1 1 fi2=-1  fs2=-1
foa=1 1 1 fiz=-1 fs3=-1
fos=1 1 , 1 1 fag=1 |fsa=-1

U0:3 ’U1:5 1)2:4 ’03:2 114:1 1)5:0

Figure 7.6: MLP voting with calibrated label Ag: an example x is classified by all 15 base
classifiers. The last line counts the positive outcomes for each class.

aggregation of pairwise classifiers with a calibrated label to a multilabel output is
quite straight-forward:

P={ e L|v\)>uv(x)}

where v()\) is the amount of votes class A has received.

Figure 7.6 extends the example from Figure 7.4 on page 92 and shows a possible
result of classifying with the calibrated label Ag. It shows the ideal case, where for
instance, the relevant classes A1 and Ao receive a vote respectively in direct comparison
with the calibrated label (classifiers fio and faog). After evaluating all classifiers,
the number of votes for the calibrated label v(Ag) = v is used as the split-point to
discriminate relevant classes from irrelevant classes. In this example, A\; and A9 are
returned as the set of relevant classes P.

We denote the MLP algorithm adapted in order to support the calibration technique

as CLR.

7.3.4 Hierarchy of Multilabel Classifiers (HOMER)

HOMER (Tsoumakas et al., 2008) follows the divide-and-conquer paradigm of al-
gorithm design. The main idea is the transformation of a multilabel classification
task with a large set of labels L into a tree-shaped hierarchy of simpler multilabel
classification tasks, each one dealing with a small number § < k of labels.

This tree-shaped hierarchy has £ leaves, one leaf for each class \; of L. Each internal
node v contains the union of the labelsets of its children, L,, = | J L¢y, CH € children(v).
The root contains all labels, L;oot = L.

Each non-leaf node represents a multilabel prediction problem that assigns a set of
meta labels to an example. A meta label i, of a node v is defined as the disjunction
of the labels contained in that node, i.e., u, =\/ Aj, \j € L,,. These meta labels have
the following semantics: a training example can be considered to be annotated with
meta label p, if it is annotated with at least one of the labels in L,,.

HOMER associates a multilabel classifier h, with each internal node v of the
hierarchy. The task of h, is the prediction of one or more of the meta labels of
its children. Therefore, the set of labels for h, is M, = {pcu | CH € children(v)}.
Figure 7.7 on the next page shows a sample hierarchy produced for a multilabel
classification task with 8 labels {A1,..., Asg}.
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A: single label
[ )\1,)\2,)\3,)\4,)\5,)\6,)\7,)\8 ] J2x meta label
h:  multilabel classifier

Figure 7.7: Sample hierarchy for a multilabel classification task with 8 labels (based on
Tsoumakas et al., 2008). The original multilabel problem with & = 8 is transformed to 4
multilabel problems (to learn hi, ho, hg and h4) with k1, ks, k4 = 3 and ko = 2. Classifier hy
predicts meta labels ps, s, 4 and is learned with meta examples, i.e. examples which label
values are adapted according to the partitioning. For instance, an example x with relevant
labels A; and Aj is relabeled as po and ps.

For the multilabel classification of a new instance z, HOMER starts with hyoot
and follows a recursive process forwarding x to the multilabel classifier hey of a child
node CH only if yicn is among the predictions of hparent(cn)- Eventually, this process
may lead to the prediction of one or more single-labels by the multilabel classifier(s)
just above the corresponding leaf(ves). The union of these predicted single-labels is
the output in this case, while the empty set is returned otherwise.

In the training phase, HOMER creates the tree recursively in a top-down depth-
first fashion starting with the root. At each node v, 3 child nodes are first created
using a clustering algorithm (see below). In case |L,| < §, the number of children
is set to |L,|. Each such child v filters the data of its parent, keeping only the
examples that are annotated with at least one of its own labels: D, = {(z;, P;) |
(74, P;) € Dparent(v), Pi 0N Ly # ()}. The root uses the whole training set, Dyoot = D.
The examples in D,, are then transformed into meta examples (x;, Z;), where Z; =
{pcu | cH € children(v), P; N Ley # 0}, which are subsequently used for training h,,.

The main issue in the former process is how to distribute the labels of L, to the £
children. Tsoumakas et al. (2008) argue that labels should be evenly distributed to
[ subsets in a way such that labels belonging to the same subset are as similar as
possible. Such a task can be thought of as clustering with the additional constraint
of equal cluster size. It has been considered in the past in the literature, under the
name balanced clustering (Banerjee and Ghosh, 2006). In (Tsoumakas et al., 2008),
a new balanced clustering algorithm named balanced k-means has been proposed for
HOMER, which guarantees that the clusters will be of exactly the same size.
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The justification for preferring a similarity-based distribution is that if similar
labels of a node v are placed in the same subset, then only a few (ideally just one)
meta labels of A, will be predicted and thus the rest sub-trees will not be activated.
This will lead to reduced cost during the operation and testing of HOMER. Another
expected benefit is that each child node will probably contain less training examples.
The justification for preferring an even distribution is that the multilabel classifiers
at each node will deal with a more balanced distribution of positive examples for
each meta label. This is expected to lead to improved predictive performance.

In total, HOMER can be considered as the combination of two components: a) an
algorithm that constructs a hierarchy on top of the labels of a multilabel dataset, and
b) a generalization of the well-known Pachinko-machine hierarchical classification
algorithm (Koller and Sahami, 1997) to the multilabel case.

In (Tsoumakas et al., 2008), HOMER, when using the well-known binary relevance
classifier (BR) as the base multilabel classifier in each internal node, has shown to
outperform BR in terms of quality of prediction and, especially, classification time.
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The predominant approach to multilabel classification is binary relevance (BR)
learning (cf. Section 7.3.1 on page 90). A different, more costly approach is to have
a classifier for each possible pair of classes or labels that is trained to distinguish
only between these two classes. This pairwise approach (cf. Section 7.3.2 on page 91)
has shown to achieve a higher predictive quality in the multiclass (Fiirnkranz, 2002;
Hsu and Lin, 2002) as well as in the multilabel case (Loza Mencia and Fiirnkranz,
2008c; Fiirnkranz et al., 2008).

Similar as for the case of ternary error-correcting output codes in Chapter 6 on
page 55, we introduce in this chapter a novel algorithm which adapts the Q WEIGHTED
method to improve the efficiency of the pairwise approach in the multilabel clas-
sification setting. In a nutshell, the adaption works as follows: instead of stopping
when the top class is determined, we repeatedly apply QWEIGHTED to the remaining
classes until the final labelset is predicted. In order to determine at which position
to stop, we use the calibrated label ranking technique (cf. Section 7.3.2 on page 91),
which introduces an artificial label for indicating the boundary between relevant and
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irrelevant classes. We evaluated this technique on a selection of multilabel datasets
that vary in terms of problem domain, number of classes and label density. The
results demonstrate that this modification allows the pairwise technique to process
such data in comparable time to the one-per-class approaches while producing more
accurate predictions.

This chapter is organized as follows: Section 8.1 describes briefly the perceptron
algorithm, which was used as base learner, and their combination with MLP and CLR.
Then, Section 8.2 describes the adaptation of QWEIGHTED to multilabel classification.
In Section 8.3 we compare the time and space complexity of the different algorithms.
Section 8.4 is dedicated to the experimental evaluation along with its setup and
used datasets and, finally, we provide a discussion and conclusion of this chapter in
Section 8.5.

8.1 Perceptrons

We use the simple but fast perceptrons as base classifiers (Rosenblatt, 1958). As
Support Vector Machines (SVM), their decision function describes a hyperplane
that divides the g-dimensional space into two halves corresponding to positive and
negative examples. We use a version that works without learning rate and threshold:

o(x) = sgn(z - w) (8.1)

with the internal weight vector w and sgn(t) = 1 for ¢ > 0 and —1 otherwise. If there
exists a separating hyperplane between the two sets of points, i.e. they are linearly
separable, it is proved that the following update rule finds it (cf., e.g., Bishop, 1995).

o; = (A — o(z;)) Wit1 = Wi + ;T (8.2)

The main reason for choosing the perceptrons as our base classifier is because,
contrary to SVMs, they can be trained efficiently in an incremental setting, which
makes them particularly well-suited for large-scale classification problems such as the
Reuters-RCV1 benchmark (Lewis et al., 2004), without forfeiting too much accuracy
though SVMs find the mazimum-margin hyperplane (Freund and Schapire, 1999;
Crammer and Singer, 2003; Shalev-Shwartz and Singer, 2005).

In addition, important advancements were achieved in recent times trying to adapt
the perceptron algorithm in order to maximize the margin of the separating hyper-
plane, without losing the advantages of simplicity and efficiency that characterize the
perceptron algorithm (Li et al., 2002; Crammer et al., 2006; Khardon and Wachman,
2007; Tsampouka and Shawe-Taylor, 2007). The presented algorithms can easily be
adapted in order to use these variants if desired.

Nevertheless, we also experimented with SVMs as base classifier. Although we
were able to increase prediction accuracy in some cases, many datasets could not be
processed despite using the efficient LibLinear library (Fan et al., 2008).
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Algorithm 7 Pseudocode of the incremental training method of the MLPP algorithm.

Require: Training example pair (z;, P;), perceptrons {Wy, , | u < v, Ay, Ay € L}
I: N; « L\ P,
2: for each (\,, \,) € P, x N; do
3 if u < v then
4: Wu,u ¢ TRAINPERCEPTRON(W,, 4, (x;,1))  # train as positive example
5: else
6: Wyu < TRAINPERCEPTRON(W, ,, (x;, —1)) # train as negative example
7. return {wW,, | u < v, Ay, Ay € L} # updated perceptrons

8.1.1 MLPP and CMLPP

As previously mentioned, the incremental training capability of perceptrons are
particularly valuable in a large scale setting and it transfers naturally to its com-
bination with the pairwise approach for multilabel classification. This means, it is
not longer necessary to maintain all training instances in the memory at training
time. Algorithm 7 shows the efficient incremental training procedure for the pairwise
approach with perceptrons as base models.

In the following, we will refer to the pairwise approach for multilabel classification
(MLP) (cf. Section 7.3.2 on page 91) in conjunction with perceptrons as base model
as MLPP. The same applies for the further combination with the calibrated label
ranking approach (Section 7.3.3 on page 93), which will be denoted as CMLPP.

8.2 Quick Weighted Voting for Multilabel Classification

The calibrated label ranking approach evaluates at prediction time a rather costly
quadratic number of classifiers. Two approaches to overcome this problem based on
QWEIGHTED are presented in the following.

8.2.1 QCMLPP1

A simple adaptation of QWEIGHTED to multilabel classification is to repeat the
process. We can compute the top class Ay, using QWEIGHTED and remove this class
from the set of labels L and repeat this step, until the returned class is the artificial
label Ay, which means that all remaining classes will be considered to be irrelevant.

This adaptation uses two simple extensions of the original algorithm. Firstly, the
information about which pairwise perceptrons have been evaluated and their results
are carried through the iterations so that no pairwise perceptron is evaluated more
than once. And secondly, by using the calibrated label ranking approach we know
beforehand that at some point the vote amount of the artificial label has to be
computed. So, in hope for a better starting distribution of votes, all incident classifiers
0;,0 respectively w; o of the artificial label are evaluated explicitly before employing
iterated QWEIGHTED. We denote this method as QCMLPP1.
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Algorithm 8 QCMLPP2
Require: example z; pairwise classifiers { fijli<jiAXN,AjeLU {)\0}}
1 le RFL 0

2. ve RF+1 0

3: P < @

4: G+ 10 # keep track of evaluated classifiers
5:

6: for i < 1 to k do # evaluate all classifiers of artificial label g
7 lj fO,’i (l’)

8: vo < vo+ (1 —1) # compute votes of calibrated label
9:

10: repeat

11: Atop < NULL # apply adapted QWEIGHTED
12: while )\, = NULL do # (cf. Algorithm 1 on page 20)
13: Aq < argmin [;

NEL
14: Ap <— argmin [;
N ELN{Aa}, fa 528G

15: if v, > vy or no A\ exists then # adapted stopping criterion
16: Atop = Aa

17: else # evaluate classifier
18: Vab  fap(2) # update statistics
19: Vg < Vg + Vgp
20: Vp < Vp + (1 — Uab)
21: lo < lo+ (1 —vg)
22: Iy < lp 4+ vap
23: G<+—GU fup # update already evaluated classifiers
24:
25: if viop > vo then
26: P+ PU \igp # relevant label found
27: liop < +00 # arrange A at the end of possible opponents queue
28:
29: until vy, > vg and |]5\ <k # check if all relevant labels found
30:
31: return P # return relevant labels
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8.2.2 QCMLPP2

In addition to this straight-forward adaptation, we considered also an slightly improved
variant (QCMLPP2). In retrospect, QCMLPP1 computes a partial ranking of classes
down to the calibrated label. That means, that for all relevant labels all their incident
classifiers are evaluated. It neglects the fact that for multilabel classification the
information that a particular class is ranked above the calibrated label is sufficient,
rather than to which amount.

Now, QCMLPP2 works in the same way as QCMLPP1 except that it stops the
evaluation of the current top rank ), if it already received a higher voting mass than
the calibrated label. The class A; is not automatically removed from the set of labels
as in QCMLPP1, since further evaluations for the computation of other classes can
occur, but it can not be selected as a new top rank candidate. The pseudocode of
QCMLPP2 is depicted in Algorithm 8 on the preceding page.

8.2.3 Discussion

Note that the effectiveness of both testing procedures is highly influenced by the
relation of average number of relevant labels to total number of labels. We can expect
a high reduction of pairwise comparisons if the above relation is relatively small,
which holds for the most real-world multilabel datasets.

Other variants of QCMLPP1/2 may possibly further improve the performance.
For example, different search heuristics based on other losses than the number of
“lost games* are imaginable. Furthermore, the selection of the two next classes for
evaluation can also be varied, i.e. by pairing the “best* and the “worst* class in the
next iteration instead of the two currently best classes.

8.3 Computational Complexity

The notation used in this section is the following: k denotes the number of possible
classes, d the average number of relevant classes per instance in the training set, g
the number of attributes and ¢’ the average number of attributes not zero (size of the
sparse representation of an instance), and ¢ denotes the size of the training set. For
each complexity we will give an upper bound O in Landau notation. We will indicate
the runtime complexity in terms of real value additions and multiplications ignoring
operations that have to be performed by all algorithms such as sorting or internal
real value operations. Additionally, we will present the complexities per instance
since all algorithms are incrementally trainable.

8.3.1 Memory Requirements

BR follows an one model per class approach, so it has to keep one perceptron for
each class in memory, leading to O(k - g) memory space. In contrast, the pairwise

approaches require one perceptron for each of the @ pairs of classes, hence we
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Table 8.1: Computational complexity given as upper bounds of number of addition and
multiplication operations, for each instance. k: #classes, d: avg. #labels per instance, g:
#attributes, g': #attributes # 0.

training prediction memory
BR O(kg') O(kg') O(kg)
MLPP O(dkg") O(k%g") O(k%g)

QCMLPP  O(dkg’) ~ kg +dklog(k) g O(k?g)

need O(k?g) memory. In addition, the calibrated versions require an overhead of k
perceptrons for the comparisons with the artificial label.

8.3.2 Training

For processing one training example, k dot products have to be computed by BR,
plus at most the same amount if there was a prediction error. MLPP requires O(dk)
dot products, one for each associated perceptron. Assuming that a dot product
computation costs O(¢g'), we obtain a complexity of O(dkg’) per training example.
Thus, assuming similar loss rates, the pairwise training will be only on average d
resp. d + 1 for the calibrated version slower than the BR algorithm despite training
a quadratic number of base classifier.

8.3.3 Prediction

During prediction the one-per-class approach achieves O(kg’) computations for
one instance. For the pairwise approach without the usage of QWEIGHTED all
perceptrons have to be evaluated, leading to O(k?g’) computations. The same upper
bound holds analytically for QCMLPP, but as previous experiments have shown for
the multiclass case, QWEIGHTED (QW) reduces the amount of required base classifier
evaluations from @ to klog (k) in practice (cf. Section 6.2.1 on page 63). Let
Cow be the runtime of one iteration of QWEIGHTED. Then, it is easy to see that the
number of base classifier evaluations for the multilabel adaptations of QWEIGHTED
is bounded from above by k + d - Cqw, since we always evaluate the k classifiers
involving the calibrated class, and have to do one iteration of QWEIGHTED for each
of the (on average) d relevant labels. Assuming that Q WEIGHTED on average needs
Cow = klog (k) base classifier evaluations we can expect an average number of
k + dklogk classifier evaluations for the QCMLPP variants, as compared to the
~ k? evaluations for the regular CMLPP. Thus, the effectiveness of the adaption
to the multilabel case crucially depends on the average number d of relevant labels.
We can expect a high reduction of pairwise comparisons if d is small compared to k,
which holds for most real-world multilabel datasets.
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Table 8.2: Dataset characteristics. The attribute number in parenthesis denotes the actual
used number of features, i.e. for scene and yeast the number of features after adding the
pairwise products and for the text collections the amount after feature selection. Labelset size
d denotes the average number of labels per instance, and label density indicates the average
number of labels per instance d relative to the total number of classes k.

dataset k  #instances t  #attributes g d density
scene 6 2407 294 (86732) 1.07 17.9%
emotions 6 593 72 1.87  31.1%
yeast 14 2417 103 (10712) 4.24 30.3%
tmc2007 22 28596 49060  2.16 9.8%
genbase 27 662 1186  1.25 4.6%
medical 45 978 1449 1.25 2.8%
enron 53 1702 1001 3.39 6.4 %
mediamill 101 43907 120 4.38 4.3%
revl-v2 101 804414 231188 (25000) 3.24 3.1%
r21578 120 11367 21474 (10000)  1.26 1.0%
bibtex 159 7395 1836 2.4 1.5%
eurlex.sm 201 19348 166448 (5000) 2.21 1.1%
eurlex.dc 410 19348 166448 (5000) 1.29 0.3%
delicious 983 16105 500 19.02 1.9%

A compilation of the analysis can be found in Table 8.1 on the preceding page,
together with the complexities of BR. Note that the stated prediction time for
QCMLPP in the table is not an analytical complexity bound like the others, it is an
empirically estimated value.

At first view QCMLPP does not benefit analytically from the Q WEIGHTED voting,
but there is empirical evidence for a clear improvement compared to the full voting.
There is no disadvantage of using QCMLPP instead of CMLPP unless a more
fine-grained distinction between classes than relevant-irrelevant is required.

Note that we have assumed a linear dependence on the number of training instances
since we use the perceptron algorithm as our base classifier. For base classifiers with
a super-linear relationship the ratio to BR in terms of training complexity may be
further reduced due to the smaller subproblems (Fiirnkranz, 2002). For instance in the
multiclass setting, a perceptron needs the same time for a problem of ¢ examples as
for k problems of % examples. But this relation does not hold for learning algorithms
like SVMs or C4.5 since % > k(1)* = (kﬁ—il) for z > 1.

8.4 Experimental Evaluation

8.4.1 Datasets

The datasets that were included in the experimental setup cover three application
areas in which multilabeled data are frequently observed: text categorization (among
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others, the Reuters-RCV1! and Reuters-21578% datasets and the EUR-Lex?® dataset),
multimedia classification (the scene, mediamill and emotions datasets) and bioinfor-
matics (yeast and genbase).* Table 8.2 on the preceding page provides an overview
of the different characteristics of the used datasets.

The Reuters Corpus Volume I (Reuters-RCV1) is one of the most widely used test
collection for text categorization research, which was also used in Section 6.2.1 on
page 68. It contains 804,414 newswire documents, which we split here into 535,987
training documents (all documents before and including April 26th, 1999) and 268,427
test documents (all documents after April 26th, 1999). We used the token files of
Lewis et al. (2004), which are already word-stemmed and stop word reduced. However
we repeated the stop word reduction as we experienced that there were still a few
occurrences. The 25,000 most frequent features on the training set were selected and
weighted with TF-IDF weights (Salton and Buckley, 1988). We did not restrict the
set of 103 categories although one class does not contain any examples in the training
set.

We also experimented with the older Reuters-21578 corpus (Lewis, 1997), which
has 11,367 examples and 120 possible labels. Through similar pre-processing as in
the Reuters-RCV1 dataset, we obtained 10,000 features for this dataset.

The EUR-Lex is a recent dataset containing 19,348 legislative documents from
the European Union. The documents are classified according to three different
classification schemes: subject matter with 201 classes, directory code with 410
classes and EUROVOC with 3956 classes. However, we did not conduct experiments
on the latter dataset since with almost 4000 classes we would need to maintain nearly
8 mio. perceptrons in memory. A special variant of MLPP was developed in order to
be able to process datasets of this size (Loza Mencia and Fiirnkranz, 2008b). After
a similar pre-processing as for RCV1 and Reuters-21578, we obtained 5,000 features.

Other text classification datasets include medical from a competition that aimed at
assigning codes from the International Classification of Diseases to clinical free texts,
the enron dataset of business-related emails from the Enron Corp. management,
bookmarks and bibtex, collections from the social bookmarking platform BibSonomy,
the tmc2007 dataset of aviation safety reports assigned to flight problem types, and
the large delicious dataset extracted from the del.icio.us social bookmarking platform.
We used the pre-determined training/test splits.

The learning task in the yeast gene functional multiclass classification problem
is to associate genes with a subset of 14 functional classes from the Comprehen-
sive Yeast Genome Database of the Munich Information Center for Protein Se-
quences®. Each of 2417 genes is represented with 103 features. Previous experiments
of Loza Mencia and Fiirnkranz (2008¢c) indicate, that even the pairwise problems of
this dataset are hard to separate with a linear classifier (much more so in the binary

1 http://www. jmlr.org/papers/volume5/lewis04a/1yr12004_rcviv2_README.htm
2 http://wuw.daviddlewis.com/resources/testcollections/reuters21578/

3 http://www.ke.tu-darmstadt.de/resources/eurlex/

4 http://mlkd.csd.auth.gr/multilabel.html.

5 http://mips.gsf.de/genre/proj/yeast/
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8.4 Experimental Evaluation

relevance setting). Thus, in this set of experiments, we added all pairwise feature
products to the original feature representation, in order to simulate a quadratic kernel
function.

The task in the scene dataset (Boutell et al., 2004) is to recognize which of six
possible scenes (beach, sunset, field, fall foliage, mountain, urban) can be found in a
2407 pictures. Many pictures contain more than one scene. For each image, spatial
color moments are used as features. Each picture is divided into 49 blocks using a
7 x 7 grid. A picture is then represented using the mean and the variance of each
color band of each block, i.e., using a total of 2 x 3 x 7 x 7 = 294 features. Like in
the yeast dataset, we enriched the feature set with all pairwise feature products.

Furthermore, the genbase dataset contains a protein classification task. The dataset
from the mediamill Challenge is dedicated to news video classification, and in emotions
the task is assign emotions to music.

8.4.2 Experimental Setup

All algorithms are trained incrementally. For the RCV1 dataset, a single, chronological
pass through the data was used (one epoch) because previous results have shown
that multiple iterations are not necessary (Loza Mencia and Fiirnkranz, 2008c). For
the remaining text classification we report the results for ten epochs. The classifiers
for the supposedly more difficult non-textual datasets were trained using 100 epochs.
However, in terms of the relative order of the tested methods, we found that the
results are quite insensitive to the exact numbers of epochs.

For yeast, scene, Reuters-21578 and EUR-Lex the reported results are estimated
from 10-fold cross-validation. In order to ensure that no information from the test
set enters the training phase for the text datasets, the TF-IDF transformation and
the feature selection were conducted only on the training sets of the cross-validation
splits. For datasets for which it was not indicated we used the first two thirds of
examples for training and the remaining for testing. Specifically, we used 391 training
examples for emotions, 21519 for tmc2007, 463 for genbase, 465 for medical, 1123 for
enron, 30993 for mediamill, the aforementioned 535,987 for rcvi-v2, 4930 documents
for bibtex and 12,920 for delicious.

All the perceptrons of the different algorithms were initialized with random values.

8.4.3 Computational Efficiency

Our analysis of computational efficiency concentrates on the savings in base classifier
evaluations using the QWEIGHTED method on the different multilabel datasets.
Table 8.3 on the following page depicts the gained reduction of prediction com-
plexity of the QWEIGHTED approach with respect to the classifier evaluations for
CMLPP. For each of the four listed methods (BR, CMLPP, QCMLPP1 and
QCMLPP2) the average number of base classifier evaluations is stated. In addition,
for QCMLPP1 and 2 the ratio of classifier evaluations to the complete set of pairwise
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8.4 Experimental Evaluation

classifiers, which are typically evaluated in the CMLPP approach, are denoted within
brackets, to emphasize the achieved reduction.

The first remarkable observation is the clear improvement using the Q WEIGHTED
approach. Except for the four smallest datasets regarding the labelsize, both variants
of the QCMLPP use less than 20 percent of the classifier evaluations for CMLPP.

Another appreciable point, especially regarding the mentioned deviation, is the
clearly visible correlation between the gained reduction and the label density of
the problem, i.e. the ratio of the average number of labels per instance to the total
number of labels. The dataset with the highest density, emotions, achieved the lowest
reduction, followed by yeast with a similar density and reduction ratio. Similarly
both QCMLPP variants evaluated the lowest ratio of classifiers for the dataset with
the lowest density, the eurlex_dc dataset. This observation confirms the previously
stated expectation that the reduction is highly influenced by the density. This effect
is not surprising, since roughly speaking QCMLPP employs iteratively Q WEIGHTED
until the calibrated label is found, and the number of iterations is obviously related
to the density. Furthermore the results show that QCMLPP2 slightly but constantly
outperforms QCMLPP1.

For estimating the average runtime in practice, two columns were included, which
state the klog (k) and k + dklog (k) values for the corresponding datasets. We can
clearly confirm that the number of classifier evaluations is for all considered datasets
smaller than the previously estimated upper bound of k + dklog (k). Note that the
value for yeast 170.65 is actually greater than the number of existing classifiers (105).
This is due to the fact that the values lie yet in a range where lower order terms have
still an impact in the equation.

Figure 8.1 on the next page visualizes the above results and allows again a compar-
ison to different complexity values such as k, klog(k) and k2. The upper figure is a
recapitulation of the results from Section 6.2.1 on page 63 extended with multiclass
classification performance results of the multilabel datasets considered in this chapter:
instead of evaluating until finding the calibrating label, QWEIGHTED was only applied
once such as if it was a multiclass problem. These results for the simulated multiclass
classification performance support additionally the statement that QWEIGHTED
achieves an klog(k) runtime in practice. For better readability, a logarithmic scale
for both axis is used. The lower figure is more interesting in this context, where
multilabel classification prediction complexity of QCMLPP is presented. Note that
the y-axis now describes the number of comparisons respectively classifier evaluations
divided by the number of labels, which is graphically motivated and allows a finer
distinction of the different curves. Note also that for the black curve (k + dklog (k)),
the actual average number of labels from data was used for computing the values
and are identical to the ones from Table 8.3 on the preceding page. These values
are also depicted in the additional Figure 8.2 on page 110, which shows again the
comparison of computational costs split into two figures, the first for smaller datasets
with k£ < 103 and the second for larger datasets. In comparison to Figure 8.1 on the
next page, the x-axis is now linear and we have added the dataset names to the data
points.
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Figure 8.1: Prediction complexity of QWEIGHTED and QCMLPP: number of comparisons
needed in dependency of the number of classes k for different multiclass and multilabel
problems.

Upper figure (multiclass): Problems vehicle to letter are multiclass problems already
analyzed by Park and Fiirnkranz (2007), while multiclass versions of the multilabel datasets
described in Table 8.2 on page 103 were evaluated within this study.

Lower figure (multilabel): QCMLPP1/2 is compared to k(k + 1)/2 as in CMLPP, k as
in BR and klog (k) on 14 multilabel datasets.
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Table 8.4: Multilabel performance of the different algorithms (in %, micro-averaged). For
HamMmLoOss low values are good, for the other three measures the higher the better. Bold
values represent the best value for each dataset and measure combination. Note that the
multilabel losses of QCMLPP are exactly equal to those of CMLPP.

HaAamMLOSS PRECISION RECALL F1
dataset k. BR CMLPP BR CMLPP BR CMLPP BR CMLPP
scene 6 10.42 10.00 71.80 71.83 71.21 74.20 71.19 72.76
emotions 6 35.64 34.08 46.78 48.62 60.15 61.90 52.63 54.47
yeast 14 24.09 22.67 60.47 62.37 59.07 63.31 59.76 62.83
tmc2007 22 7.37 6.78 62.57 64.16 66.47 73.61 64.46 68.56
genbase 27 0.26 0.48 99.22 99.59 95.49 90.60 97.32 94.88
medical 45 1.51 1.51 71.72 76.02 75.84 66.75 73.72 71.08
enron 53  7.56 6.01 41.56 52.82 47.05 49.51 44.13 51.11
mediamill 101  4.52 4.16 42.28 56.66 10.05 19.70 16.24 29.23
revl-v2 103 1.26 1.03 80.15 84.89 79.70 81.61 79.93 83.22
121578 120 0.78 0.55 59.98 72.89 78.36 76.68 67.92 74.63
bibtex 159  1.57 1.35 46.53 57.97 36.30 34.84 40.78 43.53
eurlex.sm 201 0.76 0.54 63.39 77.88 74.11 71.57 68.32 74.59
eurlex.dc 410 0.26 0.17 56.26 79.21 70.54 61.98 62.58 69.54
delicious 983 5.58 3.48 11.88 19.77 29.59 26.51 16.95 22.65

As we can see from these figures, the empirical runtime bound k + dklog (k) is
never exceeded. We conclude that this estimate is a reasonable indicator for the
runtime complexity of QCMLPP.

8.4.4 Predictive Quality

Although it is not the focus of this study, we will compare in this section the prediction
quality of BR and CMLPP in order to demonstrate the expected advantage of the
pairwise approach. Note that the multilabel losses of the QCMLPP are exactly equal
to those of CMLPP since both compute for every instance the same partitioning into
relevant and irrelevant labels. Table 8.4 shows the labelset predictions performance
according to Section 7.2 on page 86.

The first remarkable observation is that for the overall evaluation measures
HamMLoOSs and F1 the pairwise approach dominates the one-per-class approach
for every dataset except genbase and medical. BR’s PREC is even outperformed for
these datasets. On the other hand, QCMLPP achieves a lower REC for the datasets
with slightly more than 100 classes, beginning at reuters-21578 with 120 classes. This
is due to the fact that the calibration tends to underestimate the number of returned
labels for each instance, especially for a high number of total classes. A possible
explanation for this behavior is the following: when the binary relevance classifiers,
that are also included in CMLPP, predict that v classes are positive, then this
means for the remaining classes that they have to obtain at least kK — v votes of their
maximum of k votes in order to be predicted as positive. The probability that this
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Table 8.5: SVM as base learner - Computational costs at prediction in average number
of classifier evaluations per instance. The italic values next to the multilabel adaptation of
QWEIGHTED (QCMLPP2) shows the ratio of classifier evaluations to CMLPP and the
rightmost column describes the average number of relevant labels.

dataset k. BR CMLPP QCMLPP2 klog (k) k+ dklog (k) d

scene 6 6 21 7.88 (37.5%) 10.75 17.50 1.07
emotions 6 6 21 11.87 (56.5 %) 10.75 26.10 1.87
yeast 14 14 105 40.31 (38.4 %) 36.94 170.65 4.24
tmc2007 22 22 253 68.92 (27.2%) 68.00 168.89 2.16
medical 45 45 1035 9740 (9.41 %) 171.30 259.12 1.25
enron 53 53 1431 22342 (15.6 %) 210.43 764.24  3.38
r21578 120 120 7260 303.90 (4.19%) 574.50 843.87 1.26
bibtex 159 159 12720 485.97 (8.82%) 805.96 2093.29 2.40

happens for a real positive class decreases with increasing k, since it becomes more
probable that at least v base classifiers mistakenly take a wrong decision. However,
a look at the avg. predicted labelset size shows that this is only the case for the
EUR-Lex datasets and not for Reuters-21578 or delicious. For delicious QCMLPP
even predicts more than 25 instead of 19 labels. On the other hand we can observe
that BR always predicted a higher label number than QCMLPP on the dataset
where it achieved a higher REC. One extreme are the 47 predicted labels for delicious,
but note that in general it cannot be stated that BR overestimates the number of
labels.

Note that it is easily possible to bias the recall/precision trade-off of the calibration
by simply subtracting or adding a fixed number of votes to the artificial class count.

8.4.5 Support Vector Machines

Such as BR, MLP is potentially able to use any binary classifier as base classifier.
Therefore, we conducted experiments with Support Vector Machines as base learners
in order to demonstrate that the same positive effects can also be expected from the
pairwise approach and the QWEIGHTED optimization when using a different base
learner. We used the LIBSVM implementation (Chang and Lin, 2011) with standard
settings for the non-textual datasets and the efficient LIBLINEAR implementation
(Fan et al., 2008) for textual datasets with the primal L2-loss SVM option, which is
supposed to enhance speed (Hsu et al., 2009a). We ignored the results on genbase
since LIBSVM predicted the empty labelset on all test examples. For the remaining
missing datasets no results could be retrieved due to the higher memory requirements
of the SVMs compared to the simple perceptrons. For yeast and scene we did not
use the quadratic kernel simulation.

Table 8.5 shows the computational costs of QCMLPP2 with SVM as base classifier.
We can observe an overall similar picture compared to the results of Table 8.3 on
page 106, the pairwise approach clearly benefits from the QWEIGHTED optimization.
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However, while the reduction in number of required comparisons for the textual
datasets is very similar, using LIBSVM seems to allow to further improve the ratio on
the non-textual scene, emotions and yeast. The explanation can be seen in Table 8.6
on the facing page, which lists the prediction quality for BR and QCMLPP2: A very
high precision is achieved by LIBSVM for these datasets due to predicting only a
small number of labels. This cautious behavior of LIBSVM could already be observed
for the genbase dataset. QCMLPP2 with perceptrons as base classifier for instance
predicts 2.51 labels in average on the emotions test set, while with SVM as base
classifier only 1.27 are predicted. This means for QCMLPP2 in average more than
one additional QWEIGHTED iteration for each example during classification, which
is the reason for the further reduction of the computational costs.

Note that although the obtained reductions in number of base classifier evaluations
is similar for both perceptrons and SVM, training the SVMs does usually require a
higher amount of CPU-time. Except for emotions, for which the time is almost equal,
and yeast and scene, which are not directly comparable due to the different feature
representations used, the perceptrons are always faster, namely 2.3 times faster for
tmc2007 to even 29 times faster for enron.

Especially if we consider that the prediction quality of perceptrons and SVMs are
very similar (at least for the text classification tasks), this constitutes an important
point in defense of the perceptron algorithm. However, it is also interesting to observe
that the distance between BR and QCMLPP is considerably reduced when using
SVMs, which might be an indication for a higher robustness against weak base
classifier for the pairwise approach.

8.5 Conclusions

Multilabel classification is becoming a more and more important task in machine
learning due to the increasing amount of application scenarios where it is necessary
to not only predict one top class as in multiclass classification, but a set of relevant
classes. The common approach of training one classifier for each class that determines
a binary relevance is clearly outperformed by the approach of learning pairwise
preferences between pairs of classes. The main disadvantage of this approach was,
until now, the quadratic number of base classifiers needed and hence the increased
computational costs for prediction and the increased memory requirements. We have
presented in this chapter a time efficient algorithm based on the pairwise approach.

The proposed approach combines a technique that transforms a class ranking
into a bipartite prediction by introducing an artificial thresholding class, called
calibration (cf. Section 7.3.3 on page 93), with the QWEIGHTED voting that stops
the computation of the ranking when the bipartite separation is already determined.
For the combined QWEIGHTED multilabel method the computational costs savings
compared to the normal voting are especially important with increasing number of
classes. Though not analytically proven, our empirical results show that the complexity
is upper bounded by k + dklog (k), in comparison to the evaluation of k in the case
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Table 8.6: Multilabel performance of the different algorithms with SVM as base learner
(in %, micro-averaged). For HAMMLOSS low values are good, for the other three measures
the higher the better. Bold values represent the best value for each dataset and measure
combination. Note that the multilabel losses of QCMLPP are exactly equal to those of
CMLPP.

HaAamMLoOSS PRECISION RECALL F1
dataset k BR CMLPP BR CMLPP BR CMLPP BR CMLPP
scene 6 12.57 12.51 93.25 93.04 32.16 32.58 47.77 48.21
emotions 6 27.56 26.57 65.55 64.98 34.34 41.85 45.07 50.91
yeast 14 22.51 22.51 75.61 75.60 37.81 37.82 50.41 50.41
tmc2007 22 6.99 6.63 66.16 67.31 62.33 66.16 64.19 66.73
medical 45 1.09 1.11 83.12 82.10 76.56 76.79 79.70 79.36
enron 53  5.70 5.22 55.87 59.95 48.64 53.36  52.00 56.47
r21578 120 0.56 0.55 71.23 71.76 78.49 78.34 74.68 74.90
bibtex 159 1.48 1.39 50.45 54.65 37.60 39.32 43.09 45.73

of the one-per-class approach and O(k?) for the unmodified pairwise approach. For
the QWEIGHTED multilabel approach, we see improvements in a more appropriate
integration of the QWEIGHTED concept, namely to identify and exploit unnecessary
classifier evaluations to the multilabel setting. In this context, QCMLPP2 was
already a step forward.

The benefit in predictive quality of using CMLPP against using BR, was shown
by an extensive experimental evaluation on 14 datasets. Together with Q WEIGHTED
CMLPP is able to achieve a good trade-off between predictive quality and speed
in the multilabel setting. Additional experiments using state-of-the-art support
vector machines as base learner instead of the perceptron algorithm initially used in
MLPP confirmed that the binary relevance approach is outperformed by the pairwise
approach. These experiments also show that the advantage of using the pairwise
approach and QWEIGHTED is independent of the base learner employed.

However, this novel algorithm still uses a quadratic number of base classifiers, i.e.
the memory requirements grow quadratically to the number of classes. This problem
will be addressed in the next chapter.
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Recently, a special group of transformation methods that decompose the original
multilabel classification problem into a series of simpler problems has been pro-
posed (Tsoumakas et al., 2008; Fiirnkranz et al., 2008). These decomposition-based
methods focus on dealing with problems with a large number of labels. In this
chapter, we compare and combine these two recently proposed decomposition-based
methods. The HOMER approach (cf. Section 7.3.4 on page 94) decomposes the
problem into a hierarchy of simpler problems, where each problem uses a reduced
number of possible labels. The hierarchical structure of the labels is obtained by
applying recursive clustering to the initial set of labels. The calibrated label ranking
approach (cf. Section 7.3.3 on page 93) interprets a multilabel problem as a special
case of a preference learning problem (Hiillermeier et al., 2008). The sets of relevant
labels that are associated with the training examples are interpreted as a bipartite
preference relation between relevant and irrelevant labels. Each possible pairwise
preference is independently modeled with a binary classifier. The predictions of these
classifiers are then combined into an overall ranking of all labels, and an artificial
calibration label indicates the position where the ranking should be split into relevant
and irrelevant classes.

As was already elaborated in the previous chapter, although we can in prac-
tice reduce the number of classifier evaluations of CLR in the prediction phase,
the problem of having to store a quadratic number of classifiers still remains to
be solved, despite some recent progress for particular families of base classifiers
(Loza Mencia and Fiirnkranz, 2008b). This quadratic memory complexity of CLR
may still pose a bottleneck for large scale problems.

For this reason, we investigate the combination between HOMER and Calibrated
Ranking, because the latter is expected to greatly benefit from the reduction in the
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number of labels that is provided by the former. In fact, our experimental results
indicate that HOMER, not only significantly reduces the memory complexity, it is
also able to improve the classification performance, training time, and classification
time for the calibrated ranking approach as well as for the binary relevance approach.

In the following sections, we will mainly focus on an extensive empirical evaluation
of this combination. The combination itself is straight-forward and will be briefly
described in Section 9.1. The extensive experimental study is presented in Section 9.2
while our conclusions are included in the last section of this chapter.

9.1 Combination of HOMER and QCLR

As described in Chapter 8 on page 97, QCLR!' is a recently proposed efficient
approach for multilabel classification. This algorithm combines three components:
a) the pairwise decomposition of multilabel problems (Loza Mencia and Filirnkranz,
2008c), b) the calibrated label ranking (Firnkranz et al., 2008) for determining a
bipartition (multilabel result) and c¢) an adaption of the QWEIGHTED algorithm
(Park and Fiirnkranz, 2007) for efficient voting aggregation that is used for prediction.
But the most important and single necessary property in this context is, that it is
a learning algorithm for multilabel classification problems. So, it can be naturally
integrated into HOMER as the base multilabel learner. Recall that HOMER (cf.
Section 7.3.4 on page 94) is a meta-learner which employs internally an ensemble of
(base) multilabel learners.

9.1.1 Memory-Complexity

Regarding our objective to reduce the memory complexity of CLR, it may be apparent
that we can expect a significant reduction for the combination with HOMER. However,
we provide a brief analysis here.

The used partitioning method is important for a further analysis and we will for
now assume an equal-size partitioning, i.e. for a given partitioning number 3, the
set of labels are equally divided into the § partitions. This holds for two considered
partitioning schemes in this work, which will be later further described and evaluated
in Section 9.2.2.

The partitioning parameter restricts the number of (meta) labels for each of the
resulting decomposed multilabel problems to at most 8. So, the number of classifiers
in each internal multilabel problem in HOMER+CLR is now independent of the
number of classes k of the original multilabel problem, and may be picked such that
B < k. The number of pairwise classifiers and classifiers involving the calibrated
label for each inner node are thus (at most):

BB-1)
ng < ———=
¢=""
1 We will refer to the base-classifier independent decomposition-scheme of QCMLPP as QCLR
(Quick calibrated label ranking).

+ 8
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For given k and f3 the resulting tree has at most a depth? of ﬂogﬁ k] —1, excluding
the leaf level®. Furthermore, each level I of the tree has at most 3' nodes. So, an
upper bound for the number of resulting multilabel problems is:

[logs k11
nup =1+ B+ %+ - + pllees k=1 =y p
i=0

and thus by geometric series:

1—BY
n =
ML = 7

with y := [logg k|

Now, in total, an upper bound for the total number of classifiers generated by HOMER

1S:
NML - NG = 1_By'<6(ﬁ_1)+5>

1-4 2
W EN L
8—1 2
BB 1), BB - 1)
2 B—1
_BB+(BY-1)
2(6—-1)

This number of classifiers is significantly smaller for increasing k and fixed (8
with 8 < k compared to the usual complexity of k(k + 1)/2 for CLR. For instance,
for a dataset with £ = 150,300,900 and fixed number of partitions § = 10 the
corresponding number of classifiers for CLR are: 11325, 45150 and 405450 compared
to 6105 for HOMER+CLR in all three cases (note that the above formula gives an
upper bound, which is not necessarily tight).

Moreover, if we deviate from the worst-case scenario and take the liberty to relax
the expected depth of the tree to y := logg k, the estimate regarding the number of
classifiers turns to:

BB+ 1)(k—-1)

2(6—-1)
which roughly shows that for fixed £, the number of classifiers grows linearly in
the number of classes k by a factor of 3.

ML - NC =

9.2 Experimental Evaluation

In this section, after the presentation of the experimental setup, we will discuss
the effect of the several parameters of HOMER and then compare it in terms
of training time, classification time and predictive performance against its base
multilabel classifiers.

2 Here, the root level has a depth of 0.
3 In this analysis, we are only interested in nodes, which represent classifiers. Therefore, only non-leaf
nodes are considered.
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Table 9.1: Name, number of examples used for training and testing, number of features and
labels, label cardinality and density, and number of distinct labelsets for each dataset used in
the experiments

examples
name train test features labels cardinality density distinct labelsets
hifind 16452 16519 98 632 37.304 0.059 32734
eccv2002 42379 4686 36 374 3.525 0.009 3175
Jmlr2003 48859 16503 46 153 3.071 0.020 3115
mediamall 30993 12914 120 101 4.376 0.043 6555

9.2.1 Experimental Setup

We conducted experiments on four large multilabel datasets with at least 100 labels
and 10000 training examples. The first one, hifind, contains 32769 music titles
annotated on average with 37 from 632 different labels (Pachet and Roy, 2009). The
second dataset, eccv2002 (Duygulu et al., 2002), is a popular benchmark for image
classification and annotation methods. It is based on 5000 Corel images, 4500 of
which are used for training and the rest 500 for testing. The third one, jmIr2003, is
produced from the first (001) subset of the data accompanying (Barnard et al., 2003).
It is based on 6932 images, 5188 of which are used to create the training set and the
rest 1744 to create the test set. The last one is based on the Mediamill Challenge
dataset (Snoek et al., 2006). It contains pre-computed low-level multimedia features
from the 85 hours of international broadcast news video of the TRECVID 2005/2006
benchmark. Table 9.1 shows the number of examples used for training and testing,
the number of features, the number of labels, the label cardinality and density, and
the number of distinct labelsets for each dataset.

The experiments were conducted using the Mulan library of algorithms for mul-
tilabel learning (Tsoumakas and Vlahavas, 2007) and the decision tree learner J48
was used as base classifier.

Here, the effectiveness of all algorithms is evaluated with label-based micro-averaged
recall, precision and F1 (cf. Section 7.2.1 on page 86). We also evaluate the efficiency
of all algorithms based on their run time (for training and classification).

9.2.2 Results of HOMER with QCLR

This section presents and discusses the results of using HOMER together with
QCLR as the multilabel algorithm for building models at each internal node of the
hierarchy. We experimented with 8 different numbers of partitions (i.e., 5 ranges from
3 to 10) and 3 different methods for partitioning the set of labels at each internal
node:
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Figure 9.1: Micro recall over number of partitions for the six HOMER. variants

e random and even distribution (R) of the labels to the children nodes,

e clustering (C) using the expectation minimization (EM) algorithm (as imple-
mented in Weka (Hall et al., 2009)), and

e balanced clustering (B) using the algorithm introduced in (Tsoumakas et al.,
2008), which is based on k-means clustering and imposes a constraint on the
clusters such that their size is close to equal.

In addition to HOMER with QCLR* as multilabel classifier we ran the experiments
using HOMER with BR? and also using the plain algorithms BR and QCLR without
HOMER.

4 In the following graphs this combination is denoted as CLR-R, CLR-B, CLR-C respectively for
all three different partitioning approaches.

5 In the following graphs this combination is denoted as BR-R, BR-B, BR-C respectively for all
three different partitioning approaches.
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Figure 9.2: Micro precision over number of partitions for the six HOMER variants

Prediction Quality

Figures 9.1 and 9.2 show the recall and precision results for the HOMER variants
on all four datasets. We can see that recall decreases, while precision increases with
the number of partitions, independently of the multilabel learner and partitioning
method used. One potential reason for this behavior could be that smaller number
of partitions lead to more general meta-labels that are more difficult to distinguish.
Apparently this leads to a more relaxed prediction, so that at each inner node the
multilabel classifier does predict more meta-labels and as a consequence more of the
original labels, but with lower precision.

The recall of the CLR based HOMER  variants seems to be larger than that of
the BR based HOMER variants, irrespectively of the number of partitions. This is
totally clear in mediamill and hifind, but less clear in jmIr2003 and eccv2002, though
it stills holds if we compare the two learners under the same partitioning method. As
far as the partitioning method is concerned, there is no clear trend with respect to
recall, while the plain clustering method seems to have the worst precision for both
BR and CLR based HOMER.
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Figure 9.3: Micro F over number of partitions for the six HOMER variants

The decrease in recall is stronger for CLR than for BR in the low density datasets
eccv2002 and jmlr2003. This means that in low density datasets, a small number of
partitions favors the recall of HOMER with CLR. On the other hand the increase in
precision is stronger for CLR than for BR in the high density datasets mediamill and
hifind. This means that in high density datasets a large number of partitions favors the
precision of HOMER. A potential reason is the fact that CLR underestimates the size
of the predicted labelsets (Fiirnkranz et al., 2008). It seems that this underestimation
increases with the number of labels, as seen in the results of CLR that are discussed
later on in this chapter.

Figure 9.3 shows the micro-averaged F; measure of HOMER for the datasets.
As far as BR based HOMER is concerned no clear trend can be detected with
respect to the number of partitions. With respect to the partitioning method, the
plain clustering approach seems inferior to the rest, while no clear winner between
balanced clustering and random partitioning can be announced. As far as CLR is
concerned, as already outlined in the previous paragraphs, in low density datasets
we notice a decrease of F} with respect to the number of partitions, while in high
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variants

density datasets we notice an increase of F}. We could therefore consider this as a
guideline for selecting the number of partitions for HOMER with CLR based on
the density of the dataset. Overall, the CLR based HOMER seems to be achieving
better results for a larger percentage of different partition numbers, compared to
the BR based HOMER. In terms of the partitioning method, the plain clustering

(d) hifind

approach seems inferior to the rest for both CLR and BR.

Training Time

Figure 9.4 shows the training time of the HOMER variants in seconds. We would
expect that the training time of the random partitioning variant should be less than
that of the balanced clustering variant, since they both deal with the same number
of labels and create and train the same number of multilabel classifiers, but balanced
clustering needs some additional time to distribute the labels according to similarity
as well. However, this is clearly noticed only in eccv2002. In jmlr2003 there is no clear
winner for all numbers of partitions, while in mediamill and hifind we notice that
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Figure 9.5: Testing time (in seconds) over number of partitions for the six HOMER variants

the balanced clustering approach requires less time, independently of the multilabel
learning algorithm that is used (BR or CLR) and the number of partitions.

These results can be explained by the following observation. As clustering is based
on the values of the labels, the children produced with balanced clustering, will
contain labels that typically appear or do not appear together. This in turn means
that more examples of the parent node will be filtered, leading to a reduced number
of training examples. This was also observed in (Tsoumakas et al., 2008). Here, we
notice that the gains in training time are higher for CLR compared to BR. This is
an expected result based on the previous observation, because CLR trains its binary
classifiers only on those examples where the values of the corresponding labels differ.

One issue that still needs to be explained is how this behavior is affected by the
different datasets. In this direction, we notice that the gains in training time seem to
be correlated with the density of the dataset. The reason, again based on the previous
observation, is that the lower the number of label appearances with respect to the
number of labels (density), the lower the gains that can be achieved by clustering
co-occurring labels together.
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Concerning the plain clustering partitioning method, we notice that it is clearly
the worst one in terms of training apart from the mediamill dataset. The plain
clustering method requires more time to perform the clustering as it is based on
the expectation maximization algorithm. Dataset mediamill is also the smallest one,
where it seems that the time required for clustering does not surpass the gains from
the clustering process. This is why plain clustering appears to be better than random
partitioning, especially for CLR. The loss in performance is more evident in eccv2002
and jmIr2003 due to the lower density.

Testing Time

Figure 9.5 on the previous page shows the testing times of the HOMER variants in
seconds. Here the results are not as clear as in the case of the training time. Apart
from the jmIr2003 dataset, it seems that balanced clustering leads to less testing time
compared to random partitioning irrespectively of the multilabel learning algorithm.
Also plain clustering seems to be worse than the rest of the partitioning methods in
eccv2002 and jmlIr2003 for most of the partition numbers. Finally, we could comment
that the classification time seems to decrease with respect to the number of partitions
probably due the smaller height of the tree (logg k).

9.2.3 Comparison of HOMER against its base classifiers

For the direct comparison of HOMER against the flat approaches in Table 9.2 on
the facing page and Table 9.3 on page 126 we chose the configuration with balanced
clustering and 10 partitions. Note that no results could be retrieved for CLR on the
hifind dataset due to the high memory requirements. To circumvent this problem for
problems with a large number of classes was a main objective of combining HOMER
with CLR as base classifier.

Prediction Quality

It is especially interesting to observe the opposite behavior in terms of recall and pre-
cision of the different approaches. CLR shows the best precision performance with a
large margin over the other algorithms on all datasets. On the other hand, its recall val-
ues are particularly low. This confirms previous results that CLR does underestimate
the size of the predicted labelsets (Filirnkranz et al., 2008). Our results indicate that
this is particularly true for datasets with a high number of classes such as eccv2002,
where CLR returns only 3.84 % of the correct labels, while 58.11 % of the returned
labels are actually correct, compared to the 36.58 % by BR and around 28 % by both
HOMERS. On the other hand, on the mediamill dataset, CLR’s gain in precision
seems to make up its low recall, thereby producing the highest average F1 value.
BR has a similar behavior of predicting relatively few labels with increasing number
of labels. This is probably due to the greater imbalance of positive to negative examples
for large problems, which leads to less frequent predictions of positive examples than
the class distribution would suggest. HOMER shifts the trade-off between recall
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Table 9.2: Performance measures on the different datasets. Results for Binary Relevance
(BR), QWEIGHTED calibrated label ranking (QCLR), HOMER with balanced clustering
and 10 partitions and BR (H+BR), HOMER with balanced clustering and 10 partitions
and QCLR (H+QCLR) are shown.

method mediamill  jmlIr2003 eccv2002  hifind

micro Precision

BR 58.00 % 32.27% 36.58% 59.43 %
QCLR 73.89% 56.18 % 58.11% -
H+BR 56.98 % 26.48 % 2891% 55.31%

H+QCLR 58.35 % 31.93 % 2843% 55.26 %

micro Recall

BR 44.79 % 9.85% 742% 45.73%
QCLR 43.86 % 4.57% 3.84% -
H+BR 44.91 % 10.81 % 13.21% 48.64%
H+QCLR 48.77 % 10.28 % 15.07% 54.06 %
micro F1
BR 50.55 % 15.09 % 12.34% 51.65%
QCLR 55.04 % 8.45% 7.21% -
H+BR 50.23 % 15.36 % 18.14% 51.76 %

H+QCLR 53.13 % 15.55% 19.70%  54.65%

and precision to a more balanced level, increasing recall but losing precision. The
reason is probably the smaller problems in terms of number of classes that CLR has
to solve in the HOMER setting. This was already shown in the correlative behavior
between number of partitions and precision. The effect can also be seen when using
BR as multilabel base classifier technique for HOMER, but it is less pronounced
since the plain BR itself produces more balanced results.

Due to the great differences in recall and precision between the algorithms, we
decided to omit the Hamming losses in Table 9.2 though this measure is usually used
for evaluating multilabel algorithms, since Hamming loss generally favors algorithms
with high precision and low recall,® which in this case means to favor CLR. The F1
measure, which returns the harmonic mean between recall and precision, allows a more
commensurate analysis in this particular case since it penalizes greater differences
to a higher degree. Except on the mediamill dataset, for which the approx. 100
classes do not show a great impact on CLR’s recall, HOMER achieves the highest
micro-averaged F1 value. In particular it outperforms BR on every dataset, which
is especially interesting since HOMER is the direct competitor of BR in terms
of computational costs. Similarly, HOMER-+BR beats the plain BR except for
mediamill, for which both algorithm are almost equal. HOMER+BR in general
achieves less accurate predictions than using the pairwise approach as base classifier:

6 Returning zero labels to returning 50 of which 25 are correct would result in the same loss.
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Table 9.3: Computational costs on the different datasets. Results for Binary Relevance
(BR), QWEIGHTED calibrated label ranking (QCLR), HOMER with balanced clustering
and 10 partitions and BR (H+BR), HOMER with balanced clustering and 10 partitions
and QCLR (H+QCLR) are shown.

method mediamill  jmIr2003 eccv2002  hifind
Training Time (in seconds)

BR 2413.40  2801.17 2701.32  4179.66

QCLR 7423.19  6542.51 7460.14 -

H+BR 1065.21 1101.61 1144.47  2345.39

H+QCLR 1667.29 1871.00 1836.34  3801.53
Testing Time (in seconds)

BR 3.84 6.67 5.47 50.47

QCLR 103.59 119.28 154.65 -

H+BR 4.35 7.70 4.48 48.77

H+QCLR 4.90 9.26 5.62 60.02

in terms of F1 HOMER+BR is beaten on all datasets, in terms of recall and
precision both algorithm are either almost equal (HOMER+BR slightly ahead) or
HOMER+QCLR is clearly on top.

Computational Time

As shown in Table 9.3, HOMER is able to reduce the training time in comparison
to plain BR approx. between 60 % and 44 % for using BR as base and between
33 % and 10 % for using QCLR. The first comparison is especially interesting since
HOMER+BR has to train more base classifiers than BR: one classifier for each class
at the leafs such as BR in addition to the classifiers in the inner nodes. However, this
is done obviously with less training examples due to the filtering of examples at the
inner nodes. Comparing the two HOMER variants, we can observe that the overhead
of training the pairwise classifiers is always less than training the one-against-all
classifiers. Note that QCLR has to train the same classifiers as BR, for the comparison
to the calibrating artificial class plus the pairwise classifiers between real classes. This
may seem very surprising since training the pairwise classifiers requires |P|/|D| times
more training examples than training the BR classifiers’, i.e. the amount is multiplied
by the cardinality of the multilabel problem (cf. Fiirnkranz et al., 2008). But when
the base classifier has a super-linear complexity in terms of training examples, the
reduced size of the binary subproblems by the pairwise approach may lead to a
reduced complexity (Fiirnkranz, 2002), which is the case for J48. In addition, another
factor could be that by clustering the cardinality of the reduced multilabel problems

7 This estimation of training examples is too rough for the special case |P|/|D| = 1, which refers
to a reduction to a multiclass problem. In this regard, the pairwise classifiers use in total fewer
examples than the One-Against-All classifiers (Fiirnkranz, 2002).
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is often strongly reduced to the extreme case 1, where pairwise classifiers utilize in
total fewer trainings examples than BR. However, we defer the investigation of this
previously unseen observation for future work.

For testing, HOMER+BR is slightly slower than BR for the smaller mediamill
and jmlIr2003, but for the greater datasets eccv2002 and hifind it requires less time.
Although HOMER+BR has trained more base classifiers than the plain BR approach,
it may invoke less base classifiers since great part of the classifier tree is pruned
each time a meta-label is predicted as negative. This effect was already observed
in previous work on a dataset with almost 1000 classes (Tsoumakas et al., 2008).
HOMER+QCLR spends between 3% and 40 % more time than BR, however,
testing costs are so small for J48 compared to training time that this increase is
almost not noticeable. Again, the overhead for evaluating the additional pairwise
classifiers in HOMER+QCLR only require a small fraction of the time needed for
the BR classifiers. Nevertheless it is not possible to simply compute the overhead as
difference between the time for HOMER+BR and +QCLR since prediction accuracy,
especially precision, also strongly influences the classification time. As expected, CLR
requires the most computations for learning and predicting. However, the factor in
training costs is proportional to the average labelset size per example, which makes
the costs acceptable for most of the multilabel problems since the labelsets tend to
be small. For prediction, the usage of QWEIGHTED is able to considerably reduce the
costs in comparison to the evaluation of all pairwise base classifier while maintaining
the advantage of the pairwise approach in terms of predictive performance.

9.3 Conclusions

In this chapter, we performed an empirical study of the performance of HOMER.
Compared to relevant previous work (Tsoumakas et al., 2008), the experimental part
examines an additional multilabel learner for training each node of the hierarchy
(QWeighted calibrated label ranking) on four large multilabel datasets with a variety
of characteristics. Interestingly, the results showed that the instantiation of the
multilabel learner of HOMER to QCLR can lead to better results compared to
instantiating it to BR at a small expense in training and classification time. HOMER
improves the training time of BR and this is even more important for QCLR. In
terms of classification time HOMER substantially improves QCLR, while for BR
the benefits appear for the two largest datasets in terms of number of labels. Except
for the mediamill dataset (where the differences are rather small), HOMER managed
to improve the performance of the base multilabel learner (both BR and QCLR).

HOMER also deals with the scalability problem of QCLR in terms of memory
with respect to the number of labels, since it substantially reduces the amount of
needed classifiers. In the same manner it provides a significant reduction in training
and test time for the pairwise CLR methods. It is also shown that HOMER is able to
equilibrate recall and precision, especially for QCLR which seems to underestimate
the number of labels per instance for problems with a high number of labels.
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A straight-forward approach for addressing multilabel classification is to model each
class independently. In the binary relevance approach (cf. Section 7.3.1 on page 90),
one binary classifier is trained for each possible label, in which all training examples
for which the label is relevant are used as positives examples and all other examples
as negative examples. However, in most real-world applications the predicted labels
are not independent, so that the presence of one label may be indicative for other
labels.

For this reason, several authors have extended the binary relevance approach to allow
for incorporating dependencies between labels. For example, Crammer and Singer
(2002a) have proposed a training scheme for a binary relevance classifier that does not
optimize the 0/1-loss of each individual label, but instead optimizes a given ranking
loss function over the entire one-against-all ensemble. Loza Mencia and Fiirnkranz
(2008¢) have shown that this approach is outperformed by training a one-against-one
ensemble, i.e., by having one classifier for each pair of labels.

In many applications, there are explicit constraints that must hold between the
labels. For example, in the context of hierarchical classification, where the given set of
labels has an inherent hierarchy structure!, the relevance of one label in the hierarchy
often also implies the relevance of all its ancestors. This situation can be modeled by
a subset constraint, which specifies that whenever label )\; is predicted as relevant, we
must also predict A;. Similarly, one can imagine exclusion constraints specifying that

1 An example for a hierarchical classification problem is the considered task in (Lewis et al., 2004)
(dataset RCV1), where news articles are classified into topics or labeled with relevant labels. Here,
the existence of a hierarchy structure among labels is apparent and the used one can be viewed at
http://www. jmlr.org/papers/volumeb/lewisO4a/a02-orig-topics-hierarchy/rcvl.topics.hier.orig
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two labels A\; and A; cannot be relevant at the same time. A typical example of this
case would be if the set of labels contains labels of several orthogonal dimensions, each
having a set of mutually exclusive labels, e.g., L = {male, female} U { child, adult}
and assuming, that the corresponding instances represent single persons.

In this chapter, we make two contributions: first, we will formally define the
problem of multilabel learning with constraints and demonstrate the potential of this
scenario on a simulated application with known constraints (Section 10.1). Second,
we will evaluate an automated approach for discovering possible constraints on several
well-known multilabel datasets (Section 10.2). Interestingly, we will see that in the
automated approach, our results are mostly negative and cannot live up to the
demonstrated potential on the artificial datasets.

10.1 Label Constraints

In this section, we describe the definition of constraints, and define straight-forward
algorithms for correcting predictions that violate these constraints.

10.1.1 Definition of Label Constraints

In addition to the ordinary multilabel classification setting, we assume that we are
given a set of constraints Z = {z; | i = 1...q} on the labels L. Here, we consider two
types of constraints: subset and exclusion constraints.

Subset constraints A; > \; denote that if label ); is relevant for a given instance
x than ); has to be also relevant. Formally,

/\iD)\j 2:)\i€P—>)\j€P (10.1)

Exclusion constraints \; | \; denote that for all instances, labels \; and \; ex-
clude each other, i.e., the two labels cannot be relevant or irrelevant at the
same time. Formally,

)\i||)\j::()\iEP(—))\jEN)/\()\Z'EN(—))\]'EP) (10.2)

We call subset or exclusion constraints pairwise if they have only one label on each
side of their rule, and denote the space of all pairwise constraints for a given set of
labels L as Za(L).

There are several other ways to define constraint types on labels for the multilabel
setting. For example, one could also consider the following four types of constraints:

Ai> A =NeP =N eP
AipAji=NeEN =N EN
ANiD>Aj=NeP =)\ eN
AipAji=NeN =N eP
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Combined with logical connectors, these four basic constraints can represent a wide
variety of constraints. For example, an exclusion constraint \; || A; may be viewed as
a conjunction of the four constraints (AD>Aj) A (A Aj) A (ADA;) A (AjpX;). But in
this work we restrict ourselves to subset and ezxclusion constraints as a start, since
they are intuitive and reasonably expressive.

Such constraints are quite similar to instance-level constraints that have been
explored in semi-supervised or constraint-based clustering (Wagstaff and Cardie,
2000; Wagstaff et al., 2001; Bilenko et al., 2004), only that we define constraints
between different labels (known groups of instances), whereas the constraints for
semi-supervised clustering are defined between instances (e.g., this pair of instances
must (not) belong to the same cluster).

In this chapter, we will often speak of preferences pr; ; € [0,1] instead of pairwise
classifiers or pairwise predictions. The preference pr;; = 1 means that label J; is
preferred over \;, also denoted as A\; > A;, for a given test instance x (which will be
often neglected). Conversely, the preference pr; ; = 0 is interpreted as \j > ;.

10.1.2 Constraint-Based Correction of Predictions

Basically, label constraints can be integrated into the learning phase or testing phase
of multilabel classification. Within the CLR framework (cf. Section 7.3.3 on page 93),
pairwise subset constraints like A; > A; could be easily modeled in the learning
phase, i.e. by substituting the pairwise preference pr; ; with a constant value of 1 or
substituting its corresponding pairwise classifier f; ; with a constant function, which
returns always 1. Therefore, this specific preference woulds always prefer A; and would
not have to be learned anymore. However, this approach does not guarantee that the
constraint is respected in the final prediction, because individual preferences may be
over-ridden in the aggregation phase. Thus, we focus on integrating label constraints
into the aggregation phase, where the predictions of the individual classifiers are
combined.

Hence, we interpret the given constraints as immutable hard constraints, which
must be respected by the final multilabel prediction. In addition, the predicted
pairwise preferences are interpreted as soft constraints, which should be respected as
well, but may be violated if necessary. These altering should be minimal for some
distance measure. We consider two possible measures. First, the number of preference
swappings that are needed to make the predicted preferences conform to the final
prediction, and second, the number of neighboring label swappings in the predicted
ranking. Our algorithm starts with an invalid predicted ranking and searches for
a valid ranking which can be constructed by a minimal amount of preference or
neighbor label swappings.

Minimizing Preference Swappings (PS)

The preference swappings measure is motivated by the assumption that an invalid
ranking is caused by a few incorrectly predicted pairwise preferences. Errors among
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Algorithm 9 PREFSwaP

Require: Constraints Z, pairwise preferences PR, (invalid) ranking 7

I: Tbest — @

2: Toan {7‘ 0}

3: Tevaluated < {TO}

4:

5. repeat

6: Thew < 0

7 for each 7 € T, do # expand new rankings
8: for each pr € PR do # by iterating preferences
9: Tnew <— SWAPPREFERENCE(T, pr)

10: if Thew € Tovaluated then # enqueue only new rankings
11: Thew < Thew U {Tnew}
12: for each 7 € T}y, do # check constraints
13: if 7 is valid then

14: Thest < Thest U {T}

15: Tevaluated <~ Tevaluated U Tnew

16: Ton — Thew

17: until Test # 0 or Thew = 0

18:

19: return Tiest

the pairwise base classifiers are assumed to be independent. Let Sg(Z) denote all
permutations respectively rankings with k& = |L| which satisfy Z and let a : {0,1}" —
Sk denote the aggregation function (here voting), which projects a set of preferences
to a ranking. Then, for a given set of pairwise preferences PR, we are searching for
a ranking a(PRy1) € Si(Z) of corrected preferences PR; which maximizes following
measure:

dps(PR,PRl) = ‘PRQPRH

Our implementation of finding a PS-minimal ranking is based on breadth-first search,
and is presented as pseudocode in Algorithm 9. We start with an invalid predicted
ranking 79. For every possible pairwise preference pr € {pr;; | 1 < i < j < k},
the ranking mew is generated, which yields by swapping (negating) the preference,
followed by voting-aggregation. Then, to avoid multiple checks of the same ranking,
only new rankings are appended to Thew. After this expanding step, the candidate
rankings 7 € Tyew are checked if any satisfy the given constraints. If one ranking is
determined as valid, the search process does not immediately stop but all remaining
rankings in the set Tyew will still be processed. We refer to this scheme in the further
text as PS. Note that the elements in Tyew represent rankings of the same level,
the actual highest depth. So, all rankings 7 € Tjew, Which satisfy the constraints,
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10.1 Label Constraints

are equal in terms of swapped preferences. If the PS-minimal ranking is not unique
further selection criteria are evaluated, which are described later.

Minimizing Neighbor-Label Swappings (NLS)

Neighbor label swapping is motivated by the fact that swapping one preference yields
at most to a swapping of two labels in the ranking, whose position difference is 1.
We refer to these label pairs as neighboring or adjacent. However, many swappings
of individual preferences will not yield a change in the predicted ranking. So as an
approximation, one can use the needed swappings of neighbor or adjacent labels as a
minimizing criteria.

In another view, minimizing NLS directly relates to one valid ranking with minimal
RANKLOSS (cf. Section 7.2.2 on page 88) to the predicted ranking. Each NLS swaps
an adjacent label pair, which increases the number of incorrectly ordered label pair by
1. The relative ordering of the remaining labels are not affected and label swappings
resulting in a recurring (ranking) state will not be considered, as in Algorithm 9 on
the preceding page.

If we denote 79 = (A1,...,A;) as the predicted ranking, S = (s1,...,8,) €
{1,...,k — 1}* as the set of non-empty finite sequences with terms in {1,..., &k — 1},
S1 € S as an arbitrary sequence of swap positions and sw : Sy X S — Si as a
sequential swapping function

(Ao Ay =1y Asy 41y Asys - -, Ag)  if S =1

sw(sw(r,s1), (52, 8|5,]) otherwise

Sw(To, Sl) = {

then the sought ranking 71 € Sk(Z) should minimize following measure:

dNLs(T(),Tl) = min{zl | 357 € S‘Sl‘ =21AT] = Sw(To,Sl)}

The algorithm to minimize Neighbor-Label Swappings (NLS) is a straight-forward
adaption of PREFSWAP, which iterates through all neighboring labels rather than
through all pairwise preferences. Note that this scheme has a linear (in the number
of labels) branching factor and PREFSWAP a quadratic one.

Comparing and Tie-Breaking

Given dmin = ming,cs, dps(7o, 7;) and several valid rankings 7; with dpg(m, 7j) =
dmin, we choose RANKLOSS as first criterion to further distinguish among them. This
is consistent with the objective to minimize the changes of the initial invalid predicted
ranking to satisfy some given constraints. NLS-minimized rankings omit this step,
since they are by construction equal with respect to RANKLOSS.

There are cases in which this criterion is still equal for some rankings, see for example
Figure 10.1 on the following page. Suppose the predicted ranking? is 79 = (AB|CD)

2 We will use the notation 790 = (AB|CD), where the labels are ordered according to decreasing
level of relevance (A is most relevant, D is least relevant), and the splitpoint between relevant and
irrelevant labels is indicated with a ”|”.
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Figure 10.1: A simple example of constraint correction by neighbor label swapping. The
predicted invalid ranking is (AB|C'D) and the constraint set consists of only one element:
B > C. NLS expands the initial ranking and returns two valid rankings. Dashed nodes
represent invalid and solid nodes valid rankings.

and a domain expert has specified the constraint z; = B > C'. The ranking 7y does not
satisfy c;. It can be trivially repaired by swapping the position of the calibration label
| with one of its neighbors B or C, yielding the 71 = (A|BCD) and 7 = (ABC|D).
Both are equal with respect to the NLS distance. Two other rankings, (BA|C'D) and
(AB|DC), can also be found at the same search depth, but these are invalid.

In order to decide for one of the two valid rankings, we first compute the RANKLOSS
with respect to the originally predicted ranking 7y. If this is also equal between the
candidates (as in our example), we check whether the direct neighbors of the predicting
split point violate the initial pairwise preferences. Let s, = 7;(Ag) be the position of
the splitpoint within a ranking 7;, then we compute:

[P0 {0 =7 (sp = 1), do <7 (sp + 1)

So in other words, we count the number of wrongly ordered neighbor label pairs
which are direct above or below the splitpoint. We select the one with the lowest
number. Then if there are still ambiguous rankings, we select the one which minimizes
the disordered number for all k£ — 1 neighbor label pairs, not only the direct neighbors
of the splitpoint. As a last separation step, a random selection is applied.

10.1.3 Experimental Evaluation
In the following, we show the results of the PS and NLS algorithms on artificial data.

Note, that we reverted in the following evaluations AVGPREC, to bring this loss in
line with the others so that an optimal value is 0.
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Table 10.1: Experiments on synthetic data generated with constraints Z;. The shown
measures are macro-averaged and the lower the value the better the performance.

ERROR RANKERR RANKLOSS 1 — AVGPREC # VIOL.
VA PS NLS VA PS NLS VA PS NLS

0.05 0.025 0.024 0.026 0.009 0.008 0.009 0.008 0.007 0.007 0.10
0.10 0.053 0.052 0.064 0.028 0.028 0.028 0.025 0.025 0.024 0.17
0.15 0.085 0.086 0.088 0.055 0.053 0.053 0.043 0.041 0.041 0.23
0.20 0.125 0.126 0.128 0.093 0.091 0.091 0.072 0.070 0.070 0.27
0.25 0.168 0.169 0.171 0.135 0.133 0.133 0.100 0.097 0.096 0.31
0.30 0.227 0.227 0.228 0.208 0.206 0.206 0.144 0.142 0.140 0.34

Table 10.2: Experiments on synthetic data generated with constraints Z;. The shown
measures are macro-averaged and the lower the value the better the performance.

ERROR RANKERR RANKLOSS 1 — AVGPREC # VIOL.
VA PS NLS VA PS NLS VA PS NLS

0.06 0.023 0.022 0.022 0.008 0.007 0.007 0.008 0.007 0.007 0.06
0.10  0.052 0.050 0.049 0.028 0.027 0.026 0.028 0.027 0.026 0.13
0.15 0.085 0.082 0.082 0.061 0.057 0.057 0.055 0.053 0.052 0.19
0.20 0.123 0.119 0.118 0.101 0.097 0.096 0.083 0.081 0.080 0.24
0.25 0.169 0.163 0.163 0.156 0.149 0.148 0.118 0.114 0.114 0.29
0.30 0.223 0.217 0.215 0.219 0.213 0.211 0.159 0.157 0.155 0.34

Data Generation

Given a set of labels L = {A; ... A\;} and a set of pairwise label constraints Z C Zg(L),
n random permutations 71, ...,7T, € S are generated, which satisfy Z. Each of the
permutations 7; is decomposed into the unique set PR = {pr;; | 1 <1i < j < k}
of binary pairwise preferences. For example, if 7 = (A1, A3, A2) then PR = {\; >
A2, A1 = A3, A3 > Ao} is the associated set of binary pairwise preferences. The
classification error of the binary pairwise classifiers is modeled by swapping a ratio
(ERROR = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) of the pairwise preferences.

Evaluation

In a first experiment, we used the following two arbitrarily chosen constraint sets on
6 labels L = {A1,...,A¢} and generated n = 5000 training instances for each.

Z1 = {)\1 > Ao, A3 D> A4, Mg D s, )\6l>)\5}
Zy ={X1 || A2, A2 || A5, Az Ae}

Tables 10.1 and 10.2 show the results of the comparison between regular voting
aggregation (VA), and the constraint-based corrections PS and NLS. For each loss
function the values in the leftmost column are generated by voting-aggregation without
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Table 10.3: Experiments on 100 random synthetic datasets. For each loss function the
left values are generated by ordinary voting-aggregation. The right values show constraint-
correction values based on neighbor-label swapping.

ERROR RANKERR RANKLOSS MARGIN 1 — AVGPREC # VIOL.
VA NLS VA NLS VA NLS VA NLS

0.05 0.0245 0.0231 0.0100 0.0081 0.0120 0.0098 0.0074 0.0065 0.11
0.10  0.0525 0.0494 0.0311 0.0260 0.0372 0.0311 0.0223 0.0196 0.20
0.15 0.0857 0.0811 0.0652 0.0566 0.0774 0.0670 0.0449 0.0402 0.27
0.20 0.1266 0.1206 0.1124 0.1009 0.1320 0.1181 0.0750 0.0686 0.33
0.25 0.1733 0.1662 0.1709 0.1577 0.1979 0.1816 0.1098 0.1024 0.37
0.30 0.2276 0.2203 0.2434 0.2294 0.2763 0.2586 0.1519 0.1439 0.41

any constraint-based post-correction. The second and third column show constraint-
correction values based on preference swapping and neighbor label swapping. The
bold numbers describe the best values for a particular loss and ERROR combination.
MARGIN error values are omitted for lack of space. Their relations among the different
aggregations schemes are anyway mostly identical to the RANKLOSS values, more
precisely, the aggregation scheme with the best MARGIN value for a particular ERROR
is identical to the best one for RANKLOSS. For both set of constraints Z; and Zs,
PS or NLS tend to outperform VA, but the results are not entirely conclusive.

To obtain a more thorough evaluation, we used 100 datasets with random rankings
for 6 labels, each with 1000 instances. The number of constraints was also randomly
selected from 2 to 5. These constraints were first checked for consistency and finally
evaluated for six ERROR values (€ = 0.05,0.1,0.15,0.2,0.25,0.3). The average losses
and ratios of violated instances are shown in Table 10.3.3 In this evaluation, only
NLS was used as correction scheme, since its evaluation takes significantly less time
and its performance seem to be competitive to PS. The values clearly show the
superior performance of NLS-minimizing constraint correction compared to simple
voting-aggregation. For each ERROR - loss function combination NLS outperforms
the baseline.

10.2 Discovering Label Constraints from Data

In many domains, sensible label constraints may be available from background knowl-
edge about the target domain. However, even in domains in which such knowledge
is not readily available, one may try to automatically discover the knowledge from
data. In this section, we evaluate the use of association rule learning algorithms for
this purpose.

3 Note that the experimental results in this chapter correct minor erroneous results previously
published in (Park and Fiirnkranz, 2008). A recently found software bug employed a false normal-
ization for RANKLOSS. However, the original statements and conclusions were not affected by this
bug. Please note also that in this thesis all predictive measures are normalized (cf. Section 7.2 on
page 86) unlike in (Park and Fiirnkranz, 2008).
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10.2.1 Association Rules as Constraints

We define the problem of discovering label constraints in the data as an association
rule learning problem. In a nutshell, in this field each instance (here called itemset
or transaction) represents a subset of a fixed set I of items or objects and the main
task is to find rules or patterns of the form:

if item(s) I; C I is present in an instance, then item(s) Io C [ is also
present

with I; NIy = () and I # (). These rules, which make a statement about the relation
of items, are typically rated by its confidence (how often the rule is true) and support
(how often the precondition holds or, in other words, how general it is). The support
of a rule I} — I, is traditionally defined as the fraction of itemsets in the data, in
which I U I occurs (Agrawal et al., 1996). But it may also refer to the fraction of
itemsets in which only the precondition I; holds (Borgelt and Kruse, 2002). Here,
we will use the latter definition. For further information on association rule learning
and its related field frequent itemset mining, we refer to (Goethals, 2005).

The similarity to our task at hand is apparent and so, it is natural to use the
machinery of this field to solve our problem. We construct one itemset for each
training example x;, which consists of the set of relevant labels P;. We then use a
association rule learner to discover rules of the form

>‘i1"'>‘ib —))\j
with b labels in the antecedent and one label in the consequent. Negation can be
handled by including negative labels of the form —\ with the semantic A’ € N into
the itemsets. Thus, each example is associated with an itemset of length k, one item
for each label denoted either as \' or —\'.

Typical association rule learning algorithms tend to generate redundant rules. These
are justified in their original main application areas, e.g., market basket analysis,
since their main goal is to find (all) interesting rules or relations between items
rather than a compact set of rules. However, for our purpose, to use association rules
as constraints, these redundant rules lead to unnecessary runtime growth. In this
work we understand redundancy in the sense of inductive rule learning. We are thus
interested in generating rules with minimal antecedent, as opposed to, e.g., closed
itemset mining which considers rules with maximal antecedent (Goethals, 2005).

A rule I} — Iy consisting of body (antecedent) I; and head (consequent) Iy is
redundant with respect to rule Is — I if I3 is a subset of ;. If a rule is more specific
than another, it is unnecessary to check, because the more general rule will be checked
in any case. So in our evaluations we speed up the constraint correction process, by
post-processing generated association rules with a minimizing step, which removes
all rules except the most general ones. In the above example, if Is C I, then the rule
I; — I will be removed.
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Table 10.4: Experiments on real-world data: yeast. The right-most column shows the amount
and the ratio of predicted rankings which the violated given constraint set.

CoNF SupP RANkKLOSS MARGIN 1 — AVGPREC # VIOLATED

VA 0.4614 0.3349 0.2426

100 60 0.4614 0.3349 0.2426 28 (0.03)
40 0.4612 0.3347 0.2425 102 (0.11)
20 0.4620 0.3350 0.2430 303 (0.33)

95 60 0.4614 0.3349 0.2426 39 (0.04)
40 0.4612 0.3345 0.2425 111 (0.12)
20 0.4619 0.3345 0.2429 341 (0.37)

90 60 0.4614 0.3349 0.2426 40 (0.04)
40 0.4612 0.3345 0.2426 174 (0.19)
20 - - - -

10.2.2 Experiments on Real-World Data

We compare simple voting aggregation and the constraint correction algorithm on two
real-world multilabel datasets, namely yeast and siam.* The dataset yeast consists
of 14 labels, 1500 training and 917 testing instances. It concerns the functional
multilabel classification of yeast genes (cf. Section 8.4.1 on page 103). Dataset siam is
a text-categorization problem, where multiple labels are associated to one document.
It consists of 22 labels, 21519 training and 7077 testing data. We used the given
training/test splits for evaluation.

The association rules were generated by the APRIORI algorithm (Agrawal et al.,
1996) in its implementation by Borgelt (Borgelt, 2003). As a base learner, we used the
support-vector machine implementation in LIBSVM (Chang and Lin, 2011) with a
linear kernel in its default settings. The algorithms were compared according to the
same metrics as above, except that we cannot give RANKERR, since we did not have
correct rankings of the datasets to compute this loss function.

Table 10.4 shows the result of the evaluation on the yeast dataset. The values in
the first line represent performance values for aggregation of pairwise preferences by
voting, which is used as our baseline. The next lines, beginning with various minimum
confidence and support values, describe the result of NLS constraint correction with
different sets of constraints, which are generated by association rule learning using
stated parameters on the training data.

The last column of Table 10.4 describes the amount of violated instances, and
therefore the number of instances to which constraint correction was applied. In
all other cases, the predicted ranking was not changed. APRIORI with parameters
ConNF = 90 and Supp = 20 generated inconsistent rules, so no corresponding values
are shown.

4 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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10.3 Discussion

Table 10.5: Experiments on real-world data: siam. The right-most column shows the amount
and the ratio of predicted rankings which violated the given constraint set.

CoNF SupP RaAnNkLOSS MARGIN 1 — AVGPREC # VIOLATED

VA 0.0784 0.0759 0.1920
100 60-20 0.0784 0.0759 0.1920 2 (0.00)
95 90-70 0.0790 0.0765 0.1967 1157 (0.16)
90 95 0.0789 0.0764 0.1958 768 (0.11)
90 0.0791 0.0766 0.1977 1926 (0.27)
85 0.0791 0.0766 0.1969 2205 (0.31)
80-70 0.0793 0.0769 0.1985 2609 (0.37)

As one can see, constraint correction with association rules as constraints does
not cause significant changes in the performance of multilabel classification. Even in
cases where a considerable amount of instances had to be post-processed, for example
CoNF = 95 and SupP = 20, where 37 % of the predicted rankings violated some of
the learned constraints, no real difference to the baseline can be observed. The results
for siam (Table 10.5) even show a consistent deterioration in prediction performance,
i.e., for all applications of constraint correction the evaluated losses are worse or
equal than the baseline.

Some performance values for siam in Table 10.5 are identical for different support
values with the same confidence, i.e. CONF = 100, Supp = 50 and CONF = 100,
Supp = 30. This is caused by the fact, that identical association rules were generated
for these parameters. More information regarding the used association rules as
constraints can be seen in Tables 10.6 and 10.7, which show the number of generated
constraints for the varying confidence and support values. In addition, the rightmost
column shows the number of rules, which survived our crude redundancy filter, and
were (as previously described) actually used in the constraint testing process.

10.3 Discussion

We introduced constraints into the multilabel classification setting, and studied two
machine learning tasks in this context:

1. Integration of additional knowledge in form of label constraints into the multi-
label classification setting

2. Automatically learning of label constraints

Regarding the first point, we experimented with two approaches which tackle the
constraint integration problem by transforming it into a search problem - searching
for a valid ranking with minimal distance from the ordinary predictions. The number
of preference swappings (PS) and the number of neighbor-label swappings (NLS)
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Table 10.6: Constraint Generation: yeast Table 10.7: Constraint Generation: siam

CONF  SUPP # RULES # MIN CONF  SUPP # RULES # MIN

100 60 65 8 100 60 8 1

40 735 11 50 2957 3

20 11321 46 40 35041 3

5w oo A
40 2067 33

20 27042 99 95 90 2296 143

s 6 w53l 0 s 198
40 2398 44

20 31708 127 90 95 109 70

90 2416 182

85 15905 239

80 61652 273

75 178920 281

70 415861 288

seem to be intuitive and reasonable choices as distance functions within the CLR
framework. Although empirical evaluations of PS and NLS on artificial datasets
showed an improvement for multilabel classification, it failed for two commonly used
real-world datasets, where we used automatically discovered constraints.

In our view, several points could be the reason for the negative results. At first,
one could criticize that we had given the correct constraints for the artificial datasets,
which was not the case for the real-world datasets. One is that the introduced setting
with given true constraints may be too idealistic. Indeed, for our two evaluated
real-world datasets, we have no evidence, even for rules with CONF = 100 that these
rules hold for all instances from the true distribution, since the rules were generated
on training data, which might differ from the true distribution. Small tests with
association rules generated with parameters CONF = 100, SUPP = 1 on training and
testdata of yeast showed also no improvement.

Another point is that the artificial data was explicitly modeled by voting de-
aggregation, i.e. given transitive (binary) pairwise preferences, the correct calibrated
label-ranking is uniquely defined and vice-versa (if we exclude ties). But pairwise
preferences in general do not have to be transitive.

Besides the failure on real-world data, we are aware that the shown algorithms are
currently not applicable to practical problems. We perform an essentially exhaustive
breadth-first search through all possible rankings, and also use a rather expensive
pruning step for the association rule discovery. Without strong assumptions, i.e. that
a valid ranking is relatively fast reachable by PS or NLS for an invalid ranking,
the search process takes too long, since the number of possible candidates grows
exponentially for each iteration of the search algorithm.
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However, our main goal was to investigate whether this approach can, in principle,
yield improved results. Despite the negative results with automatically discovered
constraints, we nevertheless interpret our results as informative, and plan a deeper
investigation of this learning scenario.
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11 Summary

11.1 Summary

In this thesis, we presented several works focused on improving decomposition-based
multiclass and multilabel classification, which are briefly summarized in the following.

Multiclass Classification

For multiclass classification, two methods for a faster training phase were shown. First,
a general reduction of computational complexity was achieved by exploiting code
redundancies in ECOC-based binary decomposition methods. The minimization of the
corresponding learn redundancies was posed as a scheduling problem, which is related
to the Steiner Tree Problem. An approximate solution for this problem was applied
and yielded a positive result with respect to efficiency. The scheduling approach is
applicable by incremental learners, but we showed also a promising adaptation based
on adapted caching and weight reusing for the genuine batch learner SVM. Second,
for the combination of ECOC and the base learner Naive Bayes, we showed a tight
alternative computation scheme, which significantly reduces the training effort from
O(n-t-g) to O((n+t)-g) using normal and discrete density estimation methods, where
n, t and g are the number of classifiers, instances and features. For the case of kernel
density estimators, the worst-case complexity is unchanged, but we advert in this case
to the relationship of actual training complexity and the number of distinct feature
values: The lower the number of feature values, the higher the possible reduction.
Empirical support was given, and based on the majority of real-world datasets which,
in our experience, typically exhibit such a low diversity, we expect a reduction even
in this case.

Furthermore, a chapter was devoted on a more efficient prediction or testing phase
for ECOC-based multiclass classification. The works on QWEIGHTED from pairwise
classification were generalized to arbitrary binary decompositions within the ECOC-
framework resulting in the algorithm QUICKECOC. The underlying basic idea, that
it is not necessary to evaluate all classifiers to compute the classification prediction,
holds also for the ECOC setting and was exploited similarly. The new degree of
freedom regarding the selection of the next classifier was handled using a simple score
based scheme, which prefers, roughly speaking, the classifier with the current top
class against the highest number of other highly ranked classes. Using this heuristic,
QUICKECOC proceeds identically to QWEIGHTED in the special case of pairwise
codes. Extensive experimental evaluations showed the successful reduction of classifier
evaluations on various decoding schemes and code types.
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Multilabel Classification

QWEIGHTED was also similarly adopted to the multilabel classification setting.
Within the calibrated label ranking framework, the number of classifier evaluations
were reduced by evaluating not more than a necessary number of classifiers. Here, after
the initial evaluation of all incident classifiers of the artificial label, the algorithm
QCLR proceeds to compute labels exceeding the relevance threshold (given by
the voting mass of the artificial label). The reduction lies basically in deliberately
neglecting further classifier evaluations of these labels for the purpose of estimating
by which amount they exceed it. After all, this information is irrelevant for the
multilabel prediction. Since the typical number of relevant labels in real-world
multilabel problems is relatively small compared to the set of labels, this procedure
can result in a significant reduction of the overall prediction complexity, as observed
in our experimental evaluations.

Though we were able to reduce the computational complexity in the classification
phase, the problem of maintaining a quadratic number of classifiers in number of the
labels in memory remained. This poses a serious problem in context of large-scale
multilabel problems with thousands of labels. For instance, the dataset EUR-Lex
turned out to be an infeasible problem with our available computational resources. To
tackle this problem, we experimented with a combination of HOMER and QCLR.
HOMER transforms the original multilabel problem into a set of smaller multilabel
problems in terms of number of labels and organizes them in a hierarchy. The
decomposition to smaller problems significantly reduces the amount of classifiers
and therefore the memory-complexity. But, this approach had also for the first-time
an impact on the predictive performance among the approaches considered in this
theses. Until then, all developed methods were able to improve the efficiency without
affecting the predictive performance. However, it turned out that the combination lead
also to a predictive improvement compared to QCLR. The experimental evaluations
indicate that HOMER resolves the bias of QCLR towards precision such that a
more balanced tradeoff between precision and recall is achieved.

Chapter 10 is different than the previous chapters. Here, we extended the multi-
label classification setting with label constraints in hope to improve the predictive
performance. We elaborated on label dependencies in common multilabel data, de-
fined some constraint types and developed a prototype algorithm to incorporate them
in the learning process. Within the decomposition-based calibrated label ranking
approach for multilabel classification, we followed the assumption, that minimizing
violations of such label constraints might improve the prediction quality. For this
purpose, we considered the number of prediction or preference disagreements of base
classifiers and the number of neighbored label swappings to fulfill some constraints as
the minimizing objective. Furthermore, we tackled the learning of label constraints
as an association rule learning problem and used this methods for the considered
real-world datasets. Though first experiments on artificial data showed promising
results, the evaluations on two real-world datasets were negative. We discussed about
the possible reasons, which were mostly of methodical nature.
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11.2 Outlook

The exploitation of code-redundancies by employing a (pseudo) minimal redundant
training schedule considered only incremental learners. One could also consider to
incorporate in addition decremental learners (cf., e.g., Cauwenberghs and Poggio,
2000). This would clearly make a more flexible training schedule possible. However,
the complexity of the training graph would be further increased and the design of
a practical algorithm for computing an adequate approximate Steiner Tree in this
setting might be a challenging task.

For the methods based on QWEIGHTED, there might be still some potential for
improving the results with better heuristics for the selection of the next classifier.
We have not yet thoroughly explored this parameter. For example, one could try
to adapt ideas from active learning for this process. Nevertheless, however, we do
not necessarily expect a high gain. Furthermore, we consider an in-depth analysis
of existing fast decoding methods in coding theory, and the investigation of the
transferability to the multiclass or multilabel classification setting as promising
directions for future work.

A restriction of our QWEIGHTED-based approaches is that they are only applicable
to methods which combine predictions via voting or weighted voting and some
compatible ones (cf. Section 6.1.5 on page 60). There are various other proposals
for combining the class probability estimates of the base classifiers into an overall
class probability distribution (in the case of pairwise classification, e.g., pairwise
coupling (Hastie and Tibshirani, 1997; Wu et al., 2004)). Efficient methods for these
alternative aggregation schemes poses another interesting topic for further research.

Furthermore, we are still anxious to continue our work on the learning of label
constraints and the incorporation of such information into the learning process. The
addressed topic remains interesting and it is for us not surprising that the related
topic of label dependencies attracted many researchers (cf., e.g., Read et al., 2011;
Zhang and Zhang, 2010; Dembczynski et al., 2010) in the meantime. We are still
unsure about the failure of our prototype algorithms. It is unclear, if our approach
for discovering label constraints by using association rule learning produced poor
rules (e.g., we did not manually validate the constraints) or if the typical learning
process entails such relations implicitly, so that we do not observe any differences
regarding the predictive performance. It would be nice, if a further more thorough
analysis could clarify these issues.

Besides these more or less concrete points for future work, an interesting general
direction in this context are hashing or compression techniques. Recently, several
works successfully utilized related concepts within machine learning in various ways.
Besides the previously mentioned work of Hsu et al. (2009b) (cf. Section 6.4 on
page 81) another interesting work is done by Lin et al. (2010, and related literature),
which considers large-scale databases with a high number of features. The computa-
tional complexity of Nearest Neighbor on such datasets is significantly reduced by
utilizing particular hash functions. The so-called similarity-preserving property of
these functions make the otherwise contrary combination amenable.

145






Acknowledgments

This thesis was done at the Knowledge Engineering Group at the TU Darmstadt
generously supported by the German Science Foundation (DFG). In addition, with-
out the computational resources which were provided from the Frankfurt Center for
Scientific Computing, some of the computationally intensive experimental studies
would not have been possible.

Foremost, I would like to thank my advisor Prof. Dr. Johannes Fiirnkranz for his
constant support and instruction over all these years. The numerous insightful
discussions with him were very helpful and kept me going on. But above all, I am
deeply thankful, that he has given me the opportunity to do a doctorate and, actually,
that he has made me become aware, that this path might be a viable option for me.

I also would like to thank Prof. Dr. Eyke Hiullermeier for his many helpful sugges-
tions during this time. His revealing comments often helped to greatly improve our
work. In fact, a great deal of the main ideas behind the QWEIGHTED algorithm is
owed to him, which was in turn the basis for some follow-up publications.

I am thankful to Prof. Dr. Jan Peters, Prof. Dr. Stefan Katzenbeisser and Prof.
Stefan Roth, Ph.D. for agreeing to be part of the board of examiners on relatively
short notice.

Many thanks go to my collaborators Eneldo Loza Mencia, Dr. Grigorios Tsoumakas,
Immanuel Schweizer, Dr. loannis Katakis, Kamill Panitzek, Lorenz Weizséacker and
Weiwei Cheng, with whom I had the pleasure to work with and to learn from. Be-
sides, I have to thank Alexander Galitzki, Alexander Vitanyi, George-Petru Ciordas-
Fanghéuser, Marian Wieczorek, Sandra Ebert and Tobias Plotz for their implemen-
tation support regarding the LPCforSOS framework and more.

I was very fortunate to work in a creative, supportive and (sometimes too) lively
environment. My colleagues (besides the already mentioned ones) Dirk grofie Oster-
hues, Frederik Janssen, Gabriele Ploch, Dr. Heiko Paulheim, Jan-Nikolas Sulzmann
and Kilian Kiekenap of the Knowledge Engineering Group provided a pleasant and
relaxed atmosphere, for which I am grateful.

Finally, I would like to express my gratitude to my parents Chang-Hun and Sun-
Lim Park and to my brother Dr. Sang-Min Park for always supporting me. I am
particularly thankful to my brother for proof-reading early draft versions of this
thesis.

147






Bibliography

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (1996). Fast
discovery of association rules. In Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P.,

and Uthurusamy, R., editors, Advances in Knowledge Discovery and Data Mining,
pages 307-328. MIT Press.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113-141.

Angulo, C., Ruiz, F., Gonzilez, L., and Ortega, J. A. (2006). Multi-classification by
using tri-class svm. Neural Processing Letters, 23(1):89-101.

Asuncion, A. and Newman, D. (2010). UCI machine learning repository. Repository
available at http://archive.ics.uci.edu/ml.

Banerjee, A. and Ghosh, J. (2006). Scalable clustering algorithms with balancing
constraints. Data Mining and Knowledge Discovery, 13(3):365-395.

Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., and Jordan, M. L.
(2003). Matching words and pictures. Journal of Machine Learning Research,
3:1107-1135.

Berger, A. (1999). Error-correcting output coding for text classification. In Proceedings
of IJCAI-99 Workshop on Machine Learning for Information Filtering (IJCAI99-
MLIF, Stockholm, Sweden).

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010). MOA: Massive online
analysis. Journal of Machine Learning Research, 11:1601-1604. Software available
at http://sourceforge.net/projects/moa-datastream/.

Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric
learning in semi-supervised clustering. In Brodley, C. E., editor, Proceedings of
the 21st International Conference on Machine Learning (ICML 2004, Banff, AB,
Canada). ACM.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University
Press.

Blockeel, H. and Struyf, J. (2003). Efficient algorithms for decision tree cross-
validation. Journal of Machine Learning Research, 3:621-650.

149


http://archive.ics.uci.edu/ml
http://sourceforge.net/projects/moa-datastream/

Bibliography

Borgelt, C. (2003). Efficient implementations of Apriori and Eclat. In Proceedings
of the 1st Workshop of Frequent Item Set Mining Implementations (FIMI-03,
Melbourne, FL, USA).

Borgelt, C. and Kruse, R. (2002). Induction of association rules: Apriori implemen-
tation. In Hardle, W. and Ronz, B., editors, Proceedings of the 15th International
Conference on Computational Statistics (Compstat 2002, Berlin, Germany), pages
395-400. Physica-Verlag.

Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary
group codes. Information and Control, 3(1):68-79.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning multi-label
scene classification. Pattern Recognition, 37(9):1757-1771.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and Regression Trees. Wadsworth.

Brenner, S. E., Koehl, P.; and Levitt, M. (2000). The astral compendium for protein
structure and sequence analysis. Nucleic Acids Research, 28(1):254-256.

Brinker, K., Fiirnkranz, J., and Hiillermeier, E. (2006). A unified model for multilabel
classification and ranking. In Brewka, G., Coradeshci, S., Perini, A., and Traverso,

P., editors, Proceedings of the 17th European Conference on Artificial Intelligence
(ECAI 2006, Riva del Garda, Italy), pages 489-493. I0S Press.

Cardoso, J. S. and da Costa, J. F. P. (2007). Learning to classify ordinal data: The
data replication method. Journal of Machine Learning Research, 8:1393—1429.

Cauwenberghs, G. and Poggio, T. (2000). Incremental and decremental support
vector machine learning. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors,
Proceedings of the 14th Annual Conference on Neural Information Processing
Systems (NIPS 2000, Denver, CO, USA), pages 409-415. MIT Press.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:1-27. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cohen, W. W. (1995). Fast effective rule induction. In Prieditis, A. and Russell, S. J.,
editors, Proceedings of the 12th International Conference on Machine Learning
(ICML 1995, Tahoe City, CA, USA), pages 115-123. Morgan Kaufmann.

Cohen, W. W. and Singer, Y. (1999). A simple, fast, and effictive rule learner. In
Proceedings of the 16th National Conference on Artificial Intelligence (AAAI 1999,
Orlando, FL, USA), pages 335-342. MIT Press.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551-585.

150


http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography

Crammer, K. and Singer, Y. (2002a). A new family of online algorithms for category
ranking. In Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2002, Tampere,
Finland), pages 151-158. ACM.

Crammer, K. and Singer, Y. (2002b). On the learnability and design of output codes
for multiclass problems. Machine Learning, 47(2-3):201-233.

Crammer, K. and Singer, Y. (2003). A family of additive online algorithms for
category ranking. Journal of Machine Learning Research, 3(6):1025-1058.

Cutzu, F. (2003a). How to do multi-way classification with two-way classifiers. In
Kaynak, O., Alpaydin, E., Oja, E., and Xu, L., editors, Proceedings of the Joint
International Conference on Artificial Neural Networks and Neural Information
Processing (ICANN/ICONIP 2003, Istanbul, Turkey), pages 375-384. Springer.

Cutzu, F. (2003b). Polychotomous classification with pairwise classifiers: A new
voting principle. In Windeatt, T. and Roli, F., editors, Proceedings of the 4th
International Workshop on Multiple Classifier Systems (MCS 2003, Guilford, UK),
pages 115-124. Springer.

Dembczynski, K., Waegeman, W., Cheng, W., and Hiillermeier, E. (2010). On label
dependence in multi-label classification. In Zhang, M.-L., Tsoumakas, G., and
Zhou, Z.-H., editors, Proceedings of the 2nd International Workshop on Learning
from Multi-Label Data (MLD’10, Haifa, Israel), pages 5-12.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2:263—
286.

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge discovery and
data mining (KDD 2000, Boston, MA, USA), pages 71-80. ACM.

Duygulu, P., Barnard, K., de Freitas, N., and Forsyth, D. (2002). Object recognition
as machine translation: Learning a lexicon for a fixed image vocabulary. In Heyden,
A., Sparr, G., Nielsen, M., and Johansen, P., editors, Proceedings of the 7th European
Conference on Computer Vision (ECCV 2002, Copenhagen, Denmark), Part IV,
pages 97-112. Springer.

Escalera, S., Pujol, O., and Radeva, P. (2006). Decoding of ternary error correcting
output codes. In Trinidad, J. F. M., Carrasco-Ochoa, J. A., and Kittler, J., editors,
Proceedings of the 11th Iberoamerican Congress in Pattern Recognition (CIARP
2006, Cancun, Mezico), pages 753—763. Springer.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear:
A library for large linear classification. Journal of Machine Learning Research,
9:1871-1874.

151



Bibliography

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3:1289-1305.

Freund, Y. and Schapire, R. E. (1999). Large Margin Classification using the
Perceptron Algorithm. Machine Learning, 37(3):277-296.

Fiirnkranz, J. (2002). Round robin classification. Journal of Machine Learning
Research, 2:721-747.

Firnkranz, J. (2003). Round robin ensembles. Intelligent Data Analysis, 7(5):385-403.

Fiirnkranz, J., Hullermeier, E., Mencia, E. L., and Brinker, K. (2008). Multilabel
classification via calibrated label ranking. Machine Learning, 73(2):133-153.

Galar, M., Fernandez, A., Tartas, E. B., Sola, H. B., and Herrera, F. (2011). An
overview of ensemble methods for binary classifiers in multi-class problems: Ex-
perimental study on one-vs-one and one-vs-all schemes. Pattern Recognition,
44(8):1761-1776.

Gallager, R. G. (1968). Information Theory and Reliable Communication. Wiley.

Ghani, R. (2000). Using error-correcting codes for text classification. In Langley,
P., editor, Proceedings of the 17th International Conference on Machine Learning
(ICML 2000, Stanford, CA, USA), pages 303-310. Morgan Kaufmann.

Goethals, B. (2005). Frequent set mining. In Maimon, O. and Rokach, L., editors,
The Data Mining and Knowledge Discovery Handbook, pages 377-397. Springer.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, 1. H.
(2009). The weka data mining software: an update. SIGKDD FEzplorations,
11(1):10-18.

Hand, D. J. and Till, R. J. (2001). A simple generalisation of the area under the roc
curve for multiple class classification problems. Machine Learning, 45(2):171-186.

Hastie, T. and Tibshirani, R. (1997). Classification by pairwise coupling. In Jordan,
M. 1., Kearns, M. J., and Solla, S. A., editors, Proceedings of the 11th Annual
Conference on Neural Information Processing Systems (NIPS 1997, Denver, CO,
USA). MIT Press.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2009a). A practical guide to support
vector classification. Technical report, Department of Computer Science, National
Taiwan University. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/
guide/guide.pdf.

Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks, 13(2):415-425.

152


http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Bibliography

Hsu, D., Kakade, S., Langford, J., and Zhang, T. (2009b). Multi-label prediction
via compressed sensing. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams,
C. K. 1., and Culotta, A., editors, Proceedings of the 23rd Annual Conference on
Neural Information Processing Systems (NIPS 2009, Vancouver, BC, Canada),
pages 772-780. MIT Press.

Hillermeier, E. and Fiirnkranz, J. (2004). Comparison of ranking procedures in
pairwise preference learning. In Proceedings of the 10th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU 2004, Perugia, Italy).

Hiillermeier, E., Fiirnkranz, J., Cheng, W., and Brinker, K. (2008). Label ranking by
learning pairwise preferences. Artificial Intelligence, 172(16-17):1897-1916.

Hillermeier, E. and Vanderlooy, S. (2010). Combining predictions in pairwise
classification: An optimal adaptive voting strategy and its relation to weighted
voting. Pattern Recognition, 43(1):128-142.

Joachims, T. (1999). Making large-scale SVM learning practical. In Schélkopf, B.,
Burges, C., and Smola, A. J., editors, Advances in Kernel Methods - Support Vector
Learning, chapter 11, pages 169-184. MIT Press.

Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multilabel text classification for
automated tag suggestion. In Proceedings of the ECML PKDD 2008 Workshop
on Discovery Challenge (Antwerp, Belgium,).

Khardon, R. and Wachman, G. (2007). Noise tolerant variants of the perceptron
algorithm. Journal of Machine Learning Research, 8:227-248.

Koller, D. and Sahami, M. (1997). Hierarchically classifying documents using very few
words. In Fisher, D. H., editor, Proceedings of the 14th International Conference
on Machine Learning (ICML 1997, Nashville, TN, USA), pages 170-178. Morgan

Kaufmann.

Kong, E. B. and Dietterich, T. G. (1995). Error-correcting output coding corrects
bias and variance. In Armand Prieditis, S. J. R., editor, Proceedings of the 12th
International Conference on Machine Learning (ICML 1995, Tahoe City, CA,
USA), pages 313-321. Morgan Kaufmann.

Lewis, D. D. (1997). Reuters-21578 text categorization test collection. README file
(V 1.2), available from http://www.research.att.com/~lewis/reuters21578/
README. txt.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcvl: A new benchmark
collection for text categorization research. Journal of Machine Learning Research,
5:361-397.

153


http://www.research.att.com/~lewis/reuters21578/README.txt
http://www.research.att.com/~lewis/reuters21578/README.txt

Bibliography

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., and Kandola, J. S. (2002). The
Perceptron Algorithm with Uneven Margins. In Sammut, C. and Hoffmann, A. G.,
editors, Proceedings of the 17th International Conference on Machine Learning
(ICML 2002, Sydney, Australia), pages 379-386. Morgan Kaufmann.

Lin, R.-S., Ross, D. A., and Yagnik, J. (2010). Spec hashing: Similarity preserving
algorithm for entropy-based coding. In The 23rd IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, pages
848-854. IEEE Press.

Lorena, A. C., de Carvalho, A. C. P. L. F., and Gama, J. (2008). A review on the
combination of binary classifiers in multiclass problems. Artificial Intelligence
Review, 30(1-4):19-37.

Loza Mencia, E. (2006). Paarweises Lernen von Multilabel-Klassifikationen mit
dem Perzeptron-Algorithmus. Master’s thesis, Knowledge Engineering Group, TU
Darmstadt. Diplom, in german.

Loza Mencia, E. and Fiirnkranz, J. (2008a). Efficient multilabel classification algo-
rithms for large-scale problems in the legal domain. In Montemagni, S., Tiscornia,
D., Francesconi, E., and Peters, W., editors, Proceedings of the Workshop on
Semantic Processing of Legal Texts (LREC 2008, Marrakech, Morocco), pages
23-32.

Loza Mencia, E. and Fiirnkranz, J. (2008b). Efficient pairwise multilabel classification
for large-scale problems in the legal domain. In Daelemans, W., Goethals, B.,
and Morik, K., editors, Proceedings of the 19th Furopean Conference on Machine
Learning and Principles and Practice of Knowledge Disocvery in Databases (ECML
PKDD 2008, Antwerp, Belgium), Part II, pages 50—65. Springer.

Loza Mencia, E. and Fiirnkranz, J. (2008c). Pairwise learning of multilabel classifi-
cations with perceptrons. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN 2008, Hong Kong, China), pages 2900-2907. IEEE
Press.

Loza Mencia, E., Park, S.-H., and Fiirnkranz, J. (2010). Efficient voting prediction
for pairwise multilabel classification. Neurocomputing, 73(7-9):1164-1176.

MacWilliams, F. J. and Sloane, N. J. A. (1983). The Theory of Error-Correcting
Codes. North-Holland Mathematical Library. North Holland.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biology, 5:115-133.

Melvin, L., Te, E., Weston, J., Noble, W. S.; and Leslie, C. (2007). Multi-class protein
classification using adaptive codes. Journal of Machine Learning Research, 8:1557—
1581.

154



Bibliography

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

Moreira, M. and Mayoraz, E. (1998). Improved pairwise coupling classification with
correcting classifiers. In Nedellec, C. and Rouveirol, C., editors, Proceedings of
the 10th European Conference on Machine Learning (ECML 1998, Chemnitz,
Germany), pages 160-171. Springer.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995). SCOP: a
structural classification of proteins database for the investigation of sequences and
structures. Journal of Molecular Biology, 247:536-540.

Pachet, F. and Roy, P. (2009). Improving multilabel analysis of music titles: A
large-scale validation of the correction approach. IEEE Transactions on Audio,
Speech, and Language Processing, 17(2):335-343.

Park, S.-H. (2006). Effiziente Klassifikation und Ranking mit paarweisen Vergleichen.
Master’s thesis, Knowledge Engineering Group, TU Darmstadt. Diplom, in german.

Park, S.-H. and Fiirnkranz, J. (2007). Efficient pairwise classification. In Kok, J. N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., and Skowron,
A, editors, Proceedings of the 18th Furopean Conference on Machine Learning
(ECML 2007, Warsaw, Poland), pages 658-665. Springer.

Park, S.-H. and Fiirnkranz, J. (2008). Multi-label classification with label constraints.
In Hiillermeier, E. and Fiirnkranz, J., editors, Proceedings of the ECML PKDD
2008 Workshop on Preference Learning (PL-08, Antwerp, Belgium), pages 157-171.

Park, S.-H. and Firnkranz, J. (2011). A note on the efficient implementation of
class-based decomposition schemes for naive bayes. Knowledge and Information
Systems. Submitted.

Park, S.-H. and Firnkranz, J. (2012). Efficient prediction algorithms for binary
decomposition techniques. Data Mining and Knowledge Discovery, 24(1):40-77.

Park, S.-H., Weizsécker, L., and Fiirnkranz, J. (2010). Exploiting code redundancies
in ECOC. In Pfahringer, B., Holmes, G., and Hoffmann, A., editors, Proceedings
of the 13th International Conference on Discovery Science (DS 2010, Canberra,
Australia), pages 266—280. Springer.

Pimenta, E., Gama, J., and Carvalho, A. (2007). Pursuing the best ECOC dimension
for multiclass problems. In Wilson, D. and Sutcliffe, G., editors, Proceedings of
the 20th International Florida Artificial Intelligence Research Society Conference
(FLAIRS 2007, Key West, FL, USA), pages 622—627. AAAI Press.

Pimenta, E., Gama, J., and de Leon Ferreira de Carvalho, A. C. P. (2008). The
dimension of ECOCs for multiclass classification problems. International Journal
on Artificial Intelligence Tools, 17(3):433-447.

155



Bibliography

Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (1999). Large margin DAGs for
multiclass classification. In Solla, S. A., Leen, T. K., and Miiller, K.-R.., editors,
Proceedings of the 13th Annual Conference on Neural Information Processing
Systems (NIPS 1999, Denver, CO, USA), pages 547-553. MIT Press.

Provost, F. J. and Domingos, P. (2003). Tree induction for probability-based ranking.
Machine Learning, 52(3):199-215.

Pujol, O., Radeva, P., and Vitria, J. (2006). Discriminant ECOC: A heuristic
method for application dependent design of error correcting output codes. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 28(6):1007-1012.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for
multi-label classification. Machine Learning, 85(3):333-359.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386-408.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513-523.

Shalev-Shwartz, S. and Singer, Y. (2005). A new perspective on an old perceptron
algorithm. In Auer, P. and Meir, R., editors, Proceddings of the 18th Annual
Conference on Learning Theory (COLT 2005, Bertinoro, Italy), pages 264-278.
Springer.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., and Anthony, M. (1998). Struc-
tural risk minimization over data-dependent hierarchies. IEEE Transactions on
Information Theory, 44(5):1926-1940.

Smola, A. J., Bartlett, P. L., Scholkopf, B., and Schuurmans, D., editors (2000).
Advances in Large Margin Classifiers. MIT Press.

Snoek, C., Worring, M., van Gemert, J., Geusebroek, J.-M., and Smeulders, A. W. M.
(2006). The challenge problem for automated detection of 101 semantic concepts
in multimedia. In Nahrstedt, K., Turk, M., Rui, Y., Klas, W., and Mayer-Patel,
K., editors, Proceedings of the 14th ACM International Conference on Multimedia
(ACM Multimedia 2006, Santa Barbara, CA, USA, pages 421-430. ACM.

Sulzmann, J.-N., Fiirnkranz, J., and Hillermeier, E. (2007). On pairwise naive
bayes classifiers. In Kok, J. N., Koronacki, J., Lopez de Mantaras, R., Matwin,
S., Mladenic, D., and Skowron, A., editors, Proceedings of the 18th European
Conference on Machine Learning (ECML 2007, Warsaw, Poland), pages 371-381.
Springer.

156



Bibliography

Tsampouka, P. and Shawe-Taylor, J. (2007). Approximate maximum margin algo-
rithms with rules controlled by the number of mistakes. In Ghahramani, Z., editor,
Proceedings of the 24th International Conference on Machine Learning (ICML
2007, Corvalis, OR, USA), pages 903-910. ACM.

Tsoumakas, G., Katakis, ., and Vlahavas, I. (2008). Effective and efficient multilabel
classification in domains with large number of labels. In Proceedings of the ECML
PKDD 2008 Workshop on Mining Multidimensional Data (MMD-08, Antwerp,
Belgium ), pages 30—44.

Tsoumakas, G., Loza Mencia, E., Katakis, 1., Park, S.-H., and Fiirnkranz, J. (2009).
On the combination of two decompositive multi-label classification methods. In
Hiillermeier, E. and Filirnkranz, J., editors, Proceedings of the ECML PKDD 2009
Workshop on Preference Learning (PL-09, Bled, Slovenia), pages 114-129.

Tsoumakas, G. and Vlahavas, I. (2007). Random k-labelsets: An ensemble method
for multilabel classification. In Kok, J. N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladeni¢, D., and Skowron, A., editors, Proceedings of the 18th
European Conference on Machine Learning (ECML 2007, Warsaw, Poland), pages
406-417. Springer.

Vapnik, V. (1998). Statistical Learning Theory. Wiley.

Wagstaff, K. and Cardie, C. (2000). Clustering with instance-level constraints. In
Langley, P., editor, Proceedings of the 17th International Conference on Machine
Learning (ICML 2000, Stanford, CA, USA), pages 1103-1110. Morgan Kaufmann.

Wagstaff, K., Cardie, C., Rogers, S., and Schrédl, S. (2001). Constrained k-means
clustering with background knowledge. In Brodley, C. E. and Danyluk, A. P.,

editors, Proceedings of the 18th International Conference on Machine Learning
(ICML 2001, Williamstown, MA, USA), pages 577-584. Morgan Kaufmann.

Windeatt, T. and Ghaderi, R. (2003). Coding and decoding strategies for multi-class
learning problems. Information Fusion, 4(1):11-21.

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 3 edition.

Wong, R. (1984). A dual ascent approach for steiner tree problems on a directed
graph. Mathematical Programming, 28(3):271-287.

Wu, T.-F., Lin, C.-J., and Weng, R. C. (2004). Probability estimates for multi-
class classification by pairwise coupling. Journal of Machine Learning Research,
5:975-1005.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in
text categorization. In Fisher, D. H., editor, Proceedings of the 14th International
Conference on Machine Learning (ICML 1997, Nashville, TN, USA), pages 412—
420. Morgan Kaufmann.

157



Bibliography

Zhang, M.-L. and Zhang, K. (2010). Multi-label learning by exploiting label de-
pendency. In Rao, B., Krishnapuram, B., Tomkins, A., and Yang, Q., editors,
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2010, Washington, DC, USA ), pages 999-1008.
ACM.

158



Own Publications

Journal Publications

Park, S.-H. and Firnkranz, J. (2012). Efficient prediction algorithms for binary
decomposition techniques. Data Mining and Knowledge Discovery, 24(1):40-77.

Loza Mencia, E., Park, S.-H., and Fiirnkranz, J. (2010). Efficient voting prediction
for pairwise multilabel classification. Neurocomputing, 73(7-9):1164-1176.

Submitted Journal Publications

Fiirnkranz, J., Hiillermeier, E., Cheng, W., and Park, S.-H. (2011). Towards preference-
based reinforcement learning. Machine Learning. Submitted.

Park, S.-H. and Fiirnkranz, J. (2011). A note on the efficient implementation of
class-based decomposition schemes for naive bayes. Knowledge and Information
Systems. Submitted.

Conference Publications

Cheng, W., Flirnkranz, J., Hillermeier, E., and Park, S.-H. (2011). Preference-based
policy iteration: Leveraging preference learning for reinforcement learning. In
Gunopulos, D., Hofmann, T., Malerba, D., and Vazirgiannis, M., editors, Proceedings
of the 22nd FEuropean Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD 2011, Athens, Greece), Part
I, pages 312-327. Springer.

Park, S.-H., Weizsécker, L., and Fiirnkranz, J. (2010). Exploiting code redundancies
in ECOC. In Pfahringer, B., Holmes, G., and Hoffmann, A., editors, Proceedings
of the 13th International Conference on Discovery Science (DS 2010, Canberra,
Australia), pages 266-280. Springer.

Loza Mencia, E., Park, S.-H., and Fiirnkranz, J. (2009). Efficient voting prediction for
pairwise multilabel classification. In Proceedings of the 17th FEuropean Symposium
on Artificial Neural Networks (ESANN 2009, Bruges, Belgium), pages 117-122.
d-side publications.

159



Own Publications

Park, S.-H. and Fiirnkranz, J. (2009). Efficient decoding of ternary error-correcting
output codes for multiclass classification. In Buntine, W. L., Grobelnik, M.,
Mladeni¢, D., and Shawe-Taylor, J., editors, Proceedings of the 20th European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML PKDD 2009, Bled, Slovenia), Part II, pages 189-204.
Springer.

Schweizer, 1., Panitzek, K., Park, S.-H., and Fiirnkranz, J. (2009). An exploitative
Monte-Carlo poker agent. In Mertsching, B., Hund, M., and Zaheer Aziz, M., editors,
Proceedings of the 32nd Annual German Conference on Artificial Intelligence (KI
2009, Paderborn, Germany), pages 65-72. Springer.

Park, S.-H. and Fiirnkranz, J. (2007). Efficient pairwise classification. In Kok, J. N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., and Skowron,
A., editors, Proceedings of the 18th Furopean Conference on Machine Learning
(ECML 2007, Warsaw, Poland), pages 658-665. Springer.

Workshop Publications

Loza Mencia, E., Park, S.-H., and Fiirnkranz, J. (2009). Efficient voting prediction for
pairwise multilabel classification. In Benz, D. and Janssen, F., editors, Proceedings
of the LWA 2009: Lernen - Wissen - Adaption, Workshop Knowledge Discovery,
Data Mining and Machine Learning (KDML-09, Darmstadt, Germany), pages
72-75. Resubmission.

Schweizer, 1., Panitzek, K., Park, S.-H., and Fiirnkranz, J. (2009). An exploitative
Monte-Carlo poker agent. In Benz, D. and Janssen, F., editors, Proceedings of the
LWA 2009: Lernen — Wissen — Adaption, Workshop Knowledge Discovery, Data
Mining and Machine Learning (KDML-09, Darmstadt, Germany), pages 100-104.
Resubmission.

Tsoumakas, G., Loza Mencia, E., Katakis, I., Park, S.-H., and Fiirnkranz, J. (2009).
On the combination of two decompositive multi-label classification methods. In
Hiillermeier, E. and Filirnkranz, J., editors, Proceedings of the ECML PKDD 2009
Workshop on Preference Learning (PL-09, Bled, Slovenia), pages 114-129.

Park, S.-H. and Fiirnkranz, J. (2008). Multi-label classification with label constraints.
In Hiilllermeier, E. and Firnkranz, J., editors, Proceedings of the ECML PKDD
2008 Workshop on Preference Learning (PL-08, Antwerp, Belgium), pages 157-171.

160



Wissenschaftlicher Werdegang!

06,/2000 Allgemeine Hochschulreife

10/2000 — 12/2006 Informatik-Studium an der Technischen Universitéit Darmstadt
01/2003 - 05/2005 Werkstudent am Fraunhofer-Institut fiir Sichere Informations-

technologie
12/2006 Diplom in Informatik
seit 05/2007 Doktorand und Wissenschaftlicher Mitarbeiter am Fachbereich

Informatik, Technische Universitdt Darmstadt

Erklirung?

Hiermit erkldre ich, dass ich die vorliegende Arbeit, mit Ausnahme der ausdriicklich
genannten Hilfsmittel, selbstéindig verfasst habe.

1 gemif § 20 Abs. 3 der Promotionsordnung der TU Darmstadt
2 geméfB § 9 Abs. 1 der Promotionsordnung der TU Darmstadt

161






A Appendix

A.1 Exploiting ECOC Redundancies: Extended
LibSVM Results

This section contains additional evaluation results for Chapter 4 using LIBSVM as
base learner. Table A.1 shows the predictive performance of ECOC classification using
various code types and parameters. Furthermore, Table A.2, Table A.3 and Table A.4
show the training times of the different approaches exploiting code redundancies (cf.
Section 4.2 on page 28) using cumulative exhaustive, exhaustive and random codes
for cache sizes of 25, 50, 75 and 100 %.

Table A.1: Accuracy performance of ECOC with various code types

optdigits page-blocks segment solar-flare-c vowel yeast

CUMULATIVE EXHAUSTIVE CODES

=3
97.24£0.37 91.63+0.32 8831£0.88 &85.16+£0.12 29.09+4.89 45.35£2.11
=4

97.14£0.29 91.63+0.32 88.14£0.88 85.16£0.12 27.37+4.20 45.21£2.11

EXHAUSTIVE CODES

=3
97.17+0.40 91.63+0.32 88.61+1.14 85.16£0.12 31.01£2.73 45.28+2.04
=4

97.03+0.32 91.39+0.30 88.48+0.96 85.16+£0.12 27.17+4.09 45.08=+2.10

RANDOM CODES

T = 0.4
96.23 £0.60 91.394+0.30 86.97+1.18 85.16£0.12 34.65+4.45 48.99 + 3.76
T.p = 0.2

96.21 +£0.74 91.08+0.25 87.10+£1.18 85.16£0.12 38.69+3.95 49.52+4.17
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Table A.2: Training time in seconds of cumulative exhaustive codes with [ = 3 and [ = 4.
For the first block (rows 1-8) the cache size is set to 25 % of the total size. The following

blocks depict the values for a cache size of 50,75 and 100 %.

optdigits page-blocks segment solar-flare-c vowel yeast
=3
M1 92.28+0.36 8.73+0.19 6.56+£0.05 3.47+0.07 5.804+0.02 5.43+0.03
M2 80.70£0.37 8.324+0.37 6.00£0.03 4.30+£0.08 4.904+0.02 5.62=£0.02
M3 76.93 £0.60 6.90+0.18 6.94£0.05 3.13+£0.16 6.284+0.04 5.77£0.03
M4 53.37+0.40 293+0.27 4.194+0.05 1.70+0.25 3.51+0.01 2.984+0.02
=4
M1 833.124+14.98 24.66 +0.43 33.98+0.21 18.61 +0.35 47.61 +£0.08 40.42 + 0.09
M2 666.02+1.54 21.194+0.80 28.69+0.14 22.94+0.52 36.72+0.08 41.19+0.11
M3 680.75+8.23 18.30+0.51 36.91+0.39 15.08+1.71 51.61+0.15 41.79+0.10
M4 41044 +6.08 5.32+0.53 17.18+0.13 859+1.27 25.26 +£0.06 22.01 £0.10
=3
M1 91.954+0.28 886+0.34 6.424+0.04 3.434+0.06 5.66+0.02 5.444+0.02
M2 81.83+0.21 8.16+0.25 6.044+0.04 4.26+0.08 4.914+0.03 5.48+0.03
M3 77.07£098 6.96+0.18 694£0.04 298+0.13 6.304+0.02 5.87£0.03
M4 53.49+0.35 297+0.34 4204+0.03 1.10+0.04 3.544+0.03 1.8540.02
=4
M1 830.01 +£9.43 24.18+0.38 32.92+0.34 18.44+0.35 46.35+0.07 40.21+0.16
M2 670.60 £2.83 21.77£0.87 28.84 +0.16 22.42+0.59 37.00+£0.09 39.60 &+ 0.07
M3 674.78 £10.01 18.24+0.42 36.82+0.43 13.82+1.49 51.67+0.23 42.01 £0.08
M4 409.74+4.44 520+0.34 17.17+0.13 3.65+0.30 25.70£0.07 10.18 £0.03
=3
M1 91.70+£0.20 8.824+0.31 6.414+0.056 3.424+0.05 5.514+0.03 5.35+0.02
M2 79.64 +0.27 8.23+0.34 6.00+£0.04 4.224+0.10 4.89+0.03 5.454+0.03
M3 76.47+0.81 6.89+0.13 6.924+0.04 297+0.13 6.28+0.04 5.86=+0.01
M4 52.944+0.55 2.80+0.04 4.194+0.03 1.094+0.03 3.524+0.02 1.83+0.03
=4
M1 823.97+6.22 24.46+0.58 32.88+0.29 18.36 +£0.32 45.8+0.09 39.74+0.10
M2 653.97+2.70 21.12+0.91 2857+0.12 22.18+0.58 36.61+£0.06 38.99+0.10
M3 664.03+7.39 17.92+0.44 36.81 +0.38 13.78 £1.48 51.55+0.15 42.13+£0.10
M4 403.34+5.69 4.99+0.14 17.09+0.12 3.56+£0.27 25.52+0.05 8.84 £0.07
=3
M1 94.26 +£0.39 8.824+0.12 6.394+0.04 3.414+0.05 5.594+0.03 5.40+0.02
M2 82.03+0.28 8.11+0.27 5.98+0.03 4.224+0.09 4.90+0.02 5.51+0.04
M3 76.93£0.90 7.05+0.11 6.93£0.03 3.01+£0.12 6.334+£0.04 5.94£0.02
M4 54.00+£0.23 2.824+0.19 4.20+£0.02 1.11+0.03 3.584+0.02 1.88+0.02
=4
M1 83216+ 7.05 23.93+0.55 32.62+0.19 18.28+0.29 46.04 +£0.11 39.90 + 0.07
M2 674.43+1.59 20.66 +0.22 2847+ 0.15 22.19+0.57 36.74+0.11 39.07+0.10
M3 675.52+5.52 17.52+0.08 36.84 +£0.32 13.89+1.50 51.97+0.14 42.50 £ 0.07
M4 406.10+5.52 4.98+0.26 16.99+0.13 3.69+0.28 25.97+0.07 9.17+£0.03
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Table A.3: Training time in seconds of exhaustive codes with [ = 3 and [ = 4. For the first
block (rows 1-8) the cache size is set to 25 % of the total size. The following blocks depict

the values for a cache size of 50,75 and 100 %.

optdigits page-blocks segment solar-flare-c vowel yeast
=3
M1 87.42+0.35 7.63+0.39 6.02+£0.03 3.17+£0.050 5.514+0.03 5.11+£0.02
M2 75.28£0.29 6.76+0.12 548 +£0.03 3.95+0.07 4.58+0.03 5.28+£0.01
M3 75.61+1.04 7.094+0.27 6.914+0.04 3.13+0.14 6.254+0.03 5.83+0.05
M4 53.13+0.39 290+0.21 4.134+0.03 1.714+0.25 3.484+0.02 3.00%0.02
=4
M1 735.76 +£9.63 15.31 +0.49 27.13+0.31 15.14+0.28 41.78 +£0.09 34.99 + 0.08
M2 570.69+1.93 12.72+0.45 22.76 +0.13 18.72+0.42 31.92+0.06 35.73 £ 0.06
M3 646.6 £11.98 16.39+0.44 34.24+0.36 14.69+1.59 49.75+0.10 41.09+0.10
M4 397.79+5.07 4.76+0.46 1588=+0.09 845+1.17 24.55+0.10 21.71+0.06
=3
M1 87.46+0.19 7.64+0.41 5904+0.04 3.134+0.056 5.394+0.02 5.134+0.02
M2 76.09£0.28 6.81+0.38 545+£0.03 3.87+0.08 4.584+0.03 5.13£0.02
M3 75.06£0.42 7.00+£031 6.89£0.03 298+0.12 6.294+0.03 5.95£0.02
M4 53.04+0.08 2.824+0.24 4.144+0.03 1.104+0.04 3.554+0.02 1.9040.03
=4
M1 732.33+6.23 15.51+0.35 26.38+0.22 14.87+ 0.27 40.87+0.06 34.86 + 0.06
M2 58249+1.65 1248+ 0.59 22.52+0.15 17.97+0.48 31.92+0.04 33.82+0.06
M3 644.21 £11.06 16.24 +0.33 33.94+0.35 13.57+1.31 49.56 +£0.11 41.76 £ 0.08
M4 394.8+4.05 4.73+0.42 15.70+0.09 3.55+0.26 24.62+0.07 9.95+0.05
=3
M1 87.47+£0.10 7484+0.23 5.88+£0.03 3.16+0.00 5.254+0.04 5.09£0.03
M2 76.06 £0.19 6.954+0.21 546£0.03 3.90+0.09 4.614+0.01 5.15£0.03
M3 76.83 £0.78 7.09+0.19 6.88£0.03 298+0.13 6.30+0.02 5.97£0.02
M4 52.98+0.76 2.80+0.19 4.124+0.04 1.124+0.02 3.554+0.04 1.904+0.02
=4
M1 732.28+9.55 14.99+0.47 26.52+0.28 15.05+0.26 40.72+0.11 34.64 + 0.09
M2 581.33+1.28 12.26+0.46 22.56+0.12 18.19+0.47 32.08+0.06 33.71+0.09
M3 653.98+8.21 15.89+0.41 34.06+0.30 13.6+1.30 49.96 +0.14 42.10+0.11
M4 396.06 £3.55 4.55+£0.20 15.73+0.11 3.60£0.23 24.74+0.13 8.93+0.05
=3
M1 86.62+£0.28 7.56+0.32 590£0.03 3.15+0.04 5.204+0.01 5.05£0.03
M2 74.97+£0.20 6.61+0.06 547£0.03 3.89+0.09 4.594+0.03 5.12£0.02
M3 75.69£0.66 7.124+0.25 7.03£0.05 3.06+0.13 6.39+0.04 6.15£0.01
M4 53.81+0.39 3.01+0.10 4.28+0.03 1.16+0.04 3.654+0.02 2.08+0.02
=4
M1 727.85+9.47 15.17+0.33 26.94+0.22 15.10+0.27 40.3+0.08 34.39+ 0.06
M2 567.74+1.38 12.56+0.45 22.81+0.15 18.14+0.51 31.92+0.08 33.51+0.09
M3 653.31 £10.18 15.93+0.22 34.78 +£0.32 13.78 +£1.33 50.52 +0.21 43.47 £ 0.08
M4 404.88+5.08 5.31£0.10 16.68 =0.08 3.79£0.27 25.52+0.09 10.63 £+ 0.05
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Table A.4: Training time in seconds of random codes with r,, = 0.4 and 7., = 0.2. For
the first block (rows 1-8) the cache size is set to 25 % of the total size. The following blocks
depict the values for a cache size of 50,75 and 100 %.

optdigits page-blocks ~ segment  solar-flare-c vowel yeast
rp = 0.4
M1  1654.0 +22.6 25.7+1.1 156.54+1.7 347+15 375+06 46.9+1.2
M2  1424.4+ 328 24.3+£0.5 162.9+0.8 46.1+19 39.7+0.7 521+1.3
M3  1609.2 +44.3 22.6+£0.3 190.6+3.8 399+54 65.8+23 79.1+20
M4  1378.8+ 344 5.7+0.3 140.6 £3.0 259+£3.7 571+25 645+£24
r.p = 0.2
M1  2634.6 +59.5 10.24+0.3 123.0+£0.9 482420 49.6+04 672412
M2  2281.7+29.6 8.6+05 129.7+14 63.2+3.1 53.0+04 741413
M3  3049.0 +48.3 12.74+0.2 1579+14 57.6+13.3 153.0+2.0 157.5£2.1
M4  2594.0 +64.8 3.6+£0.2 1285+24 39.14+94 144.6+1.7 144.0+£2.2
T = 0.4
M1  1628.3 +25.2 26.2+08 156.2+1.1 346+14 36.8+0.7 46.3+1.2
M2  1337.3 +25.7 24.0+£1.0 143.3+1.0 457+19 373+0.7 51.8+1.3
M3  1431.6 +22.2 222+£0.5 156.7+1.6 36.2+46 62.7+2.1 80.5+1.9
M4  1174.1+21.0 5.8+0.2 783+£1.0 81+0.8 459+22 50.8+24
r.p = 0.2
M1  2581.3+46.5 10.3+0.6 1209+1.3 479420 48.6+04 66.3+1.2
M2 1832.1+19.5 8.7+0.3 105.1+0.7 62.0+3.2 488+04 726+1.3
M3  2118.8+54.5 126 +£0.3 125.7+1.0 51.7+11.3 14454+1.9 1584+2.0
M4  1663.3 +43.8 3.8+£03 648=+1.3 10.3+1.5 1266+1.8 124.3+2.0
T = 0.4
M1  1603.4 +22.2 25.8+£0.5 153.7+1.5 343+15 36.0+06 456+1.1
M2 1317.4+16.3 23.0£04 136.9+1.0 4514+19 359+06 51.2+1.3
M3  1364.6 + 53.6 224+£0.2 148.7+1.3 358+45 60.9+2.0 82.6+22
M4  1162.6 +27.6 55+0.3 70.3£04 79+08 428+20 274412
r.p = 0.2
M1  2507.0 +33.8 10.3+0.3 119.8+1.2 476+20 476+04 65.3+1.2
M2  1826.2+21.3 8.5+0.6 98.7+0.6 61.3+3.1 443+04 706+1.2
M3 2093.7 + 38.6 1244+0.2 1169+0.8 51.0+11.0 139.9+1.8 163.7£2.6
M4  1632.5+40.2 39+£0.1 56.8+0.3 10.0+1.6 1186+16 87.7+22
T = 0.4
M1  1647.5 +26.7 26.6£0.9 159.0+0.9 35.7+15 36.9+0.7 47.7+1.2
M2  1339.9 +22.6 245+06 1456414 46.5+20 36.7+0.6 526=+1.3
M3  1417.0+45.0 227+£03 1544417 364+45 624+2.0 85.5+£23
M4 11175+ 27.6 5.5+0.3 74.0£08 8.0+£0.8 43.1+£19 21.3+0.3
T.p = 0.2
M1  2568.4+45.0 10.9+0.2 1244+0.5 49.6+20 49.1+04 68.7+1.3
M2  1836.6 +20.2 8.8+0.5 105.3+0.9 63.2+32 449+03 715+£1.1
M3 2052.3 £110.0 13.0+0.2 121.0£0.7 51.9+109 143.6+2.6 168.9+2.5
M4  1600.0 + 56.3 3.5+£0.1 596+05 10.2+1.6 1193+16 65.14+0.9
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