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Abstract / Kurzfassung

This thesis contributes to the modeling and analysis of longitudinal radio frequency (RF)
feedback systems in heavy-ion synchrotrons. Synchrotronsare ring accelerators with a
constant reference orbit of the particle beam. They allow the acceleration of particles
such as electrons, protons, and heavy ions to highest energies. The desired specifications
for beam properties such as the quality, energy, and intensity drive the development of new
accelerator components. Among other objectives, the stabilization of the beam before and
during the acceleration is desirable to preserve the beam quality. The thesis deals with
the modeling of longitudinal coherent oscillations of a bunched beam. The main focus is
on the usability of the models for the analysis and design of digital RF feedback loops.
The analysis of these models with methods from control theory leads to new insight into
the possibilities of RF feedback with regard to the longitudinal beam stabilization. In
particular it is shown that the nonlinearity of the beam dynamics plays a major role in the
damping of coherent oscillations of higher order. An analysis of a specific RF feedback
setup and the comparison with experimental data shows the practical relevance of the
models.

Die vorliegende Arbeit liefert einen Beitrag zur Modellierung und Analyse von HF-
Regelsystemen in Schwerionensynchrotrons. Synchrotronssind Ringbeschleuniger, die
sich durch einen konstanten Soll-Orbit des Teilchenstrahls auszeichnen. Mit ihrer Hilfe
können unter anderem Elektronen, Protonen und schwere Ionen auf höchste Energien
beschleunigt werden. Die gewünschten Anforderungen an Eigenschaften wie die Qualität,
Energie und Intensität des Teilchenstrahls treiben die Entwicklung der Beschleunigerkom-
ponenten voran. Unter anderem ist eine Stabilisierung des Strahls vor und während der
Beschleunigung erwünscht, um die Strahlqualität zu erhalten. In der vorliegenden Arbeit
werden longitudinale kohärente Oszillationen eines gebündelten Teilchenstrahls model-
liert. Dabei liegt das Hauptaugenmerk auf der möglichen Verwendung der Modelle für
die Analyse und den Entwurf von digitalen Hochfrequenz- bzw. HF-Regelkreisen. Die
regelungstechnische Analyse dieser Modelle ermöglicht neue Erkenntnisse darüber, was
HF-Regelungen für die longitudinale Strahlstabilisierung leisten können. Insbesondere
wird gezeigt, dass die Nichtlinearität der Strahldynamik eine wichtige Rolle spielt bei
der Dämpfung von Oszillationen höherer Ordnung. Eine Analyse einer konkreten HF-
Regelungsstruktur und der Vergleich mit experimentellen Daten zeigen die praktische
Relevanz der Modelle.





1

1 Introduction

After almost a century of steady development, particle accelerators belong to the most
complex research facilities. For many fields of theoretic and applied science, they have
become an indispensable tool. The research in this thesis ismotivated by the planned
accelerator centerFacility for Antiproton and Ion Research(FAIR). This center expands
the facilities of theGSI Helmholtzzentrum für Schwerionenforschung GmbH.1) The core
of FAIR is a new double ring synchrotron with a circumferenceof 1100 meters and the
existing facility with the synchrotron SIS18 will be used asa pre-accelerator for FAIR. A
short overview of FAIR is given in [35], more information canbe obtained from the FAIR
homepage [1] or the technical design reports. Synchrotronsare ring accelerators that can
accelerate charged particle beams up to highest energies. Typical for a synchrotron is the
constant reference orbit of the particle beam. Figure 1.1 introduces the general setup of a
synchrotron: the beam is first accelerated, for example by a linear accelerator. After the
injection of the beam, a magnet lattice guides the beam on itsorbit and in each turn, the
beam is accelerated by radio frequency (RF) electric fields inside a cavity. Typically, the
beam remains in the ring for more than105 turns, before it is extracted for experiments or
further acceleration.

The stability specifications for a synchrotron are ambitious. In the heavy-ion syn-
chrotron SIS18, the particle beam covers distances of more than the circumference of
the earth during the acceleration cycle, which lasts less than one second. The synchrotron
is designed such that if particles deviate from the reference orbit with respect to longitudi-
nal focusing, they will oscillate around this orbit. This isachieved by creating a potential
well using electromagnetic fields. Along the orbit – in longitudinal direction – the poten-
tial well is established by a periodic RF voltage. In the transverse direction, perpendicular
to the orbit, magnetic fields create the stabilizing potential and guide the beam.

However, no accelerator is ideal and there will be disturbances that act on the beam.
Examples for such disturbances are noise in the RF voltage orerrors in the magnetic
fields. In addition, if the particle density is large enough,the particles in the beam will
interact with the environment and with themselves. During the acceleration, the particle
density is not homogeneously distributed along the ring circumference. Rather, the beam
consists of a definite number of particle ensembles, calledbunches, such that the particle
density varies considerably along the longitudinal axis. This leads to effects such as the
interaction of the beam with the RF cavity or the conducting beam pipe or interactions
between different particle bunches. All these effects may lead to growing instabilities
of the particle beam, destabilizing the beam, impairing thebeam quality, and increasing
beam losses. To prevent such instabilities, passive measures can be taken that reduce

1)Planckstraße 1, 64291 Darmstadt, Germany, URL:www.gsi.de
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(a)

(b)(c)

(d)

(d)

(e)

(e)
(f)

(g)

(h)

Figure 1.1: General setup
of a synchrotron accord-
ing to [137]. (a): particle
source, (b): linear acceler-
ator, (c): injection of the
beam in the synchrotron
ring, (d): dipole magnet,
(e): quadrupole magnet,
(f): accelerating RF cav-
ity, (g): extraction of the
beam, (h): experiment or
further acceleration.

the interaction of the beam with its environment. In addition, active measures such as
feedback systems are used to increase the stability of the beam.

Objectives

In this thesis, the focus is on the feedback of longitudinal single-bunch oscillations. These
oscillations arise whenever the shape of a bunch is not consistent with the shape of the
longitudinal RF potential. The longitudinal motion of a single particle in a synchrotron
can be regarded as a relative oscillation around the moving reference position. This os-
cillation is calledsynchrotron oscillationand is desirable, as it enables the acceleration
of a beam of particles with a certain energy spread. If the bunch shape is consistent with
the RF potential, the overall bunch shape will be time-invariant, even though the individ-
ual particles perform the synchrotron oscillation. Conversely, any mismatch of the bunch
shape will lead to single-bunch oscillations. The simplestlongitudinal oscillation occurs
if the bunch arrives too early or too late at the cavity. This will lead to relative longitudinal
oscillations of the bunch center of gravity. Other mismatches in the bunch shape will lead
to oscillations of the bunch length or more complex oscillations.

Longitudinal single-bunch oscillations can be damped using feedback systems, as has
already been demonstrated in many synchrotron facilities.The feedback consists of a
measurement of the beam current, a control algorithm, and a correction of the beam,
as shown schematically in Figure 1.2. Typically, the correction is made by modulating
the amplitude and phase of the total RF voltage, either by using the same cavities that
are used for acceleration or by using dedicated kicker cavities. Many existing feedback
systems are based on analog hardware and are thus not very flexible. At GSI, efficient new
digital hardware enables the use of more flexible and sophisticated feedback algorithms.
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RF cavity

RF voltage bunch oscillations

controller

beam

setpoint

Figure 1.2: RF feedback of
bunch oscillations.

With these possibilities, also new questions and challenges arise. The following of these
challenges will be covered in this thesis for heavy-ion synchrotrons:

• How can single-bunch oscillations be modeled efficiently such that the resulting
models can be used for a controller synthesis?

• How do the beam oscillations respond to the modulations of the RF amplitude and
phase? What changes in beam shape are possible in principle?

• What can be said about the choice of the feedback algorithm and parameters? In
which region is the feedback stable and how is the feedback performance?

Structure and Contribution of the Thesis

The unique contribution of this thesis is the modeling and analysis of longitudinal single-
bunch oscillations from a control theoretic point of view. The contributions are: first, a
new rigorous modeling procedure for single-bunch oscillations that allows for nonlinear-
ities of the beam dynamics; second, the derivation of feedback models of single-bunch
oscillations depending on the bunch size; and third, the analysis of the feedback proper-
ties of these models. Figure 1.3 shows the main topics of the thesis, the relations between
these topics and the degree of innovation, i. e. of new results.

The thesis is structured as follows.
Chapter 2

Chapter 2 is a revision of the longitudinal single-particledynamics as described in stan-
dard references and papers. Most of the theory of the chapteris well known, but there are
two main reasons why it is included. First, the thesis is meant to be self-consistent for
control engineers with a consistent notation of the physical variables. Many of the equa-
tions of this chapter are used in the subsequent chapters. Second, the derivations and also
the equations of the beam dynamics differ from reference to reference. The contribution
of Chapter 2 is also the attempt to compare and to evaluate these differences. The notation
used in this thesis follows closely [57].

Chapter 3
Because the particles of a single bunch oscillate in general, it is possible that the bunch
shape as a whole will oscillate. These coherent longitudinal bunch oscillations are defined
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Figure 1.3: Contribution of the thesis. The colors signify existing theory (gray), partly
new developments (light blue) and new results (blue). SBO: single-bunch oscillations.

and described in Chapter 3. After defining properties of particle bunches, the standard
theory of bunch oscillations is reviewed. This theory proposes the decomposition of the
longitudinal oscillations into orthogonal modes with a specific frequency. An important
contribution of the thesis is presented in Section 3.5. In this section, formulas are derived
that describe the relation between the bunch shape and its beam current spectrum for
ellipsoidal bunches with uniform or Gaussian densities. These formulas are essential to
the modeling of the measurement and detection of the bunch oscillations.

Chapter 4
Chapter 4 presents the main modeling result of the thesis. Several models are presented
that describe the dynamics of the bunch shape with respect tothe modulations of the RF
voltage. The modeling approach is based on moments and can beapplied for nonlinear
RF potentials that can be approximated by finite polynomial series. The obtained models
enable the use of state-space and nonlinear control methodsin the time domain. The
approach is superior to existing models in literature that are based on a linearization of the
beam dynamics. It is shown that the nonlinearity of the RF potential plays an essential
role for higher order coherent oscillations.

Chapter 5
Finally, in Chapter 5 the models are used to analyze RF feedback loops of the synchrotron
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SIS18 at GSI. The analytic and simulation results are compared with measurement data
of a beam experiment.

Many of the results and ideas of this thesis were developed incooperation with the
RF department at GSI. In particular, the definition of the bunch modes in Section 3.4.3 is
based on the ideas of Dr. Harald Klingbeil and the modeling approach based on moments
and the interpretation of the modeling results have greatlybenefited from discussions with
him. The beam experiment in Section 5.2 was realized by the ring RF group at GSI and
the measurement results are courtesy of GSI.

In addition to the described topics, a simulation study was performed concerning the
stability of a double-harmonic cavity setup under beam loading. The research questions
in this study were different from the questions stated aboveand the results will not be
included in this work, but can be found in [72, 73].

In the following, bunches with different bunch sizes will beconsidered, also small
bunch sizes that may be unrealistic for real experiments. However, these considerations
are used to illustrate the concepts and to check the analytical results for plausibility. As the
scope of the modeling procedure is on feedback systems, the challenge of the modeling
step is to include only the most relevant dynamics to obtain amodel that is sufficiently
accurate and as simple as possible. The question which levelof model accuracy and
complexity is appropriate cannot be answered in general, but will depend on the feedback
structure and the specifications of the feedback task. Several simplifications will be made
with respect to the beam dynamics and these have to be kept in mind. The comparison of
the models with simulations and a beam experiment in Chapter5 will be used to show the
validity of the modeling assumptions.



6

2 Longitudinal Single Particle Dynamics

2.1 Introduction

A particle beam in a synchrotron ideally consists of a large amount of identical particles
with equal rest mass and electrical charge. Classical methods to accelerate beams are
electrostatic, linear, and circular accelerators. An overview of different accelerator types
and their history can be found for example in [43, 71, 136, 137]. Electrostatic accelerators
use high DC voltages that are generated for example with Cockroft-Walton multipliers.
The maximum beam energy in these accelerators is limited by the maximum voltage. The
use of radio frequency (RF) voltages and fields led to new accelerator types and enabled
higher energies. The synchrotron was proposed independently by McMillan [92] and Vek-
sler [131, 132] in 1945 as a new method to achieve high energy beams. An essential part
of the development was the discovery of thephase stability principle[32, 71, 136, 137].
This principle enables the acceleration of particles whichdiffer to a certain extent in phase
and energy. Instead of DC voltages, periodic RF voltages areused in synchrotrons and a
magnet lattice consisting of bending and focusing magnets forces the beam on a closed
orbit. The main advantage is that the beam can be acceleratedrepeatedly by the same RF
source. However, a necessary condition for the acceleration is the synchronization of the
beam with the RF voltage [43]. Because of the energy spread ofthe beam, the particles
have different velocities and without focusing, the beam will diverge longitudinally. The
phase stability principle prevents this divergence and guarantees the longitudinal focusing
of the beam. Figure 2.1 visualizes the direction of the longitudinal axis.

A consequence of the RF voltage is that the particle density of the beam is not equally
distributed along the ring in the presence of the RF voltage.Rather, the particles of the
beam are gathered in particle ensembles calledbunchesas shown in Figure 2.2. A par-
ticle in the bunch which matches the reference trajectory R perfectly will be accelerated
such that its angular revolution frequencyωR rises synchronously with the RF revolution
frequency, i. e.

ωRF(t) = hωR(t) (2.1)

holds. The integerh is called theharmonic numberand equals the maximum number of
bunches. In the following, the particle on the reference trajectory will be referred to as the
reference particleand its quantities will be denoted by the index R. It is not necessary and
rather improbable that the beam indeed has a physical particle exactly at the reference,
but this concept is convenient for modeling the dynamics andthe reference particle may
be regarded as a fictitious one. The particles of the bunch with a deviation in position or
energy with respect to the reference particle perform the so-calledsynchrotron oscillation
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cavity

dipole magnet
quadrupole magnets

orbit

beam/bunch

transverse

longitudinal axisz

axes

R
beam pipe

Figure 2.1: Scheme of a synchrotron and the longitudinal and transverseaxes used to
describe the beam. The number and position of the magnets is schematical. A detailed
setup is given in Figure 1.1.

longitudinal orbit

dz dQ

z

z

0 LR

bunch

h = 2

line densityλcharge(z) ∼ dQ
dzbeam pipe

Figure 2.2: Typical line density for bunched beams.Left : The line density is defined as
the amount of particles at the positionz along the longitudinal orbit, it does not reveal
anything about the density distribution in transverse directions. Right: A bunched beam
with h = 2 bunches,LR is the length of the ring.

which will be described in more detail in the next sections. Only the motion in the lon-
gitudinal phase space will be considered, i. e. the motion parallel to the reference (ideal)
orbit. This motion is mainly dictated by the RF voltage. The motion in the transverse
planes perpendicular to the orbit is governed by the magnetic lattice consisting of dipole,
quadrupole, and optionally higher order magnets. This transverse motion will only be
considered in terms of the so-called momentum compaction factor. This factor will ac-
count for the fact that off-momentum particles will have to cover a different distance in the
ring for one turn. However, this is only the stationary component of the transverse motion,
a dynamic coupling of longitudinal and transverse planes will not be considered. This is
justified in almost all accelerator experiments, because the frequencies of the transverse
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Ugap(t)

z = 0

z = LR

z = LR
2r

reference orbit

particle orbit

R

z = zR

∆y

∆x

∆z

Figure 2.3: Absolute and relative coordinates. Moving reference R, absolute longitudinal
positionz ∈ [0; LR[ with lengthLR of the reference orbit, transverse deviations∆x and
∆y, longitudinal deviation∆z, curvaturer(z) of the reference orbit.

particle oscillations are larger by an order of two to three compared to the corresponding
longitudinal frequencies. Because of this fact, transverse motion may be averaged over
many turns, leading to the momentum compaction factor.

2.2 Synchrotron Oscillation

This section describes the theory of longitudinal motion ofa particle in a synchrotron ring.
Section 2.2.1 introduces the curvilinear coordinate system used in ring accelerators and
Section 2.2.2 reviews the energy gain of particles in electromagnetic fields. Section 2.2.3
explains the general idea behind the synchrotron oscillation and Section 2.2.4 introduces
the reference particle. After this, Sections 2.2.5 and 2.2.6 explain the derivation of the
longitudinal equations of motion and Section 2.2.7 deals with the synchrotron oscillation.
Finally, a discussion of the presented theory is given in Section 2.2.8.

2.2.1 Coordinate System in Beam Dynamics

The use of curvilinear coordinate systems has proved to be convenient to model the parti-
cle dynamics in accelerator rings [136]. In this case, only relative deviations with respect
to the reference trajectory are considered. Figure 2.3 illustrates the typical choice of co-
ordinates: the reference trajectory R is the origin of the coordinate system(∆x, ∆y, ∆z).
The absolute longitudinal position of the reference iszR(t), its velocity is żR = vR(t).
The reference trajectoryzR(t) is determined offline before the acceleration cycle of the
beam. Section 2.2.4 describes this acceleration cycle in more detail. Along the ring, dipole
magnets are used to guide the beam on the reference orbit withthe curvaturer(z).
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With the relative positions∆x, ∆y, ∆z and momenta∆px , ∆py , ∆pz

x =
[
∆x ∆y ∆z ∆px ∆py ∆pz

]T
,

the dynamics of a single particle can be described in a 6-dimensional phase space. This
phase space consists of two transverse planes(∆x, ∆px) and(∆y, ∆py) and one longitu-
dinal plane(∆z, ∆pz). As the particles in the beam have a certain momentum spread,the
beam will diverge in transverse and longitudinal directions without focusing measures. In
the transverse plane, quadrupole magnets focus the beam, whereas the RF voltage

Ugap(t) = Û1 sin(ΦRF(t)) (2.2)

and thus the RF electrical field of the cavity provides acceleration and phase focusing in
the longitudinal plane. The RF phase depends on the RF frequency as

ΦRF(t) =

t∫

0

ωRF(t) dt + ∆ϕ(t), (2.3)

where∆ϕ is variation of the phase, for example due to a feedback system. Because the
beam and the RF voltage should be synchronized, the RF frequency ωRF is chosen as a
multiple of the reference revolution frequencyωR, cf. (2.1). whereh is the harmonic
number and the revolution frequency is

ωR(t) =
2π

TR(t)
=

2πvR(t)

LR
,

whereLR is the circumference of the ring along the reference orbit and TR denotes the
revolution period of the reference. The arrival time of the reference after turnk may be
denoted bytk+1 and the time period for the reference to complete turnk by TR(tk), i. e.
tk+1 − tk = TR(tk). The synchronization condition (2.1) guarantees that the reference
particle arrives repeatedly at the cavity at the same voltageUgap(tk) = UR, because

ΦRF(tk+1)− ΦRF(tk) =

tk+1∫

tk

ωRF(t) dt =

tk+1∫

tk

2πh

TR(t)
dt ≈ 2πh

tk+1 − tk

TR(tk)
= 2πh,

where the approximation is made under the assumption thatωRF is ramped adiabatically,
i. e. is almost constant during one turn. Also, this calculation for the reference particle
sets∆ϕ equal to zero, because the trajectory of the reference particle is predefined by the
central control room. It is important to note that variations, disturbances, and feedback
will affect all particles of the beam, but not the reference particle.

In the following, relative coordinates will be used rather than absolute coordinates such
ast andΦRF. The definition of the relative coordinates is visualized inFigure 2.4. In the
left image, the positions and velocities of the reference particle and a particlek are shown
for a fixed time and arezR, vR, zk, andvk, respectively. Particlek is late with respect
to the reference and will arrive later at the cavity. This is shown in the right image of
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RR

Ugap(ΦRF)

ΦRF(t)

h = 1
turn k − 1

UR

turn k

ϕ
π−π

0

0

0

ϕR ϕk

TR
2h

τ
τR τk

Frozen Time t = t0 Fixed Positionz = 0 at the Cavity

zRzk LR

vR

vk

z

∆zk = zk − zR < 0

∆τk

∆ϕk

Figure 2.4: Relative and absolute coordinates.Left : longitudinal positionz along the
orbit for a fixed timet and a particle with a deviation∆zk < 0. Right: gap voltageUgap

for h = 1 at the cavity, i. e. for a fixed positionz = 0. The delayed particle has a positive
time lag∆τk > 0 and phase difference∆ϕk > 0 with respect to the reference (blue dot).

Figure 2.4. The relative timeτ and the relative phaseϕ are measured with respect to the
zero crossing of the gap voltage. The reference arrives atτR and the delayed particle at
τk, resulting in a difference∆τk > 0. The relative phase is related to the relative time by

ϕ = ωRF τ, ∆ϕ = ωRF ∆τ =
2πh

TR
∆τ. (2.4)

The relative RF phase of the reference is denoted byϕR. At each turn, the reference will
arrive at the cavity when

UR = Û1 sin(ϕR). (2.5)

Usually, the velocityvk is very similar tovR and the approximation

∆z ≈ −vR ∆τ (2.6)

holds.
The next sections will focus on the dynamics of the longitudinal plane. Thus, only

the cavity and the magnetic field of the dipole magnets will beexplicitly considered as
components of the synchrotron. However, it is understood that quadrupole magnets and a
large number of other components are necessary for the acceleration of the beam.

2.2.2 Relativistic Particles in Electromagnetic Fields

The force of an electromagnetic field on a charged particle isthe Lorentz force

FL = Q [E + v × B]
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PSfrag replacements

τ

Û1 sin(ωRFτ)

UR

Û1

Tgap

TRF/4τR τR + ∆τk

≈ TgapÛ1 sin(ωRF[τR + ∆τk ])

Figure 2.5: Transition and acceleration of a particle in the cavity. Theapproximation is
valid for Tgap ≪ TRF.

with the particle chargeQ, the electric fieldE, the particle velocityv and the magnetic
field B [54, 81, 136]. The Lorentz force is invariant under coordinate transformations and
is also valid in this form for relativistic particles [57, 58]. In a synchrotron, the force due
to the electric field is used to actually increase the energy of the particles. The electric
fields are generated in the RF cavity and act on the particles only on a very small fraction
of the ring circumference. The magnetic fields are generatedin dipole and quadrupole
magnets and are used to deflect and focus the particles. The order and position of the
magnets is referred to as the magnet lattice. In a circular accelerator as the synchrotron,
the magnet lattice is arranged such that the particles are forced on a closed reference orbit.
In this way, the particles can be accelerated repeatedly in the RF cavity. The energy gain
of a particle can be expressed as

∆Wacc =
∫

FL dz = Q
∫

E dz
︸ ︷︷ ︸

QV

+ Q
∫

[v × B] · v dt
︸ ︷︷ ︸

=0

,

wheredz = v dt was used. Only the electric field contributes to the energy gain. The
term QV can be interpreted as the energy a particle with the chargeQ gains if it passes
through an effective voltageV. Thus, the unit of this energy gain is commonly given in
electron volt and not in joule. The electron volt is equivalent to the energy gain of a single
electron (Q = −e) accelerated by an electric potential differenceV of one Volt and equals

1 eV = 1.602 · 10−19 J.

In a synchrotron, a particle with the chargeQ is only accelerated in one or more cavities.
The gap of the cavity has the lengthLgap and shall be placed at the positionz = 0,
cf. Figure 2.3. The electric field inside the cavity gap is proportional to the RF voltage
Ugap(t) and is assumed to have only a nonzero component parallel to the orbit:

E(t) =
Ugap(t)

Lgap
· ez,
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whereez is the longitudinal unit vector. We will now consider the acceleration of a particle
which can deviate from the reference. Its positionz, velocityv, energyW, and arrival time
τ at the cavity are, respectively,

zk = zR + ∆zk , vk = vR + ∆vk , Wk = WR + ∆Wk , τk = τR + ∆τk , (2.7)

with small deviations∆zk, ∆vk, ∆Wk, and∆τk . The energy gain of the particle is given
by

∆Wacc = Q

z2∫

z1

E dz =
Q

Lgap

t2∫

t1

Ugap(t)ezv(t)ez dt ≈ vRQ

Lgap

t2∫

t1

Ugap(t) dt,

where the approximation is made thatvk ≈ vR during the transition of the cavity. With
the gap voltage defined by (2.2) and (2.3) and the assumption thatωRF is approximately
constant during the transition, the energy gain can be expressed in local coordinates as

∆Wacc ≈ vRQÛ1

Lgap

τR+∆τk+Tgap∫

τR+∆τk

sin (ωRFτ) dτ ≈ vRQÛ1

Lgap
Tgap sin(ωRF[τR + ∆τk ]).

The approximation is justified by the fact that the cavity transition timeTgap is typically
only a small fraction of the RF periodTRF as visualized in Figure 2.5. Finally, using (2.4)
andvRTgap ≈ Lgap, the energy gain can approximately be described by

∆Wacc ≈ QÛ1 sin(ωRF[τR + ∆τk ]) = QÛ1 sin(ϕR + ∆ϕk). (2.8)

2.2.3 Phase Stability Principle

The phase stability principle has been discovered in 1945 independently by McMillan and
Veksler [92, 132]. It can be explained qualitatively as follows:1) A particle with a devi-
ation ∆zk > 0 has a phase∆ϕk < 0 (cf. (2.4) and (2.6) and will arrive earlier at the
cavity. As shown in Figure 2.6, the particle is decelerated with respect to the reference R
by a negative voltageUgap. After some turns, it will fall behind the reference and gain
more energy due to the positive gap voltage. Altogether, this leads to a relative oscilla-
tion of the particle in longitudinal direction around the reference R called thesynchrotron
oscillation. The oscillation takes place in relative coordinates such as ∆zk and∆vk as
defined by (2.7). The resulting differences are small compared to their uniform compo-
nentszR andvR. It should be emphasized that the synchrotron oscillation is desirable as
it allows phase stability, i. e. the acceleration of particles with deviations in position and
energy. The frequency of the synchrotron oscillation is called thesynchrotron frequency

1)The reasoning is valid below the transition energy, which will be introduced later on. Above the transition
energy, the reference R lies on the falling edge of the RF voltage and the situation is reversed.
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ΦRF

ϕϕϕ

ϕ̇ϕ̇ϕ̇

RR

RRR

RR R∗

k

k

k

k
k

k
k

t0 t0 +
Tsyn

4 t0 +
Tsyn

2

ΦRF = 2hπ

Figure 2.6: Phase focusing principle in the stationary caseϕR = 0. Top: gap voltage
Ugap at the cavity withh = 2, ωRF = 2ωR. This enables the space forh = 2 bunches
with references R and R∗. Bottom: synchrotron oscillation in relative coordinatesϕ and
ϕ̇. Particlek is advanced att0 and is decelerated with respect to R byUgap. As soon as it
is delayed, it is accelerated. This results in a synchrotronoscillation with periodTsyn.

ωsyn = 2π fsyn = 2π/Tsyn and it typically is considerably smaller than the beam rev-
olution frequencyωR = 2π fR = 2π/TR. Typical values of the synchrotron frequency
are

fsyn = 10−3 . . . 10−2 fR.

Thesynchrotron tune

νsyn =
TR

Tsyn
=

fsyn

fR
= 10−3 . . . 10−2

is defined as the number of synchrotron oscillations per turn.

2.2.4 Longitudinal Reference Trajectory

The energy gain of a particle has been expressed by (2.8). Forthe reference∆τk = ∆ϕk =
0 and the reference energy gain from turnn − 1 to turnn is given by

∆Wacc,R = WR(n)− WR(n − 1) = QUR, (2.9)
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Figure 2.7: Synchronization of beam and RF voltage during accelerationwith a constant
acceleration voltageUR andh = 1. The rate of acceleration is exaggerated.

whereWR(n) denotes the total particle energy during turnn and UR is the reference
voltage

UR = Û1 sin(ωRF τR) = Û1 sin(ϕR). (2.10)

The phaseϕR is calledreference phase. During acceleration, the reference energyWR

will increase and so will the revolution frequencyfR. As already stated, the beam and
the RF voltage have to be synchronized for a successful acceleration (cf. (2.1)) and this
implies an increase of the RF frequencyfRF. This is shown in principle in Figure 2.7.
However, the rate of change offR is exaggerated, as a real acceleration cycle is normally
close to an adiabatic process. The fact that several parameters have to be synchronously
adapted to each other is the reason for the namesynchrotron.

In practice, the magnetic fieldBR(t) of the dipole magnets is predefined2) and the other
synchrotron parameters follow synchronously. To keep the particles on the reference orbit,
the Lorentz forceFL has to balance the centripetal forceFz

|FL| !
= |Fz| ⇒ QvRBR

!
=

γRm0v2
R

r

with the curvaturer in the dipole magnets, the Lorentz factor or relativistic normalized
reference energyγR and rest massm0. With the reference momentumpR = m0γRvR

this leads to the synchrotron condition for a constant orbitfor turn n

pR(n) = QrBR(n). (2.11)

Using the relativistic relationsγ = 1/
√

1 − β2 and β = v/c, other quantities can be
derived as functions ofBR(t). A short list of useful relativistic formulas can be found in

2)An essential reason is that the magnetic fields of the dipole magnets have a comparatively low response time.
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Section B.1, these will be used in the following. If the magnetic field in turn n is given,
this leads to the momentumpR(n) of (2.11) and to the energy

WR(n)
(B.1)
= m0c2

√

1 +

[
QrBR(n)

m0c

]2

, γR(n)
(B.3)
=

WR(n)

m0c2
, (2.12)

and the velocity

vR(n)
(B.2)
= c

QrBR(n)
m0c

√
[

QrBR(n)
m0c

]2
+ 1

, βR(n) =
vR(n)

c
.

The revolution periodTR, the revolution frequencyfR, and the RF frequencyfRF are given
by

TR(n) =
LR

vR(n)
, fR(n) =

vR(n)

LR
, fRF(n) = h fR(n).

It is now possible to calculate the necessaryUR(n) to obtain the increase in energy. In-
serting (2.9) in (2.12) yields

UR(n) =
m0c2

Q





√

1 +

[
QrBR(n)

m0c

]2

−
√

1 +

[
QrBR(n − 1)

m0c

]2


 . (2.13)

This calculation can also be performed in a continuous approximation: Assuming adia-
batic acceleration, the rate of change in energy due to (2.9)can be expressed as

ẆR(t) ≈
∆Wacc

TR
=

QUR(t)

TR(t)
. (2.14)

The reference energyWR(t) is given by (2.12) as a function ofBR(t). The derivation with
respect tot is

ẆR(t) =
c[Qr]2BR(t)Ḃ(t)R
√

m2
0c2 + [QrBR(t)]2

. (2.15)

Comparing (2.15) and (2.14) leads after some calculation steps to the simple condition

UR(t) ≈ LRrḂR(t). (2.16)

A power series expansion of (2.13) leads in first order to the equivalent discrete result [57]

UR(n) ≈ LRr
BR(n)− BR(n − 1)

TR(n)
.

Thus, in the stationary case before (or after) acceleration, ḂR = 0 implies ϕR = 0, if Û1

is nonzero. During acceleration, bothÛ1 andϕR can be varied to satisfy condition (2.16),
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Figure 2.8: Typical acceleration cycle (not to scale).

as long asÛ1 is larger than the necessary voltageUR. This additional degree of freedom
is used to choosêU1 such that thebucket3) area is kept constant, cf. [48] and Section 2.4.
The reference phaseϕR is then chosen to satisfy (2.16).

Figure 2.8 shows a typical choice ofḂR andBR. First, the beam is injected into the ring
with the momentumpR(0). The necessary magnetic flux density is obtained using (2.11)
and equals

B0 = BR(0) =
pR(0)

Qr
.

The minimum and maximum flux densityBmax is determined by the type of dipole mag-
nets. It is important to note thaṫBR(t) should be a continuous function. This follows
from (2.16). IfḂR(t) is discontinuous, this implies thatϕR(t) will be discontinuous. This
would lead to a discontinuity in the reference trajectory and can induce beam oscillations.
The periodTcycle of the acceleration cycle typically is of the order of

Tcycle ≈ 105 . . . 106 · TR.

This shows the importance of a longitudinal feedback system: small disturbances can sum
up during thousands of turns and cause beam instabilities.

2.2.5 Discrete Equations and Mapping Algorithm

In this section, the discrete longitudinal equations of motion will be derived. The RF
cavity generates a sinusoidal accelerating voltage and theparticles in the ring are only
accelerated when they enter the RF cavity, i. e. once a turn. This suggests a discrete
modeling of the particle dynamics.

3)Bucketdenotes the stable area in phase space andbunchdenotes the particle ensemble. These terms will be
specified in later sections.
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Figure 2.9: Mapping sequence of relative delayτk and relative energy∆Wk.

To derive the discrete equations of longitudinal motion, weconsider a particlek that
has just completed turnn and has reached the cavity as shown in Figure 2.9. Its time of
arrival at the cavity

τk(n) = τR(n) + ∆τ(n)

determines the voltageUgap(t) and thus the energy a specific particle gains. In principle,
the voltageUgap can be a general periodic function with an amplitudeÛ1 that is greater
than the reference amplitudêU1,R and a phase shift∆ϕgap

Ugap(τk(n)) = Û1(n) sin(ωRF(n)τk(n) + ∆ϕgap(n)).

The amplitude and phase variations can be caused by a feedback system that is imple-
mented to stabilize the beam, but they can also arise from imperfections and disturbances
such as interactions with impedances in the ring.

The energy gain∆Wacc of the particle and∆Wacc,R of the reference are given by (2.8)
and (2.9). After the transition of the cavity (cf. Figure 2.9), the energy deviation of the
particle with respect to the reference has changed to

∆Wk(n + 1) = ∆Wk(n) + Q
[
Ugap(τk(n))− UR(n)

]
, (2.17)

where it is assumed that the length of the cavity is so small that the voltage is almost
constant while the particle is inside the cavity. In addition, a small cavity length implies
that the phaseϕk(n) does not change significantly. During the remaining part of the ring,
the particle drifts and is guided by the magnetic fields. In anideal accelerator, its energy
would remain constant. However, due tosynchrotron radiationand interactions with the
vacuum tube (wake fields) and other devices along the ring (impedances), its energy may
be disturbed [19, 20]. During one turn, the energy loss of a particle due to synchrotron
radiation can be expressed by [137]

∆Wrad =
Q2

3ε0[m0c2]4
W4

r
∼ W4

m4
0

.
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Due to the dependency onW andm0, synchrotron radiation is relevant mainly for rela-
tivistic electron beams. In the case of proton and ion beams,synchrotron radiation is neg-
ligible for energies less than1 TeV because of their larges masses, cf. [137]. Synchrotron
radiation will be neglected in the following, as only protons and ions are considered.

Modeling of wake fields and impedances is necessary to simulate and analyze the beam
behavior. However, wake fields and impedances will not be modeled explicitly in the fol-
lowing. Rather, they will be regarded as external disturbances acting on the phase and
energy of the particles. The aim of this and the following chapter is to establish a mathe-
matical model that is suitable for controller designs. If the controller design incorporates
a certain robustness and the disturbances on the beam from wake fields, impedances and
other sources are not too large, the controller will be able to suppress these disturbances
and stabilize the beam.

With these assumptions, Equation (2.17) is the first equation of the longitudinal beam
dynamics and the energy of the particle is assumed approximately constant as the particle
drifts through the remaining part of the ring. During the drift, the arrival timeτk will
change depending on the difference in velocity of particle and reference, cf. Figure 2.9.
At the end of turnn + 1, i. e. just before the cavity, the new arrival time of particle k is

τk(n + 1) = τk(n) + Tk(n + 1)− TR(n + 1), (2.18)

whereTk is the period of particlek for one turn in the ring andTR is the reference period.
To find an expression for the periodTk, we consider the reference revolution period

TR =
LR

vR
,

which depends on the reference orbit lengthLR and the reference velocityvR. The rev-
olution period of the particleTk = TR + ∆Tk can be expanded in a Taylor series around
TR as

Tk = TR + ∆Tk =
LR + ∆Lk

vR + ∆vk
=

LR

vR
+

1

vR
∆Lk −

LR

v2
R

∆vk +O(∆L2
k , ∆v2

k),

whereO(∆L2
k , ∆v2

k) denotes the higher order terms. Neglecting the terms of second and
higher order leads to

∆Tk

TR
≈ ∆Lk

vRTR
− LR∆vk

TRv2
R

=
∆Lk

LR
− ∆vk

vR
. (2.19)

This equation shows the two mechanisms that lead to a deviation∆T. First, a particle with
a higher velocity (∆vk > 0) will tend to circulate faster in the ring (∆Tk < 0). Second,
a particle with a longer orbit (∆Lk > 0) will need longer for one turn (∆Tk > 0). Both
effects depend on the energy of the particle, as will be shownin the following. For small
deviations∆vk , the approximation (cf. (B.6), Appendix B.1)

∆vk

vR
≈ 1

γ2
Rβ2

R

∆Wk

WR
(2.20)
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holds, i. e. the relative velocity deviation is proportional to the relative energy deviation.
The orbit length deviation∆Lk depends on the momentum of the particle. This follows
from Equation (2.11), as the curvaturer ∼ p is proportional to the momentump. A larger
momentum (∆pk > 0) leads in general to a different curvaturer and to a longer orbit.
To calculate the dependency of∆p on ∆L, it is necessary to consider the geometry of the
accelerator ring and the focusing forces in the transverse planes. These considerations can
be summarized in the equation

∆Lk

LR
= αp

∆pk

pR
, (2.21)

where themomentum compaction factorαp is a characteristic of the accelerator and a
measure how compact the trajectories of particles with different momenta are focused in
radial direction. If we take into account that approximation (B.6) is valid, i. e.

∆pk

pR
=

1

β2
R

∆Wk

WR
(2.22)

holds for small values of∆p, (2.19) can be written as

∆Tk

TR
=

[

αp − 1

γ2
R

]

∆Wk

β2
RWR

.

The factor

ηR = αp − 1

γ2
R

is calledphase slip factor. At lower energies withγR ≈ 1, ηR is negative and a particle
with a higher energy will reach the cavity earlier. At higherenergies,ηR is positive and
the effect of a longer orbit predominates, leading to a longer revolution period for faster
particles. For a specific energy

γR =
1√
αp

=: γtr

in between,ηR becomes zero and in a first-order approximation, the revolution period is
TR, even if the particle has a small energy deviation∆Wk ≪ WR. This point is called
transitionand the corresponding energy is thetransition gammaγtr. Thus, the phase slip
factor can be written as

ηR = γ−2
tr − γ−2

R

Using the above relations in Equation (2.18) leads to

τk(n + 1) = τk(n) +
ηRTR

β2
RWR

(n + 1)∆Wk(n + 1). (2.23)
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The derivation of this equation uses (2.1), i. e. the fact that the RF frequency is an exact
multiple h of the revolution frequency. In practice, there might be a frequency deviation
ϕ̇f, either intentionally due to a feedback correction or unwanted due to an error in the RF
feedback of the cavity. Including this in (2.1) yields

ωRF(t) = hωR(t) + ϕ̇f(t). (2.24)

In addition, thiscavity RF programis sometimes extended to

ωRF(t) = hωR(t) + ϕ̇f(t) + ϕ̇R(t) (2.25)

to include a further terṁϕR [63, p.41]. This scheme can have an advantage over (2.24)
for faster changes inϕR since it assures that the RF voltage will keep up with the rateof
change of the reference phase. With these programs (2.23) changes to

τk(n + 1) = τk(n) +
ηRTR

β2
RWR

(n + 1)∆Wk(n + 1) +

+ τf(n + 1)− τf(n) + kRF

[
τR(n + 1)− τR(n)

]
,

(2.26)

wherekRF can be 0 or 1, depending on whether program (2.24) or (2.25) isused. The time
lags due to the frequency deviation and the change of the reference are denoted byτf and
τR, respectively.

Equations (2.17) and (2.26) establish the discrete nonlinear dynamics in the longitudi-
nal phase space(τ, ∆W). They are also referred to asmapping equations, as they can be
used to map the state(τk , ∆Wk) of a particle from turnn to turnn+ 1. Mapping equations
are widely used inmacro particle tracking simulations[85–89] to simulate the behavior
of a beam of discrete particlesk = 1, . . . ,Nmacro.4) The parametersTR, ηR, βR, andWR

are only constant if the beam is not accelerated, i. e. in the case of

UR(n) = 0.

This will be referred to as thestationary case. In the acceleration caseUR is positive
and the reference energy increases each turn. Considering (2.9) leads to the additional
equation for the reference energy

WR(n + 1) = WR(n) + QUR(n). (2.27)

The other parametersTR, ηR, andβR can be derived from this new energy value. The
choice ofUR(n) is given by the acceleration cycle of the accelerator control room. As de-
scribed in Section 2.2.4,UR can be expressed as a function of the magnetic fieldBR(n). It
is thus sufficient to chooseBR as a function of time to define the complete acceleration cy-
cle. All parameters of the longitudinal motion follow from this as shown in Section 2.2.4.

The mapping equations can also be extended for a ring with more than one cavity.
In this case, the accelerating voltages of all the cavities in the ring can be added to an
equivalent voltage amplitudêU1, if the phases of the cavities are chosen appropriately [57]

4)Macro or superparticle refers to the fact that each particle in the simulation represents several real particles, as
the amount of simulated particles is usually smaller by a factor of 105 to 106 compared to a real beam.
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or the mapping equations are used to map from one cavity to thenext and have to be used
several times for one revolution [63].

An important property of the derived mapping equations is that they preserve area in
phase space. This is true for the stationary caseϕR = 0 and even for the acceleration
case, as long as the change of the beam parameters is adiabatic [57]. This can be shown
by computing the Jacobian matrix of (2.17) and (2.26), whichis

J =





∂∆Wk(n+1)
∂∆Wk(n)

∂∆Wk(n+1)
∂τk(n)

∂τk(n+1)
∂∆Wk(n)

∂τk(n+1)
∂τk(n)



 =

[
1 QU′

gap
ηRTR

β2
RWR

1 − ηRTR

β2
RWR

QU′
gap

]

, (2.28)

whereU′
gap denotes the derivative of the gap voltage with respect toτk. The Jacobian

determinant isdet J = 1, thus these equations define an area preserving map. For the
area preservation, it is essential that∆Wk(n + 1) is used in (2.26) instead of∆Wk(n).
This is similar to the use of a leap-frog scheme. The area preservation in the coordinatesτ
and∆W has an important consequence; if an arbitrary region in the phase space(τ, ∆W)
with a certain amount of particles is selected at a given timeor turn n, this region will
then evolve during the following turns and may change its shape; the area of this region
however will remain constant. This will be discussed in moredetail in Section 3.

To simulate the longitudinal beam dynamics, it is usually more convenient to use the
RF phaseϕ = ωRFτ as a variable instead of the time lagτ. Multiplying (2.26) with
ωRF(n + 1) yields together with (2.17)

∆Wk(n + 1) = ∆Wk(n) + Q
[

Ugap(ϕk(n))− UR(n)
]

,

ϕk(n + 1) =
ωRF(n + 1)

ωRF(n)
[ϕk(n)− ϕf(n)− ϕR(n)] +

+
2πhηR

β2
RWR

(n + 1)∆Wk(n + 1) + ϕf(n + 1) + kRF ϕR(n + 1).

(2.29)

These are the mapping equations in the phase space(ϕ, ∆W). The derived mapping
equations are not area preserving since their Jacobian determinant is

det J =
ωRF(n + 1)

ωRF(n)
=

βR(n + 1)

βR(n)
.

Thus, it is quite common to use the coordinates(ϕk , ∆Wk/ωRF), because the mapping
equations in these coordinates do preserve area in phase space.

The conclusion of the previous considerations is that the longitudinal dynamics for a
single particle can be described by two discrete nonlinear equations with time-varying
parameters. These equations describe a nonlinear oscillation called thesynchrotron os-
cillation in the phase plane, as the next section will show. As the parameters of the syn-
chrotron oscillation vary slowly with time, it is often possible to assume that the variation
is adiabatic[110] and the parameters are approximately constant duringone turn of the
beam. Section B.3 summarizes the equations that are necessary to implement a longitudi-
nal tracking algorithm.
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2.2.6 Continuous Longitudinal Equations

The difference equations (2.17) and (2.26) can be written ascontinuous differential equa-
tions, if the assumption is made that the change of the variables τ and∆W during one
turn in the ring is not too large. In this case, the differencequotient can be approximated
by the differential quotient

τk(n + 1)− τk(n)

TR
≈ τ̇k(t).

This leads to the continuous equations

∆Ẇk(t) =
Q

TR(t)

[
Ugap(τk(t))− UR(t)

]
, (2.30a)

τ̇k(t) =
ηR(t)

β2
R(t)WR(t)

∆Wk(t) + kRFτ̇R(t) + τ̇f(t). (2.30b)

To begin with, the parametersTR, ηR, βR, andWR are assumed to be constant andτ̇R and
τ̇f are set to zero. The continuous equations then represent a Hamiltonian flow [71].

A dynamical system is calledHamiltonian if its equations of motion can be derived
from a functionH(q, p, t) and Hamilton’s equations of motion

q̇k =
∂H

∂pk
, ṗk = − ∂H

∂qk
, (2.31)

where

q =
[
q1 . . . qk . . . qN

]T
, p =

[
p1 . . . pk . . . pN

]T
,

are thegeneralized coordinatesandgeneralized momentaof the system, respectively;H
is the Hamiltonian functionor Hamiltonian, and N are the degrees of freedom of the
system. The space spanned by theqk andpk is calledphase spaceand has the dimension
2N. If the HamiltonianH does not depend explicitly on the timet, the system is called
conservativeand the value ofH is conserved, as the rate of change ofH is

dH

dt
=

∂H

∂t
︸︷︷︸

=0

+
N

∑
k=1

∂H

∂qk
q̇k +

N

∑
k=1

∂H

∂pk
ṗk =

N

∑
k=1

∂H

∂qk

∂H

∂pk
+

N

∑
k=1

∂H

∂pk

(

− ∂H

∂qk

)

= 0.

The Hamiltonian is calledseparableif it has the form

H(q,p) = V(q) + T(p),

whereV is thepotential functionandT theenergy function.
Equations (2.30) can be derived from Hamilton’s equations

τ̇k =
∂H

∂∆Wk
, ∆Ẇk = − ∂H

∂τk
.
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with the Hamiltonian

H(τk , ∆Wk) =
ηR

2β2
RWR

∆W2
k − Q

TR

∫

Ugap(τk)− UR dτk,

where the generalized coordinate isq = τk and the generalized momentum isp = ∆Wk.
This Hamiltonian is conservative and separable with the potential function

V(τk) = − Q

TR

∫

Ugap(τk)− UR dτk.

For the single-harmonic voltageUgap = Û1,R sin(ωRFτk), the Hamiltonian is

H(τk , ∆Wk) = Q
TRωRF

[

Û1,R [cos(ωRF τk)− cos(ωRF τR)] +

+ UR [ωRFτk − ωRFτR]
]

+ ηR

2β2
RWR

∆W2
k ,

(2.32)

where the integration constant is chosen such thatH(τR , 0) = 0. The Hamiltonian is neg-
ative in the vicinity of(τR, 0) below transition and positive above transition. The Hamil-
tonian flow preserves the area in phase space. This is consistent with the area conservation
property of the discrete equations and their Jacobian in (2.28). In general, the parameters
ωR, ηR, βR, andWR vary slowly with time and the Hamiltonian becomes time dependent.
If the variations are slow enough, the changes can however beregarded as adiabatic and
the parameters as quasi-constant. The trajectories of the system may change slowly, but
the area circumscribed by a specific trajectory in phase space will still be approximately
conserved [110]. For a beam consisting of a large number of identical particles, this has
the following consequence: the existence of a Hamiltonian implies that the phase space
area occupied by the beam (longitudinal emittance) is an adiabatic invariant in(τ, ∆W)
coordinates [20, p.68]. The area preservation property andits consequences for a particle
bunch will be discussed in more detail in Section 3.2.

The coordinates of a Hamiltonian may be changed by a canonical transformation [81].
Care must be taken that only canonically conjugate coordinates are used to preserve the
area conservation property. Choosing inappropriate coordinates will result in conservation
of phase space area in the wrong coordinates. In particular,for a Hamiltonian with one
degree of freedom it is possible to choose a transformation

q̃ = K(t)q, p̃ = K(t)−1 p

whereK(t) is a factor that may be slowly time-dependent.
Table 2.1 lists common coordinate pairs for the longitudinal phase space. Not all pos-

sible pairs are canonically conjugate. Some transformations are only approximately valid,
they are based on the relativistic relations in Appendix B.1, especially Equation (B.6).
These transformations are valid for small deviations only,e. g. ∆p ≪ pR and∆v ≪ vR.
The coordinates(ϕ, ∆W/ωR) are not strictly canonically conjugate, because∆W is nor-
malized byωR and not byωRF = hωR. But, becauseh is a constant factor, the simulation
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Table 2.1:Coordinate transformations based onτ and∆W. The given unit refers to area
in phase space. CC: canonically conjugate, CAP: correct area preservation.

Coordinates and transformation CC? CAP? Unit
τ, ∆W yes yes eVs
τ, ∆γ = ∆W/m0c2 no yes s
∆z ≈ −βR(t)cτ, ∆pz ≈ ∆W/βR(t)c yes yes eVs
ϕ = ωRF(t) τ, ∆W/ωRF(t) yes yes eVs
ϕ = ωRF(t) τ, ∆W/ωR(t) no yes eVs
ϕ = ωRF(t) τ, ∆W no no eVrad
ϕ = ωRF(t) τ, δ = ∆p/pR ≈ ∆W/β2

R(t)WR(t) no no rad

with these variables still leads to a correct conservation of phase space area in the coordi-
nates(τ, ∆W). It is interesting to note that the pair(∆z, ∆pz), i. e. the physical position
and momentum, is also canonically conjugate to(τ, ∆W).

Because the phase space area in(τ, ∆W) is preserved, the area in(ϕ, δ = ∆p/pR)
will change according to

ωRF
1

β2
RWR

=
2πhc

LR

1

βRWR
∼ 1

βRγR
.

Thus, at the end of the acceleration cycle, the area occupiedby the beam in the phase
space(ϕ, δ) will be smaller. This is referred to asadiabatic damping.

For a RF cavity with a single harmonic the longitudinal motion of particlek in the
phase space(ϕk , ∆W̃k) with the new coordinate

∆W̃k :=
∆Wk

ωRF

can be written as

∆ ˙̃Wk(t) =
Q

2πh

[
Û1(t) sin(ϕk(t))− UR(t)

]
, (2.33a)

ϕ̇k(t)− kRF ϕ̇R(t) =
ηRω2

RF

β2
RWR

∆W̃k(t) + ϕ̇f(t). (2.33b)

The variablesÛ1 and ϕf can be used as input variables to implement a feedback loop.
Equations (2.33) will be analyzed further in the next sections. The time dependency of the
slowly varying parameters will be treated in the following in the framework of adiabatic
motion. Only the RF amplitudêU1 and the phase errorϕf will be allowed to make fast
variations. These variables will be used in later chapters as inputs to control the beam.
The reference particle is defined as the particle that exactly gains the energyUR. For
the reference RF amplitudêU1(t) = Û1,R(t), a corresponding reference phase can be



2.2 Synchrotron Oscillation 25

calculated: Rewriting the energy equation (2.33a) with∆ ˙̃Wk = 0 for ϕk = ϕR yields the
reference phase

UR = Û1,R sin(ϕR) ⇒ ϕR(t) = arcsin
(

UR(t)
Û1,R(t)

)

, (2.34)

where it is necessary to assumeUR ≤ Û1,R. In the following, the amplitudêU1,R will
denote the desired reference amplitude as given by the central control room.Û1 will be
used to denote the amplitude including beam control modulations.

2.2.7 Synchrotron Oscillation and Phase Stability

Equations (2.33a) and (2.33b) describe a nonlinear oscillation called thesynchrotron os-
cillation. For small amplitudes the equations can be linearized around the working point

ϕk = ϕR, ∆W̃k = 0.

AssumingkRF = 1 andÛ1 = Û1,R and using∆ϕk = ϕk − ϕR, differentiating (2.33b)
and inserting (2.33a) and (2.34) yields

∆ϕ̈k =
Qhω2

RηR

2πβ2
RWR

Û1,R [sin(∆ϕk + ϕR)− sin(ϕR)] + ϕ̈f, (2.35)

where∆ϕk = ϕk − ϕR is the small phase deviation. The Taylor-expansion of the nonlin-
ear term on the right hand side at∆ϕk = 0 is

sin(∆ϕk(t) + ϕR)− sin ϕR = cos ϕR ∆ϕk − sin ϕR
∆ϕ2

k

2
+ . . .

and leads to the linear approximation

∆ϕ̈k(t) + ω2
syn∆ϕk(t) = ϕ̈f. (2.36)

This is a linear harmonic oscillator with the solution

ϕk(t) = ϕ̂ cos(ωsynt + Φk,0) (2.37)

for ϕ̈f = 0 with the synchrotron frequency in the linear regime

ωsyn = 2π
Tsyn

= ωR

√
√
√
√

QÛ1,Rh
[

γ−2
R − αP

]

cos ϕR

2πβ2
RWR

, (2.38)

where the factor[γ−2
R − αp] cos ϕR = −ηR cos ϕR should be nonnegative; with the

proper choice of the operating point
{

cos ϕR > 0 below transition, i. e.γR < α−1/2
P

cos ϕR < 0 above transition, i. e.γR > α−1/2
P
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it is guaranteed thatωsyn is real and the resulting oscillation is stable. This condition is
known as thephase stabilityor phase focusing principle[32, 71, 136, 137]. The phase
stability enables the acceleration of particles with a momentum spread, because particles
with small deviations from the reference trajectory are kept near the reference by this
stable synchrotron oscillation.

With definition (2.38) the nonlinear differential equationcan be written as

∆ϕ̈k(t) = −
ω2

syn

cos ϕR
[sin(∆ϕk(t) + ϕR)− sin ϕR] + ϕ̈f. (2.39)

A similar calculation forkRF = 0 yields

∆ϕ̈k(t) = −
ω2

syn

cos ϕR
[sin(∆ϕk(t) + ϕR)− sin ϕR] + ϕ̈f − ϕ̈R. (2.40)

2.2.8 Discussion of the Longitudinal Equations

A general way to derive the equations of longitudinal motionis to consider the relativistic
Lagrangian for a charged particle, to define the electromagnetic fields that act on the
particle, and to change to a Hamiltonian description of motion relative to the reference
trajectory [90].

In the beam dynamics of a ring accelerator, deviations of theposition and momenta
are considered to simplify the obtained model. Thus a general Hamiltonian for the beam
dynamics of a single particle

H(∆x, ∆y, ∆z, ∆px , ∆py, ∆pz ; z; t)

depends on the position and momentum deviations, the absolute reference positionz, and
the timet. It describes the synchrotron and betatron motion of a charged particle in a
circular accelerator [70]. Since the motion in the longitudinal phase space(∆z, ∆pz) is
usually considerably slower than the motion in the transverse phase spaces, the longitudi-
nal part of the Hamiltonian can be obtained by averaging of the transverse motion. The
Hamiltonian finally leads to continuous equations of longitudinal motion

∆ż =
∂H

∂∆pz
, ∆ṗz = − ∂H

∂∆z
.

In general the Hamiltonian will depend explicitly on the time t if the beam is acceler-
ated. For example, the beam energy changes and this will influence the motion in the
longitudinal phase space(∆z, ∆pz). However, since the acceleration is usually slow, the
assumption ofadiabaticityis possible and leads to a conservative Hamiltonian [110].

A second approach is to regard the longitudinal motion as an inherently discrete pro-
cess. The goal is then to find discrete equations that map the position and momentum of
the particle from one turn to the next. The discrete approachwas chosen in Section 2.2.5
to derive the discrete synchrotron equations.
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As long as the synchrotron oscillation periodTsyn is considerably longer than the revo-
lution periodTR, both approaches lead to very similar results and the continuous equations
can be discretized or derived from the discrete mapping equations. In both cases, the right
choice of the longitudinal coordinates is essential to obtain correct results if the beam
dynamics are simulated over a complete acceleration cycle.

To derive the longitudinal equations, some approximationshad to be made in Sec-
tion 2.2.5. In the following, these approximations and the obtained equations are discussed
and compared with literature.

The first approximation made was the neglect of terms of higher order in Equa-
tion (2.19). This has the consequence that the following calculations are valid for small
deviations only. This is also the case for (2.20) and (2.22).In principle, these approxima-
tions can be avoided [57], but this leads to a more complex equation in ∆t compared to
Equation (2.23).

A further approximation is that Definition (2.21) of the momentum compaction as-
sumes that there is a linear dependency between the relativemomentum and orbit length
deviation. In general, the dependency is nonlinear and a general nonlinear relation

∆L

LR
= f

(
∆p

pR

)

of the momentum compaction could be assumed.
Typical relative momentum deviations∆p/pR in synchrotrons have a magnitude of

less than10−3 and this is also an upper limit for the relative deviations inenergy and
velocity (cf. (B.7)). For this reason, the aforementioned approximations can be regarded as
sufficiently accurate. It has to be noted that this would be different if the transition energy
would be crossed. In this case, the frequency of the synchrotron oscillation becomes zero
for all particles and nonlinear terms of the momentum compaction have to be taken into
account [51, 126].

Different versions of the longitudinal equations exist, some are valid for certain accel-
erator classes only. An early literature survey on this topic can be found in [41]. In this
survey, Hereward acknowledges that the process of acceleration in a synchrotron is in fact
a discrete one. Another interesting reference is [9, p.24],where a ring accelerator is used
as an example of inherently sampled systems. The early paperof Courant and Snyder [22]
about the theory of the alternating-gradient synchrotron presents continuous longitudinal
equations that are said to be accurate to first order in∆W. These equations are in agree-
ment with the derived (2.33a) and (2.33b) forkRF = 0. Courant and Snyder also include
the additional frequency error termω1 = ϕ̇f. In [43, 136, 137], longitudinal differential
equations are given that are equivalent to (2.39) and thus set kRF = 1. However, since
during a normal acceleration cycle considerable care is taken to achieve an adiabatic pro-
cess by assuring thatϕR changes only slowly, the difference due tokRF is negligible in
most cases.

The mapping equations (2.29) are almost equivalent to thoseused in the computer
program ESME [85]. One difference is that in [85], the azimuthal angleθk = ϕk/h is
used instead ofϕk. In addition, the equations in ESME do not need approximation (2.19)
and are therefore exact mapping equations. However, they are only useful for simulation
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purposes and are not readily accessible for further analytical calculations. And, as already
stated, the difference due to (2.19) is usually negligible.Another computer simulation
package for longitudinal dynamics is LONG1D [62, 63]. The mapping equations used in
LONG1D use approximation (2.19) and are equivalent to (2.29) for ϕf = 0 andkRF = 1.

The solutions of the discrete mapping equations and the continuous equations (2.30)
are very similar for a large ratioTsyn/TR ≫ 1, i. e. for small synchrotron tunesνsyn =
ωsyn/ωR ≪ 1. For simulations withTsyn/TR < 100, the discrete and continuous
equations show a slightly different behavior [25], i. e. thediscretization effects become
visible. For example, the particle trajectories in phase space are tilted if discrete mapping
equations are used [63]. As a consequence the particle trajectories are no longer exactly
symmetric to the∆W-axis. This effect is also reported in [62] and explained quantitatively
in [61]. The effect is small, but should be considered if the synchrotron tune is small and
a matched bunch is to be injected in the ring. If the tilt is notallowed for, this will result
in filamentation and emittance growth.

2.3 Single Harmonic RF

2.3.1 Introductory Remarks

Due to the sinusoidal shape of the RF voltage, areas with similar stability properties are
repeated periodically along the longitudinal axis. More specifically, h stable areas are
formed along the synchrotron ring, whereh ∈ N is the harmonic number. These stable
areas are calledbuckets, as they can be used to capture bunches of particles and accelerate
them. The particles of each bunch perform synchrotron oscillations around the stable
fixed point of their bucket. The dynamics of these oscillations are described by (2.40)
and have been analyzed thoroughly in literature. These longitudinal particle dynamics are
similar to those of the nonlinear pendulum with periodic fixed points and areas in phase
space of stable and unstable oscillations with an eye-shaped separatrix. The motion inside
the separatrix corresponds to a librating pendulum with a small momentum whereas the
motion outside corresponds to a rotating pendulum with a large momentum.

Although formulas for the particle trajectories can be found in literature, they are de-
rived in the following for several reasons. First, the notations used in literature are hetero-
geneous and the formulas are spread over different references, and this thesis is intended
to be self-contained for readers with a control engineeringbackground. Second, a special
normalization is needed to build models that can be used for control design. The third
reason is that many of the derived formulas will be needed in the subsequent chapters.

2.3.2 Trajectory Properties

In the following, the indexk of ∆ϕk will be omitted, as trajectories of a single particle are
considered. For a subsequent controller design, it is convenient to choose the coordinates
of the phase space in such a way that the resulting trajectories are circles, at least in the
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linear regime of the bucket. This can be achieved by the longitudinal coordinates5)

∆ϕ = ϕ − ϕR, ∆w = − 1

ωsyn
∆ϕ̇, (2.41)

as this choice leads with (2.39) andϕf = 0 to the nonlinear dynamics

∆ϕ̇ = −ωsyn∆w, (2.42a)

∆ẇ =
ωsyn

cos ϕR
[sin(ϕR + ∆ϕ)− sin ϕR] . (2.42b)

These dynamics are valid below and above transition and, dueto the normalization of the
coordinates, the direction of the flow is equal for both cases.

For small amplitudes∆ϕ, the approximation of first order is

∆ϕ̇ = −ωsyn∆w, ∆ẇ = ωsyn∆ϕ, (2.43)

with the solution

∆ϕ(t) = ∆ϕ̂ cos(ωsynt + Θ0), ∆w(t) = ∆ŵ sin(ωsynt + Θ0).

The coordinate∆w is not canonically conjugate with respect to∆ϕ and the phase space
(∆ϕ, ∆w) can therefore not be used for particle tracking simulationsif the beam is accel-
erated. Although the equations of motion are not canonical,a Hamiltonian will be con-
structed and used to analyze the system. The following calculations are with the implicit
understanding that the equations and the Hamiltonian should only be used to analyze the
beam dynamics during a short time of a few synchrotron periods Tsyn or to design feed-
back controllers. They should not be used to simulate a complete acceleration cycle of
the beam. The trajectories of the phase space(∆ϕ, ∆w) can be converted to the canonical
phase space(∆τ, ∆W) with

∆ϕ = ωRF ∆τ, ∆w =
ωRF[−ηR]

ωsynβ2
RWR

∆W. (2.44)

This follows from the definition of∆w and Equations (2.33b) and (2.38) withkRF = 1,
ϕ̇f = 0. With coordinate transformations of the form∆ϕ = a ∆τ and∆w = b ∆W,
the Hamiltonian in the new coordinates is given byH̃ = abH. For the special case of
canonical transformations,ab = 1 and the Hamiltonian is preserved. With the original
HamiltonianH(τ,∆W) from (2.32), the Hamiltonian for the dynamics (2.42) is given by

H̃(∆ϕ, ∆w) =
ω2

RF[−ηR]

ωsynβ2
RWR

H(τ(∆ϕ), ∆W(∆w)) = T̃(∆w) + Ṽ(∆ϕ)

= −ωsyn

2
∆w2 − ωsyn

cos ϕR
[cos ϕR − ∆ϕ sin ϕR − cos(ϕR + ∆ϕ)] .

(2.45)

5)The coordinate∆w is a normalized, dimensionless variable and is not an energydeviation.
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Figure 2.10: Trajectories in the longitudinal phase space(∆ϕ, ∆w) for a single bunch
and different valuesH̃. The separatrix is highlighted in red in both diagrams and sep-
arates the stable bucket from the unstable oscillations.Left : stationary caseϕR = 0◦

and P ∈ {0.37, 1.65, 3.5, 4, 6}. Right: acceleration withϕR = 30◦ and P ∈
{0.1, 0.5, 1.2, 1.58, 3}.

with the potential functioñV(∆ϕ). The equation for a specific trajectory with givenH̃ is
obtained by solving for∆w:

∆w = ±
√

P − 2

cos ϕR
[cos ϕR − ∆ϕ sin ϕR − cos(ϕR + ∆ϕ)] (2.46)

with the constantP = −2H̃/ωsyn ≥ 0 below and above transition.
The potentialṼ strongly depends onϕR. In the stationary case, we haveϕR = 0 and

the accelerating reference voltage isUR = 0. Figure 2.10 shows the trajectories in the
phase space(∆ϕ, ∆w) for ϕR = 0 andϕR = 30◦. For small amplitudes, i. e. in the linear
regime of the bucket, the trajectories are circles. This is also apparent from the linear
approximation of the HamiltoniañH for small∆ϕ

H̃ ≈ −ωsyn

2
[∆w2 + ∆ϕ2] =: H̃lin. (2.47)

For larger amplitudes the trajectories flatten in the direction of ∆w until they reach the
separatrix. Outside the separatrix the dynamics are unstable.

In the following the intersections of the trajectories and separatrix with the axes∆ϕ =
0 and∆w = 0 will be calculated. The notation is shown in Figure 2.11. Theseparatrix is
obtained forP = Psep and its intersections will be denoted by∆ϕsep+ , ∆ϕsep− , ∆wsep+ ,
and ∆wsep− . Correspondingly, the intersections of the trajectory with P < Psep are
denoted by∆ϕ+ , ∆ϕ−, ∆w+ , and∆w− .

To calculate the bucket height, the potential functionṼ(∆ϕ) is analyzed. The ex-
tremum in the interval∆ϕ ∈ [−π − ϕR; π − ϕR] is obtained for∆ϕsep+ which is the
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limit of the stable area. The conditiondṼ/d∆ϕ = 0 leads tosin ϕR = sin(ϕR + ∆ϕ)
and thus to the trivial solution∆ϕ = 0 and the solution

∆ϕsep+ = π − 2ϕR. (2.48)

The value of the Hamiltonian of the separatrix is obtained for ∆ϕ = ∆ϕsep+ and∆w = 0:

H̃sep = ωsyn [[π − 2ϕR] tan ϕR − 2] ⇒ Psep = 4 − 2[π − 2ϕR] tan ϕR.

This leads to the valuesPsep = 4 for the stationary case andPsep = 1.5816 for the
acceleration case withϕR = 30◦ in Figure 2.10.

For a trajectory within the separatrix, the intersections can be calculated depending on
P. However, for the models in the next chapters it will be more convenient to derive the
values as functions of the amplitude

∆ϕ+ ∈ [0; ∆ϕsep+ ] = [0; π − 2ϕR].

For the intersection(∆ϕ+ ,0), Equation (2.46) leads to

P =
2

cos ϕR
[cos ϕR − cos(ϕR + ∆ϕ+)− ∆ϕ+ sin ϕR] . (2.49)

For the lower intersection∆w = 0 and∆ϕ = ∆ϕ− we have

P =
2

cos ϕR
[cos ϕR − cos(ϕR + ∆ϕ−)− ∆ϕ− sin ϕR] . (2.50)

Using (2.49) in (2.50) yields

∆ϕ− sin ϕR + cos(ϕR + ∆ϕ−) = ∆ϕ+ sin ϕR + cos(ϕR + ∆ϕ+). (2.51)

This equation can be solved analytically only for the stationary caseϕR = 0, in which
case∆ϕ− = −∆ϕ+, i. e. the trajectories are symmetric to the axis∆ϕ = 0. In general
the equation has to be solved numerically with the constraint ∆ϕ− = −∆ϕ+ < 0 as a
possible initial value.
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Figure 2.12: Intersections of the trajectories in coordinates(∆ϕ, ∆w). Left : Equa-
tion (2.54) andϕR = 0. Center: Equation (2.51) and acceleration withϕR = 30◦.
Right: Equation (2.53) and acceleration withϕR = 30◦.

Using∆ϕ = 0 and∆w = ∆w+ or ∆w = ∆w− in (2.46) yields

P = ∆w2
+ = ∆w2

− ⇒ ∆w− = −∆w+ , (2.52)

i. e. the trajectories are symmetric with respect to∆w = 0. Inserting (2.52) in (2.49) leads
to

∆w+ =

√

2

cos ϕR

√

cos ϕR − ∆ϕ+ sin ϕR − cos(ϕR + ∆ϕ+). (2.53)

The height of the seperatrix is obtained for∆ϕ+ = ∆ϕsep+ = π − 2ϕR and equals

∆wsep+ =
√

4 − 2[π − 2ϕR] tan ϕR.

For the stationary caseϕR = 0, the simple equation

∆w+ =
√

2 − 2 cos(∆ϕ+) (2.54)

is obtained and∆wsep+ = 2. Figure 2.12 shows the intersections for the stationary case
with ϕR = 0 and the acceleration case withϕR = 30◦.

2.3.3 Bucket and Bunch Area

As mentioned before, the termbucketdenotes the stable area in phase space andbunch
denotes the particle ensemble. The trajectory equation in the bucket has already been
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obtained in (2.46), inserting (2.49) yields the trajectoryas a function of the maximum
phase∆ϕ+

∆w = ±
√

2

cos ϕR

√

cos(ϕR + ∆ϕ)− cos(ϕR + ∆ϕ+) + [∆ϕ − ∆ϕ+ ] sin ϕR.

Due to symmetry, the area circumscribed by the trajectory equals the integral

Abunch(∆ϕ+ , ϕR) = 2

∆ϕ+∫

∆ϕ−

∆w (∆ϕ, ∆ϕ+ , ϕR) d∆ϕ, (2.55)

with ∆ϕ+ ∈ [0; π − 2ϕR] and∆ϕ− as a function of∆ϕ+ . The bucket area is obtained
for ∆ϕ+ = ∆ϕsep+ = π − 2ϕR:

Abucket(ϕR) = 2

∆ϕsep+∫

∆ϕsep−

∆w
(
∆ϕ, ∆ϕsep+ , ϕR

)
d∆ϕ. (2.56)

In the stationary case we haveϕR = 0, ∆ϕ+ = −∆ϕ− , ∆ϕsep+ = π, Psep = 4, and the
bunch area is

Abunch,stat = 2

∆ϕ+∫

−∆ϕ+

√

2 [cos(∆ϕ)− cos(∆ϕ+)] d∆ϕ.

Using the relationcos(x) = 1 − 2 sin2(x/2) and the substitutionθ = ∆ϕ/2 yields

Abunch,stat = 8

∆ϕ+/2
∫

−∆ϕ+/2

√

sin2

(
∆ϕ+

2

)

− sin2 (θ) dθ.

As the integrand is an even function, it is sufficient to consider∆ϕ+ ∈ [0; π] and

Abunch,stat = 16 sin

(
∆ϕ+

2

) ∆ϕ+/2
∫

0

√

1 − sin2 (θ)

sin2 (∆ϕ+/2)
dθ

= 16 sin

(
∆ϕ+

2

)

E

(
∆ϕ+

2
, csc

(
∆ϕ+

2

))

,

where E(ϕ, k) is the incomplete elliptic integral of the second kind andcsc(x) =
sin−1(x). A short summary of important formulas for elliptic integrals is given in Sec-
tion A.1. AsE(π/2, 1) = 1, the size of the stationary bucket is

Abucket,stat = 16. (2.57)
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Figure 2.13: Left: stationary bucket fill factorAfill,stat (black) and approximation (2.59)
for small bunches (blue).Center: bucket area for acceleration (black) and approxi-
mation (2.60) (blue).Right: bucket fill factor for acceleration (black) and approxima-
tion (2.61) (blue).

With (A.3) the special caseE(z, csc(z)) can be expressed as a combination of the com-
plete elliptic integrals of the first and second kindE( · ) andK( · ) and the stationary bunch
area can finally be expressed as a function of∆ϕ+

Afill,stat(∆ϕ+) :=
Abunch,stat

Abucket,stat
= E

(

sin
∆ϕ+

2

)

− cos2

(
∆ϕ+

2

)

K

(

sin
∆ϕ+

2

)

,

(2.58)

with the bucket fill factorAfill,stat. For small bunches (∆ϕ+ ≪ 1) the trajectories are
circles and the bunch area is approximately

Abunch,stat ≈ π∆ϕ2
+ . (2.59)

For the acceleration case, the sizes of bucket and bunches must be calculated numerically.
For example,ϕR = 30◦ yields Abucket,acc = 5.732. However, the following useful
approximation for the bucket size is given in [71]:

Abucket,acc

Abucket,stat
≈ 1 − sin ϕR

1 + sin ϕR
=

1 − UR/Û1

1 + UR/Û1

. (2.60)

Figure 2.13 shows the bucket and bunch areas for different configurations. The di-
agram on the left shows the bucket fill factorAfill,stat from (2.58) and the approxima-
tion (2.59). The approximation error is less than10% for ∆ϕ+ < 1.3. The diagram in
the center shows the bucket area as a function of the reference phaseϕR. The bucket area
was obtained by numerical integration of (2.56). The secondcurve is the approximation
from (2.60). The maximum relative error of the approximation is smaller than17%. The
bucket fill factor for acceleration withϕR = 30◦ is shown in the right diagram. The curve
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results from a numerical integration of (2.55), normalizedwith the solution of (2.56). The
second curve is the approximation

Afill,acc =
Abunch,acc

Abucket,acc
≈ Afill,stat

(
π − 2ϕR

π
∆ϕ+

)

, (2.61)

which allows an excellent approximation, also for other values ofϕR ∈ [0; π
2 [.

In summary it can be concluded that it is possible to calculate the areas of bucket and
bunch for the stationary case exactly with Equations (2.57)and (2.58) and for the acceler-
ation case in good approximation with Equations (2.60) and (2.61), thereby avoiding the
need for a numerical integration.

2.3.4 Nonlinear Synchrotron Frequency

An important property of the motion in the longitudinal phase space is the synchrotron
frequency of the particles. It is well known that the synchrotron frequency depends on the
oscillation amplitude∆ϕ+ . For larger amplitudes, the synchrotron frequency decreases,
until it becomes zero at the separatrix. If a bunch comprising a large number of particles
is considered, this leads to a spread in the synchrotron frequency and to effects known
asLandau dampingandfilamentation. These effects will be considered in more detail in
Chapter 3.

The synchrotron frequency in the linear regime, i. e. for small amplitudes, is given
by (2.38) and is denoted byωsyn. In the following, the more general synchrotron fre-
quency in the nonlinear regime will be denoted byωsyn,eff(∆ϕ+). It is a function of the
maximum phase∆ϕ+ of the trajectory. In addition the following relations hold:

fsyn,eff/ fsyn = ωsyn,eff/ωsyn = Tsyn/Tsyn,eff.
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There are different ways to derive the nonlinear synchrotron frequency [43, 57, 71].
One possibility is the multiplication of (2.40) with2∆ϕ̇/ω2

syn, which leads to

2∆ϕ̈∆ϕ̇

ω2
syn

+
2∆ϕ̇

cos ϕR
[sin(ϕR + ∆ϕ)− sin ϕR] = 0,

and subsequent integration overt, yielding

[
∆ϕ̇

ωsyn

]2

− 2

cos ϕR
[∆ϕ sin ϕR + cos(ϕR + ∆ϕ)− cos ϕR] = P

with the integration constantP. Because of∆ϕ̇ = d∆ϕ
dt , this equation can be rewritten as

dt = ± d∆ϕ

ωsyn

√

P + 2
cos ϕR

[∆ϕ sin ϕR + cos(ϕR + ∆ϕ)− cos ϕR]
.

The synchrotron period follows withTsyn,eff = 2π/ωsyn,eff = 2
∫ Tsyn,eff/2

0 dt and is
obtained by integration of both sides, leading to

Tsyn,eff = 2

∆ϕ+∫

∆ϕ−

d∆ϕ

ωsyn

√

P + 2
cos ϕR

[∆ϕ sin ϕR + cos(ϕR + ∆ϕ)− cos ϕR]
.

Using (2.49) andωsyn = 2π/Tsyn leads to the ratio of the nonlinear to the linear syn-
chrotron period

Tsyn,eff

Tsyn
=

∆ϕ+∫

∆ϕ−

√
cos ϕR

π
√

2
d∆ϕ

√

[∆ϕ − ∆ϕ+ ] sin ϕR + cos(ϕR + ∆ϕ)− cos(ϕR + ∆ϕ+)
. (2.62)

In the stationary case it is possible to write the synchrotron period as an elliptic integral.
The equation forTsyn,eff reduces to

Tsyn,eff

Tsyn
=

1

π
√

2

∆ϕ+∫

−∆ϕ+

d∆ϕ
√

cos(∆ϕ) − cos(∆ϕ+)
.

Inserting the relationcos x = 1 − 2 sin2(x/2), substitutingθ = ∆ϕ/2 and considering
that the integrand is an even function yields

Tsyn,eff

Tsyn
=

2

π sin
(

∆ϕ+

2

)

∆ϕ+/2
∫

0

dθ
√

1 − sin2 θ

sin2
(

∆ϕ+
2

)

(A.1)
=

2F
(

∆ϕ+

2 , csc
(

∆ϕ+

2

))

π sin
(

∆ϕ+

2

) ,
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whereF( · ) denotes the elliptic integral of the first kind as defined in Appendix A.1. This
incomplete elliptic integral can be rewritten [57, 71]. Using Equation (A.2) leads to

Tsyn,eff

Tsyn
=

2

π
K

(

sin
∆ϕ+

2

)

⇒
fsyn,eff

fsyn
=

π

2K
(

sin
∆ϕ+

2

) , (2.63)

whereK(k) denotes the complete elliptic integral of the first kind. Figure 2.14 shows the
synchrotron frequency for the stationary and for the acceleration case.

2.4 Acceleration Cycle

Coasting Beam Bunched Beam for̂U1,R,stat

∆Wmax

∆τ∆τ

∆W∆W

TR,stat

Adc
Abucket,stat

Abunch,stat = Adc/h

Figure 2.15: Bunching of a coasting beam.Left : coasting beam with areaAdc and
Û1 = 0. Right: bunched beam after increasing the voltage toÛ1 = ÛR,1,stat.

There are two different scenarios of how a beam is injected into the synchrotron. The
first possibility is to inject an already bunched beam into the ring. In this case the RF
voltage of the ring is already switched on and special care has to be taken to ensure that
the bunches are injected with a compatible phase and shape. Otherwise, filamentation will
increase the emittance of the beam.

The second possibility is to fill the ring with acoasting beam, i. e. an unbunched stream
of particles, while the RF voltage is almost zero. The beam can then be captured and
bunched by ramping up the RF voltage amplitude slowly. If this is done slowly enough, the
transition can be regarded as adiabatic and the emittances are approximately preserved. In
this case, the necessary RF voltage amplitude can be calculated which is needed to obtain
a certain bucket filling factorAfill. In the following, this is demonstrated for a coasting
beam with a homogeneous distribution. Specifications for the ramping in the accelerator
chain SIS12/18 to SIS100 of GSI can be found in [48].

The bunching process of the beam is a stationary one (ϕR = 0) and its quantities will
be denoted by the additional indexstat in the following. Assume as a coasting beam a bar
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of particles in the phase space with a given momentum spread[∆p/pR]max as shown in
Figure 2.15. In coordinate∆W, this is equal to the maximum energy spread

∆Wmax = β2
R,statWR,stat

[
∆p

pR,stat

]

max

and because the length of the ring in coordinate∆τ is TR,stat, the area occupied by the
coasting beam in the phase space(∆τ,∆W) is (cf. Figure 2.15)

Adc = TR,stat · 2∆Wmax = 2TR,statβ
2
R,statWR,stat

[
∆p

pR,stat

]

max

.

The area of a stationary bucket in coordinates(∆ϕ, ∆w) equals 16 and using (2.44) yields
the bucket area in(∆τ,∆W)

Abucket,stat = 16
ωsyn,statβ

2
R,statWR,stat

ω2
RF,stat[−ηR,stat]

=
16

h

√
√
√
√

QÛ1,R,statβ
2
R,statWR,stat

2πh|ηR,stat|ω2
R,stat

.

If necessary the fill factorAfill,stat = Abunch,stat/Abucket,stat after the bunching is given,
the necessary voltagêU1,R,stat to achieve this can be calculated. Using the fact that the
areaAdc is divided intoh bunches, i. e.Abunch,stat = Adc/h, the voltage is

Û1,R,stat =
π3hβ2

R,statWR,stat|ηR,stat|
8QA2

fill,stat

[
∆p

pR,stat

]2

max

.

During acceleration the amplitudêU1,R is usually adapted such that the bucket area is kept
constant. IfÛ1,R would not be changed, the bucket area would be increased during the
acceleration and this would have to be an adiabatic transition to avoid emittance blow-up.
The condition for a constant bucket area can be obtained withapproximation (2.60) for
the bucket area during acceleration

Abucket,acc ≈ 1 − UR/Û1,R

1 + UR/Û1,R

16

h

√

QÛ1,Rβ2
RWR

2πh|ηR|ω2
R

and the condition for a constant bucket areaAbucket,acc
!
= Abucket,stat leads to

Û1,R

[

Û1,R − UR

Û1,R + UR

]2

= Û1,R,stat

|ηR|WR,statβ
2
R,statω

2
R

|ηR,stat|WRβ2
Rω2

R,stat

. (2.64)

Solving this equation forÛ1,R > UR provides the necessary RF amplitude during the
acceleration to keep the bucket area constant.

To start the acceleration, the reference magnetic fieldBR that is provided by the central
control system is raised and the frequencyωRF is synchronously increased. This auto-
matically changes the reference pointϕR, because a positive voltageUR = Û1,R sin ϕR

is now needed for a particle to catch up with the increasing frequency.
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2.5 Conclusion

The chapter begins with a recapitulation of the longitudinal single-particle dynamics in
heavy-ion synchrotrons. A derivation of the mapping equations has been presented and
the synchrotron has been discussed. The theory is not new, but has been developed in a
consistent way that is suitable for the later chapters. A comparison with the dynamics used
in computer simulation packages ESME and LONG1D has shown that there are subtle
differences depending on the assumptions made during the derivation of the longitudinal
equations of motion. Next, continuous equations have been deduced from the mapping
equations and the incoherent synchrotron oscillation of the individual particles has been
described. This theory is described in more detail in references such as [71]. It has been
reviewed to obtain a consistent notation in the thesis. The focus of the longitudinal motion
has been on low-current beams; effects such as beam loading or space-charge (cf. [100]
and [19]) were not included explicitly, but are regarded as disturbances acting on the RF
feedback.

In the subsequent chapters, the following notation will be used:

• Nonlinear bucket: this will be used to signify that the respective analysis or
simulation is based on the original nonlinear single-particle dynamics such
as (2.35).

• Linear bucket: this implies that linearized dynamics are used, i. e. the RF
potential is linearized as in (2.36).
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3 Coherent Longitudinal Beam Oscillations

A particle beam in a synchrotron ring is an ensemble of a largenumber of particles. It
is thus not only interesting to describe the single-particle dynamics, as has been done in
the last chapter, but also to model the behavior and properties of the beam, in particular
its shape. Section 3.1 reviews the concept of coherent bunchoscillations. Because the
single-particle dynamics are Hamiltonian dynamics, Liouville’s theorem applies, which is
reviewed in Section 3.2. This also provides Liouville’s equation that describes the evolu-
tion of the particle density in phase space. Important beam properties are introduced in
Section 3.3 and a definition of the ideal bunch shape is given.Different density functions
to describe small mismatches from this ideal shape are presented in Section 3.4. Finally,
in Section 3.5 important relations are derived to describe the coherent bunch oscillations
in the frequency domain.

3.1 Introduction

3.1.1 Sources of Disturbances

An ideal accelerator would have perfect guiding and accelerating fields and there would
be no interactions between the beam and the surrounding walls of the beam pipe. For
this ideal accelerator, there would be no need for any kind offeedback loop or correction.
Particles with deviations from the reference would performstable synchrotron oscillations
in the longitudinal phase plane according to the phase stability principle. The equivalent
in the transverse planes would be stable betatron oscillations. However, a charged particle
beam in a real accelerator is exposed to several disturbances. Examples of such distur-
bances in the RF components are fluctuations and errors of higher order of the magnetic
fields, noise in the frequency generator and ripple in the RF power amplifiers and phase
and amplitude errors in the accelerating gap voltage [12].

In addition, for larger beam currents, the electromagneticfields that are generated by
the beam are no longer negligible and they will interact withthe beam environment, i. e.
with the surrounding walls of the vacuum chamber (i. e. the beam pipe) and accelerator
components such as the accelerating cavity. A standard reference and introduction to these
collective effectsis [19]. Among others, there are three important effects that depend on
the beam current.

First, the charged particle beam will induce so calledwake fieldsdue to the resistivity
of the wall of the vacuum chamber or changes of its geometry. These wake fields may act
back on the beam and destabilize it. The calculation of the wake fields is related to the
concept ofimpedances, which are their counterpart in the frequency domain. Typically,
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low impedances are desirable as they are equivalent to low induced voltages and thus low
interactions of the beam with its surroundings.

A second effect in case of large beam currents is referred to asspace charge effects[20,
p.128], [136]. As the beam consists of particles with the same charge, the repulsing
Coulomb forces between them will defocus the beam. This is relevant in particular for
large particle densities and for low and medium beam energies. For large beam energies,
the particle velocities are ultra-relativistic and the electric field around each particle is
Lorentz contracted to a disc. Thus, the influence on the otherparticles of the bunch is
weakened for high energies and space charge effects are relevant mainly for lower ener-
gies.

The third effect is calledbeam loadingand occurs in resonant structures such as the RF
cavity. The current of the beam induces a voltage inside these structures. This induced
voltage is damped with a certain time constant which dependson the quality characteris-
tics of the cavity. If a significant fraction of the induced voltage is still present when the
same or the next bunch arrives at the cavity, this beam loading will have an impact on the
beam stability.

In a circular accelerator such as the synchrotron, every disturbance can accumulate
over many turns and lead to an inferior beam quality or in moresevere cases to beam
instabilities. In the machine design the described effectscan be taken into account and the
components of the accelerator can be optimized with respectto the stability of the beam.
This passive approach leads to low impedances in the ring. However, there are also active
measures to increase the beam stability: feedback control loops. In many cases, there
is no alternative to feedback. For example, disturbances inthe RF voltage can only be
compensated by feedback. Furthermore, the beam itself has to be controlled by feedback,
since there may be mismatches in the beam shape because of external disturbances or
imperfections in the injection. These mismatches always lead to filamentation of the beam
and to a dilution of the particle density, thus to a decreasing beam quality, as will be shown
in this chapter.

The following sections will focus on beam shape mismatches in the longitudinal phase
space and review the concept of longitudinal single-bunch oscillation modes.

3.1.2 Coherent Oscillations

As discussed in the previous chapter, the sinusoidal RF voltage createsh areas in the
longitudinal direction called buckets. Inside these buckets the particles perform a stable
synchrotron oscillation around the reference such that they can be accelerated. In the
presence of a RF voltage, the beam is not uniformly distributed along the ring, but divided
in particle ensembles called bunches. Not every bucket has to be filled with a bunch, but
every bunch has to be inside a bucket, or else it will be lost during acceleration. The
particle number of a bunch can vary by several orders of magnitude between different
accelerators or experiments. Typical numbers are in the range of 109 to 1011 [48, 105]
but can even be considerably higher [71]. If a rather low particle density is assumed, the
interactions between the particles inside the bunch are negligible and the beam may be
regarded as a collisionless plasma [80]. In this case the particles describe independent
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Figure 3.1: Phase space configurations and line densities for two beam shape oscilla-
tions. A small bunch is assumed, all particles have approximately the same synchrotron
frequency.Left : coherent dipole oscillation at the timet = 0 andt = Tsyn/2. Right:
coherent quadrupole oscillation at the timet = 0 andt = Tsyn/4.

synchrotron oscillations and the evolution of the bunch shape only depends on the initial
configuration of the bunch. In the following, the oscillations of the bunch shape will be
referred to as longitudinal single-bunch oscillations or simply ascoherent oscillations.

A simple example of a coherent oscillation is a bunch whose particles have a similar
phase. This is shown on the left of Figure 3.1. A linear bucketis assumed for the sake
of simplicity. The initial particle bunch is off-center andafter half a synchrotron period
Tsyn/2, all particles have made half a synchrotron oscillation in phase space and thus
the bunch shape is rotated by180◦. After one complete synchrotron period, the bunch
returns to its initial configuration. This coherent oscillation is calleddipole modeand its
frequency is obviouslyωsyn. The line charge density distributionor line densityλ(∆ϕ)
is also shown in Figure 3.1, it is the projection of the phase space upon the axis∆ϕ and
proportional to the beam current of the bunch.1) The shape of the line density remains
the same, only its center of gravity oscillates with the frequencyωsyn. A further coherent
oscillation is thequadrupole modeas shown on the right of Figure 3.1. This configuration
can be simply thought of as a bunch where every particle has a counterpart with a phase
difference of the synchrotron oscilllation of180◦, in contrast to the dipole mode where all
particles are in-phase. AfterTsyn/2, this initial bunch distribution is repeated, leading to
a coherent oscillation frequency of2ωsyn. The line density is centered, but oscillates in
amplitude and width.

It is possible to construct an initial bunch configuration where there are no coherent
oscillations at all. As a simple example, the particle density inside the bunch is assumed to
be uniform, i. e. constant. If the bunch is small, the particle trajectories are approximately
circles in the phase space. Thus, choosing the bunch as a centered circle will lead to
a matched bunch, i. e. a bunch that will not perform any coherent oscillations, although

1)A more detailed description of the beam current follows in Section 3.3.3.
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Figure 3.2:Filamentation of a mismatched bunch at turnn in the longitudinal phase space.
This leads to a larger bunch area (emittance) and to a dilutedparticle density.

the particles perform synchrotron oscillations. If a more general density is assumed, it is
plausible that the initial bunch has to be rotationally symmetric to be matched.

For larger bunches, the particle trajectories become considerably nonlinear and it is
more difficult to find a matched configuration. But similar to the linear case, a necessary
and sufficient condition is that the particle density must beconstant. If this is fulfilled,
the particles can move along the trajectories leaving the overall bunch density unchanged.
There are two more differences for large bunches. First, there is a significant spread of
synchrotron frequency among the particles of the bunch, resulting in a lower frequency of
the coherent oscillations. Second, this frequency spread results in a filamentation of the
bunch if any mismatch is present. This leads to a damping of the coherent oscillations
calledLandau damping. Figure 3.2 visualizes this damping for a seriously mismatched
bunch. At first, the bunch performs a typical coherent quadrupole oscillation. After several
synchrotron periods the bunch has filamented, the quadrupole mode disappears and the
bunch is matched. The cost of this damping is a density dilution and a larger bunch area.

In a real bunch, the particle number is large and an approximation with a continuous
density function is often justified. In the following sections, many analytical calculations
will be based upon a density functionf (∆ϕ, ∆w, t) that depends on the phase space co-
ordinates and time. However, the particle number of a real bunch is always finite and this
results in noise and fluctuations that can be measured. Thesefluctuations are exploited for
example for stochastic beam cooling [16, 17, 42, 91, 96–98, 102, 129, 130].

The simulations in this work aremacro particle trackingsimulations. Similar to a real
beam, a discrete number of particles is arranged in the phasespace and simulated using
the discrete mapping equations of the longitudinal beam dynamics. However, the particle
number is only a small fraction compared to a real beam, thus each simulation particle is
a macro particle representing a large number of real physical particles.
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3.2 Hamiltonian Systems and Liouville’s Theorem

Every system or flow that obeys Hamilton’s equations for a conservative Hamiltonian (cf.
(2.31), p.22) preserves the area in the2N dimensional phase space. This is also known as
Liouville’s theorem in Hamiltonian Dynamics[110]. In this section, basic facts and their
consequences for particle beams are reviewed. One way to prove Liouville’s theorem uses
the divergence theorem [24, 52, 57, 125, 134], other proofs rely on canonical transforma-
tions [65, 81]. In the following, a simple proof for the two dimensional longitudinal phase
space is presented based on the divergence theorem. The generalization of the proof to
the complete six dimensional phase space of longitudinal and transverse motion is simi-
lar. In general, Liouville’s theorem is valid for the six dimensional phase space, but if the
coupling between the transverse and longitudinal motion isnegligible, it can be applied to
the longitudinal phase plane [24].

A bunch withN particles obeying Hamilton’s equations in the longitudinal phase space
(q, p) with the HamiltonianH(q, p, t) can be described uniquely byN position andN
momentum variables. Thus, the system has2N degrees of freedom and the dimension
2N. For largeN it is reasonable to approximate the system with a particle density function
f (q, p, t). The particle number can then be obtained by an integration over the phase
space. The density is usually normalized such that an integration over the complete phase
space yields unity:

∞∫

−∞

∞∫

−∞

f (q, p, t) dq dp = 1.

Using the density function reduces the2N coordinates to only two coordinatesq and p
since the information about the particle density is contained in f . Formally speaking,
the2N dimensional system is replaced by an infinite dimensional one. Another point of
view is to regard the functionf as the probability density and its integration over a certain
region in phase space as the probability of a particle staying in this region. At each point
(q, p) a velocity vector of the flow

v(q, p, t) =
[
q̇ ṗ

]T
=
[

∂H
∂p − ∂H

∂q

]T
(3.1)

can be defined. Assume a start at timet0 at an arbitrary point(q0, p0) with the local
densityf (q0, p0, t0). Following the flow, the rate of change of the local density isobtained
by the total derivative off

d f

dt
= lim

∆t→0

[
f (q + ∆q, p + ∆p, t + ∆t) − f (q, p, t)

∆t

]

which can be expressed as

d f

dt
=

∂ f

∂t
+

∂ f

∂q
q̇ +

∂ f

∂p
ṗ. (3.2)
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Rewriting with the product rule yields

d f

dt
=

∂ f

∂t
+

∂( f q̇)

∂q
− f

∂q̇

∂q
+

∂( f ṗ)

∂p
− f

∂ṗ

∂p
. (3.3)

Because the flow (3.1) is Hamiltonian,

∂q̇

∂q
+

∂ṗ

∂p
=

∂2 H

∂p∂q
− ∂2 H

∂q∂p
= 0

holds and introducing this equation in (3.3) cancels the third and fifth term on the right
hand side and leads to

d f

dt
=

∂ f

∂t
+

∂( f q̇)

∂q
+

∂( f ṗ)

∂p
. (3.4)

The right hand side of (3.4) is a continuity equation; this can be shown as follows. We
may consider a certain volumeV in a general phase space. In case of the two dimensional
phase space this is an area. The total change of the particle number inside this fixed
volume can be calculated as

dNV

dt
= lim

∆t→0

1

∆t





∫

V

f (q, p, t + ∆t) dV −
∫

V

f (q, p, t) dV



 =
∫

V

∂ f

∂t
dV. (3.5)

The last step of this equation assumes that the limit and integral can be interchanged
(dominated convergence theorem). On the other hand, the particle number insideV can
only change by the particle flux through its surface∂V. The particle flux can be defined
as theR

3 7→ R
2 function [57, 118]

J(q,p,t) := f v =
[

f (q,p,t) q̇(q,p,t) f (q,p,t) ṗ(q,p,t)
]T

.

If we assume that neither particles are generated or annihilated insideV, the particle
number changes only by

dNV

dt
= −

∮

∂V

J · n dA = −
∫

V

∇J dV,

wheredA is an infinitesimal area element of∂V, n is the normalized vector perpendicular
to the surface∂V and is pointing outwards ofV, ∇( · ) is the divergence operator, and the
last step uses the divergence theorem (Gauss-Ostrogradskytheorem) to write the surface
integral as a volume integral. The minus sign is due to the fact thatn points outwards of
V. Comparing this result with (3.5) leads in differential form to the continuity equation
of fluid dynamics

0 =
∂ f

∂t
+∇J =

∂ f

∂t
+

∂( f q̇)

∂q
+

∂( f ṗ)

∂p
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that is indeed (3.4) and Liouville’s theorem can be written as

d f (q, p, t)

dt
= 0.

One interpretation of this theorem is that the local particle density along a trajectory is
preserved. This means that a certain region of the particle distribution in phase space can
move and change its shape since the rate of change of the density at a fixed point (cf. (3.2))

∂ f

∂t
= − ∂ f

∂q
q̇ − ∂ f

∂p
ṗ (3.6)

is not necessarily zero. The volume of the region in phase space is however preserved [44].
If q is a physical position andp a momentum, Equation (3.6) can be rewritten withq̇ =
p/γm0 andṗ = F as the kinetic equation orcollisionless Boltzmann equation, also called
theVlasov equation[139],

∂ f

∂t
+

∂ f

∂q

p

γm0
+

∂ f

∂p
F(q, t) = 0,

whereF(q, t) is the force acting on the particles. The force depends on external electric
and magnetic fields as well as on fields that are generated by the particles of the bunch.
Considering this dependence leads to the Vlasov-Maxwell system of equations [68]. The
Vlasov-Maxwell equations are a more general form to describe the dynamics of charged
particle beams in accelerators but are valid for sufficiently diluted plasmas only. The
assumption of a thin plasma assures that the Coulomb forces between the particles can be
neglected and the approximation of the mean field can be used [80].

Liouville’s theorem and the Vlasov equations are valid for the six dimensional phase
space consisting of three spatial coordinates and their conjugate momenta. Under the
assumption of a weak coupling between the transverse and longitudinal planes, the theory
can also be applied to the two dimensional longitudinal phase space. This assumption will
be made in the following.

The larger bunch area or the dilution of the phase space density due to filamentation
or Landau damping discussed in Section 3.1.2 and visualisedin Figure 3.2 do not conflict
with Liouville’s theorem. This is illustrated in Figure 3.3. If a bunch is matched, its
shape matches the particle trajectories and both the bunch area and particle densityf are
constant. Due to a mismatch, the filamentation will start, leading to a distortion of the
bunch shape. If a single point in the phase plane is followed along the flow, the densityf
will stay constant as stated by the theorem of Liouville. Also, the bunch area defined by
the boundaries of the bunch will remain the same, although the area may be more difficult
to compute. The dilution and the increase in area in Figure 3.2 are solely due to the fact
that only a finite number of particles is used. After a long time, the filamentation is such
that the original boundaries of the bunch are no longer distinguishable and in terms of the
effectivearea and density, the beam quality deteriorates.
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Figure 3.3: Filamentation and Liouville’s theorem.

3.3 Properties of Bunched Beams

3.3.1 Particle Density Distributions

Different particle density distribution functionsf (∆ϕ, ∆w) can be chosen to characterize
a bunch in phase space [24]. The line density is the projection upon the∆ϕ axis and can
be calculated by integrating the density with respect to∆w

λ(∆ϕ) =

∞∫

−∞

f (∆ϕ, ∆w) d∆w.

Different bunch types are given in Table 3.1. The density functions are chosen such that

∞∫

−∞

∞∫

−∞

f (∆ϕ, ∆w) dϕ dv = 1

holds. Note that the line density is normalized, i. e. it doesnot include the charge of the
bunch. The charge density functionfcharge and the charge line densityλcharge can be
defined as

fcharge(∆ϕ, ∆w) = Qbunch f (∆ϕ, ∆w), λcharge(∆ϕ) = Qbunchλ(∆ϕ), (3.7)

whereQbunch denotes the total charge of the bunch. Writing this in a more general way
with the coordinatex, the charge density can be defined as

∞∫

−∞

λcharge(x) dx = Qbunch (3.8)

holds, i. e. the total area of the line charge density has to beequal to the charge of the
bunch.
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Table 3.1: Common bunch types and their line density. The bunches are centered and
ellipsoidal. The line densities are defined on∆ϕ ∈ [−R1; R1] and are zero elsewhere,
except for the Gaussian case wheref andλ can be defined over the complete length of
the ring.

particle density functionf (∆ϕ, ∆w) line densityλ(∆ϕ)

uniform: 1
πR1R2

for S = ∆ϕ2

R2
1

+ ∆w2

R2
2
< 1 elliptic: 2

πR1

√

1 − ∆ϕ2

R2
1

elliptic: 3
2πR1R2

√
1 − S for S < 1 parabolic: 3

4R1

[

1 − ∆ϕ2

R2
1

]

parabolic: 2
πR1R2

[1 − S] for S < 1 8
3πR1

[

1 − ∆ϕ2

R2
1

]3/2

Gaussian: 1
2πσ1σ2

e
− 1

2

[

∆ϕ2

σ2
1

+ ∆w2

σ2
2

]

for |∆ϕ| < π Gaussian

In a macro particle tracking simulation, a phase space configuration ofNmacro particles
has to be chosen as an approximation of the presented densityfunctions. However, stan-
dard algorithms usually provide only uniform or Gaussian pseudo random distributions. A
numerical method that provides random values according to an arbitrary two-dimensional
distribution f (x, y) is given in [112]. The algorithm proceeds as follows [24]. A number
Nmacro of uniformly distributed triplets of random numbers(xk , yk, zk) are generated.
Only those triplets withzk < f (xk , yk) are chosen, the others are discarded. The pairs
(xk , yk) of the remaining triplets are distributed according tof (x, y).

3.3.2 Longitudinal Emittance

An important characteristic of the beam is its size in phase space. A smaller size for a
given number of particles per bunch implies a higher particle density of the bunch and a
higher beam quality, because more collision events in the experiment can be expected. The
measure for the beam size is called thebeam emittance. There exist diverse definitions for
the emittance [69]. A common definition is the root mean square (RMS) emittance [43,
114]

πεn = π
√

σ2
τ σ2

W − σ4
τ,W (3.9)

whereσ2
τ andσ2

W are the variances of the beam in the longitudinal phase spacecoordinates
∆τ and∆W, respectively, andσ2

τ,W is the covariance of the particle ensemble. Sometimes
εn is also calledemittanceinstead ofπεn. The variances can be estimated from a discrete
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ensemble as

σ2
x =

1

N − 1

N

∑
k=1

[xk − x]2, σ2
x,y =

1

N − 1

N

∑
k=1

[xk − x][yk − y]

with the center of gravity

x =
1

N

N

∑
k=1

xk, y =
1

N

N

∑
k=1

yk,

or from a continuous density function as

σ2
x =

∫ ∫

[x − x]2 f (x, y) dx dy, x =
∫ ∫

x f (x, y) dx dy,

and further expressions accordingly. For a bunch with a uniform density and an elliptic
shape the emittanceπεn is proportional to the area in the longitudinal phase space

Aell,uniform = 4π
√

σ2
τ σ2

W − σ4
τ,W .

The emittance can also be defined as [67]

πεn,2 = π
√

[2στ ]2[2σW]2 − [2στ,W ]4 = 4πεn = Aell,uniform.

This is equivalent to the definition (3.9) for2σ, i. e. for two times the standard deviations.
The advantage of the defined emittances over the area calculation is that they can also

be applied to non-uniform distributions and bunch shapes that are not elliptic. However,
in these cases the physical interpretation of the emittancechanges. For example, for a
small bunch with a Gaussian distribution function the emittanceπεRMS is the area cir-
cumscribed by a particle on the RMS trajectory. For large bunches the trajectories differ
considerably from ellipses and a clear physical interpretation of the emittance is lost.

The subscriptn of εn refers to the fact that this emittance is callednormalizedor in-
variant. Because the area in the phase space(∆τ, ∆W) is conserved, the emittance is
approximately conserved as well during acceleration. The conservation is only approxi-
mate, because the emittance is exactly equal to the bunch area for ellipsoidal shapes only.
For more complicated shapes, the emittance is based on the RMS ellipse which can con-
tain a lot of empty space. Figure 3.2 visualizes this. The initial bunch configuration has an
ellipsoidal shape, a Gaussian density, and a low emittance.The emittance is equal to the
bunch area. Because the bunch is not matched, there is a coherent quadrupole oscillation
and the bunch filaments because of the synchrotron frequencyspread. The bunch area
itself remains constant during the simulation, but becauseof the complex bunch shape, a
lot of empty space is included and the emittance increases. At the end of the simulation
it is no longer possible to distinguish between the bunch andthe empty spaces in between
due to the finite number of particles. The effective bunch area is now considerably larger
and equal to the emittance, the bunch is matched and its shapeis approximately ellip-
soidal. The mean particle density in the bunch has decreased. This process is adilution
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Figure 3.4: Landau damping and increase of the longitudinal emittance.

of the bunch density. The filamentation of the bunch leads toLandau damping: the coher-
ent oscillation is damped until the mismatch of the bunch vanishes. These considerations
show qualitatively that there is a link between the emittance and the disorder of the beam.
Filamentation increases the disorder and the emittance. A formal treatment of the link
between emittance and entropy for charged particle beams can be found in [69].

The increase of the effective bunch area is not a contradiction of Liouville’s theorem as
discussed in Section 3.2, since the theorem holds for particle densities with a Hamiltonian
flow. In case of a filamented bunch with a finite number of particles, it is not possible to
distinguish between the effective and the real bunch area. For a matched bunch however,
the emittance is conserved.

The emittance is sometimes given in other coordinates, for example the phase deviation
and relative impulse deviation

∆ϕ = ωRF∆τ =
2πhc

LR
βR∆τ, δ =

∆p

pR
=

1

β2
RγRm0c2

∆W.
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In this phase space, the area and the emittance

πε ∼ 1

βRγR

are not invariant and decrease during the acceleration. Theemittanceπε can be converted
to the normalized emittanceπεn by

πεn = βRγR
m0cLR

2πh
πε

The unit of the normalized emittanceπεn is eVs, whereasπε is given in rad.
A further emittance definition is theelliptic emittancewhich is defined as the area of an

ellipse fitted in such a way that a predefined fraction of the particle ensemble is encircled.
As an example, assume a Gaussian density with standard deviationsσ1 andσ2. Using an
ellipse with the half axesσ1 andσ2 will include 39.3% of the particles, whereas doubling
the size of the ellipse will include86.5% [43]. This is equivalent to the emittanceπεn,2

based on2σ.
Figure 3.4 shows how Landau damping increases the longitudinal emittance. In a first

simulation2), a matched bunch receives a kick, i. e. the bunch center of gravity is shifted
by 15◦ = 0.26 rad. Diagram (a1) shows how the oscillation amplitude decreases due to
Landau damping, the increase of the longitudinal emittanceis given in Diagram (a2). It
has to be noted that this is no exact exponential damping. In particular, this is apparent in
the close-up of Diagram (b1). Here, a voltage step leads to a mismatch of the bunch length
and the variance oscillation is damped at the cost of an increasing emittance, cf. (b2). The
close-up of (b1) shows that the oscillations returns in a recurrent way, although at small
amplitudes. Also, the damping of the variance mismatch is stronger than the damping of
the nonzero bunch center. In general, the exact shape of the Landau damping will depend
on the bunch size und the type of density distribution.

In addition to the phase space area occupied by the beam, the number of particles in a
bunch is an essential attribute of the beam. Thebeam intensityis defined as the number
of particles per time unit and this is closely related to the beam current [43].

3.3.3 Line Density and Beam Current

The charge density distribution function of a bunch cannot be measured directly. What
can be measured is the amount of charged particles that crossa certain point in the ring
during a given time, because this corresponds to a current, thebeam current, that can be
observed with a pick-up monitor.

Figure 3.5 is now used to derive an expression for the beam current. First, assume
a infinitesimal area with widthd∆ϕ and heightd∆w in phase space at the position

2)The simulations are performed with the same parameters as given in Table 5.2. The bunch has a Gaussian
density distribution. For the damping of the bunch center ofgravity, the initial bunch is matched for10 kV with
a variance of0.92. For the damping of the bunch length, the bunch is matched for5 kV with E2,0 = 1.3 and the
voltage is raised stepwise to10 kV.
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Figure 3.5: Calculation of the line density and beam current from the charge density
function fcharge.

(∆ϕ0 ,∆w0) as shown in the left drawing of Figure 3.5. This area containsparticles with
the total chargedQ. This charge depends on the charge density functionfcharge as

dQ(∆ϕ0 , ∆w0) = fcharge(∆ϕ0 ,∆w0) d∆ϕ d∆w.

The particles in the considered area move and this leads to a current

dibeam(∆ϕ0 ,∆w0) =
dQ(∆ϕ0 , ∆w0)

dt(∆w0)
,

wheredt is the time that the particles need to cross the pick-up monitor. This time de-
pends on their velocity and thus the energyW = WR + ∆W. The deviation∆W follows
from (2.44) and depends on∆w0. The energy determines the revolution periodT(∆w0)
and revolution frequencyω(∆w0) of the particles, anddt can be expressed as (cf. (2.4))

dt(∆w0) =
T(∆w0)

2πh
d∆ϕ =

1

hω(∆w0)
d∆ϕ.

Omitting the use of the specific point(∆ϕ0,∆w0), the last equations lead to a current in
phase space

dibeam(∆ϕ,∆w) = hω(∆w) fcharge(∆ϕ, ∆w) d∆w.

This current can be integrated over∆w to obtain the beam current

ibeam(∆ϕ) =
∫

dibeam =

∞∫

−∞

hω(∆w) fcharge(∆ϕ, ∆w) d∆w.
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If we assume thatω ≈ ωR for all particles of the beam, this can be simplified to

ibeam(∆ϕ) ≈ hωR λcharge(∆ϕ) = ωRF λcharge(∆ϕ), (3.10)

whereλcharge denotes the charge line density as defined in (3.7). In the following, it will
be assumed that approximation (3.10) is valid and the approximation sign will be omit-
ted. Equation (3.10) shows that, during acceleration, the beam current will increase with
ωRF(t). In general, there will also be a change in beam current due tothe time depen-
dence offcharge andλcharge; for example, Landau damping decreases the density and thus

the line density. An adiabatic increase in the RF voltage amplitude Û1 has the opposite
effect: the bunch will become narrower and higher in phase space and this increases the
line density. The units of (3.10) are

[ibeam ] = A, [ωR] =
rad

s
, [λcharge] =

As

rad
.

Again, it may be beneficial to have the beam current (3.10) as afunction of a general
coordinatex. The charge line densityλcharge(x) is assumed to be nonzero only on the
intervalDx =]− Tx/2; Tx/2], whereTx denotes the RF period. Forx = ∆ϕ this period
is 2π and forx = ∆τ it equalsTRF. Due to (3.8), the beam current (3.10) can be written
as

ibeam(x) =
Tx

TRF
λcharge(x), (3.11)

because this guarentees that the mean ofibeam over the intervalDx equals

ibeam :=
1

Tx

Tx/2∫

−Tx/2

ibeam(x) dx =
Qbunch

TRF
,

independent of the choice ofx. Possible choices forx are given in Table 3.5. Note that in
case ofx = ∆τ the beam current isibeam(∆τ) = λcharge(∆τ).

The beam current signalibeam is measured at a fixed location of the synchrotron. If the
beam current is measured during several turns, the beam distribution function in the phase
space can be recovered using only a few assumptions. A commonmethod developed at
CERN is calledlongitudinal phase space tomography[38, 39].

3.3.4 Matched Bunch

With the Vlasov equation it is now possible to express a more formal definition of matched
bunches. A continuously differentiable density functionf (q = ∆ϕ, p = ∆w,t) is called
a matcheddistribution if the densityf at every point in the phase space remains constant
and does not depend explicitly on time:

f (q, p, t) = f (q, p).
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This is equivalent to

∂ f

∂t
= 0.

This simple condition guarantees that the shape of the particle bunch will remain constant,
even if there is a flow of the particles inside the bunch. The line density and beam current
of a matched bunch are also time-independent. A matched bunch is also called astationary
or time invariantparticle distribution.

With Equation (3.6) the condition can be rewritten as

∂ f

∂∆ϕ
∆ϕ̇ = − ∂ f

∂∆w
∆ẇ. (3.12)

For very small bunches, the longitudinal motion is given in (2.43) and the density function
has to satisfy

∂ f

∂∆ϕ
∆w =

∂ f

∂∆w
∆ϕ.

Applying this condition to a Gaussian density function at timet = 0

f (∆ϕ, ∆w,t = 0) =
1

πσ1σ2
e−

1
2 [∆ϕ2/σ2

1+∆w2/σ2
2 ]

leads to the conditionσ1 = σ2 = σ. Using this result and the polar coordinates
{

r2 = ∆ϕ2 + ∆w2

tan θ = ∆w
∆ϕ

,

{

∆ϕ = r cos θ

∆w = r sin θ
, (3.13)

the resulting density function can be written as a function of r andH̃lin (cf. (2.47))

f (r,θ) = f (r) =
1

2πσ2
e−r2

/
2σ2

= f (H) =
1

2πσ2
eH̃lin

/
σ2ωsyn . (3.14)

It is apparent that the density function has to be rotationally symmetric to represent a
matched bunch. However, this is only valid for very small bunches or linear motion such
as (2.43), because only in the special case of the linearizedHamiltonian (2.47), the trajec-
tories are circles.

As a general necessary and sufficient condition for a stationary particle distribution,
Hofmann and Pedersen state that the phase space densityf (∆ϕ,∆w) can be written as a
function of the HamiltonianH [45]. This can be shown as follows: Equation (3.12) can
be reformulated as

[
∂ f

∂∆ϕ
∂ f

∂∆w

]

·

[
∆ϕ̇
∆ẇ

]

= fx · ẋ
!
= 0.

This implies that the gradientfx of the density function should be perpendicular to the
direction of the flowẋ at every point in the phase plane. This is possible only if thecontour
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Table 3.2: Different stationary distributions. The HamiltonianH is chosen such that
H(0,0) = 0 andHb is the value on the boundary of the bunch.f0 andσ are positive and
real numbers. As the Hamiltonian can be positive or negativedepending on the direction
of the flow, the absolute value|H| is used.

Distribution Particle Density Function

uniform f (H) =

{

f0 |H| ≤ |Hb|
0 else

elliptic f (H) =

{

f0

√

|Hb| − |H| |H| ≤ |Hb|
0 else

Gaussian f (H) = f0e−H
/

2Hb

lines of f are identical with the trajectories of the motion. As the flowis Hamiltonian, a
trajectory is a contour line of the Hamiltonian for a constant value H1. Thus, for the
correspondent contour line off , the value of the Hamiltonian is alsoH1 and constant.
This implies that the densityf only depends on the value of the Hamiltonian andf can be
written as a function ofH

f (∆ϕ, ∆w) = f (H(∆ϕ, ∆w)) = f (H)

as was also the case for the linear example in (3.14). Different stationary distributions are
given in Table 3.2. The uniform and elliptic distributions have a density functionf that
is not continuously differentiable on the boundary of the bunch. However, their boundary
H = Hb can be considered as a limit of the contour lines inside the bunch and it just as
well has to be equal to a contour line of the Hamiltonian.

A Gaussian density function for the separable nonlinear Hamiltonian (2.45) can be
expressed as the product of two exponential functions

f (∆ϕ, ∆w) = f0 e−H̃
/

2H̃b = f0 e−T̃(∆w)
/

2H̃b e−Ṽ(∆ϕ)
/

2H̃b , (3.15)

whereH̃b < 0 is a constant. For very small|H̃b|, this density function can be approxi-
mated by (3.14).

3.4 Longitudinal Bunch Oscillations in the Time Domain

3.4.1 Mismatches of a Bunch

Usually, a bunch in a synchrotron ring will have small or large mismatches from the ideal
matched distribution. These mismatches can for example result during the injection of the
beam in the ring. If the beam is already bunched before it is injected in the ring, the bunch
shapes have to be consistent with the buckets created by the RF voltage in the ring. Any
deviation will result in a mismatch of the bunch. Even if the beam is injected as a coasting
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Table 3.3: Mode numbers of longitudinal coherent beam oscillations for coasting and
bunched beams [108].

Coasting Beams Bunched Beams

n = azimuthal mode number
= 1,2,3, . . . ∞

n = coupled bunch mode number
= 0, 1, 2, . . . (M − 1)

m = phase plane periodicity,
within-bunch mode number
= 1 (dipole), 2 (quadrupole),

3 (sextupole), . . .
q = radial mode number

beam and is captured slowly by increasing the RF amplitude adiabatically, mismatches
may happen during the capturing or thereafter during the acceleration. The disturbances
described in Section 3.1.1 will create mismatches. These mismatches are usually damped
by Landau damping as shown in Section 3.1.2, but this increases the emittance of the
beam and deteriorates the beam quality. In addition, if the mechanisms or instabilities that
drive the mismatches are faster than Landau damping, the bunch will eventually leave the
bucket and will be lost.

Because of these reasons, a feedback system that is able to stabilize the bunch at the
ideal matched shape is desirable. In general, it is not possible to measure the density in the
phase plane and the mismatch directly. However, every mismatch will result in coherent
oscillations of the beam: The bunch shape and the beam current will not be stationary
and the resulting oscillations can be measured. To design a feedback system it is thus
necessary to describe these coherent oscillations.

There are two possible modeling approaches. First, the oscillations can be described in
the phase plane and time domain, this is the subject of this section. Second, the oscillations
of the beam current can be observed in the frequency domain. This will be covered in the
subsequent section.

In general, a beam consists of several bunches. Each bunch ofthe beam can perform
coherent oscillations, these are calledsingle-bunch oscillations. In addition, the bunches
can oscillate against each other in the bunch train. This is referred to ascoupled-bunch
oscillations. The next sections and chapters will focus on single-bunch oscillations. It
will be assumed that each bunch can be measured and controlled separately from the
other bunches. Therefore, only a single bunch will be considered.

3.4.2 Longitudinal Oscillation Modes

The first classification of longitudinal bunched beam oscillations can be traced back to
the theory of Sacherer [31, 109, 115–117]. A general framework exists for coasting and
bunched beams to describe the coherent beam oscillations inthe longitudinal and trans-
verse planes [108]. In this framework, modes and mode numbers are defined to classify
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∆ϕ = 2πn
M = π

2
R1

R2

R3R4

Figure 3.6: Illustration of the longitudinal
coupled bunch mode numbern = 1 for
M = 4 bunches. Bunchk ∈ {1,2,3,4}
oscillates withsin(ϕ(t) + k 2πn

M ). The ar-
rows indicate the velocity of the relative
bunch oscillation.

∆ϕ∆ϕ∆ϕ

∆w∆w
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λ

λ0

λm = λ − λ0

Figure 3.7: Within-bunch modem = 2. Left : phase plane(∆ϕ, ∆w) and polar coor-
dinates(r, θ), radiusr0 of the stationary distribution (dashed).Center: line densityλ
(solid), stationary line densityλ0 (dashed), and differenceλm (orange).Right: modula-
tion of the phase plane density form = 2.

coherent oscillations. The oscillation modes can be considered as a basis of linearly inde-
pendent functions that can be used to construct any possibleoscillation.

Table 3.3 shows the longitudinal mode numbers for coasting and bunched beams. For
bunched beams, there are the three mode numbersn, m, andq. The coupled bunch mode
numbern is used to classify the coupled bunch oscillations and the number of possible
modes is equal to the number of bunches in the ringM. The mode numbern defines
the phase shift of oscillation between two adjacent bunchesin the ring, as visualized in
Figure 3.6. For example, forn = 0, all bunches in the ring oscillate in phase. The
dynamics of the bunches can be coupled by impedances or wake fields and this can lead
to acoupled bunch instability.

The within-bunch mode numberm specifies the periodicity of a bunch density modu-
lation in the phase plane with respect to the azimuthθ. Figure 3.7 shows the configuration
of modem = 2 in the phase plane(∆ϕ,∆w), its line density as a superposition of a sta-
tionaryλ0 and oscillatingλm, and the modulation of phase space density with respect to
a stationary distribution. The first four modes,dipole modem = 1, quadrupole mode
m = 2, sextupole modem = 3, andoctupole modem = 4, are shown in Figure 3.8 for
linear longitudinal dynamics, i. e. without filamentation.The modem is a density mod-
ulation that repeats itself after the fraction1/m of the synchrotron period and thus has a
frequency ofm times the synchrotron frequency:

Tmode,m = Tsyn/m, ⇒ fm = m fsyn.
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From Figure 3.8, it can also be observed that the line densityof modem hasm nodes, i. e.
it hasm intersections with the matched line density.

Finally, the framework also includes the radial mode numberq to specify the modu-
lation of the density with respect to the radiusr of polar coordinates in the longitudinal
phase plane. In the following, the coupled bunch mode numbern and the radial mode
numberq will be ignored, as the main focus will be on the design of a feedback system
for within-bunch modesm.

3.4.3 Analytical Definition of Within-Bunch Modes

The presented definition of the modes is not unique. So far, the modem was said to be
a modulation with respect to the azimuthθ such that the frequency in the phase plane is
m fsyn and the modesm = 1, . . . ,∞ are orthogonal, i. e. a mode cannot be constructed
by a combination of any other modes. A possible analytical definition of modem for a
uniform distribution is [56]

f (r,θ) =

{

f0 for (r,θ) ∈ B
0 else

, B =
{

(r,θ) ∈ R
2 : r < R0 r̂(θ)

}

. (3.16)

with the polar coordinates(r, θ) in the phase plane as shown in Figure 3.7, the radius of
the stationary distributionR0, and the boundary function

r̂(θ) = 1 + rm sin (m[θ − θm,0]) .

In the linear regime of the bucket, the bunch rotates withωsyn and this can be taken into
account byθm,0(t) = ωsynt. This shows that the mode repeats itself aftert = Tsyn/m
and the mode frequency ismωsyn. It is now possible to construct more general boundary
functions by taking the sum of all modes and the new boundary is

r̂(θ) = 1 +
∞

∑
m=1

rm sin (m[θ − θm,0]) . (3.17)

This is a Fourier series of the functionr̂(θ) and allows almost arbitrary bunch shapes.
However, an important constraint isr̂(θ) > 0 and realistic bunches will have small mis-
matches withrm ≪ 1. This approach can also be used for other distribution functions.
For a Gaussian distribution, the definition of the modes can be chosen as

f (r,θ) = f0 e−r2
/

2σ2
0 r̂2(θ) . (3.18)

This leads to contour linesr ∼ r̂(θ) of the Gaussian density distribution with shapes
defined by (3.17).

Besides the above explicit definition of the modes, it is alsocommon to define the
modes as deviations from the stationary distribution. Thisis shown in Figure 3.7 for
modem = 2 and θm,0 = π/4: the line densityλ in the center can be regarded as
a stationary line densityλ0 with a modulationλm. In the phase space (right image)
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Figure 3.8: The phase plane and line density configuration for the first four single-bunch
oscillation modes: dipole (m = 1), quadrupole (m = 2), sextupole (m = 3), and octupole
mode (m = 4). The dashed circle is the matched shape in the phase plane and the matched
line densityλ. The timet of each configuration is given inside the bunches. The frequency
of each mode ism fsyn, because modem is repeated afterTsyn/m. Two particles (orange
and blue) are shown to visualize the linear flow, i. e. the flow of the linear model.
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the density modulation with respect to the stationary density f0 is shown and depends
mainly on the azimuthθ. This approach is convenient to examine a stationary beam that is
perturbed by a small mode. For example, the frequency components ofλm simply add to
the stationary spectrum ofλ0. This approach is however less appropriate for the modeling
of a feedback system, since the feedback acts on the completedensity and not only on its
deviation.

The presented mode definitions are so far valid for small bunches in the linear regime
of the bucket only, because they rely on the fact that the trajectories near the origin are
circles. A possible extension is to use the stationary distribution (3.15) for the nonlinear
regime and define the modulated density

f (r,θ) = f0 e−H(r,θ)
/

2Hb r̂2(θ).

For a stationary bucketϕR = 0 and the Hamiltonian (2.45), the density can be rewritten
with the polar coordinates (3.13) as

f (r,θ) = f0 e
−[r2 sin2 θ+2−2 cos(r cos θ)]

/
2
[ −2Hb

ωsyn

]

r̂2(θ)
.

Similar definitions can be made for uniform and other distributions.

3.5 Longitudinal Bunch Oscillations in the Frequency Domain

There are two important reasons why the frequency domain is commonly used to an-
alyze beam oscillations. First, it is convenient to observethe beam spectrum using a
spectrum analyzer. Second, the interactions of the beam with its environment are usu-
ally frequency-dependent, thus it is necessary to analyze the frequency components of the
beam current. The calculation of the beam current spectrum can essentially be done in
two different ways. If the coherent oscillations are small and the Landau damping is neg-
ligible, the beam current signal will repeat itself at the latest after one synchrotron period
Tsyn. The spectrum over this period will be time independent and it will be referred to as
the long-term spectrum. For a feedback control however, this measurement is too slow,
since coherent oscillations should be damped as soon as theyarise. For control purposes,
the beam current signal of a bunch should be measured during asingle or a few revolution
TR. Thisshort-term spectrumwill be time dependent for non-stationary bunches and can
be used as an input variable for control algorithms.

The convention of the Fourier transform used in the next sections and some necessary
formulas are given in Appendix A.3.

3.5.1 Long-Term Spectrum of Bunched Beams

In this section the spectrum for the special caseh = 1 is considered, because only single-
bunch oscillations are of interest in this thesis. More general derivations can be found
in [19, 30, 121, 136].



3.5 Longitudinal Bunch Oscillations in the Frequency Domain 61

tt

ipoint(t) = QωR ∑
∞
k=−∞ δ(t − kTR) ibeam(t) = ipoint(t) ∗ λ(t)

σ

σ−1

00 TRTR kTRkTR

−2ωR−2ωR −ωR−ωR 00 ωRωR 2ωR2ωR

Ipoint(ω)

Λ(ω)

ωω

Ibeam(ω)

λ(t)

Figure 3.9: Top left: beam current of a single particle with the revolution timeTR. Bot-
tom left: spectrum of single particle.Top right : stationary distributionλ(t) with a finite
bunch length.Bottom right : spectrum for a finite bunch length.

To begin with, a single particle or a point bunch with the chargeQ in the ring is consid-
ered. The particle is assumed to be exactly on the reference trajectory with the reference
energy and is thus not performing any oscillation. The time is chosen such that it crosses
the pick-up monitor att = 0. The particle will return periodically at the pick-up monitor
with periodTR and the beam current can be modeled as a series of Dirac delta functions

ipoint(t) = QωR

∞

∑
k=−∞

δ(t − kTR)

as shown in the top left image of Figure 3.9. The spectrum of this signal follows
from (A.10) and is also a series of delta functions

Ipoint(ω) = Qω2
R

∞

∑
k=−∞

δ(ω − kωR) (3.19)

with nonzero frequency components at multiples ofωR as shown in the bottom left image
of Figure 3.9.

A point bunch is not a very realistic example, so a stationarybunch with a finite length
and the longitudinal line densityλ(t) for t ∈]− TR/2; TR/2] is now assumed. This can
easily be derived from the previous case if the convolution3)

ibeam(t) = ipoint(t) ∗ λ(t) =

∞∫

−∞

λ(τ) ipoint(t − τ) dτ = QωR

∞

∑
k=−∞

λ(t − kTR)

3)In the following formula,τ is a variable for the convolution integral and not the coordinateτ of the longitudinal
beam dynamics.
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Table 3.4:Spectral density of uniform and Gaussian line densities. The Gaussian spectral
density is approximately valid forσ < TR/2π.

Line Densityλ(t) Spectral DensityΛ(ω) Λ(0)

uniform:

{
1
lb

for t ∈ [− lb
2 ; lb

2 ]

0 else
sin(ωlb/2)

ωlb/2 1

Gaussian:







1√
2πσ

e−
1
2

t2

σ2 for t ∈ [− TR
2 ; TR

2 ]

0 else
≈ e−

1
2 σ2ω2

1

is used [56, 60]. The resulting beam current is shown in the top right image of Figure 3.9.
The only necessary assumption for this calculation is that adjacent bunches do not overlap,
i. e.λ(t) is zero outside the intervalt ∈]− TR/2; TR/2]. The convolution in time domain
corresponds to the simple multiplication in frequency domain,

Ibeam(ω) = Ipoint(ω) Λ(ω) = Qω2
R

∞

∑
k=−∞

Λ(kωR)δ(ω − kωR),

whereΛ(ω) is the spectral density of the line density as defined by the Fourier trans-
form (A.6), p.165. The spectrum remains a series ofδ-functions, but these functions are
modulated withΛ(kωR). Table 3.4 shows the spectral densities for uniform and Gaus-
sian line densities. Taking the limitslb → 0 andσ → 0 leads in both cases to the special
case of point bunches with the spectrum (3.19). For finite4) bunch lengths, the higher
frequency components are scaled or rather damped byΛ, cf. Figure 3.9, bottom right.
A bunch with a larger lengthσ will have a narrower spectrumΛ and its spectral lines of
higher frequencies will be less important. This is apparentfrom Table 3.4: The spectral
density of a Gaussian density is also Gaussian, but with standard deviationσ−1.

To be able to construct a non-stationary bunch, it is necessary to consider the more
general case that the particle performs synchrotron oscillations. In turnk, the particle will
then arrive with a time delayτ(k). For small amplitudeŝτ of the synchrotron oscillation,
the oscillation is linear and the time delay at turnk follows from the linear synchrotron
oscillation (2.37) for the coordinateτ = ϕ/ωRF and the arrival timet = kTR and can
thus be expressed by

τ(k) = τ̂ cos
(
ωsynkTR + Φ0

)
. (3.20)

The beam current of the oscillating particle is

ipoint(t) = QωR

∞

∑
k=−∞

δ
(
t − kTR − τ̂ cos

(
ωsynkTR + Φ0

))
. (3.21)

4)Here, finite is used as the opposite of the limitσ → 0 of infinitesimal point bunches.
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Figure 3.10: Top left: beam current of a single oscillating particle.Bottom left: spectrum
of single particle.Top right : dipole oscillation of distributionλ(t) with a finite bunch
length. Bottom right : spectrum for finite bunch length. The magnitudes of the spectral
lines are chosen randomly to clarify the principle shapes. Due to the oscillation, side
bands appear.

This current is shown schematically in the top left diagram of Figure 3.10. Strictly speak-
ing, this equation contains a simplification, since the frequencyωR is valid for the refer-
ence particle only. An oscillating particle with an energy deviation also has a slightly dif-
ferent angular frequency. However, this difference is usually small and will be neglected
in the following.

If Tsyn is an integer multiple ofTR, the signalipoint repeats itself aftert = Tsyn and
k = Tsyn/TR and a Fourier series can be derived [56, 60] without any approximations.
This Fourier series can then be transformed into the frequency domain. Classical ap-
proaches to calculate the spectrum are given amongst othersin [121] and [136]. However,
these two references present results that differ slightly and the approaches do not seem to
be completely consistent. In [136], the arrival time (3.20)is chosen slightly different as

τ(k) ≈ τ(t) = τ̂ cos(ωsynt + Φ0).

This approximation changes the obtained spectrum, particularly the magnitude of side
bands of higher order, but the principal shape is maintained. In [121], the same equa-
tion as (3.21) is used and transformed directly into the frequency domain with a Fourier
transform. Transforming the series (3.21) elementwise with (A.7) yields

Ipoint(ω) = QωR

∞

∑
n=−∞

e−iωnTR e−iωτ̂ cos(ωsynnTR+Φ0).
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The second exponential function on the right hand side can beexpanded as a Taylor series.
Rewriting this series usingcos2 x = (1 + cos(2x))/2 yields

1 − ω2τ̂2

4
− iωτ̂ cos(ωsynnTR + Φ0) − ω2τ̂2

4
cos(2ωsynnTR + 2Φ0) + . . .

and witheix + e−ix = 2 cos(x) and (A.9), the beam current can be rewritten as

Ipoint(ω)

Qω2
R

=

[

1 − ω2τ̂2

4
+ . . .

] ∞

∑
k=−∞

δ(ω + kωR) −

− i
ωτ̂

2
eiΦ0

∞

∑
k=−∞

[
δ(ω − ωsyn + kωR) + δ(ω + ωsyn + kωR)

]
+

+
ω2τ̂2

8
ei2Φ0

∞

∑
k=−∞

[
δ(ω − 2ωsyn + kωR) + δ(ω + 2ωsyn + kωR)

]
+ . . .

This approximation of the spectrum shows that due to the synchrotron oscillation, new
lines or side bands appear next to the comb of lines at the rotation harmonicskωR

of (3.19). In [121], the Bessel function sum is additionallyemployed to obtain the exact
spectrum. These derivations show that there is a double infinite number of side bands,
spectral lines appear at

ω = kωR + mωsyn, k, m = −∞, . . . ,−1, 0, 1, . . . , ∞.

In addition, the magnitudes at the rotation harmonicskωR decrease depending onωτ̂.
The bottom left image of Figure 3.10 shows the principle shape of the spectrum. The
magnitudes of the side bands are not symmetric and can be evenlarger than the magnitude
of the spectral lines at the rotation harmonics. A more general result is obtained if an exact
and closed-form expression of the spectral lines is derived[56, 60].

The top right image of Figure 3.10 shows the coherent dipole modem = 1 of a bunch
with a finite length. Its spectrum is again obtained simply bya multiplication with the
spectrum of the line densityΛ and the structure of side bands is preserved. Only for very
small values ofωτ̂ ≪ 1, the side bands of orderm > 1 are negligible. This shows that
there is no one-to-one correspondence of coherent modesm and the spectral lines of the
side bands [60].

The calculation of the spectrum of higher order modesm > 1 is not as simple as the
dipole case, because the shape of the bunch is no longer stationary. It is thus necessary
to assume a bunch with many oscillating particles and to takethe sum of the spectra of
the individual particles. Because the number of particles is large, it is possible to approx-
imate this sum as an integration over a density distribution. However, the calculation gets
extremely complicated and an analytic solution for higher order modesm > 1 does not
seem to exist.

As already mentioned, the particles in a bunch will have frequencies that differ slightly
from ωR, this was neglected in (3.21). If it is taken into account, the spectral lines smear
out, i. e. theδ-functions turn into continuous and finite spectral densities [30]. For larger



3.5 Longitudinal Bunch Oscillations in the Frequency Domain 65

Table 3.5:Possible coordinates for the short-term spectrum calculation.

Coordinates x y Tx ωx DomainDx

RF phase ∆ϕ ∆w = − ∆ϕ̇
ωsyn

2π 1 ]− π, π]

Time lag ∆τ − ∆τ̇
ωsyn

TRF = TR
h ωRF ]− TRF

2 , TRF
2 ]

bunches, the linear calculation of (3.20) is no longer valid. The synchrotron oscillation
is nonlinear and there is a synchrotron frequency spread leading to Landau damping. If
Landau damping is large, the current signal is clearly not periodic and the interpretation
of the spectrum is lost.

3.5.2 Short-Term Spectrum of Ellipsoidal Bunches

The long-term spectrum presented in the previous section isimportant for beam observa-
tions but often too slow to be used for beam corrections. In RFfeedback loops, the beam
current signal during one turn is usually measured and decomposed into its frequency
components by a Fast Fourier Transform (FFT). To model thisshort-term spectrum, two
different bunch density functions are analyzed in this section: a Gaussian and a uniform
density distribution with elliptic bunch shapes. The line density signal of these bunches
is calculated analytically and developed in a Fourier series. The results show that the am-
plitude and phase of the first harmonic can be used to calculate meaningful parameters of
the bunch position and shape.

It is assumed that the bunch can be approximately described by the density function
f (x, y) in the longitudinal phase plane(x, y). The coordinates are not further specified;
the coordinates are however assumed to be chosen such that the trajectories in the linear
regime of the bucket are circles. The beam may consist ofh bunches, but each bunch is
measured separately. The time between two successive bunches will be denoted byTx

and this also defines the domain of one single bunch. Possiblecoordinate candidates are
given in Table 3.5.

Uniform Density First, an ellipsoidal bunch with a uniform density is considered. It
is desirable to have a fairly general definition of the bunch and a possible construction is
shown in Figure 3.11. On the left, a simple ellipsoidal boundary is given, defined by the
boundary functionb1(x) = xTSx − 1 = 0 with x = [x y]T ∈ R2. This bunch can be
rotated (center) and translated (right) by the mapsx 7→ RΦx andx 7→ x − r. The shape,
rotation, and translation matrices are

S =

[
R−2

1x 0

0 R−2
2x

]

, RΦ =

[
cos Φ sin Φ

− sin Φ cos Φ

]

, r =

[
x0

y0

]
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xxx

yyy

R1x

R2x

Φ

Φ

x0

y0

xT
Sx ≤ 1 xT

R
T
ΦSRΦx ≤ 1 [x − r]TRT

ΦSRΦ [x − r] ≤ 1

Figure 3.11:Construction of a general ellipsoidal bunch with a uniform density and both
arbitrary orientation and center of gravity. The vectorx = [x y]T ∈ R

2 defines the
position in the phase plane,Φ is the orientation,RΦ a rotation matrix,S contains the
half-axesR1x andR2x , andr is a translation vector.

with the half-axesR1x andR2x and the angleΦ. The bunch is defined by the set

Bu =

{

x =

[
x
y

]

∈ R
2 : (x − r)T

R
T
ΦS RΦ(x − r) ≤ 1

}

(3.22)

with the boundary function

su(x) = [x − r]TR
T
ΦS RΦ [x − r]

=
a2[y − y0]

2 + b2[x − x0]
2 − 2c[x − x0][y − y0]

a2b2 − c2
(3.23)

and the abbreviations

a =
√

R2
1x cos2 Φ + R2

2x sin2 Φ b =
√

R2
1x sin2 Φ + R2

2x cos2 Φ

c =
[

R2
1x − R2

2x

]

cos Φ sin Φ ⇒ a2b2 − c2 = R2
1x R2

2x

The defined bunch is static, but a time dependency can be introduced ifx0, y0, andΦ are
regarded as functions of time. For example, a linear synchrotron oscillation of the bunch
is obtained by

x0(t) = x̃0 cos(ωsynt) + ỹ0 sin(ωsynt)
y0(t) = x̃0 sin(ωsynt) + ỹ0 cos(ωsynt)
Φ(t) = Φ0 + ωsynt

(3.24)

The constant parametersx̃0, ỹ0, andΦ0 are initial values of this oscillation.
The density of the bunch is chosen to be uniform:

f (x, y) =

{
1

πR1x R2x
for (x, y) ∈ Bu,

0 else,
(3.25)
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with the setBu from (3.22). The line density of this bunch is

λ(x) =

∞∫

−∞

f (x, y) dy =

{
1

πR1x R2x

[

y(x)− y(x)
]

for x ∈ Dx ,

0 else,

wherey(x) and y(x) are the upper and lower boundary values ofy with respect tox.
Solving the boundary functionsu(x,y) = 1 of (3.23) fory yields after some calculation
steps the upper and lower boundary values

{
y(x)
y(x)

}

= y0 +
c

a2
[x − x0]

{
+
−

}
√

b2 − c2

a2

√

1 − [x − x0]2

a2

inside the domain

Dx = {x ∈ R : x = x0 − a ≤ x ≤ x0 + a = x} (3.26)

with the upper and lower boundary values[x ; x]. This results in the line density

λ(x) =

{
2

πa

√

1 − [x−x0 ]2

a2 for x ∈ Dx ,

0 else.
(3.27)

This signal can be Fourier transformed to obtain the spectral density

Λ(ω) =

∞∫

−∞

λ(x) e−iωx dx =

x∫

x

λ(x) e−iωx dx.

A summary of the notations used for the Fourier transform aregiven in Appendix A.3.1.
The substitutioñx = [x − x0]/a leads to

Λ(ω) =
2

π
e−iωx0

1∫

−1

√

1 − x̃2 e−iωax̃ dx̃.

This integral is a standard integral for the Bessel functionJ1 of the first kind:

1∫

−1

√

1 − x̃2 e−iωx̃ dx̃ =

{
π
2 ω = 0,
π J1(ω)

ω ω 6= 0.

Finally, the spectrum can be written as

Λ(ω) =

{

1 ω = 0,
2J1(ωa)

ωa e−iωx0 ω 6= 0.
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The beam current is proportional to the line charge density as stated in (3.11), p.53, and
the spectral density of the beam current is given by

Ibeam(ω) =
Tx

TRF
Λcharge(ω) =

Tx

TRF
Qbunch Λ(ω), (3.28)

whereΛcharge = QbunchΛ is the Fourier transform of the line charge densityλcharge. A
real measurement of the beam current is usually followed by aFFT or a filter to obtain the
amplitude and phase values of the harmonics of the signal. Ifthe measured beam current
is continued periodically such that it becomes periodic with periodTx and frequencyωx , a
Fourier series can be calculated, provided the bunches do not overlap. According to (A.11)
of Appendix A.3.3, the complex Fourier coefficients are thensimply

ck =
1

Tx
Ibeam(ω = kωx) = ibeam ·

{

1 k = 0,
2J1(kωx a)

kωx a e−ikωxx0 k 6= 0.
(3.29)

with the mean current or DC current of the bunch

ibeam = |c0| =
A0

2
=

Qbunch

TRF
.

The amplitude and phase values of the harmonics are, cf. Appendix A.3.1,

Ak = 2|ck |, ϕk = ∡ck. (3.30)

For the considered uniform density, they are

Ak = 4ibeam
J1 (k a ωx)

k a ωx
, ϕk = −k ωx x0. (3.31)

The units ofR1x andR2x are equal to the unit of coordinatex, the phaseϕk is measured
in radian and the amplitudeAk is measured in ampere.

The beam current follows with (3.27) and equals

ibeam(x) =
Tx

TRF
λcharge(x) =

{

ibeam
4

ωxa

√

1 − [x−x0 ]2

a2 for x ∈ Dx ,

0 else.

for one bunch and, if continued periodically with periodTx , it can be rewritten according
to (A.5) as

ibeam(x) = ibeam +
∞

∑
k=1

Ak cos(kωx x + ϕk). (3.32)
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Gaussian Density Similar calculations can be performed for a Gaussian density func-
tion. A general Gaussian density function including a translation and rotation is given
by

f (x, y) =

{
1

2πσ1xσ2x
e−

1
2 [x−r]TRT

ΦSRΦ [x−r] for x ∈
]

− Tx
2 , Tx

2

]

,

0 else.
(3.33)

with vectors and matrices

r =

[
x0

y0

]

, RΦ =

[
cos Φ sin Φ

− sin Φ cos Φ

]

, S =

[
σ−2

1x 0

0 σ−2
2x

]

.

The shape of a contour line of this Gaussian profile is elliptic andσjx are the standard
deviations of the two-dimensional density distributionf (x, y). The reason whyf is not
defined on the complete phase plane is that only one bunch is considered and adjacent
bunches should not overlap.

With the abbreviations

a =
√

σ2
1x cos2 Φ + σ2

2x sin2 Φ b =
√

σ2
1x sin2 Φ + σ2

2x cos2 Φ

c =
[

σ2
1x − σ2

2x

]

cos Φ sin Φ ⇒ a2b2 − c2 = σ2
1xσ2

2x

the density can be rewritten as

f (x, y) =
1

2π
√

a2b2 − c2
e−

1
2 [a

2 [y−y0]2+b2[x−x0]2−2c[x−x0 ][y−y0]]
/

[a2b2−c2]

for x ∈
]

− Tx
2 ; Tx

2

]

. The line density of this bunch is obtained by integrating over y,

taking into account the integral

∞∫

−∞

e−
1
2 ỹ2
/

m dỹ =
√

2πm.

This leads to the line density

λ(x) =







1√
2π a

e−
1
2 [x−x0 ]2

/
a2

for x ∈
]

− Tx
2 , Tx

2

]

,

0 else.

The spectral density is

Λ(ω) =
1√

2π a

Tx/2∫

−Tx/2

e−
1
2 [x−x0]2

/
a2

e−iωx dx.
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For

σ1x , σ2x < 1 andx0 ≪ Tx/2, (3.34)

the line density is negligible outside the integration interval and the approximationTx →
∞ for the integration limits can be made to simplify this integral. Finally, this leads with

∞∫

−∞

e−
1
2 x̃2
/

m e−iωx̃ dx̃ =
√

2πm e−
1
2 ω2m

to the approximation

Λ(ω) ≈ e−iωx0 e−
1
2 a2ω2

.

To obtain the phase and amplitude of the harmonics, Equations (3.28), (3.29), and (3.30)
can again be used. The mean current or DC current of the bunch is again

ibeam =
Qbunch

TRF
.

With (3.11), the beam current yields

ibeam(x) =







ibeam

√
2π

ωx a e−
1
2 [x−x0 ]2

/
a2

for x ∈
]

− Tx
2 , Tx

2

]

,

0 else.

The phase and amplitude values of the harmonics are

Ak ≈ 2ibeam e−
1
2 [k a ωx ]2 , ϕk ≈ −k ωx x0. (3.35)

In the following, the approximation signs will be omitted, but it has to be kept in mind
that the derived results are based on ellipsoidal Gaussian distributions for which assump-
tions (3.34) hold.

3.5.3 Bunch Position and Length

In the last section, the phase and amplitude values of the beam current were derived de-
pending on parameters of the density functionf . But how do theAk andϕk depend on
the bunch position and length, i. e. on the two parameters that are important for coherent
dipole and quadrupole oscillations? The bunch position will be defined as the first moment
or center of gravity

B1,0 :=

∞∫

−∞

∞∫

−∞

x f (x, y) dx dy (3.36)
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and the bunch length as the second central moment or variance

C2,0 :=

∞∫

−∞

∞∫

−∞

[x − B1,0]
2 f (x, y) dx dy. (3.37)

For the uniform bunch density (3.25), the bunch position andlength are

B1,0 = x0, C2,0 =
1

4

[

R2
1x cos2 Φ + R2

2x sin2 Φ
]

=
a2

4
. (3.38)

In case of a matched bunch in a linear bucket,R1x = R2x = Rx is the radius of the bunch
and the variance isC2,0 = R2

x/4. The standard deviation
√

C2,0 equals half the radius.
With approximation (3.34), the bunch position and length calculation for the Gaussian

bunch density (3.33) yields

B1,0 = x0, C2,0 ≈ σ2
1x cos2 Φ + σ2

2x sin2 Φ = a2. (3.39)

The matched case for a linear bucket is nowσ1x = σ2x = σx ; this is also the standard
deviation of the bunch distribution. Comparing (3.38) and (3.39) shows that a uniform
bunch with half-axes

R1x = 2σ1x , R2x = 2σ2x (3.40)

has the same varianceC2,0 as a Gaussian bunch with standard deviationsσ1x andσ2x .
By means of (3.38) and (3.39), the results of Section 3.5.2 can be written in a compact

way. Table 3.6 summarizes these dependencies of the beam current and the amplitude
and phase values on the bunch center of gravity and variance for the coordinate choice
x = ∆ϕ.

Equation (3.35) forAk is appealing from an analytical point of view, since it can be
easily inverted. This yields equations to calculate the center of gravity and variance, if
phase and amplitude of a harmonick are known:

B1,0 = − ϕk

kωx
, C2,0 ≈ 2

k2ω2
x

ln

(
A0

Ak

)

. (3.41)

Here, use was made of the fact thatA0 equals2ibeam. The special casek = 1 andx = ∆ϕ
leads to

B1,0 ≈ −ϕ1, C2,0 ≈ 2 ln

(
A0

A1

)

. (3.42a)

Of course, the proposed density functionsf are only ideal models for a real bunch. A
real bunch will never be exactly Gaussian or even uniform in its distribution. However,
the longitudinal density of many bunches in proton and heavy-ion synchrotron rings is
reported to be approximately Gaussian or parabolic. An additional complication is that
the density distribution is not accessible for a direct measurement. The distribution can
be reconstructed offline after the experiment, but online approaches require much effort
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Table 3.6: Results for the short-term spectrum for ellipsoidal bunches with a uniform or
Gaussian density function and coordinatesx = ∆ϕ. The momentsB1,0 and C2,0 are
assumed to be given in the variable∆ϕ.

Uniform density andx = ∆ϕ:

ibeam(∆ϕ) =
2ibeam
√

C2,0

√

1 − [∆ϕ − B1,0]
2

C2,0
(3.43a)

Ak = 4ibeam
J1

(
k
√

4C2,0

)

k
√

4C2,0
, ϕk = −k B1,0 (3.43b)

Gaussian density andx = ∆ϕ:

ibeam(∆ϕ) ≈ ibeam

√
2π

√
C2,0

e−[∆ϕ−B1,0]
2
/

2C2,0 (3.44a)

Ak ≈ 2ibeam e−
1
2 k2C2,0 , ϕk ≈ −k B1,0 (3.44b)

at the moment. Despite these difficulties, the equations forthe Gaussian case seem to be
suitable for an approximate estimation even for non-Gaussian distributions. Before this is
demonstrated by simulation results, the derived equationsare discussed for small bunches.
It turns out that for the limit of very small bunches, the equations for the uniform and the
Gaussian case become identical. This is conclusive, because both densities converge to
a Dirac function for very small bunches. For smallRx ≪ 1, property (A.4) for Bessel
functions of the first kind can be used andAk of (3.31) can be approximated by

Ak ≈ 2ibeam

[

1 − 1

2
k2ω2

x C2,0

]

⇒ C2,0 ≈ 2

k2ω2
x

[

1 − Ak

2ibeam

]

.

The linearisation forσx ≪ 1 of the exponential function of (3.35) of the Gaussian density
leads to the same result. The conclusion is that for small bunches, the formulas of the
Gaussian density can also be used for bunches with uniform distributions. This will lead
to an error in the estimated bunch varianceC2,0, but the error is bounded and increases
with increasing bunch size. It is thus interesting to note that the error is smallest for
Ak = A1, sinceAk depends onkC2,0 and a largerk has the same effect on the error as a
larger bunch size. ForC2,0 → 0, the amplitudes converge toAk → 2ībeam, the result for
a Dirac density function.

As the uniform and the Gaussian case can be regarded as the twoextreme cases of
realistic density functions of Table 3.1, the following simulation results demonstrates
that (3.41) has a certain robustness against variations from the ideal Gaussian density
function.
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Figure 3.12:Beam current spectrum of a simulated particle bunch for a Gaussian density
andσϕ = 0.5, ∆ϕ0 = 0.2. Amplitude and phase values from the simulation (×) and
from (3.35) (blue).

3.5.4 Simulation Results of Short-Term Spectrum

Simulations with macro-particle bunches are now used to evaluate the theory of the last
sections. In these simulations, the bunch consists of a number Nmacro of macro parti-
cles. The particles are distributed according to the uniform or Gaussian densities (3.25)
and (3.33) withx0 = 0. The used coordinates are∆ϕ and∆w. The line density and beam
current are calculated by means of a histogram; thex-axis is divided in equally spaced
bins and the number of particles in each bin is counted to obtain the histogram. The his-
togram values are collected in a vector and processed by a FFTalgorithm. The resulting
FFT coefficients are then converted to amplitude and phase valuesAk andϕk.

The number of binsNbin, i. e. the number of divisions on the intervalDx , and the
number of macro particlesNmacro are increased until a further increase in both numbers
does not lead to a significant change of the simulation result. Typical numbers are between
100 and 500 forNbin and between103 and2 · 105 for Nmacro. For smaller bunches, the
necessary number of bins tends to be larger to obtain a reasonable smooth beam current
signal. Compared to uniform densities, Gaussian densitiesrequire a larger number of
macro particles. This is due to the fact that the uniform density is obtained by a regular
arranged pattern in the phase plane, whereas the bunch particles with a Gaussian density
are initially distributed in a statistical manner in these simulations. It is also possible to
have regularly distributed Gaussian bunches, this has beenanalyzed in [11].

Figure 3.12 compares the beam current spectrum obtained by the FFT in a multi-
particle simulation with the calculated spectrum for a Gaussian bunch density. The simu-
lation was performed with2.25 · 104 particles and a histogram with150 bins. Figure 3.13
shows the reconstruction of the beam current according to the sum of (3.32), if only the
first Nh harmonics are used. In this example, the sum of the first 6 harmonics is already
close to the ideal shape of (3.44a).

The spectrum valuesAk andϕk can be used to calculate the first and second moments
of the bunch using (3.41). To compare these FFT-based calculations with their real val-
ues, the first and second moments of the bunch are needed. Because the bunch consists
of a discrete number of particles, Equations (3.36) and (3.37) are approximated in the
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Figure 3.13:Reconstruction of the beam current with its harmonics in a tracking simula-
tion: sum of the firstNh harmonics (black) and the ideal Gaussian beam current of (3.44a)
(blue) andσϕ = 0.5.
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Figure 3.14:Comparison of the calculated short-term spectrum with simulation results.

simulation by the sums5)

B1,0 ≈ 1

N

N

∑
n=1

xn, C2,0 ≈ 1

N

N

∑
n=1



xn − 1

N

N

∑
j=1

xj





2

, (3.45)

whereN is the number of particles andxn is the x-position of particlen in the phase
plane.

Figure 3.14 shows the amplitudeA1 of the first harmonic versus the bunch size. The
amplitude is calculated numerically in a macro particle simulation with Equations (3.43b),
(3.44b), andk = 1. Because of (3.40), uniform bunches withRx are compared to Gaus-
sian bunches with2σx . The left image shows the results for an ellipsoidal bunch with a
Gaussian density and standard deviationsσ1ϕ = σ2ϕ = σϕ. The amplitudeA1 is nor-

malized withA0 = 2ibeam. The value ofA1 calculated with (3.43b) agrees very well
with the simulation up toσϕ ≈ 1. For larger bunch sizesσϕ > 2 assumption (3.34) is
no longer valid and a small difference between the simulation result and Equation (3.44b)

5)The point of view is as follows: The particle bunch is assumedto be a realization of an underlying particle
density distribution with parameters such asB1,0 andC2,0. These parameters are not exactly known, but can be
estimated by the given sums.
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Figure 3.15: Estimation error for the bunch variance if the density is uniform and not
Gaussian.Left : error calculation.Right: estimation error versus the bunch variance.

becomes apparent. The right image shows the results for a uniform density. The calcu-
lated and simulated values ofA1 agree for values up toσϕ ≈ 3. For very large bunches
there is a small deviation, because the upper and lower boundary values (cf. (3.26)) are
outside the bunch interval. The described two curves are also compared with (3.44b), this
demonstrates that the spectrum is indeed similar for uniform and Gaussian densities.

Equation (3.41) can be used to calculate the bunch varianceC2,0 from spectrum mea-
surements. If the bunch density is not Gaussian, there will be an estimation error. To
express this error quantitatively, it is assumed that thereis an ellipsoidal bunch with a
uniform density in the ring with the varianceC2,0 ( 1© in the left image of Figure 3.15).
Equation (3.31) specifies the amplitudeA1 that will be measured2©:

A1(C2,0)

A0
= 2

J1

(
ωx
√

4C2,0

)

ωx
√

4C2,0
.

If the estimationC̃2,0 of the variance is however based on Equation (3.41) for Gaussian
densities, this results in the relative estimation error3©

∆C2,0

C2,0
=

2
ω2

x
ln
(

A0

A1(C2,0)

)

− C2,0

C2,0
=

2

C2,0ω2
x

ln







√

4C2,0ω2
x

2J1

(√

4C2,0ω2
x

)







− 1,

where∆C2,0 := C̃2,0 − C2,0. This relative error is shown in the right diagram of Fig-
ure 3.15. It is about10% for a variance ofC2,0ω2

x = 1 which corresponds to rather large
bunches withRϕ = 2 or σϕ = 1.

Estimation Errors Due to Landau Damping The previous figures show that the con-
version formula (3.42a) performs well for bunches with Gaussian densities and even for
bunches with uniform densities withRϕ ≤ 2, if an estimation error of10% is accept-
able. However, so far no Landau damping has been included in the considerations. Due
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Figure 3.16: Particle tracking simulation with Gaussian densities comparing the real
bunch moments (black) with the estimated moments by means ofthe beam spectrum
(blue) for different bunch sizesσx . The phase plane plots on the right show the final
configuration of the bunches (not every particle is plotted).

to Landau damping, the elliptic shape of the bunches will be altered and this will lead to
estimation errors even for Gaussian densities. To evaluatethese errors, nonlinear tracking
simulations are performed for different bunch sizes. All simulations in this section have a
stationary bucket, i. e.ϕR = 0.
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Figure 3.16 shows the results for Gaussian densities. The initial bunch configurations
are distributed according to (3.33) with

2σϕ = 2σx ∈ {0.5 , 1 , 1.5 , 2} , σ1x = 0.9 σx , σ2x = 1.1 σx , x0 = 0.4 σx , Φ = 0,

i. e. the bunches are ellipsoidal and have a mismatch in both position and length such that
coherent modesm = 1 and m = 2 appear. The plots of the momentsB1,0 and C2,0

compare the real bunch moments of (3.45) with the FFT-based calculations of (3.42a),
assuming Gaussian densities. For large bunch sizes, the Landau damping of the bunch
variance is considerable and the final bunch shape is clearlynon-ellipsoidal. However,
the estimation of the moments can still be acceptable for control purposes. The particle
number isNmacro = 4 · 104 and the number of bins isNbin ∈ [200 ; 400].

The simulation results for uniform densities are shown in Figure 3.17. The estimation
of the moments is again based on (3.42a) for Gaussian densities. As already noticeable in
Figure 3.15, this formula overestimates the bunch variancefor uniform densities. How-
ever, the estimation error is even smaller compared to the Gaussian case. This is due
to the fact that the Landau damping for the uniform densitiesseems to be much smaller
than the Landau damping of comparable bunches of Gaussian density. The initial bunch
configurations are distributed according to (3.25) with

Rϕ = Rx ∈ {0.5 , 1 , 1.5 , 2} , R1x = 0.9 σx , R2x = 1.1 σx , x0 = 0.2 Rx , Φ = 0

and the particle and bin numbers areNmacro = 104 andNbin ∈ [200, 400].
It has to be noted that for smaller mismatches of the bunch variance, a considerable

offset of the estimated variance might become apparent. Forexample, for a bunch with
Rϕ = 1, the variance equalsC2,0 = 0.25 and the relative estimation error is about10%,
cf. Figure 3.15. This leads to an absolute error of0.025. In Figure 3.17, the oscillation
amplitude of the variance is much larger and this offset is barely visible, but will become
apparent for smaller oscillation amplitudes. As will be discussed in Chapter 5, common
controller types for coherent modes have a differentiatingstructure or at least suppress the
DC component of the measurements. In this case, the described offset is not relevant if it
is approximately time-independent.

3.5.5 Effective Synchrotron Frequency

Besides Landau damping, Figures 3.16 and 3.17 shows anotherinteresting property of
coherent oscillations as a result of the nonlinear beam dynamics. For small bunch sizes,
the frequency of the oscillation inB1,0 is fsyn and2 fsyn for oscillations inC2,0. This
corresponds to the frequencym fsyn of the coherent modem. For larger bunch sizes, the
simulations show that the oscillation periodTm of modem increases, thus the frequency
fm decreases. This is consistent with the fact that large bunches have a large synchrotron
frequency spread and a large number of particles with a frequency fsyn,eff that is smaller
than the linear synchrotron frequencyfsyn, cf. Figure 2.14.
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Figure 3.17:Particle tracking simulation with uniform densities comparing the real bunch
moments (black) with the estimated moments by means of the beam spectrum (blue) for
different bunch sizesRx . The phase plane plots on the right show the final configuration
of the bunches (not every particle is plotted).

The relative periods and frequencies obtained in the simulation of the modesm = 1
andm = 2 of Figures 3.16 and 3.17

fm

m fsyn
=

Tsyn

m Tm

are given in Table 3.7. For the smallest bunch size, the mode frequenciesfm are ap-
proximately fsyn and2 fsyn, as expected. For larger bunch sizes, the mode frequencies
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Table 3.7:Frequencies of the oscillation modes in Figure 3.16.

Gaussian Uniform

2σϕ
Tm=1
Tsyn

2 Tm=2
Tsyn

fm=1

fsyn

fm=2

2 fsyn
Rϕ

Tm=1
Tsyn

2 Tm=2
Tsyn

fm=1

fsyn

fm=2

2 fsyn

B1,0 C2,0 B1,0 C2,0 B1,0 C2,0 B1,0 C2,0

0.5 1.02 1.02 0.98 0.98 0.5 1.02 1.02 0.98 0.98
1 1.06 1.09 0.94 0.92 1 1.07 1.07 0.93 0.93

1.5 1.13 1.28 0.89 0.78 1.5 1.2 1.2 0.83 0.83

decrease. In case of the Gaussian distribution, there is a noticeable difference between the
two modes.

To analyze the general dependency of the oscillation frequency fm on the bunch size,
further simulation results with a larger variety of bunch sizes are considered in Figure 3.18.
In these simulations, initial bunch distributions with variancesC2,0 and bunch sizes

2
√

C2,0 :=

{

Rϕ uniform density

2σϕ Gaussian density

are tracked numerically for the stationary caseϕR = 0 during a few synchrotron periods
and the frequencies of the modesm = 1 andm = 2 are recorded. The results are only
rough estimations, since the mode frequencies change in thecourse of the simulation due
to Landau damping and an attempt was made to estimate the frequencies at the beginning
of the simulation. The obtained frequencies are summarizedin Appendix C.1 and shown
in Figure 3.18. The left image of the figure shows that the modefrequencies can be
approximately described by (solid line)

fm
(
2
√

C2,0

)

m fsyn
≈

fsyn,eff

(
rϕ = 2

√
C2,0

)

fsyn
, m ∈ {1, 2}, (3.46)

where fsyn,eff is the nonlinear synchrotron frequency (2.63) for the stationary case with
∆ϕ+ = rϕ and this leads to the hypothesis that the frequency of modem is

ωm,hy = m ωsyn
π

2K
(
sin
(√

C2,0

)) (3.47)

For the uniform density, this implies that the frequencies of the modesm = 1,2 ap-
proximately depend on the synchrotron frequency that applies to the boundaryRϕ of the
bunch. In case of Gaussian densities, it is the synchrotron frequency at the radius2σϕ

that is decisive. This is demonstrated in the right image of Figure 3.18: for each mode,
the obtained frequencyfm is converted to the corresponding amplituderϕ of a particle
with the synchrotron frequencyfsyn,eff = fm/m using (3.47). The accumulation of the

measurements aroundrϕ = 2
√

C2,0 is again an indication that the synchrotron frequency
at 2
√

C2,0 determines the mode frequencies.
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Figure 3.18: Top: Dipole and quadrupole mode frequenciesf1 (blue dots) andf2 (red
dots) versus the bunch sizeC2,0 for uniform densities and Gaussian densities, compari-
son with relative nonlinear synchrotron frequencyfsyn,eff/ fsyn (black, solid). Bottom:
Amplitude rϕ of a single particle with a nonlinear synchrotron frequencyfsyn,eff that is
equal to the mode frequencyfm/m for m = 1 (blue dots) andm = 2 (red dots) of the
corresponding bunch size for uniform Gaussian densities and ∆ϕ+ = 2

√
C2,0 (black,

solid).

3.6 Conclusion

Proceeding from single-particle dynamics to a particle ensemble introduces new dynam-
ical phenomena; the shape of the particle bunch may perform coherent oscillations. To
describe these oscillations, the particle distribution has been considered as a statistical
realization of a probability density function. The evolution of this density function can
be described by a partial differential equation. Next, different density functions have
been examined as candidates to describe coherent oscillations. Ellipsoidal bunches can
describe two basic coherent oscillations: bunch phase and bunch length oscillations. An-
alytical relations between the beam current spectrum of ellipsoidal bunches with uniform
or Gaussian density functions and their center of gravity and variance have been derived.
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This step is important for the modeling of the measurement inthe RF feedback loop; the
beam current spectrum is easily accessible for measurements, whereas the bunch shape
in phase space is not. The derived formulas for Gaussian densities have been shown to
be sufficiently accurate even in case of significant filamentation. In addition, they may
be used for other distributions such as uniform densities, if the DC component of the
measurement is suppressed by the feedback loop. Ellipsoidal bunches cannot be used to
describe higher order coherent oscillations. For this purpose, different density functions
are proposed to describe the within-bunch modesm. Simulation results demonstrate that
in a single-harmonic nonlinear bucket, the oscillation frequency of a bunch modem is
not a multiple of the synchrotron frequency. Rather, the mode frequency depends on the
bunch length and decreases for increasing bunch sizes.

The classical approach in the frequency domain with the long-term spectrumIbeam (cf.
Section 3.5.1) needs a linearization of the synchrotron oscillation. The disadvantages are:

• Constant synchrotron frequency for all particles and a neglect of Landau damping

• Complicated calculation for higher order modes

• It is not evident how to calculate the dynamics, i. e. the influence of the feedback
on the modes

Because of these difficulties in the frequency domain, a new modeling approach in the
time domain based on moments is proposed in the next chapter.Since the moments such
as the bunch variance are not directly measurable, the proposed calculations of the short-
term spectrum in Section 3.5.2 will be important in the following. These calculations show
that the bunch center of gravity and variance can be deduced from the Fourier coefficients
of the short-term spectrum.
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4 Models of Coherent Oscillations

Many models of coherent oscillations rely on the frequency domain. As shown in Sec-
tion 3.5, a common method is to measure the beam current signal over one synchrotron
period and to analyse its frequency spectrum. The advantageof this is that the control
problem is easy to formulate. A train ofh matched bunches is periodic withh times the
revolution frequencyfR and should therefore have only frequency components at multi-
ples ofhωR. Coherent oscillations lead to sidebands around these fundamental harmonics
with offsets proportional to multiples of the synchrotron frequencyωsyn. Thus, if side-
bands occur in the spectrum, they should be detected and damped by a feedback system.
However, as was pointed out in Section 3.5.1, there is no strict one-to-one correspondence
of modes and specific sidebands, if the modes are defined as density modulations that
repeat themselves after a fraction of the synchrotron period. In addition, the design of a
feedback system relies on models that describe the input-output behavior, that is the re-
sponse of the modes (outputs) with respect to modulations ofthe RF phase and amplitude
(inputs). Thus, the question remains how to model the dependencies between the RF in-
puts of the gap voltage and the spectrum components. This is the subject of this chapter.
The modeling is performed in the time domain. This has the advantage that nonlinear RF
dynamics can be taken into account, whereas common modelingschemes in the frequency
domain are based on a linearization of the RF dynamics.

The chapter is organized as follows: Section 4.1 introducesa short summary of ex-
isting RF feedback models for coherent modes and highlightsa question concerning the
controllability of higher order modes that arises from simulation results. Section 4.2 gives
a definition of the control problem based on the particle density function. Section 4.3 re-
views basic definitions and theorems concerning the controllability of linear and nonlinear
systems. A new modeling scheme for coherent oscillations isdeveloped in Section 4.4.
The scheme is based on a moment method and a truncation method. The moment method
by itself is well-known. Moment approaches as used in this chapter have been proposed
before for the simulation of beam dynamics in linear accelerators [18]. Recent papers use
moment methods to obtain fast and efficient beam dynamics fora variety of simulation
applications [3, 4, 29]. However, the use for coherent oscillations in a nonlinear bucket
and the subsequent control-theoretic analysis are the novel contribution of this chapter.
The modeling scheme is used in Sections 4.5 and 4.6 to obtain and analyze models for the
linear and nonlinear bucket, respectively. Finally, a conclusion is drawn in Section 4.7.

4.1 Introduction

Table 4.1 shows selected publications that present feedback models for longitudinal
single-bunch oscillations in synchrotrons. These references will be compared with the
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Table 4.1:Existing models for coherent oscillation modes.

Modem 1 2 3 4 > 4

Linear Bucket [13, 107] [13, 40, 107] ? ? ?
Nonlinear Bucket ? ? ? ? ?

−1 0 1
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x

y

Nonlinear Bucket

−1 0 1

−1
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1

x

y

Linear Bucket

Figure 4.1: Tracking simulation with a phase modulation with3ωsyn. The dashed lines
show the boundariesrnl(θ) andrlin(θ). Left : nonlinear bucket.Right: linear bucket.

results of this chapter in detail in Section 4.7.1. However,it is already apparent from
Table 4.1 that the models are restricted to the modesm = 1 andm = 2 and to the linear
bucket.

Simulations indicate however that higher order modes withm > 2 cannot be excited
or damped in a linear bucket. This can be demonstrated by tracking simulations, as has
been done for different distributions and bunch sizes in [94]. In this section, a similar
simulation is performed for a uniform density to enable a straightforward interpretation of
the bunch boundary.

The first simulation is performed in a stationary nonlinear bucket. The initial bunch
shape is a circle with radiusr(θ) = 1. A phase modulation of

uϕ(t) =
π

18
sin(3ωsynt)

is used to excite a sextupole oscillation. The resulting bunch shape aftert/Tsyn = 1.12 is
shown in the left diagram of Figure 4.1. The bunch shape can becircumscribed by

rnl(θ) = 1 + 0.1 sin(θ − π) + 0.1 sin(3θ)

which can be interpreted as a combination of a dipole and sextupole mode withr1 = r3 =
0.1.

The second simulation is performed in a stationary linear bucket. The initial bunch
shape and the phase modulation are the same as before. The final bunch shape after
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t/Tsyn = 1.12 is shown in the right diagram of Figure 4.1. The bunch shape can be
circumscribed by

rlin(θ) = 1 + 0.1 sin(θ − 3.45).

Thus, only a dipole oscillation is excited.
Similar results can be obtained for other higher order modeswith m > 2. This is a

strong indication that higher order modes are not controllable in a linear bucket. This
clearly shows that

the nonlinearity of the RF potential plays an essential rolein the control of the
modes and should be considered in the modeling process.

4.2 Characterisation of the Dynamics

4.2.1 Beam Dynamics as Partial Differential Equation

As described in Section 3.2, the longitudinal beam dynamicscan be formulated by the
Liouville-Vlasov equation, a partial differential equation of the form

∂ f

∂t
+

∂ f

∂x
ẋ +

∂ f

∂y
ẏ = 0, ẋ = a1(x, y), ẏ = a2(x, y). (4.1)

The functionsa1 anda2 describe the nonlinear beam dynamics in the longitudinal phase
plane(x, y). The phase plane coordinatesx andy should be canonically conjugate for a
preservation of phase space in the correct coordinates. If the time segment of interest – for
instance the damping behavior of a feedback system during a few synchrotron periods –
is small compared to the complete acceleration cycle, othercoordinates are however also
possible. In the following, the coordinates of table 3.5 will be applied, since this scales
the trajectories in a favorable way and eases the formulation of the control problem.

In contrast to ordinary differential equations (ODEs), partial differential equations
(PDEs) contain derivatives with respect to more than one variable. In physical problems,
the variables usually include the time and several spatial or other variables. The most
general form of a PDE is given by the following

Definition 4.1 (General partial differential equation, [15, 23]). Given a regionD = Dt ×
Dx ⊂ R × Rn andx = (x1, . . . ,xn), (t,x) ∈ D, apartial differential equation of order
k in n + 1 independent variableshas the form

G

(

x, f (t, x),
∂ f (t, x)

∂t
,

∂ f (t, x)

∂x1
, . . . ,

∂ f (t, x)

∂xn
, . . . ,

∂k f (t, x)

∂k0 t∂k1 x1 . . . ∂kn xn
, . . .

)

= 0

and the highest derivative is of orderk = k0 + k1 + . . . + kn.
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t = 0
f (0,x) = f0(x)

f (0,x0)

x(0) = x0

x1x2

t = t1

f (t1,x)

x0

w(0,x0)

x(t1,x0)

x(t,x0)

w(t,x0)w(t1,x0)

x1x2

Figure 4.2: Characteristic and base characteristic for an initial value problem withn = 2.
Left : initial value f (t = 0,x) and an arbitrary pointx0. Right: evolved solution att = t1

and characteristicw(t,x0) and base characteristicx(t,x0).

For the special casen = 0, the PDE becomes an ODE. The solution of a PDE is a
class of functionsf (t, x) that are defined onD and are called aclassical solution, if the
functions are smooth, i. e. belong to the set of functions that is at leastk times continuously
differentiable [83].

A PDE can belinear or nonlinear. Roughly speaking, a PDE is linear if the sum of
two different solutions or a multiple of a solution does again satisfy the PDE. If the time
t is not included as an independent variable, the PDE is asteady-stateequation, else it is
called anevolutionequation.

The most general form of a linear partial differential evolution equation of first order is
given by

∂ f (t, x)

∂t
+

n

∑
j=1

aj(t, x)
∂ f (t, x)

∂xj
= b(t,x) f (t, x)

with arbitrary functionsaj andb. If b ≡ 0, the PDE ishomogeneous. Thus, Equation (4.1)
is a linear homogeneous PDE of first order in three independent variablest, x1 = x, and
x2 = y. More specifically, it belongs to the class oftransportequations.

A unique solution of (4.1) can be obtained if the initial bunch densityf (t = 0, x, y) is
given. This leads to the followinginitial value problem:

ft(t, x) + a(t, x)T fx(t, x) = 0
f (t = 0, x) = f0(x) initial condition, f0(x) is given.

(4.2)

In these equations,ft is a short notation for the partial derivative off with respect
to t, aT = (a1(t, x), . . . , an(t, x)) is a general nonlinear vector function andfx =
( fx1 , . . . , fxn )

T is the gradient off with respect tox.
For this special problem, there exists a constructive method to find the solution: the

method of characteristics. First, thecharacteristic

w(t, x0) := f (t, x(t, x0)) (4.3)

is defined as the curve that is obtained if the initial valuex(0) = x0 is chosen and the
values of f are recorded along the trajectoryx(t) that starts fromx0. The trajectoryx is
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referred to as thebase characteristic. The definitions are illustrated in Figure 4.2. The
rate of change ofw is

dw(t,x0)

dt
= ft(t,x(t,x0)) +

dx

dt
fx(t,x(t,x0)).

Comparing this with the initial value problem (4.2), the choice

dx

dt
= a(t,x)T (4.4)

leads directly to

dw(t,x0)

dt
= 0, ⇒ w(t,x0) = const.= w(0,x0) = f (0,x0) = f0(x0). (4.5)

Equation (4.4) is a system ofn ODEs that are called thecharacteristic equations. If it
is possible to obtain a trajectoryx(t,x0) of these ODEs depending on an initial value
x(t = 0) = x0 and this trajectory can be finally solved for the initial value

x0 = x0(t,x),

the solution of the initial value problem (4.2) can be written with (4.3) and (4.5) as

f (t, x) = w(t,x0) = f0(x0(t,x)). (4.6)

For every smooth functionf0, this solution is unique. Equation (4.6) shows that the des-
ignationtransport equationis indeed appropriate: the value off0 is conserved and trans-
ported along the base characteristicx.

The method of characteristics will now be applied to the longitudinal beam dynamics.
For a particle with a small oscillation amplitude, the longitudinal motion is given by (2.43)
and the characteristic equations are thus

dx

dt
=

d

dt

[
x
y

]

=

[−ωsyny
ωsynx

]

, x0 =

[
x0

y0

]

.

The solution of this initial value problem is

x(t,x0) =

[
x(t,x0)
y(t,x0)

]

=

[
x0 cos(ωsynt)− y0 sin(ωsynt)
x0 sin(ωsynt) + y0 cos(ωsynt)

]

and solving forx0 yields

x0(t,x) =

[
x cos(ωsynt) + y sin(ωsynt)
−x sin(ωsynt) + y cos(ωsynt)

]

(4.7)

The final solution of the PDE is

f (t, x, y) = f0

(
x cos(ωsynt) + y sin(ωsynt) , − x sin(ωsynt) + y cos(ωsynt)

)
.
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It can be verified easily that this is indeed a solution of the initial value problem by em-
ploying f in the PDE (4.1).

Expectedly, the initial bunch distributionf0 rotates in the phase plane with the fre-
quencyωsyn and the bunch shape is conserved. Because the quantityx2

0 + y2
0 = x2 + y2

is constant, cf. (4.7), every smooth initial distribution that can be written as

f0(x, y) = f0(x2 + y2)

leads to a time-independent solutionf , as is also discussed in Section 3.3.4.
In case of larger synchrotron amplitudes, the nonlinear ODEs (4.4) cannot be solved

analytically and this applies in particular to the solutionof the PDE. For conservative
Hamiltonian dynamics however, it is known that the Hamiltonian H(x, y) is a constant
of motion along the trajectories(x(t),y(t)). Thus, it can be concluded that an initial
distribution of the form

f0(x, y) = f0 (H(x, y))

also leads to a time-independent solutionf (t, x, y) = f0(x0,y0) = f0(H(x0 ,y0)) =
f0(H(x, y)).

4.2.2 Definition of Input Variables

So far, no input variables have been discussed. The beam dynamics can be extended in
such a way that an input vectoru = [u1, . . . ,um]T is included. This does only change the
characteristic equations, but not the structure of the PDE.The dynamics with dependency
on the input variables can be written as

∂ f

∂t
+

∂ f

∂x
ẋ +

∂ f

∂y
ẏ = 0, ẋ = a1(x,y,u), ẏ = a2(x,y,u).

Two very common input variables of the longitudinal dynamics are phase and amplitude
modulations of the RF gap voltage. They can be included in Equations (2.33a) and (2.33b).
ChoosingkRF = 1, the amplitude modulation̂U1(t) = Û1,R[1 + uε(t)], the phase mod-
ulationuϕ = −ϕf and the coordinatex = ϕk − ϕR − ϕf yields with (2.34) the nonlinear
dynamics

ẍ(t) =
QhηRω2

RÛ1,R

2πβRWR

[
[1 + uε(t)] sin(ϕR + x(t)− uϕ(t))− sin ϕR

]
.

With the synchrotron frequencyωsyn from (2.38) andy = −ẋ/ωsyn, the longitudinal
dynamics finally can be written as

ẋ(t) = a1(y) = −ωsyny(t), (4.8a)

ẏ(t) = a2(x,uε ,uϕ) =
ωsyn

cos ϕR

[
[1 + uε(t)] sin(ϕR + x(t)− uϕ(t))− sin ϕR

]
.

(4.8b)
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4.2.3 Definition of the Control Problem

In the framework of the Vlasov equation, it is simple to statethe control objective. Mis-
matches of the bunch or coherent oscillations should be damped away fort → ∞. For-
mally, this can be expressed as

lim
t→∞

ft
(
t, x, y, uε(t), uϕ(t)

)
= 0.

In fact, this can already be achieved for(uε , uϕ) ≡ 0 by Landau damping. However, this
will increase the longitudinal emittance. A criterion for the feedback performance should
thus be taken into account and a possible choice is the area occupied by the bunch

Jcontrol(t) = C2,0(t) C0,2(t)− C1,1(t)
2,

whereC2,0 andC0,2 denote the variances andC1,1 is the covariance in the phase plane.
The increase ofJc should be as small as possible.

Although the formulation of the control objective is straightforward, the analysis of the
dynamics or the design of a feedback controller are much moredemanding, since it is
impossible to find an exact analytical solution to the nonlinear control problem. Existing
methods rely on a linearization of the longitudinal beam dynamics so that every particle
has the same synchrotron frequency, but this is a coarse approximation. In Section 4.4,
a new modeling scheme based on moments will be proposed to incorporate model non-
linearities. Prior to that, controllability theorems for linear and nonlinear systems will be
reviewed.

4.3 Controllability

In this section, theorems concerning the controllability of control systems are reviewed
that will be used in the subsequent sections.

4.3.1 Linear Systems

A linear time-invariant system is given by

ΣA,B :
ẋ(t) = Ax(t) + Bu(t), x(t = 0) = x0,
y(t) = Cx(t),

(4.9)

wherex ∈ R
n is then-dimensional state vector,u ∈ R

m is the input vector, andA ∈
Rn × Rn and B ∈ Rn × Rm are constant real matrices. The matrixC ∈ Rr × Rn

is the output matrix andy is ther-dimensional output vector with quantities that can be
measured. The time is denoted byt ∈ R andx0 is the initial condition att = 0.

The concept ofcontrollability is concerned with the question whether the system can
be influenced in such a way that an arbitrary initial statex0 is transferred to another state
x1 in a final timet1:
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Definition 4.2 (Controllability, [79], p.88). The linear system (4.9) is said to be com-
pletely (state) controllable if and only if for everyx0 ∈ Rn, x1 ∈ Rn a piecewise
continuous functionu∗(t), t ∈ [0,t1] and0 < t1 < ∞ can be found such that for the
initial condition x(0) = x0 and the inputu = u∗(t), the solutionx(t) of (4.9) satisfies
x(t1) = x1.

The following theorems can be used to check for controllability.

Theorem 4.1(Kalman, [79], p.88). A necessary and sufficient condition for system(4.9)
to be completely controllable is that the rank of the Kalman controllability matrix

C (A, B) =
[
B AB . . . A

n−1
B
]
∈ R

n × R
nm (4.10)

is equal ton.

Hautus’ criterion is useful to check individual eigenvalues for their controllability and
also in case the matricesA andB are parameter-dependent.

Theorem 4.2(Hautus, [84], p.72). The linear system(4.9) is completely controllable if
and only if the condition

rank
[
λiI − A B

]
= n

is fulfilled for all eigenvaluesλi (i = 1,2, . . . ,n) of A, whereI denotes the unity matrix
with the appropriate dimensionn × n.

If the system is not completely controllable, it is possibleto consider a subspace ([84],
p.81)

S = {x̃ ∈ R
r : x̃ = Hx, x ∈ R

n} (4.11)

of the state space with a matrixH of sizer × n andr < n. A necessary and sufficient
condition for complete controllability inS is

rank [HC] = rank
[
HB HAB . . . HAn−1B

]
= r.

4.3.2 Nonlinear Systems

A general class of nonlinear systems is given by

ẋ(t) = f (x(t), u(t)), x(t = 0) = x0,
y(t) = h (x(t)) ,

(4.12)

with the vector fieldsf andh, the inputu ∈ R
m, time t ∈ T ⊂ R and the state vector

x ∈ U ⊂ Rn which lies in an open subset of the state space. The initial condition att = 0
is denoted byx0 and the output vector isy ∈ R

r.
In contrast to linear systems, properties of nonlinear systems such as stability and con-

trollability are usually not global, but only local. It is thus useful to formulate the new
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Definition 4.3 ([79], p.96). System (4.12) is said to belocally controllableat the equilib-
rium point(xe, ue) if for all real ε > 0 there exists a realη > 0 such that for every pair of
vectorsx0 ∈ R

n andx1 ∈ R
n close enough to the equilibrium point, namely satisfying

||x0 − xe|| < η and||x1 − xe|| < η, there exists a piecewise continuous controlu∗(t)
on t ∈ [0; ε] such that||u∗(t)|| < ε ∀t ∈ [0; ε] and the integral curve of (4.12) at timeε,
generated byu∗ from x0 at time 0, equalsx1.

In general, the test for local controllability can be a complex task. Usually, it is useful
to calculate the tangent linear system around the equilibrium (xe, ue)

ẋ = Ax + Bu, A =
∂ f

∂x
(xe, ue), B =

∂ f

∂u
(xe, ue) (4.13)

and check for first-order controllability first:

Definition 4.4 ([79], p.96). System (4.12) is said to befirst-order controllableat the
equilibrium point(xe, ue) if the rank ofC, defined by (4.10) for the tangent linear sys-
tem (4.13), is equal ton.

If the tangent linear system is controllable, system (4.12)is first-order controllable and
the following theorem holds.

Theorem 4.3([79], p.97). If system(4.12) is first-order controllable at the equilibrium
point (xe, ue), it is locally controllable at(xe, ue).

Remark4.1. The inverse is not always true: a nonlinear system that is locally controllable
at an equilibrium does not have to be first-order controllable.

4.4 Modeling Scheme for Single-Bunch Oscillations

This section introduces a new modeling scheme that takes into account the nonlinearity
of the beam dynamics. The scheme is based on moments and leadsto models that can be
used for controller analysis or design. It requires that thebeam dynamics are given as or
can be approximated by a polynomial expression [76].

The modeling scheme is valid for a particle bunch withN particles at positions(xk,yk)
in the phase plane, but also for a bunch densityf (x, y, t) with the properties

∞∫

−∞

∞∫

−∞

f (x, y, t) dx dy = 1,
d f

dt
= 0, (4.14)

i. e. it is assumed that the density is normalized and the flow is Hamiltonian which means
that the local phase space density is conserved.



4.4 Modeling Scheme for Single-Bunch Oscillations 91

4.4.1 Moments

A particle bunch can be regarded as a realization of a random process; assuming an initial
probability density functionf (x, y, t = 0), the initial particle distribution att = 0 is
obtained by choosing randomlyN positions(xk ,yk) in phase space using the probability
densityf . If the number of particlesN is large, the number of particles∆N in a small area
∆A around a point(x0,y0) will be approximately∆N ≃ f (x0, y0)∆A, i. e. the measured
particle density∆N/∆A will tend to the probability densityf . A thorough introduction to
random processes and probabilities can be found for examplein [106] and the subsequent
line of argument partly follows this reference.

A density function can be characterized by its moments. The mean values of a two-
dimensional probability density are given by

B1,0(t) :=

∞∫

−∞

∞∫

−∞

x f (x, y, t) dx dy, B0,1(t) :=

∞∫

−∞

∞∫

−∞

y f (x, y, t) dx dy.

(4.15)

and will be denoted asbasic momentsin the following. General higher order moments
can be defined as

Rn,m(t) :=

∞∫

−∞

∞∫

−∞

xn ym f (x, y, t) dx dy (4.16)

and will be denoted asraw moments. Special cases are

R0,0(t) = 1, R1,0(t) = B1,0(t), R0,1(t) = B0,1(t).

It is sometimes favorable to consider instead thecentral moments

Cn,m(t) :=

∞∫

−∞

∞∫

−∞

[x − B1,0(t)]
n [y − B0,1(t)]

m f (x, y, t) dx dy. (4.17)

In particular,

C0,0(t) = 1, C1,0(t) = C0,1(t) = 0

holds. Fortunately, it is possible to express every centralmoment as a combination of raw
moments and vice versa. Using the general first binomial rule, a central moment can be
rewritten as

Cn,m :=

∞∫

−∞

∞∫

−∞

n

∑
k

m

∑
l

(
n

k

)(
m

l

)

xk yl [−B1,0]
n−k [−B0,1]

m−l f (x, y, t) dx dy

=
n

∑
k

m

∑
l

(
n

k

)(
m

l

)

Rk,l [−B1,0]
n−k [−B0,1]

m−l . (4.18)
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Also, rewriting (4.16) as

Rn,m =

∞∫

−∞

∞∫

−∞

[[x − B1,0] + B1,0]
n [[y − B0,1] + B0,1]

m f (x, y, t) dx dy

provides a simple way to calculate in a very similar way

Rn,m =
n

∑
k=0

m

∑
l=0

(
n

k

)(
m

l

)

Ck,l Bn−k
1,0 Bm−l

0,1 . (4.19)

For example, the raw momentR3,0 can be written as

R3,0 = C0,0B3
1,0 + 3C1,0B2

1,0 + 3C2,0B1,0 + C3,0 = C3,0 + 3B1,0C2,0 + B3
1,0.

For the Gaussian and uniform densities (3.25) and (3.33) of ellipsoidal bunches, the basic
momentsB1,0 and B0,1 and the central momentsC2,0, C1,1, and C0,2 are sufficient to
calculate all higher order moments. This is also apparent from Table C.1 (p.174). Thus, if
the class of densities (3.25) and (3.33) is considered, the moments are uniquely determined
by the densityf (x, y) and the density is uniquely determined by the moments.

In general, the uniqueness between moments and the probability density function is
only valid under certain assumptions. Uniqueness theoremsfor one- and two-dimensional
densities are stated in [106] and [46]. The proof of the uniqueness theorem involves the
use of thejoint characteristic function

Φ(ω1, ω2) =

∞∫

−∞

∞∫

−∞

f (x, y) ei[ω1x+ω2y] dx dy, (4.20)

whereω1, ω2 ∈ R. This function is a two-dimensional Fourier transform off . If f
depends on the timet, the characteristic function will also be time-dependent.

The exponential function can be expanded into a series at theorigin (ω1, ω2) = (0, 0)
and this yields

Φ(ω1, ω2) =

∞∫

−∞

∞∫

−∞

∞

∑
p=0

[iω1]
p

p!
xp

∞

∑
q=0

[iω2]
q

q!
yq f (x, y) dx dy.

Exchanging the summation and integration, this leads with (4.16) to

Φ(ω1, ω2) =
∞

∑
p=0

∞

∑
q=0

[iω1]
p

p!

[iω2]
q

q!
Rn,m. (4.21)

The calculation is however only valid if all momentsRn,m are finite and the series con-
verges near the origin. Under these assumptions, the joint characteristic function is
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uniquely determined by the moments. Using the two-dimensional inverse Fourier trans-
form, (4.20) can be solved for the density

f (x, y) =
1

4π2

∞∫

−∞

∞∫

−∞

Φ(ω1, ω2) e−i[ω1x+ω2y] dω1 dω2.

Thus, under the stated conditions, the densityf is uniquely determined by its characteristic
function or by its moments.

Theorem 4.4(Uniqueness theorem [46], [106]). Assume the probability density function
f (x, y) is piecewise continuous and has nonzero values only in a finite part of the plane
(x, y) ∈ R

2. Then momentsRn,m of all orders exist and are finite. If, in addition,
the series(4.21) converges near the origin, the moment sequence{Rn,m} is uniquely
determined byf (x, y) and f is uniquely determined by the moment sequence.

Remark4.2. Because of (4.19), this also holds for a moment sequence comprising the
basic and the central moments.

In Section 4.2.3, the aim of the control problem was stated tobe limt→∞ ∂ f /∂t = 0,
i. e. a constant densityf (x, y, t) = f0(x, y) should be obtained fort → ∞. With
Theorem 4.4, the control problem can be reformulated as

lim
t→∞

dRn,m(t)

dt
= 0, ∀n,m, (4.22)

if it can be guaranteed that the necessary assumptions remain valid during the control and
evolution of the bunch. Again, this is equivalent to demanding that the basic and central
moments should be constant. This argument justifies the use of moments instead off to
obtain models for a controller synthesis.

Because in reality or in a macro-particle tracking simulation, the bunch consists ofN
particles with discrete positions(xk , yk), k = 1, . . . ,N, it is also useful to define a discrete
version of the moments. For a largeN, they are reasonable estimates of the continuous
moments. The discrete moments read

R̃n,m :=
1

N

N

∑
k=1

xn
k ym

k , B̃1,0 :=
1

N

N

∑
k=1

xk, B̃0,1 :=
1

N

N

∑
k=1

yk

C̃n,m :=
1

N

N

∑
k=1

[xk − B1,0]
n[yk − B0,1]

m

and the conversions (4.18) and (4.19) remain valid.

4.4.2 Basic Modeling Principle

The modeling approach will be discussed exemplarily for thebasic momentB1,0 in the
discrete definition. Nevertheless, a modeling with the continuous moment definitions
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is also possible and can be expected to be similar to existingmoment approaches [3–
5, 29, 64, 103].

In general, the moment will be a function of time and its derivative is given by

Ḃ1,0(t) =
1

N

N

∑
k=1

ẋk(t). (4.23)

If the particle dynamicṡxk can be written as a polynomial function

ẋk = a10xk + a01yk + a11xkyk + . . . , (4.24)

Equation (4.23) can be rewritten as

Ḃ1,0 = a1,0B1,0 + a0,1B0,1 + a1,1R1,1 + . . . (4.25)

In this equation, the raw momentR1,1 appears. This is disadvantageous, since Sec-
tion 3.5.2 shows that the quantities that can be measured arerather linked tocentral mo-
mentssuch asC2,0. To avoid raw moments, they simply can be replaced by using (4.19)
and (4.25) can finally be written as

Ḃ1,0 = a1,0B1,0 + a0,1B0,1 + a1,1 (C1,1 + B1,0B0,1) + . . .

= f (B1,0, B0,1, C2,0, C1,1, . . .) ,

which is a function of basic and central moments. In a similarmanner, the derivatives
of the central moments can be calculated. In most cases, the presented calculation of the
moment dynamics is tedious and has to be done using a computeralgebra system.

4.4.3 Moments and Densities

Before proceeding with the derivation of equations that describe the dynamics of the cen-
tral moments of the beam, this section deals with the question how the defined moments
are related to the single-bunch oscillation modesm of Chapter 3. To answer this question,
four different density functions are analyzed and their moments are calculated. The results
will be used in subsequent sections for a model truncation.

Ellipsoidal Bunches In Section 3.5.3, ellipsoidal bunches with uniform and Gaussian
densities were defined. These bunch models are sufficient if only dipole and quadrupole
modes (m = 1, 2) are studied. The plots (a) and (b) of Figure 4.3 show examples for the
uniform density (3.25) and the Gaussian density (3.33). Forthese density functions, it is
possible to calculate the basic and central moments as defined in (4.15) and (4.17). The
results of the calculations for moments up to the ordernx + ny = 14 were obtained with
the assistance of MATHEMATICA and are summarized in Table C.1 of Appendix C.2.1.
These results show that all momentsCnx ,ny with odd ordernx + ny are zero. Further-
more, all even moments withnx + ny ≥ 4 can be expressed as nonlinear functions of the
variancesC2,0 andC2,0 and the coverianceC1,1. This is particularly interesting in the fol-
lowing, because it allows order reduction of the models which will be used to describe the
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Figure 4.3: Density distribution functions with ellipsoidal (top) andmode (bottom) con-
tour lines.(a): uniform density (3.25) withf0 = 1, Φ = −45◦, R1x = 1.5, R2x = 1, and
x0 = y0 = 0. (b): Gaussian density (3.33) withf0 = 1, Φ = 50◦, σ1x = 1, σ2x = .5,
and x0 = y0 = 0. (c): uniform density (3.16) withf0 = 1, r3 = .2, R0 = 1.5, and
θ3,0 = 0. (d): Gaussian density (3.18) withf0 = 1, σ0 = 1, r4 = .2, andθ4,0 = 0.

dynamics of the moments. This order reduction goes without any approximation, because
the higher order moments can be replaced by second order terms. However, this is only
valid under the condition that the bunch is ellipsoidal. Forlarge initial mismatches of the
bunch, this condition may be violated due to filamentation.

Taking into account the basic momentsB1,0 andB0,1, there are five degrees of freedom
to uniquely determine the shape of the considered density functions. This corresponds to
the parametersx0, y0, R1x , R2x , andΦ for the uniform density and to the parametersx0,
y0, σ1x , σ2x , andΦ for the Gaussian density. A comparison of the columns of Table C.1
shows that equal variances are obtained for both density functions if R1x = 2σ1x and
R2x = 2σ2x is chosen. In addition, the nonlinear functions for the higher moments are
identical for both densities except for a constant factor. For equal central moments of
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ordernx + ny = 2, the moments relate as

Cnx ,ny,gauss

Cnx ,ny,uniform
=







1, nx + ny = 2
3
2 , nx + ny = 4

3, nx + ny = 6
15
2 , nx + ny = 8

to each other. Note that for Gaussian densities, the higher order moments become rela-
tively more important compared to uniform densities.

For very small bunch sizes, the considered densities are matched if x0 = y0 = 0,
C0,2 = C2,0, andC1,1 = 0. Thus, the bunch sizeC2,0 remains as only degree of freedom
and it determines small matched bunches with these densities. For large bunches, the
considered density functions can only be approximations, because large matched bunches
are not ellipsoidal. However, simulation results show thatthe following approximation
seems to hold in the stationary bucket [56, 60]:

2
√

C0,2 ≈ ∆w+

(

∆ϕ+ = 2
√

C2,0

)

=

√

2 − 2 cos
(

2
√

C2,0

)

, (4.26)

where∆w+(∆ϕ+) is function (2.54) that describes the height of a trajectorywith max-
imum phase deviation∆ϕ+ in the nonlinear stationary bucket, cf. also the right plot of
Figure 2.12. Equation (4.26) is equivalent to the ratio

C0,2

C2,0
≈ 1 − cos

(
2
√

C2,0

)

2C2,0
.

For small bunches, this impliesC0,2 ≈ C2,0, whereas for larger bunchesC0,2 < C2,0.
This leads to the following conclusion [56, 60]:

The two-sigma length2
√

C2,0 and height2
√

C0,2 may be interpreted as the ef-
fective half axes of the bunch. The two-sigma length2

√
C2,0 determines

• the ratio between the bunch variances that is necessary for the density to be
approximately matched and

• the effective synchrotron frequency as described in Section 3.5.5.

For both densities, a constant of motion is given by

C2,0C0,2 − C2
1,1 =

{
R2

1x R2
2x

16

σ2
1xσ2

2x

∼ bunch area and longitudinal emittance



4.4 Modeling Scheme for Single-Bunch Oscillations 97

Bunches with Single-Bunch Modes The previous results are useful to construct models
that describe dipole and quadrupole modes. For the analysisof higher order modes, the
density functions (3.16) and (3.18) (p.58 and p.58) can be taken to represent higher mode
numbersm. The plots (c) and (d) of Figure 4.3 show a sextupole mode (m = 3) and
an octupole mode (m = 4) with a uniform and a Gaussian density, respectively. Both
examples are pure modes, but a combination of different modes is also possible. The
calculation of the moments (4.15) and (4.17) is computationally much more challenging in
this case and it is advantageous to perform the integration in polar coordinatesx = r cos θ
andy = r sin θ:

B1,0 =

2π∫

0

∞∫

0

r cos θ f (r, θ, t) r dr dθ, B0,1 =

2π∫

0

∞∫

0

r sin θ f (r, θ, t) r dr dθ,

Cnx ,ny =

2π∫

0

∞∫

0

[r cos θ − B1,0]
nx [r sin θ − B0,1]

ny f (r, θ, t) r dr dθ,

The basic and central moments are lengthy functions of the mode coefficientsrm, m ∈
{1, 2, 3, 4} and only their first order approximations are given in Appendix C.2.2. Ta-
ble C.2 (p.176) summarizes the moments for the uniform density and Table C.3 (p.177)
shows the moments of the Gaussian density. Again, the functional relationship of the
moments is the same for both densities except for a constant factor.

The interpretation of these tables shall be explained with the help of an example. As-
sume a Gaussian density with a modem = 2. The moments for this configuration are
summarized in the rowsEnx ,ny and∆Cnx ,ny(r2) of Table C.3. The rowEnx ,ny presents
the stationary or equilibrium part of the moments and∆Cnx ,ny(r2) is the deviation due to
the modem = 2 with radiusr2 > 0 and orientationθ0. The orientation can be used to
introduce a time dependency, for example in a linear bucketθ0 = ωsynt can be chosen.
It is important to note that the given∆Cnx ,ny are only first order approximations and thus
valid for sufficiently smallrm only. For the momentC2,0, the results reveal that

C2,0 ≈ E2,0 − 2E2,0 sin(2θ0)r2 = E2,0

[
1 − 2r2 sin(2ωsynt)

]
.

This result is plausible, because it states that, in a linearbucket, the modem = 2 will lead
to an oscillation of the bunch variance with a frequency of2ωsyn and a relative amplitude
2r2. For the momentC3,0, the result is

C3,0 ≈







− 9
8 E3/2

2,0

√
π
2 r1 sin(θ0) for modem = 1

− 15
8 E3/2

2,0

√
π
2 r3 sin(3θ0) for modem = 3

and this shows that, besides the expected modem = 3, C3,0 also responds to the mode
m = 1. Thus, modem = 1 leads to oscillations not only in the basic moments, but also
in the moments of ordernx + ny = 3 (and5, 7, . . .). A further example is available from
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Table C.1, where the moments for an ellipsoidal bunch are presented. For a Gaussian
density, some selected odd moments are

C4,0 = 3C2
2,0, C6,0 = 15C3

2,0

and this shows that a bunch length oscillationm = 2 will be not only visible in moment
C2,0, but also in higher order even moments.

The following conclusions can be made:

In general, there is no one-to-one correspondence between moments and modes:

• the oscillation of a specific modem is first visible in the moments of order
nx + ny = m;

• the mode affects also higher order moments with odd (even)nx + ny > m, if
m is odd (even). These higher order moments can be expressed asfunctions
of the bunch sizeE2,0 and the moments of ordernx + ny = m.

• A moment of orderm = nx + ny shows oscillations ifrm 6= 0.

• A moment of orderm = nx + ny > 2 with rm 6= 0 shows oscillations for
more than one mode.

• An exception ism = 1 for the uniform density; in first order approximation,
this mode is only coupled with the basic moments.

For a given modem with amplituderm

• the moments of ordernx + ny = m depend onmθ0 and

• the moments of orderm and corresponding higher order moments oscillate
with the frequencymωsyn in a linear bucket.

The conclusions show that the following statements are equivalent:

stationary momentsddt Bnx ,ny = 0 and d
dt Cnx ,ny = 0 for all nx , ny > 0

m

matched bunch withrm = 0

This is in agreement with (4.22), the reformulation of the control problem: ifrm = 0, all
moments are stationary and the density has reached an equilibrium.
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To study a specific mode, for examplem = 1, any moment may be chosen that oscil-
lates for this mode. However, it seems reasonable to choose the moment of lowest order:

m = 1 ⇒ B1,0 andB0,1

m = 2 ⇒ C2,0 andC1,1 andC0,2

. . .
m ⇒ Cm,0 . . . C0,m

Remark4.3. The results in Tables C.2 and C.3 were derived for circular bunch shapes
with E2,0 = E0,2, but are expressed in such a way that they are also valid if they-axis is
multiplied by a constant andE2,0 6= E0,2. This is useful for larger bunches whereE0,2

may differ substantially fromE2,0 and an ellipsoidal bunch is a better approximation for
the equilibrium than a circular bunch. It is thus possible touseE0,2 of (4.50) to further
improve the results. The following derivations will returnto this point later on.

As already stated, the modes may also be combined, but care has to be taken, because in
general there is no one-to-one correspondence. Section 4.6.2 will return to this problem.

Filamentation The density functions considered in this section have some degrees of
freedom, but will not be able to reproduce filamentation of the bunch and will thus lead
to a neglect of Landau damping of the coherent bunch oscillations. However, for realistic
small bunch shape mismatches, there is reason to believe that the bunch shape will remain
similar to a matched shape and the presented results are useful approximations.

4.5 Linear Bucket: the Small Bunch Assumption

In this section, a model is derived for the dynamics of bunches in a linear bucket or for
very small bunches in a nonlinear bucket near their equilibrium [74]. It has to be noted
that such small bunches are not realistic in real experiments. However, there are reasons
why the analysis is nevertheless useful:

• Comparison with existing models that rely on a linearization of the nonlinear single-
particle dynamics.

• Check of consistency of the nonlinear calculations of Section 4.6. These should
simplify to the results of this section for small bunch sizes.

• Easier stability analysis.

4.5.1 Beam and Moment Dynamics

For small bunches, the particles are always in the vicinity of the equilibrium of the bucket
and Equation (4.8b) of the longitudinal dynamics can be linearized. A simple linear ap-
proximation will cancel the amplitude modulationuε if ϕR = 0, thus at least a bilinear
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approximation is necessary. A general Taylor series expansion of this equation around the
equilibrium point(x, uϕ, uε) = (0, 0, 0) = 0 is

ẏ = ẏ(0)
︸︷︷︸

=0

+

[

x
∂ẏ

∂x
(0) + uε

∂ẏ

∂uε
(0) + uϕ

∂ẏ

∂uϕ
(0)

]

+
1

2

[

x2 ∂2ẏ

∂x2
(0) + u2

ε
∂2ẏ

∂u2
ε
(0)+

+ u2
ϕ

∂2ẏ

∂uϕ
(0) + 2xuε

∂2ẏ

∂x∂uε
(0) + 2xuϕ

∂2ẏ

∂x∂uϕ
(0) + 2uεuϕ

∂2ẏ

∂uε∂uϕ
(0)
]

+ . . .

Taking into account only linear and bilinear terms, the approximation of the longitudinal
dynamics is

ẋ = −ωsyny, (4.27a)

ẏ ≈ ωsyn[1 + u1]x + ωsynu2 (4.27b)

with the inputs

u1 = uε + tan ϕRuϕ, u2 = tan ϕRuε − uϕ − uεuϕ. (4.27c)

The approximation sign will be omitted in the following, butit goes without saying that
the obtained models will only be approximative and are validfor small bunch sizes only.
With the dynamics (4.27), the time derivative of the basic moments is

Ḃ1,0(t) = −ωsynB0,1(t), (4.28a)

Ḃ0,1(t) = ωsyn[1 + u1]B1,0(t) + ωsyn u2. (4.28b)

Equation (4.28a) is equivalent to Equation (4.25) witha01 = −ωsyn and all other coeffi-
cientsax,y = 0. For the central moments of ordern = nx + ny

Ċn,0 = −n ωsyn Cn−1,1 (4.28c)

Ċn−k,k(t) = −[n − k] ωsyn Cn−k−1,k+1 + k ωsyn [1 + u1] Cn−k+1,k−1 (4.28d)

Ċ0,n(t) = n ωsyn [1 + u1] C1,n−1 (4.28e)

holds with integersn ∈ [2, ∞[, k ∈ [1, n − 1]. This reveals three important facts:

• The rate of change of a moment of ordern = nx + ny only depends on mo-
ments of the same order, i. e. there is no dynamical coupling between different
moment orders except for the input variableu1.

• The inputsuε anduϕ act on both the basic and the central moments. Only
for the stationary caseϕR = 0, the influence ofuϕ on the central moments
vanishes.

• It is interesting to note that the model (4.28) can be derivedwithout any as-
sumption about the particle density of the bunch.
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Without feedback, the moment dynamics are decoupled. Also,the moments of ordern
can be taken as a measure for the modem = n as indicated by the results of Appendix C.2.
Thus, the open loop dynamics of the modes are also decoupled.This is an intuitive result,
because – due to the bilinearization – the dynamics (4.27) are linear inx in the open-loop
case and there will be no synchrotron frequency spread and noLandau damping.

With feedback, the dynamics are coupled by the inputs. If a specific modem has to
be damped, it seems reasonable to consider only the moments of ordern = m to analyze
the stability of the feedback with respect to this mode. However, this does not guarantee
the stability or damping of the moments of differentm. In the following, a model for
moments up to ordern = 4 will be analyzed. This will show that the moments with
n = 3 andn = 4 are not first-order controllable. As these moments are correlated to the
sextupole and octupole modesm = 3 andm = 4, this indicates that these modes are not
controllable with respect to the inputsu1 andu2. The same seems to apply forn > 4 and
this is supported by particle tracking simulations.

In a linear bucket or in case of small bunches, it is thereforereasonable to limit
the system (4.28) to the moments of ordern = 1 andn = 2 and thus to the dipole
and quadrupole modesm = 1 andm = 2.

4.5.2 Model Properties

The equilibrium of system (4.28) is obtained foru1 = u2 = 0 andḂnx ,ny = Ċnx ,ny = 0
and reads

B1,0 = B0,1 = 0

and











Cn,0
...

C(n−k),k
...

C0,n











=:











En,0
...

E(n−k),k
...

E0,n











=














En
...

{

0 for oddk
1 · 3 · ... · (k−1)

(n−1) · (n−3) · ... · (n−k+1)
En for evenk

...
En














.

with positive real numbers

En

{

= 0 for oddn,

> 0 for evenn.

This is in agreement with the valuesEnx ,ny of Tables C.2 and C.3. The equilibrium is
not unique, since for each moment order there is a degree of freedomEn. By choosing a
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specific density function, allEn with n > 2 can be expressed as functions of the bunch
sizeE2, which is then the only degree of freedom

In particular, the equilibrium of the first four central moments are





E2,0

E1,1

E0,2



 =





E2

0
E2



 ,







E3,0

E2,1

E1,2

E0,3






=







0
0
0
0







,









E4,0

E3,1

E2,2

E1,3

E0,4









=









E4

0
1
3 E4

0
E4









. (4.29)

System (4.28) can formulate as the nonlinear state-space model1)

ΣLB : ẋ = ALBx + BLB(x)u = ALBx + [N1x + B1] u1 + B2u2. (4.30)

The matrixN1 results from the fact that the inputu1 is multiplied with states such as
B1,0 or C1,n−1 in Equations (4.28). System (4.30) is a nonlinear control-affine sys-
tem. In addition, some authors assign this type of system to the subclass of bilinear
systems [99, 120, 124], whereas other authors are more restrictive in their definition of
bilinear systems. Bilinear systems are a first step in a generalization of linear systems
towards nonlinear systems and are often good approximations for problems in engineer-
ing and physics. Significant theoretical progress has been made recently in the analysis
and design of such systems. Introductions to the theory of bilinear and affine control sys-
tems can be found in the above mentioned references. Of course, also general methods
for nonlinear systems are useful in the following. Mathematically oriented introductions
to nonlinear systems can be found in [49, 55, 101, 119, 124]. Comprehensive discus-
sions of analysis and design methods for nonlinear systems with a view to engineering
applications are given in [6, 55, 123]. In [66], a computational approach is chosen with
MATHEMATICA -based software algorithms. Newer methods such as flatness-based con-
trol are described in [79].

The state vectorx is defined as

x =
[
x1 x2 x3 x4 x5 . . . xk . . . xL

]T

:=
[
B1,0 B0,1 C2,0 C1,1 C0,2 . . . Cnx ,ny . . . C0,nmodel

]T
, (4.31)

where

Cnx ,ny = xk, k =
nx + ny

2

[
1 + nx + ny

]
+ ny.

The equilibrium values are denoted byEnx ,ny , cf. (4.29), and the deviations from this
equilibrium are

∆x = x − xe =
[
. . . Cnx ,ny − Enx ,ny . . .

]T
.

The state vectorx is defined to include the basic moments and the central moments up to
a predefined finite ordernmodel < ∞. Higher order moments are discarded to obtain a

1)The index LB refers tolinear bucketmodel.
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finite dimensional system and vector spacex ∈ RL. This is a truncation of the infinite
dimensional system (4.28). However, this is no further approximation of the moment
dynamics, since there is no coupling between the moment dynamics.

The dimensionL of the system is

L =
nmodel

∑
n=1

[n + 1] =
nmodel[3 + nmodel]

2
.

In the following, systemΣLB of (4.30) withnmodel = 4 is analyzed. The dimension of
this system isL = 14, it reads

ẋ = ALBx + BLB(x)u =







A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4







x +







b1,1 b1,2

b2 0

b3 0

b4 0







[
u1

u2

]

(4.32)

and the matricesALB andBLB are presented in detail in Appendix C.3. The null vec-
tors and matrices0 in (4.32) and in the following are assumed to have the appropriate
dimensions to complete their matrices and vectors.

Since the system matrixALB has a block-diagonal shape, its eigenvalues are the eigen-
valuesλ of the matricesAk:

λ1,2 {A1} =
{
±iωsyn

}
, λ3,4,5 {A2} =

{
0 ; ±i2ωsyn

}
,

λ6−9 {A3} =
{
±iωsyn ; ±i3ωsyn

}
, λ10−14 {A4} =

{
0 ; ±i2ωsyn ; ±i4ωsyn

}

The eigenvalues±imωsyn correspond to the frequencies of the coherent modem. Again,
there is no one-to-one correspondence between moments and modes, the eigenvalues are
repeated in higher order moments. For instance, the eigenvalues±iωsyn appear in the
matrixA1 of the basic moments and the matrixA3 of the central moments of ordern = 3.
Without feedback, the dynamics defined by the four matricesAk, k = 1, . . . ,4 are fully
decoupled.

The equilibrium of system (4.32) foru1 = u2 = 0 is

xe =







xe,1

xe,2

xe,3

xe,4







, xe,1 =

[
0
0

]

, xe,2 =





E2

0
E2



 , xe,3 =







0
0
0
0







, xe,4 =









E4

0
1
3 E4

0
E4









. (4.33)

These moments describe a matched bunch for a linear bucket. The basic moments are
zero, i. e. the bunch is centered, and the variancesC2,0 = C0,2 = E2 are identical and the
covariance isE1,1 = 0. Possible distributions that satisfy these conditions area centered
circle with a uniform density or a Gaussian distribution with circles as contour lines. If
a specific density distribution is chosen,E4 can be expressed as a function ofE2. This is
shown in detail in Appendix C.2.1. For example, a Gaussian density yieldsE4 = 3E2

2 and
the parameterE2 fully determines the size and the equilibrium of the bunch.
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The linearization of system (4.32) at the pointx = xe with ∆x = x − xe simply reads

Σ∆LB : ∆ẋ = ALB∆x + B(xe)
︸ ︷︷ ︸

Be

u.

However, this linear model with dimensionL = 14 will not be used further, since the
dimension can be reduced due to two invariants of motion thatare present in the nonlinear
system (4.32):

I2(t) = C2,0C0,2 − C2
1,1 = const. (4.34a)

I4(t) = C4,0C0,4 − 4C3,1C1,3 + 3C2
2,2 = const. (4.34b)

The two eigenvalues in the origin of the complex planeλ3 = λ10 = 0 of matricesA2

andA4 are due to the invariantsI2 and I4. The derivation ofI2 and I4 with respect to
the time and the insertion of the moment dynamics of system (4.32) verifies that these are
constants. For example,

İ2(t) = Ċ2,0C0,2 + C2,0Ċ0,2 − 2C1,1Ċ1,1

= (−2C1,1)C0,2 + C2,0 (2C1,1 + 2C1,1u2)− 2C1,1 (C2,0 − C0,2 + C2,0u1)

= 0.

The invariants define sub-manifolds of the state space. For example, for a given valueI2,
the dynamics ofxLB(t) are bounded to the sub-manifold

C2,0C0,2 − C2
1,1 = x3(t)x5(t)− x2

4(t) = I2.

For given values ofI2 and I4, only those equilibrium points of the setxe can be reached
that belong to the sub-manifold. At the equilibrium pointxLB = xe, cf. (4.33),

I2 = E2
2 = const., I4 =

4

3
E2

4 = const.

holds. Since onlyE2 > 0 andE4 > 0 represent physical meaningful bunches, this can be
rewritten as

E2 =
√

I2, E4 =

√

3

4
I4,

and this defines a unique equilibrium.
Each subsystem with moments of an even ordern has an invariant, for example

I6 = C6,0C0,6 − 6C5,1C1,5 + 15C4,2C2,4 − 10C2
3,3 (4.35)

is the invariant for the ordern = 6.
There are several possibilities to use the invariants for a reduction of the dimensionL,

one choice is to rewrite (4.34) as

C0,2 =
I2 + C2

1,1

C2,0
, C0,4 =

I4 + 4C3,1C1,3 − 3C2
2,2

C4,0
. (4.36)
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This is always possible, since the momentsC2,0 andC4,0 are strictly positive for posi-
tive and nonzero real distributionsf (x, y). A linearization of (4.36) around the equilib-
rium (4.33) leads to∆C0,2 ≈ −∆C2,0 and∆C0,4 ≈ −∆C4,0 − 2∆C2,2.

With the relations (4.36), the nonlinear system (4.32) can be reduced tõL = 12 state
variables. The new state vector will be denoted byxLBR, this vector results fromx by
discarding the statesx5 = C0,2 andx14 = C0,4 and the reduced nonlinear system is

ΣLBR : ẋLBR = ALBRxLBR + BLBR(xLBR)u.

If only the basic and second central moments are considered,the reduced nonlinear system
reads







Ḃ1,0

Ḃ0,1

Ċ2,0

Ċ1,1






= ωsyn








−B0,1

B1,0 + B1,0u1 + u2

−2C1,1

C2,0 −
I2+C2

1,1

C2,0
+ C2,0u1








. (4.37)

A linearization of the complete reduced system ofxLBR yields the linear system

Σ∆LBR : ∆ẋLBR = ALBR∆xLBR + BLBR(E2, E4)u. (4.38)

The matricesALBR andBLBR are given in Appendix C.3.
The controllability of the multi-input multi-output (MIMO) systemΣ∆LBR is deter-

mined by its controllability matrixC (ALBR, BLBR) as defined by (4.10); forE2 > 0,
its rank equals4 and is thus smaller than the system dimensionL̃ = 12. However, a
controllable subspaceS as given in (4.11) can be found:

H =
[
I 0

]
⇒ rank HC = 4,

whereH is a 4 × 12 matrix, I the 4 × 4 unity matrix and0 the 4 × 8 zero matrix. This
shows that the subspace consisting of the first four states isfully controllable. According
to Theorem 4.3, this leads to the conclusion that the nonlinear system (4.37) is locally
controllable at the equilibrium.

The set of statesR that can be reached from the origin∆xLBR (equivalent to the equi-
librium xe) can be obtained by calculating the column space ofC. Basis vectorsmk,
k = 1, . . . ,4, that span this column space are summarized in Appendix C.3.Each reach-
able state is then given by a linear combination of these vectors:

R =
{

∆xLBR ∈ R
12 : ∆xLBR = c1m1 + c2m2 + c3m3 + c4m4 : c1,c2,c3,c4 ∈ R

}

.

The analysis of this set shows that – for the linearized system – arbitrary values∆B1,0,
∆B0,1, ∆C2,0, and∆C1,1 can be reached if the bunch sizeE2 is nonzero:

∆B1,0 = c1, ∆B0,1 = c2, ∆C2,0 = c3E2, ∆C1,1 = c4E2,
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whereas the remaining states are zero or depend on the first four states:

∆C3,0 = ∆C2,1 = ∆C1,2 = ∆C0,3 = 0,

∆C4,0 = 2
E4

E2
∆C2,0, ∆C3,1 =

E4

E2
∆C1,1, ∆C2,2 = 0, ∆C1,3 = ∆C3,1. (4.39)

On the other hand, this implies that, for a linear bucket, anyinitial bunch distribution with
deviations in the bunch center or variance may be stabilizedto the equilibrium shape. The
controllability of the linearized system implies local controllability near the equilibrium
of the nonlinear systemΣLBR in the subspace with the statesB1,0, B0,1, C2,0, andC1,1, i. e.

System (4.37) is locally controllable near
[
0 0 E2 0

]T
. This means that for suffi-

ciently small deviations in the statesB1,0, B0,1, C2,0, andC1,1, the beam can be stabilized
and damped to the equilibrium. In practice, constraints such as input saturations may limit
the set of stabilizability. For the higher order moments, a general statement about the local
controllability cannot be made at this point based on the linearization.

The result (4.39) is consistent with the calculations of themoments of an ellipsoidal
bunch in Appendix C.2.1. For example, the momentC4,0 can be written asC4,0 = 3 C2

2,0
for a Gaussian densities (cf. Table C.1). A linearization around the equilibriumC2,0 = E2,
C4,0 = E4 yields

E4 = 3 E2
2 ⇒ E2 =

E4

3E2

∆C4,0 ≈ 6 E2 ∆C2,0 = 2
E4

E2
∆C2,0,

which is in agreement with (4.39).
For control purposes, it is favorable to calculate the transfer functions of the linear

system (4.38). It is assumed that the moments∆B1,0, ∆C2,0, ∆C3,0, and∆C4,0 can be
measured. The resulting transfer functions are

[
∆B1,0

u1

∆C2,0

u1

∆C3,0

u1

∆C4,0

u1
∆B1,0

u2

∆C2,0

u2

∆C3,0

u2

∆C4,0

u2

]

=






0
−2E2ω2

syn

s2+4ω2
syn

0
−4E4ω2

syn(s2+16ω2
syn)

(s2+4ω2
syn)(s2+16ω2

syn)
ω2

syn

s2+ω2
syn

0 0 0






(4.40)

The Laplace variable is denoted bys. Again, the frequency domain shows that the eigen-
values±i3ωsyn and±i4ωsyn are not controllable. First, the gain for∆C3,0 is zero. Sec-
ond, the eigenvalues±i4ωsyn are cancelled in the transfer function of∆C4,0/u1 and
third, the remaining part of this transfer function is proportional to∆C2,0/u1.

Finally, the following important conclusions can be made concerning the damping of
longitudinal bunch oscillationsfor very small bunchesor bunches in alinear bucket:

• Only in the stationary case, the phase modulation acts solely on the center of gravity
(modem = 1) and the amplitude modulation acts solely on the bunch length (mode
m = 2). In the acceleration case, the input variables are mixed. In general, the
dynamics of the moments are nonlinear with respect to the feedbacku1.
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• For the subspace consisting of the momentsB1,0, B0,1, C2,0, andC0,2, the equilib-
rium is locally controllable and sufficiently small deviations in these quantities can
be damped by a feedback system.

• Higher order moment dynamics are not first-order controllable with respect to phase
and amplitude modulations. Local controllability may still be possible, cf. Re-
mark 4.1, but the decision of this question requires full nonlinear controllability
analysis. The simulation results of Section 4.1 indicate that the higher order dy-
namics are indeed not locally controllable. This implies that oscillations of higher
order modes such as±i3ωsyn and±i4ωsyn cannot be damped ifuε anduϕ are
used as control inputs.

A full nonlinear controllability analysis will not be deployed, because the next section
will deal with the nonlinear bucket and show that first-ordercontrollability and thus local
controllability is also given for higher order moment dynamics, if the nonlinearity is taken
into account.

4.6 Nonlinear Bucket

For larger bunches in a nonlinear bucket2), the bilinearized dynamics (4.27) are no longer
suitable and higher order terms have to be taken into account. In principle, the calculation
of the moment dynamics is still straightforward, if higher order terms are included. How-
ever, higher order terms introduce coupling between the moment dynamics of different
ordern. This requires a new strategy for the truncation and order reduction.

Anticipating some results of this section regarding the controllability, it is interesting
to note that the approximation of (4.8b) determines the controllability properties of the
moments:

• A linearization of (4.8b) cancels the inputu1 and leads to a local controllabil-
ity subspace containing only the basic moments;

• bilinearization leads to the results of the last section, i.e. to a system where
both basic moments and moments of order two can be stabilized;

• taking into account further terms of (4.8b) extends the controllable subspace
to higher order central moments.

2)This means that the nonlinear single-particle dynamics areused and not the linearization of these dynamics.
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4.6.1 Model Derivation

Beam and Moment Dynamics

Equation (4.8b) can be rewritten with the use of the additiontheorems [37]

sin(a ± b) = sin a cos b ± cos a sin b, cos(a ± b) = cos a cos b ∓ sin a sin b

as

ẏ = ωsyn[1 + uε]
[
sin x cos uϕ − cos x sin uϕ

]
+

+ ωsyn[1 + uε] tan ϕR

[
cos x cos uϕ + sin x sin uϕ

]
− ωsyn tan ϕR (4.41)

The trigonometric functions in (4.41) can be expanded as Taylor series

sin x =
∞

∑
k=0

[−1]k
x2k+1

[2k + 1]!
= x − x3

3!
+

x5

5!
− . . . +

[−1]kx2k+1

[2k + 1]!
+ . . . (4.42a)

cos x =
∞

∑
k=0

[−1]k
x2k

[2k]!
= 1 − x2

2!
+

x4

4!
− . . . +

[−1]kx2k

[2k]!
+ . . . (4.42b)

and the truncation of these series atk = k̂ leads to an approximation of the longitudinal
beam dynamics which is polynomial inx andy:

ẋ = −ωsyn y

ẏ ≈ ωsyn[1 + uε]
[
a1(x) cos uϕ − a2(x) sin uϕ

]
+

+ ωsyn[1 + uε] tan ϕR

[
a2(x) cos uϕ + a1(x) sin uϕ

]
− ωsyn tan ϕR,

with polynomials

a1(x) = x + . . . +
[−1]k̂x2k̂+1

[2k̂ + 1]!
, a2(x) = 1 + . . . +

[−1]k̂x2k̂

[2k̂]!
.

In the following, the moment dynamics are calculated for thestationary caseϕR = 0
with k̂ ≤ 3 for a model with moments up to the ordernmodel = 6 with the assistance of
MATHEMATICA [138]. In principle, the calculation for the more general caseϕR 6= 0 and
for higherk̂ can be performed in the very same manner, but with an increasein calculation
effort. The calculation yields the moment dynamics in the nonlinear, stationary bucket

ΣNB : ẋ(t) = f NB

(
x(t), x∗(t), uε(t), uϕ(t), ϕR

)
, (4.43)

where the state vectorx again contains the moments

x =
[
B1,0 B0,1 C2,0 C1,1 C0,2 . . . Cnx ,ny . . . C0,nmodel

]T
.

The function f NB depends on the Taylor series truncation orderk̂. In contrast to the
calculation for the linear bucket,f NB also depends on the additional state vector

x∗ =
[
Cnmodel+1,0 . . . C0,nmax

]T
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that contains moments up to an order of

nmax = nmodel + 2k̂, (4.44)

if the dynamics of moments of order up tonx + ny = nmodel are considered. A linear

bucket implieŝk = 0 and thusnmax = nmodel. As soon as a nonlinear bucket with higher
order terms inx is considered, coupling is introduced between the orders and moments
appear of ordernx + ny > nmodel.

The question is how the nonlinear equations of motion changecompared to the case of
a linear bucket. For the stationary caseϕR = 0 andk̂ = 2, the calculation yields

Ḃ1,0

ωsyn
= −B0,1 (4.45a)

Ḃ0,1

ωsyn
= [1 + uε] cos uϕ

[

B1,0 +
1

6

[

−B3
1,0 − 3B1,0C2,0 − C3,0

]

+
1

120

[

B5
1,0+

+ 10B3
1,0C2,0 + 10B2

1,0C3,0 + 5B1,0C4,0 + C5,0

]]

− [1 + uε] sin uϕ

[

1+

+
1

2

[

−B2
1,0 − C2,0

]

+
1

24

[

B4
1,0 + 6B2

1,0C2,0 + 4B1,0C3,0 + C4,0

] ]

. (4.45b)

Compared to the case of a linear bucket, there are two main differences:

• the dynamics are highly nonlinear

• there is a strong coupling with higher order central momentsup to ordernmax =
1 + 2 · 2 = 5

This is also true for the dynamics of the central moments. In the following, the calculations
will focus on the stationary caseϕR = 0.

The performance of a truncation of the Taylor series (4.42) at k̂ = 3 is shown in Fig-
ure 4.4. The relative approximation error grows for increasing x, but is below5% for most
of the interval[−π; π], this is indicated by the dashed lines.3) However, conclusions
about the overall model accuracy in terms of the solutionx(t) of the moment dynamics
is not readily deducible from these plots; rather, simulations are necessary to evaluate the
model accuracy.

An alternative to the Taylor series expansion would be to fit apolynomial of a given
degree to the nonlinear function of the RF voltage. The coefficients of the polynomial can
for example be obtained by a least squares method. For more complex nonlinearities, this
will be usually superior in terms of accuracy compared to theTaylor series for a given
polynomial degree. Nevertheless, the Taylor series will beused in the following, because
this leads to models that are equivalent to the case of a linear bucket for very small bunch
sizes. Thus, it will be easier to check the results for plausibility. In addition, the accuracy
of the series is satisfactory for the given nonlinearities of sine and cosine for the single
harmonic RF case.

3)The relative error at and near the zero crossings ofcos(x) is not taken into account in this consideration.
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Figure 4.4: Taylor series approximations (TS, blue) of sine and cosine (black) for k ≤
k̂ = 3 and boundary of the domain with a relative error below5% (dashed lines).

Equilibrium and Linearization for a Stationary Beam

The equilibrium of the nonlinear dynamics (4.43) can be calculated with ẋ = 0 and
uε = uϕ = 0. This results in a set ofnmodel nonlinear equations that contains moments
up to an order ofnmax as given by (4.44). For the stationary case, the assumption that all
moments of odd order

B1,0 = B0,1 = C3,0 = C2,1 = C1,2 = C0,3 = C5,0 = . . . = 0 (4.46)

are equal to zero greatly simplifies the equations to calculate the equilibrium. This as-
sumption is reasonable, because the stationary bucket has trajectories that are symmetric
with respect to they-axis of the phase space. A particle density that representsa matched
bunch will have to be axially symmetric as well, this impliesthat the moments of odd
order must be zero. With assumption (4.46),ϕR = 0, andk̂ = 3, the equilibrium reads

xe =
[
0 0 E2,0 0 E0,2 . . . E0,6

]T
(4.47)

with

E0,2 = E2,0 −
1

6
E4,0 +

1

120
E6,0 −

1

5040
E8,0.

The complete equilibrium fornx + ny ≤ 6 can be found in Appendix C.4.1 fork̂ = 3.
As before, the variableEnx ,ny is used to denote the equilibrium of the central moment
Cnx ,ny . In the following, it will be assumed that the equilibrium values for the higher order
moments withnx + ny > nmodel = 6 have the same pattern as (4.47), i. e.Enx ,ny = 0
for oddnx + ny and odd pairs(nx ,ny).

The equilibrium is similar to the case of a linear bucket. A linear bucket is obtained
for k̂ = 1 or for very small bunch sizesE2,0. For very small bunch sizes, the higher
order moments can be neglected with respect to the moments oforder 2 and 4 and (4.47)
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simplifies to (4.29). It is important to note that – as in the case of the linear bucket –
the equilibrium still has some degree of freedom. The moments E2,0, E4,0, . . . are again
determined by the bunch size and the particular density distribution that is chosen. For
example, a bunch with a given varianceE2,0 and a uniform density will have different
higher order momentsE4,0,E6,0, . . . as a bunch with the same variance but a Gaussian
density.

The nonlinear model can be linearized around the equilibrium xe. The resulting linear
model

Σ∆NB : ∆ẋ(t) = ANB

[
∆x
∆x∗

]

+ BNB

[
uε

uϕ

]

(4.48)

describes small deviations∆x = x − xe of the bunch shape with respect to its matched
shape. The linear equations fornmodel = 4 and k̂ = 3 are given in Appendix C.4.2.
The result shows that the maximum moment order agrees with (4.44) and isnmax =
4 + 2 · 3 = 10.

Before proceeding, the result can be checked for plausibility with a simple calculation.
Assume an ellipsoidal bunch with a uniform density (3.25). The moments of this bunch
have been summarized in Appendix C.2.1. Further, assume theorientationΦ = 0. In
many cases, this might be an appropriate approximation for amatched bunch in a station-
ary bucket. The only degrees of freedom are the half-axesRx := R1x andRy := R2x .
The following moments can be taken from Table C.1, p.174:

C2,0 =
R2

x

4
, C0,2 =

R2
y

4
, C4,0 = 2C2

2,0, C6,0 = 5C3
2,0, C8,0 = 14C4

2,0. (4.49)

In the following, the bunch is considered a model for a matched bunch, i. e. the moments
are denoted byEnx ,ny , for instanceC2,0 = E2,0. The above calculated equilibrium for
C0,2 is given by

E0,2 = E2,0 −
1

6
E4,0 +

1

120
E6,0 −

1

5040
E8,0. (4.50)

Inserting the moments (4.49) yields the condition

R2
y = R2

x −
1

12
R4

x +
1

384
R6

x −
1

23040
R8

x (4.51)

for the semi-axes of the matched bunch. This can be compared to the trajectory prop-
erty (2.54), p.32. The exact shape of the matched bunch must be equal to the trajectory,
thus the intersections will give a good estimation of the semi-axes of the bunch. Renaming
∆w+ = Ry and∆ϕ+ = Rx , Equation (2.54) can be rewritten as

Ry =
√

2 [1 − cos(Rx)] =

√

R2
x −

1

12
R4

x +
1

360
R6

x −
1

20160
R8

x +O(R9
x)

This equation can be regarded as the exact condition betweenRx and Ry for matched
bunches with a uniform density. The comparison with (4.51) shows a good agreement in
spite of the approximations that were made.



112 4 Models of Coherent Oscillations

k̂ nmodel

nmax = nmodel + 2k̂

Truncation Method

Linearization

moment

dynamics
longitudinal

dynamics

ΣNB

ẋ = f NB (x, x∗, u)

Σ∆NB

∆ẋ = ANB(xe, x∗,e)

[
∆x
∆x∗

]

+BNB(xe, x∗,e)u

Σ∆NBT

∆ẋ = ANBT(E2,0)∆x+

+BNB(E2,0)u

∆x∗ = FT∆x

ẋ = 0 ⇒ xe

x∗,e = f T,1(xe)

xe = f T,2(E2,0)

Figure 4.5: Linearization and truncation of the nonlinear systemΣNB. The state vectors
x∗ and∆x∗ contain momentsCnx ,ny that are beyond the scope of the model, i. e. with
nx + ny > nmodel. The truncation method expresses these moments as a function of the
moments withnx + ny ≤ nmodel. The result is the linear, truncated systemΣ∆NBT.

Truncation

As stated above, the equations for a nonlinear bucket still contain moments withnx +
ny > nmodel, this is due to (4.44). Without any further simplifications,it would be
necessary to calculate the dynamics of every central momentCnx ,ny and to investigate an
infinite dimensional system. To obtain simpler finite dimensional models for a controller
design, a truncation of the state vector is necessary. In thefollowing, different models
are derived, but the truncation procedure is always similar. A first approach is shown
in Figure 4.5. After calculation of the nonlinear system with parameterŝk andnmodel,
a linearization around the equilibrium(x, x∗, u) = (xe, x∗,e, 0). The resulting system
Σ∆NB still contains the state∆x∗ that establishes the coupling with higher order moments.
This coupling is resolved through the truncation

∆x∗ = FT∆x, x∗,e = f T,e(xe), xe = f T,2(E2,0)

whereFT is a matrix with the dimension2k̂ × nmodel and f T,1 : Rnmodel 7→ R2k̂, f T,2 :
R 7→ R

nmodel are real functions. The matrix and functions depend on the truncation
method and the assumed density distribution. The result is atruncated linear state-space
systemΣ∆NBT that depends only on the bunch sizeE2,0.

An alternative approach is given in Figure 4.6: The truncation is directly chosen as a
function of the state vectorx and applied to the nonlinear system, before the linearization.
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k̂ nmodel

nmax = nmodel + 2k̂

Truncation Method

Linearization

moment

dynamics
longitudinal

dynamics

ΣNB

ẋ = f NB (x, x∗, u)

ΣNBT

ẋ = f NBT(x,u)

Σ∆NBT

∆ẋ = ANBT∆x + BNBTu
x∗ = f T(x)

ẋ = 0 ⇒ xe

Figure 4.6: Alternative to Figure 4.5. The truncation is applied beforethe linearization.

The shown procedures are quite general and also include the case of a linear bucket
with k̂ = 1. However, in that case the truncation functions are obsolete, because the state
vectorx∗ is empty.

There are several possibilities for a truncation and elimination of the higher order mo-
ments:

T1 The simplest solution is to neglect higher order moments with nx + ny > nmodel

and to set their equilibrium and deviations equal to zero:x∗ = ∆x∗ = 0. There is
however no reason to believe that this will lead to accurate results [18].

T2 The moments withnx + ny > nmodel can be assumed to be approximately con-
stant:x∗ = x∗,e or ∆x∗ = 0. If the particle density is approximately Gaussian or
uniform and the bunch shape is ellipsoidal, the moments of Table C.3 can be used.
For example, the density is Gaussian andE8,0 = 105E4

2,0 and∆C8,0 = 0. This may
be more exact, but does not represent the dependencies betweenx∗ andx and does
not lead to the correct bunch shape oscillation frequencies.

T3 In Appendix C.2, the moments of mode-shaped bunches are summarized. These
relations are approximations of first order and can be used toimplement the trunca-
tion of Figure 4.5. This will be described in more detail in Section 4.6.2.

T4 In Appendix C.1, the moments of ellipsoidal bunches are presented. These re-
lations enable the use of the procedure of Figure 4.6 and thiswill be subject of
Section 4.6.3.
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At first sight, it seems that truncation method T1 needs no additional assumptions about
the density. However, the equilibrium (C.4.1) does not specify E2,0, E4,0 and other higher
order moments. These values must be specified by defining a bunch sizeE2,0 and further
assumptions about the density function must be made. For example, a Gaussian density
implies thatE4,0 is approximately equal to3E2

2,0. Because the valuesE2,0, E4,0, and
E6,0 are unknown and depend on the bunch size and density, these quantities have to be
measured or estimated.

Although the derivation of the moment dynamics is only basedon the longitudinal
dynamics of the beam and does not depend on the density distribution function, the
final feedback models will depend on the bunch size and density function. This is
also true for the casêk = 1 of a linear bucket, since there are additional parameters
(such asE4) that depend on the bunch size and the density function.

4.6.2 Models for Coherent Modes

The results of Tables C.2 and C.3 and of Section 4.4.3 enable the procedure of Figure 4.5.
This will be demonstrated first for the dipole mode.

Dipole Mode Assume the linearized dynamics (C.1) for the basic moments,cf. p.180.
This is systemΣ∆NB of Figure 4.5 fork̂ = 3 andnmodel = 1. The highest moment order
is nmax = 7. Assuming the uniform density and using row∆Cnx ,ny(r1) of Table C.2, the
truncation functions may be chosen as

∆C3,0 = ∆C5,0 = ∆C7,0 = 0 ·∆B1,0 ⇒ ∆x∗ = 0

and the equilibriumE4,0 = 2E2
2,0 and E6,0 = 5E3

2,0. This leads to the linear system
Σ∆NBT, written as a transfer function:

G1,u(s) =
∆B1,0(s)

uϕ(s)
=

ω2
syn

[

1 − E2,0

2 +
E2

2,0

12 − E3
2,0

144

]

s2 + ω2
syn

[

1 − E2,0

2 +
E2

2,0

12 − E3
2,0

144

] .

This is the transfer function of a harmonic oscillator that depends on the bunch size. For
very small bunches, the frequency isωsyn. For larger bunches, the dipole mode frequency
for uniform densities is

ω1,u (E2,0) = ωsyn

√

1 − 1

2
E2,0 +

1

12
E2

2,0 −
1

144
E3

2,0. (4.52)

This can be compared with the tracking simulations in Section 3.5.5. These simulations
lead to the hypothesis (3.47) that estimates the frequency of modem with

ωm,hy = m ωsyn
π

2K
(
sin
(√

C2,0 = E2,0

)) . (4.53)
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Figure 4.7: Properties of the dipole modem = 1 transfer function for a uniform (black,
+) and Gaussian (gray,×) density.Left : frequencyω1/ωsyn versus the bunch sizeE2,0

andω1,hy (solid line).Right: DC gain of the transfer function. The dashed line marks the
bunch size where[ω1,u − ω1,hy]/ω1,hy grows larger than5%.

The expansion of function (4.53) in a Taylor series yields

[

π

2K
(
sin
(√

E2,0

))

]2

= 1 − 1

2
E2,0 +

7

96
E2

2,0 −
19

2880
E3

2,0 + . . . .

This is very similar to the result (4.52) of the uniform density.
For a Gaussian density, the procedure is analog. Table C.3 yields

x∗ =
[
∆C3,0 ∆C5,0 ∆C7,0

]T
=
[

3
4 E2,0

55
8 E2

2,0
4305
64 E3

2,0

]T
∆B1,0

and the equilibriumE4,0 = 3E2
2,0 andE6,0 = 15E3

2,0, leading to

G1,g(s) =
∆B1,0(s)

uϕ(s)
=

ω2
syn

[

1 − E2,0

2 +
E2

2,0

8 − E3
2,0

48

]

s2 + ω2
syn

[

1 − 5E2,0

8 +
35E2

2,0

192 − 35E3
2,0

1024

] .

with the frequency

ω1,g (E2,0) = ωsyn

√

1 − 5

8
E2,0 +

35

192
E2

2,0 −
35

1024
E3

2,0.

The left image of Figure 4.7 compares the frequenciesω1,u and ω1,g with the fre-
quencyω1,hy. This shows thatω1,hy is indeed a very good estimate for the dipole mode
frequency. There is reason to assume thatω1,hy may be very close or even equal to the
exact solution for a uniform density:
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• Observation: For small and medium bunch sizes,ω1,u is very close toω1,hy. This
holds not only for the dipole mode, but also for higherm, as the subsequent figures
will show.

• Physical interpretation: For a matched bunch with a uniformdensity, the bunch size
2
√

E2,0 is equal to the radius of the bunch. Very small deviations dueto a mode
will change the boundary of the bunch slightly, but inside the bunch will remain
unchanged. The frequency of the modes thus mainly depends onthe frequency
of the particles on the boundary of the bunch, i. e. the synchrotron frequency at
x = 2

√
E2,0. This frequency is given byω1,hy.

The differences betweenω1,u andω1,hy are due to the following reasons:

• The Taylor series truncation of the nonlinear RF potential introduces an error, but
this has been shown to be rather small. The error grows for an increasing bunch
size.

• The moments for a specific mode from Tables C.2 and C.3 are approximations.
They are exact for ellipsoidal bunch shapes only. These approximations will intro-
duce an error that increases with the bunch size.

• The linearization and truncation of the model.

Both error sources lead to an error that increases withE2,0. This is in agreement with
the observations of Figure 4.7 (left image). Therefore, thequantity ef = [ω1,u −
ω1,hy]/ω1,hy will be used in the following as a measure for the accuracy of the trans-

fer functions. In the figures, the dashed lines indicate the bunch sizeÊ2,0 for which ef

becomes5%. For E2,0 < Ê2,0 the accuracy of the transfer functions is assumed to be
acceptable. It has to be noted that – as the exact analytical solution is not known – this is
only a reasonable estimate.

Quadrupole Mode If the model size is extended tonmodel = 2, transfer functions
for the quadrupole mode are readily obtained. This is due to the fact that the dynamics
of the basic moments (C.1) and moments of ordernx + ny = 2 (C.2) are completely
independent from each other, at least in the considered stationary case withϕR = 0.

The transfer function of the quadrupole modem = 2 has the shape

G2(s) =
s

s
·
−2b2(E2,0)ω

2
syn

s2 + a2(E2,0)ω2
syn

,

whereb2 anda2 are functions ofE2,0. A summary of these functions for Gaussian and
uniform densities is given in Appendix C.4.3. Transfer function G2(s) has a zero and pole
at s = 0 that cancel each other, this means that the pole ats = 0 is neither controllable
nor observable. The poles = 0 is due to the invariant of motionI2 that was already
discussed in (4.34a) for the linear bucket. The physical interpretation is as follows: due to
the linearization, only infinitesimal deviations∆C from the matched shape are considered.
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Figure 4.8: Frequencies and DC gains of the transfer functions of the quadrupole mode
m = 2 for uniform (+, black) and Gaussian densities (x, gray) compared to the frequencies
ω2,hy of (4.53) (solid, black). The dashed lines mark a relative error between the uniform
density andω2,hy of 5%.

From the fact that the eigenvalues of the transfer functionsare still purely imaginary, it
can be concluded that Landau damping or filamentation does not occur, even for large
bunches, and the bunch areaI2 is a constant of motion. For small bunch sizes,a2 = 4,
and a quadrupole frequency of2ωsyn is obtained. This is consistent with the results for a
linear bucket.

Modesm ∈ {1,2,3,4} The same procedure will now be used to construct a model that
describes the dynamics of the first four modes. The modeling parameters arêk = 3 and
nmodel = 4. It will be assumed that the bunch shape is a combination of all four modes,
its boundary is defined by (cf. (3.17))

r̂(θ) = 1 +
4

∑
m=1

rm sin (m[θ − θm,0]) .

There is one complication that has to be taken into account due to the fact that one mode
may excite several moments. For example, Table C.2 reveals that for a uniform density

∆C6,0 ≈
{

45E2
2,0∆C2,0 for m = 2

12E2,0∆C4,0 for m = 4
(4.54)

holds. In case of a combination of the modesm = 2 andm = 4, the moment∆C6,0

should not be replaced by the sum of these two components, butby

∆C6,0 = 15E2
2,0[∆C2,0 − 0

︸︷︷︸

∆C2,0(m=4)

] + 6E2,0[∆C4,0 − 4E2,0∆C2,0
︸ ︷︷ ︸

∆C4,0(m=2)

]. (4.55)
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Figure 4.9: Eigenvalues of systems (4.56). The14 eigenvalues are purely imaginary and
each dotted line represents a complex conjugated pair of theodd (dotted, blue) or even
(dotted, red) model. The solid lines are the nonlinear synchrotron frequenciesωm,hy.
Right: Truncation for a uniform density.Left : Truncation for a Gaussian density.

This can be explained as follows: For the modem = 2, ∆C4,0 is not zero. To obtain the
correct result (4.54), a correction term∆C4,0(m = 2) has to be included in (4.55). The
same applies for∆C2,0. This guarantees that (4.55) is in agreement with (4.54) form = 2
andm = 4. Analog correction terms will be used for all other odd and even moments
of Tables C.2 and C.3 to obtain the truncation matrixFT of Figure 4.5; an example for a
Gaussian density is

∆C5,0 =
55

8
E2

2,0[B1,0 − 0
︸︷︷︸

∆B1,0(m=3)

] +
35

4
E2,0[∆C3,0 −

3

4
E2,0B1,0
︸ ︷︷ ︸

∆C3,0(m=1)

].

To obtain the functionsf T,1 and f T,2, the equilibrium of Appendix C.4.1 is used. In addi-
tion, E4,0 and higher orderEnx ,ny with nx + ny > 4 are taken from Tables C.2 and C.3.
This results in functionsf T,1 and f T,2 that only depend onE2,0. In principle, it would also
be possible to take allEnx ,ny as functions directly from Tables C.2 and C.3. But, as stated
in Remark 4.3, the use of the equilibrium of Appendix C.4.1 improves the result.

The final result is the state-space modelΣ∆NBT with dimension 14 and this model
depends on the single parameterE2,0. The odd and even moments in this model are
completely decoupled and can be written as two independent SISO systems:

∆ẋeven = Aeven(E2,0)∆xeven + beven(E2,0)u1

∆ẋodd = Aodd(E2,0)∆xodd + bodd(E2,0)u2
(4.56)

The system matrices and input vectors are summarized in Appendix C.4.3 for uniform
and Gaussian densities. ForE2,0 ≪ 1, the dynamics are approximately equal to the linear
bucket case.

The matricesAodd andAeven of systems (4.56) have in total 7 pairs of purely imagi-
nary, complex conjugated eigenvalues±iωk, k = 1, . . . ,7. The frequenciesωk are plotted
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versus the bunch sizeE2,0 in Figure 4.9 and compared with the frequenciesωm,hy. For
uniform densities, the agreement between the eigenvalue and hypothesis frequencies is
excellent if E2,0 ≤ 1. This result is also in agreement with the tracking simulations of
Figure 3.18 form = 1 andm = 2. Besides the obvious 8 eigenvalues due to the modes
m ∈ {1,2,3,4}, there are additional eigenvalues

±i0 ·ωsyn, ±i1 ·ωsyn, ±i2 ·ωsyn.

For the Gaussian density, the eigenvalues tend to be slightly smaller and are only shown
up toE2,0 = 1.21, because they then become real. This indicates that the calculation for a
Gaussian density is less accurate and a higherk̂ would be preferrable to increase the model
accuracy. The results of Figures 4.7 and 4.8 fornmodel ∈ {1,2} seem more accurate and
a possible reason may be that for highernmodel, k̂ should also be increased to obtain a
similar accuracy. However, the calculations of Table C.3 are computationally demanding;
higherk̂ will therefore be chosen in Section 4.6.3 for an alternativetruncation method that
is computationally easier to handle.

Hautus’ criterion shows that all eigenvalues of the models (4.56) are controllable, ex-
cept for the eigenvaluesλ1,2 = ±i0. As for the linear bucket, the uncontrollable eigenval-
uesλ1,2 are due to invariants such as (4.32), as the models do not include Landau damping
and the emittance is a constant of motion. The fact that all other eigenvalues of the lin-
ear models are controllable strongly indicates that first-order controllability and thus local
controllability is given for systemΣNB. However, an exact proof is challenging and The-
orem 4.3 is not sufficient, since system (4.43) is infinite-dimensional and models (4.56)
can only be obtained after a linearization and truncation.

Despite the open theoretical questions that were addressed, there are strong indications
to make the following conclusions. These conclusions are supported by the simulation
results of Section 4.1

In a stationary nonlinear bucket:

• the odd moments and modesm = 1, m = 3 are dynamically coupled and can
be damped by phase modulationsu2 = uϕ

• the even moments and modesm = 2, m = 4 are dynamically coupled and
can be damped by amplitude modulationsu1 = uε

• the purely imaginary eigenvalues demonstrate that Landau damping is not in-
cluded in the model; this may be due to the linearization or the truncation

• the frequency of modem obeysωm = ωm,hy with ωm,hy of hypothesis (3.47)
for uniform densities

For a controller design, odd and even moments may be treated independently. However,
a seperate feedback design for every single mode seems not feasible, because modem = 3
is coupled withm = 1 and modem = 4 with m = 2.
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4.6.3 Models for Ellipsoidal Bunches

If only the center of gravity and the variance of the bunch areof interest and an ellipsoidal
bunch shape is a sufficient model, the alternative truncation of Figure 4.6 can be used to
create a model of the bunch shape dynamics. In this case, the relations of Table C.1 can be
used. As the results of Table C.1 are exact for ellipsoidal bunches, its relations can be used
in the nonlinear dynamics to obtain a nonlinear model. However, this will again lead to a
neglect of filamentation and Landau damping, because of the assumption that the bunch
shape will remain ellipsoidal even in presence of disturbances; this does not allow any
filamentation of the bunch. For small deviations of the ellipsoidal shape, the filamentation
is usually small and the model provides an appropriate description of the bunch dynamics.
Since feedback systems for small deviations are of interest, a linearization of the resulting
equations is reasonable.

The relations of Table C.1 show that for ellipsoidal bunches, moments with ordernx +
ny > 2 can be expressed as functions of the moments of ordernx + ny = 2. It is thus
possible to reduce the state vector to

x =
[
B1,0 B0,1 C2,0 C1,1 C0,2

]T
.

After inserting the relations (functionf T(x of the truncation block in Figure 4.6), the
resulting nonlinear model is

ΣNBT : ẋ(t) = f NBT

(
x(t), uε(t), uϕ(t)

)
(4.57)

and depends on the set of density functionsD that is assumed, i. e. Gaussian or uni-
form density functions. Calculations for both density functions show that the invariantI2

of (4.34a) is also an invariant of motion for this system (4.57). This clearly demonstrates
that this model neglects filamentation.

A linearization around the referencexe =
[
0 0 E2,0 0 E0,2

]T
yields system

Σ∆NBT:

∆ẋ

ωsyn
=












−∆B0,1

a1

(

E2,0, k̂, D
)

∆B1,0

−2∆C1,1

a2

(

E2,0, k̂, D
)

∆C2,0 − ∆C0,2

a3

(

E2,0, k̂, D
)

∆C1,1












+











0

−a1

(

E2,0,k̂,D
)

uϕ

0

b1

(

E2,0, k̂, D
)

uε

0











, (4.58)

with

∆x = x − xe =:
[
∆B1,0 ∆B0,1 ∆C2,0 ∆C1,1 ∆C0,2

]T
.

The coefficientsa1, a2, a3, andb1 are functions of the bunch sizeE2,0, the parameter̂k of
the Taylor series truncation, and the type of density functionD. The functionsa1, a2, a3,
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andb1 are presented in Appendix C.4.4 for uniform and Gaussian densities andk̂ = 6.
The following transfer functions can be derived from the state space modelΣ∆NBT:

∆B1,0(s)

uϕ(s)
=

ω2
syna1

s2 + ω2
syna1

,
∆C2,0(s)

uε(s)
=

s

s
·

−2ω2
synb1

s2 + ω2
syn [2a2 + a3]

. (4.59)

These transfer functions are very similar to the transfer functions of (4.40) for a linear
bucket. In fact, for very small bunches withE2,0 ≪ 1 the approximations

a1 ≈ 1, b1 ≈ E2,0, a2 ≈ 1, a3 ≈ 2

hold for both the uniform and the Gaussian density, leading to exactly the same transfer
functions as for the linear bucket. Thus, the calculation for the nonlinear bucket is as
expected a generalization of the linear bucket case.

Regardless of the bunch size, the transfer function of∆C2,0 reveals an uncontrollable
pole ats = 0, as it is canceled by a zero ats = 0. As before, this is due to the invari-
anceI2 of the bunch area and confirms the statement that filamentation is not included in
model. This can also be explained as follows: The invariantI2 of (4.34a) can be written
in differential form by assuming the case of a stationary bucket with

C2,0 = E2,0 + ∆C2,0, C1,1 = ∆C1,1, C0,2 = E0,2 + ∆C0,2.

Introducing these relations in (4.34a) and neglecting higher order terms (i. e.∆C2
1,1) leads

to

∆I2 = 0 = E0,2∆C2,0 + E2,0∆C0,2,

whereI2 = const. ⇒ ∆I2 = 0 was used. This can be written as

∆C0,2 = −E0,2

E2,0
∆C2,0 = −

[

1 − E4,0

6
+

E6,0

120
− E8,0

5040
+ . . .

]

∆C2,0, (4.60)

where the equilibrium for the stationary bucket of AppendixC.4.1 was used. For a uniform
density (cf. Table C.2), this equals

∆C0,2 = −
[

1 − E2,0

3
+

E2
2,0

24
−

E3
2,0

360
+ . . .

]

∆C2,0, (4.61)

Thus, there exists an algebraic relation between the statesC0,2 andC2,0 and they cannot
be changed independently from each other. The same information is included in model
Σ∆NBT of (4.58). Comparing the third and fifth row of the state spacemodel yields

∆Ċ0,2 = − a3

2
∆Ċ2,0

⇒∆C0,2(t)− ∆C0,2(t0) = − a3

2
[∆C2,0(t)− ∆C2,0(t0)]
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Figure 4.10:Frequenciesω1, ω2 of the linearized model for ellipsoidal bunchesΣ∆NBT.
The solid lines are the nonlinear synchrotron frequenciesωm,hy of (3.47) (p. 79), the

dashed lines are the eigenvalues of model (4.58) for different k̂ and are gray for̂k ∈
{3, 4, 5} and black for̂k = 6. Left : uniform density.Right: Gaussian density.

with the initial values∆C2,0(t0) and∆C0,2(t0). At the equilibrium∆C2,0(t) = ∆C0,2(t) =
0 must hold, thus the equilibrium can only be reached for∆C2,0(t0) = −a3∆C0,2(t0)/2
and this leads to

∆C0,2 = − a3

2
∆C2,0 = −

[

1 − E2,0

3
+

E2
2,0

24
−

E3
2,0

360
+ . . .

]

∆C2,0, (4.62)

where a3 was replaced with the function for uniform densities. This is in agreement
with (4.61). An analog result is obtained for the Gaussian density and the relation

a3 = 2
E0,2

E2,0

that follows from (4.60) and (4.62) seems to hold in general.
The remaining poles of the transfer functions are purely imaginary for the considered

domain ofE2,0 and can be written as

s1,2 = ±iω1 = ±iωsyn
√

a1, s3,4 = ±iω2 = ±i2ωsyn

√

2a2 + a3

4
.

Figure 4.10 displays the frequenciesω1 andω2 as a function of the bunch size for different
k̂. The dashed gray lines are the frequencies of the model fork̂ ∈ {3, 4, 5} and the dashed
lines in black belong tôk = 6. The curves for different̂k allow an estimation of the
convergence of the solutions to the exact solution fork̂ → ∞. Also, the frequencies are
compared toωm,hy of (4.53). The results show that:

• For a uniform density, the curve fork̂ = 3 is already very close to the real solution,
whereas the convergence in case of the Gaussian density is slower andk̂ = 6 is
necessary for a satisfactory solution.
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• For the uniform density, the hypothesis (4.53) is excellent. For larger bunch sizes,
the assumption of ellipsoidal bunches is only a rough model for matched bunches
and the differences forE2,0 > 1 may be mainly due to this reason. Compared to the
uniform density, the Gaussian density leads to a frequency of B1,0 that is slightly
larger, whereas the frequency ofC2,0 is distinctly smaller. This is in agreement with
the tracking simulation results of Figure 3.18.

• It is interesting to note that for a uniform distribution2a2 + a3 = 4a1 holds. This
implies that independently of the bunch size, the momentC2,0 oscillates with ex-
actly two times the frequency ofB1,0, just as one expects from simplified physical
considerations.

• In addition, the DC gain of the transfer function ofB1,0(s) is exactly 1 for both
the uniform and Gaussian density. This result deviates fromthe right image of
Figure 4.7. For the interpretation of this difference, it has to be kept in mind that
there is no exact one-to-one correspondence between the dipole modem = 1 and
the basic momentB1,0.

4.6.4 Models of Filamentation

The models of the previous sections use truncation methodsT3 andT4. This leads to a
good estimate of the mode frequencies, but neglects filamentation and Landau damping,
becauseT3 andT4 assume bunch shapes that cannot filament.

To study filamentation, the nonlinear equations (4.43) can be combined with truncation
methodT2, where the moment vectorx∗ is assumed to be constant. This yields the
dynamics

ẋ(t) = f NBT2

(
x(t), uε(t), uϕ(t)

)
. (4.63)

The calculation of the invariantI2 = C2,0C0,2 − C2
1,1 yields

İ2(t) = fI2
(uε, uϕ, B1,0, C2,0, C1,1, . . .) 6= 0.

Consequently, the model may represent some effects of the filamentation. Inserting the
equilibrium momentsx = xe for a matched bunch leads toİ2 = 0. This does make sense,
since a matched bunch will neither oscillate nor experiencefilamentation.

A linearization of the dynamicṡI2 around the equilibrium of a matched bunch for small
deviations reads

İ2(t) ≈
∂ İ2

∂x
∆x +

∂ İ2

∂
[
uε,uϕ

]

[
uε

uϕ

]

=

[
E4,0

3
− E6,0

60
+ . . .

]

∆C1,1 −
E2,0

3
∆C3,1 +

E2,0

60
∆C5,1 6= 0.
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For a small bunch (E2,0 ≪ 1) with a uniform density, the following approximations are
valid:

I2 ≈ E2
2,0, E4,0 ≈ 2E2

2,0, E6,0 ≈ 5E3
2,0

and this leads to

İ2

I2
≈
[

2

3
− E2,0

12
+ . . .

]

∆C1,1 −
∆C3,1

3E2,0
+

∆C5,1

60E2,0
.

Further, it is reasonable to assume that

∆C1,1 ∼ O (E2,0) , ∆C3,1 ∼ O
(

E2
2,0

)

, ∆C5,1 ∼ O
(

E3
2,0

)

,

i. e. the moment∆C1,1 depends onE2,0 and for a decreasingE2,0, it will decrease by the
same order of magnitude, and so forth. Thus, forE2,0 → 0, we also havėI2/I2 → 0,
i. e. the relative change of the emittance becomes negligible. This is in agreement with the
observation that very small bunches in a nonlinear bucket behave similar to bunches in a
linear bucket and show few filamentation.

This leads to the following conclusions with respect to the invariants and filamentation:

• In a linear bucket, there are invariants of motionI2, I4, andI6 that are due to
the invariant bunch area. Filamentation or Landau damping does not occur. It
is reasonable to expect that there is an infinite number of invariants, one for
each even moment orderm, i. e. I8, I10, etc.

• For very small bunches in a nonlinear bucket, the situation is approximately
the same as for the linear bucket case.

• For large matched bunches in a nonlinear bucket, the bunch area is still invari-
ant and there is no filamentation.

• Large bunches with mismatches in nonlinear buckets lose theinvariants of
motion due to filamentation.

4.7 Conclusion

4.7.1 Comparison of RF Feedback Models

Transfer functions for bunch phase and length oscillationsare presented for example
in [107] and in [13]. These transfer functions are equivalent to (4.40) if ϕR = 0 is
assumed. In addition, the models use the synchrotron frequency ωsyn so that the models
are valid for linear buckets or very small bunches only.
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Table 4.2:Developed models for coherent oscillation modes, stationary bucket.

Modem 1 2 3 4 > 4

Linear Bucket X X X X ?
Nonlinear Bucket X X X X ?

An early model for the control of bunch-shape oscillationsm = 2 was given by Here-
ward [40]. Hereward defined quantities that are similar to the varianceC2,0 and the co-
varianceC1,1. As a main quantity, he considered the difference of the variancesq2 =
C2,0 − C0,2. Appropriate damping leads to a matched bunch withq2 = 0. However, it is
obvious that this calculation is valid for a linear bucket orsmall bunches only, since only
then the trajectories can be normalized as circles andC2,0 = C0,2 for matched bunches.
In [40], the nonlinearity of the RF dynamics is approximatedby a function inx = ∆ϕ and
x2. After the linearization, the model for the bunch length oscillations is a harmonic os-
cillator with the frequency2ωsyn. This is consistent with the transfer function∆C2,0/u1

of (4.40). Hereward proposed the phase inputuϕ to damp the bunch length oscillations.
Equation (4.27c) shows that this is possible only forϕR 6= 0, because only then the input
u1 is coupled withuϕ. This is in agreement with [40], since Hereward’s model depends
on ϕR.

The model was further developed in [113]. The model derivation is equivalent to [40].
To damp quadrupole modes, both amplitude and phase modulations are proposed as feed-
back. In case of amplitude modulations, the damping rate is given as

αd ≈ K

Û1

ω3/2
syn ,

whereK is a feedback gain, and in case of phase modulations as

αϕ ≈ tan(ϕR)
K

4
ω3/2

syn .

This is consistent with the results of this chapter, becauseit was shown that in a
stationary bucket, i. e.ϕR = 0, the phase has no influence on the moments of second
order and thus on the quadrupole mode and the damping rate must beαϕ = 0.

The mentioned references show that the typical models used to analyze bunch oscilla-
tions are based on a linearization of the single-particle dynamics. One drawback of these
models is that they cannot be used to analyze the damping of higher order modes. Another
disadvantage is that the frequency of the modes is not represented correctly.

Table 4.2 summarizes the contribution of this chapter. New models have been obtained
and analyzed for modesm ≤ 4 for the linear and nonlinear bucket. In addition, Sys-
tem (4.56) models not only the dynamics, but also the coupling between the modes.
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So far, all models are valid for the stationary case. However, the modeling scheme
may be applied to the general caseϕR 6= 0. Also, higher order modesm > 4 can be
analyzed in principle. So far, the only limiting factor for the modeling scheme is given by
the calculations of Section 4.4.3; to obtain the moments of agiven density function, this
function has to integrated analytically and the effort increases with the moment order.

4.7.2 Summary of the Results

The statistical description of the particle ensemble leadsto a simple formulation of the
control problem: A particle bunch has reached its equilibrium if the density function is
time-invariant. The advantage of this formulation is that it is also valid for nonlinear RF
potentials. Still, the controller analysis and design for this system is a complex task, as
its dynamics are governed by a PDE. To obtain simplified models, a modeling approach
has been suggested based on moments. Moment methods have already been in use for
time-efficient simulations of beam dynamics and some moment-based models exist for
the coherent modem = 2. These models are however valid for linear buckets only.
What is novel in this chapter is the use of a moment method to obtain models for bunch
shape oscillations in the nonlinear bucket and the subsequent analysis using methods from
control theory.

The modeling scheme is based on raw and central moments in thelongitudinal phase
space. It has been shown that the control problem can be reformulated in terms of mo-
ments under mild assumptions. Time-invariant moments are then equivalent to a time-
invariant density function and thus to a matched bunch. It has been demonstrated that
although there is no one-to-one correlation between the within-bunch modesm and the
moments, the central moments of orderm are useful as a measure for the within-bunch
modem. The calculation of the moment dynamics leads to a set of nonlinear equations
that describe the coherent oscillations. In case of a linearbucket, these dynamics are only
coupled with respect to the input variables. A linearization leads to transfer functions
for the bunch center and variance that are in agreement with known models. An analy-
sis of the higher order moments indicates that they are not controllable and thus cannot
be damped in a linear bucket by phase or amplitude modulations. In case of a nonlinear
bucket, the nonlinear RF potential has to be approximated bya finite polynomial series so
that the rate of change of the moments can be expressed as a function of the moments. Due
to the nonlinearity, the obtained model is not closed and a truncation is necessary. Dif-
ferent truncation methods have been proposed. One truncation method uses the relations
between moments and within-bunch modesm to derive a state-space model for the modes.
The eigenvalues of this model depend on the bunch size quantity 2

√
E2,0 and the frequen-

cies fall for increasing bunch sizes, which is in agreement with the simulation results. A
second truncation method is applicable for ellipsoidal bunches and leads to models for
the bunch phase and length. Both truncation methods and the linearization lead to models
that neglect Landau damping. It has to be noted that Landau damping is a highly complex
and nonlinear process. It can only be described accurately by the Vlasov equation, i. e. an
infinite dimensional model, or a particle ensemble, i. e. a high-dimensional model.
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5 Damping of Single-Bunch Oscillations

In this chapter, the models (4.58) and (4.59) that were derived in the last chapter are used
in Section 5.1 to analyze a bunch length feedback system of the heavy-ion synchrotron
SIS18 at GSI. The stability of the feedback is analyzed and the performance evaluated by
means of tracking simulations. In Section 5.2, measurements of a beam experiment are
used to verify the analytical and simulation results. Finally, some possible applications of
nonlinear methods for stability analysis and controller design are discussed in Section 5.3.

5.1 Analysis of RF Feedback Systems of the SIS18 at GSI

In this section, mathematical models are developed for two RF feedback loops at GSI.
These models are simplified, leading to linear transfer functions that approximate the
closed-loop behavior. Next, the stability of the linear model is analyzed and finally, simu-
lations are used to evaluate the performance of the feedback.

5.1.1 Structure of RF Feedback Loops

A simplified diagram of the feedback structure at GSI for the bunch position and length is
shown in Figure 5.1. The individual blocks are described in the following.

Cavity The cavity produces the sinusoidal RF voltage

Ugap(t) = Û1,R[1 + uε(t)] sin
(

ϕ(t)− uϕ(t)
)

, (5.1)

where the phaseϕ is the integral over time of the RF frequencyωRF. Strictly speaking, the
cavity itself is a subsystem with dynamics and even feedbackloops of its own. Often, the
cavity is modeled as a parallel resonant circuit. The cavityis driven by an amplifier and a
DDS (Direct Digital Synthesis) unit. The DDS receives the frequencyωRF and produces a
sinusoidal signal with this frequency using a look-up table. The amplitude modulator AM
receives the reference amplitudeÛ1,R. The output of the modulator is then amplified and
fed to the cavity, where it drives the resonator to induce thevoltageUgap. Feedback loops
are used to stabilize the amplitude and phase ofUgap at their reference values. In case
of a high-current beam, the beam currentibeam acts back on the cavity, because a voltage
is induced in the cavity by the beam. This changes the gap voltage and is referred to as
beam loading. Beam loading or other collective effects will not be considered directly as
mentioned above.

These remarks about the RF cavity already show that it is a complex subsystem and
there are still important open research questions concerning its behavior and control.
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Figure 5.1: Simplified feedback structure of bunch phase and variance atGSI, AM: am-
plitude modulator. Courtesy H. Klingbeil (GSI), [60].

However, in many cases it is sufficient to model the cavity in asimpler way. Important
conditions are:

• moderate rate of change of the modulationsuε anduϕ

• well adjusted control loops for phase and amplitude ofUgap

However, it has to be noted that is difficult to choose specificboundaries for the above
mentioned conditions. It will be assumed that these conditions are fulfilled, but the model
restrictions have to be kept in mind.

The DDS unit sums up the frequency correction values∆ωRF and can be modeled as
an integrator [59]

∆ϕgap = −
∫

∆ωRF dt ⇒ GDDS(s) =
∆ϕgap(s)

∆ωRF(s)
= −1

s
.

Due to the cavity dynamics, i. e. its finite bandwith, the phase modulationuϕ from the
gap voltage (5.1) is not exactly equal to∆ϕgap. Assuming a controlled cavity, the phase
modulationuϕ will follow changes in∆ϕgap with a certain time constantTcav,ϕ and this
may be described by the first order system

uϕ(t) + Tcav,ϕu̇ϕ(t) = ∆ϕgap(t) ⇒ Gcav,ϕ(s) =
uϕ(s)

∆ϕgap(s)
=

1

Tcav,ϕs + 1
.

(5.2)
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Similarly, the amplitude correction is modeled by the first order system

uε(t) + Tcav,εu̇ε(t) = ε(t) ⇒ Gcav,ε(s) =
uε(s)

ε(s)
=

1

Tcav,εs + 1
. (5.3)

Typically, the time constants of the cavity feedback loops are considerably smaller than
the time constants of the closed bunch position and bunch length feedback loops. For
this reason, the time constantsTcav,ε and Tcav,ϕ will be neglected in Section 5.1.3 and
subsequent sections.

Bunch Phase A detailed description of the phase loop is presented in [59]. The main
parts are shortly summarized for the sake of completeness.1)

For an ellipsoidal bunch with only small variations from theequilibrium, the moments
B1,0 and C2,0 are sufficient to describe the dynamics of the beam with respect to the
modulations and transfer functions (4.59) can be used. The transfer function for the bunch
position is

Gbp(s) =
∆B1,0(s)

uϕ(s)
=

ω2
syna1

s2 + ω2
syna1

.

The bunch position is not measured directly. Rather, a beam phase monitor (BPM) mea-
sures the beam currentibeam and the phase detection subsystem compares the gap voltage
and the first harmonic of the beam current. The density distribution of a bunch is often
approximately Gaussian and in this case Equations (3.44) hold. Due to (3.44b), the phase
of the first harmonic ofibeam is ϕ1 = −∆B1,0. The phasesϕk are defined in such a way
that ϕk > 0 implies an advanced wave, cf. definition (A.5). Because the phases of the
beam and the gap voltage are defined in the opposite way, the beam phase

∆ϕbeam = −ϕ1 = ∆B1,0

will be used instead. The comparison in thephase detectionsubsystem yields the detected
phase

∆ϕdet = ∆ϕbeam − uϕ = ∆B1,0 − uϕ, ⇒ ∆ϕdet(s)

uϕ(s)
= Gbp(s)− 1.

The detected phase∆ϕdet is used as input of a finite impulse response (FIR) filter. The
basic idea of the FIR filter is to have a band-pass filter that lets pass frequency components
near the frequency of the mode that should be detected and damped [59]. The center
frequency of the passband will be denoted byfpass. If for example the dipole mode is
considered, it is reasonable to choosefpass close to the synchrotron frequencyfsyn to
detect bunch phase oscillations.

1)An important difference of this summary compared to [59] is the refined beam model that depends on the bunch
size. The theoretical analysis of [59] is however still valid, because the shape of the transfer functions remains
the same. The only difference is the change from the synchrotron frequencyωsyn to the effective frequency√

a1ωsyn with a1 from Appendix C.4.4.



130 5 Damping of Single-Bunch Oscillations

10
1

10
2

10
3

10
−3

10
0

ω

|G
fi

r(
iω

)|

10
1

10
2

10
3

−600

−400

−200

0

ω

∡
G

fi
r(

iω
)

in
de

gr
ee

Figure 5.2: Magnitude and phase ofGfir(iω) for ωpass = 1 kHz (logarithmic and semi-
logarithmic scale).

Additional desired filter properties are a rejection of the DC component and a phase
lag of−180◦ at fpass. The rejection of the DC component is important, because in gen-
eral measured quantities of the bunch such asB1,0 andC2,0 may contain DC offsets. In
addition, the exact equilibrium of the varianceC2,0 is not known and a DC rejection is
useful to obtain relative quantities such as∆B1,0 and∆C2,0. The phase shift of−180◦ is
important for the stability, a detailed analysis can be found in [59].

The FIR filter has the discrete form [59]

yfir(n) = −1

4
xfir(n) +

1

2
xfir

(

n − fsamp

2 fpass

)

− 1

4
xfir

(

n − fsamp

fpass

)

, (5.4)

wherexfir are the input,yfir the output, andfsamp = ωsamp/2π the sampling rate of the
filter, respectively. The discrete time steps aret(n) = n/ fsamp. Writing the discrete filter
as a transfer function yields

Gfir(s = iω) =
1

2
e
− s

2 fpass

[

1 − e
s

2 fpass + e
− s

2 fpass

2

]

.

The frequency response is thus given by

Gfir(s = iω) =
1

2
e
−iπ ω

ωpass

[

1 − cos

(

π
ω

ωpass

)]

.

The magnitude|Gfir(iω)| and phase∡Gfir(iω)| are shown in Figure 5.2 forωpass =
1 kHz. The filter indeed has a bandpass characteristic atω = [2k + 1]ωpass (k =
0, 1, . . .).

Finally, the filter is followed by a gainK1 and a time delayTd. The time delay cov-
ers the time that the digital and analog hardware needs to process the information. The
resulting frequency correction is

∆ωRF(s) = e−Tds K1 Gfir(s) ∆ϕdet(s).
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Bunch Length The transfer function of the bunch length is given by (cf. (4.59))

Gbl(s) =
∆C2,0(s)

uε(s)
=

−2ω2
synb1

s2 + ω2
syn[2a2 + a3]

. (5.5)

After measuring the beam current, the amplitudeA1 of the first harmonic is determined.
Assuming a Gaussian density, (3.44b) yields

A1(t) = 2ībeame−
1
2 C2,0 .

Linearizing aroundC2,0 = E2,0 yields

A1 ≈ A1,e + ∆A1 = 2ībeame−
1
2 E2,0 − ībeame−

1
2 E2,0 ∆C2,0

⇒ GA =
∆A1

∆C2,0
= −ībeame−

1
2 E2,0 .

(5.6)

If a similar FIR filter as (5.4) is chosen, the DC componentA1,e is rejected and only
∆A1 is relevant. In [93, 95], an FIR filter is proposed that has exactly the same structure
as (5.4). The only differences are the choice offpass, which will be close to the frequency
of transfer function (5.5), and an additional discrete integrator

yI(n) = yI(n − 1) + KI,dxI(n) ⇒ GI(z) =
yI(z)

xI(z)
= KI,d

z

z − 1
.

Its continuous transfer function is approximately [9]

GI(s) =
KI,d

Tsamp

1

s
,

whereTsamp = 1/ fsamp is again the sampling time of the feedback loop. With the time
delayTd, the amplitude correction reads

ε(s) = e−Tds KI,d

Tsamp

1

s
Gfir(s) GA ∆C2,0(s)

and the modeling of the control loops is complete.

Remark5.1. The transfer function (5.6) introduces a dependency on the mean beam cur-
rent. If ībeam can be measured as well, this can be avoided ifA1/A0 = A1/(2ībeam) is
used as input to the filter. This has the advantage that the same controller gains could be
used for experiments with different beam current levels.

Remark5.2. There is an alternative to the described measurement of the bunch length.
In [13], the measurement of the peak line density of the bunches is said to be a usual
procedure and the transfer function

∆l/l

ε(s)
=

[2ωsyn]2α

s2 + [2ωsyn]2
, (5.7)
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is given, where it is stated thatα = 1/4 for small bunches. The bunch heightl corresponds
to the peak line density or peak beam currentîbeam. Assuming an ellipsoidal bunch with
a Gaussian density, (3.44a) yields a peak beam current of

îbeam = ibeam(x = 0) = ībeam

√

2π

C2,0
.

The equilibrium can be defined asîbeam,e = ībeam

√
2π/E2,0 and the relative change in

this peak current is then

îbeam − îbeam,e

îbeam,e

=
∆l

l
=

√

E2,0

C2,0
− 1 ≈ −∆C2,0

2E2,0
,

and the approximation is valid for small deviations∆C2,0 = C2,0 − E2,0. This leads
with (5.5) to the transfer function

∆l/l(s)

ε(s)
=

∆l/l(s)

∆C2,0(s)

∆C2,0(s)

ε(s)
=

b1
E2,0

ω2
syn

s2 + ω2
syn[2a2 + a3]

. (5.8)

Indeed, for small bunches,b1/E2,0 ≈ 1 and2a2 + a3 ≈ 4 holds and (5.7) is obtained
with α = 1/4. It has to be noted that (5.7) is given without derivation andonly α is said
to depend on on the bunch size. As the last considerations show, a more precise transfer
function is given by (5.8) in case of larger bunches.

An advantage of this transfer function is that is does not depend on the mean beam
current. However, the measurement of the peak beam current may be prone to noise,
whereas the calculation of the first harmonic amplitudeA1 is equivalent to a low-pass
filtering of the beam current signal.

Open Loop Transfer Functions The pass filter frequency of the bunch phase loop will
be denoted byfpass,1, whereas for the bunch length loop the frequencyfpass,2 will be
used. The complete open loop transfer function of the bunch phase can be written as

G1(s) = −
[

Gbp(s)− 1
]

Gfir(s) GDDS(s) Gcav,ϕ(s) K1 e−Tds

= −K1
s

[
s2 + ω2

1

] [
Tcav,ϕs + 1

]
e
− s

2 fpass,1

2



1 − e
s

2 fpass,1 + e
− s

2 fpass,1

2



 e−Tds,

(5.9)

whereω1 = ωsyn
√

a1 is the effective synchrotron frequency of the phase.
The open loop of the amplitude is described by

G2(s) = −Gbl(s) GA Gfir(s) GI(s) Gcav,ε(s) e−Tds

= K2
ω2

2

s2 + ω2
2

1

s

1

Tcav,εs + 1

e
− s

2 fpass,2

2



1 − e
s

2 fpass,2 + e
− s

2 fpass,2

2



 e−Tds,

(5.10)
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with the effective frequencyω2 = 2π f2 and the gainK2

ω2 := ωsyn

√

2a2 + a3, K2 := −2ībeame−
1
2 E2,0

KI,d

Tsamp

b1

2a2 + a3
.

The purpose of the feedback design is to choose the feedback parametersK1, KI,d, fpass,1,
and fpass,2 such that the loops are stable and well damped. The other parameters depend
on the synchrotron design and the beam properties. For the stationary case that is consid-
ered here, all parameters are constant for a given beam size.

5.1.2 Stability of Linear Time Delay Systems

Both the bunch phase and bunch length feedback loop have the form of the general feed-
back loop with multiple delays shown in Figure 5.3. The loop consists of a transfer func-
tion G0(s) and a sum of delays with realτl ≥ 0, l = 1, . . . ,L, and real coefficientskl . For
example, for the transfer functionG2(s) in (5.10), a possible choice ofG0(s) is given by

G0(s) = K2
ω2

2

s2 + ω2
2

1

s

1

Tcav,ε s + 1
.

In the following it is assumed thatG0(s) is a rational function with real coefficients
and its numerator and denominator do not have a common root and G0 is strictly proper,
i. e. G0(∞) = 0. The closed-loop transfer function betweenw andy is given by

Y(s)

W(s)
= G(s) =

G0(s)

1 + G0(s) ∑
L
l=1 kl e−τls

.

This system can also be expressed in the time domain, ifG0(s) is written in state space
representation

dx(t)

dt
= A0x(t) + b0u(t), y(t) = cT

0 x(t),

with u = −ỹ and leads to the linear time-invariant delay differential equation (LTDDE)

dx(t)

dt
= A0x(t) +

L

∑
l=1

Al x(t − τl), (5.11)

wherex is then-dimensional state vector andA0, Al = −b0klc
T
0 are constant realn × n

matrices.
In case of a single delay, i. e.L = 1, and provided thatG0(0) > 0, the poles ofG(s)

are the zeros of the characteristic equation

1 + G0(s)k1e−τ1s = 0 (5.12)

and the closed loop is stable if and only if all roots of thischaracteristic equationlie in
the open left complex planeC− [26]. These roots are also calledcharacteristic roots.
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kL e−τLs
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Figure 5.3: Linear feedback system with multiple delays.

Since Equation (5.12) is a quasi-polynomial for nonzero delays and thus a transcendental
equation, the number of roots in the complex planeC is infinite and their analysis not
straightforward [122]. However, it can be shown that the general Nyquist criterion (cf.
[8, 27]) can be applied [26]. This leads to the analysis of theroot locusG0(s = iω) and
its encirclements of the critical point−1 in the complex plane.

In the general case of multiple delays, the Laplace transform of (5.11) leads to the
characteristic equation

1 + G0(s)
L

∑
l=1

kle
−τls = 0. (5.13)

Again, (5.11) is stable if and only if all the characteristicroots of (5.13) lie inC− [10].
Thus, it is necessary and sufficient that the root with the largest real part lies inC−. To
analyze the roots, use is made of the fact that their movementwith respect to changing
parameters inC is continuous. For zero delaysτl = 0, l = 1, . . . ,L, the stability is
determined by the finite number of roots ofG0. As soon as the delays increase and become
nonzero, an infinite number of new roots appear. For sufficiently small delays, all of these
roots lie inC− and their absolute values tend to infinity forτl → 0+, i. e. they proceed
in C− from the left with increasing delays [133]. With increasingdelays, the roots due to
the delays and the eigenvalues ofA0 will move and may cross the imaginary axis. Due
to the continuity of the movement, a necessary condition fora transition of stability to
instability or vice versa is the crossing of the imaginary axis. Many stability conditions
thus rely on the calculation of the characteristic roots fors = iω, which is similar to the
Nyquist criterion. For commensurate delays, i. e. for delays τl = lτ that are multiples
of a basic delayτ, it can be shown that the crossings of the imaginary axis are finite in
number and stability tests exist [133]. Unfortunately, thedelays of (5.9) and (5.10) are not
commensurate in general.

In general delays are not desirable because they reduce the phase margin of the open
loop system. However, it is also possible to give examples where feedback containing time
delays may stabilize an otherwise unstable system for certain values of the delay [122].
One possible example are unstable systems that can be stabilized using a derivative con-
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troller. The continuous derivative may be approximated by the finite difference

ẏ ≈ y(t)− y(t − T0)

T0

with the sample timeT0. The right hand side contains a time delayT0. For sufficiently
smallT0, the approximation error is small and the closed loop will bestable. For largerT0,
this is no longer valid and the closed loop may become unstable. In general, the stability
will depend on the specific value of the time delay and there may be several intervals on
theT0-axis with closed-loop stability.

For Tcav,ε ≈ 0 and without the delays, the bunch length feedback loop has the form

K2ω2
2

s[s2 + ω2
2 ]

.

This linear system can be stabilized by the (non-proper) transfer functions2 of a second
derivative. In the following, filter (5.4) is shown to be similar to a second derivative. This
indicates that the given FIR filter is indeed useful for the stabilization of the open loop.

Writing the derivativey(t) = ẍ(t) as a difference quotient

y(t) = ẍ(t) ≈ 1

T0

[
x(t)− x(t − T0)

T0
− x(t − T0)− x(t − 2T0)

T0

]

= − 4

T2
0

[

−1

4
x(t) +

1

2
x(t − T0)−

1

4
x(t − 2T0)

] (5.14)

with sample timeT0 leads to the same structure as (5.4) ifT0 = 1/2 fpass and an addi-

tional gain−4/T−2
0 are applied to the FIR filter. However, approximation (5.14)is valid

only if T0 is sufficiently small. This is apparent from the transfer function of (5.14)

G(s) =
1

T2
0

[

1 − 2e−T0s + e−2T0s
]

.

Using a series representation for the exponential functions,G may be rewritten as

G(s) =
1

T2
0

[

1 − 2

[

1 − T0s +
T2

0 s2

2
− . . .

]

+

[

1 − 2T0s +
4T2

0 s2

2
− . . .

]]

,

= s2 +
1

T2
0

O
(

[T0s]3
)

.

Thus, forT0 → 0 the transfer function of a second derivative is obtained.
More precisely,T0 should be considerably smaller than the time constant of thedy-

namics ofx(t). For the bunch length feedback, the time constant of the dynamics is1/ f2

and the conditionT0 ≪ 1/ f2 is then equivalent tofpass ≫ f2. Together with the integral
controller, the second derivative leads to the necessary phase shift of90◦ for damping. In
case the time delayTd and measurement noise are neglible, the feedback withfpass ≫ f2

is stable forK2 > 0.
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For the considered feedback loops, there are several reasons why the simple previous
stability analysis forfpass ≫ f2 does not automatically apply.2) First, a typical choice
is fpass ≈ f2, because bunch length oscillations should pass the filter. Second, a pure
derivative will increase the effect of noise and this imposes an upper bound onfpass.
Third, a bound is given by the digital hardware and the fact that Equation (5.4) is only
feasible for fpass ≤ fsamp/2. The conclusion is that a general stability analysis for
arbitrary values offpass is needed.

In the next section, the stability analysis of (5.10) will rely on the calculation of the zero
crossings of the imaginary axis. From (5.13) it follows thatthis is equivalent to calculating
the crossing of the critical point−1 by the root locusG2(iω) = G0(iω)∑

L
l=1 kle

−τliω .
Nyquist plots will be used in addition to check the directionof traverse of the root locus.

5.1.3 Stability Analysis of Bunch Length Feedback

In this section, the stability of the bunch length feedback is analyzed depending on the
feedback parametersK2 and fpass for the stationary case. All other parameters of the
system are fixed and can be calculated from known parameters of the synchrotron and
RF setup and from the beam properties. An important beam property is the bunch size,
because the mode frequenciesω1 andω2 depend on it.

The stability of the phase loop has been considered in detailin [59] and its analysis is
also valid for large bunches, if the synchrotron frequency is adjusted appropriately from
the linear frequencyωsyn to the effective frequency

ω1 = ωsyn

√

a1 (E2,0),

with a1 from Section 4.6.3 depending on the bunch sizeE2,0. For this reason, the stability
analysis will focus on the feedback loop for the bunch length. The line of argument is
based on the Nyquist criterion and is similar to [59].

The frequency response of the open loop is obtained by replacing s = iω in (5.10) and
reads

G2(iω) =
K2

2

1

1 − ω2

ω2
2

e
−iω

[
π

χ2ω2
+Td

]

ω [i − Tcav,εω]

[

1 − cos

(
πω

χ2ω2

)]

,

where the definition

χ2 :=
fpass,2

f2
, f2 = ω2

2π = 2ωsyn

√
2a2+a3

4

was used. Due to the symmetry of the frequency response with regard toω, only positive
frequenciesω > 0 will be regarded in the following. The filter frequencyfpass,2 will

2)In spite of the following considerations, it is interestingto note what the properties of the control loop are for
the limit casefpass ≫ f2.
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be chosen close to the mode frequencyf2, i. e. χ2 ≈ 1. The frequency response has a
singularity atω = ω2, its magnitude is

|G2(iω)| =
|K2|

[

1 − cos
(

πω
χ2ω2

)]

2|ω|
∣
∣
∣1 − ω2

ω2
2

∣
∣
∣

√

1 + T2
cav,εω2

and its phase is

∡G2(iω) =







−ω
[

π
χ2ω2

+ Td

]

−
[

π
2 + arctan (Tcav,εω)

]
for K2, ω ∈ A1,

π − ω
[

π
χ2ω2

+ Td

]

−
[

π
2 + arctan (Tcav,εω)

]
for K2, ω ∈ A2,

where

A1 = {K2, ω ∈ R : [K2 > 0 and0 < ω < ω2] or [K2 < 0 andω > ω2]} ,

A2 = {K2, ω ∈ R : [K2 > 0 andω > ω2] or [K2 < 0 and0 < ω < ω2]} .

The Nyquist plots ofG2 in Figure 5.4 show that forχ2 = 1, a necessary condition for
stability is K2 > 0, as the locusG2(iω) is traversed in clockwise direction forK2 < 0.
On the other hand, a necessary condition for a transition from stability to instability is that
G2(iω) crosses the critical point−1. The frequency at which the crossing

|G2(iωcrit)| = 1 (5.15a)

∡G2(iωcrit) = −pπ, p ∈ {1; 3; 5; . . .} (5.15b)

occurs will be denoted byω2,crit and the gain byK2,crit. Under the assumption that the
cavity feedback loops have a fast response, more precisely|Tcav,ε ω| ≪ 1, the time
constantTcav,ε can be neglected3) and (5.15b) can be solved analytically forω = ω2,crit:

4)

ξ(p) :=
ω2,crit(p)

ω2
=







p− 1
2

1
χ2

+2Td f2
for ξ < 1 andK2 > 0,

p+ 1
2

1
χ2

+2Td f2
for ξ > 1 andK2 > 0.

(5.16)

Solving (5.15a) forK2(p) yields

|K2(p)|
ω2

= 2

∣
∣ξ(p)

[
1 − ξ2(p)

]∣
∣

1 − cos
(

πξ(p)
χ2

) . (5.17)

For a givenχ2 the critical gainK2,crit is the lowestK2(p):

|K2,crit| = min
p

|K2(p)| , p ∈ {1; 3; 5; . . .}.

3)For a small but nonzeroTcav,ε, this assumption can only be satisfied in a limited frequencyrange|ω| < ωmax.
4)The ratioξ appears on both the left hand and right hand side, because thephase ofG2 is discontinuous at

ω = ω2, cf. the definition ofA1 andA2. The calculation ofξ is performed separately forξ > 1 andξ < 1.
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Figure 5.4: Nyquist plots ofG2(iω) for ω2 = 31.32 kHz, Td = 10−5 s, andTcav,ε = 0.
The locus consists of the following sections:−∞ < ω < −ω2 (gray, dashed),−ω2 <

ω < 0 (black, dashed),0 < ω < ω2 (black, solid),ω2 < ω < ∞ (gray, solid).

Table 5.1:Calculation of the critical gain forχ2 = 1, Td = 10−5 s, and f2 = 4985 Hz.

p = 1 p = 3 p = 5 . . .

ξ2
K2
ω2

ξ2
K2
ω2

ξ2
K2
ω2

. . .

ξ < 1 : 0.455 0.841 - - . . .

ξ > 1 : 1.36 1.66 3.18 31.6 5 120 . . .

The decision about the sign ofK2,crit for a certainχ2 can be made by analyzing the
direction of traverse of the Nyquist plot as already described. Table 5.1 shows an example
of the calculation. The minimal gain is obtained forp = 1 and the critical gain isK2,crit =
0.841. With this procedure, a stability diagram can be obtained that shows the critical gain
as a function of the filter frequency. Figure 5.5 shows the stability diagrams for the bunch
phase and length for typical values ofω1, ω2, andTd. The diagram of the bunch phase is
based on the calculation of [59]. The shape of the bunch length diagram does only depend
on the productTd f2 ≈ 0.05. This follows directly from (5.16) and (5.17).

5.1.4 Tracking, Linear Model, and Feedback Performance

The derived diagram describes the stability of the feedback, but does not reveal anything
about the feedback performance. To evaluate this performance, parameter scans are pre-
sented in this section for both bunch phase and bunch length oscillations in the linear and
nonlinear bucket. The parameters of the tracking simulations are summarized in Table 5.2.

The stability analysis of the FIR feedback relies on the linear transfer functionsG1(s)
andG2(s), cf. Equations (5.9) and (5.10). It is thus reasonable to start with an evaluation
of these continuous models. All elements in the feedback loop – transfer functions, time
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Figure 5.5: Stability diagrams for the bunch phase (dipole mode, [59]) and the bunch
length (quadrupole mode) forω1 = 15.66 kHz, ω2 = 31.32 kHz, andTd = 10−5 s. The
gray areas are combinations of gain and filter frequency thatyield a stable closed loop.

Table 5.2:Parameters for simulation and experiment.

Ion species 40Argon18+ Kinetic energy 11.4 MeV
u

γR 1.0122 βR 0.15503
TR 4.663 · 10−6 s γT 5.45
h 8 fRF 1.715 MHz
Û1,R 5 kV → 10 kV fsyn at 10 kV 3312 Hz
Td 10−5 s Orbit lengthLR 216.72 m

ībeam 2 mA fsamp = T−1
samp 375.44 kHz

delays, FIR filter, and feedback – are discretized with a basic sample timeT0. With regard
to the simulation accuracy, the sample timeT0 should be chosen as small as possible,
but of course this is limited by the available computing power. As a compromise,T0 =
TR/7 is chosen for the simulation of the bunch length feedback andT0 = 2TR/7 for the
bunch phase feedback. For the latter simulation, the sampletime can be chosen twice as
high, because the bunch phase oscillation frequencyω1 is lower by a factor of about two
compared to the bunch lenght oscillation frequencyω2. Based on the discretized models,
parameter scans with differentχi andKi, i = 1,2, are then performed. It is assumed that
the bunch density is Gaussian, the parameters of the scans are summarized in Table 5.3.

To evaluate the performance, the following quality measure

Jlin,1(χ1,K1) :=
absolute area of∆B1,0 with feedback

absolute area without feedback
=

∫ Tend

0 |∆B1,0(χ1, K1, t)| dt
∫ Tend

0 |∆B1,0(0, 0, t)| dt
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is defined for the beam phase and

Jlin,2(χ2,K2) :=

∫ Tend

0 |∆C2,0(χ2, K2, t)| dt
∫ Tend

0 |∆C2,0(0, 0, t)| dt

for the beam length. If the feedback is effective and increases the damping of the bunch
phase and length oscillations, the absolute area under the functions∆B1,0(t) and∆C2,0(t)
will be smaller compared to the uncontrolled case andJlin,1,Jlin,2 ∈]0; 1[. Perfect control
in the sense of immediate damping impliesJlin = 0. In the following, runs that are
unstable or lead toJlin > 1 will be assigned the valueJlin = 1. Since the following
simulations are discrete, the integrals ofJlin,1 andJlin,2 are approximated by sums.

Figure 5.6 shows the results of the scan. For this scan, only simulations of the closed
loop systems using the transfer functionsG1 andG2 are used. The performance matches
well with the theoretical stability limits. The best resultfor the bunch phase is obtained
for χ1 = 0.97 andK1/ω1 = 0.32, the performance isJlin,1 = 0.034. The best result
for the bunch length isJlin,2 = 0.041 and is obtained forχ2 = 1.15 andK2/ω2 = 0.34.
The first contour line around the optimum in both diagrams isJlin = 0.1. Thus it can be
concluded that there is a rather large parameter area with a good performance.

Linear Bucket The transfer functionsG1 andG2 are already approximations for a linear
bucket, because they rely on linearized dynamics. In addition, there might be an influence
because of the different sampling times of beam (TR) and feedback (Tsamp). Figure 5.7
compares three different cases:

• simulation of the transfer functionsG1 andG2 with the basic sample timeT0,

• tracking simulation for a linear bucket (cf. Section 4.5) with the basic sample time
T0,

• tracking simulation for a linear bucket with realistic sample timesTR (beam) and
Tsamp (feedback).

For the tracking simulations, an ellipsoidal bunch with a Gaussian density is initialized
with a random distribution ofNmacro ≈ 6 · 104 macro particles in the phase space. The
bunch parameters arex0 = 0.1, y0 = 0, σx = 1.01, σy = 0.927, andE2,0 = 0.92. The
histogram of the beam current hasNbin = 50 bins.

It can be observed from Figure 5.7 that the difference due to linearization5) is small,
whereas the sample times have a larger impact. However, all models show a similar
behavior.

Nonlinear Bucket and Large Mismatch The simulations are repeated for a nonlinear
bucket. This time, nonlinear particle tracking simulations are used to evaluate the feed-
back performance. The longitudinal mapping equations of the beam are already discrete

5) The dynamics for a linear bucket are nonlinear in the inputs.The transfer functions are based on a linearization
of these nonlinear dynamics, whereas the tracking simulations are exact.
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Figure 5.6: Parameter scan for the ideal linear bucket. The contour lines of the center
diagrams areJ = [0.1, 0.2, . . . , 1].

with the sample timeTR = 4.663 µs. On the other hand, the feedback loop has its own
frequencyfsamp and sample timeTsamp = 2.664 µs as given in Table 5.2. To obtain a
realistic result, the basic sample timeT0 should be chosen such thatTR andTsamp are
approximately multiples ofT0. The choiceT0 = TR/7 leads to4T0 = 2.665 µs and this
is very close toTsamp. The simulation is thus performed with the basic sample timeT0;
the mapping equations are evaluated only every seventh timestep and the feedback loop
only every fourth time step.

For the scans of the bunch phase feedback, the initial bunch distribution is matched for
10 kV with a bunch size ofE2,0 = 0.928. and the bunch is shifted by0.1 rad in phase.
In case of the bunch length feedback, the initial bunch distribution is matched for5 kV
and the voltage is raised stepwise att = 0 to 10 kV, leading to a large mismatch of the
bunch length. The bunch size after the voltage step isẼ2,0 = 0.928. The parameters of
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Figure 5.7: Linear bucket, closed-loop damping of the bunch phase and bunch length
oscillations. Optimal parameters(χ1; K1/ω1) = (0.97; 0.32) and (χ2; K2/ω2) =
(1.15; 0.34). Simulation of transfer functionsG1(s) and G2(s) with sample timeT0

(blue). Tracking simulation withT0 (red). Tracking simulation with realistic sample
times for beam and feedback (black).

the tracking simulations are given in Table 5.2 and the additional parameters of the scan
can be found in Table 5.3.

In case of the nonlinear bucket, the modeling differences between the tracking simula-
tions and the transfer functionsG1, G2 are not only due to linearization and the sampling
times, but also due to the fact thatG1 andG2 do not include Landau damping. To evaluate
the feedback performance, a new quantity is chosen that directly reflects the increase in
bunch area and is thus directly related to the beam quality. For both the bunch phase and
length, it is chosen as

Jnl =
I2(χi ,Ki ,Tend)− I2(0,0,0)

I2(0,0,Tend)− I2(0,0,0)
,

whereI2(χi ,Ki,t) = C2,0(t)C0,2(t) − C2
1,1(t) is the square of the bunch area in case of

feedback with the parametersχi andKi, i = 1, 2. Again, without any feedback,Jnl equals
1 and with perfect control,Jnl = 0.

The results of the scan for the nonlinear bucket are shown in Figure 5.8 for bothJlin

and Jnl and the performances are given in Table 5.3. The following observations can be
made:

• The performanceJlin for the nonlinear bucket is inferior compared to the linear
bucket. This could be expected, because in a nonlinear bucket, the controller has
to outperform the fast Landau damping. Simulation results show that Landau and
controller damping times cannot be added together in a linear way.

• The bunch phase control is very effective in terms ofJnl. For the optimum, the
increase inI2 for the closed loop is only6% compared to the increase for the open
loop. Both optima have similar parameters(χ1, K1/ω1).



5.1 Analysis of RF Feedback Systems of the SIS18 at GSI 143

0 1 2 3
0

0.5

1

1.5

2

χ1

K
1
/

ω
1

Bunch Phase,Jlin,1

0 1 2 3
0

0.5

1

1.5

2

χ1

K
1
/

ω
1

Bunch Phase,Jnl

0 1 2 3
0

0.2

0.4

0.6

0.8

1

χ2

K
2
/

ω
2

Bunch Length,Jlin,2

0 1 2 3
0

0.2

0.4

0.6

0.8

1

χ2

K
2
/

ω
2

Bunch Length,Jnl

Figure 5.8: Parameter scan for the nonlinear bucket. Again, the contourlines mark dif-
ferences∆Jnl = 0.1 in the performanceJnl. (×): Optima of the scans. (⋄): Settings of
the experiment.

• The bunch length control shows a good efficiencyJnl = 38%, but a poor damp-
ing performance in terms ofJlin. In addition, both optima occur at considerably
different gainsK2.

It has to be noted that the stability regions in the parameterspace(χ, K) of the bunch
position and bunch length feedback for the nonlinear bucketare not readily apparent from
the scans of Figure 5.8. These scans show the feedback performance relative to the open
loop simulation, i. e. relative to Landau damping. The whiteareas are parameter settings
for which the integral of the absolute error or the emittanceincrease is larger than in case
of the open loop system. This does not automatically imply instability.

Figure 5.9 compares the results of the feedback in the nonlinear bucket for the transfer
functions and the tracking simulation. The choice of the parameters is not the optimum
obtained in Figure 5.8, but is rather chosen with regard to the analysis of a beam experi-
ment in Section 5.2. In contrast to the earlier Figure 5.7, the models do vary significantly,
because the transfer functions do not reproduce the Landau damping, which is larger than
the damping due to feedback in this particular simulation. The initial frequencies of the
nonlinear oscillations are however reproduced very well bythe transfer functions. As can
be expected, simulations show that the smaller the bunch size in a nonlinear bucket, the



144 5 Damping of Single-Bunch Oscillations

Table 5.3:Performance scans.

Bunch phase Bunch length

Linear Bucket

Bunch size Ẽ2,0 = 0.92 Ẽ2,0 = 0.92
Transfer fct. a1 = 1 b1 = Ẽ2,0, 2a2 + a3 = 4
Frequencies f1 = fsyn f2 = 2 fsyn

Sample time T0 = 2
7 TR T0 = 1

7 TR

Sim. length 3000TR 1500TR

Initial values B1,0 = 0.1, B0,1 = 0 C2,0 = 1, C1,1 = 0, C0,2 = 0.84

OptimumJlin

(

χ1; K1
ω1

; Jlin,1

)

=
(

χ2; K2
ω2

; Jlin,2

)

=

(0.97; 0.32; 0.034) (1.15; 0.34; 0.041)

Nonlinear Bucket

Bunch size Ẽ2,0 = 0.928 Ẽ2,0 = 0.928
Transfer fct. a1 = 0.62876 2a2 + a3 = 1.9316, b1 = 0.58349
Frequencies f1 = 0.793 fsyn f2 = 0.69491 · 2 fsyn

Sample time T0 = 1
7 TR (basic),TR (beam), andTsamp (feedback)

Sim. lengthJlin 1000TR 400TR

Sim. lengthJnl 3000TR 1500TR

Initial distribution matched at10 kV, matched at5 kV,
phase shift of0.1 rad voltage step to10 kV

OptimumJlin

(

χ1; K1
ω1

; Jlin,1

)

=
(

χ2; K2
ω2

; Jlin,2

)

=

(1.18; 0.395; 0.62) (1.58; 0.178; 0.80)

OptimumJnl

(

χ1; K1
ω1

; Jnl

)

=
(

χ2; K2
ω2

; Jnl

)

=

(1.05; 0.73; 0.06) (1.26; 0.78; 0.38)

more the behavior becomes similar to the linear bucket case.This is demonstrated in Fig-
ure 5.10 which shows a similar simulation for a smaller bunchsize Ẽ2,0 = 0.55. The
damping of the tracking solution is slightly larger due to additional Landau damping, but
the results do agree well.

The results of this section lead to the following conclusions:

• The transfer functionsG1 andG2 describe the feedback dynamics very well
for the linear bucket. They can be used for the stability analysis and a con-
troller design. In addition, the simulation of the transferfunctions is consider-
ably faster than the corresponding tracking simulations.
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• In case of the nonlinear bucket, the transfer functions can be used if the damp-
ing of the feedback is large compared to Landau damping. Thisis usually the
case, because this is the objective of the controller design. A possible improve-
ment could be to introduce additional damping terms in the transfer functions
to approximate Landau damping.

5.2 Analysis of a Beam Experiment

The results of a beam experiment are used in this section to verify the developed theory
and the simulation results.6) A more detailed description of the experimental setup can be
found in [60] and [95].

6)The beam experiment was realized at the SIS18 at GSI by Dr. Harald Klingbeil, Monika Mehler, Dr. Bernhard
Zipfel, Dr. Ulrich Laier, and Dr. Klaus-Peter Ningel. The measurement data in this section is courtesy of Dr.
Harald Klingbeil, GSI.
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5.2.1 Introduction

The simulation parameters of Section 5.1.4 were chosen suchthat they match with the
beam experiment. The parameters of Table 5.2 are thus also valid in this section.

The initial RF amplitude is again5 kV and is raised stepwise to10 kV to induce large
amplitudes of bunch length oscillations. The evolution of the bunch shape is shown in
Figure 5.11 in a simplified way. The figures show a uniform distribution, but the reasoning
is equally valid for other distributions.

First, the bunch is matched before the voltage step. The bunch has a size of2σϕ =
ϕ̂ and a varianceE2,0. The bunch shape matches with a trajectory in the phase space
(∆ϕ, ∆ϕ̇). In a linear approximation the solution (2.37)

∆ϕ(t) = ϕ̂ cos(ωsynt)

holds and the intersections of the trajectory are∆ϕ = ϕ̂ and∆ϕ̇ = ϕ̂ωsyn. The constant
Φk,0 is not important here and will be omitted.

Second, the voltage is doubled and this changes the synchrotron frequency by a factor
of

√
2, as follows from (2.38). This leads to

∆ϕ(t) = ϕ̂ cos(
√

2ωsynt)

and the trajectories are stretched by a factor of
√

2 in direction of∆ϕ̇ (Figure 5.11, center).
The bunch shape is not altered by the voltage step but is now mismatched, i. e.̃C2,0 = E2,0.
The particles of the bunch will then follow the new trajectories, resulting in bunch length
oscillations.

Third, the bunch will settle at a new equilibrium due to filamentation or feedback. If
the feedback is fast enough and filamentation is negligible,the bunch area will remain
constant. The new equilibrium is then given byẼ2,0 = E2,0/

√
2 (Figure 5.11, right).

The relative mismatch of the bunch due to the voltage step canthus be expressed as

C̃2,0 − Ẽ2,0

Ẽ2,0
=

√
2 − 1 ≈ 41%.

In normalized coordinates(x = ∆ϕ,y = ∆w), the increase of the RF amplitude does not
change the trajectories, but corresponds to a compression of the bunch in direction ofy
by a factor of

√
2. The final bunch area is thus smaller by a factor of

√
2 compared to the

area before the voltage step.
It has to be emphasized that this experiment is an extreme situation that usually should

not occur during normal operation. The large oscillation amplitudes are intended to test
the theory and the validity of the feedback setup [60].

The experiment comprised three runs:

L The feedback loops were switched off and the oscillations were only damped by
Landau damping.

Q The quadrupole (i. e. bunch length) feedback loop was switched on.

DQ Both the dipole (i. e. bunch phase) and quadrupole (i. e. bunch length) feedback
loops were switched on.
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ϕ = E2,0√
2

Matched before step Mismatch after step Matched after step

Figure 5.11:Simplified evolution of the bunch shape during the experiment.

5.2.2 Beam Profile

To be able to simulate the experimental setup, the followingmissing parameters have to
be defined: the bunch density function and the parameters of the feedback loop.

It is assumed that the bunch approximately has the Gaussian density (3.33). For a
matched bunch, the translationr and the orientationΦ can be set to zero and the remaining
degrees of freedom are the standard deviationsσx := σ1x andσy := σ2x . In addition,
the choice of one standard deviation will determine the other standard deviation. For
example, for small bunches it will be reasonable to chooseσx = σy. For large bunches,
the density (3.33) will not lead to exactly matched shapes, but it is possible to make a
good approximation. As it has become clear in Chapter 4, the variable2σx is an important
quantity that determines the bunch dynamics. A possible conclusion that is confirmed by
simulations is to interpret2σx and 2σy as effective half-axes of the bunch [56, 60]. It
seems thus reasonable to match the bunch at the contour line of x̂ = 2σx . This is done as
follows. In a nonlinear stationary bucket the intersections of the trajectories are given by
(cf. (2.54))

ŷ =
√

2 [1 − cos x̂],

where againx := ∆ϕ andy := ∆w was used. Choosinĝy = 2σy and x̂ = 2σx finally
leads to

σy =

√

1 − cos(2σx)

2
. (5.18)

This gives an extra condition for the matched shape and onlyσx remains as the last degree
of freedom.

Equation (5.18) is only used to have a good starting point forσy. A subsequent fine-
tuning in the simulation is done forσx andσy to minimize any bunch oscillations before
the voltage step. As the measurements are given in arbitraryunits, the fitting procedure
also includes finding appropriate scaling factors. It is assumed that the measurements
ybeam of the beam currentibeam are scaled with the gainS1 and the offsetS0 as

ybeam(t) = S1 · ibeam(t)− S0. (5.19)
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Figure 5.12:Beam current measurementsybeam before the voltage step for the three runs
L (only Landau damping), Q (bunch length feedback), and DQ (bunch phase and length
feedback): measurement (solid) and nonlinear tracking simulation (dotted).

Table 5.4: Initial shape and scaling parameters of the bunches before the voltage step.

σx σy (5.18) E2,0 = σ2
x E0,2 = σ2

y S1 S0

unit rad rad rad rad2 rad2 A−1 1

Run L 1.0654 0.8313 0.87497 1.135 0.691 180 0.475
Run Q 1.1476 0.8894 0.91178 1.317 0.791 195 0.45
Run DQ 1.1459 0.8881 0.91107 1.313 0.789 200 0.5

It is also assumed thatS1 andS0 do not change during a given experiment, but may vary
between different experiments.

With the two standard deviations and the scaling parameters, there are four degrees of
freedom for the fitting. Three features of the beam current are chosen: the maximum, the
minimum, and the width of the beam currentybeam(t). The parametersσx , σy, S1, and
S0 were chosen such that the features of the simulation match the measurement and such
that the bunch oscillations before the voltage step are minimal (matched bunch).

The result of the fitting is shown in Figure 5.12 for the three different runs and Table 5.4
summarizes the standard deviations and compares these with(5.18). The difference be-
tween the fine-tunedσy and (5.18) is only a few percent. The scaling parameters are also
given in Table 5.4.

Now that the bunch sizeE2,0 before the voltage step has been determined, the equi-
librium Ẽ2,0 after the voltage step can be calculated according to the considerations of



5.2 Analysis of a Beam Experiment 149

Table 5.5:Effective frequencies and gains.

E2,0 Ẽ2,0 = E2,0√
2

ω1
ωsyn

(
Ẽ2,0

) ω2
2ωsyn

(
Ẽ2,0

) b1
2a2+a3

(
Ẽ2,0

)

Run L 1.135 0.803 0.818 0.731 0.251
Run Q 1.317 0.931 0.792 0.694 0.303
Run DQ 1.313 0.928 0.793 0.695 0.302

Figure 5.11. WithẼ2,0 = E2,0/
√

2, the effective frequencies

ω1

ωsyn

(
Ẽ2,0

)
=
√

a1

(
Ẽ2,0

)
,

ω2

2ωsyn

(
Ẽ2,0

)
=

√

2a2

(
Ẽ2,0

)
+ a3

(
Ẽ2,0

)

4

can be calculated using the coefficientsa1, a2, a3, andb1 of Appendix C.4.4 for Gaussian
densities. The results are presented in Table 5.5.

5.2.3 Tracking Simulations

The experimental results are now compared with the nonlinear tracking simulations. The
simulation program uses the nonlinear discrete mapping equations in∆ϕ and∆W/ωRF

for the longitudinal dynamics. The particle positions in phase space are converted to the
(x, y) plane with the variablesx = ∆ϕ andy = ∆w = −∆ϕ̇/ωsyn. The beam current
signal is calculated as a histogram using bins on the∆ϕ-axis. The beam signal amplitude
and phase are obtained by a FFT of the beam current signal. Since coherent modes were
excited in the experiment, only one bunch is simulated and compared with one bunch
of the h = 8 measured bunch signals. At the voltage step at10 kV, the cavity dynam-
ics are taken into account by the time constantsTcav,ε = 20 µs andTcav,ϕ = 0 µs, cf.
Equations (5.2) and (5.3). This improves the agreement between the simulation and ex-
perimental results. In addition, a small dipole oscillation is excited by shifting the bunch
in the phase space. These additional assumptions increase the agreement between the sim-
ulation and the measured data. The reason for the excitationof a small dipole oscillation
seems to be that the cavity was detuned at the moment the voltage was increased.

The parameters of the feedback loops are given in Table 5.6. Because the two runs
Q and DQ are very similar in terms of the bunch size, only the bunch size of the run
DQ is considered. The filter frequenciesfpass are exactly known from the experiment.
The resulting relative filter frequenciesχ1 andχ2 can be calculated, because the effective
frequenciesf1 and f2 were already determined in Table 5.5.

In contrast to the frequenciesfpass, the gainsK1 andKI,d of the feedback loops are not
exactly known. For this reason, they are adjusted in the simulation as well to optimize
the agreement between simulation and experiment of the amplitude A1 and the phase
∆ϕdet . These results are shown in Figure 5.13. They agree well withthe measurements
that are presented in [60]. Particularly, the oscillation of run L in Figure 5.13 shows a
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Table 5.6:Feedback parameters.

Bunch phase Bunch length

f1 0.793 · fsyn f2 0.695 · fsyn

fpass,1 3500 Hz fpass,2 9000 Hz

K1 6711 KI,d -28.9

K1
ω1

0.41 K2
ω2

0.285

χ1 =
fpass,1

f1
1.33 χ2 =

fpass,2

f2
1.95

Jlin,1 0.72 Jlin,2 0.94
Jnl 0.38 Jnl 0.96
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Figure 5.13: Nonlinear tracking simulations: amplitudeA1 and phase∆ϕdet . Run L
(lower curves), run Q (middle curves), and run DQ (upper curves). The scaling and offset
parameters are given in Table 5.7.

period of about200 µs. The period of a quadrupole oscillation in a linear bucket would
be (2 fsyn)−1 = 150 µs, this corresponds to a ratio of 0.75 which is very close to the
calculated ratioω2/2ωsyn = 0.731 of Table 5.5. Again,A1 is measured in arbitrary
units and a scaling as in (5.19) is assumed. The corresponding scaling factors are given in
Table 5.7.

It is important to note that all scaling parameters except for the feedback gainsK1 and
KI,d are fitted only for the beginning of the simulation, i. e. fort = 0 to have the same
initial configuration for simulation and experiment.

The upper diagram of Figure 5.14 compares the measured and simulated beam current
at the first maximum ofA1 after the voltage jump. There are some deviations, but the
general agreement between experiment and simulation is fine. The same is valid for the
comparison at the end of the simulation, shown in the lower diagram of Figure 5.14.

Figure 5.15 shows the variances obtained by the tracking simulations. The initial vari-
ances before the voltage step att = 0 are the variancesE2,0 of Table 5.5. The calculation
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Table 5.7:Scaling parameters of Figure 5.13.

S1(A1) S0(A1) S1(∆ϕdet) S0(∆ϕdet)

Run L 289 1
A 0 1 −10◦

Run Q 289 1
A 0.125 1 0◦

Run DQ 289 1
A 0.2 1 10◦
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Figure 5.14: Top: Beam current measurementsybeam at the first maximum ofA1 after
the voltage step (t = 0.11 ms) for the three runs L, Q, and DQ: measurement (solid)
and simulation (dotted).Bottom: Beam current measurementsybeam at the end of the
simulation for the three runs L (t = 1 ms), Q (t = 0.6 ms), and DQ (t = 0.6 ms):
measurement (solid) and simulation (dotted).

of the equilibriaẼ2,0 given in the same table and defined in Figure 5.11 is based on the
assumption that there is no filamentation. Consequently, the variancesC2,0 at the end of
the nonlinear tracking simulations are slightly larger, ascan be observed from Figure 5.15.
A comparison yields an increase in variance between5% and10%.
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Figure 5.15: Tracking simulations: variancesC2,0 andE2,0 for coordinatesx andy. (a):

C2,0, (b):
√

C2,0C0,2 − C2
1,1, (c): C0,2.

The results show that the most important dynamics of the beamand the feedback loops
have been taken into account in the nonlinear macro particlesimulation and the results
obtained in Section 5.1 can be applied. In particular, Figure 5.8 shows that the feedback
parameters in the experiment were chosen close to the optimawith respect toJlin.

5.3 Exemplary Nonlinear Controller Design

The previous stability results rely on linearized models. In this section, two nonlinear
approaches for the stability analysis and controller design are proposed for Model (4.37).
The intention is to show how nonlinear methods could be used to enhance the feedback
analysis and performance. An important topic will be the definition of and the explicit
consideration of input constraints foru1. Due to limited RF power and high-voltage con-
straints, the amplitude of the gap voltage is limited. Therefore, it will be assumed in the
following that the amplitude modulationuε = u1 is limited to 10% of the nominal gap
voltage amplitude, i. e.u1,max = 0.1. This value is reasonable for the present RF setup of
the synchrotron SIS18. The section presents preliminary results that should be extended
before they can be used in real experiments. Nevertheless, the examples show what is
possible in principle.

The methods in this section rely on the stability theory of Lyapunov, more specifically
on the direct method [123]. The validity of the results is restricted to very small bunches
or bunches in a linear bucket. In addition, no time delays aretaken into account. In
principle, methods based on convex optimization exist thatare able to include time delays.
At present, the manageable model complexity is however limited to systems with a few
states due to computational reasons. New developments or solvers might overcome this
limitation.
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Figure 5.16: Trajectories of
system (5.20) withu1 = 0.
The coordinates are normal-
ized with E2 =

√
I2. I2 is

constant, since the dynamics
are valid for a linear bucket
without filamentation.

5.3.1 Stability of the Quadrupole Mode

System (4.37) has one coupling termB1,0u1 that couples the basic moments with the
second order moments. Damping oscillations of the variancemay thus induce oscillations
of the bunch center. The coupling is weak, since bothB1,0 andu1 are usually small, and
can be cancelled by choosing the control law

u2 = u∗
2 − B1,0u1.

The actuator variablesu1 andu2 are given in (4.27c) and are a combination of the phase
modulationuϕ and the amplitude modulationuε.

Considering only the second order moments, system (4.37) can be rewritten as

ẋ(t) = ωsyn

[ −2x2(t)

x1(t)− I2+x2
2(t)

x1(t)

]

+ ωsyn

[
0

x1(t)

]

u1(t) = a(x) + b(x)u1 (5.20)

with the statesx1 = C2,0 and x2 = C1,1. A linearization of this system, as has been
considered in (4.38) may be a valid approximation in the vicinity of the equilibrium, but
in general it will be more accurate to analyze the nonlinear dynamics. Figure (5.16) shows
the trajectories of the uncontrolled nonlinear system in the state space(x1,x2) ∈ R2. Only
the open right half-planex1 = C2,0 > 0 is of physical interest, since a positive density
function leads to a positive variance. As can be expected, the trajectories do not cross the
axis x1 = 0. Near the equilibriumxeq = (x1,x2) = (

√
I2,0), the trajectories become

similar to the linearization (4.38), i. e. to the trajectories of a harmonic oscillator. For
larger amplitudes, the trajectories are deformed but remain closed.

The majority of methods for nonlinear control systems rely on the Lyapunov theory.
If it is possible to find a Lyapunov or a so-calledControl-Lyapunov functioncandidate,
further methods can be applied [6, 124]. Roughly speaking, aLyapunov functionV(x)
represents a generalized energy function of the nonlinear system. If it can be shown that
the energy or value ofV decreases along the trajectories of the system, it can be concluded
that the system is asymptotically stable, without the necessity to explicitly calculate the
trajectoriesx(t) of the system.
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The method of Krasovskii is a constructive method to generate a Lyapunov function
candidate [123]. The basic idea is to simply check whether the choice

V(x) = a(x)Ta(x) =



−2I2 + x2
1 + 2x2

2 +

[

I2 + x2
2

x1

]2


ω2
syn (5.21)

is a Lyapunov function of the autonomous system (5.20), i. e.for u1 = 0. For the uncon-
trolled system, the derivative ofV with respect to time is

V̇ =

[

2x1 ẋ1 + 4x2 ẋ2 + 2

[

I2 + x2
2

x1

]

2x2 ẋ2x1 − [I2 + x2
2]ẋ1

x2
1

]

ω2
syn

(5.20)
= 0.

In additionV(x) ≥ V(xeq) = 0. Thus,V is a constant of motion for the uncontrolled
system and is a possible Lyapunov function.

For the controlled system with a feedbacku1 = u1(x)

ẋ = a(x) + b(x)u1(x) := g(x), (5.22)

the derivative ofV is

V̇ = a(x)TVx(x) +
[

bT(x)Vx(x)
]

u1(x) = 4ω2
synx1x2

[

1 +
I2 + x2

2

x2
1

]

u1(x),

whereVx denotes the gradient ofV, and the controlleru1 = u1(x) can be chosen such
thatV̇ < 0 on the open right half-plane except for the set

b(x)TVx(x) = 0 ⇒ M0 :=
{

x ∈ R
2 : x1 > 0 andx2 = 0

}

. (5.23)

For example, a possible choice would beu1(x) = −x1x2. In the setM0 the inputu1 has
no influence on the system andV̇ = 0.

This shows thatV is not a Control-Lyapunov function [6, 124], because there are re-
gions in the open right half-plane whereV̇ equals zero.

The following definition of invariant sets is now useful.

Definition 5.1 ([123], p.68). A setMI is aninvariant setfor a dynamic system if every
system trajectory which starts from a point inMI remains inMI for all future time.

In the setM0 of (5.23), only the equilibrium is an invariant set; since for every element
of M0 with x1 > 0

ẋ2
(5.20)
=

[

x1 −
I2

x1

]

ωsyn

{

= 0 for x1 =
√

I2

6= 0 else

holds, every trajectory that enters the setM0 will immediately leave it, except for the
equilibrium

MI =
{

x : x1 =
√

I2, x2 = 0
}

. (5.24)

Next, to guarantee asymptotic stability, the invariance principle of Barbashin, Krasovskii,
and LaSalle can be applied.
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Theorem 5.1 (Local Invariant Set Theorem, [123], p.69). Consider the nonlinear, au-
tonomous system(5.22)with a continuous vector fieldg : X → Rn defined on the open
subsetX of R

n. Let V(x) be a scalar function with continuous first partial derivatives.
Assume further that

• for somel > 0, the regionVl defined byV(x) < l is bounded and

• V̇(x) ≤ 0 for all x ∈ Vl .

LetM0 be the set of all points withinVl whereV̇(x) equals zero, andMI be the largest
invariant set inM0. Then, every solutionx(t) originating inVl tends toMI ast → ∞.

For V ≤ 0, the Lyapunov function (5.21) is equivalent to the equation

V

4ω2
syn

=

[

x1 −
√

I2 +
V

4ω2
syn

]2

+ x2
2.

This equation describes circles in the open right half-plane x1 > 0 with the radiusr =√
V/2ωsyn and the center(

√

I2 + r2,0) and it can thus be concluded that the set

Vl =
{

x
∣
∣
∣ V(x) < l, 0 ≤ l < ∞

}

(5.25)

with V(x) from (5.21) is bounded.
If, in addition, the controlleru1(x) is chosen such that

V̇ = 4ω2
synx1x2

[

1 +
I2 + x2

2

x2
1

]

u1(x) < 0 for x ∈
{

x ∈ R
2
∣
∣
∣ x1 > 0 andx2 6= 0

}

,

(5.26)

the second conditioṅV ≤ 0 of Theorem 5.1 is also satisfied inVl and the system tends to
the invariant setMI that contains only equilibrium (5.24). This equilibrium isasymptot-
ically stable and domains of attraction are given by (5.25) for any finitel.

The following important statement can be made:

In a linear bucket, assuming dynamics (5.20), any controller u1(x) that satis-
fies (5.26) will lead to asymptotic stability of the bunch length C2,0 for arbitrary
initial values.

Remark5.3. This statement is also valid for saturating controllers, i.e. controllers that
have a saturation of their amplitude|u1| < u1,max, with a givenu1,max. This can be
shown as follows: For every givenVl , a nonsaturating controller can be found:u1 =
h(x) = −kx2 with k > 0 satisfies (5.26) andk can be chosen small enough such that
|h(x)| < u1,max in Vl . According to the stability theorems for saturating controllers,
cf. [47, 77] and [78, Theorem 2], it is then sufficient to find a second control lawu1 =
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k(x) that also satisfies (5.26), but is allowed to have amplitudeslarger thanu1,max. The
controller

u1 = sat (k(x)) :=







−u1,max for k(x) < −u1,max

k(x) for |k(x)| < u1,max

u1,max for k(x) > u1,max

will then lead to an asymptotic stable equilibrium (5.24).
Strictly speaking, the mentioned theorems from [47, 77, 78]requireV̇ < 0 on the

complete setVl \M and this is not the case for the system under consideration. However,
the theorems can be adjusted using Theorem 5.1.

5.3.2 Optimization Based Controller Design

Sum of Squares The last section has shown the stability analysis based on a Lyapunov
function for a given controllerk(x). The set of possible control laws is large and, usually,
stability is not the only important criterion. Further requirements can be the damping
rate or the size of the region of attraction. If the controller is chosen rather randomly,
an iterative trial-and-error search will be necessary during which several controllers are
chosen and their performance is evaluated by means of simulations. Usually, optimization
based approaches can improve the controller design. In manycases, performance criteria
can be included in the optimization process.

Especially for nonlinear systems with actuator saturation, sum of squares techniques
are an active research topic. The sum of squares decomposition relies on the fact that a
sufficient condition for a given polynomial to be nonnegative can be expressed as a vali-
dation problem with linear matrix inequalities (LMIs) [33].7) The underlying idea is that
if the polynomial can be written as a sum of squared polynomials, i. e. if it belongs to the
class of SOS polynomials, it surely is nonnegative. The approach is somewhat conserva-
tive, because there exist nonnegative polynomials that cannot be written as an SOS poly-
nomial. However, the approach is advantageous, because efficient computer algorithms
exist for LMI problems. In control applications, polynomials are used as Lyapunov func-
tions and conditions for stability and other performance criteria can be written as a set of
LMI conditions, which are then solved numerically.

A short overview of SOS is presented in [128]. Survey papers are [104] and [21]. A
detailed description of the underlying optimization methods of the following results can
be found in [33, 34, 36]. The following design can be found in [75], preliminary results
are given in [111].

Design Assumptions With the new normalized coordinates

τ = ωsynt, x̃1 =
C2,0 − E2

E2
=

x1√
I2

− 1, x̃2 =
C1,1

E2
=

x2√
I2

,

7)The optimization results with SOS in this section are courtesy of Thomas Gußner.
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System (5.20) can be rewritten as

˙̃x =

[

−2x̃2

x̃1 +
1+x̃2

2
1+x̃1

]

+

[
0

1 + x̃1

]

u1(x̃). (5.27)

It is assumed that the initial statex̃(t = 0) is contained in the set

X0 =

{

x ∈ R
2
∣
∣
∣

√

x̃2
1 + 4x̃2

2 ≤ 0.2

}

. (5.28)

Design Method and Results In [36], a design method is proposed for polynomial sys-
tems which can also be applied to rational systems. The method is based on sum of squares
decomposition and convex optimization. The results of thisdesign are a polynomial or
rational control lawk(z) and an estimate of the region of attraction8). The control law

u1 = sat(k(x̃))

is allowed to saturate, i. e.|k(x̃)| > u1,max = 0.1 might occur during stabilization. The
stability analysis is based on an extension of a theorem in [47]. In the following, two
different scenarios and design objectives are discussed that may be of interest during the
operation in a synchrotron:

• Maximize the region of attraction: This is useful if large deviations or disturbances
are to be expected, e. g. at injection of the beam in the ring.

• Maximize the decay rate for the given set of initial values (5.28): a fast damping
time can maintain the beam quality, e. g. during acceleration of the beam.

For the first scenario, a polynomial controller of degree 3 and a polynomial Lyapunov
function of degree 4 are optimized with respect to the regionof attraction. The resulting
controller has only significant coefficients in the linear terms x̃1 andx̃2:

u1,roa(x̃) = sat(0.014x̃1 − 0.252x̃2). (5.29)

Since control algorithms in modern RF feedback systems are typically implemented using
technologies like field programmable gate arrays (FPGAs), cf. [7, 59], this simple linear
controller is appealing from a practical point of view.

For the second scenario, a rational control law of degree 3 and a polynomial Lyapunov
function of degree 4 are optimized with respect to the decay rate, which yields

u1,dr(x̃) = sat

(

a ·
[
x̃1 x̃2 x̃3

1 x̃2
1 x̃2 x̃1 x̃2

2 x̃3
2

]T

b ·
[
1 x̃1 x̃2 x̃2

1 x̃2
2 x̃1 x̃2

]T

)

, (5.30)

a =
[
0.38 −2.54 0.032 −0.076 0.012 −0.12

]
,

b =
[
0.57 0.45 0.24 0.38 0.92 0.11

]
.
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Table 5.8:Tracking simulation parameters.

Ion species protons ωS 3625.7 Hz
Macro-particles 647 ϕR 0
Initial m2ϕ 0.25 Bunch length 2 rad ≈ 115 ◦

Simulation Results Two different methods were used to compare the performance of
the control strategies:

• Simulation of the closed loop system (5.27). This can be performed independently
of the synchrotron parameters and the size of the bunch.

• The numerical results of a nonlinear macro particle tracking simulation. An ellip-
soidal particle bunch with a homogeneous distribution was used. The simulation
parameters are shown in Table 5.8.

The performance of the controllers and their region of attraction are shown in Fig-
ure 5.17 for both simulation methods. Comparing these results, the following observations
can be made:

• For the chosen bunch size, the model (5.27) agrees very well with the nonlinear
particle tracking and the control performance is very similar for both simulations.
This indicates that model (5.27) can be used for a controllerdesign for small and
medium-sized bunches in a nonlinear bucket.

• Controller (5.29) with a large region of attraction allows deviations of the second
moments of more than50%.

In both cases, the Lyapunov function was part of the optimization process and is assumed
to be a polynomial of a given order with unknown coefficients.The use of the Lyapunov
function (5.21) could be used to further improve the results.

Limitations Before the designed controllers may be implemented, some important is-
sues have to be considered. Both controllers use the complete state vector and the nor-
malized deviation of the variancẽx1 = ∆C2,0/E2,0. Since the equilibriumE2,0 is usually
not directly accessible to measurements,E2,0 has to be estimated. The same applies to the
covarianceC1,1. Possible solutions are the design of a nonlinear observer or a dynamic
output-feedback control. The conventional FIR filters thatwere presented in previous sec-
tions of this chapter have a slower damping, but are of the output-feedback type and do
not require the estimation ofE2,0 due to their DC rejection.

The presented design with SOS is valid for linear buckets andis dependent on the
measurement or an estimation of both variancesC2,0 andC0,2 and the equilibriumE2.
Thus, for realistic bunch sizes, the existing FIR feedback considered in Section 5.1 has

8)The results are obtained using the Matlab toolboxes of [82] and [127].
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Figure 5.17: Upper diagrams: control (5.29) with optimized region of attraction.Lower
diagrams: control (5.30) with optimized decay rate.Left and center: statex̃1 and input
u1 versus normalized timeτ (+: tracking simulation,×: simulation of system (5.27),
△: top f (τ) = 0.2 e−0.25τ, bottom f (τ) = 0.2 e−0.5τ). Right: stability analysis (×:
trajectory of system (5.27),△: setX0, +: domain of attraction,∇: limits of actuator
saturation).

several advantages. Nevertheless, further work may use some of the nonlinear methods
discussed in this section to improve the feedback performance.

5.4 Conclusion

The derived models have been used to analyze RF feedback loops at GSI. The closed-loop
dynamics have been described by a linear time-invariant delay-difference equation. A sta-
bility analysis has been performed analytically and leads to stability regions in the control
parameter space. Tracking simulations have then been used to evaluate the performance
of the feedback and of the additional Landau damping for a nonlinear bucket. A compar-
ison with measurements from a beam experiment shows that there is a good agreement
between measurements, simulations, and models. In particular, the measured frequency
of the quadrupole mode agrees well with the frequency predicted by the model for the spe-
cific bunch size. Nevertheless, the results show some limitation of the proposed models.
If Landau damping is considerably larger than the damping introduced by the feedback
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loop, the validity of the linear models is limited. However,this limitation is usually not
serious, because a desired result of the feedback design is typically a damping rate that is
considerably larger compared to Landau damping.
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6 Conclusion

The transport of bunched beams in a synchrotron is determined by the initial particle
distribution and the electromagnetic fields in the ring. Even for the ideal case where
interactions between the particles and self-fields of the bunch can be neglected, this is a
high-dimensional, nonlinear problem and analytical solutions exist only for drastic simpli-
fications. Therefore, numerical particle tracking simulations are typically used to evaluate
the beam dynamics. RF feedback loops are active measures to stabilize the bunched beam
in the longitudinal phase plane. Numerical simulations lead to valuable conclusions, but
these are restricted to specific beam and synchrotron parameters. It is therefore desir-
able to have simplified, approximate models that describe the closed-loop dynamics in
an analytical way. Existing models of RF feedback loops are based on a linearization of
the single-particle dynamics. This limits their applicability to small bunches in the linear
regime of the bucket with bunch shape oscillations of orderm = 1 andm = 2.

The main topic in this thesis is the question how longitudinal single-bunch oscillations
can be damped. The steps that were taken in this thesis to tackle the problem are the
following. First, new models of the bunch shape oscillations were developed. These are
state-space models that describe the dynamics of the moments of the bunch with RF phase
and amplitude modulations as inputs. The models were obtained using a newly developed
modeling procedure that comprises a moment approach and a truncation method. Second,
methods from control theory were used to analyse the properties such as the controllability
and stability of the models. Third, the complete RF feedbackloops for bunch position and
bunch length feedback were modeled. An important new contribution for this part was
the modeling of the short-term spectrum of the beam current signal and the derivation of
simplified relations between the Fourier coefficients of thebeam current signal and the
bunch shape, i. e. the bunch position and bunch length.

New insights and results of this thesis are summarized in thefollowing. It has been
shown that, in general, the dynamics of the moments are coupled and nonlinear and a
model truncation is necessary to obtain a low-dimensional model. For the stationary case,
the coupling is only between the odd moments on the one hand and the even moments on
the other hand. The moments of orderm are correlated with modem, but in general there
is no one-to-one correspondence. In the special case of the linear bucket, the moment
dynamics are decoupled for different moment orders. In general, the inputs, i. e. the phase
and amplitude modulations, act on all moments. A special case is the stationary case,
where the phase modulation acts only on the basic moments, i.e. the center of gravity of
the bunch, and the amplitude modulation acts only on the central moments.

Concerning the controllability in the nonlinear bucket, a nonlinear truncated model with
moments and modes up to order four was analyzed. This model isan approximation to the
real high-dimensional dynamics, because of the truncationand the Taylor series approxi-
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mation of the beam dynamics. The model was shown to be first-order controllable and it
can be concluded that the moments up to order four are locallycontrollable with the con-
sidered inputs, i. e. RF phase and amplitude modulations. However, it has to be noted that,
as the model is an approximation due to the reasons stated above, a final rigorous proof for
the original high or infinite-dimensional system remains anopen topic. Nevertheless, the
controllability analysis provides a very strong argument that the first four bunch modes
can be damped by the two inputs phase and amplitude. For the linear bucket, a similar
model was analyzed which was shown to be not first-order controllable. A more advanced
nonlinear controllability analysis would be necessary to decide if the model is indeed not
locally controllable. However, simulation results support the indication that only dipole
and quadrupole oscillations can be damped in a linear bucket. An important result of the
thesis is the calculation of the mode frequencies, i. e. the oscillation frequencies of the
bunch shape. It has been demonstrated that the mode frequencies depend on the bunch
size and the type of density function. An important parameter for this is the two-sigma
length of the bunch, which can be interpreted as the effective half axis of the bunch shape.

The preceding theory has been used to analyze the stability of a bunch length feed-
back loop. A stability diagram for this feedback loop has been calculated and compared
with tracking simulations. In these simulations, two different definitions of the damp-
ing performance have been compared: a fast damping rate versus a small increase of the
longitudinal emittance. For the bunch length feedback, these definitions lead to different
feedback parameters for an optimal performance. The comparison of a beam experiment
with the tracking simulations and the analytical stabilityanalysis shows a good agreement
between the real beam behavior, the tracking simulations, and the developed models. The
only major difference between the models and the simulations is the fact that the models
do not reproduce Landau damping or filamentation. In many cases, the feedback is in-
troduced to increase the damping if Landau damping is not sufficient. In these cases, the
damping of the feedback should be considerably larger than Landau damping and the de-
veloped models are perfectly suitable for a feedback design. An essential overall result of
this thesis is the conclusion that nonlinearities in the beam dynamics should be taken into
account in the modeling procedure, because they have a strong impact on the properties
of the RF feedback loops; important effects are the dependency of the mode frequencies
on the bunch size and the controllability of higher order modes.

Further work could focus on the refinement of the derived models and the effects of
Landau damping. Also, the existing control algorithm for the bunch length may be fur-
ther optimized to achieve a larger damping. Because the modefrequencies depend on the
bunch length, it would be desirable to adapt the feedback parameters to the bunch length.
For higher order oscillation modes, the derived models of this thesis may be used for fur-
ther analysis and controller design. The controllability of higher modes in a linear bucket
could be further elaborated using methods to analyze nonlinear controllability. Also, the
models developed in this thesis are valid for stationary linear and nonlinear buckets. It
would be desirable and is in principle possible to apply the developed modeling approach
for accelerating buckets as well. As the moment approach is versatile, the investigation of
more complex RF potentials should be viable as well. Finally, more effects of longitudinal
beam dynamics could be included to examine RF feedback in case of large beam currents.
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A Mathematical Formulae

A.1 Elliptic Integrals

The (incomplete) elliptic integral of the first kind is

F(ϕ,k) =

ϕ
∫

0

dθ
√

1 − k2 sin2 θ
. (A.1)

For k > 1, the following transformation is given in Abramowitz/Stegun [2]:

F(ϕ,k) =
1

k
F

(

arcsin(k sin ϕ),
1

k

)

.

For the special casek = csc ϕ = sin−1 ϕ, this leads to

F(ϕ, csc ϕ) = sin ϕ K(sin ϕ), (A.2)

whereK(k) is the complete elliptic integral of the first kind

K(k) = F
(π

2
,k
)

.

Special values are

K(0) =
π

2
, K(1) = ∞.

The (incomplete) elliptic integral of the second kind is

E(ϕ,k) =

ϕ
∫

0

√

1 − k2 sin2 θ dθ.

The complete elliptic integral of the second kind reads

E(k) = E
(π

2
, k
)

.

Special values are

E(0) =
π

2
, E(1) = 1.

In the special caseE(ϕ, csc ϕ), the incomplete elliptic integral of the second kind can be
written as a combination of the complete integrals of the first and second kind [135]:

E(ϕ, csc ϕ) = csc ϕ E(sin ϕ)− cos ϕ cot ϕ K(sin ϕ), −π

2
< ϕ <

π

2
. (A.3)
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Table A.1: Properties of Bessel functions

Jp(−x) = (−1)p Jp(x) = J−p(x)

J′p(x) = 1
2

[
Jp−1(x)− Jp+1(x)

]

Jp(0) =

{

1 p = 0

0 else

A.2 Special Functions

A large variety of properties and formulas for special functions can be found in [2] and a
summary of properties of the Bessel functions is given in [19].

The Bessel function of the first kindJp(x) of orderp can be defined as the series

Jp(x) =
∞

∑
k=0

[−1]k

k! Γ(p + k + 1)

[ x

2

]2k+p

with the Gamma functionΓ(n). For positive integersn, the Gamma function reduces to
the factorial function

Γ(n) = [n − 1]! = [n − 1] · [n − 2] · . . . · 2 · 1

and the Bessel function of the first kind of orderp is

Jp(x) =
∞

∑
k=0

[−1]k

k! [1 + p + k]!

[ x

2

]2k+p
=

1

p!

[ x

2

]p
− 1

2![p + 1]!

[ x

2

]p+2
+ . . . .

Further properties ofJp are summarized in Table A.1. The Bessel function of the first kind
of order 1 is

J1(x) =
∞

∑
k=0

[−1]k

k! [1 + k]!

[ x

2

]2k+1
=

x

2
− x3

16
+

x5

384
− x7

18432
+ . . . .

For smallx ≪ 1, the following approximation holds:

J1(x)

x
≈ 1

2
− x2

16
. (A.4)

The functionJ1 is also a solution of the integral

1∫

−1

√

1 − x2 e−iax dx =

{
π
2 a = 0,
π J1(a)

a a 6= 0.
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A.3 Spectrum of Phase Modulated Signals

To calculate the spectrum of frequency modulated signals, the expressions in this section
are useful. An overview of the theory of signal processing can for example be found
in [53] and modulation processes are described in more detail in [50].

A.3.1 General Notation

A periodic functionf (t) with periodT0 and the frequencyω0 = 2π/T0

f (t + T0) = f (t) ∀t ∈ R

can be written as a Fourier series

f (t) =
A0

2
+

∞

∑
k=1

Ak cos(kω0t + ϕk) =
∞

∑
k=−∞

ckeikω0t. (A.5)

The complex Fourier coefficients can be calculated as

ck =
1

T0

t0+T0∫

t0

f (t) e−ikω0t dt

with an arbitrary real constantt0. If f (t) is a real function for allt,

c−k = c̄k

holds, wherec̄ denotes the conjugate-complex value ofc. The amplitudesAk and the
phasesϕk are given by

Ak = 2 |ck | , ϕk = ∡ck = arctan
Im ck

Re ck
.

If f (t) is a time-limited, aperiodic signal, the limitT0 → ∞ can be considered and the
Fourier series becomes a Fourier transform

F(ω) =

∞∫

−∞

f (t) e−iωt dt (A.6)

andF(ω) is the spectral density off (t). The inverse transformation is

f (t) =
1

2π

∞∫

−∞

F(ω) eiωt dω.

With these transformations, the following symmetry property holds (cf. [28], pp.192):

f (t) c sF(ω) ⇔ F(t) c s2π f (−ω).
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In particular, this leads to the correspondence for the Dirac function

δ(t + α) c seiωα, eiω0t c s2πδ(ω − ω0). (A.7)

A more formal and general theorem is the Poisson Sum Rule [121]. If F(ω) is the Fourier
transform off (t), then

∞

∑
n=−∞

f (t = αn) =
1

α

∞

∑
n=−∞

F

(

ω =
2πn

α

)

(A.8)

holds.

A.3.2 Dirac Series and Phase Modulation

An infinite comb of Dirac delta functions

f (t) =
∞

∑
n=−∞

δ(t − nT0)

can be written as a Fourier series. The coefficients areck = 1/T0 and

f (t) =
∞

∑
n=−∞

δ(t − nT0) =
1

T0

∞

∑
k=−∞

eikω0t. (A.9)

This series can be Fourier transformed element by element and this leads to the correspon-
dence

1

T0

∞

∑
k=−∞

eikω0t
(A.7)
c s

2π

T0

∞

∑
k=−∞

δ(ω − kω0) (A.10a)

(A.9)
=

∞

∑
n=−∞

δ(t − nT0)
(A.9)
=

∞

∑
n=−∞

einT0ω (A.10b)

A.3.3 Aperiodic and Periodic Signals

If the aperiodic signalfap(t) with lengthT0 is continued such that it becomes a periodic
function

fp =
∞

∑
n=−∞

fap(t − nT0)

with periodT0 and frequencyω0 = 2π/T0, a Fourier series calculation yields

ck =
1

T0

∞∫

−∞

fap(t) e−ikω0t dt =
1

T0
Fap(kω0), (A.11)
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whereFap(ω) is the spectral density of the aperiodic signalfap(t) and the fact thatfap(t)
is zero outside the intervalt ∈ [t0 ; t0+T0] was used. In addition,T0 has to be chosen
such that there is no overlapping. This calculation demonstrates that the Fourier series co-
efficientsck can be interpreted as sampling values ofFap(ω) with the sampling frequency
ω0. The periodic signal can be written as the Fourier series

fp(t) =
∞

∑
k=−∞

ck eikω0t.

Its spectral density follows using (A.10) and is

Fp(ω) = 2π
∞

∑
k=−∞

ck δ(ω − kω0) = ω0

∞

∑
k=−∞

Fap(kω0) δ(ω − kω0).
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B Accelerator Physics

B.1 Relativistic Relations

The aim of this section is to summarize some relativistic relations that are needed in
the calculations of the main part of the thesis. A more complete selection of relativistic
formulas can be found in [14, 58].

Definitions To deduce the following relations, we have to define the relativistic normal-
ized velocityβ, the relativistic normalized energyγ, the total energyW, the kinetic energy
Wkin, the momentump, and the relativistic massm:

β =
v

c
γ =

1
√

1 −
[

v
c

]2
m = γm0

W = γm0c2 Wkin = W − m0c2 = [γ − 1]m0c2 p = mv = γm0βc

Relations The following relations are derived by using only the above definitions. It is
possible to express each variable as a function of just one other variable:

γ =
1

√

1 − β2
=

W

m0c2
=

Wkin

m0c2
+ 1 =

√

1 +

[
p

m0c

]2

(B.1)

β =
√

1 − γ−2 =

√

1 −
[

m0c2

W

]2

=

√

1 −
[

m0c2

Wkin + m0c2

]2

=
p

√

m2
0c2 + p2

(B.2)

W = γm0c2 =
m0c2

√

1 − β2
= Wkin + m0c2 =

√

c2 p2 + m2
0c4 (B.3)

Wkin = [γ − 1]m0c2 =

[

1
√

1 − β2
− 1

]

m0c2 =
√

c2 p2 + m2
0c4 − m0c2
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p =
√

γ2 − 1m0c =
βm0c
√

1 − β2
=

1

c

√

W2 − m2
0c4

=
1

c

√

Wkin[Wkin + 2m0c2]

Relative Deviations The derivation ofW with respect top leads to

dW

dp
=

2c2 p

2
√

c2 p2 + m2
0c4

=
c2 p

W
. (B.4)

Equation (B.4) can also be written as

dW =
c2 p

W
dp =

c2γm0βc

γm0c2
dp = βc dp. (B.5)

Equation (B.4) leads to

dW

W
=

c2 p2

W2

dp

p

(B.3)
=

c2 p2

c2 p2 + m2
0c4

dp

p

(B.2)
=

p2

p2 + m2
0c2

dp

p
= β2 dp

p
.

Derivating

p =
βm0c
√

1 − β2
=

vm0
√

1 − v2

c2

with respect tov yields

dp

dv
= m0

1
[

1 − v2

c2

]3/2
= m0γ3.

Thus, we have

dp

p
=

m0γ3v

p

dv

v
= γ2 dv

v
.

Similar derivations lead to

dv

v
=

dβ

β
=

1

γ2 − 1

dγ

γ
=

1

γ2β2

dγ

γ
=

1

γ2β2

dW

W
.

For small deviations the obtained results can be summarizedin the following approxima-
tion:

∆p

p
≈ β−2 ∆W

W
≈ β−2 ∆γ

γ
≈ γ2 ∆v

v
≈ γ2 ∆β

β
. (B.6)
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As β ∈ [0; 1] andγ ∈ [1; ∞[, Equation (B.6) has the consequence

∆p

p
≥ ∆W

W
=

∆γ

γ
,

∆p

p
≥ ∆v

v
=

∆β

β
, (B.7)

i. e. the relative momentum deviation is an upper limit for the relative deviations in energy
and velocity.

B.2 Simulation Parameters

Basic Constants and Parameters of the Heavy-Ion Synchrotron SIS18

Parameter Symbol Value
Circumference LR 216.72 m
Transition energy γtr 5.45
Momentum compaction αP = γ−2

tr 0.03367
Curvature radius r 10 m

Speed of light c 2.99792458 · 108 m/s
Atomic mass mamu 1.660538782 · 10−27 kg
Rest energy of1 amu Wamu 931.494028 · 106 eV

Elementary charge e 1.602176487(40) · 10−19 C

Parameters of Several Beam Experiments

Parameter Unit Protons 40Argon18+ 238Uran73+

h 4 4 4
ϕR 0 0 0
m0 amu 1.0079 39.948 238.03
Q e +1 +18 +73
Wkin/m0

eV
amu 2 · 109 80 · 106 11.4 · 106

WR J 4.7339 · 10−10 6.4739 · 10−9 3.5959 · 10−8

γR 3.1471 1.0859 1.0122
βR 0.94817 0.38978 0.15503
Û1 V 16000 12000 8000

TR s 7.6241 · 10−7 1.8546 · 10−6 4.6629 · 10−6

fsyn Hz 666.3 2302.9 1728.3
Tsyn/TR Hz 1968.5 234.13 124.09
BR T 0.93452 0.29186 0.15899

B.3 Longitudinal Tracking Algorithm

In this section the equations are summarized that are necessary for a longitudinal tracking
algorithm. With the main focus on the implementation, discrete equations are considered.
The notation will be as follows:f (n) refers to the discrete valuef at turnn.
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Step 1 At the beginning of the acceleration cycle, it is necessary to determine the follow-
ing machine and beam constants: the chargeQ and rest massm0 per particle, the bending
radiusr of the dipole magnets, the harmonic numberh, the lengthLR of the reference
orbit, and the momentum compactionαp. The acceleration cycle itself is determined by
the choice of the magnetic fieldBR(n). The initial magnetic field can be calculated from
the injection energy.

Step 2 If the initial kinetic energyWR,kin(0) or the initial total energy

WR(0) = WR,kin + m0c2

per particle is given, the momentum

pR(0) =
1

c

√

W2
R(0)− m2

0c4,

the magnetic field

BR(0) =
pR(0)

Qr
=

1

cQr

√

W2
R(0)− m2

0c4,

and the following parameters can be calculated:

γR(0) =
WR(0)

m0c2
, βR(0) =

√

1 − γ−2
R (0), TR(0) =

LR

vR(0)
=

LR

βR(0)c

fR(0) =
βR(0)c

LR
, ωRF(0) = hωR(0) = h2π fR(0)

Step 3 The initial distribution of a particle bunch withN particles has to be chosen:

∆W(0) =
[
∆W1(0) . . . ∆Wk(0) . . . ∆WN(0)

]T

ϕ(0) =
[
ϕ1(0) . . . ϕk(0) . . . ϕN(0)

]T

with as phase space coordinates the RF phaseϕ and the energy deviation∆W. The re-
maining degree of freedom is the choice of the seriesBR(n), n = 0,1, . . . ,nend, that
describe the rate of change of the magnetic field

ḂR(t) ≈
BR(n + 1)− BR(n)

TR(n)
.

The magnetic field should be chosen such that the necessary reference voltage

UR ≈ LRrḂR,

is lower than the maximum voltage of the cavity. Furthermore, the maximum and mini-
mum values ofB are limited by the magnet design. Thus,BR has an upper limit that has
to be taken into account.
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Step 4 The simulation from turnn to n + 1 is achieved by the following three steps:

4.I Mapping of the reference energy: The reference voltage can be calculated as

UR(n + 1) = m0c2

√

1 +

[
QrBR(n + 1)

m0c

]2

− m0c2

√

1 +

[
QrBR(n)

m0c

]2

,

which leads to the new reference energy

WR(n + 1) = WR(n) + QUR(n + 1).

If the reference phase is needed, it can be calculated as

ϕR = U−1
gap(UR(n)),

whereU−1
gap denotes the inverse function of the RF voltage. For a single-harmonic cavity,

this equals

ϕR = arcsin

(
UR

Û1

)

.

The last equation shows thatÛ1 should be chosen larger thanUR.

4.II Calculation of the other time varying parameters:

pR(n + 1) =
1

c

√

W2
R(n + 1)− m2

0c4 γR(n + 1) =
WR(n + 1)

m0c2

βR(n + 1) =
√

1 − γ−2
R (n + 1) ωR(n + 1) = 2π

βR(n + 1)c

LR

ηR(n + 1) = αp − γ−2
R (n + 1)

4.III Mapping of the particles:

∆Wk(n + 1) = ∆Wk(n) + Q
[
Ugap(ϕk(n))− UR(n + 1)

]

ϕk(n + 1) =
βR(n + 1)

βR(n)
[ϕk(n)− ϕf(n)− kRF ϕR(n)] +

+
2πhηR

β2
RWR

(n + 1)∆Wk(n + 1) + ϕf(n + 1) + kRFϕR(n + 1).

The constantkRF is 0 or 1, depending on which cavity RF program has been chosen, cf.
(2.25). In this thesis,kRF = 1. In principle also other phase space coordinates may be
used for the mapping, as long as the discrete equations are chosen such that their Jacobian
is correct. The RF voltageUgap(ϕ) can be chosen as a single-harmonic function, but also
as a higher harmonic or a general periodic function with fastvarying amplitude and phase.
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C Modeling Results

C.1 Coherent Oscillation Frequencies

The following table summarizes the frequencies of the coherent dipole and quadrupole
mode of oscillation of Figure 3.18. The relative frequencyfrel is defined as

frel =
fm

m fsyn
,

wherem = 1,2 is the mode number,fm the coherent oscillation frequency of modem
obtained from tracking simulations andfsyn is the linear synchrotron frequency.

Uniform Gaussian
Dipole (m = 1) Quadrupole (m = 2) Dipole (m = 1) Quadrupole (m = 2)
C2,0 frel C2,0 frel C2,0 frel C2,0 frel

0.0624 0.98 0.0624 0.97 0.0631 0.985 0.0631 0.985
0.14 0.965 0.14 0.955 0.1423 0.965 0.1423 0.965
0.248 0.938 0.248 0.925 0.245 0.94 0.245 0.92
0.389 0.9 0.389 0.89 0.394 0.89 0.394 0.80
0.556 0.855 0.556 0.85 0.56 0.89 0.56 0.73
0.753 0.8 0.753 0.8 0.783 0.85 0.783 0.7
0.997 0.73 0.997 0.73 0.996 0.8 0.996 0.57
1.254 0.65 1.254 0.66 1.273 0.8 1.273 0.54
1.56 0.54 1.56 0.58 1.52 0.8 1.52 0.65

C.2 Moments and Modes

C.2.1 Ellipsoidal Bunches

The bunch is assumed to be ellipsoidal with the uniform density function f (x,y,x0,y0,Φ)
of (3.25) or the Gaussian density function of (3.33). The parametersx0, y0, andΦ may
be functions of time or depend onωsynt to obtain a rotating bunch in the phase plane as
shown in (3.24). The basic and central momentsBnx ,ny andCnx ,ny are given in Table C.1.
Because of the symmetry between the momentsCi,j andCj,i, only half of the results are
summarized for higher order modes.
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Table C.1: Moments of ellipsoidal bunches.

Uniform Density Gaussian Density

B1,0 x0 x0

B0,1 y0 y0

C2,0
1
4

[
R2

1x cos2 Φ + R2
2x sin2 Φ

]
σ2

1x cos2 Φ + σ2
2x sin2 Φ

C1,1
1
8

[
R2

1x − R2
2x

]
sin(2Φ) 1

2

[
σ2

1x − σ2
2x

]
sin(2Φ)

C0,2
1
4

[
R2

1x sin2 Φ + R2
2x cos2 Φ

]
σ2

1x sin2 Φ + σ2
2x cos2 Φ

Cnx+ny=3 0 0

C4,0 2C2
2,0 3C2

2,0

C3,1 2C2,0C1,1 3C2,0C1,1

C2,2
4
3 C2

1,1 +
2
3 C2,0C0,2 2C2

1,1 + C2,0C0,2

C1,3 2C0,2C1,1 3C0,2C1,1

C0,4 2C2
0,2 3C2

0,2

Cnx+ny=5 0 0

C6,0 5C3
2,0 15C3

2,0

C5,1 5C2
2,0C1,1 15C2

2,0C1,1

C4,2 C2,0

[

4C2
1,1 + C2,0C0,2

]

3C2,0

[

4C2
1,1 + C2,0C0,2

]

C3,3 C1,1

[

2C2
1,1 + 3C2,0C0,2

]

3C1,1

[

2C2
1,1 + 3C2,0C0,2

]

Cnx+ny=7 0 0

C8,0 14C4
2,0 105C4

2,0

C7,1 14C3
2,0C1,1 105C3

2,0C1,1

C6,2 2C2
2,0

[

6C2
1,1 + C2,0C0,2

]

15C2
2,0

[

6C2
1,1 + C2,0C0,2

]

C5,3 2C2,0C1,1

[

4C2
1,1 + 3C2,0C0,2

]

15C2,0C1,1

[

4C2
1,1 + 3C2,0C0,2

]

C4,4
6
5 C2

2,0C2
0,2 +

48
5 C2,0C0,2C2

1,1 +
16
5 C4

1,1 9C2
2,0C2

0,2 + 72C2,0C0,2C2
1,1 + 24C4

1,1

Cnx+ny=9 0 0

C10,0 42C5
2,0 945C5

2,0

C9,1 42C4
2,0C1,1 945C4

2,0C1,1

C8,2
14
3 C3

2,0

[

8C2
1,1 + C2,0C0,2

]

105C3
2,0

[

8C2
1,1 + C2,0C0,2

]

C7,3 14C2
2,0C1,1

[

2C2
1,1 + C2,0C0,2

]

315C2
2,0C1,1

[

2C2
1,1 + C2,0C0,2

]

C6,4 2C2,0

[

8C4
1,1 + 12C2

1,1C2,0C0,2+ 45C2,0

[

8C4
1,1 + 12C2

1,1C2,0C0,2+

+C2
2,0C2

0,2

]

+C2
2,0C2

0,2

]

C5,5
2
3 C1,1

[

8C4
1,1 + 40C2

1,1C2,0C0,2+ 15C1,1

[

8C4
1,1 + 40C2

1,1C2,0C0,2+

+15C2
2,0C2

0,2

]

+15C2
2,0C2

0,2

]

Cnx+ny=11 0 0

C12,0 132C6
2,0 10395C6

2,0

C11,1 132C5
2,0C1,1 10395C5

2,0C1,1

Continued on next page
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Table C.1 – continued from previous page

Uniform Density Gaussian Density

C10,2 12C4
2,0

[

10C2
1,1 + C2,0C0,2

]

945C4
2,0

[

10C2
1,1 + C2,0C0,2

]

C9,3 12C3
2,0C1,1

[

8C2
1,1 + 3C2,0C0,2

]

945C3
2,0C1,1

[

8C2
1,1 + 3C2,0C0,2

]

C8,4 4C2
2,0

[

16C4
1,1 + 16C2

1,1C2,0C0,2+ 315C2
2,0

[

16C4
1,1 + 16C2

1,1C2,0C0,2+

+C2
2,0C2

0,2

]

+C2
2,0C2

0,2

]

C7,5

[

8C4
1,1 + 20C2

1,1C2,0C0,2+
[

8C4
1,1 + 20C2

1,1C2,0C0,2+

+5C2
2,0C2

0,2

]

4C1,1C2,0 +5C2
2,0C2

0,2

]

315C1,1C2,0

C6,6
4
7

[

16C6
1,1 + 120C4

1,1C2,0C0,2+ 45
[

16C6
1,1 + 120C4

1,1C2,0C0,2+

+90C2
1,1C2

2,0C2
0,2 + 5C3

2,0C3
0,2

]

+90C2
1,1C2

2,0C2
0,2 + 5C3

2,0C3
0,2

]

Cnx+ny=13 0 0

C14,0 429C7
2,0 135135C7

2,0

C13,1 429C6
2,0C1,1 135135C6

2,0C1,1

C12,2 33C5
2,0

[

12C2
1,1 + C2,0C0,2

]

10395C5
2,0

[

12C2
1,1 + C2,0C0,2

]

C11,3 33C4
2,0C1,1

[

10C2
1,1 + 3C2,0C0,2

]

10395C4
2,0C1,1

[

10C2
1,1 + 3C2,0C0,2

]

C10,4 3C3
2,0

[

8C4
1,1 + 60C2

1,1C2,0C0,2+ 945C3
2,0

[

8C4
1,1 + 60C2

1,1C2,0C0,2+

+3C2
2,0C2

0,2

]

+3C2
2,0C2

0,2

]

C9,5

[

48C4
1,1 + 80C2

1,1C2,0C0,2+
[

48C4
1,1 + 80C2

1,1C2,0C0,2+

+15C2
2,0C2

0,2

]

3C1,1C2
2,0 +15C2

2,0C2
0,2

]

945C1,1C2
2,0

C8,6 C2,0

[

64C6
1,1 + 240C4

1,1C2,0C0,2+ 315C2,0

[

64C6
1,1 + 240C4

1,1C2,0C0,2+

+120C2
1,1C2

2,0C2
0,2 + 5C3

2,0C3
0,2

]

+120C2
1,1C2

2,0C2
0,2 + 5C3

2,0C3
0,2

]

C7,7 C1,1

[

16C6
1,1 + 168C4

1,1C2,0C0,2+ 315C1,1

[

16C6
1,1 + 168C4

1,1C2,0C0,2+

+210C2
1,1C2

2,0C2
0,2 + 35C3

2,0C3
0,2

]

+210C2
1,1C2

2,0C2
0,2 + 35C3

2,0C3
0,2

]

C.2.2 Bunches with Single-Bunch Modes

In this section, the density functions (3.16) and (3.18) areconsidered. Only the first four
modes will be analyzed, i. e. the coefficientsrm are set to zero form > 4. Only the first
order approximations will be given in the following. The basic moments are denoted by
B1,0 andB0,1. The central momentsCnx ,ny have equilibrium values that will be denoted
by Enx ,ny . For odd ordersnx + ny or oddny Enx ,ny = 0 holds, cf. (4.33). Choosing a
moderm 6= 0 leads to deviations

∆Cnx ,ny = Cnx ,ny − Enx ,ny .

of the equilibriumEnx ,ny .
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Uniform Density The bunch is assumed to have a uniform density and a bunch shape
according to the mode definition (3.16) andf0 is chosen such that the integral off over
the phase plane equals unity. The moments fornx + ny ≤ 10 are given in Table C.2.
These are first order approximations. Also, the bunch radiusr0 is replaced byr0 = 2σ0,
this makes it easier to compare these results with the results for Gaussian densities of
Table C.3. Because of the symmetry betweenCi,j andCj,i, only half of the results are
summarized for higher order modes.

Table C.2: Moments of coherent bunch oscillations for uniform densities (first order ap-
proximations).

Uniform Density, r0 = 2σ0
Cnx ,ny Enx ,ny ∆Cnx ,ny (r1) ∆Cnx ,ny (r2) ∆Cnx ,ny (r3) ∆Cnx ,ny (r4)

B1,0 0 −2σ0 sin(θ0)r1 0 0 0

B0,1 0 2σ0 cos(θ0)r1 0 0 0

C2,0 E2,0 = σ2
0 0 −2σ2

0 sin(2θ0)r2 0 0

C1,1 0 0 2σ2
0 cos(2θ0)r2 0 0

C0,2 E0,2 = σ2
0 0 2σ2

0 sin(2θ0)r2 0 0

C3,0 0 0 0 −2σ3
0 sin(3θ0)r3 0

C2,1 0 0 0 2σ3
0 cos(3θ0)r3 0

C1,2 0 0 0 2σ3
0 sin(3θ0)r3 0

C0,3 0 0 0 −2σ3
0 cos(3θ0)r3 0

C4,0 2E2
2,0 0 4E2,0∆C2,0 0 −2σ4

0 sin(4θ0)r4

C3,1 0 0 2E2,0∆C1,1 0 2σ4
0 cos(4θ0)r4

C2,2
2
3 E2,0E0,2 0 0 0 2σ4

0 sin(4θ0)r4

C1,3 0 0 2E0,2∆C1,1 0 −2σ4
0 cos(4θ0)r4

C0,4 2E2
0,2 0 4E0,2∆C0,2 0 −2σ4

0 sin(4θ0)r4

C5,0 0 0 0 5E2,0∆C3,0 0

C4,1 0 0 0 3E2,0∆C2,1 0

C3,2 0 0 0 E2,0∆C1,2 0

C6,0 5E3
2,0 0 15E2

2,0∆C2,0 0 6E2,0∆C4,0

C5,1 0 0 5E2
2,0∆C1,1 0 4E2,0∆C3,1

C4,2 E2
2,0E0,2 0 E2,0E0,2∆C2,0 0 2E2,0∆C2,2

C3,3 0 0 3E2,0E0,2∆C1,1 0 0

C7,0 0 0 0 21E2
2,0∆C3,0 0

C6,1 0 0 0 9E2
2,0∆C2,1 0

C5,2 0 0 0 E2
2,0∆C1,2 0

C4,3 0 0 0 3E2,0E0,2∆C2,1 0

C8,0 14E4
2,0 0 56E3

2,0∆C2,0 0 28E2
2,0∆C4,0

C7,1 0 0 14E3
2,0∆C1,1 0 14E2

2,0∆C3,1

C6,2 2E3
2,0E0,2 0 4E2

2,0E0,2∆C2,0 0 4E2
2,0∆C2,2

C5,3 0 0 6E2
2,0E0,2∆C1,1 0 2E2,0E0,2∆C3,1

C4,4
6
5 E2

2,0E2
0,2 0 0 0 4E2,0E0,2∆C2,2

C9,0 0 0 0 84E3
2,0∆C3,0 0

C8,1 0 0 0 28E3
2,0∆C2,1 0

Continued on next page
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Table C.2 – continued from previous page
Uniform Density, r0 = 2σ0

Cnx ,ny Enx ,ny ∆Cnx ,ny (r1) ∆Cnx ,ny (r2) ∆Cnx ,ny (r3) ∆Cnx ,ny (r4)

C7,2 0 0 0 0 0

C6,3 0 0 0 8E2
2,0E0,2∆C2,1 0

C5,4 0 0 0 4E2
2,0E0,2∆C1,2 0

C10,0 42E5
2,0 0 210E4

2,0∆C2,0 0 120E3
2,0∆C4,0

C9,1 0 0 42E4
2,0∆C1,1 0 48E3

2,0∆C3,1

C8,2
14
3 E4

2,0E0,2 0 14E3
2,0E0,2∆C2,0 0 8E3

2,0∆C2,2

C7,3 0 0 14E3
2,0E0,2∆C1,1 0 8E2

2,0E0,2∆C3,1

C6,4 2E3
2,0E2

0,2 0 2E2
2,0E2

0,2∆C2,0 0 8E2
2,0E0,2∆C2,2

C5,5 0 0 10E2
2,0E2

0,2∆C1,1 0 0

Gaussian Density The bunch is now assumed to have a Gaussian density and a bunch
shape according to the mode definition (3.18) andf0 is chosen such that the integral off
over the phase plane equals unity. The moments fornx + ny ≤ 10 are given in Table C.3.
Again, these are first order approximations and because of the symmetry betweenCi,j and
Cj,i, only half of the results are summarized for higher order modes.

Table C.3: Moments of coherent bunch oscillations for Gaussian densities (first order
approximations).

Gaussian Density
Enx ,ny ∆Cnx ,ny (r1) ∆Cnx ,ny (r2) ∆Cnx ,ny (r3) ∆Cnx ,ny (r4)

B1,0 0 − 3
2

√
π
2 σ0 sin(θ0)r1 0 0 0

B0,1 0 3
2

√
π
2 σ0 cos(θ0)r1 0 0 0

C2,0 E2,0 = σ2
0 0 −2σ2

0 sin(2θ0)r2 0 0

C1,1 0 0 2σ2
0 cos(2θ0)r2 0 0

C0,2 E0,2 = σ2
0 0 2σ2

0 sin(2θ0)r2 0 0

C3,0 0 3
4 E2,0B1,0 0 − 15

8

√
π
2 σ3

0 sin(3θ0)r3 0

C2,1 0 1
4 E2,0B0,1 0 15

8

√
π
2 σ3

0 cos(3θ0)r3 0

C1,2 0 1
4 E0,2B1,0 0 15

8

√
π
2 σ3

0 sin(3θ0)r3 0

C0,3 0 3
4 E0,2B0,1 0 − 15

8

√
π
2 σ3

0 cos(3θ0)r3 0

C4,0 3E2
2,0 0 6E2,0∆C2,0 0 −3σ4

0 sin(4θ0)r4

C3,1 0 0 3E2,0∆C1,1 0 3σ4
0 cos(4θ0)r4

C2,2 E2,0 E0,2 0 0 0 3σ4
0 sin(4θ0)r4

C1,3 0 0 3E0,2∆C1,1 0 −3σ4
0 cos(4θ0)r4

C0,4 3E2
0,2 0 6E0,2∆C0,2 0 −3σ4

0 sin(4θ0)r4

C5,0 0 55
8 E2

2,0B1,0 0 35
4 E2,0∆C3,0 0

C4,1 0 11
8 E2

2,0B0,1 0 21
4 E2,0∆C2,1 0

C3,2 0 11
8 E2,0E0,2 B1,0 0 7

4 E2,0∆C1,2 0

C6,0 15E3
2,0 0 45E2

2,0∆C2,0 0 12E2,0∆C4,0

C5,1 0 0 15E2
2,0∆C1,1 0 8E2,0∆C3,1

Continued on next page
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Table C.4: State vectorx = [x1 x2 . . .]T.

x1 = B1,0 x3 = C2,0 x6 = C3,0 x10 = C4,0

x2 = B0,1 x4 = C1,1 x7 = C2,1 x11 = C3,1

x5 = C0,2 x8 = C1,2 x12 = C2,2

x9 = C0,3 x13 = C1,3

x14 = C0,4

Table C.3 – continued from previous page
Gaussian Density

Enx ,ny ∆Cnx ,ny (r1) ∆Cnx ,ny (r2) ∆Cnx ,ny (r3) ∆Cnx ,ny (r4)

C4,2 3E2
2,0E0,2 0 3E2,0E0,2∆C2,0 0 4E2,0∆C2,2

C3,3 0 0 9E2,0E0,2∆C1,1 0 0

C7,0 0 4305
64 E3

2,0B1,0 0 1323
16 E2

2,0∆C3,0 0

C6,1 0 615
64 E3

2,0 B0,1 0 567
16 E2

2,0∆C2,1 0

C5,2 0 615
64 E2

2,0 E0,2B1,0 0 63
16 E2

2,0∆C1,2 0

C4,3 0 369
64 E2

2,0 E0,2B0,1 0 189
16 E2,0 E0,2∆C2,1 0

C8,0 105E4
2,0 0 420E3

2,0∆C2,0 0 140E2
2,0∆C4,0

C7,1 0 0 105E3
2,0∆C1,1 0 70E2

2,0∆C3,1

C6,2 15E3
2,0E0,2 0 30E2

2,0 E0,2∆C2,0 0 20E2
2,0∆C2,2

C5,3 0 0 45E2
2,0 E0,2∆C1,1 0 10E2,0 E0,2∆C3,1

C4,4 9E2
2,0E2

0,2 0 0 0 20E2,0 E0,2∆C2,2

C9,0 0 97335
128 E4

2,0B1,0 0 14553
16 E3

2,0∆C3,0 0

C8,1 0 10815
128 E4

2,0B0,1 0 4851
16 E3

2,0∆C2,1 0

C7,2 0 10815
128 E3

2,0E0,2 B1,0 0 0 0

C6,3 0 4635
128 E3

2,0E0,2B0,1 0 693
8 E2

2,0 E0,2∆C2,1 0

C5,4 0 4635
128 E2

2,0E0,2B1,0 0 693
16 E2

2,0 E0,2∆C1,2 0

C10,0 945E5
2,0 0 4725E4

2,0∆C2,0 0 1800E3
2,0 ∆C4,0

C9,1 0 0 945E4
2,0∆C1,1 0 720E3

2,0∆C3,1

C8,2 105E4
2,0E0,2 0 315E3

2,0 E0,2∆C2,0 0 120E3
2,0∆C2,2

C7,3 0 0 315E3
2,0 E0,2∆C1,1 0 120E2

2,0 E0,2∆C3,1

C6,4 45E3
2,0E2

0,2 0 45E2
2,0 E2

0,2∆C2,0 0 120E2
2,0 E0,2∆C2,2

C5,5 0 0 225E2
2,0 E2

0,2∆C1,1 0 0

C.3 Moment Dynamics in a Linear Stationary Bucket

For nmodel = 4, systemΣLB of (4.30) has the state vectorx as defined by (4.31) with
dimensionL = 14. The states are shown in Table C.4. The dynamics are

ẋ = ALBx + BLB(x)u =







A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4







x +







b1,1 b1,2

b2 0

b3 0

b4 0







[
u1

u2

]
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with

A1 = ωsyn

[
0 −1
1 0

]

, A2 = ωsyn





0 −2 0
1 0 −1
0 2 0



 ,

A3 = ωsyn







0 −3 0 0
1 0 −2 0
0 2 0 −1
0 0 3 0







, A4 = ωsyn









0 −4 0 0 0
1 0 −3 0 0
0 2 0 −2 0
0 0 3 0 −1
0 0 0 4 0









,

and

b1,1

ωsyn
=
[
0 B1,0

]T
,

b1,2

ωsyn
=
[
0 1

]T
,

b2

ωsyn
=
[
0 C2,0 2C1,1

]T
,

b3

ωsyn
=
[
0 C3,0 2C2,1 3C1,2

]T
,

b4

ωsyn
=
[
0 C4,0 2C3,1 3C2,2 4C1,3

]T
.

The null vectors and matrices0 are assumed to have the appropriate dimensions to com-
plete their matrices and vectors.

The reduced and linearized systemΣ∆LBR has the state vector∆xLBR that is obtained
from the difference vectorx− xe, if the states corresponding toC0,2 andC0,4 are removed,
i. e. the statesx5 andx14 (cf. Table C.4). The equilibriumxe is given in (4.33). System
LBR reads

∆xLBR = ALBR∆xLBR + BLBRu =







Ã1 0 0 0

0 Ã2 0 0

0 0 Ã3 0

0 0 0 Ã4







x +







b̃1,1 b̃1,2

b̃2 0

b̃3 0

b̃4 0







[
u1

u2

]

with dimensionL̃ = 12, where

Ã1 = A1, Ã2 = ωsyn

[
0 −2
2 0

]

, Ã3 = A3, Ã4 = ωsyn







0 −4 0 0
1 0 −3 0
0 2 0 −2
1 0 5 0







,

and

b̃1,1

ωsyn
=

[
0
0

]

,
b̃1,2

ωsyn
=

[
0
1

]

,
b̃2

ωsyn
=

[
0

E2

]

,
b̃3

ωsyn
=







0
0
0
0







,
b̃4

ωsyn
=







0
E4

0
E4







.
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The controllability matrixC(ALBR ,BLBR) has dimension12 × 24. Its column space is
spanned by the vectors

m1 =
[
1 0 0 0 0 0 0 0 0 0 0 0

]T

m2 =
[
0 1 0 0 0 0 0 0 0 0 0 0

]T

m3 =
[
0 0 E2 0 0 0 0 0 2E4 0 0 0

]T

m4 =
[
0 0 0 E2 0 0 0 0 0 E4 0 E4

]T

C.4 Moment Dynamics in a Nonlinear Stationary Bucket

C.4.1 Equilibrium of the Stationary and Nonlinear Bucket

The Taylor series (4.42) are truncated withk ≤ k̂ = 3. With assumption (4.46),ϕR = 0,
the equilibrium for the moment orders up tonmodel = 4 reads

[
B1,0

B0,1

]

=

[
0
0

]

,





C2,0

C1,1

C0,2



 =





E2,0

0

E0,2 = E2,0 − E4,0

6 + E6,0

120 − E8,0

5040



 ,







C3,0

C2,1

C1,2

C0,3






=







0
0
0
0







,









C4,0

C3,1

C2,2

C1,3

C0,4









=









E4,0

0

E2,2 = E4,0

3 − E6,0

18 + E8,0

360 − E10,0

15120
0

E0,4 = E4,0 − E6,0

6 − E4,2

2 + E8,0

120 + E6,2

40 − E10,0

5040 − E8,2

1680









C.4.2 Linearized Dynamics

The linearization of the nonlinear dynamics around the equilibrium of Section C.4.1 is
presented for a stationary bucket. The nonlinear dynamics are calculated according to
Section 4.6.1 withϕR = 0, k̂ = 3. The dynamics of moments up to the ordern =
nmodel = 4 are summarized in this section. The equilibrium valuesEnx ,ny are given in
Section C.4.1 and the deviations from this equilibrium are∆Cnx ,ny = Cnx ,ny − Enx ,ny .
For the basic momentsB1,0 = ∆B1,0 andB0,1 = ∆B0,1 holds. The dynamics of the basic
moments are

∆Ḃ1,0

ωsyn
= −∆B0,1 (C.1a)

∆Ḃ0,1

ωsyn
=

[

1 − E2,0

2
+

E4,0

24
− E6,0

720

]
[
∆B1,0 − uϕ

]
− 1

6
∆C3,0+

+
1

120
∆C5,0 −

1

5040
∆C7,0 (C.1b)
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The dynamics of the central moments of ordern = 2 are given by

∆Ċ2,0

ωsyn
= −2∆C1,1 (C.2a)

∆Ċ1,1

ωsyn
= ∆C2,0 − ∆C0,2 −

1

6
∆C4,0 +

1

120
∆C6,0 −

1

5040
∆C8,0+

+

[

E2,0 −
E4,0

6
+

E6,0

120
− E8,0

5040

]

uǫ (C.2b)

∆Ċ0,2

ωsyn
= 2∆C1,1 −

1

3
∆C3,1 +

1

60
∆C5,1 −

1

2520
∆C7,1 (C.2c)

The dynamics of the central moments of ordern = 3 read

∆Ċ3,0

ωsyn
= −3∆C2,1

∆Ċ2,1

ωsyn
=

[
1

2

[

E2
2,0 − E4,0

]

+
1

24
[E6,0 − E2,0E4,0] +

1

720
[E2,0E6,0 − E8,0]

]

·

·
[
∆B1,0 − uϕ

]
+

[

1 +
E2,0

6

]

∆C3,0 − 2∆C1,2 −
[

1

6
+

E2,0

120

]

∆C5,0+

+

[
1

120
+

E2,0

5040

]

∆C7,0 −
1

5040
∆C9,0

∆Ċ1,2

ωsyn
= 2∆C2,1 − ∆C0,3 −

1

3
∆C4,1 +

1

60
∆C6,1 −

1

2520
∆C8,1

∆Ċ0,3

ωsyn
=

[
3

2
[E2,0E0,2 − E2,2] +

1

8
[E4,2 − E0,2E4,0] +

1

240
[E0,2E6,0 − E6,2]

]

·

·
[
∆B1,0 − uϕ

]
+

E0,2

2
∆C3,0 + 3∆C1,2 −

E0,2

40
C5,0 −

1

2
∆C3,2 +

1

40
∆C5,2+

+
E0,2

1680
∆C7,0 −

1

1680
∆C7,2

The dynamics of the central moments of ordern = 4 are

∆Ċ4,0

ωsyn
= −4∆C3,1

∆Ċ3,1

ωsyn
= ∆C4,0 − 3∆C2,2 −

1

6
∆C6,0 +

1

120
∆C8,0 −

1

5040
∆C10,0+

+

[

E4,0 −
E6,0

6
+

E8,0

120
− E10,0

5040

]

uǫ
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∆Ċ2,2

ωsyn
= 2∆C3,1 − 2∆C1,3 −

1

3
∆C5,1 +

1

60
∆C7,1

∆Ċ1,3

ωsyn
= 3∆C2,2 − ∆C0,4 −

1

2
∆C4,2 +

1

40
∆C6,2 +

[

3E2,2 −
E4,2

2
+

E6,2

40
− E8,2

1680

]

uǫ

∆Ċ0,4

ωsyn
= 4∆C1,3 −

2

3
∆C3,3 +

1

30
∆C5,3

C.4.3 Models for Coherent Modes

In this section,̂k = 3 andnmodel ∈ {1,2,4} were chosen to obtain transfer functions for
the dipole and quadrupole mode in a nonlinear stationary bucket (ϕR = 0).

Mode m = 1 For the choicêk = 3, nmodel = 1, the transfer function has the shape

G1(s) =
∆B1,0(s)

uϕ(s)
=

b1ω2
syn

s2 + a1ω2
syn

. (C.3)

For a uniform density and with Table C.2

a1 = b1 = 1 − E2,0

2
+

E2
2,0

12
−

E3
2,0

144
.

For a Gaussian density and with Table C.3

a1 = 1 − 5E2,0

8
+

35E2
2,0

192
−

35E3
2,0

1024
, b1 = 1 − E2,0

2
+

E2
2,0

8
−

E3
2,0

48
.

Mode m = 2 The transfer function ofm = 2 is given by

G2(s) =
∆C2,0(s)

uǫ(s)
=

s

s
·

b2ω2
syn

s2 + a2ω2
syn

.

For a uniform density, the columns forEnx ,ny and∆Cnx ,ny(r2) of Table C.2 yield

E4,0 = 2E2
2,0, E6,0 = 5E3

2,0, E8,0 = 14E4
2,0

∆C4,0 = 4E2,0∆C2,0, ∆C6,0 = 15E2
2,0∆C2,0, ∆C8,0 = 56E3

2,0∆C2,0

∆C3,1 = 2E2,0∆C1,1, ∆C5,1 = 5E2
2,0∆C1,1, ∆C7,1 = 14E3

2,0∆C1,1

This leads to

a2 = 4

[

1 − E2,0

2
+

E2
2,0

12
−

E3
2,0

144

]

, b2 = −2E2,0

[

1 − E2,0

3
+

E2
2,0

24
−

E3
2,0

360

]
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For a Gaussian density, the columns forEnx ,ny and∆Cnx ,ny(r2) of Table C.3 yield

E4,0 = 3E2
2,0, E6,0 = 15E3

2,0, E8,0 = 105E4
2,0

∆C4,0 = 6E2,0∆C2,0, ∆C6,0 = 45E2
2,0∆C2,0, ∆C8,0 = 420E3

2,0∆C2,0

∆C3,1 = 3E2,0∆C1,1, ∆C5,1 = 15E2
2,0∆C1,1, ∆C7,1 = 105E3

2,0∆C1,1

This leads to

a2 = 4

[

1 − 3E2,0

4
+

E2
2,0

4
−

5E3
2,0

96

]

, b2 = −2E2,0

[

1 − E2,0

2
+

E2
2,0

8
−

E3
2,0

48

]

Modesm ∈ {1,2,3,4} The dynamics of the moments of ordernx + ny ∈ {1,3} are

∆ẋodd = Aodd(E2,0)∆xodd + bodd(E2,0)u2

with

Aodd = ωsyn











0 −1 0 0 0 0
a2,1 0 a2,3 0 0 0
0 0 0 −3 0 0

a4,1 0 a4,3 0 −2 0
0 a5,2 0 a5,4 0 −1

a6,1 0 a6,3 0 a6,5 0











, bodd = ωsyn











0
b2

0
b4

0
b6











.

For a uniform density, the entries are

a2,1 = 1 − 1

2
E2,0 +

1

12
E2

2,0 −
1

144
E3

2,0, a4,1 = −1

2
E2

2,0 +
1

8
E3

2,0 −
1

80
E4

2,0

a6,1 =
1

2
E2

2,0 −
5

24
E3

2,0 +
7

120
E4

2,0 −
3

320
E5

2,0 +
1

1920
E6

2,0, a5,2 = 0

a2,3 = −1

6
+

1

30
E2,0 −

1

240
E2

2,0, a4,3 = 1 − 2

3
E2,0 +

2

15
E2

2,0 −
1

80
E3

2,0

a6,3 =
1

2
E2,0 −

7

24
E2

2,0 +
3

40
E3

2,0 −
3

320
E4

2,0 +
1

1920
E5

2,0

a5,4 = 2 − E2,0 +
3

20
E2

2,0 −
1

90
E3

2,0, a6,5 = 3 − 1

2
E2,0 +

1

40
E2

2,0

b2 = −1 +
1

2
E2,0 −

1

12
E2

2,0, b4 =
1

2
E2

2,0 −
1

8
E3

2,0 +
1

80
E4

2,0

b6 = −1

2
E2

2,0 +
5

24
E3

2,0 −
7

120
E4

2,0 +
3

320
E5

2,0 −
1

1920
E6

2,0
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For a Gaussian density, the entries are

a2,1 = 1 − 1

2
E2,0 +

49

384
E2

2,0 −
7

320
E3

2,0, a4,1 = −101

96
E2

2,0 +
1039

1920
E3

2,0 −
857

6144
E4

2,0

a6,1 = −15

32
E2

2,0 +
603

640
E3

2,0 −
4707

10240
E4

2,0 +
203

4096
E5

2,0 −
483

81920
E6

2,0

a5,2 = − 1

48
E2

2,0 +
1

80
E3

2,0 −
53

15360
E4

2,0

a2,3 = −1

6
+

7

96
E2,0 −

21

1280
E2

2,0, a4,3 = 1 − 31

24
E2,0 +

1183

1920
E2

2,0 −
21

128
E3

2,0

a6,3 =
1

2
E2,0 −

15

32
E2

2,0 +
283

1280
E3

2,0 −
133

2560
E4

2,0 +
63

10240
E5

2,0

a5,4 = 2 − 7

4
E2,0 +

189

320
E2

2,0 −
77

640
E3

2,0, a6,5 = 3 − 7

8
E2,0 +

63

640
E2

2,0

b2 = −1 +
1

2
E2,0 −

1

8
E2

2,0, b4 = E2
2,0 −

1

2
E3

2,0 +
1

8
E4

2,0, b6 = −1

2
E3

2,0 +
1

4
E4

2,0

The dynamics of the moments of ordernx + ny ∈ {2,4} are

∆ẋeven = Aeven(E2,0)∆xeven + beven(E2,0)u1

with

Aeven

ωsyn
=















0 −2 0 0 0 0 0 0
a2,1 0 −1 a2,4 0 0 0 0
0 a3,2 0 0 a3,5 0 0 0
0 0 0 0 −4 0 0 0

a5,1 0 0 a5,4 0 −3 0 0
0 a6,2 0 0 a6,5 0 −2 0

a7,1 0 0 0 0 a7,6 0 −1
0 a8,2 0 0 a8,5 0 4 0















,
beven

ωsyn
=















0
b2

0
0
b5

0
b7

0















.

For a uniform density, the entries are

a2,1 = 1 − 3

40
E2

2,0 +
1

90
E3

2,0, a5,1 =
3

2
E2

2,0 −
7

15
E3

2,0 +
3

56
E4

2,0

a7,1 = −1

2
E2

2,0 +
4

15
E3

2,0 −
13

240
E4

2,0 +
1

240
E5

2,0, a3,2 = 2 − 1

20
E2

2,0 +
1

180
E3

2,0

a6,2 = E2
2,0 −

7

30
E3

2,0, a8,2 = −2E2
2,0 +

11

15
E3

2,0 −
19

180
E4

2,0 +
1

360
E5

2,0

a2,4 = −1

6
+

1

20
E2,0 −

1

180
E2

2,0, a5,4 = 1 − E2,0 +
7

30
E2

2,0 −
1

42
E3

2,0
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a3,5 = −1

3
+

1

15
E2,0 −

1

180
E2

2,0, a6,5 = 2 − 4

3
E2,0 +

7

30
E2

2,0

a8,5 =
1

15
E2

2,0 −
1

45
E3

2,0 +
1

360
E4

2,0, a7,6 = 3 − E2,0 +
1

10
E2

2,0

b2 = E2,0 −
1

3
E2

2,0 +
1

24
E3

2,0 −
1

360
E4

2,0, b5 = 2E2
2,0 −

5

6
E3

2,0 +
7

60
E4

2,0 −
1

120
E5

2,0,

b7 = 2E2
2,0 −

4

3
E3

2,0 +
1

3
E4

2,0 −
29

720
E5

2,0 +
13

4320
E6

2,0 −
1

8640
E7

2,0.

For a Gaussian density, the entries are

a2,1 = 1 − 9

40
E2

2,0 +
1

12
E3

2,0, a5,1 =
9

2
E2

2,0 −
7

2
E3

2,0 +
135

112
E4

2,0

a7,1 = −3

2
E2

2,0 +
3

2
E3

2,0 −
9

16
E4

2,0 +
3

32
E5

2,0, a3,2 = 2 − 3

20
E2

2,0 +
1

24
E3

2,0

a6,2 = 3E2
2,0 −

7

4
E3

2,0, a8,2 = −6E2
2,0 +

7

2
E3

2,0 − E4
2,0 +

1

16
E5

2,0

a2,4 = −1

6
+

1

10
E2,0 −

1

36
E2

2,0, a5,4 = 1 − 2E2,0 +
7

6
E2

2,0 −
5

14
E3

2,0

a3,5 = −1

3
+

2

15
E2,0 −

1

36
E2

2,0, a6,5 = 2 − 8

3
E2,0 +

7

6
E2

2,0

a8,5 =
1

3
E2

2,0 −
1

6
E3

2,0 +
1

24
E4

2,0, a7,6 = 3 − 2E2,0 +
1

2
E2

2,0

b2 = E2,0 −
1

2
E2

2,0 +
1

8
E3

2,0 −
1

48
E4

2,0, b5 = 3E2
2,0 −

5

2
E3

2,0 +
7

8
E4

2,0 −
3

16
E5

2,0,

b7 = 3E2
2,0 − 4E3

2,0 + 2E4
2,0 −

7

16
E5

2,0 +
5

64
E6

2,0 −
1

128
E7

2,0.

C.4.4 Models for Ellipsoidal Bunches

For bunches with an ellipsoidal shape, the linearized dynamics are given by

∆ẋME =









∆Ḃ1,0

∆Ḃ0,1

∆Ċ2,0

∆Ċ1,1

∆Ċ0,2









= ωsyn









−∆B0,1

a1∆B1,0

−2∆C1,1

a2∆C2,0 − ∆C0,2

a3∆C1,1









+ ωsyn









0
−a1uϕ

0
b1uǫ

0









.

The transfer functions of the basic and second order momentsare

∆B1,0(s)

uϕ(s)
=

a1
s2

ω2
syn

+ a1

,
∆C2,0(s)

uǫ(s)
=

s

s

−2b1
s2

ω2
syn

+ 2a2 + a3

.
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The calculation for an ellipsoidal bunch with auniform density and withk̂ = 6 yields

a1 = 1 − E2,0

2
+

E2
2,0

12
−

E3
2,0

144
+

E4
2,0

2880
−

E5
2,0

86400
+

E6
2,0

3628800

b1 = E2,0 −
E2

2,0

3
+

E3
2,0

24
−

E4
2,0

360
+

E5
2,0

8640
−

E6
2,0

302400
+

E7
2,0

14515200

a2 = 1 − 2E2,0

3
+

E2
2,0

8
−

E3
2,0

90
+

E4
2,0

1728
−

E5
2,0

50400
+

E6
2,0

2073600

a3 = 2 − 2E2,0

3
+

E2
2,0

12
−

E3
2,0

180
+

E4
2,0

4320
−

E5
2,0

151200
+

E6
2,0

7257600

2a2 + a3 = 4a1

The calculation for an ellipsoidal bunch with aGaussian densityand withk̂ = 6 yields

a1 = 1 − E2,0

2
+

E2
2,0

8
−

E3
2,0

48
+

E4
2,0

384
−

E5
2,0

3840
+

E6
2,0

46080

b1 = E2,0 −
E2

2,0

2
+

E3
2,0

8
−

E4
2,0

48
+

E5
2,0

384
−

E6
2,0

3840
+

E7
2,0

46080

a2 = 1 − E2,0 +
3E2

2,0

8
−

E3
2,0

12
+

5E4
2,0

384
−

E5
2,0

640
+

7E6
2,0

46080

a3 = 2 − E2,0 +
E2

2,0

4
−

E3
2,0

24
+

E4
2,0

192
−

E5
2,0

1920
+

E6
2,0

23040

2a2 + a3 = 4

[

1 − 3E2,0

4
+

E2
2,0

4
−

5E3
2,0

96
+

E4
2,0

128
−

7E5
2,0

7680
+

E6
2,0

11520

]
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