Modeling and Control of
Longitudinal Single-Bunch Oscillations

In Heavy-lon Synchrotrons

Vom Fachbereich
Elektrotechnik und Informationstechnik
der Technischen Universitat Darmstadt
zur Erlangung des akademischen Grades

eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von

Dipl.-Ing. Dieter E. M. Lens

geboren am 22. Juli 1981 in Leuven, Belgien

Referent:  Prof. Dr.-Ing. J. Adamy
Korreferent:  Prof. Dr.-Ing. H. Klingbeil
Tag der Einreichung: 2. November 2011
Tag der mundlichen Prifung:  20. Januar 2012

D17
Darmstadt 2012






Vorwort

Diese Arbeit enstand wahrend meiner Téatigkeit als wisdeaffcher Mitarbeiter am
Fachgebiet Regelungstheorie und Robotik der Techniscimaretsitat Darmstadt. Mein
besonderer Dank geht an Professor Jirgen Adamy, der mir ehebBitung dieses be-
sonderen Promotionsthemas ermdglicht hat. Seine Unteusil, sein Vertrauen und die
angenehmen Arbeitsbedingungen am Fachgebiet haben sel@alingen der Arbeit bei-
getragen.

Fur die freundliche Ubernahme des Korreferats méchte iathiei Professor Harald
Klingbeil bedanken. Durch seine Initiative hatte ich dag8c¢B| mich ndher mit dem span-
nenden und vielseitigen Gebiet der Beschleunigertechefikdsen zu kénnen. Die vielen
fachlichen Diskussionen waren lehrreich und motivierend baben meine Freude am
wissenschaftlichen Arbeiten sehr geférdert. Des Weitenéchte ich mich bei der Ab-
teilung HF-Systeme der GSI bedanken, unter anderem beikddviehler und Bernhard
Zipfel fur den Austausch und ihre Unterstlitzung.

Die vorliegende Arbeit wurde durch die Deutsche TelekorfitBtg im Rahmen eines
Doktorandenstipendiums geférdert, woftr ich mich helebedanken méchte, insbeson-
dere bei Christiane Frense-Heck fir die Betreuung wahresdtipendiatenprogramms.
Neben der finanziellen Unterstitzung der Arbeit ermogéatis Stipendium auch den
Besuch von interessanten und abwechslungsreichen Semioad den Austausch mit
Stipendiaten verschiedener Fachrichtungen.

In der Zeit am Fachgebiet Regelungstheorie und Robotik fcbeiele verschiedene
Kollegen kennen und schatzen gelernt. Bei Birgit Heid, By@¥elman und Susanne Mun-
termann mochte ich mich fur die Unterstitzung und den RaSbkwierigkeiten organi-
satorischer und technischer Art bedanken. Bei allen Kehegndchte ich mich fur zahl-
reiche Diskussionen und die schone Zusammenarbeit bedamkestellvertretend Boris
Fischer, Kerstin Grol3 und Jochen Grieser hervorheben,idi@rbeit kritisch durchge-
sehen und damit wesentlich zur Verbesserung beigetragemhauch mochte ich ins-
besondere Roland Kempf danken fir seine Kurzeinfuhrung&ereiche der Physik, die
im Laufe eines Ingenieursstudiums zu kurz kommen. BedaniG@hte ich mich auch bei
allen Studenten, die im Rahmen von studentischen Arbeiiefnagen und Ideen ihren
Beitrag zur Arbeit geleistet haben.

Zu guter Letzt mochte ich mich bei meiner Frau Svenja, mefizgnilie und meinen
Freunden fr ihre Unterstitzung wahrend meiner Studied-Rmomotionszeit bedanken.
Insbesondere der Rickhalt durch meine Frau Svenja war diiiee fidr die ich sehr dank-
bar bin.

Dieter Etienne Mia Lens, Darmstadt im Méarz 2012






Contents
List of Symbols VIII
Abstract / Kurzfassung XI
1 Introduction 1
2 Longitudinal Single Particle Dynamics 6
2.1 Introduction . . . . . ... L e 6
2.2 Synchrotron Oscillation . . . . . .. .. .. ... ... .. ....... 8
2.2.1 Coordinate System in Beam Dynamics . . . ... ... .. ... 8
2.2.2 Relativistic Particles in Electromagnetic Fields . ... .. ... 10
2.2.3 Phase Stability Principle . . . . . .. ... ... ... ..., 21
2.2.4 Longitudinal Reference Trajectory . . . . .. ... ... ... 13
2.2.5 Discrete Equations and Mapping Algorithm . . . . . .. ... 16
2.2.6 Continuous Longitudinal Equations . . . . . . ... ... ... 22
2.2.7 Synchrotron Oscillation and Phase Stability . . . . ...... . . 25
2.2.8 Discussion of the Longitudinal Equations . . . . ... .... 26
2.3 SingleHarmonicRF . . . . .. ... ... 28
2.3.1 IntroductoryRemarks . . .. ... ... .. ... .. .. ..., 28
2.3.2 Trajectory Properties . . . . . . . . . . .. ... 28
2.3.3 BucketandBunchArea . .. .. .. .. ... .. ........ 32
2.3.4 Nonlinear Synchrotron Frequency . . . . . .. ... ... ... 35
2.4 AccelerationCycle . . .. .. .. .. ... .. .. .. 37
25 Conclusion . . . ... 39
3 Coherent Longitudinal Beam Oscillations 40
3.1 Introduction . . . . . . ... 40
3.1.1 SourcesofDisturbances . . . ... ... .. ... ... ... 40
3.1.2 CoherentOscillations . . . . .. .. ... ... ... ....... 41
3.2 Hamiltonian Systems and Liouville’s Theorem . ... .. ...... 44
3.3 Propertiesof BunchedBeams . . . . . . ... ... ... ........: a7
3.3.1 Particle Density Distributions . . . . . ... ... ....... 47
3.3.2 Longitudinal Emittance . . . . . ... ... ... ... ... ... 48
3.3.3 Line Densityand Beam Current . . . . .. ... ... ...... 51
3.34 MatchedBunch . . . ... ... ... ... ... . ... ... 53
3.4 Longitudinal Bunch Oscillations in the Time Domain . . . . . .. .. 55

3.4.1 MismatchesofaBunch. . . . ... ... ... ... ....... 55



VI Contents
3.4.2 Longitudinal OscillationModes . . . . .. . ... ... .. .. 56
3.4.3 Analytical Definition of Within-Bunch Modes . . . . . . .... . 58

3.5 Longitudinal Bunch Oscillations in the Frequency Damai . . . . . . . 60
3.5.1 Long-Term Spectrum of BunchedBeams . . ... ... ... .. 60
3.5.2 Short-Term Spectrum of Ellipsoidal Bunches . . . .. ...... 65
3.5.3 BunchPositionandLength . . . ... ... ............ 70
3.5.4 Simulation Results of Short-Term Spectrum . . . . . . ...... 73
3.5.5 Effective Synchrotron Frequency . . . . . . .. ... ... ... 77

3.6 Conclusion . . . . . .. 80

4 Models of Coherent Oscillations 82

4.1 Introduction . . . . . . ... 82

4.2 Characterisation ofthe Dynamics . . . . . . . ... ... ... ... 84
4.2.1 Beam Dynamics as Patrtial Differential Equation . . ...... . 84
4.2.2 Definition of Input Variables . . . . . ... ... ... ...... 78
4.2.3 Definition of the Control Problem . . . . ... ... ... .... 88

4.3 Controllability . . . . . . ... 88
4.3.1 LinearSystems . . . . . . . .. ... ... 88
4.3.2 Nonlinear Systems . . . . . . . ... .. .. ... 89

4.4 Modeling Scheme for Single-Bunch Oscillations . . . . ...... ... 90
441 Moments . . . . . . .. 91
4.4.2 Basic ModelingPrinciple . . . . .. .. ... ... ... ... .. 93
44.3 MomentsandDensities. . . . .. ... ... . ... ... 94

4.5 Linear Bucket: the Small Bunch Assumption . . . ... ... ..... 99
4.5.1 Beamand MomentDynamics . .. ... ... .. .. ...... 99
4.5.2 ModelProperties . . . . . . . ... .. ... 101

4.6 NonlinearBucket . . ... .. ... .. ... ... .. 107
4.6.1 ModelDerivation . . . . . . . ... ... 108
4.6.2 Models for CoherentModes . . . . . ... ... ... ...... 114
4.6.3 Models for Ellipsoidal Bunches . . . . ... ... ....... 201
4.6.4 Models of Filamentation . . . . ... ... ... ......... 123

4.7 Conclusion . . . . .. e 124
4.7.1 Comparison of RF FeedbackModels . . .. ... ........ 124
4.7.2 SummaryoftheResults . .. ... ... ... ... ....... 126

5 Damping of Single-Bunch Oscillations 127

5.1 Analysis of RF Feedback Systems of the SIS18atGSI . . . .. .. 127
5.1.1 Structure of RF FeedbackLoops . . . . .. ... ... ... .. 7 12
5.1.2 Stability of Linear Time Delay Systems . . . . ... ... .. 133
5.1.3 Stability Analysis of Bunch Length Feedback . . . .w.. 136
5.1.4 Tracking, Linear Model, and Feedback Performance .... 138

5.2 Analysis ofa Beam Experiment . . . . ... ... ... ... ... .. 451
5.2.1 Introduction. . . . . .. ... ... 146

522 BeamProfile . .. .. .. .. ... 147



Contents VIl
5.2.3 Tracking Simulations . . . . . ... ... ... L. 149
5.3 Exemplary Nonlinear Controller Design . . . . . .. .. .. .. ... 152
5.3.1 Stability of the Quadrupole Mode . . . . . .. ... ...... 531
5.3.2 Optimization Based ControllerDesign . . . . . .. .. ... . 156
5.4 Conclusion . . . . . . . . . .. 159
6 Conclusion 161
A Mathematical Formulae 163
A.l EllipticIntegrals. . . . . . . . . . ... 163
A.2 Special Functions . . . . . . ... 416
A.3 Spectrum of Phase Modulated Signals . . . . . ... ... ... ... 165
A.3.1 GeneralNotation . . ... ... ... ... . ... . ... ... . 165
A.3.2 Dirac Series and Phase Modulation . . . .. ... ... .... 66 1
A.3.3 Aperiodic and PeriodicSignals . . . . .. .. ... ... ... 166
B Accelerator Physics 168
B.1 Relativistic Relations . . . . .. ... ... .. ... .. ... .. ... 168
B.2 Simulation Parameters . . . .. .. .. .. ... oL 701
B.3 Longitudinal Tracking Algorithm . . . . . . . . .. .. .. ... ... 170
C Modeling Results 173
C.1 Coherent Oscillation Frequencies . . . . . . . . . . . . . cieun . 173
C.2 MomentsandModes . . . . . . .. . ... ... 173
C.2.1 EllipsoidalBunches . .. ... ... ... .. .......... 173
C.2.2 Bunches with Single-BunchModes . . . . .. ... ... ... 517
C.3 Moment Dynamics in a Linear Stationary Bucket . . . ... ...... . 178
C.4 Moment Dynamics in a Nonlinear Stationary Bucket 180
C.4.1 Equilibrium of the Stationary and Nonlinear Bucket . .. . . 180
C.4.2 LinearizedDynamics . . . . . . . . . . .. . . . e 180
C.4.3 Models for CoherentModes . . . . .. ... ... ........ 182
C.4.4 Models for Ellipsoidal Bunches . . . . .. .. ... ...... 851
Bibliography 187



VIII

List of Symbols

The following tables are a selection of symbols that are i@ in more than one section
of the thesis.

Abbreviations

RF radio frequency FFT Fast Fourier Transform
FT Fourier Transform CoG center of gravity
ref. reference rel. relative
long. longitudinal W.I.L. with respect to
R subscript of ref. variables PDE partial differential et
ODE ordinary differential equation MIMO multi-input mwautput
LB linear bucket NB nonlinear bucket
syn. synchrotron SB stationary bucket
GSI GSI Helmholtzzentrum fur Schwerionenforschung GmbH
Notation
i imaginary unity/—1 x| absolute value of € C
fx gradient off with respecttor () binomial coefficient
f(t) function int f(n) discrete functiont,, = n T
[a; b] interval includinga andb {a, b} set with elements andb
e’ exponential function e elementary charge
A x matrix and vector f(x) vector field
[a b]T  vectorc R? % partial derivative
x(t) derivative w.r.t.t R set of real numbers
s Laplace variable O (x") error term of ordex”

Coordinates

t absolute time z longitudinal position
ZR ref. long. position Ax, Ay  transverse deviations w.r.t. R
Az long. deviation w.r.t. R Apx, Apy rel. momenta

Ap; rel. momentum UR ref. long. velocity



List of Symbols IX

P,T RF phase and time lag w.r.t. the zero crossinglgf,

PR ref. phasep, p.25 Ag rel. phasep — ¢r
R ref. time lag AT rel. time lagt —
1) rel. impulse deviation AW coordinateAW / wgg
Aw normalized coordinate, p.29 (r, 0) polar coordinates

Synchrotron and Beam Parameters
For all frequencies, the following relations hold:
w=2mrf=2r/T.

Only the angular frequencies are summarized, the frequencigsind periods follow
accordingly.

h harmonic number, integer R ref. point / trajectory

LR length of ref. orbit Lgap length of the cavity gap

Q particle charge T rest mass of a particle

Br, Bmax ref. and maximum magnetic flux density, dipole magnets

r curvature of dipole magnets ¢ speed of light in vacuum

Qbunch charge of the bunch krg RF parametee {0, 1}

Tcav cavity time constant WRF RF frequency

WR ref. revolution frequency Wsyn synchrotron frequency, p.25

Wsyn eff effective syn. frequency Vsyn synchrotron tune

Wy RF frequency in coordinate  Ugap gap voltage at the cavity

LAILR ref. RF amplitude without U amplitude of gap voltage in-

modulation cluding RF feedback

DrE RF phase, p.9 UR ref. voltage, p.14

LAILR,Stat ref. RF amplitude, SB AWacc energy gain in the cavity

Wiin kinetic energy WRr total ref. energy

W total energy AW energy deviatioW — Wi

PR ref. momentum 0% relativistic Lorentz factor

B relativistic Lorentz factor Xp momentum compaction

R phase slip factor Y transition gamma
Modeling

H(q,p,t) Hamiltonian Vi(g) potential function

T(p) energy function P, Psep integration constants, p.30

A@sep+  Separatrix intersections Ap+ trajectory intersections

Apunch bunch area Apucket ~ bucket area

Apunch,stat DUNCh areain a SB Apucket stat DUCKet areain a SB



List of Symbols

Apucket stat OUCKEL @rea, general case

f(x,y,1)
)\Charge
Aw)
l;beam (x)
Z.beam

o3

(%0, Yo)
RlJC/ RZX

particle density distribution
charge density

FT of line density

RF beam current

peak beam current
variance inx

bunch center of gravity
half axes of ellipsoidal bunch
with uniform density
bunch radius inx

amplitude of moden

phase of mode:

mode frequency

dipole mode frequency
bunch CoG inx

central moment

variance inx

same ag; g, butin the LB
deviationCnx,ny — Enn,
invariants of motion

Taylor series truncation
parameter

maximum moment order of
the model stater

Feedback and Simulation

Wsamp
T4

Ay
Apgap
Ue

Uy, Up

sampling frequency
time delay, feedback
beam harmonic amplitudes

Afill,stat

f charge
Ax)

bucket fill factor, p.34
charge density distribution
line density

Acharge (w) FT of charge line density

Ibeam

X

2
0: X,y

D
O1x, O2x

Wpass
Ck
P

phase shift of the gap voltage ¢

amplitude modulation, input
inputs (4.27c¢)

gains of feedback, p.132
number of histogram bins
eigenvalues

Ug

X1, X2
Nmacro
C(A,B)
To

DC beam current

mean inx

covariance inc andy

bunch orientation angle
standard deviations, ellip-
soidal & Gaussian density
single-bunch mode number
bunch contour line function
bunch domain irnx
hypothetical mode frequency
guadrupole mode frequency
bunch CoG iry

raw moment

equilibrium of variance inx
equilibrium oanx,ny
equilibria in the LB
functions ofE; o

truncation matrix

truncation function
maximum order of the com-
plete moment equations

FIR filter parameter

Fourier coefficients ofeam
phases of harmonics 6f.,m
RF frequency deviation
phase modulation, input
frequency ratiogpass,m/ fm
number of macro particles
controllability matrix

basic simulation sample time



XI

Abstract / Kurzfassung

This thesis contributes to the modeling and analysis ofitadgal radio frequency (RF)
feedback systems in heavy-ion synchrotrons. Synchrotomsing accelerators with a
constant reference orbit of the particle beam. They allogvabceleration of particles
such as electrons, protons, and heavy ions to highest eseffie desired specifications
for beam properties such as the quality, energy, and intethsve the development of new
accelerator components. Among other objectives, thelziaton of the beam before and
during the acceleration is desirable to preserve the beatityquThe thesis deals with
the modeling of longitudinal coherent oscillations of a tlwed beam. The main focus is
on the usability of the models for the analysis and designigital RF feedback loops.
The analysis of these models with methods from control ghezads to new insight into
the possibilities of RF feedback with regard to the longiatl beam stabilization. In
particular it is shown that the nonlinearity of the beam dyiies plays a major role in the
damping of coherent oscillations of higher order. An analp$ a specific RF feedback
setup and the comparison with experimental data shows teigal relevance of the
models.

Die vorliegende Arbeit liefert einen Beitrag zur Modellieg und Analyse von HF-
Regelsystemen in Schwerionensynchrotrons. SynchrosioidsRingbeschleuniger, die
sich durch einen konstanten Soll-Orbit des Teilchenstrabkzeichnen. Mit ihrer Hilfe
konnen unter anderem Elektronen, Protonen und schwere lanehdchste Energien
beschleunigt werden. Die gewtinschten Anforderungen aeriShaften wie die Qualitat,
Energie und Intensitat des Teilchenstrahls treiben dieiektung der Beschleunigerkom-
ponenten voran. Unter anderem ist eine Stabilisierung trehlS vor und wahrend der
Beschleunigung erwiinscht, um die Strahlqualitat zu ezhalin der vorliegenden Arbeit
werden longitudinale koharente Oszillationen eines gdblien Teilchenstrahls model-
liert. Dabei liegt das Hauptaugenmerk auf der moglicheweadung der Modelle fir
die Analyse und den Entwurf von digitalen Hochfrequenz- .b##-Regelkreisen. Die
regelungstechnische Analyse dieser Modelle ermoéglicheierkenntnisse dariber, was
HF-Regelungen fur die longitudinale Strahlstabilisigrdaisten kbnnen. Insbesondere
wird gezeigt, dass die Nichtlinearitat der Strahldynamikeewichtige Rolle spielt bei
der Dampfung von Oszillationen héherer Ordnung. Eine Asmlginer konkreten HF-
Regelungsstruktur und der Vergleich mit experimentelleateld zeigen die praktische
Relevanz der Modelle.






1 Introduction

After almost a century of steady development, particle lecators belong to the most
complex research facilities. For many fields of theoretid applied science, they have
become an indispensable tool. The research in this theswisated by the planned
accelerator centdfacility for Antiproton and lon ReseardrAIR). This center expands
the facilities of theGSI Helmholtzzentrum fiir Schwerionenforschung GrhbFhe core
of FAIR is a new double ring synchrotron with a circumferein¢e 100 meters and the
existing facility with the synchrotron S1S18 will be usedaapre-accelerator for FAIR. A
short overview of FAIR is given in [35], more information cha obtained from the FAIR
homepage [1] or the technical design reports. Synchro@momsing accelerators that can
accelerate charged particle beams up to highest energipsalfor a synchrotron is the
constant reference orbit of the particle beam. Figure Irbduces the general setup of a
synchrotron: the beam is first accelerated, for example linyeai accelerator. After the
injection of the beam, a magnet lattice guides the beam arliis and in each turn, the
beam is accelerated by radio frequency (RF) electric figldisle a cavity. Typically, the
beam remains in the ring for more th&dP turns, before it is extracted for experiments or
further acceleration.

The stability specifications for a synchrotron are ambgioun the heavy-ion syn-
chrotron SIS18, the particle beam covers distances of niane the circumference of
the earth during the acceleration cycle, which lasts lems tine second. The synchrotron
Is designed such that if particles deviate from the refexembit with respect to longitudi-
nal focusing, they will oscillate around this orbit. Thisashieved by creating a potential
well using electromagnetic fields. Along the orbit — in lawigiinal direction — the poten-
tial well is established by a periodic RF voltage. In the $raarse direction, perpendicular
to the orbit, magnetic fields create the stabilizing potdrand guide the beam.

However, no accelerator is ideal and there will be distuckarthat act on the beam.
Examples for such disturbances are noise in the RF voltagerors in the magnetic
fields. In addition, if the particle density is large enoutjie particles in the beam will
interact with the environment and with themselves. Durimg @cceleration, the particle
density is not homogeneously distributed along the ringueinference. Rather, the beam
consists of a definite number of particle ensembles, célledthessuch that the particle
density varies considerably along the longitudinal axikisTeads to effects such as the
interaction of the beam with the RF cavity or the conductiegrn pipe or interactions
between different particle bunches. All these effects neadl|to growing instabilities
of the particle beam, destabilizing the beam, impairingliteam quality, and increasing
beam losses. To prevent such instabilities, passive mesasan be taken that reduce

DPlanckstraRe 1, 64291 Darmstadt, Germany, URdw. gsi . de



2 1 Introduction

Figure 1.1: General setup
of a synchrotron accord-
ing to [137]. (a): particle
source, (b): linear acceler-
ator, (c): injection of the
beam in the synchrotron
ring, (d): dipole magnet,
(e): quadrupole magnet,
(f): accelerating RF cav-
ity, (g): extraction of the
beam, (h): experiment or
further acceleration.

the interaction of the beam with its environment. In additiactive measures such as
feedback systems are used to increase the stability of ta.be

Objectives

In this thesis, the focus is on the feedback of longitudimadle-bunch oscillations. These
oscillations arise whenever the shape of a bunch is not stemsiwith the shape of the
longitudinal RF potential. The longitudinal motion of a gi@ particle in a synchrotron
can be regarded as a relative oscillation around the mowfegence position. This os-
cillation is calledsynchrotron oscillatiorand is desirable, as it enables the acceleration
of a beam of particles with a certain energy spread. If theebwhape is consistent with
the RF potential, the overall bunch shape will be time-irardy even though the individ-
ual particles perform the synchrotron oscillation. Cosedy, any mismatch of the bunch
shape will lead to single-bunch oscillations. The simplesgitudinal oscillation occurs
if the bunch arrives too early or too late at the cavity. Thisead to relative longitudinal
oscillations of the bunch center of gravity. Other mismatcin the bunch shape will lead
to oscillations of the bunch length or more complex oscdlad.

Longitudinal single-bunch oscillations can be dampedgiggedback systems, as has
already been demonstrated in many synchrotron facilitielse feedback consists of a
measurement of the beam current, a control algorithm, andrr@ation of the beam,
as shown schematically in Figure 1.2. Typically, the cdrogcis made by modulating
the amplitude and phase of the total RF voltage, either byguie same cavities that
are used for acceleration or by using dedicated kicker ieavitMany existing feedback
systems are based on analog hardware and are thus not vérietfléx GSI, efficient new
digital hardware enables the use of more flexible and saphaist feedback algorithms.



setpoint RF voltage bunch oscillations
—>
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Figure 1.2: RF feedback of
controller (¢—— bunch oscillations.

With these possibilities, also new questions and challeagese. The following of these
challenges will be covered in this thesis for heavy-ion $yatrons:

e How can single-bunch oscillations be modeled efficientlghsthat the resulting
models can be used for a controller synthesis?

e How do the beam oscillations respond to the modulationseRF amplitude and
phase? What changes in beam shape are possible in principle?

e What can be said about the choice of the feedback algoritttparameters? In
which region is the feedback stable and how is the feedbad&rpsance?

Structure and Contribution of the Thesis

The unique contribution of this thesis is the modeling analysis of longitudinal single-
bunch oscillations from a control theoretic point of viewhelcontributions are: first, a
new rigorous modeling procedure for single-bunch osailfest that allows for nonlinear-
ities of the beam dynamics; second, the derivation of feekllbaodels of single-bunch
oscillations depending on the bunch size; and third, théyaisaof the feedback proper-
ties of these models. Figure 1.3 shows the main topics otiésd, the relations between
these topics and the degree of innovation, i. e. of new esult

The thesis is structured as follows.

Chapter 2
Chapter 2 is a revision of the longitudinal single-partidignamics as described in stan-
dard references and papers. Most of the theory of the chaptesll known, but there are
two main reasons why it is included. First, the thesis is méate self-consistent for
control engineers with a consistent notation of the physiaaables. Many of the equa-
tions of this chapter are used in the subsequent chaptezan&gthe derivations and also
the equations of the beam dynamics differ from referenceference. The contribution
of Chapter 2 is also the attempt to compare and to evaluade thferences. The notation
used in this thesis follows closely [57].

Chapter 3
Because the particles of a single bunch oscillate in genierial possible that the bunch
shape as a whole will oscillate. These coherent longitudhmach oscillations are defined



4 1 Introduction

Longitudinal Beam Dynami
Accelerator Physics

Chap. 2 + Sec. 3.1-3.3

Modes m=12
linear bucket

Mode Definitio
Sec. 3.4
Sec.4.7.1

Analysis of R
Feedback

Sec.5.1 +5.

Moments, Statistic
Sec.4.4.1

Dynamical Systems Theoly
Sec. 4.3

Figure 1.3: Contribution of the thesis. The colors signify existingdhe(gray), partly
new developments (light blue) and new results (blue). SB@las-bunch oscillations.

and described in Chapter 3. After defining properties ofiglarbunches, the standard
theory of bunch oscillations is reviewed. This theory pregothe decomposition of the
longitudinal oscillations into orthogonal modes with a@fie frequency. An important
contribution of the thesis is presented in Section 3.5. imgRkction, formulas are derived
that describe the relation between the bunch shape andats barrent spectrum for
ellipsoidal bunches with uniform or Gaussian densitiesesehformulas are essential to
the modeling of the measurement and detection of the burailiatisns.

Chapter 4
Chapter 4 presents the main modeling result of the thesiger&emodels are presented
that describe the dynamics of the bunch shape with respéee tsmodulations of the RF
voltage. The modeling approach is based on moments and cappied for nonlinear
RF potentials that can be approximated by finite polynongaks. The obtained models
enable the use of state-space and nonlinear control methatie time domain. The
approach is superior to existing models in literature that@sed on a linearization of the
beam dynamics. It is shown that the nonlinearity of the Rfepiml plays an essential
role for higher order coherent oscillations.

Chapter 5
Finally, in Chapter 5 the models are used to analyze RF fedbaps of the synchrotron



SIS18 at GSI. The analytic and simulation results are coatpaiith measurement data
of a beam experiment.

Many of the results and ideas of this thesis were developexaperation with the
RF department at GSI. In particular, the definition of thediumodes in Section 3.4.3 is
based on the ideas of Dr. Harald Klingbeil and the modeling@gch based on moments
and the interpretation of the modeling results have grdmhefited from discussions with
him. The beam experiment in Section 5.2 was realized by tigeRiF group at GSI and
the measurement results are courtesy of GSI.

In addition to the described topics, a simulation study wasgomed concerning the
stability of a double-harmonic cavity setup under beamilogdThe research questions
in this study were different from the questions stated aksowe the results will not be
included in this work, but can be found in [72, 73].

In the following, bunches with different bunch sizes will bensidered, also small
bunch sizes that may be unrealistic for real experimentaveider, these considerations
are used to illustrate the concepts and to check the aralygisults for plausibility. As the
scope of the modeling procedure is on feedback systemshtikeege of the modeling
step is to include only the most relevant dynamics to obtammodel that is sufficiently
accurate and as simple as possible. The question which ¢évelodel accuracy and
complexity is appropriate cannot be answered in generalyitiidepend on the feedback
structure and the specifications of the feedback task. 8lesienplifications will be made
with respect to the beam dynamics and these have to be kepnth irhe comparison of
the models with simulations and a beam experiment in Ch&pieit be used to show the
validity of the modeling assumptions.



2 Longitudinal Single Particle Dynamics

2.1 Introduction

A particle beam in a synchrotron ideally consists of a lang@uant of identical particles
with equal rest mass and electrical charge. Classical rdsttm accelerate beams are
electrostatic, linear, and circular accelerators. An waesv of different accelerator types
and their history can be found for example in [43, 71, 136 ] 1BIEectrostatic accelerators
use high DC voltages that are generated for example with @&eWalton multipliers.
The maximum beam energy in these accelerators is limitetldyiaximum voltage. The
use of radio frequency (RF) voltages and fields led to newlaater types and enabled
higher energies. The synchrotron was proposed indepdpdgrivicMillan [92] and Vek-
sler [131, 132] in 1945 as a new method to achieve high enexgynb. An essential part
of the development was the discovery of {itease stability principlg¢32, 71, 136, 137].
This principle enables the acceleration of particles whiffier to a certain extent in phase
and energy. Instead of DC voltages, periodic RF voltagesised in synchrotrons and a
magnet lattice consisting of bending and focusing magreetse$ the beam on a closed
orbit. The main advantage is that the beam can be accelesiedtedly by the same RF
source. However, a necessary condition for the accelergtithe synchronization of the
beam with the RF voltage [43]. Because of the energy sprediiedbeam, the particles
have different velocities and without focusing, the bearh @werge longitudinally. The
phase stability principle prevents this divergence andantaes the longitudinal focusing
of the beam. Figure 2.1 visualizes the direction of the lardjnal axis.

A consequence of the RF voltage is that the particle denitysobeam is not equally
distributed along the ring in the presence of the RF voltdgather, the particles of the
beam are gathered in particle ensembles cdlleithesas shown in Figure 2.2. A par-
ticle in the bunch which matches the reference trajectoryeReptly will be accelerated
such that its angular revolution frequeney rises synchronously with the RF revolution
frequency, i.e.

wrE(t) = hwg(t) (2.1)

holds. The integek is called theharmonic numbeand equals the maximum number of
bunches. In the following, the particle on the referenciettary will be referred to as the
reference particleand its quantities will be denoted by the index R. It is notessary and
rather improbable that the beam indeed has a physical leaetkactly at the reference,
but this concept is convenient for modeling the dynamicstaedeference particle may
be regarded as a fictitious one. The patrticles of the bundhaviteviation in position or
energy with respect to the reference particle perform theatledsynchrotron oscillation
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_ guadrupole magnets
dipole magnet \

rbit

N .
cavity

Figure 2.1: Scheme of a synchrotron and the longitudinal and trans\eexse used to
describe the beam. The number and position of the magnetbésmatical. A detailed
setup is given in Figure 1.1.

longitudinal orbit

: _ q
beam pipe 4z 4o line density)harge () ~ S2
D ova bunch
zZ
>
zZ
>
0 Ly
h=2

Figure 2.2: Typical line density for bunched beamiseft: The line density is defined as
the amount of particles at the positiaralong the longitudinal orbit, it does not reveal
anything about the density distribution in transversedioas. Right: A bunched beam
with & = 2 bunches[y is the length of the ring.

which will be described in more detail in the next sectionsilyQhe motion in the lon-
gitudinal phase space will be considered, i. e. the motioaljgh to the reference (ideal)
orbit. This motion is mainly dictated by the RF voltage. Thetion in the transverse
planes perpendicular to the orbit is governed by the magtadtice consisting of dipole,
guadrupole, and optionally higher order magnets. Thisstrarse motion will only be
considered in terms of the so-called momentum compactictorfa This factor will ac-
count for the fact that off-momentum particles will have twer a different distance in the
ring for one turn. However, this is only the stationary comgiat of the transverse motion,
a dynamic coupling of longitudinal and transverse plandksnet be considered. This is
justified in almost all accelerator experiments, becausdrdguencies of the transverse
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particle orbit Ay
Ugap (t) \ Ax
>v
o
Az
Lr

reference orbit

Figure 2.3: Absolute and relative coordinates. Moving reference Rokibs longitudinal
positionz € [0; Lg| with length Ly of the reference orbit, transverse deviatidnsand
Ay, longitudinal deviatiom\z, curvaturer(z) of the reference orbit.

particle oscillations are larger by an order of two to thrempared to the corresponding
longitudinal frequencies. Because of this fact, transv@enstion may be averaged over
many turns, leading to the momentum compaction factor.

2.2 Synchrotron Oscillation

This section describes the theory of longitudinal motioa pérticle in a synchrotron ring.

Section 2.2.1 introduces the curvilinear coordinate syatsed in ring accelerators and
Section 2.2.2 reviews the energy gain of particles in ebectignetic fields. Section 2.2.3
explains the general idea behind the synchrotron osaifladnd Section 2.2.4 introduces
the reference particle. After this, Sections 2.2.5 and62eXplain the derivation of the

longitudinal equations of motion and Section 2.2.7 death Wie synchrotron oscillation.

Finally, a discussion of the presented theory is given irtiSe.2.8.

2.2.1 Coordinate System in Beam Dynamics

The use of curvilinear coordinate systems has proved to ineoent to model the parti-
cle dynamics in accelerator rings [136]. In this case, oalgtive deviations with respect
to the reference trajectory are considered. Figure 2.8tithtes the typical choice of co-
ordinates: the reference trajectory R is the origin of therdmate systeniAx, Ay, Az).
The absolute longitudinal position of the referenceyi$t), its velocity iszg = vR(f).
The reference trajectoryg (¢) is determined offline before the acceleration cycle of the
beam. Section 2.2.4 describes this acceleration cycle ie detail. Along the ring, dipole
magnets are used to guide the beam on the reference orbitheitturvature(z).
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With the relative positiondx, Ay, Az and momenta\p, Apy, Ap-

x=[Ax Ay Az Apy Apy ApZ}T

the dynamics of a single particle can be described in a 64tsmeal phase space. This
phase space consists of two transverse planesAp, ) and(Ay, Apy,) and one longitu-
dinal plane(Az, Ap;). As the particles in the beam have a certain momentum spitead,
beam will diverge in transverse and longitudinal direcsisnthout focusing measures. In
the transverse plane, quadrupole magnets focus the beareagthe RF voltage

ugap(t) = al sin(Prg(t)) (2.2)

and thus the RF electrical field of the cavity provides agegilen and phase focusing in
the longitudinal plane. The RF phase depends on the RF fneyuses

t
Prr(t) = [ wre(t) dt + Ag(t) (2.3)
0

whereAg is variation of the phase, for example due to a feedback isysBecause the
beam and the RF voltage should be synchronized, the RF inegug:r is chosen as a
multiple of the reference revolution frequeney, cf. (2.1). whereh is the harmonic
number and the revolution frequency is

2 2moR(t)

Tr() Lg '
whereLy is the circumference of the ring along the reference orluk ‘Bn denotes the
revolution period of the reference. The arrival time of teé&rence after turkh may be
denoted by, and the time period for the reference to complete tuby T (f), i.e.
ter1 — tr = Tr(tx). The synchronization condition (2.1) guarantees that ¢ference
particle arrives repeatedly at the cavity at the same veltag, (tx) = Ur, because

wr(t)

trt1 tr+

q)RF(tk—f—l) — Ore(ty) = / wrg(t) dt = ﬂ dt ~ Zﬂhm = 27th,
Tr(t) Tr(tx)
t tx

where the approximation is made under the assumptiondgais ramped adiabatically,
I. e. is almost constant during one turn. Also, this calcatator the reference particle
setsAg equal to zero, because the trajectory of the referencecigaidipredefined by the
central control room. It is important to note that variagpdisturbances, and feedback
will affect all particles of the beam, but not the referenetigle.

In the following, relative coordinates will be used rathean absolute coordinates such
ast anddgg. The definition of the relative coordinates is visualizedrigure 2.4. In the
left image, the positions and velocities of the referenatigda and a particlé are shown
for a fixed time and areg, vR, z;, andovy, respectively. Particlé is late with respect
to the reference and will arrive later at the cavity. Thishewn in the right image of



10 2 Longitudinal Single Particle Dynamics

Frozen Timet =t Fixed Positionz = 0 at the Cavity
ugap(q’RF) h=1
A
Az =2z —zr <0
—~— Urt
0 Zk 2R Lr =z
POre(t
—— y PrE(E)
—» UR
~—» Uk .
» ¢

Figure 2.4: Relative and absolute coordinatelseft: longitudinal positionz along the
orbit for a fixed timef and a particle with a deviatiofz; < 0. Right: gap voltagelgap
for h = 1 at the cavity, i. e. for a fixed positian= 0. The delayed particle has a positive
time lagAT, > 0 and phase differenc&g, > 0 with respect to the reference (blue dot).

Figure 2.4. The relative time and the relative phasg are measured with respect to the
zero crossing of the gap voltage. The reference arriveg and the delayed particle at
T, resulting in a differenc&t,. > 0. The relative phase is related to the relative time by

@ = WRF T, Ap = wrp AT = —AT. (2.4)
The relative RF phase of the reference is denotegijfoyAt each turn, the reference will
arrive at the cavity when
Ug = Uy sin(gR). (2.5)
Usually, the velocity, is very similar tovg and the approximation
Az =~ —vR AT (2.6)

holds.

The next sections will focus on the dynamics of the longiatliplane. Thus, only
the cavity and the magnetic field of the dipole magnets wilekplicitly considered as
components of the synchrotron. However, it is understoatighadrupole magnets and a
large number of other components are necessary for theesatieh of the beam.

2.2.2 Relativistic Particles in Electromagnetic Fields
The force of an electromagnetic field on a charged partidleed orentz force

FL:Q[E+Z)XB]
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U sin(wRrpT) ~ Tgapal sin(wgrp[R + AT])

=
1
i
1

_

R TR+ AT Trp/4

Figure 2.5: Transition and acceleration of a particle in the cavity. @pgroximation is
valid for Tgap < TRE-

with the particle charg€), the electric fieldE, the particle velocityy and the magnetic
field B [54, 81, 136]. The Lorentz force is invariant under coortirteansformations and
is also valid in this form for relativistic particles [57, B8n a synchrotron, the force due
to the electric field is used to actually increase the enefgie particles. The electric
fields are generated in the RF cavity and act on the particlysom a very small fraction
of the ring circumference. The magnetic fields are genenatelipole and quadrupole
magnets and are used to deflect and focus the particles. tee and position of the
magnets is referred to as the magnet lattice. In a circuleglaator as the synchrotron,
the magnet lattice is arranged such that the particles aredmn a closed reference orbit.
In this way, the particles can be accelerated repeatedheifiRE cavity. The energy gain
of a particle can be expressed as

AWaCC:/FLdz:Q/Edz+Q/[vxB]-vdt,

-~

Qv -0

wheredz = v dt was used. Only the electric field contributes to the energy. gahe
term QV can be interpreted as the energy a particle with the ch@rgains if it passes
through an effective voltag¥. Thus, the unit of this energy gain is commonly given in
electron volt and not in joule. The electron volt is equivdl® the energy gain of a single
electron Q = —e) accelerated by an electric potential differentef one Volt and equals

leV =1.602-10"Y7.

In a synchrotron, a particle with the char@es only accelerated in one or more cavities.
The gap of the cavity has the length., and shall be placed at the positian= 0,

cf. Figure 2.3. The electric field inside the cavity gap isgudional to the RF voltage
Ugap (t) and is assumed to have only a nonzero component paralles torkfit:

Ugap (t
E(t) = iap( ) €z,
gap
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wheree; is the longitudinal unit vector. We will now consider the algration of a particle
which can deviate from the reference. Its positipmelocityv, energyW, and arrival time
T at the cavity are, respectively,

zZr = zr + Az, v =R+ Avr, Wi =WR+AW,, T =1+ AT, (2.7)

with small deviations\z;, Av,, AW, andAT,. The energy gain of the particle is given
by

21

[
/Ugap ezv( ey dt RQ /Ugap
gap

Lgap
where the approximation is made that ~ vg during the transition of the cavity. With
the gap voltage defined by (2.2) and (2.3) and the assumptadwig is approximately
constant during the transition, the energy gain can be segptein local coordinates as

TR+ATk+Tgap N
URQul . TJRQul .
AWiee = T sin (CURFT) dt ~ T Tgap SIH(CURF [TR + A'Z,'k]).
2P TR+ATk 2P

The approximation is justified by the fact that the cavityngiion timeTg,, is typically
only a small fraction of the RF peridtkg as visualized in Figure 2.5. Finally, using (2.4)
andug Tgap = Lgap, the energy gain can approximately be described by

AI/Vacc ~ Qljl Sin(wRF [TR + ATk]) = Qljl Sin((PR + A(Pk)' (2-8)

2.2.3 Phase Stability Principle

The phase stability principle has been discovered in 19d&aandently by McMillan and
Veksler [92, 132]. It can be explained qualitatively asdals) A particle with a devi-
ation Azy > 0 has a phaség, < 0 (cf. (2.4) and (2.6) and will arrive earlier at the
cavity. As shown in Figure 2.6, the particle is deceleratétl vespect to the reference R
by a negative voltagélg,,. After some turns, it will fall behind the reference and gain
more energy due to the positive gap voltage. Altogethes, [dads to a relative oscilla-
tion of the particle in longitudinal direction around théerence R called theynchrotron
oscillation The oscillation takes place in relative coordinates suchz and Av, as
defined by (2.7). The resulting differences are small coegb&o their uniform compo-
nentszg andog. It should be emphasized that the synchrotron oscillasaesirable as
it allows phase stability, i. e. the acceleration of paetclvith deviations in position and
energy. The frequency of the synchrotron oscillation isecathesynchrotron frequency

DThe reasoning is valid below the transition energy, which kg introduced later on. Above the transition
energy, the reference R lies on the falling edge of the RRageland the situation is reversed.
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4
4
R\ >

Tn Tsn
(R N iR

Figure 2.6: Phase focusing principle in the stationary cage= 0. Top: gap voltage
Ugap at the cavity withh = 2, wgg = 2wg. This enables the space fbor= 2 bunches
with references R and’R Bottom: synchrotron oscillation in relative coordinatesand
¢. Particlek is advanced a and is decelerated with respect to RUy,,. As soon as it
is delayed, it is accelerated. This results in a synchrasmilation with periodlsyn.

wsyn = 27 fsyn = 271/ Tsyn and it typically is considerably smaller than the beam rev-
olution frequencywr = 27 fgr = 27t/ TRr. Typical values of the synchrotron frequency
are

fon =1073...107 % fg.

Thesynchrotron tune

Vevn = = —~103...102
n Tsyn fR

is defined as the number of synchrotron oscillations per. turn

2.2.4 Longitudinal Reference Trajectory

The energy gain of a particle has been expressed by (2.8)h&oeferencd . = Agy =
0 and the reference energy gain from turp- 1 to turns is given by

AI/vacc,R = WR(”) - WR(” - 1) = QUR, (2-9)
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Figure 2.7: Synchronization of beam and RF voltage during acceleratitina constant
acceleration voltagelg andh = 1. The rate of acceleration is exaggerated.

where Wg (1) denotes the total particle energy during turrand Uy is the reference
voltage

UR = C[l sin(pr TR) = l:[l sin(q)R). (2.10)

The phasepy is calledreference phaseDuring acceleration, the reference eneitjy
will increase and so will the revolution frequeng¢y. As already stated, the beam and
the RF voltage have to be synchronized for a successfuleretiein (cf. (2.1)) and this
implies an increase of the RF frequengy:. This is shown in principle in Figure 2.7.
However, the rate of change @t is exaggerated, as a real acceleration cycle is normally
close to an adiabatic process. The fact that several pagasriedve to be synchronously
adapted to each other is the reason for the nsynehrotron

In practice, the magnetic fiel () of the dipole magnets is predefirfédnd the other
synchrotron parameters follow synchronously. To keep #rggles on the reference orbit,
the Lorentz forceFy, has to balance the centripetal forEg

y)
! ! YRMQU
|FL|=|F,] = QugBr=-——21

with the curvature in the dipole magnets, the Lorentz factor or relativistiemalized
reference energyr and rest massiy. With the reference momentupr = myyroR
this leads to the synchrotron condition for a constant ddviturn »

pr(1n) = QrBRr(n). (2.11)

Using the relativistic relationy = 1/4/1 — g2 and = v/c, other quantities can be
derived as functions B (¢). A short list of useful relativistic formulas can be found in

2 An essential reason is that the magnetic fields of the dipalgnets have a comparatively low response time.
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Section B.1, these will be used in the following. If the magméeld in turnn is given,
this leads to the momentupg () of (2.11) and to the energy

2
B1) o QrBgr(n) (8.3) Wr(n)
3 14 |=ERUD =) IRV 2.12
Wi (1) moc\/ | LR oy @ TR @az)
and the velocity
QrBr(n)
B.2 OR\n
N — O RN

RS
The revolution periody, the revolution frequency, and the RF frequencfgr are given
by

LR
oR (1)

It is now possible to calculate the necessHliy(7) to obtain the increase in energy. In-
serting (2.9) in (2.12) yields

i) - 6% o [ 2O o [OROI) ay

This calculation can also be performed in a continuous ag@mation: Assuming adia-
batic acceleration, the rate of change in energy due to 2®)e expressed as

A ~ AWacc o QUR(t)
Wr(t) TR Tr(t)

The reference energyg (¢) is given by (2.12) as a function & (¢). The derivation with
respect ta is

To(n) = R ) = U g n) = ().
R

(2.14)

WR(t) _ C[Qr]ZBR(t)B(t)R '
\/m%cz + [QrBr (t)]?

Comparing (2.15) and (2.14) leads after some calculatepssio the simple condition

(2.15)

UR(t) ~ LRT’BR(t). (216)
A power series expansion of (2.13) leads in first order to thevalent discrete result [57]

Br(n) — Br(n —1)
Tr(n) '

Thus, in the stationary case before (or after) accelerafign= 0 implies pg = 0, if U;
is nonzero. During acceleration, bdth andgg can be varied to satisfy condition (2.16),

Ug(n) =~ Lgr
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extraction
A BR (t) /

injection

acceleration deceleration

Figure 2.8: Typical acceleration cycle (not to scale).

as long adl; is larger than the necessary voltddg. This additional degree of freedom
is used to choosH; such that thducke®) area is kept constant, cf. [48] and Section 2.4.
The reference phasey is then chosen to satisfy (2.16).

Figure 2.8 shows a typical choice B andBg. First, the beam is injected into the ring
with the momentunpg (0). The necessary magnetic flux density is obtained using2.11
and equals

By = Br(0) = —pRQ(:)).
The minimum and maximum flux densiBf,ax is determined by the type of dipole mag-
nets. It is important to note thdiz (+) should be a continuous function. This follows
from (2.16). IfBr(t) is discontinuous, this implies thak (¢) will be discontinuous. This
would lead to a discontinuity in the reference trajectorgt aan induce beam oscillations.
The periodI .. Of the acceleration cycle typically is of the order of

Teyale ~ 10°...10° - Tg.

This shows the importance of a longitudinal feedback syssmall disturbances can sum
up during thousands of turns and cause beam instabilities.

2.2.5 Discrete Equations and Mapping Algorithm

In this section, the discrete longitudinal equations of ioowill be derived. The RF

cavity generates a sinusoidal accelerating voltage angadhtecles in the ring are only
accelerated when they enter the RF cavity, i.e. once a tuims Juggests a discrete
modeling of the particle dynamics.

3Bucketdenotes the stable area in phase spacebandhdenotes the particle ensemble. These terms will be
specified in later sections.
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Figure 2.9: Mapping sequence of relative delgyand relative energgW;.

To derive the discrete equations of longitudinal motion,ceesider a particlé that
has just completed turm and has reached the cavity as shown in Figure 2.9. Its time of
arrival at the cavity

T (n) = w(n) + At(n)

determines the voltagd.p, (t) and thus the energy a specific particle gains. In principle,
the voltagellg,p can be a general periodic function with an amplitddiethat is greater
than the reference amplitudféLR and a phase shifiggap

Ugap (T (1)) = Uy (n) sin(wgg (n) 7 (1) + Aggap (1))

The amplitude and phase variations can be caused by a fdedystem that is imple-
mented to stabilize the beam, but they can also arise frorerif@agtions and disturbances
such as interactions with impedances in the ring.

The energy gaidW,.. of the particle and\W,.. r of the reference are given by (2.8)
and (2.9). After the transition of the cavity (cf. Figure .the energy deviation of the
particle with respect to the reference has changed to

AWi(n+1) = AWi(n) +Q [ugap(Tk(”)) — uR(”)} ’ (2.17)

where it is assumed that the length of the cavity is so smatl titke voltage is almost
constant while the particle is inside the cavity. In additia small cavity length implies
that the phase; (1) does not change significantly. During the remaining parhefring,
the particle drifts and is guided by the magnetic fields. Ind@al accelerator, its energy
would remain constant. However, duesgnchrotron radiatiorand interactions with the
vacuum tubewake fieldy and other devices along the ringnpedances its energy may
be disturbed [19, 20]. During one turn, the energy loss ofréigl@ due to synchrotron
radiation can be expressed by [137]

QZ W4 W4

AW = ~ .
rad = 3eg[moc2]® v mi
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Due to the dependency dW andm, synchrotron radiation is relevant mainly for rela-
tivistic electron beams. In the case of proton and ion beaym;hrotron radiation is neg-
ligible for energies less thahTeV because of their larges masses, cf. [137]. Synchrotron
radiation will be neglected in the following, as only proscand ions are considered.

Modeling of wake fields and impedances is necessary to sienated analyze the beam
behavior. However, wake fields and impedances will not beeteablexplicitly in the fol-
lowing. Rather, they will be regarded as external distudeanacting on the phase and
energy of the particles. The aim of this and the followingptiais to establish a mathe-
matical model that is suitable for controller designs. & tontroller design incorporates
a certain robustness and the disturbances on the beam freenfiglls, impedances and
other sources are not too large, the controller will be ableuppress these disturbances
and stabilize the beam.

With these assumptions, Equation (2.17) is the first eqnatidhe longitudinal beam
dynamics and the energy of the particle is assumed apprtedyr@onstant as the particle
drifts through the remaining part of the ring. During theftdrihe arrival timet;, will
change depending on the difference in velocity of particld eeference, cf. Figure 2.9.
At the end of turm + 1, i. e. just before the cavity, the new arrival time of pa#iclis

Tk(n+1) :Tk(ﬂ)+Tk(H+1)—TR(ﬂ+1), (218)

whereTy, is the period of particlé for one turn in the ring andy, is the reference period.
To find an expression for the peridy, we consider the reference revolution period

L
Tg = —%,
UR
which depends on the reference orbit lengthand the reference velocityz. The rev-
olution period of the particld}, = Tr + AT} can be expanded in a Taylor series around
Tr as
LR —+ ALk o LR 1 LR

T, =Th + AT, = =~ "8 — 2R 4+~ AL, — 2A O(AL?, Av?),
= Tr + AT} T UR+UR k 2 v + O( vy)

where(’)(AL%,Avi) denotes the higher order terms. Neglecting the terms oinskeand
higher order leads to
ATk - ALk LRAUk . ALk B ATJk

TR R 1TR TRU%{ Ly UR

(2.19)

This equation shows the two mechanisms that lead to a dewiafi. First, a particle with
a higher velocity Av, > 0) will tend to circulate faster in the ring\(l;, < 0). Second,
a particle with a longer orbitAL; > 0) will need longer for one turnXT; > 0). Both
effects depend on the energy of the patrticle, as will be shavtime following. For small
deviationsAv;, the approximation (cf. (B.6), Appendix B.1)

Avk - 1 AWk
UR v3p% Wr

(2.20)
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holds, i. e. the relative velocity deviation is proportibt@athe relative energy deviation.
The orbit length deviatiolL, depends on the momentum of the particle. This follows
from Equation (2.11), as the curvature- p is proportional to the momentum A larger
momentum {p, > 0) leads in general to a different curvaturend to a longer orbit.
To calculate the dependency®p on AL, it is necessary to consider the geometry of the
accelerator ring and the focusing forces in the transvdesep. These considerations can
be summarized in the equation

ALy Apy
—_ ap _,
Lr PR

(2.21)

where themomentum compaction factay, is a characteristic of the accelerator and a
measure how compact the trajectories of particles witredgfit momenta are focused in
radial direction. If we take into account that approximat{8.6) is valid, i. e.

APk N 1 AWk

. ﬁ%{WR (2.22)
holds for small values ohp, (2.19) can be written as
% = [“p - iz Asz :
R TR | BRWR
The factor
B 1
R = &p — %

is calledphase slip factar At lower energies withyg ~ 1, #R is negative and a particle
with a higher energy will reach the cavity earlier. At higlegrergiesyy is positive and

the effect of a longer orbit predominates, leading to a lomgeolution period for faster
particles. For a specific energy

1
TR = —F— = Ttr
Vv &p
in betweenyr becomes zero and in a first-order approximation, the reeolyteriod is
TR, even if the particle has a small energy deviatioly, < Wyg. This point is called
transitionand the corresponding energy is thensition gammay,. Thus, the phase slip
factor can be written as

2

D) _
IR =7« — IR

Using the above relations in Equation (2.18) leads to

w(n+1) = 1. (n) + ”ZRV% (1 4+ 1)AW, (11 +1). (2.23)

RYVR
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The derivation of this equation uses (2.1), i. e. the fact the RF frequency is an exact
multiple i of the revolution frequency. In practice, there might beeaérency deviation
¢¢, either intentionally due to a feedback correction or uneemue to an error in the RF
feedback of the cavity. Including this in (2.1) yields

wre(t) = hwr(f) + ¢r(t). (2.24)
In addition, thiscavity RF programs sometimes extended to
wrr (t) = hwr(t) + ¢¢(t) + ¢r(t) (2.25)

to include a further terngg [63, p.41]. This scheme can have an advantage over (2.24)
for faster changes ipr since it assures that the RF voltage will keep up with the ohte
change of the reference phase. With these programs (2.28pek to

Gn+1) =7(n) + G+ DAW(n+1) +

(2.26)
+ (n+1) —(n) + kgp|w(n+1) — w(n)],

wherekrgp can be 0 or 1, depending on whether program (2.24) or (2.28gd. The time
lags due to the frequency deviation and the change of theerefe are denoted lay and
TR, respectively.

Equations (2.17) and (2.26) establish the discrete naalidgnamics in the longitudi-
nal phase spader, AW). They are also referred to asapping equationsas they can be
used to map the state;, AW,) of a particle from turm: to turnn + 1. Mapping equations
are widely used inmacro particle tracking simulation85—89] to simulate the behavior
of a beam of discrete particlés= 1, . ..,Nmacro.”) The parameter$y, 7R, Br, andWg
are only constant if the beam is not accelerated, i. e. indise of

UR(H) =0.

This will be referred to as thetationary case In the acceleration casély is positive
and the reference energy increases each turn. Consid&@ygléads to the additional
equation for the reference energy

Wr(n +1) = Wr(n) + QUg(n). (2.27)

The other parameterk, i, and g can be derived from this new energy value. The

choice ofUg (1) is given by the acceleration cycle of the accelerator coniam. As de-

scribed in Section 2.2.4]; can be expressed as a function of the magnetic Bgldh). It

is thus sulfficient to choogey as a function of time to define the complete acceleration cy-

cle. All parameters of the longitudinal motion follow fromig as shown in Section 2.2.4.
The mapping equations can also be extended for a ring witke ti@m one cavity.

In this case, the accelerating voltages of all the cavitethe ring can be added to an

equivalent voltage amplitudé , if the phases of the cavities are chosen appropriately [57]

4Macro or superparticle refers to the fact that each particle in the sinmotetepresents several real particles, as
the amount of simulated particles is usually smaller by ofaaf 10° to 10° compared to a real beam.
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or the mapping equations are used to map from one cavity todkieand have to be used
several times for one revolution [63].

An important property of the derived mapping equations & they preserve area in
phase space. This is true for the stationary egge= 0 and even for the acceleration
case, as long as the change of the beam parameters is adl[a@FhtiThis can be shown
by computing the Jacobian matrix of (2.17) and (2.26), wich

_ aAWk(n) aTk(n) _ gap (2 28)
F=1 amot1)  onryn | T |mTe g Ty | :
AW, () 91 (n) rWR PrWr ~ 8P

where Uéap denotes the derivative of the gap voltage with respeai.toThe Jacobian
determinant islet ] = 1, thus these equations define an area preserving map. For the
area preservation, it is essential thet, (n + 1) is used in (2.26) instead dfW(n).
This is similar to the use of a leap-frog scheme. The areaprason in the coordinates
andAW has an important consequence; if an arbitrary region in tiaes@ spacer, AW)
with a certain amount of particles is selected at a given tm&urn », this region will
then evolve during the following turns and may change itpsh#he area of this region
however will remain constant. This will be discussed in mae&ail in Section 3.

To simulate the longitudinal beam dynamics, it is usuallyrenconvenient to use the
RF phasep = wgrpT as a variable instead of the time lag Multiplying (2.26) with
wgrr(n + 1) yields together with (2.17)

AW (n+1) = AW () + Q| Ugap (9 (m)) — Ur ()],

it +1) = “BEEEL g ) gulm) — ()] + .29
+ 2R (4 4 1) AW+ 1) + pr(n+1) + kg gr(n+1).
RWR

These are the mapping equations in the phase spacAW). The derived mapping
equations are not area preserving since their Jacobiamdesat is

wrp(n+1)  Br(n+1)
wRE(1) Br(n)

Thus, it is quite common to use the coordinates, AW, /wgg), because the mapping
equations in these coordinates do preserve area in phase spa

The conclusion of the previous considerations is that thegitadinal dynamics for a
single particle can be described by two discrete nonlingaagons with time-varying
parameters. These equations describe a nonlinear ascillzlled thesynchrotron os-
cillation in the phase plane, as the next section will show. As the patesiof the syn-
chrotron oscillation vary slowly with time, it is often paske to assume that the variation
is adiabatic[110] and the parameters are approximately constant darmegturn of the
beam. Section B.3 summarizes the equations that are necésgaplement a longitudi-
nal tracking algorithm.

det] =
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2.2.6 Continuous Longitudinal Equations

The difference equations (2.17) and (2.26) can be writtasoatnuous differential equa-
tions, if the assumption is made that the change of the Masaband AW during one
turn in the ring is not too large. In this case, the differequetient can be approximated
by the differential quotient

T (n+1) — 5 (n)

TR ~ Tk(t).
This leads to the continuous equations
AW () = %(t) Ugap (i (1)) — U ()], (2.300)
() = R . .
T (t) = B (W (1) AW (t) + krptr(t) + T (1). (2.30b)

To begin with, the parameteiy, 77r, fr, andWp are assumed to be constant agcand
1; are set to zero. The continuous equations then represemdtétaan flow [71].

A dynamical system is calledlamiltonianif its equations of motion can be derived
from a functionH(gq, p, t) and Hamilton’s equations of motion

oH oH
., = 2 y = — ot 2.31
G 3k Pk 3ar (2.31)
where
T T
g=1n - 9 --- qnv], pP=[p -~ P --- PN],

are thegeneralized coordinatesndgeneralized momentaf the system, respectivelyf

is the Hamiltonian functionor Hamiltonian and N are the degrees of freedom of the
system. The space spanned bydph@ndp; is calledphase spacand has the dimension
2N. If the HamiltonianH does not depend explicitly on the tinhethe system is called
conservativeand the value o is conserved, as the rate of changd-bis

dH oH oH oH < 8H>
L o) 2,
dt at Z ‘ 00 sl 2 I T 2  0q) Ipk kzl opr \ g

—0

The Hamiltonian is calledeparabléf it has the form

H(g,p) =V(q) + T(p),

whereV is thepotential functiorandT the energy function
Equations (2.30) can be derived from Hamilton’s equations

9H . oH
n aTk‘
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with the Hamiltonian

Q
H(t,, AW,) = zﬁZI;NR AWZ — o / Ugap (T¢) — Ug d1y,
R

where the generalized coordinateyis= 7 and the generalized momentunpis= AW;.
This Hamiltonian is conservative and separable with themi! function

V() = _TQR / Ugap(Tk) — Ug d7;..

For the single-harmonic voltadés,, = U g sin(wrE i), the Hamiltonian is

H(ti, AWy) = 2 [Cll,R [cos(wRrF T) — cos(wrr TR)] +

(2.32)

+ UR [WRrpT, — WRFTR” + zﬁ%% AW,

where the integration constant is chosen suchif{ak, 0) = 0. The Hamiltonian is neg-
ative in the vicinity of(tg, 0) below transition and positive above transition. The Hamil-
tonian flow preserves the area in phase space. This is cemisigth the area conservation
property of the discrete equations and their Jacobian #8§2In general, the parameters
wR, YR, Pr, andWg vary slowly with time and the Hamiltonian becomes time dejsan.

If the variations are slow enough, the changes can howevexdagded as adiabatic and
the parameters as quasi-constant. The trajectories of/gtens may change slowly, but
the area circumscribed by a specific trajectory in phaseespdtstill be approximately
conserved [110]. For a beam consisting of a large numberemitical particles, this has
the following consequence: the existence of a Hamiltonmaplies that the phase space
area occupied by the beamorfgitudinal emittancpis an adiabatic invariant ifrt, AW)
coordinates [20, p.68]. The area preservation propertytarmbnsequences for a particle
bunch will be discussed in more detail in Section 3.2.

The coordinates of a Hamiltonian may be changed by a carldracsformation [81].
Care must be taken that only canonically conjugate cootelnare used to preserve the
area conservation property. Choosing inappropriate coates will result in conservation
of phase space area in the wrong coordinates. In partidolag Hamiltonian with one
degree of freedom it is possible to choose a transformation

j=K(t)g, p=Kt)'p

whereK(t) is a factor that may be slowly time-dependent.

Table 2.1 lists common coordinate pairs for the longitudptease space. Not all pos-
sible pairs are canonically conjugate. Some transformatwe only approximately valid,
they are based on the relativistic relations in Appendix, Bdpecially Equation (B.6).
These transformations are valid for small deviations oglg. Ap < pr andAv < vg.
The coordinatesp, AW /wg) are not strictly canonically conjugate, becas# is nor-
malized bywg and not bywrr = hwg. But, becauseé is a constant factor, the simulation
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Table 2.1: Coordinate transformations basedoandAW. The given unit refers to area
in phase space. CC: canonically conjugate, CAP: correat@eservation.

Coordinates and transformation CC? CAP?  Unit
T, AW yes yes eVs

T, Ay = AW/myc? no yes s

Az ~ —Br(t)ct, Ap; ~AW/Br(t)c yes yes eVs

@ = wrg(t) T, AW/wgrEg(t) yes yes eVs

¢ = wgre(t) T, AW/wg(t) no yes eVs

¢ = wgre(t) T, AW no no eVrad

¢ =wgr(t) T, 6= Ap/pr~AW/BE(HWR() no no rad

with these variables still leads to a correct conservatigghase space area in the coordi-
nates(t, AW). Itis interesting to note that the pdiAz, Ap;), i. e. the physical position
and momentum, is also canonically conjugat€tpAW).

Because the phase space are&tim\W) is preserved, the area (p, 6 = Ap/pRr)
will change according to

1 _27rhc 1 1
BAWR  Lr BRWR  BrRIR

Thus, at the end of the acceleration cycle, the area occuyyidde beam in the phase
space( ¢, ) will be smaller. This is referred to aaliabatic damping

For a RF cavity with a single harmonic the longitudinal motiof particlek in the
phase spacgp,, AW, ) with the new coordinate

WRF

AW = B
WRF
can be written as
A (1) = 52 [0 (1) sin(gy() ~Ur()],  (2:33a)
. . - 77Rw12{1: ~ )
@r(t) — kregr () = —5—=AWi(t) + ¢¢(t). (2.33b)
,BRWR

The variabled]; and ¢; can be used as input variables to implement a feedback loop.
Equations (2.33) will be analyzed further in the next setwior he time dependency of the
slowly varying parameters will be treated in the followimgthe framework of adiabatic
motion. Only the RF amplitudél; and the phase errap; will be allowed to make fast
variations. These variables will be used in later chaptsrimputs to control the beam.
The reference particle is defined as the particle that exaetins the energylz. For

the reference RF amplitudé; (t) = Uy r(t), a corresponding reference phase can be
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calculated: Rewriting the energy equation (2.33a) \Mﬂ?fk = 0 for ¢, = @R Yyields the
reference phase

Ug = Uy rsin(gr) =  @r(t) = arcsin (&le(tt))) , (2.34)

where it is necessary to assurlg < CILR. In the following, the amplitudéAlLR will
denote the desired reference amplitude as given by theat@aintrol room.U; will be
used to denote the amplitude including beam control moiduisit

2.2.7 Synchrotron Oscillation and Phase Stability

Equations (2.33a) and (2.33b) describe a nonlinear oscill@alled thesynchrotron os-
cillation. For small amplitudes the equations can be linearized artheaworking point

Pk = PR, AWk =0.

Assumingkgr = 1 andU; = U; g and usingAg; = @i — @R, differentiating (2.33b)
and inserting (2.33a) and (2.34) yields

. Qhwiinr

A(Pk = WHLR [sin(A(pk + (PR) — sin((pR)] + (Pf, (235)

whereAg, = ¢ — @R is the small phase deviation. The Taylor-expansion of thino
ear term on the right hand side&g; = 0 is

A 2
sin(A@i(t) + ¢r) — sin gr = cos pr Agy — sin pr % +...

and leads to the linear approximation

AGi(t) + win Dgx(t) = . (2.36)
This is a linear harmonic oscillator with the solution

¢r(t) = ¢ cos(wsynt + Py) (2.37)

for ¢¢ = 0 with the synchrotron frequency in the linear regime

) (2.38)

Wsyn = Ton

n 2
—_ QU rh [’YR — “P] COS PR
¢ 27T BRWr

where the factofyz? — ap]cospr = —1r cos g should be nonnegative; with the
proper choice of the operating point

1/2

{ cos pr > 0 below transition, i.eqr < ap
1/2

cos pr < 0 above transition, i.eyg > ap
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it is guaranteed thabsyy is real and the resulting oscillation is stable. This cdodits
known as thghase stabilityor phase focusing principlg82, 71, 136, 137]. The phase
stability enables the acceleration of particles with a matme spread, because particles
with small deviations from the reference trajectory aretksgar the reference by this
stable synchrotron oscillation.

With definition (2.38) the nonlinear differential equatiocan be written as
Wim

COS PR

A@i(t) = [sin(Agy () + @r) — sin gr] + . (2.39)

A similar calculation forkgg = 0 yields

2
Wsyn

COS PR

Agi(t) = — [sin(Agx(t) + @r) — sin pr] + @ — Pr. (2.40)

2.2.8 Discussion of the Longitudinal Equations

A general way to derive the equations of longitudinal mot®to consider the relativistic
Lagrangian for a charged patrticle, to define the electrom@griields that act on the
particle, and to change to a Hamiltonian description of orotielative to the reference
trajectory [90].

In the beam dynamics of a ring accelerator, deviations ofptbstion and momenta
are considered to simplify the obtained model. Thus a géhtamailtonian for the beam
dynamics of a single particle

H(Ax, Ay, Az, Apx, Apy, Apz; z; t)

depends on the position and momentum deviations, the dbgeli@rence position, and
the timet. It describes the synchrotron and betatron motion of a @dhparticle in a
circular accelerator [70]. Since the motion in the longitad phase space\z, Ap;) is
usually considerably slower than the motion in the trarswg@hase spaces, the longitudi-
nal part of the Hamiltonian can be obtained by averaging efttAnsverse motion. The
Hamiltonian finally leads to continuous equations of londibal motion

oH . oH

Az = aAPZ, APZ——E

In general the Hamiltonian will depend explicitly on the &érhif the beam is acceler-
ated. For example, the beam energy changes and this wileimdkithe motion in the
longitudinal phase spadéz, Ap,). However, since the acceleration is usually slow, the
assumption o&diabaticityis possible and leads to a conservative Hamiltonian [110].

A second approach is to regard the longitudinal motion ashearently discrete pro-
cess. The goal is then to find discrete equations that mapoisgn and momentum of
the particle from one turn to the next. The discrete appreahchosen in Section 2.2.5
to derive the discrete synchrotron equations.
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As long as the synchrotron oscillation perifig, is considerably longer than the revo-
lution periodTg, both approaches lead to very similar results and the comti® equations
can be discretized or derived from the discrete mappingtemsa In both cases, the right
choice of the longitudinal coordinates is essential to iobtarrect results if the beam
dynamics are simulated over a complete acceleration cycle.

To derive the longitudinal equations, some approximatioad to be made in Sec-
tion 2.2.5. In the following, these approximations and thieamed equations are discussed
and compared with literature.

The first approximation made was the neglect of terms of hmighder in Equa-
tion (2.19). This has the consequence that the followingutations are valid for small
deviations only. This is also the case for (2.20) and (2.@2principle, these approxima-
tions can be avoided [57], but this leads to a more compleatemuin At compared to
Equation (2.23).

A further approximation is that Definition (2.21) of the mambem compaction as-
sumes that there is a linear dependency between the refatiwgentum and orbit length
deviation. In general, the dependency is nonlinear and argeénonlinear relation

AL _ (%)
Lg PR

of the momentum compaction could be assumed.

Typical relative momentum deviationsp/pr in synchrotrons have a magnitude of
less thanl0—3 and this is also an upper limit for the relative deviationsirergy and
velocity (cf. (B.7)). For this reason, the aforementionpdraximations can be regarded as
sufficiently accurate. It has to be noted that this would [ffeidint if the transition energy
would be crossed. In this case, the frequency of the syncmraiscillation becomes zero
for all particles and nonlinear terms of the momentum cortipatave to be taken into
account [51, 126].

Different versions of the longitudinal equations existngoare valid for certain accel-
erator classes only. An early literature survey on thisaaain be found in [41]. In this
survey, Hereward acknowledges that the process of actietemnaa synchrotron is in fact
a discrete one. Another interesting reference is [9, p\@Agre a ring accelerator is used
as an example of inherently sampled systems. The early pd@@&urant and Snyder [22]
about the theory of the alternating-gradient synchrotn@s@nts continuous longitudinal
equations that are said to be accurate to first ord&iAh These equations are in agree-
ment with the derived (2.33a) and (2.33b) kg = 0. Courant and Snyder also include
the additional frequency error teray, = ¢y. In [43, 136, 137], longitudinal differential
equations are given that are equivalent to (2.39) and thusgge= 1. However, since
during a normal acceleration cycle considerable care ent#éd achieve an adiabatic pro-
cess by assuring thatg changes only slowly, the difference duekigr is negligible in
most cases.

The mapping equations (2.29) are almost equivalent to thssd in the computer
program ESME [85]. One difference is that in [85], the azinalitanglef, = ¢y /h is
used instead apy. In addition, the equations in ESME do not need approxima{#l19)
and are therefore exact mapping equations. However, tleegrdy useful for simulation
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purposes and are not readily accessible for further acalytalculations. And, as already
stated, the difference due to (2.19) is usually negligibdaother computer simulation
package for longitudinal dynamics is LONG1D [62, 63]. Thepmiag equations used in
LONG1D use approximation (2.19) and are equivalent to (X@9p; = 0 andkry = 1.
The solutions of the discrete mapping equations and themwamnis equations (2.30)
are very similar for a large rati@syn /Tr > 1, i. €. for small synchrotron tunegy, =
wsyn/wR < 1. For simulations withTsyn/TR < 100, the discrete and continuous
equations show a slightly different behavior [25], i. e. thscretization effects become
visible. For example, the particle trajectories in phasecspre tilted if discrete mapping
equations are used [63]. As a consequence the particlettvags are no longer exactly
symmetric to theA\W-axis. This effect is also reported in [62] and explainedrdiiatively
in [61]. The effect is small, but should be considered if thiechrotron tune is small and
a matched bunch is to be injected in the ring. If the tilt is abdwed for, this will result
in filamentation and emittance growth.

2.3 Single Harmonic RF

2.3.1 Introductory Remarks

Due to the sinusoidal shape of the RF voltage, areas withHasistability properties are
repeated periodically along the longitudinal axis. Moregafically, i stable areas are
formed along the synchrotron ring, where= IN is the harmonic number. These stable
areas are calleducketsas they can be used to capture bunches of particles aneéeateel
them. The particles of each bunch perform synchrotron lasicihs around the stable
fixed point of their bucket. The dynamics of these oscillagi@are described by (2.40)
and have been analyzed thoroughly in literature. Thesetlaigal particle dynamics are
similar to those of the nonlinear pendulum with periodic dxmints and areas in phase
space of stable and unstable oscillations with an eye-shsggearatrix. The motion inside
the separatrix corresponds to a librating pendulum with allsmomentum whereas the
motion outside corresponds to a rotating pendulum withgelanomentum.

Although formulas for the particle trajectories can be fdum literature, they are de-
rived in the following for several reasons. First, the niotad used in literature are hetero-
geneous and the formulas are spread over different refeseaad this thesis is intended
to be self-contained for readers with a control enginedogckground. Second, a special
normalization is needed to build models that can be useddotral design. The third
reason is that many of the derived formulas will be needetderstibsequent chapters.

2.3.2 Trajectory Properties

In the following, the index of Ag, will be omitted, as trajectories of a single particle are
considered. For a subsequent controller design, it is coemeto choose the coordinates
of the phase space in such a way that the resulting trajestare circles, at least in the
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linear regime of the bucket. This can be achieved by the tadiial coordinate3

1

Wsyn

Ap = ¢ — @R, Aw = — Ag, (2.41)

as this choice leads with (2.39) apgd = 0 to the nonlinear dynamics

Aq) = _wSynAw, (2.428.)
At = 2 [sin(gg + Ag) — sin gg] . (2.42b)
oS QR

These dynamics are valid below and above transition andiadilie normalization of the
coordinates, the direction of the flow is equal for both cases
For small amplitudea g, the approximation of first order is

A¢ == _wSynAw, AZU == wSynAq), (2.43)
with the solution
A@(t) = AP cos(wsynt +Op), Aw(t) = A sin(wsynt + Op).

The coordinaté\w is not canonically conjugate with respectA@ and the phase space
(Ag, Aw) can therefore not be used for particle tracking simulatibtre beam is accel-
erated. Although the equations of motion are not canona&lamiltonian will be con-
structed and used to analyze the system. The following lzdions are with the implicit
understanding that the equations and the Hamiltonian dranll be used to analyze the
beam dynamics during a short time of a few synchrotron periggh or to design feed-
back controllers. They should not be used to simulate a cetealcceleration cycle of
the beam. The trajectories of the phase sgaee Aw) can be converted to the canonical
phase spac@At, AW) with

Ap = wrp AT,  Aw = MAW. (2.44)
wsyn,BRWR

This follows from the definition ofAw and Equations (2.33b) and (2.38) withr = 1,

¢¢ = 0. With coordinate transformations of the fofyyp = a At andAw = b AW,
the Hamiltonian in the new coordinates is given By= abH. For the special case of
canonical transformationgp = 1 and the Hamiltonian is preserved. With the original
HamiltonianH (7,AW) from (2.32), the Hamiltonian for the dynamics (2.42) is gil®y

2 1
A(ag, dw) = RETR b0 aw(aw)) = T(aw) + 7(ag)
CUsynlngvR
— _Yamage  Yavn [cos pr — Ag@ sin pr — cos(gr + Ag)] .
2 COS QR

(2.45)

S)The coordinaté\w is a normalized, dimensionless variable and is not an erdgegiation.
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Figure 2.10: Trajectories in the longitudinal phase spddep, Aw) for a single bunch
and different valuedd. The separatrix is highlighted in red in both diagrams anu se
arates the stable bucket from the unstable oscillatidredt: stationary caser = 0°
and P € {0.37, 1.65, 3.5, 4, 6}. Right: acceleration withpg = 30° andP €
{0.1,05,1.2,1.58, 3}.

with the potential functiorV/ (A¢). The equation for a specific trajectory with givéhis
obtained by solving foAw:

Aw = i\/P _ 2 [cos pr — Ag sin pr — cos(@r + A¢)] (2.46)
COS PR

with the constanP = —2H/ wsyn > 0 below and above transition.

The potential’ strongly depends opg. In the stationary case, we hayg = 0 and
the accelerating reference voltagelly = 0. Figure 2.10 shows the trajectories in the
phase spac\p, Aw) for pr = 0 andgr = 30°. For small amplitudes, i. e. in the linear
regime of the bucket, the trajectories are circles. Thidss apparent from the linear
approximation of the Hamiltoniafl for smallA¢

Wsyn
2

For larger amplitudes the trajectories flatten in the dioecof Aw until they reach the
separatrix. Outside the separatrix the dynamics are uestab

In the following the intersections of the trajectories aadaratrix with the axed¢ =
0 andAw = 0 will be calculated. The notation is shown in Figure 2.11. Shparatrix is
obtained for? = Psep and its intersections will be denoted Bysep 1, A@sep—» AWsep+
and Awsep—.  Correspondingly, the intersections of the trajectoryhwit < Psep, are
denoted by, Ap_, Aw, andAw_.

To calculate the bucket height, the potential functidthe) is analyzed. The ex-
tremum in the interval\g € [—m — @r; ™ — @g] is obtained forAgsep+ Which is the

A~ — [Aw? + A@?] =: Hyy,. (2.47)
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Figure 2.11:Definition of the inter-
sections of a trajectory and the sep-
aratrix with theA¢- andAw-axis.

] -2 -1 0 1 2 3

limit of the stable area. The conditiahl’ /dA¢ = 0 leads tosin g = sin(¢r + A@)
and thus to the trivial solutiong = 0 and the solution

The value of the Hamiltonian of the separatrix is obtained¥fp = A@sep+ andAw = 0:
Hsep = Wsyn HT[ - Z(PR] tan PR — 2] = Psep =4 - 2[7'( — Z(PR] tan PR-

This leads to the valueBse, = 4 for the stationary case andep, = 1.5816 for the
acceleration case witphr = 30° in Figure 2.10.

For a trajectory within the separatrix, the intersectioas be calculated depending on
P. However, for the models in the next chapters it will be maravenient to derive the
values as functions of the amplitude

Ay € [0; Apsep+] = [0; T — 2¢g].
For the intersectiofAg- ,0), Equation (2.46) leads to

2
P= [cos pr — cos(@r + Agy) — Ap sin gR] . (2.49)
COS PR
For the lower intersectionw = 0 andA¢ = A¢_ we have
2
P = - Ap_) — Ap_si . 2.
o5 gx [cos pr — cos(pr + Ap—) — Ap_ sin ¢g] (2.50)

Using (2.49) in (2.50) yields
A@_ sin pr + cos(pr + Ap_) = A@4 sin gr + cos(pr + Ap4). (2.51)

This equation can be solved analytically only for the steiy casepg = 0, in which
caseAp_ = —Ag@, i.e. the trajectories are symmetric to the akis = 0. In general
the equation has to be solved numerically with the condtdagn. = —A¢, < 0 as a
possible initial value.
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Figure 2.12: Intersections of the trajectories in coordinatésp, Aw). Left: Equa-
tion (2.54) andpr = 0. Center: Equation (2.51) and acceleration willy = 30°.
Right: Equation (2.53) and acceleration wiply = 30°.

UsingAg = 0 andAw = Aw, or Aw = Aw_ in (2.46) yields
P=Awk =AM = Aw_ = —Awy, (2.52)

I. e. the trajectories are symmetric with respechto = 0. Inserting (2.52) in (2.49) leads

to

The height of the seperatrix is obtained fop . = Agsep+ = 7T — 2¢g and equals

AWsep+ = \/4 — 2[r — 2¢R] tan ¢gR.

For the stationary casgg = 0, the simple equation

Awy = \/2—2cos(Ag;) (2.54)
is obtained and\wsep+ = 2. Figure 2.12 shows the intersections for the stationarg cas
with gr = 0 and the acceleration case wiply = 30°.
2.3.3 Bucket and Bunch Area

As mentioned before, the terbucketdenotes the stable area in phase spacebandh
denotes the particle ensemble. The trajectory equatiohdrbticket has already been
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obtained in (2.46), inserting (2.49) yields the trajectasya function of the maximum
phaseA ¢+

2 .
=+ . \/COS((PR + Ap) — cos(pr + Ay ) + [Ap — Ap4 | sin ¢R.

Due to symmetry, the area circumscribed by the trajectonalsthe integral

Ag+

Abunch (Ap+, pr) = 2 / Aw (Mg, Ap, pr) dAg, (2.55)
Ap_

with A, € [0; ™ — 2¢r] andAg_ as a function oiA¢ . The bucket area is obtained
for Ap+ = A@sep+ = 7T — 2¢R:

Aq)sep-&-

Abucket((PR) =2 / Aw (A(Pr A(Pseer, (PR) dA(P (2.56)
A@sep—

In the stationary case we hayg = 0, Ap+ = —Ag_, A@sep+ = TT, Psep = 4, and the
bunch area is

Apy
Apunenstat =2 [ \/2[cos(Ag) — cos(Bp, )] disg.
—Agy

Using the relatioros(x) = 1 — 2sin?(x/2) and the substitutiofh = A¢/2 yields

Aq)+/2

A
Abunch,stat =38 / \/ Sln (P+ — SlII2 (9) de.
—Agy /2

As the integrand is an even function, it is sufficient to cdesig € [0; 7] and

Apy /2 ) (9)
(P+ / S
A = 16sin 1- de
bunch,stat — ( 2 ) ) \/ sin? ( Apy/ 2)

e [ AP+ A+ Ap+
—165111( > )E( > ,CSC< 5 ,

where E(¢, k) is the incomplete elliptic integral of the second kind arsd(x) =
sin_l(x). A short summary of important formulas for elliptic intetgds given in Sec-
tion A.1. AsE(7/2, 1) = 1, the size of the stationary bucket is

Abucket,stat = 16. (2 . 57)
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Figure 2.13: Left: stationary bucket fill factor g o (black) and approximation (2.59)
for small bunches (blue).Center. bucket area for acceleration (black) and approxi-
mation (2.60) (blue).Right: bucket fill factor for acceleration (black) and approxima-
tion (2.61) (blue).

With (A.3) the special casg(z, csc(z)) can be expressed as a combination of the com-
plete elliptic integrals of the first and second kifig- ) andK( - ) and the stationary bunch
area can finally be expressed as a function @f_

A A A A
Afil stat (D) = Dbunchstat _ p (g B8P ) 062 (29 k (gin 29t )
Abucket,stat 2 2 2

(2.58)

with the bucket fill factorAg); ¢o¢. FOr small bunchesNg; < 1) the trajectories are
circles and the bunch area is approximately

Apunch stat = NA(P%L . (2.59)

For the acceleration case, the sizes of bucket and bunch&tdmualculated numerically.
For example,pr = 30° yields Apycketace = 5.732. However, the following useful
approximation for the bucket size is given in [71]:

Apucket,ace 1 —singr _ 1—Ugr/ l:ll
Abucket,stat 1+ sin PR 1+ Ur/Uy

(2.60)

Figure 2.13 shows the bucket and bunch areas for differemfigtoations. The di-
agram on the left shows the bucket fill factdgy ¢ from (2.58) and the approxima
tion (2.59). The approximation error is less thkivo for Ap < 1.3. The diagram in
the center shows the bucket area as a function of the refehasepr. The bucket area
was obtained by numerical integration of (2.56). The secange is the approximation
from (2.60). The maximum relative error of the approximati® smaller thari7%. The
bucket fill factor for acceleration witpg = 30° is shown in the right diagram. The curve
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results from a numerical integration of (2.55), normalizeth the solution of (2.56). The
second curve is the approximation

A -2
Afillace = —22NAC o Ap tat T “fr Apy |, (2.61)
’ Abucket,acc ’ 7T

which allows an excellent approximation, also for otheuealofpr < [0; 7 |.

In summary it can be concluded that it is possible to caleula¢ areas of bucket and
bunch for the stationary case exactly with Equations (2aid) (2.58) and for the acceler-
ation case in good approximation with Equations (2.60) &161(), thereby avoiding the
need for a numerical integration.

2.3.4 Nonlinear Synchrotron Frequency

An important property of the motion in the longitudinal peaspace is the synchrotron
frequency of the patrticles. It is well known that the syndton frequency depends on the
oscillation amplitudeAg.. For larger amplitudes, the synchrotron frequency deeseas
until it becomes zero at the separatrix. If a bunch compyisitarge number of particles
is considered, this leads to a spread in the synchrotroudrezy and to effects known
asLandau dampin@ndfilamentation These effects will be considered in more detail in
Chapter 3.

The synchrotron frequency in the linear regime, i.e. for [smaplitudes, is given
by (2.38) and is denoted hysyn. In the following, the more general synchrotron fre-
guency in the nonlinear regime will be denotedcb*nleff(Aqur). It is a function of the
maximum phaség_ of the trajectory. In addition the following relations hold

f syn,eff / f syn — wsyn,eff/ Wsyn = Tsyn/ Tsyn,eff .
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There are different ways to derive the nonlinear synchrofrequency [43, 57, 71].
One possibility is the multiplication of (2.40) wittA¢ / w?2,,,, which leads to

syn’
20GAG  20¢ .
A@) — -
wgyn + cos om [sin(¢r + Ap) — sin gr| =0,

and subsequent integration oveyielding

Ap 1?2
COS PR

[Ag sin R + cos(@r + Ap) — cos pr] = P
Wsyn

with the integration constait. Because ofA¢ = ‘%—;”, this equation can be rewritten as

dA¢

dt = + -
Wsyn \/P + s on [Ag@ sin pr + cos(@r + Ap) — cos ¢R]

The synchrotron period follows Wity eff = 277/ Weyn et = 2 fOTsy“"*ff/ 4t and is
obtained by integration of both sides, leading to

Apy qu)
Ty g = 2 / .
yne :
Ap Wsyn \/P + coszgoR [Ag@ sin pr + cos(@r + A@) — cos ¢R]

Using (2.49) andusyn = 271/ Tsyn l€ads to the ratio of the nonlinear to the linear syn-
chrotron period

T JAY \/COS PR dA(p
syneff _ / ' my/2 . (2.62)
Tsyn N V[Ap — A ] sin gg + cos(@r + Ap) — cos(gr + Ag)

In the stationary case it is possible to write the synchrogreriod as an elliptic integral.
The equation foffgy, o reduces to

Ap
Tsyn,eff 1 / : dAe

Toyn V2 ) \/cos(Ap) —cos(Ap)

Ag-+

Inserting the relatiomos x = 1 — 2sin?(x/2), substitutingd = A¢/2 and considering
that the integrand is an even function yields

Tsyn,eff _ 2 A7 2 de (A1) 2F (Ag+ s €5€ (quo+ ))

T. . Aps sin’ 0 N Ay ’
syn 7T811’1( > 0 1— @ 7T SIn >




2.4 Acceleration Cycle 37

whereF( - ) denotes the elliptic integral of the first kind as defined ipApdix A.1. This
incomplete elliptic integral can be rewritten [57, 71]. kigiEquation (A.2) leads to

T
syn,eff _ EK (sin ACP—F) - fsyn,eff — T , (2.63)
Tsyn T 2 foyn 2K (sin qu'” )

whereK (k) denotes the complete elliptic integral of the first kind. figg2.14 shows the
synchrotron frequency for the stationary and for the acagtmn case.

2.4 Acceleration Cycle

Coasting Beam Bunched Beam fOHLR,stat
AWA Ag. AW  Apucketstat
AWmax
T AT ’ >AT
«--------------

Abunch,stat = Adc /h

Figure 2.15: Bunching of a coasting beamLeft: coasting beam with ared 4. and
U, = 0. Right: bunched beam after increasing the voltagél{o= Uk 1 stat-

There are two different scenarios of how a beam is injectexlthe synchrotron. The
first possibility is to inject an already bunched beam inte timg. In this case the RF
voltage of the ring is already switched on and special casadde taken to ensure that
the bunches are injected with a compatible phase and shaperwise, filamentation will
increase the emittance of the beam.

The second possibility is to fill the ring withaasting beam. e. an unbunched stream
of particles, while the RF voltage is almost zero. The beamtban be captured and
bunched by ramping up the RF voltage amplitude slowly. § thdone slowly enough, the
transition can be regarded as adiabatic and the emittane@pproximately preserved. In
this case, the necessary RF voltage amplitude can be daidwidich is needed to obtain
a certain bucket filling factoAg);. In the following, this is demonstrated for a coasting
beam with a homogeneous distribution. Specifications fer#imping in the accelerator
chain S1S12/18 to SIS100 of GSI can be found in [48].

The bunching process of the beam is a stationary @pe=€ 0) and its quantities will
be denoted by the additional indstatin the following. Assume as a coasting beam a bar
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of particles in the phase space with a given momentum sgrepdpr ..., as shown in

Figure 2.15. In coordinatAW, this is equal to the maximum energy spread

A
AI/vmax — ,B%{/statWR,stat l P 1
PR,stat max

and because the length of the ring in coordinateis TR ¢, the area occupied by the
coasting beam in the phase sp&de, AW) is (cf. Figure 2.15)

A
Adc = TR,stat - 2AWmax = ZTR,stat,B%{,statWR,stat [ P ] .
PR,stat ] max

The area of a stationary bucket in coordingtaé®, Aw) equals 16 and using (2.44) yields
the bucket area ifAT,AW)

2 g 2
wsyn,statﬁR,StatWR,stat 16 Qul,R,stat,BRlstatWR,stat

Abucket stat — 1 - 7
y 2 2
wRF,stat [ IR stat ] h 27th | "R stat | wR,stat

If necessary the fill factoA g stat = Abunch stat/ Abucket stat aft€r the bunching is given,

the necessary voltagféLRlstat to achieve this can be calculated. Using the fact that the
areaAy is divided intoh bunches, i. €Ay nch stat = Adc/ 1, the voltage is

A NBhIB%{,statWR,statMR,stat| l Ap ]2

u1,R,stat = 3 Q AZ

fill,stat

PR,stat | max

During acceleration the amplitud}éLR is usually adapted such that the bucket area is kept
constant. IfLAILR would not be changed, the bucket area would be increasedgdiine
acceleration and this would have to be an adiabatic trangiti avoid emittance blow-up.
The condition for a constant bucket area can be obtainedapiinoximation (2.60) for
the bucket area during acceleration

1-Ug/Ui1r 16 QUi rBRWR

A ~ 5
bucketace ~ 7 + Ug /UL g h 27Th’77R|w12{

" |
and the condition for a constant bucket a8 ciet acc = Abucket stat 1€2dS 10

2

~ 2 2

A ul,R — UR ~ |77R | WR,statﬁR,statwR
1R | 7| = UiRrstat - (2.64)

u1,R + Ugr |77R,stat | WRﬁRwR,stat

Solving this equation foLAILR > Upg provides the necessary RF amplitude during the
acceleration to keep the bucket area constant.

To start the acceleration, the reference magnetic Bglthat is provided by the central
control system is raised and the frequeigyr is synchronously increased. This auto-
matically changes the reference poi{, because a positive voltagér = CILR sin pR
iIs now needed for a particle to catch up with the increasiaguency.
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2.5 Conclusion

The chapter begins with a recapitulation of the longitublsiagle-particle dynamics in
heavy-ion synchrotrons. A derivation of the mapping eaquetihas been presented and
the synchrotron has been discussed. The theory is not néwablbeen developed in a
consistent way that is suitable for the later chapters. Amamson with the dynamics used
in computer simulation packages ESME and LONG1D has shoaintliere are subtle
differences depending on the assumptions made during thaten of the longitudinal
equations of motion. Next, continuous equations have bednakd from the mapping
equations and the incoherent synchrotron oscillation efitidividual particles has been
described. This theory is described in more detail in refees such as [71]. It has been
reviewed to obtain a consistent notation in the thesis. dhad of the longitudinal motion
has been on low-current beams; effects such as beam loadspgpoe-charge (cf. [100]
and [19]) were not included explicitly, but are regarded igtudbances acting on the RF
feedback.

In the subsequent chapters, the following notation will bedi

e Nonlinear bucket: this will be used to signify that the respective analysis pr
simulation is based on the original nonlinear single-platdynamics such
as (2.35).

e Linear bucket: this implies that linearized dynamics are used, i.e. the RF
potential is linearized as in (2.36).
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3 Coherent Longitudinal Beam Oscillations

A particle beam in a synchrotron ring is an ensemble of a lawgaber of particles. It
is thus not only interesting to describe the single-pataynamics, as has been done in
the last chapter, but also to model the behavior and praseofi the beam, in particular
its shape. Section 3.1 reviews the concept of coherent boscHations. Because the
single-particle dynamics are Hamiltonian dynamics, Libe's theorem applies, which is
reviewed in Section 3.2. This also provides Liouville’s atjan that describes the evolu-
tion of the particle density in phase space. Important bespegsties are introduced in
Section 3.3 and a definition of the ideal bunch shape is gidferent density functions
to describe small mismatches from this ideal shape are esén Section 3.4. Finally,
in Section 3.5 important relations are derived to desciigecbherent bunch oscillations
in the frequency domain.

3.1 Introduction

3.1.1 Sources of Disturbances

An ideal accelerator would have perfect guiding and acagteg fields and there would
be no interactions between the beam and the surrounding wiathe beam pipe. For
this ideal accelerator, there would be no need for any kirfdedback loop or correction.
Particles with deviations from the reference would perfstable synchrotron oscillations
in the longitudinal phase plane according to the phaselsyaiinciple. The equivalent
in the transverse planes would be stable betatron osgilstiHowever, a charged particle
beam in a real accelerator is exposed to several disturbartoeamples of such distur-
bances in the RF components are fluctuations and errors loéhayder of the magnetic
fields, noise in the frequency generator and ripple in the 8kegp amplifiers and phase
and amplitude errors in the accelerating gap voltage [12].

In addition, for larger beam currents, the electromagrfetids that are generated by
the beam are no longer negligible and they will interact whik beam environment, i. e.
with the surrounding walls of the vacuum chamber (i. e. thenb@ipe) and accelerator
components such as the accelerating cavity. A standanerefe and introduction to these
collective effectss [19]. Among others, there are three important effects depend on
the beam current.

First, the charged particle beam will induce so calleake fielddue to the resistivity
of the wall of the vacuum chamber or changes of its geometrgsé& wake fields may act
back on the beam and destabilize it. The calculation of theeviields is related to the
concept ofimpedanceswhich are their counterpart in the frequency domain. Taibyc
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low impedances are desirable as they are equivalent to lduced voltages and thus low
interactions of the beam with its surroundings.

A second effect in case of large beam currents is referresldpace charge effecf0,
p.128], [136]. As the beam consists of particles with the esaharge, the repulsing
Coulomb forces between them will defocus the beam. Thislevaat in particular for
large particle densities and for low and medium beam engrgier large beam energies,
the particle velocities are ultra-relativistic and thecélie field around each patrticle is
Lorentz contracted to a disc. Thus, the influence on the qibdicles of the bunch is
weakened for high energies and space charge effects avantlaainly for lower ener-
gies.

The third effect is calletheam loadingand occurs in resonant structures such as the RF
cavity. The current of the beam induces a voltage insideetis&rsictures. This induced
voltage is damped with a certain time constant which dependbke quality characteris-
tics of the cavity. If a significant fraction of the inducedtage is still present when the
same or the next bunch arrives at the cavity, this beam Igaalith have an impact on the
beam stability.

In a circular accelerator such as the synchrotron, evenyriance can accumulate
over many turns and lead to an inferior beam quality or in ns@eere cases to beam
instabilities. In the machine design the described effe@tsbe taken into account and the
components of the accelerator can be optimized with respehe stability of the beam.
This passive approach leads to low impedances in the ringgeMer, there are also active
measures to increase the beam stability: feedback cowimpkl In many cases, there
is no alternative to feedback. For example, disturbanceékarRF voltage can only be
compensated by feedback. Furthermore, the beam itselbhmesdontrolled by feedback,
since there may be mismatches in the beam shape becausefag¢xtisturbances or
imperfections in the injection. These mismatches alwagd te filamentation of the beam
and to a dilution of the particle density, thus to a decrepbaam quality, as will be shown
in this chapter.

The following sections will focus on beam shape mismatchele longitudinal phase
space and review the concept of longitudinal single-bursdillation modes.

3.1.2 Coherent Oscillations

As discussed in the previous chapter, the sinusoidal RFRageltreateg areas in the
longitudinal direction called buckets. Inside these bitkiee particles perform a stable
synchrotron oscillation around the reference such that taa be accelerated. In the
presence of a RF voltage, the beam is not uniformly distedbaiong the ring, but divided
in particle ensembles called bunches. Not every bucketdbs filled with a bunch, but
every bunch has to be inside a bucket, or else it will be losinduacceleration. The
particle number of a bunch can vary by several orders of niag@ibetween different
accelerators or experiments. Typical numbers are in thgeran10® to 101! [48, 105]
but can even be considerably higher [71]. If a rather lowipl@rdensity is assumed, the
interactions between the particles inside the bunch arkgitdg and the beam may be
regarded as a collisionless plasma [80]. In this case thiclesr describe independent
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Figure 3.1: Phase space configurations and line densities for two beapesbscilla-
tions. A small bunch is assumed, all particles have apprateiy the same synchrotron
frequency.Left: coherent dipole oscillation at the timte= 0 andt = Tsyn/2. Right:
coherent quadrupole oscillation at the tite: 0 andt = Tsyn /4.

synchrotron oscillations and the evolution of the bunctpshanly depends on the initial
configuration of the bunch. In the following, the oscillatsoof the bunch shape will be
referred to as longitudinal single-bunch oscillationsior@y ascoherent oscillations

A simple example of a coherent oscillation is a bunch whosagbes have a similar
phase. This is shown on the left of Figure 3.1. A linear bucketssumed for the sake
of simplicity. The initial particle bunch is off-center armdter half a synchrotron period
Tsyn/2, all particles have made half a synchrotron oscillation lrage space and thus
the bunch shape is rotated B$0°. After one complete synchrotron period, the bunch
returns to its initial configuration. This coherent os¢ila is calleddipole modeand its
frequency is obviouslyvsy,. Theline charge density distributioor line densityA (Ag)
is also shown in Figure 3.1, it is the projection of the phgs®e upon the axid¢ and
proportional to the beam current of the buri¢hThe shape of the line density remains
the same, only its center of gravity oscillates with the é@uocywsyn. A further coherent
oscillation is thequadrupole modas shown on the right of Figure 3.1. This configuration
can be simply thought of as a bunch where every particle hasiaterpart with a phase
difference of the synchrotron oscilllation ®80°, in contrast to the dipole mode where all
particles are in-phase. Aftdky, /2, this initial bunch distribution is repeated, leading to
a coherent oscillation frequency 2dusyn. The line density is centered, but oscillates in
amplitude and width.

It is possible to construct an initial bunch configurationendthere are no coherent
oscillations at all. As a simple example, the particle dignieside the bunch is assumed to
be uniform, i. e. constant. If the bunch is small, the pagtichjectories are approximately
circles in the phase space. Thus, choosing the bunch as eregrmdircle will lead to
a matched bunchi. e. a bunch that will not perform any coherent oscillasioalthough

DA more detailed description of the beam current follows int®a 3.3.3.
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Figure 3.2: Filamentation of a mismatched bunch at turim the longitudinal phase space.
This leads to a larger bunch area (emittance) and to a dipddttle density.

the particles perform synchrotron oscillations. If a moeagral density is assumed, it is
plausible that the initial bunch has to be rotationally sy&inis to be matched.

For larger bunches, the particle trajectories become derably nonlinear and it is
more difficult to find a matched configuration. But similar ke inear case, a necessary
and sufficient condition is that the particle density mustbastant. If this is fulfilled,
the particles can move along the trajectories leaving tieeadMounch density unchanged.
There are two more differences for large bunches. Firstetlgea significant spread of
synchrotron frequency among the particles of the bunchljtreg in a lower frequency of
the coherent oscillations. Second, this frequency spresults in a filamentation of the
bunch if any mismatch is present. This leads to a dampingettherent oscillations
called Landau damping Figure 3.2 visualizes this damping for a seriously misimadic
bunch. At first, the bunch performs a typical coherent quaoleioscillation. After several
synchrotron periods the bunch has filamented, the quadrupoble disappears and the
bunch is matched. The cost of this damping is a density diludind a larger bunch area.

In a real bunch, the particle number is large and an apprdiomavith a continuous
density function is often justified. In the following sect&) many analytical calculations
will be based upon a density functigi{Ag, Aw, t) that depends on the phase space co-
ordinates and time. However, the particle number of a reathus always finite and this
results in noise and fluctuations that can be measured. Tloetgations are exploited for
example for stochastic beam cooling [16, 17, 42, 91, 96-03, 129, 130].

The simulations in this work ammacro particle trackingsimulations. Similar to a real
beam, a discrete number of particles is arranged in the @pes=e and simulated using
the discrete mapping equations of the longitudinal beananhycs. However, the particle
number is only a small fraction compared to a real beam, thak simulation particle is
a macro particle representing a large number of real phlysarticles.
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3.2 Hamiltonian Systems and Liouville’s Theorem

Every system or flow that obeys Hamilton’s equations for aseovative Hamiltonian (cf.
(2.31), p.22) preserves the area in #¢ dimensional phase space. This is also known as
Liouville’s theorem in Hamiltonian Dynamig¢&10]. In this section, basic facts and their
consequences for particle beams are reviewed. One way\ue piouville’s theorem uses
the divergence theorem [24, 52, 57, 125, 134], other praysan canonical transforma-
tions [65, 81]. In the following, a simple proof for the twaxkensional longitudinal phase
space is presented based on the divergence theorem. Thalgatien of the proof to
the complete six dimensional phase space of longitudindlti@msverse motion is simi-
lar. In general, Liouville’s theorem is valid for the six d@msional phase space, but if the
coupling between the transverse and longitudinal motioegigible, it can be applied to
the longitudinal phase plane [24].

A bunch withN particles obeying Hamilton’s equations in the longitudipl@ase space
(g, p) with the HamiltonianH(g, p, t) can be described uniquely By position andN
momentum variables. Thus, the system BAsdegrees of freedom and the dimension
2N. For largeN itis reasonable to approximate the system with a partiabsitefunction
f(gq,p,t). The particle number can then be obtained by an integratien the phase
space. The density is usually normalized such that an iatiegrover the complete phase

space yields unity:
/ /fw, dgdp =1.

Using the density function reduces thd/ coordinates to only two coordinatgsand p
since the information about the particle density is comdim f. Formally speaking,
the2N dimensional system is replaced by an infinite dimensional &nother point of
view is to regard the functiofi as the probability density and its integration over a cartai
region in phase space as the probability of a particle stgiyithis region. At each point
(g, p) a velocity vector of the flow

T
ogrt)=[0 p' =% %] (3.1)

can be defined. Assume a start at tirgeat an arbitrary poin{qg, po) with the local
densityf (g0, po, to). Following the flow, the rate of change of the local densigtitained
by the total derivative of

df _ . [fla+Dq p+Ap t+A) — fgp, t)]
dt  At—0 At

which can be expressed as

df _of L of . of.
ar o Taglt et (3.2)
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Rewriting with the product rule yields

df _of | a(fq) a(fp)

dt ot 9q faq ap fap' (3:3)

Because the flow (3.1) is Hamiltonian,

o9 dop 9*H 9°H

o9 " 9p ~ opag agop

holds and introducing this equation in (3.3) cancels thedthnd fifth term on the right
hand side and leads to

df _of , d(fq) , 9(fp)
TRl T r (3.4)

The right hand side of (3.4) is a continuity equation; thia ba shown as follows. We
may consider a certain voluméin a general phase space. In case of the two dimensional
phase space this is an area. The total change of the partiodder inside this fixed
volume can be calculated as

dNy af
S = lim At /fq,p,t—l—At ) dv — /fq,p, ) dv / dv. (3.5)

The last step of this equation assumes that the limit andjiatecan be interchanged
(dominated convergence theorem). On the other hand, thielparumber insidé/ can
only change by the particle flux through its surfadé. The particle flux can be defined
as theR3 — R? function [57, 118]

T@pt) = fo=[flapt) dapt)  Fflapt) plapb]”

If we assume that neither particles are generated or aatedilinsideV, the particle
number changes only by

dNV— ]{] ndA = — /V]dV

whered A is an infinitesimal area element@V, = is the normalized vector perpendicular
to the surfac@V and is pointing outwards df, V( - ) is the divergence operator, and the
last step uses the divergence theorem (Gauss-Ostrogridskgem) to write the surface
integral as a volume integral. The minus sign is due to thetfet» points outwards of
V. Comparing this result with (3.5) leads in differentialfoto the continuity equation
of fluid dynamics

N RS VN0

a(fp)
ot *

ot g op
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that is indeed (3.4) and Liouville’s theorem can be written a

dflg.p.t) _,
dt '

One interpretation of this theorem is that the local paetaénsity along a trajectory is
preserved. This means that a certain region of the partistalulition in phase space can
move and change its shape since the rate of change of theydatresfixed point (cf. (3.2))

of  of . of
o = agl1 apf (3.6)

IS not necessarily zero. The volume of the region in phaseesgdowever preserved [44].
If g is a physical position ang a momentum, Equation (3.6) can be rewritten wjthk-
p/ymg andp = F as the kinetic equation @ollisionless Boltzmann equatipalso called
theVlasov equatiofl39],

of [ of » | 9y

ot oq ymg  Ip (4:£) =0,

whereF (g, t) is the force acting on the particles. The force depends Tt electric
and magnetic fields as well as on fields that are generatedebyatiicles of the bunch.
Considering this dependence leads to the Vlasov-Maxwstkesy of equations [68]. The
Vlasov-Maxwell equations are a more general form to deedtie dynamics of charged
particle beams in accelerators but are valid for sufficiedtluted plasmas only. The
assumption of a thin plasma assures that the Coulomb foate®bn the particles can be
neglected and the approximation of the mean field can be &8gd [

Liouville’s theorem and the Vlasov equations are valid fug six dimensional phase
space consisting of three spatial coordinates and thejugate momenta. Under the
assumption of a weak coupling between the transverse agdudmal planes, the theory
can also be applied to the two dimensional longitudinal plsasce. This assumption will
be made in the following.

The larger bunch area or the dilution of the phase spacetglahse to filamentation
or Landau damping discussed in Section 3.1.2 and visuahsédure 3.2 do not conflict
with Liouville’s theorem. This is illustrated in Figure 3.3f a bunch is matched, its
shape matches the particle trajectories and both the buralead particle density are
constant. Due to a mismatch, the filamentation will staddieg to a distortion of the
bunch shape. If a single point in the phase plane is followewigethe flow, the density
will stay constant as stated by the theorem of Liouville. Alhe bunch area defined by
the boundaries of the bunch will remain the same, althouglatba may be more difficult
to compute. The dilution and the increase in area in Figzeae solely due to the fact
that only a finite number of particles is used. After a longeirthe filamentation is such
that the original boundaries of the bunch are no longermtjsishable and in terms of the
effectivearea and density, the beam quality deteriorates.
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Figure 3.3: Filamentation and Liouville’s theorem.

3.3 Properties of Bunched Beams

3.3.1 Particle Density Distributions

Different particle density distribution functiorf§A¢, Aw) can be chosen to characterize
a bunch in phase space [24]. The line density is the projectmn theAg axis and can
be calculated by integrating the density with resped o

AMAgp) = /f(Aq),Aw) dAw.

Different bunch types are given in Table 3.1. The densitgfimms are chosen such that

//qu),Aw dedv=1

holds. Note that the line density is normalized, i. e. it doesinclude the charge of the
bunch. The charge density functigf,..ee and the charge line densityya,ge Can be
defined as

fcharge(A(P/ Aw) = Qpunchf (A9, Aw), /\Charge(A(P) = QbunchAM(A9),  (3.7)

whereQy.ncn denotes the total charge of the bunch. Writing this in a mermegal way
with the coordinater, the charge density can be defined as

/ Acharge(x) dx = Qbunch (3.8)

holds, i. e. the total area of the line charge density has tedqual to the charge of the
bunch.
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Table 3.1: Common bunch types and their line density. The bunches arteresl and
ellipsoidal. The line densities are defined &p € [—Rq; Ry] and are zero elsewhere,
except for the Gaussian case wh¢randA can be defined over the complete length of
the ring.

particle density functiorf (Ag, Aw) line densityA (Ag)

i . _1 _ A9* | Aw? L0 Ag?
uniform: —x - for S = ® + R—“é <1 elliptic: % /1 — s

- : Ag?
elliptic: 737=v/1—Sfors <1 parabolic: z3- [1 — R—"%]
parabolic:—z-¢- [1 — S] for § < 1 IR, {1 — R—%]

-3[28 e

Gaussian:m;laze L % lfor|Ag| < m Gaussian

In a macro particle tracking simulation, a phase space aanafigpn of Nynacro particles
has to be chosen as an approximation of the presented dansitjons. However, stan-
dard algorithms usually provide only uniform or Gaussiagya random distributions. A
numerical method that provides random values according &olaitrary two-dimensional
distribution f (x, y) is given in [112]. The algorithm proceeds as follows [24]. énmber
Nmacro Of uniformly distributed triplets of random numbefs;, v, z;) are generated.
Only those triplets withe, < f(x, yx) are chosen, the others are discarded. The pairs
(xx, yx) of the remaining triplets are distributed accordingta, v).

3.3.2 Longitudinal Emittance

An important characteristic of the beam is its size in phases. A smaller size for a
given number of particles per bunch implies a higher partitgnsity of the bunch and a
higher beam quality, because more collision events in them@xent can be expected. The
measure for the beam size is called tleam emittanceThere exist diverse definitions for
the emittance [69]. A common definition is the root mean sgBRMS) emittance [43,
114]

Tlen = 701/ 0205, — 0% (3.9)

whereg? andal%v are the variances of the beam in the longitudinal phase spardinates

AT andAW, respectively, and,% w is the covariance of the particle ensemble. Sometimes
¢ 1S also callecemittancanstead ofrre,,. The variances can be estimated from a discrete



3.3 Properties of Bunched Beams 49

ensemble as
2 1 ¥

1 N
2 72 X y
s = N7_k§:1[xk — X%, Try = mk;[xk — X[y — 7]

with the center of gravity
1 N 1 N
T=—=Y % T==) Uk
N = N =
or from a continuous density function as

(T%z//[yc—f]zf(x,y) dx dy, Y://xf(x,y) dx dy,

and further expressions accordingly. For a bunch with aoumfdensity and an elliptic
shape the emittances,, is proportional to the area in the longitudinal phase space

_ 2 2
Aell,uniform =4, /o7 Ow — Of’,W'

The emittance can also be defined as [67]

Tten,2 = ﬂ\/[ZO—T]Z[ZUW]Z - [ZUT,W]4 = 47en = Aell,uniform-

This is equivalent to the definition (3.9) fav, i. e. for two times the standard deviations.

The advantage of the defined emittances over the area dacukathat they can also
be applied to non-uniform distributions and bunch shapatatle not elliptic. However,
in these cases the physical interpretation of the emittahe@ges. For example, for a
small bunch with a Gaussian distribution function the esmiterregy s is the area cir-
cumscribed by a particle on the RMS trajectory. For largeches the trajectories differ
considerably from ellipses and a clear physical interpiaaf the emittance is lost.

The subscriph of ¢, refers to the fact that this emittance is callearmalizedor in-
variant. Because the area in the phase spa@te, AW) is conserved, the emittance is
approximately conserved as well during acceleration. Tdmservation is only approxi-
mate, because the emittance is exactly equal to the bunatiarellipsoidal shapes only.
For more complicated shapes, the emittance is based on ttfgedRse which can con-
tain a lot of empty space. Figure 3.2 visualizes this. Thiiibunch configuration has an
ellipsoidal shape, a Gaussian density, and a low emittafce.emittance is equal to the
bunch area. Because the bunch is not matched, there is seoblheadrupole oscillation
and the bunch filaments because of the synchrotron frequssread. The bunch area
itself remains constant during the simulation, but becadiske complex bunch shape, a
lot of empty space is included and the emittance increasethefend of the simulation
it is no longer possible to distinguish between the bunchthe@mpty spaces in between
due to the finite number of particles. The effective buncla@eaow considerably larger
and equal to the emittance, the bunch is matched and its shamproximately ellip-
soidal. The mean particle density in the bunch has decredsed process is dilution
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Figure 3.4: Landau damping and increase of the longitudinal emittance.

of the bunch densityl he filamentation of the bunch leadsltandau dampingthe coher-
ent oscillation is damped until the mismatch of the bunchsraes. These considerations
show qualitatively that there is a link between the emitéaaed the disorder of the beam.
Filamentation increases the disorder and the emittanceoriadl treatment of the link
between emittance and entropy for charged particle beamecéound in [69].

The increase of the effective bunch area is not a contradicti Liouville’s theorem as
discussed in Section 3.2, since the theorem holds for padensities with a Hamiltonian
flow. In case of a filamented bunch with a finite number of phasicit is not possible to
distinguish between the effective and the real bunch areaa matched bunch however,
the emittance is conserved.

The emittance is sometimes given in other coordinates x@mmele the phase deviation
and relative impulse deviation
27the _Ap 1

BrAT, & AW

AQ = wrpAT = - AW
B Lr PR 2 YR1M(C?
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In this phase space, the area and the emittance
1
BRYR

are not invariant and decrease during the accelerationeiftittancere can be converted
to the normalized emittances,, by

JTE v

mocLgr
27th

The unit of the normalized emittances,, is eVs, whereaste is given in rad.

A further emittance definition is thaliptic emittancewhich is defined as the area of an
ellipse fitted in such a way that a predefined fraction of théigda ensemble is encircled.
As an example, assume a Gaussian density with standardidesigy ando,. Using an
ellipse with the half axes; ando, will include 39.3% of the particles, whereas doubling
the size of the ellipse will includ86.5% [43]. This is equivalent to the emittance:;, »
based orzo.

Figure 3.4 shows how Landau damping increases the longaudmittance. In a first
simulatior?), a matched bunch receives a kick, i. e. the bunch center woitgia shifted
by 15° = 0.26 rad. Diagram (al) shows how the oscillation amplitude decredse to
Landau damping, the increase of the longitudinal emittascgven in Diagram (a2). It
has to be noted that this is no exact exponential dampingatticplar, this is apparent in
the close-up of Diagram (b1). Here, a voltage step leads tis@match of the bunch length
and the variance oscillation is damped at the cost of anasang emittance, cf. (b2). The
close-up of (b1) shows that the oscillations returns in ament way, although at small
amplitudes. Also, the damping of the variance mismatchrenger than the damping of
the nonzero bunch center. In general, the exact shape ofifealu damping will depend
on the bunch size und the type of density distribution.

In addition to the phase space area occupied by the beamuithieem of particles in a
bunch is an essential attribute of the beam. Baam intensitys defined as the number
of particles per time unit and this is closely related to tearh current [43].

TTen = PRYR e

3.3.3 Line Density and Beam Current

The charge density distribution function of a bunch canreotrieasured directly. What
can be measured is the amount of charged particles that @rostain point in the ring
during a given time, because this corresponds to a curtembeam currentthat can be
observed with a pick-up monitor.

Figure 3.5 is now used to derive an expression for the beamemur First, assume
a infinitesimal area with widtidA¢ and heightdAw in phase space at the position

2The simulations are performed with the same parametersvas gi Table 5.2. The bunch has a Gaussian
density distribution. For the damping of the bunch centegrafity, the initial bunch is matched fa0 kV with
a variance 00.92. For the damping of the bunch length, the bunch is matche8l k& with E, = 1.3 and the
voltage is raised stepwise 10 kV.
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Aw Aw
fcharge(Aq)/Aw) dQ(AGOO)

ibeam (Aq)O ) Ago

Ago

Figure 3.5: Calculation of the line density and beam current from therghalensity
function f harge-

(Apg,Awg) as shown in the left drawing of Figure 3.5. This area contparsicles with
the total chargelQ. This charge depends on the charge density fundtigp,. as

dQ(A(Po, AwO) = fcharge(A(POIAWO) dA(P dAw.

The patrticles in the considered area move and this leadsuoent

dQ(Ago, Awy)
dt(Awy)

dibeam (AQDO Awg ) =

wheredt is the time that the particles need to cross the pick-up mpnihis time de-
pends on their velocity and thus the enelfy= Wr + AW. The deviatiol AW follows
from (2.44) and depends akw,. The energy determines the revolution period\w, )
and revolution frequenay (Awy ) of the particles, andt can be expressed as (cf. (2.4))
T(Awy) 1

dt(Awo) =

Omitting the use of the specific poif\pg,Awy ), the last equations lead to a current in
phase space

dipeam (A(P/Aw) - hw(Aw) fcharge (A(Pr Aw) dAw.

This current can be integrated ov&w to obtain the beam current

Iheam (A@) = /dibeam - / hw(Aw) fcharge(A(PI Aw) dAw.
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If we assume that =~ wy, for all particles of the beam, this can be simplified to

Z'beam(Aq)) ~ hwg Acharge(A(P) = WRF Acharge(Aq))/ (3.10)

whereA .0 denotes the charge line density as defined in (3.7). In thevfoig, it will

be assumed that approximation (3.10) is valid and the appation sign will be omit-

ted. Equation (3.10) shows that, during acceleration, #aarbcurrent will increase with
wgrr(t). In general, there will also be a change in beam current ddleetéime depen-
dence off parge @NAA charge; fOr example, Landau damping decreases the density and thus

the line density. An adiabatic increase in the RF voltageldnge {I; has the opposite
effect: the bunch will become narrower and higher in phases@and this increases the
line density. The units of (3.10) are

; rad As
[ibeam] = A, [wr] = P [)\charge] = ad’

Again, it may be beneficial to have the beam current (3.10) ametion of a general
coordinatex. The charge line densit)ycharge(x) IS assumed to be nonzero only on the
interval Dy =| — Ty /2; Tx /2], whereTy denotes the RF period. Fer= A¢ this period

is 27t and forx = At it equalsTig. Due to (3.8), the beam current (3.10) can be written
as

: T
ipeam (X) = T—IjF )‘Charge(x)/ (3.11)

because this guarentees that the meap.gf, over the intervalD,, equals

T,/2
Ibeam ‘= T_ Zbeam(x) dx = TIIJ{I;C
X

_Tx/2

7

independent of the choice af Possible choices for are given in Table 3.5. Note that in
case oft = At the beam current i§eam (AT) = Acharge (AT).

The beam current signgl.,,, is measured at a fixed location of the synchrotron. If the
beam current is measured during several turns, the bearibdigin function in the phase
space can be recovered using only a few assumptions. A commatrod developed at
CERN is calledongitudinal phase space tomograpl38, 39].

3.3.4 Matched Bunch

With the Vlasov equation it is now possible to express a momaél definition of matched
bunches. A continuously differentiable density functitly = Ag, p = Aw,t) is called
amatcheddistribution if the densityf at every point in the phase space remains constant
and does not depend explicitly on time:

fla, p,t)=f(q, p)



54 3 Coherent Longitudinal Beam Oscillations

This is equivalent to

of
i 0.
This simple condition guarantees that the shape of thecgabiinch will remain constant,
even if there is a flow of the particles inside the bunch. The density and beam current
of a matched bunch are also time-independent. A matchedbsiatso called atationary
or time invariantparticle distribution.
With Equation (3.6) the condition can be rewritten as

of . . of . .

——AQ = ———Aw. A2

oA 4 aAw " (3.12)
For very small bunches, the longitudinal motion is giverdr8) and the density function
has to satisfy

of Aw = of

A dAw AP

Applying this condition to a Gaussian density function atei = 0

f(Aq)r Aw,t = 0) = Le—% [A¢2/0%+Aw2/0,22:|
TTO107

leads to the conditioo; = 0> = ¢. Using this result and the polar coordinates

Aw (3 13)

r? = Ag? + Aw? A = rcost
tanf = 3 ’

Aw = rsin®

the resulting density function can be written as a functibnand Hy,,, (cf. (2.47))

1

_ 1 7
= e gy = e/ en (31

2702

f(r8) = f(r)

It is apparent that the density function has to be rotatlgr&lmmetric to represent a
matched bunch. However, this is only valid for very small thugs or linear motion such
as (2.43), because only in the special case of the lineaHaadiltonian (2.47), the trajec-
tories are circles.

As a general necessary and sufficient condition for a statyoparticle distribution,
Hofmann and Pedersen state that the phase space dgfsityAw) can be written as a
function of the HamiltoniarH [45]. This can be shown as follows: Equation (3.12) can
be reformulated as

b p) Ag !
Eo ﬁ]'lmﬂ = fox =0

This implies that the gradienf, of the density function should be perpendicular to the
direction of the flowx at every point in the phase plane. This is possible only ittv@our
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Table 3.2: Different stationary distributions. The Hamiltonidt is chosen such that
H(0,0) = 0 andHy, is the value on the boundary of the bun¢h.andc are positive and
real numbers. As the Hamiltonian can be positive or negal@pmending on the direction
of the flow, the absolute valyéd| is used.

Distribution  Particle Density Function

H| < |H
uniform f(H) = fo |H| < |Hyl
0 else
- fo/|Hp| — [H| [H| < [Hp|
elliptic H) =
P f(H) 0 else

Gaussian  f(H) = foe—H/ZHb

lines of f are identical with the trajectories of the motion. As the fisWwHamiltonian, a
trajectory is a contour line of the Hamiltonian for a constealue H;. Thus, for the
correspondent contour line ¢f, the value of the Hamiltonian is alsdd; and constant.
This implies that the density only depends on the value of the Hamiltonian gnzhn be
written as a function oH

f(Ag, Aw) = f (H(Ap, Aw)) = f(H)

as was also the case for the linear example in (3.14). Diffes@tionary distributions are
given in Table 3.2. The uniform and elliptic distributionavie a density functiort that
is not continuously differentiable on the boundary of theaddu However, their boundary
H = H, can be considered as a limit of the contour lines inside tmeland it just as
well has to be equal to a contour line of the Hamiltonian.

A Gaussian density function for the separable nonlinear ilamnin (2.45) can be
expressed as the product of two exponential functions

F(Dg, Aw) = fo efH/zﬁb — % e—T(Aw)/zﬁb er(Aq))/ZHb, (3.15)

whereH,, < 0 is a constant. For very smadlfy,
mated by (3.14).

, this density function can be approxi-

3.4 Longitudinal Bunch Oscillations in the Time Domain

3.4.1 Mismatches of a Bunch

Usually, a bunch in a synchrotron ring will have small or Eargismatches from the ideal
matched distribution. These mismatches can for exampldt iisring the injection of the
beam in the ring. If the beam is already bunched before ijéstad in the ring, the bunch
shapes have to be consistent with the buckets created byRelRge in the ring. Any
deviation will result in a mismatch of the bunch. Even if tlean is injected as a coasting
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Table 3.3: Mode numbers of longitudinal coherent beam oscillationscifmasting and
bunched beams [108].

Coasting Beams Bunched Beams
n = coupled bunch mode number
=0,1,2,...(M—1)
n = azimuthal mode number " T phase plane periodicity,

within-bunch mode number
=1 (dipole), 2 (quadrupole)
3 (sextupole). ..
g = radial mode number

=123,...0

beam and is captured slowly by increasing the RF amplitudgbatically, mismatches
may happen during the capturing or thereafter during thelacation. The disturbances
described in Section 3.1.1 will create mismatches. Thesenatches are usually damped
by Landau damping as shown in Section 3.1.2, but this ineseti®e emittance of the
beam and deteriorates the beam quality. In addition, if taelmnisms or instabilities that
drive the mismatches are faster than Landau damping, thehbwifi eventually leave the
bucket and will be lost.

Because of these reasons, a feedback system that is ab#biitzetthe bunch at the
ideal matched shape is desirable. In general, it is not plestsi measure the density in the
phase plane and the mismatch directly. However, every nicdmaill result in coherent
oscillations of the beam: The bunch shape and the beam twviémot be stationary
and the resulting oscillations can be measured. To desigea@bhck system it is thus
necessary to describe these coherent oscillations.

There are two possible modeling approaches. First, thdaigms can be described in
the phase plane and time domain, this is the subject of thibse Second, the oscillations
of the beam current can be observed in the frequency domhiswill be covered in the
subsequent section.

In general, a beam consists of several bunches. Each buribk beam can perform
coherent oscillations, these are caltdgle-bunch oscillationsin addition, the bunches
can oscillate against each other in the bunch train. Thisfexmred to azoupled-bunch
oscillations The next sections and chapters will focus on single-bursdilations. It
will be assumed that each bunch can be measured and coutselfarately from the
other bunches. Therefore, only a single bunch will be carsid.

3.4.2 Longitudinal Oscillation Modes

The first classification of longitudinal bunched beam oatidns can be traced back to
the theory of Sacherer [31, 109, 115-117]. A general frannewgists for coasting and
bunched beams to describe the coherent beam oscillatiche iongitudinal and trans-
verse planes [108]. In this framework, modes and mode nuwsrdoerdefined to classify
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R; Figure 3.6: lllustration of the longitudinal
GZQ.RZ coupled bunch mode numbar = 1 for
M = 4 bunches. Bunclt € {1,2,3,4}
oscillates withsin(¢(t) + kZ2). The ar-
rows indicate the velocity of the relative
bunch oscillation.

Figure 3.7: Within-bunch moden = 2. Left: phase plangéA¢, Aw) and polar coor-
dinates(r, 6), radiusr, of the stationary distribution (dashedEenter: line densityA

(solid), stationary line density, (dashed), and difference,, (orange).Right: modula-
tion of the phase plane density far = 2.

coherent oscillations. The oscillation modes can be censdlas a basis of linearly inde-
pendent functions that can be used to construct any possbiiation.

Table 3.3 shows the longitudinal mode numbers for coastigbaunched beams. For
bunched beams, there are the three mode numbersandg. The coupled bunch mode
numbern is used to classify the coupled bunch oscillations and threb&n of possible
modes is equal to the number of bunches in the Mg The mode number defines
the phase shift of oscillation between two adjacent bunahése ring, as visualized in
Figure 3.6. For example, for = 0, all bunches in the ring oscillate in phase. The
dynamics of the bunches can be coupled by impedances or veddte &éind this can lead
to acoupled bunch instability

The within-bunch mode number specifies the periodicity of a bunch density modu-
lation in the phase plane with respect to the azintutRigure 3.7 shows the configuration
of modem = 2 in the phase planfAp,Aw), its line density as a superposition of a sta-
tionary Ao and oscillating\,,;, and the modulation of phase space density with respect to
a stationary distribution. The first four moda#ipole moden = 1, quadrupole mode
m = 2, sextupole mode: = 3, andoctupole moden = 4, are shown in Figure 3.8 for
linear longitudinal dynamics, i. e. without filamentatiofhe modem is a density mod-
ulation that repeats itself after the fractibpim of the synchrotron period and thus has a
frequency ofin times the synchrotron frequency:

Tinode,n = Tsyn/ m, = fm =m fsyn-
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From Figure 3.8, it can also be observed that the line deosityodem hasm nodes, i. e.
it hasm intersections with the matched line density.

Finally, the framework also includes the radial mode numjpty specify the modu-
lation of the density with respect to the radusf polar coordinates in the longitudinal
phase plane. In the following, the coupled bunch mode numband the radial mode
numberg will be ignored, as the main focus will be on the design of albesek system
for within-bunch modeg:.

3.4.3 Analytical Definition of Within-Bunch Modes

The presented definition of the modes is not unique. So farmbdem was said to be

a modulation with respect to the azimuittsuch that the frequency in the phase plane is
mfsyn and the modes: = 1,...,00 are orthogonal, i.e. a mode cannot be constructed
by a combination of any other modes. A possible analyticihden of modem for a
uniform distribution is [56]

F(r9) = {go z;ér,e) €5 g {(r0) e R : r <RP(O)}.  (3.16)

with the polar coordinateg, 0) in the phase plane as shown in Figure 3.7, the radius of
the stationary distributioRy, and the boundary function

#(0) =1+ rysin (m[0 — 6,,0]) -

In the linear regime of the bucket, the bunch rotates witft, and this can be taken into
account byd,, o(t) = wsynt. This shows that the mode repeats itself after Tsyn/m

and the mode frequency #8wsyn. It is now possible to construct more general boundary
functions by taking the sum of all modes and the new boundary i

7(0) =1+ i Fmsin (m[6 — 60,,0]) - (3.17)

m=1

This is a Fourier series of the functidiif) and allows almost arbitrary bunch shapes.
However, an important constraintigd) > 0 and realistic bunches will have small mis-
matches withr,,, < 1. This approach can also be used for other distribution fanst
For a Gaussian distribution, the definition of the modes @ahiwsen as

F(r0) = fye /2370, (3.18)

This leads to contour lines ~ 7(0) of the Gaussian density distribution with shapes
defined by (3.17).

Besides the above explicit definition of the modes, it is @aemmon to define the
modes as deviations from the stationary distribution. T&ishown in Figure 3.7 for
modem = 2 andf,, o = m/4: the line densityA in the center can be regarded as
a stationary line densityy with a modulationA,,. In the phase space (right image)
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Figure 3.8: The phase plane and line density configuration for the firgt $ingle-bunch
oscillation modes: dipole® = 1), quadrupoler: = 2), sextupoles: = 3), and octupole
mode (n = 4). The dashed circle is the matched shape in the phase pldrteeamatched
line densityA. The timet of each configuration is given inside the bunches. The freque
of each mode i1 fsyn, because mode: is repeated aftefsy, /m. Two particles (orange
and blue) are shown to visualize the linear flow, i. e. the fléwhe linear model.
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the density modulation with respect to the stationary dgnsi is shown and depends
mainly on the azimuti. This approach is convenient to examine a stationary beanisth
perturbed by a small mode. For example, the frequency coamisf],, simply add to
the stationary spectrum @fy. This approach is however less appropriate for the modeling
of a feedback system, since the feedback acts on the condggesity and not only on its
deviation.

The presented mode definitions are so far valid for small besan the linear regime
of the bucket only, because they rely on the fact that thedtajies near the origin are
circles. A possible extension is to use the stationaryidigion (3.15) for the nonlinear
regime and define the modulated density

f(T’,Q) — f() efH(T’,Q)/ZHbTA’Z(Q) .

For a stationary buckegr = 0 and the Hamiltonian (2.45), the density can be rewritten
with the polar coordinates (3.13) as
e—[r2 sin® §-+2—2 cos(r cos 6)] /Z[ﬂ}ﬁ(ﬂ).

wWsyn

f(r0) = fo

Similar definitions can be made for uniform and other disiitns.

3.5 Longitudinal Bunch Oscillations in the Frequency Domain

There are two important reasons why the frequency domaimnsnwnly used to an-
alyze beam oscillations. First, it is convenient to obsehe beam spectrum using a
spectrum analyzer. Second, the interactions of the beamitsienvironment are usu-
ally frequency-dependent, thus it is necessary to anahgé&équency components of the
beam current. The calculation of the beam current spectamessentially be done in
two different ways. If the coherent oscillations are smatl ¢he Landau damping is neg-
ligible, the beam current signal will repeat itself at thiefd after one synchrotron period
Tsyn- The spectrum over this period will be time independent amdlii be referred to as
the long-term spectrumFor a feedback control however, this measurement is tag slo
since coherent oscillations should be damped as soon aattisey For control purposes,
the beam current signal of a bunch should be measured dusingle or a few revolution
Tr. Thisshort-term spectrurwill be time dependent for non-stationary bunches and can
be used as an input variable for control algorithms.

The convention of the Fourier transform used in the nexicestand some necessary
formulas are given in Appendix A.3.

3.5.1 Long-Term Spectrum of Bunched Beams

In this section the spectrum for the special clase 1 is considered, because only single-
bunch oscillations are of interest in this thesis. More gahéderivations can be found
in [19, 30, 121, 136].
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Z'poin’c (t) = Qwr I — kTR) Ipeam (t) = lpomt
0 TR kTr
Ipoint (w) Ibeam (w)
Aw)
| | | | > + | | | imd
—2wR —WR 0 WR 2wWR —2wR —WR 0 WR 2wR

Figure 3.9: Top left: beam current of a single particle with the revolution tiifje Bot-
tom left: spectrum of single particlelop right: stationary distribution\ (¢) with a finite
bunch lengthBottom right : spectrum for a finite bunch length.

To begin with, a single particle or a point bunch with the gedp in the ring is consid-
ered. The patrticle is assumed to be exactly on the refereajeetory with the reference
energy and is thus not performing any oscillation. The timehosen such that it crosses
the pick-up monitor at = 0. The patrticle will return periodically at the pick-up maorit
with periodTg and the beam current can be modeled as a series of Dirac dettioins

ipoint(t) = Qur Z 6(t — kTRr)
k=—o0
as shown in the top left image of Figure 3.9. The spectrum ©f $ignal follows
from (A.10) and is also a series of delta functions

Ipoint(w) = Quw’ Y 6(w — kwg) (3.19)

k=—o00

with nonzero frequency components at multiplesogfas shown in the bottom left image
of Figure 3.9.

A point bunch is not a very realistic example, so a statiotarych with a finite length
and the longitudinal line density(t) for t €] — Tr/2; Tr /2] is now assumed. This can
easily be derived from the previous case if the convoliion

k=—0c0

ibeam(t) = ipoint(t) * A(t) - / A( ) 1p01nt( ) dt = Quwg Z A t— kTR)

3)In the following formula,t is a variable for the convolution integral and not the comatit of the longitudinal
beam dynamics.
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Table 3.4: Spectral density of uniform and Gaussian line densitieg Gaussian spectral
density is approximately valid far < Ty /2.

Line DensityA(t) Spectral Density\(w)  A(0)
L forte[-%; 5k ,
uniform: { % 272 sin(wly, /2) 1
{0 else wly /2
2
1 o 2.2 k. Tx
Gaussiany v2mo© fort € [=5 7] ~ e 100w 1

else

()

is used [56, 60]. The resulting beam current is shown in theight image of Figure 3.9.
The only necessary assumption for this calculation is tiigice&nt bunches do not overlap,
i.e.A(t) is zero outside the intervale] — Tg /2; Tr /2]. The convolution in time domain
corresponds to the simple multiplication in frequency doma

heam (W) = Ipoint(w) Aw) = lez{ i A(kwr)é(w — kwr),

k=—c0

where A(w) is the spectral density of the line density as defined by th&i€otrans-
form (A.6), p.165. The spectrum remains a serieg-tinctions, but these functions are
modulated withA (kwg ). Table 3.4 shows the spectral densities for uniform and Gaus
sian line densities. Taking the limits — 0 andc — 0 leads in both cases to the special
case of point bunches with the spectrum (3.19). For fthibeinch lengths, the higher
frequency components are scaled or rather damped,bgf. Figure 3.9, bottom right.

A bunch with a larger lengthr will have a narrower spectrufd and its spectral lines of
higher frequencies will be less important. This is appafesth Table 3.4: The spectral
density of a Gaussian density is also Gaussian, but witllatdrdeviatiorr 1.

To be able to construct a non-stationary bunch, it is necgdsaconsider the more
general case that the particle performs synchrotron asiottis. In turnk, the particle will
then arrive with a time delay(k). For small amplitude$ of the synchrotron oscillation,
the oscillation is linear and the time delay at turfollows from the linear synchrotron
oscillation (2.37) for the coordinate = ¢/wgr and the arrival tim¢ = kT and can
thus be expressed by

The beam current of the oscillating particle is

ipoint (£) = Qg Y, 6 (t —kTr — T cos (wsynkTr + D)) - (3.21)

k=—0c0

“Here, finite is used as the opposite of the limit> 0 of infinitesimal point bunches.
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Z'poin’c(t) = Qwr Z[io:_oo ( —kTr — 7 k] Zbeam 1p01r1t
0 TR kTR
|Ipoint (w)‘ |Ibeam (w)|

A S

—WR O a)R WR 0 WR

Figure 3.10: Top left beam current of a single oscillating particBottom left: spectrum
of single particle.Top right: dipole oscillation of distribution\(¢) with a finite bunch
length. Bottom right : spectrum for finite bunch length. The magnitudes of the tspkec
lines are chosen randomly to clarify the principle shapesie b the oscillation, side
bands appear.

This current is shown schematically in the top left diagrdrRigure 3.10. Strictly speak-
ing, this equation contains a simplification, since the ditpywy, is valid for the refer-
ence particle only. An oscillating particle with an energgvi@dtion also has a slightly dif-
ferent angular frequency. However, this difference is ligsmall and will be neglected
in the following.

If Tsyn is an integer multiple of’g, the signaliyoin repeats itself after = Teyn and
k = Tsyn/Tr and a Fourier series can be derived [56, 60] without any aqpiations.
This Fourier series can then be transformed into the fregueiomain. Classical ap-
proaches to calculate the spectrum are given amongst ath@tzl] and [136]. However,
these two references present results that differ slighti/the approaches do not seem to
be completely consistent. In [136], the arrival time (3.B03hosen slightly different as

T(k) = T(t) = T cos(wsynt + Pp).

This approximation changes the obtained spectrum, p&atlguhe magnitude of side
bands of higher order, but the principal shape is maintainad121], the same equa-
tion as (3.21) is used and transformed directly into thedeggry domain with a Fourier
transform. Transforming the series (3.21) elementwish (#t7) yields

(o]
Ipoint(w) = Qwg Z o lwnTr e*inCOS(WSynnTRqLCDO)'

n=-—oo
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The second exponential function on the right hand side caxpanded as a Taylor series.
Rewriting this series usingps? x = (1 + cos(2x))/2 yields
w212

242
w=T
1—

— iwt cos(wsynnTr + Pp) — cos(2wsynnTR +2Pg) + ...

and withe'™ + e~ = 2 cos(x) and (A.9), the beam current can be rewritten as

Looin 242 >
M:ll—WT —|—] Y d(w +kwg) —

2
Q(“UR 4 k=—00
wt ad
— 17e1q’0 Y [6(w — wsyn + kwr) 4 6(w + wsyn + kwgr)] +
k=—o0
242 00
w=T"
k=—o0

This approximation of the spectrum shows that due to thersgtion oscillation, new
lines or side bands appear next to the comb of lines at théiontharmonicskwg
of (3.19). In [121], the Bessel function sum is additionalyployed to obtain the exact
spectrum. These derivations show that there is a doublatenfimmber of side bands,
spectral lines appear at

w = kwR + MWsyn, k,m = —oo,...,—1,0,1,...,00.

In addition, the magnitudes at the rotation harmoricg decrease depending ont.
The bottom left image of Figure 3.10 shows the principle shapthe spectrum. The
magnitudes of the side bands are not symmetric and can béasggenthan the magnitude
of the spectral lines at the rotation harmonics. A more gamesult is obtained if an exact
and closed-form expression of the spectral lines is defv8d60].

The top right image of Figure 3.10 shows the coherent dipa@dem = 1 of a bunch
with a finite length. Its spectrum is again obtained simplyabsultiplication with the
spectrum of the line densitx and the structure of side bands is preserved. Only for very
small values otvT < 1, the side bands of ordet > 1 are negligible. This shows that
there is no one-to-one correspondence of coherent madew the spectral lines of the
side bands [60].

The calculation of the spectrum of higher order modes- 1 is not as simple as the
dipole case, because the shape of the bunch is no longemsiati It is thus necessary
to assume a bunch with many oscillating particles and to th&esum of the spectra of
the individual particles. Because the number of partiddarge, it is possible to approx-
imate this sum as an integration over a density distributidmwever, the calculation gets
extremely complicated and an analytic solution for higheleo modesn > 1 does not
seem to exist.

As already mentioned, the particles in a bunch will havedestries that differ slightly
from wg, this was neglected in (3.21). If it is taken into accoung, $pectral lines smear
out, i. e. thej-functions turn into continuous and finite spectral deasi{B0]. For larger
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Table 3.5:Possible coordinates for the short-term spectrum caloulat

Coordinates x y Ty Wy DomainD,
RFEphase Agp Aw=-— ﬁf 27 1 | — 7, 7

i i T Tee T
Time lag AT —ai; Terp= & wrp ] — B, T

bunches, the linear calculation of (3.20) is no longer valithe synchrotron oscillation
Is nonlinear and there is a synchrotron frequency spreatingdo Landau damping. If
Landau damping is large, the current signal is clearly noibge and the interpretation
of the spectrum is lost.

3.5.2 Short-Term Spectrum of Ellipsoidal Bunches

The long-term spectrum presented in the previous sectiongertant for beam observa-
tions but often too slow to be used for beam corrections. IfdgBback loops, the beam
current signal during one turn is usually measured and dposed into its frequency
components by a Fast Fourier Transform (FFT). To modelgh@t-term spectrupntwo
different bunch density functions are analyzed in thisieacta Gaussian and a uniform
density distribution with elliptic bunch shapes. The lirendity signal of these bunches
is calculated analytically and developed in a Fourier serlde results show that the am-
plitude and phase of the first harmonic can be used to cadcolaainingful parameters of
the bunch position and shape.

It is assumed that the bunch can be approximately descripékebdensity function
f(x, y) in the longitudinal phase plarie, ). The coordinates are not further specified;
the coordinates are however assumed to be chosen suchdhedjéctories in the linear
regime of the bucket are circles. The beam may consistlmafnches, but each bunch is
measured separately. The time between two successive daimgt be denoted byl
and this also defines the domain of one single bunch. Possiblelinate candidates are
given in Table 3.5.

Uniform Density First, an ellipsoidal bunch with a uniform density is corsid. It
is desirable to have a fairly general definition of the bunott a possible construction is
shown in Figure 3.11. On the left, a simple ellipsoidal baanyds given, defined by the
boundary functiorb; (x) = xTSx — 1 = 0 with x = [x y]T € R2. This bunch can be
rotated (center) and translated (right) by the maps Rgex andx — x — r. The shape,
rotation, and translation matrices are

R;2 0 cos P sin & X
— 1x — _ 0
S [ 0 RZXZ] ! Ro l— sin® cos CID] ¢ r lyol
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VA YA VA
R2x
il BN (] @ x "
T > >
DN 0%
xISx <1 xTRISRpx < 1 [x —1]TRESRgp[x —1] < 1

Figure 3.11: Construction of a general ellipsoidal bunch with a uniforemsity and both
arbitrary orientation and center of gravity. The vector= [x y]T € IR? defines the
position in the phase plan€; is the orientationRg a rotation matrix,S contains the
half-axesR, andR,,, andr is a translation vector.

with the half-axeR, andR,, and the angl€. The bunch is defined by the set
By = {x — m eR? : (x —1)TRES Rp(x—7) < 1} (3.22)

with the boundary function
su(x) = [x — 7]TRES Rop [x — 7]

a*[y — yo)? + b?[x — x0)* — 2¢c[x — xo][y — o]
— R (3.23)

and the abbreviations

a0 = \/ R? cos?®+R2 sin?® b= \/ R? sin®® + RZ cos?
c= R}~ R |cos®sin® = ¥ - = RLRS,

The defined bunch is static, but a time dependency can belutdedl ifxg, yo, andd are
regarded as functions of time. For example, a linear synamascillation of the bunch
is obtained by

xo(t) = Focos(wsynt) + Fo sin(wsynt)
yo(t) = Xosin(wsynt) + Jo cos(wsynt) (3.24)

The constant parametetsg, 77, and®, are initial values of this oscillation.
The density of the bunch is chosen to be uniform:

1

———— for (x,vy) € By,
f(x,y)={gR”R2x elsé ¥) € Bu (3.25)
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with the set3,, from (3.22). The line density of this bunch is

o) — yi . B mb(x)—z(x)] for x € Dy,
A >—[O f(x, ) dy = {0 e

wherey(x) andy(x) are the upper and lower boundary valuesgyofith respect tox.
Solving the boundary functios, (x,y) = 1 of (3.23) fory yields after some calculation
steps the upper and lower boundary values

{Zgi%}:yo-i-;—z[x—xo] {J_r} \/bz_z_i\/l_[x_a%p

inside the domain

r={xeR:x=xg—a<x<xy+a=Xx} (3.26)

with the upper and lower boundary values x]. This results in the line density

2 _ [x—=x0]?
AMx) = 7 1— =7+ forxe Dy, (3.27)
0 else

This signal can be Fourier transformed to obtain the spledrasity
0 X
Alw) = / Ax) e 19 dy = / A(x) e 19 du,
— 00 X

A summary of the notations used for the Fourier transforngaren in Appendix A.3.1.
The substitutior¥ = [x — x| /a leads to

1
2 . o
Aw) = %eﬂ“’xo / V1— %2 e W™ dx,
-1
This integral is a standard integral for the Bessel funcfioof the first kind:

; s w=20
21

mhiw) 2o

Finally, the spectrum can be written as

Alw) {1 w =20,
W) =19 2h(wa) _;
1(4(;{1 ) e—iwx0 ¢ £ 0,
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The beam current is proportional to the line charge densitstated in (3.11), p.53, and
the spectral density of the beam current is given by

T T
heam (@) = T—IjF Acharge (w) = KXFQbunCh A(w), (3.28)

whereAharge = Qpbunch A is the Fourier transform of the line charge density, oe. A
real measurement of the beam current is usually followedBlyRor a filter to obtain the
amplitude and phase values of the harmonics of the signédelimeasured beam current
is continued periodically such that it becomes perioditwwiriodT, and frequencw,, a
Fourier series can be calculated, provided the bunchestaweadap. According to (A.11)
of Appendix A.3.3, the complex Fourier coefficients are teenply

1 - 1 k=0,
Ck = T_xlbeam(“’ = kawy) = ibeam - {th(f]f;a) e—ikwixo  k # 0. (3.29)
with the mean current or DC current of the bunch
;b — |C0| — ﬂ — Qbunch.
eam 2 TRF

The amplitude and phase values of the harmonics are, cf. rfjppd.3.1,
Ak = 2|Ck|, P = ch. (330)
For the considered uniform density, they are

J1(kawy)

kawr o = —k wy xo. (3.31)

A = Lgbeam
The units ofRq, andRy, are equal to the unit of coordinate the phasey, is measured
in radian and the amplitudé; is measured in ampere.
The beam current follows with (3.27) and equals

. T AN Syl Rt | S S N
Zbeam(x) - T_IjF Acharge(x) - {Obeam Wt @ olse '

for one bunch and, if continued periodically with peribg it can be rewritten according
to (A.5) as

Z'bearn(x) = zbeam + Z A cos(kwxx + (Pk)' (3.32)
k=1
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Gaussian Density Similar calculations can be performed for a Gaussian dehsitc-
tion. A general Gaussian density function including a tiainsn and rotation is given

by

1 o~ Lx—r"RESRo[x—] forxe}—ﬂ T_}

-t

(3.33)
0 else

with vectors and matrices

_|x0 | cos®  sind B (71;2 0
"= ly()] ’ Ro = l—sinq) cosCD] ’ 5= l 0 ‘72_x2 '

The shape of a contour line of this Gaussian profile is etliptido;, are the standard
deviations of the two-dimensional density distributibfx, ). The reason why is not
defined on the complete phase plane is that only one buncmsdsred and adjacent
bunches should not overlap.

With the abbreviations

_ 2 2 2 2 _ 2 2 2 2
a= \/alxcos CID—i—Uszm P b= \/lesm CID—i—UZxcos d

2b2 2 2 2

c= {alzx — O'ZZx} cos ®sind = acb® —c” = 07,05,

the density can be rewritten as

_ 1 — Ha*ly—yo]?+b?[x—x0)> —2c[x—x ][y—yo]]/[azbz—cz]
Flxy) = e
27tV a?b? — 2

for x € }—%; TT] The line density of this bunch is obtained by integratingray,

taking into account the integral

/ 17 /m dyj = v2mm.

This leads to the line density

1wl /e I L
Ax)={ Vana €’ / fOfo} 2,2],

0 else

The spectral density is
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For
O1x, 02 < landxg < Ty /2, (3.34)

the line density is negligible outside the integration i# and the approximatioh, —
oo for the integration limits can be made to simplify this inmalg Finally, this leads with

o0
_ 152 T 1 _1,2
/e 2x/mel“”‘dx: 2mtm e 29

—00

to the approximation

A(w) ~ e~ lwXo e—%azaﬂ.
To obtain the phase and amplitude of the harmonics, Equa{®8), (3.29), and (3.30)
can again be used. The mean current or DC current of the baragain

= . Qbunch
lbeam = T—RF

With (3.11), the beam current yields

- iy .12/
{zbeamvz”e 3=l /o forxe]—%, %],

Z.beam (x) = wra

0 else

The phase and amplitude values of the harmonics are

Ap ~ Qipeam € 26090 o~k wy x,. (3.35)
In the following, the approximation signs will be omittedjtbt has to be kept in mind
that the derived results are based on ellipsoidal Gausss#ibdtions for which assump-
tions (3.34) hold.

3.5.3 Bunch Position and Length

In the last section, the phase and amplitude values of the loearent were derived de-
pending on parameters of the density functfonBut how do theA; and¢; depend on
the bunch position and length, i. e. on the two parametetsatiegamportant for coherent
dipole and quadrupole oscillations? The bunch positiohbeidefined as the first moment
or center of gravity

Big:= / / x f(x,y) dx dy (3.36)

—00 —O0
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and the bunch length as the second central moment or variance

Cooi= [ [ [x=Buol® flx,y) dxdy. (3.37)

For the uniform bunch density (3.25), the bunch positionlandth are

_ _ 1 2 2 s 2&] f
B1o = xo, Cro = R7, cos”® + R5, sin" d| = .
’ ’ 4 4
In case of a matched bunch in a linear buckgt, = R,, = R, is the radius of the bunch
and the variance i§,y = R2 /4. The standard deviatioyC, o equals half the radius.
With approximation (3.34), the bunch position and lengticwation for the Gaussian
bunch density (3.33) yields

(3.38)

By = xo, Cao = 0%, cos> @ + 03, sin® & = a°. (3.39)

The matched case for a linear bucket is gw = 0>, = 0y; this is also the standard
deviation of the bunch distribution. Comparing (3.38) aB®89) shows that a uniform
bunch with half-axes

Rixy = 201y, Roy = 209y (3.40)

has the same varian€g o as a Gaussian bunch with standard deviatignsandoy,.

By means of (3.38) and (3.39), the results of Section 3.512beawritten in a compact
way. Table 3.6 summarizes these dependencies of the beaemtcand the amplitude
and phase values on the bunch center of gravity and variamaéd coordinate choice
x = Ag.

Equation (3.35) forA; is appealing from an analytical point of view, since it can be
easily inverted. This yields equations to calculate theereof gravity and variance, if
phase and amplitude of a harmokiare known:

2 A
Bio = _k(fjx’ Coo & 202 In <—O) - (3.41)
X

Here, use was made of the fact tifat equalip.,,. The special case= 1 andx = Ag
leads to

Blo ~ =91, C20 ~2In <ﬂ) . (3423.)

’ 7 Al

Of course, the proposed density functiohsire only ideal models for a real bunch. A
real bunch will never be exactly Gaussian or even uniformsgrdistribution. However,
the longitudinal density of many bunches in proton and haamysynchrotron rings is
reported to be approximately Gaussian or parabolic. Anteadil complication is that
the density distribution is not accessible for a direct mearment. The distribution can
be reconstructed offline after the experiment, but onliner@gches require much effort
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Table 3.6: Results for the short-term spectrum for ellipsoidal buischéh a uniform or
Gaussian density function and coordinates= A¢. The moments3;y andC, o are
assumed to be given in the variale.

Uniform density andc = Ag:

. 22beam \/ [A(P - Bl 0]2
1 Ap) = —4/|1 - ——— 3.43a
beam( (P) \/@,O CZ,O ( )
- J1 (k\/4Co 0
Ag = dipeam =) ( ) ¢r = —k B1g (3.43b)

k\/4Cpo '

Gaussian density and= Ag:

~ ibeam \Z 27_[ e*[Aq)*Bl,O}Z/ZCZO

iy (Acp) =~ (3.44a)
eam \/G,O
A % 2ipeam e K0, gm0 —k By (3.44b)

at the moment. Despite these difficulties, the equationthimGaussian case seem to be
suitable for an approximate estimation even for non-Gansgistributions. Before this is
demonstrated by simulation results, the derived equationdiscussed for small bunches.
It turns out that for the limit of very small bunches, the eiuas for the uniform and the
Gaussian case become identical. This is conclusive, bedaath densities converge to
a Dirac function for very small bunches. For smRll < 1, property (A.4) for Bessel
functions of the first kind can be used aAg of (3.31) can be approximated by

Ak ~ 2ibeam

1 2 A
1— k2w C ] = Oy~ l1__’< ]
" k20 207 k22 2iheam
The linearisation for, < 1 of the exponential function of (3.35) of the Gaussian dgnsit
leads to the same result. The conclusion is that for smaltihes the formulas of the
Gaussian density can also be used for bunches with unifesmhilitions. This will lead
to an error in the estimated bunch variaricg,, but the error is bounded and increases
with increasing bunch size. It is thus interesting to notat tihe error is smallest for
Ax = Aj, sinceA; depends ok C, o and a largek has the same effect on the error as a
larger bunch size. Fdt, o — 0, the amplitudes converge #y, — 2i,c.m, the result for
a Dirac density function.

As the uniform and the Gaussian case can be regarded as thextsgone cases of
realistic density functions of Table 3.1, the following silation results demonstrates
that (3.41) has a certain robustness against variatioms fhe ideal Gaussian density
function.
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Figure 3.12:Beam current spectrum of a simulated particle bunch for as§an density
ando, = 0.5, Apy = 0.2. Amplitude and phase values from the simulatior) @nd
from (3.35) (blue).

3.5.4 Simulation Results of Short-Term Spectrum

Simulations with macro-particle bunches are now used ttuata the theory of the last
sections. In these simulations, the bunch consists of a aulR a0 Of macro parti-
cles. The particles are distributed according to the umfor Gaussian densities (3.25)
and (3.33) withxg = 0. The used coordinates atg andAw. The line density and beam
current are calculated by means of a histogram;xtais is divided in equally spaced
bins and the number of particles in each bin is counted tomkit@ histogram. The his-
togram values are collected in a vector and processed by algefithm. The resulting
FFT coefficients are then converted to amplitude and phdsesa; andgy.

The number of bindVy;,, i.e. the number of divisions on the intervA),, and the
number of macro particleN a0 are increased until a further increase in both numbers
does not lead to a significant change of the simulation resyttical numbers are between
100 and 500 foiN,;,, and betweerl03 and2 - 10° for Nimacro. FOr smaller bunches, the
necessary number of bins tends to be larger to obtain a rebsosmooth beam current
signal. Compared to uniform densities, Gaussian dens#igsire a larger number of
macro particles. This is due to the fact that the uniform dgms obtained by a regular
arranged pattern in the phase plane, whereas the buncblgaxtith a Gaussian density
are initially distributed in a statistical manner in thegadations. It is also possible to
have regularly distributed Gaussian bunches, this hasdmeagzed in [11].

Figure 3.12 compares the beam current spectrum obtainetleb¥ET in a multi-
particle simulation with the calculated spectrum for a Garsbunch density. The simu-
lation was performed witB.25 - 10# particles and a histogram wift50 bins. Figure 3.13
shows the reconstruction of the beam current accordingaatim of (3.32), if only the
first Nj, harmonics are used. In this example, the sum of the first 6 draios is already
close to the ideal shape of (3.44a).

The spectrum valued; andg; can be used to calculate the first and second moments
of the bunch using (3.41). To compare these FFT-based atilond with their real val-
ues, the first and second moments of the bunch are neededudBeitee bunch consists
of a discrete number of particles, Equations (3.36) and7}3aBe approximated in the
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Figure 3.13: Reconstruction of the beam current with its harmonics irmeking simula-
tion: sum of the firstN;, harmonics (black) and the ideal Gaussian beam current4443.
(blue) andr, = 0.5.
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Figure 3.14: Comparison of the calculated short-term spectrum with Etran results.

simulation by the sun®
2
1N 1N | N
Bl,O ~ N nglxn/ CZ,O ~ N Z Xn — N]; x]' P (345)

n=1

where N is the number of particles and, is the x-position of particlen in the phase
plane.

Figure 3.14 shows the amplitudg, of the first harmonic versus the bunch size. The
amplitude is calculated numerically in a macro particleldation with Equations (3.43b),
(3.44b), andc = 1. Because of (3.40), uniform bunches with are compared to Gaus-
sian bunches witRc,. The left image shows the results for an ellipsoidal buncth ai
Gaussian density and standard deviationys = 02y = 0. The amplitudeA; is nor-

malized withAg = 2ip..m- The value ofA; calculated with (3.43b) agrees very well

with the simulation up tar, ~ 1. For larger bunch sizes, > 2 assumption (3.34) is
no longer valid and a small difference between the simulatsult and Equation (3.44b)

)The point of view is as follows: The particle bunch is assurtetie a realization of an underlying particle
density distribution with parameters suchig andC,. These parameters are not exactly known, but can be
estimated by the given sums.
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Relative Variance Error

Co0(A1/Ag) 0.2
A . )
Gaussian density 0.15
ACyp
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Figure 3.15: Estimation error for the bunch variance if the density isfanmh and not
GaussianLeft: error calculationRight: estimation error versus the bunch variance.

becomes apparent. The right image shows the results forfarondensity. The calcu-
lated and simulated values df; agree for values up t@, ~ 3. For very large bunches
there is a small deviation, because the upper and lower leoynalues (cf. (3.26)) are
outside the bunch interval. The described two curves acecalsipared with (3.44b), this
demonstrates that the spectrum is indeed similar for umifand Gaussian densities.

Equation (3.41) can be used to calculate the bunch vari@agdrom spectrum mea-
surements. If the bunch density is not Gaussian, there wilhilb estimation error. To
express this error quantitatively, it is assumed that tie@n ellipsoidal bunch with a
uniform density in the ring with the variangg o (D in the left image of Figure 3.15).
Equation (3.31) specifies the amplitude that will be measure®):

A1(Cro) L)1 (Wx\/4C2,O).

Ap wx~/4Co

If the estimation(leo of the variance is however based on Equation (3.41) for Gass
densities, this results in the relative estimation e(@pr

2 A 5
AGCy w_%ln(Al(é)z,o)) - CGo 2 \/4Co 0wy .

In

= 2
Co Co G owy 27 ( /4C2,0w§>

whereAC, g = Cz,o — Cy0. This relative error is shown in the right diagram of Fig-
ure 3.15. Itis about0% for a variance 0C2,0w§ = 1 which corresponds to rather large
bunches withRR, = 2 oro, = 1.

Estimation Errors Due to Landau Damping The previous figures show that the con-
version formula (3.42a) performs well for bunches with Gaas densities and even for
bunches with uniform densities witﬁq, < 2, if an estimation error o10% is accept-
able. However, so far no Landau damping has been includdteindnsiderations. Due
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Figure 3.16: Particle tracking simulation with Gaussian densities carmy the real
bunch moments (black) with the estimated moments by mearniseobeam spectrum
(blue) for different bunch sizes,. The phase plane plots on the right show the final
configuration of the bunches (not every particle is plotted)

to Landau damping, the elliptic shape of the bunches willltexred and this will lead to
estimation errors even for Gaussian densities. To evatbage errors, nonlinear tracking
simulations are performed for different bunch sizes. Attgiations in this section have a
stationary bucket, i. epr = 0.
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Figure 3.16 shows the results for Gaussian densities. Titi@ iounch configurations
are distributed according to (3.33) with

205 =20, € {0.5,1,1.5,2}, 01, =090y, 0oy =110y, xg =040y, =0,

I. e. the bunches are ellipsoidal and have a mismatch in kastitign and length such that
coherent modes: = 1 andm = 2 appear. The plots of the moments, andC;
compare the real bunch moments of (3.45) with the FFT-baatuilations of (3.42a),
assuming Gaussian densities. For large bunch sizes, thdauatamping of the bunch
variance is considerable and the final bunch shape is clearlyellipsoidal. However,
the estimation of the moments can still be acceptable fotrobpurposes. The patrticle
number isSNmacro = 4 - 10* and the number of bins Npin € [200; 400].

The simulation results for uniform densities are shown guFe 3.17. The estimation
of the moments is again based on (3.42a) for Gaussian dengshts already noticeable in
Figure 3.15, this formula overestimates the bunch varidoceniform densities. How-
ever, the estimation error is even smaller compared to thes§an case. This is due
to the fact that the Landau damping for the uniform densgesms to be much smaller
than the Landau damping of comparable bunches of GaussimaitydeThe initial bunch
configurations are distributed according to (3.25) with

Ry =Ry €{05,1,15,2}, R;y =090y, Rpy =110y, xg=02R,, ®=0

and the particle and bin numbers &¥giacro = 10* and Ny, € [200, 400].

It has to be noted that for smaller mismatches of the bunclanveg, a considerable
offset of the estimated variance might become apparente¥ample, for a bunch with
Ry =1, the variance equalS, = 0.25 and the relative estimation error is abdat,
cf. Figure 3.15. This leads to an absolute erro0025. In Figure 3.17, the oscillation
amplitude of the variance is much larger and this offset reljavisible, but will become
apparent for smaller oscillation amplitudes. As will beadissed in Chapter 5, common
controller types for coherent modes have a differentiasingcture or at least suppress the
DC component of the measurements. In this case, the dedaifset is not relevant if it
is approximately time-independent.

3.5.5 Effective Synchrotron Frequency

Besides Landau damping, Figures 3.16 and 3.17 shows anathkegsting property of
coherent oscillations as a result of the nonlinear beammigg For small bunch sizes,
the frequency of the oscillation i o is fsyn @and2 fsyn for oscillations inC;o. This
corresponds to the frequeneyfsyn of the coherent mode:. For larger bunch sizes, the
simulations show that the oscillation peridg, of modem increases, thus the frequency
fm decreases. This is consistent with the fact that large esihve a large synchrotron
frequency spread and a large number of particles with a &ecyfsy,, of that is smaller
than the linear synchrotron frequenfyn, cf. Figure 2.14.
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Figure 3.17:Particle tracking simulation with uniform densities comripg the real bunch
moments (black) with the estimated moments by means of thmlspectrum (blue) for
different bunch size®,. The phase plane plots on the right show the final configuratio
of the bunches (not every patrticle is plotted).

The relative periods and frequencies obtained in the simoualaf the modesn = 1
andm = 2 of Figures 3.16 and 3.17
fm . Tsyn

m fsyn m Ty,

are given in Table 3.7. For the smallest bunch size, the momtpuénciesf,, are ap-
proximately fsyn and2 fsyn, as expected. For larger bunch sizes, the mode frequencies
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Table 3.7: Frequencies of the oscillation modes in Figure 3.16.

Gaussian Uniform
20. Tm:1 2 Tm:2 fm:l fm:2 R Tm:1 2 Tm:2 fm:l fm:Z
¢ Tsyn Tsyn fsyn 2 fsyn ¢ Tsyn Tsyn fsyn 2 fsyn
Bio Cop Big (Cop Bio Copo Bip Cypo

05 1.02 1.02 098 09§ 05 1.02 1.02 0.98 0.98
1 1.06 1.09 094 092 1 1.07 1.07 0.93 0.93
15 1.13 1.28 089 0.78 1.5 1.2 1.2 0.83 0.83

decrease. In case of the Gaussian distribution, there is@eable difference between the
two modes.

To analyze the general dependency of the oscillation frecyug,, on the bunch size,
further simulation results with a larger variety of bunctes are considered in Figure 3.18.
In these simulations, initial bunch distributions with fzarcesC, o and bunch sizes

Woves Ry  uniform density
20 20, Gaussian density

are tracked numerically for the stationary cgge= 0 during a few synchrotron periods
and the frequencies of the modes= 1 andm = 2 are recorded. The results are only
rough estimations, since the mode frequencies change totirse of the simulation due
to Landau damping and an attempt was made to estimate thesfreigs at the beginning
of the simulation. The obtained frequencies are summairizégpendix C.1 and shown
in Figure 3.18. The left image of the figure shows that the mioeguencies can be
approximately described by (solid line)

fm (2 CZ,O) - fsyn,eff (7’4) = 2\/ CZ,O)
m fsyn fsyn '

where fs, off IS the nonlinear synchrotron frequency (2.63) for the stetry case with
A = ry and this leads to the hypothesis that the frequency of moae

m e {1,2}, (3.46)

7T
Wiy = TSN 5K (sin (1/Cap) )

For the uniform density, this implies that the frequenciéshe modesn = 1,2 ap-
proximately depend on the synchrotron frequency that appd the boundari, of the
bunch. In case of Gaussian densities, it is the synchroteguéncy at the radiudr,
that is decisive. This is demonstrated in the right imageigtife 3.18: for each mode,
the obtained frequency, is converted to the corresponding amplitugeof a particle
with the synchrotron frequencfiy, et = fm/m using (3.47). The accumulation of the

measurements aroungl = 2,/C,  is again an indication that the synchrotron frequency
at2,/C, o determines the mode frequencies.

(3.47)
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Figure 3.18: Top: Dipole and quadrupole mode frequencjgs(blue dots) andf, (red
dots) versus the bunch siz& ( for uniform densities and Gaussian densities, compari-
son with relative nonlinear synchrotron frequenGyy e/ fsyn (black, solid). Bottom:
Amplituder, of a single particle with a nonlinear synchrotron frequeifgy, o that is
equal to the mode frequendy, /m for m = 1 (blue dots) andn = 2 (red dots) of the
corresponding bunch size for uniform Gaussian densitieis/ap, = 2,/C; o (black,
solid).

3.6 Conclusion

Proceeding from single-particle dynamics to a particlesende introduces new dynam-
ical phenomena; the shape of the particle bunch may perfolmarent oscillations. To
describe these oscillations, the particle distributios haen considered as a statistical
realization of a probability density function. The evoartiof this density function can
be described by a partial differential equation. Next, etdht density functions have
been examined as candidates to describe coherent osaflatEllipsoidal bunches can
describe two basic coherent oscillations: bunch phase anmchidength oscillations. An-
alytical relations between the beam current spectrum ipiselidal bunches with uniform
or Gaussian density functions and their center of gravity\ariance have been derived.
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This step is important for the modeling of the measuremetiterRF feedback loop; the
beam current spectrum is easily accessible for measuremehereas the bunch shape
in phase space is not. The derived formulas for Gaussiant@snisave been shown to
be sufficiently accurate even in case of significant filaménta In addition, they may
be used for other distributions such as uniform densitieth)jg DC component of the
measurement is suppressed by the feedback loop. Elligdmidahes cannot be used to
describe higher order coherent oscillations. For this psep different density functions
are proposed to describe the within-bunch madesimulation results demonstrate that
in a single-harmonic nonlinear bucket, the oscillatiorgérency of a bunch mode: is
not a multiple of the synchrotron frequency. Rather, the enfodquency depends on the
bunch length and decreases for increasing bunch sizes.

The classical approach in the frequency domain with the-teng spectruni,,.,, (cf.
Section 3.5.1) needs a linearization of the synchrotroillason. The disadvantages are:

e Constant synchrotron frequency for all particles and aewglf Landau damping
e Complicated calculation for higher order modes

e It is not evident how to calculate the dynamics, i. e. the grilce of the feedback
on the modes

Because of these difficulties in the frequency domain, a n@daing approach in the
time domain based on moments is proposed in the next ch&itee the moments such
as the bunch variance are not directly measurable, the peojpzalculations of the short-
term spectrum in Section 3.5.2 will be important in the falilog. These calculations show
that the bunch center of gravity and variance can be deducedthe Fourier coefficients
of the short-term spectrum.
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4 Models of Coherent Oscillations

Many models of coherent oscillations rely on the frequenamdin. As shown in Sec-
tion 3.5, a common method is to measure the beam currentl igeaaone synchrotron
period and to analyse its frequency spectrum. The advamftes is that the control
problem is easy to formulate. A train afmatched bunches is periodic withtimes the
revolution frequencyfg and should therefore have only frequency components at-mult
ples ofhwg . Coherent oscillations lead to sidebands around thesameadtal harmonics
with offsets proportional to multiples of the synchrotreaduencywsyn. Thus, if side-
bands occur in the spectrum, they should be detected andedblnypa feedback system.
However, as was pointed out in Section 3.5.1, there is nct sine-to-one correspondence
of modes and specific sidebands, if the modes are defined agyderodulations that
repeat themselves after a fraction of the synchrotron gefiilo addition, the design of a
feedback system relies on models that describe the ingptibbehavior, that is the re-
sponse of the modes (outputs) with respect to modulatiotteedRF phase and amplitude
(inputs). Thus, the question remains how to model the depasids between the RF in-
puts of the gap voltage and the spectrum components. Thig isubject of this chapter.
The modeling is performed in the time domain. This has theathge that nonlinear RF
dynamics can be taken into account, whereas common modelnes in the frequency
domain are based on a linearization of the RF dynamics.

The chapter is organized as follows: Section 4.1 introd@celhort summary of ex-
isting RF feedback models for coherent modes and highliglisestion concerning the
controllability of higher order modes that arises from diation results. Section 4.2 gives
a definition of the control problem based on the patrticle tgfgnction. Section 4.3 re-
views basic definitions and theorems concerning the cdahibty of linear and nonlinear
systems. A new modeling scheme for coherent oscillationkev&loped in Section 4.4.
The scheme is based on a moment method and a truncation mé&tmtoment method
by itself is well-known. Moment approaches as used in theptér have been proposed
before for the simulation of beam dynamics in linear acedtes [18]. Recent papers use
moment methods to obtain fast and efficient beam dynamica f@riety of simulation
applications [3, 4, 29]. However, the use for coherent tamins in a nonlinear bucket
and the subsequent control-theoretic analysis are the nowgribution of this chapter.
The modeling scheme is used in Sections 4.5 and 4.6 to obtdiarzalyze models for the
linear and nonlinear bucket, respectively. Finally, a dosion is drawn in Section 4.7.

4.1 Introduction

Table 4.1 shows selected publications that present fe&divaxels for longitudinal
single-bunch oscillations in synchrotrons. These refegsrwill be compared with the
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Table 4.1: Existing models for coherent oscillation modes.

Modem 1 2 3 4 >4

Linear Bucket [13,107] [13,40,107] 2 ? ?

Nonlinear Bucket ? ? ? 2 ?
Nonlinear Bucket Linear Bucket

Figure 4.1: Tracking simulation with a phase modulation wiitvsy. The dashed lines
show the boundaries,; (6) andr;, (0). Left: nonlinear bucketRight: linear bucket.

results of this chapter in detail in Section 4.7.1. HoweWeis already apparent from
Table 4.1 that the models are restricted to the medes 1 andm = 2 and to the linear
bucket.

Simulations indicate however that higher order modes with- 2 cannot be excited
or damped in a linear bucket. This can be demonstrated bkitgasimulations, as has
been done for different distributions and bunch sizes ir.[94 this section, a similar
simulation is performed for a uniform density to enable aigtitforward interpretation of
the bunch boundary.

The first simulation is performed in a stationary nonlineacket. The initial bunch
shape is a circle with radiugf) = 1. A phase modulation of

T .

is used to excite a sextupole oscillation. The resultingchishape aftetr/ Tsyn = 1.12is
shown in the left diagram of Figure 4.1. The bunch shape carirbemscribed by

ra1(0) =14 0.1sin(0 — 7r) 4 0.1sin(30)

which can be interpreted as a combination of a dipole andipel¢ mode with; = r3 =
0.1.

The second simulation is performed in a stationary lineaxkbti The initial bunch
shape and the phase modulation are the same as before. Theuinth shape after
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t/Tsyn = 1.12is shown in the right diagram of Figure 4.1. The bunch shapebea
circumscribed by

in(6) = 14 0.1sin(6 — 3.45).

Thus, only a dipole oscillation is excited.

Similar results can be obtained for other higher order mad#dsm > 2. Thisis a
strong indication that higher order modes are not contstdlan a linear bucket. This
clearly shows that

the nonlinearity of the RF potential plays an essential nolthe control of the
modes and should be considered in the modeling process.

4.2 Characterisation of the Dynamics

4.2.1 Beam Dynamics as Partial Differential Equation

As described in Section 3.2, the longitudinal beam dynarmés be formulated by the
Liouville-Vlasov equation, a partial differential equati of the form

%-I—%x-l—%y:O, Xx=ai1(x,y), y=ax(x,y). (4.1)
The functionsz; anda, describe the nonlinear beam dynamics in the longitudinakph
plane(x, y). The phase plane coordinatesindy should be canonically conjugate for a
preservation of phase space in the correct coordinatdse tirhe segment of interest — for
instance the damping behavior of a feedback system durieg &ynchrotron periods —
is small compared to the complete acceleration cycle, atherdinates are however also
possible. In the following, the coordinates of table 3.5 Wwé applied, since this scales
the trajectories in a favorable way and eases the formulatidhe control problem.

In contrast to ordinary differential equations (ODES), tigérdifferential equations
(PDESs) contain derivatives with respect to more than onabke. In physical problems,
the variables usually include the time and several spatialtiver variables. The most
general form of a PDE is given by the following

Definition 4.1 (General partial differential equation, [15, 23[piven a regiorD = D; x
Dy C R x R"andx = (x1,...,x,), (t,x) € D, apartial differential equation of order
k in n + 1 independent variablesas the form

c (x, £, 20 x) () Of(hx) Ff(t, x) ) 0

ot ' oxg T oxn T okotokiag . oFixy,

and the highest derivative is of order= ko + k1 + ... + k.
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Figure 4.2: Characteristic and base characteristic for an initial @gitoblem withvt = 2.
Left: initial value f (¢t = 0,x) and an arbitrary pointy. Right: evolved solution at = #;
and characteristio(t,x() and base characteristi¢t,xg).

For the special case = 0, the PDE becomes an ODE. The solution of a PDE is a
class of functiong (¢, x) that are defined of® and are called alassical solutionif the
functions are smooth, i. e. belong to the set of functionsithat leask times continuously
differentiable [83].

A PDE can bdinear or nonlinear Roughly speaking, a PDE is linear if the sum of
two different solutions or a multiple of a solution does agsatisfy the PDE. If the time
t is not included as an independent variable, the PDEsteady-statequation, else it is
called arevolutionequation.

The most general form of a linear partial differential evmo equation of first order is
given by

ofit,x) | ia]‘(t/ x)af(t, x)

ot =1 8x]

= b(t,x)f(t x)

with arbitrary functions;; andb. If b = 0, the PDE ishomogeneousThus, Equation (4.1)
is a linear homogeneous PDE of first order in three independeiablest, x; = x, and
x2 = y. More specifically, it belongs to the classtainsportequations.

A unique solution of (4.1) can be obtained if the initial bhraensityf (t = 0, x, y) is
given. This leads to the followinmitial value problem

fe(t, %) + a(t, %) fx(t,x) =0
f(t=0,%) = folx) initial condition, fy(x) is given.

In these equationsf; is a short notation for the partial derivative ¢fwith respect
tot, a = (ar(t, x),...,a,(t, x)) is a general nonlinear vector function arfig =
(fx,---.fx,) T is the gradient of with respect to.

For this special problem, there exists a constructive nietbdind the solution: the
method of characteristicd=irst, thecharacteristic

w(t, %) = f(t, x(t, x0)) (4.3)

is defined as the curve that is obtained if the initial vat@) = x; is chosen and the
values off are recorded along the trajectoryt) that starts fromxy. The trajectory is

(4.2)
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referred to as théase characteristic The definitions are illustrated in Figure 4.2. The
rate of change ol is

dw(t,x dx
WU _ 1t x(t00)) + S fltx(to)).
Comparing this with the initial value problem (4.2), the w®
dx o T
T a(tx) (4.4)

leads directly to

dw(t,x)
dt
Equation (4.4) is a system af ODESs that are called theharacteristic equationslf it

is possible to obtain a trajectony(t,xy) of these ODEs depending on an initial value
x(t = 0) = xg and this trajectory can be finally solved for the initial valu

=0, = w(txy) =const=w(0,x9) = f(0,x9) = fo(xg). (4.5)

xo = xo(t,x),
the solution of the initial value problem (4.2) can be writigith (4.3) and (4.5) as
f(t, x) =w(txg) = folxo(tx)). (4.6)

For every smooth functioify, this solution is unique. Equation (4.6) shows that the des-
ignationtransport equations indeed appropriate: the value fifis conserved and trans-
ported along the base characteriatic

The method of characteristics will now be applied to the lrdinal beam dynamics.
For a particle with a small oscillation amplitude, the Idnginal motion is given by (2.43)
and the characteristic equations are thus

dx d |x —WsynY X0

_ = _ , xo — .

dt dt |y WsynX Yo
The solution of this initial value problem is

x(bxg) = x(txo)| _ [x0cos(wsynt) — yo sin(wsynt)
X0 y(t,xo) xg sin(wsynt) + Yo cos(wWsynt)

and solving forx, yields

_ | xcos(wsynt) + ysin(wsynt)
%o(tx) = l—x sin(wsynt) + Y cos(wsynt) (4.7)

The final solution of the PDE is

f(t,x,y) = fo (xcos(wsynt) + ysin(wsynt) , — x sin(wsynt) + Y cos(wsynt)) -
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It can be verified easily that this is indeed a solution of tiigal value problem by em-
ploying f in the PDE (4.1).

Expectedly, the initial bunch distributiofy rotates in the phase plane with the fre-
quencywsyn and the bunch shape is conserved. Because the qua%ﬁi{)y% =x%+ yz
is constant, cf. (4.7), every smooth initial distributidrat can be written as

folx,y) = fo(x* +97)

leads to a time-independent solutipnas is also discussed in Section 3.3.4.

In case of larger synchrotron amplitudes, the nonlinear ® PE4) cannot be solved
analytically and this applies in particular to the solutiminthe PDE. For conservative
Hamiltonian dynamics however, it is known that the HamiléonH (x, y) is a constant
of motion along the trajectoriesx(t),y(¢)). Thus, it can be concluded that an initial
distribution of the form

fo(x,y) = fo (H(x, y))

also leads to a time-independent solutit(t, x, v) = fo(xo,y0) = fo(H(x0,40)) =

fo(H(x, y)).

4.2.2 Definition of Input Variables

So far, no input variables have been discussed. The beanmilygnaan be extended in

such a way that an input vector= [u, ... ,um]T is included. This does only change the

characteristic equations, but not the structure of the PIDE.dynamics with dependency

on the input variables can be written as
of [ of . Af

=+t =X+ ==y

ot ox ay X = ﬂ1(x,y,u), Yy = az(x,y,u).

Two very common input variables of the longitudinal dynasméce phase and amplitude
modulations of the RF gap voltage. They can be included irakops (2.33a) and (2.33b).
Choosingkgr = 1, the amplitude modulatiotl; (t) = Uy g[1 + ue(t)], the phase mod-

ulationuy, = —¢¢ and the coordinate = ¢, — @r — ¢5 yields with (2.34) the nonlinear

dynamics

#(t) = Qhyrwi U
- 27mBrWR

[T+ ue(t)] sin(gr + x(t) — up(t)) — singr] .

With the synchrotron frequenaysy, from (2.38) andy = —x/wsyn, the longitudinal
dynamics finally can be written as

X(t) = a1(y) = —wsyny(t), (4.8a)

o [[1 -+ e (1) sinlgr + (1) — (1) —sin g
(4.8b)

y(t) = a2(x,ug,u(,;) =
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4.2.3 Definition of the Control Problem

In the framework of the Vlasov equation, it is simple to stéie control objective. Mis-
matches of the bunch or coherent oscillations should be ddrapray fort — oco. For-
mally, this can be expressed as

tlg]goft (£, x,y, ue(t), up(t)) = 0.

In fact, this can already be achieved for;, 1,) = 0 by Landau damping. However, this
will increase the longitudinal emittance. A criterion fbetfeedback performance should
thus be taken into account and a possible choice is the acepied by the bunch

]Control(t) = CZ,O(t) CO,Z(t) - Cl,l (t)zl

whereC, o andCyp, denote the variances ain ; is the covariance in the phase plane.
The increase of. should be as small as possible.

Although the formulation of the control objective is straifiprward, the analysis of the
dynamics or the design of a feedback controller are much meneanding, since it is
impossible to find an exact analytical solution to the nadincontrol problem. Existing
methods rely on a linearization of the longitudinal beamatyits so that every particle
has the same synchrotron frequency, but this is a coarsexapation. In Section 4.4,
a new modeling scheme based on moments will be proposeddmirate model non-
linearities. Prior to that, controllability theorems faméar and nonlinear systems will be
reviewed.

4.3 Controllability

In this section, theorems concerning the controllabilitycontrol systems are reviewed
that will be used in the subsequent sections.

4.3.1 Linear Systems

A linear time-invariant system is given by

ZAB : X(t) AX(t) + Bu(t)r X(t - 0) = X0,
’ y(t) = Cx(t),

(4.9)

wherex € R" is then-dimensional state vectos, € IR™ is the input vector, and €
R" x R" andB € IR" x R™ are constant real matrices. The matiixe R" x R"
is the output matrix ang is ther-dimensional output vector with quantities that can be
measured. The time is denoted by R andx is the initial condition at = 0.

The concept otontrollability is concerned with the question whether the system can
be influenced in such a way that an arbitrary initial statés transferred to another state
x71 in afinal timet
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Definition 4.2 (Controllability, [79], p.88) The linear system (4.9) is said to be com-
pletely (state) controllable if and only if for everyy € R", x; € R" a piecewise
continuous function*(t), t € [0,t1] and0 < t; < oo can be found such that for the
initial conditionx(0) = x and the inputx = u*(t), the solutionx(¢) of (4.9) satisfies
x(tl) = X1.

The following theorems can be used to check for controligbil

Theorem 4.1(Kalman, [79], p.88) A necessary and sufficient condition for sys{drd)
to be completely controllable is that the rank of the Kalmanteollability matrix

C(A,B)=[B AB ... A" !B] e R"xR"™ (4.10)
is equal ton.

Hautus’ criterion is useful to check individual eigenvalder their controllability and
also in case the matrices andB are parameter-dependent.

Theorem 4.2(Hautus, [84], p.72) The linear systen.9) is completely controllable if
and only if the condition

rank [\,I—A B] =n

is fulfilled for all eigenvalues\; (i = 1,2,...,n) of A, wherel denotes the unity matrix
with the appropriate dimensiom x 7.

If the system is not completely controllable, it is possitoleonsider a subspace ([84],
p.81)

S={xcR : x=Hx, xcR"} (4.11)

of the state space with a matrt of sizer x n andr < n. A necessary and sufficient
condition for complete controllability i& is

rank [HC] = rank [HB HAB ... HA" !B| =r

4.3.2 Nonlinear Systems

A general class of nonlinear systems is given by

x(t) = f(x(t), u(t)), x(t =0) = xp,
HO = [ uw), =0 =x w12)

with the vector fieldsf andh, the inputu € R™, timet € 7 C R and the state vector
x € U C R" which lies in an open subset of the state space. The initradition att = 0
is denoted by and the output vector i € R".

In contrast to linear systems, properties of nonlinearegystsuch as stability and con-
trollability are usually not global, but only local. It isuk useful to formulate the new
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Definition 4.3 ([79], p.96) System (4.12) is said to becally controllableat the equilib-
rium point(xe, ue) if for all reale > 0 there exists a real > 0 such that for every pair of
vectorsxg € R"” andx; € IR" close enough to the equilibrium point, namely satisfying
l|xo — xe|| < 17 and||x; — xe|| < 7, there exists a piecewise continuous contro(t)
ont € [0; ¢] suchthat|u*(t)|| < eVt € [0; €] and the integral curve of (4.12) at time
generated by * from x; at time 0, equals;.

In general, the test for local controllability can be a coaxpiask. Usually, it is useful
to calculate the tangent linear system around the equifibfive, )

0 0
x=Ax+Bu, A= %(xe, ue), B= %(xe, Ue) (4.13)

and check for first-order controllability first:

Definition 4.4 ([79], p.96) System (4.12) is said to bist-order controllableat the
equilibrium point(xe, ue) if the rank ofC, defined by (4.10) for the tangent linear sys-
tem (4.13), is equal ta.

If the tangent linear system is controllable, system (4id #iyst-order controllable and
the following theorem holds.

Theorem 4.3([79], p.97) If system(4.12)is first-order controllable at the equilibrium
point (xe, ue), it is locally controllable at(x., ue).

Remarkd.1 The inverse is not always true: a nonlinear system that alpcontrollable
at an equilibrium does not have to be first-order controdiabl

4.4 Modeling Scheme for Single-Bunch Oscillations

This section introduces a new modeling scheme that takesactount the nonlinearity
of the beam dynamics. The scheme is based on moments anddeaddels that can be
used for controller analysis or design. It requires thattbam dynamics are given as or
can be approximated by a polynomial expression [76].

The modeling scheme is valid for a particle bunch witlparticles at position&xy,yy )
in the phase plane, but also for a bunch dengity, v, t) with the properties

/ / flx,yt)dxdy =1, % =0, (4.14)

—00 — 00

I. e. it is assumed that the density is normalized and the #ddaimiltonian which means
that the local phase space density is conserved.
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4.4.1 Moments

A particle bunch can be regarded as a realization of a randooeps; assuming an initial
probability density functiorf(x, y, t = 0), the initial particle distribution at = 0 is
obtained by choosing randomly positions(xy,y) in phase space using the probability
densityf. If the number of particledV is large, the number of particlésN in a small area
AA around a poinfx,yo) will be approximatelyAN ~ f(xq, yo)AA, i. e. the measured
particle densityAN / A A will tend to the probability density. A thorough introduction to
random processes and probabilities can be found for exam{@06] and the subsequent
line of argument partly follows this reference.

A density function can be characterized by its moments. Thamvalues of a two-
dimensional probability density are given by

[c o) [c ol o)

Biot) = [ [xfxyndxdy,  Byu(t)= [ [yflxy1drdy

—00 —O0 —00 —O0

(4.15)

and will be denoted asasic moments the following. General higher order moments
can be defined as

Rym(t) := / / x"y™ f(x,y,t) dx dy (4.16)

—00 —O0

and will be denoted amaw momentsSpecial cases are
Roo(t) =1, Ryg(t) =Byo(t), Ro1(t) = Boa(t).
It is sometimes favorable to consider insteadadbetral moments

Com(t) = [ [ x=Bro®)" y—Boa ()" f(x,y, ) dxdy.  (417)

—00 —00

In particular,

Coo(t) =1, Cio(t) =Copq(t) =0

holds. Fortunately, it is possible to express every centahent as a combination of raw
moments and vice versa. Using the general first binomial eutentral moment can be
rewritten as

Coum = 77 ij[nzj (Z) (T) Wy =Bl [~Boa]" " f(x,y,t) dx dy

(T) Ry [~Bio)" ¥ [~Boa]™ . (4.18)
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Also, rewriting (4.16) as

Rum = / / [[x — B1,o] + B1,0]" [y — Boa] + Boa]™ f(x, v, t) dx dy

—00 —O&0

provides a simple way to calculate in a very similar way

nm_22<)<)ck13”k3m g (4.19)

01=0

For example, the raw momeRg  can be written as

R30 = Co0B3 o +3C10BT +3Ca0B10 + Ca0 = Cs0 + 3B1,0Ca0 + B7 .

For the Gaussian and uniform densities (3.25) and (3.33)ip$eidal bunches, the basic
momentsB; o and By ; and the central moments; 5, C; 1, andCy, are sufficient to
calculate all higher order moments. This is also apparem ffable C.1 (p.174). Thus, if
the class of densities (3.25) and (3.33) is considered, tmaents are uniquely determined
by the densityf(x, y) and the density is uniquely determined by the moments.

In general, the uniqueness between moments and the pridpalaihsity function is
only valid under certain assumptions. Uniqueness theofenmme- and two-dimensional
densities are stated in [106] and [46]. The proof of the uarggss theorem involves the
use of thgoint characteristic function

q)(wll CUZ

8\8

/ F(x, ) ellor+en] gy gy, (4.20)

wherews, wy € R. This function is a two-dimensional Fourier transform fof If f
depends on the timk the characteristic function will also be time-dependent.

The exponential function can be expanded into a series atiti@ (w1, wy) = (0,0)
and this yields

0 0
i

wl/wz //Z
“o0 —c0 P=0

p

Z [1 y"f x, y) dx dy.
q=0

Exchanging the summation and integration, this leads withg) to

2 e [iwr P Jiw
D (wy, wy) ZZ 1 [qu] Ry (4.21)

The calculation is however only valid if all momemngs, ,,, are finite and the series con-
verges near the origin. Under these assumptions, the jbiatacteristic function is
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uniquely determined by the moments. Using the two-dimeraiowverse Fourier trans-
form, (4.20) can be solved for the density

fx z%f

Thus, under the stated conditions, the densis/uniquely determined by its characteristic
function or by its moments.

—i[wyx+way]

D(wq, wy) e dwy dws.

8\8

Theorem 4.4(Uniqueness theorem [46], [L06]Assume the probability density function
f(x, y) is piecewise continuous and has nonzero values only in & faitt of the plane
(x, y) € R?. Then moment®, , of all orders exist and are finite. If, in addition,
the series(4.21) converges near the origin, the moment sequefRg,, } is uniquely
determined by (x, y) and f is uniquely determined by the moment sequence.

Remark4.2 Because of (4.19), this also holds for a moment sequence rcsingpthe
basic and the central moments.

In Section 4.2.3, the aim of the control problem was statdobtim; ., df /ot = 0,
i.e. a constant densitf(x, y, t) = fo(x, y) should be obtained fof — oo. With
Theorem 4.4, the control problem can be reformulated as

lim L{"’m(t)

. 4.22
e T (4-22)

if it can be guaranteed that the necessary assumptionsiresadal during the control and
evolution of the bunch. Again, this is equivalent to demagdhat the basic and central
moments should be constant. This argument justifies the fus@ments instead of to
obtain models for a controller synthesis.

Because in reality or in a macro-particle tracking simolatithe bunch consists of
particles with discrete positior{sy, yx), k = 1,...,N, itis also useful to define a discrete
version of the moments. For a largé they are reasonable estimates of the continuous
moments. The discrete moments read

Rn,m = — xk yk , Bl,O = — Xics BO,l = — yk
N k=1 N k=1 N k=1

. 1 N

Cum = = Y [xk — B1o]" [k — Boa]™
N k=1

and the conversions (4.18) and (4.19) remain valid.

4.4.2 Basic Modeling Principle

The modeling approach will be discussed exemplarily fortiasic momens; ( in the
discrete definition. Nevertheless, a modeling with the iooioius moment definitions
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is also possible and can be expected to be similar to existiognent approaches [3—
5, 29, 64, 103].
In general, the moment will be a function of time and its datnxe is given by

N
Bo(t) = %kz (). (4.23)
=1

If the particle dynamicg; can be written as a polynomial function
X = a10Xx + ap1Yx + anXxyx + ..., (4.24)
Equation (4.23) can be rewritten as
Bio = a10B1o + a01Boq + a11Ri;1 + ... (4.25)

In this equation, the raw momemR; ; appears. This is disadvantageous, since Sec-
tion 3.5.2 shows that the quantities that can be measuredter linked tacentral mo-
mentssuch asC, o. To avoid raw moments, they simply can be replaced by usiripj4
and (4.25) can finally be written as

B1o = a10B1o+ ap1Bo1 +a11 (C11+ B1gBo1) +. ..
= f(B1,0, Bo1, C20, C11,---),

which is a function of basic and central moments. In a simi@nner, the derivatives
of the central moments can be calculated. In most casesrelsented calculation of the
moment dynamics is tedious and has to be done using a congbgédra system.

4.4.3 Moments and Densities

Before proceeding with the derivation of equations thatdbs the dynamics of the cen-

tral moments of the beam, this section deals with the quesitov the defined moments

are related to the single-bunch oscillation moagesf Chapter 3. To answer this question,
four different density functions are analyzed and their ranta are calculated. The results
will be used in subsequent sections for a model truncation.

Ellipsoidal Bunches In Section 3.5.3, ellipsoidal bunches with uniform and Gzars
densities were defined. These bunch models are sufficientyifddpole and quadrupole
modes {1 = 1, 2) are studied. The plots (a) and (b) of Figure 4.3 show exasriplethe
uniform density (3.25) and the Gaussian density (3.33).t@se density functions, it is
possible to calculate the basic and central moments as defin(d.15) and (4.17). The
results of the calculations for moments up to the orde#t 1, = 14 were obtained with
the assistance of MPHEMATICA and are summarized in Table C.1 of Appendix C.2.1.
These results show that all momenI,g;x,ny with odd orderny + n, are zero. Further-
more, all even moments with, + ny > 4can be expressed as nonlinear functions of the
variances’; o andC; o and the coverianc€ ;. This is particularly interesting in the fol-
lowing, because it allows order reduction of the models Whvdl be used to describe the
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flx,y)

Figure 4.3: Density distribution functions with ellipsoidal (top) anibde (bottom) con-
tour lines.(a): uniform density (3.25) withfg = 1, & = —45°, Ry, = 1.5, Rp, = 1, and
xp = yo = 0. (b): Gaussian density (3.33) with) = 1, & = 50°, oy, = 1, 0p, = .5,
andxg = yo = 0. (c): uniform density (3.16) withfp = 1, r3 = .2, Ry = 1.5, and
030 = 0. (d): Gaussian density (3.18) witly = 1,09 = 1,74 = .2, andfy o = 0.

dynamics of the moments. This order reduction goes withoyegproximation, because
the higher order moments can be replaced by second ordes.tétowever, this is only

valid under the condition that the bunch is ellipsoidal. oge initial mismatches of the
bunch, this condition may be violated due to filamentation.

Taking into account the basic mometsy andB 1, there are five degrees of freedom
to uniquely determine the shape of the considered densittifins. This corresponds to
the parametersy, 1o, Riy, Ro,, and® for the uniform density and to the parametegs
Y0, 01, 02y, and® for the Gaussian density. A comparison of the columns ofd &bl
shows that equal variances are obtained for both densiwtins if R, = 207, and
Ry, = 207, is chosen. In addition, the nonlinear functions for the Biglnoments are
identical for both densities except for a constant factasr €qual central moments of
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orderny, + n, = 2, the moments relate as

1, nx+n,=2

Chyn 3 ny+n, =4
Xrs y/gauss — 27 X y

Cnx,ny,uniform 3, Ny +ny = 6

%, n_x + ny == 8

to each other. Note that for Gaussian densities, the higitier asnoments become rela-
tively more important compared to uniform densities.

For very small bunch sizes, the considered densities areheatifxp = yo = O,
Co2 = C0, andCy ; = 0. Thus, the bunch siz€, o remains as only degree of freedom
and it determines small matched bunches with these denisiker large bunches, the
considered density functions can only be approximatioesabse large matched bunches
are not ellipsoidal. However, simulation results show that following approximation
seems to hold in the stationary bucket [56, 60]:

2,/Cop ~ Aw (A(p+ = 2@) = \/2 — 2cos (2@), (4.26)

whereAw, (A ) is function (2.54) that describes the height of a trajecteith max-
imum phase deviatioh¢ in the nonlinear stationary bucket, cf. also the right plbt o
Figure 2.12. Equation (4.26) is equivalent to the ratio

CO,Z "y 1 —cos (2 CZ,O)
C20 2Cy0 '

For small bunches, this implieSy, ~ C; o, whereas for larger bunch&€$, < Cpp.
This leads to the following conclusion [56, 60]:

The two-sigma lengt,/C; o and heigh2,/Cp > may be interpreted as the eft
fective half axes of the bunch. The two-sigma lenifiC, o determines

e the ratio between the bunch variances that is necessarfdatensity to be
approximately matched and

e the effective synchrotron frequency as described in Se&ib.5.

For both densities, a constant of motion is given by

2 p2
Rlx R2x

C20Co2 — C%/l = { 216 ) ~ bunch area and longitudinal emittance

le UZx
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Bunches with Single-Bunch Modes The previous results are useful to construct models
that describe dipole and quadrupole modes. For the analf/igher order modes, the
density functions (3.16) and (3.18) (p.58 and p.58) can kento represent higher mode
numbersm. The plots (c) and (d) of Figure 4.3 show a sextupole mode={ 3) and

an octupole moderf = 4) with a uniform and a Gaussian density, respectively. Both
examples are pure modes, but a combination of different sixlalso possible. The
calculation of the moments (4.15) and (4.17) is computatigmmuch more challenging in
this case and it is advantageous to perform the integratipolar coordinates = r cos 6
andy = rsin#:

27T oo 27T oo

BL()://rcos@f(r,@,t)rdrd@, Boll://rsin(?f(r,(),t)rdrd(),
00 0 0

27T

Cuu, = [ [ [reose—By]™ [rsing — Bo,]™ £(r,6,¢) rdrde,
00

The basic and central moments are lengthy functions of th@éencoefficients,,, m €
{1, 2, 3, 4} and only their first order approximations are given in Apper@l2.2. Ta-
ble C.2 (p.176) summarizes the moments for the uniform teasid Table C.3 (p.177)
shows the moments of the Gaussian density. Again, the fumadtirelationship of the
moments is the same for both densities except for a constetairf

The interpretation of these tables shall be explained \kghhtelp of an example. As-
sume a Gaussian density with a made= 2. The moments for this configuration are
summarized in the rowsy,, ,, andACy,,, (r2) of Table C.3. The rowE,, », presents
the stationary or equilibrium part of the moments &, »,(r2) is the deviation due to
the modemn = 2 with radiusr, > 0 and orientatiorfy. The orientation can be used to
introduce a time dependency, for example in a linear bugket wsynt can be chosen.
Itis important to note that the givenC,, ,, are only first order approximations and thus
valid for sufficiently small-,, only. For the moment; o, the results reveal that

CZ,O ~ EZ,O — ZEZ,O sin(290)r2 = EZ,O [1 - 21’2 sin(2wsynt)} .

This result is plausible, because it states that, in a lihaeket, the mode: = 2 will lead
to an oscillation of the bunch variance with a frequencwfy, and a relative amplitude
2ry. For the momen€s g, the result is

—3E37 ﬁrl sin(fy)  for modem =1

Czo ~
—RE37\/5r3sin(36p) for modem = 3

and this shows that, besides the expected mode 3, C3 o also responds to the mode
m = 1. Thus, moden = 1 leads to oscillations not only in the basic moments, but also
in the moments of order, + ny =3 (and5, 7, ...). A further example is available from
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Table C.1, where the moments for an ellipsoidal bunch areemted. For a Gaussian
density, some selected odd moments are

Cyo = 3c§l0, Ceo = 15(:5”,0

and this shows that a bunch length oscillation= 2 will be not only visible in moment
C20, but also in higher order even moments.
The following conclusions can be made:

In general, there is no one-to-one correspondence betweerents and modes:

e the oscillation of a specific mode is first visible in the moments of order

o the mode affects also higher order moments with odd (engr) n,, > m, if
m is odd (even). These higher order moments can be expressedci®ons
of the bunch sizé; o and the moments of orde + n, = m.

e A moment of ordem = n, + n, shows oscillations if,, 7 0.

e A moment of ordem = ny +n, > 2 with ry, # 0 shows oscillations for
more than one mode.

e An exception isn = 1 for the uniform density; in first order approximation,
this mode is only coupled with the basic moments.

For a given moden with amplituder,,

o the moments of order, + n, = m depend onnty and

e the moments of ordem: and corresponding higher order moments oscillate
with the frequencynwsyn in a linear bucket.

The conclusions show that the following statements arevatgrit:

stationary momentg: B,,, ,, = 0 and 5 Cy, n, = 0 for all ny, n, > 0

0

matched bunch with,, = 0

This is in agreement with (4.22), the reformulation of thetcol problem: ifr,, = 0, all
moments are stationary and the density has reached arbegunii
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To study a specific mode, for example= 1, any moment may be chosen that oscil-
lates for this mode. However, it seems reasonable to chbesadment of lowest order:

m=1 = BjgandBj,
m=2 = CZ,O andCLl andCOIZ

m :> leo oo Co,m

Remark4.3. The results in Tables C.2 and C.3 were derived for circularchushapes
with E; o = Ep, but are expressed in such a way that they are also valid ij-éoes is
multiplied by a constant anfl o # Ep,. This is useful for larger bunches whekg »
may differ substantially front; o and an ellipsoidal bunch is a better approximation for
the equilibrium than a circular bunch. It is thus possibleiseEj, of (4.50) to further
improve the results. The following derivations will retumthis point later on.

As already stated, the modes may also be combined, but caite ba taken, because in
general there is no one-to-one correspondence. Sectichwiléreturn to this problem.

Filamentation The density functions considered in this section have soegeegs of

freedom, but will not be able to reproduce filamentation &f lunch and will thus lead
to a neglect of Landau damping of the coherent bunch osoilist However, for realistic
small bunch shape mismatches, there is reason to believiaéiaunch shape will remain
similar to a matched shape and the presented results ard appfoximations.

4.5 Linear Bucket: the Small Bunch Assumption

In this section, a model is derived for the dynamics of busdhea linear bucket or for
very small bunches in a nonlinear bucket near their equilibr{74]. It has to be noted
that such small bunches are not realistic in real experisadtibwever, there are reasons
why the analysis is nevertheless useful:

e Comparison with existing models that rely on a linearizatbthe nonlinear single-
particle dynamics.

e Check of consistency of the nonlinear calculations of $aci.6. These should
simplify to the results of this section for small bunch sizes

e Easier stability analysis.

4.5.1 Beam and Moment Dynamics

For small bunches, the particles are always in the vicirfityre equilibrium of the bucket
and Equation (4.8b) of the longitudinal dynamics can bedlilzed. A simple linear ap-
proximation will cancel the amplitude modulation if pg = 0, thus at least a bilinear
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approximation is necessary. A general Taylor series expaws this equation around the
equilibrium point(x, uy, ue) = (0,0,0) = 0is

o 0 11 ,0% 2 0%y

7= 900+ ¥ 0) +ueg 0+ ng -0 + 5[ 520 + 2T E o)+

2. 2. 2. 2.

2 97y 7y 7y 9y
+ 12 22 (0) + 2xu, (0) + 2xu, T (0) + 2utey T (o)} +..
Taking into account only linear and bilinear terms, the agpnation of the longitudinal
dynamics is

X = —WsynY, (4.27a)
Y = wsyn[1 + u1]x + wsynti (4.27b)

with the inputs
U1 = ue + tan Qruy, Uy = tan grue — Uy — Uellg. (4.27¢)

The approximation sign will be omitted in the following, btigoes without saying that
the obtained models will only be approximative and are vldidsmall bunch sizes only.
With the dynamics (4.27), the time derivative of the basiemeats is

Byo(t) = —wsynBoa (1), (4.28a)
Bo,1(t) = wsyn[1 4 u1]B1o(t) + Wsyn Ua. (4.28b)

Equation (4.28a) is equivalent to Equation (4.25) wigh = —wsyn and all other coeffi-
cientsay,, = 0. For the central moments of order= n, + n,

Cnlo = —n wSyn Cn_l,l (4.280)
Chick(t) = =[n — k] weyn Cpk—1je41 + kwsyn [14u1] Cyopr1p-1  (4.28d)
CO,n(t) = 1 Wsyn [1 + Ml] Cl,n—l (4.28e)

holds with integers: € [2, oo|, k € [1, n — 1]. This reveals three important facts:

e The rate of change of a moment of order= n, + n, only depends on mo-
ments of the same order, i. e. there is no dynamical coupktgden different
moment orders except for the input variable

e The inputsu, andu, act on both the basic and the central moments. On
for the stationary caser = 0, the influence ou(p on the central moments
vanishes.

y

e |t is interesting to note that the model (4.28) can be derwvébout any as-
sumption about the particle density of the bunch.
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Without feedback, the moment dynamics are decoupled. Algsonoments of order
can be taken as a measure for the made n as indicated by the results of Appendix C.2.
Thus, the open loop dynamics of the modes are also decoufieslis an intuitive result,
because — due to the bilinearization — the dynamics (4.Z/ljregar inx in the open-loop
case and there will be no synchrotron frequency spread ahdmdau damping.

With feedback, the dynamics are coupled by the inputs. Ifexi§ic modem has to
be damped, it seems reasonable to consider only the monfestdenn = m to analyze
the stability of the feedback with respect to this mode. Hmwethis does not guarantee
the stability or damping of the moments of different In the following, a model for
moments up to orden = 4 will be analyzed. This will show that the moments with
n = 3 andn = 4 are not first-order controllable. As these moments are [atee to the
sextupole and octupole modes= 3 andm = 4, this indicates that these modes are not
controllable with respect to the inputs andu,. The same seems to apply for> 4 and
this is supported by particle tracking simulations.

In a linear bucket or in case of small bunches, it is therefeesonable to limit
the system (4.28) to the moments of order= 1 andn = 2 and thus to the dipole
and quadrupole modes = 1 andm = 2.

4.5.2 Model Properties

The equilibrium of system (4.28) is obtained fior = u, = 0 andBy, 4, = Cu,n, = 0
and reads

Bip=Bp1 =0
and

_ _ ) T E, -

C”l,() Eyo .

c. - {0 for oddk

(n=k)k | = [Fn—kk| = 1-3-...- (k-1)
: : (1) (n=3) .. (n—ksT) En for evenk

L CO,I’Z a N EO,I’Z |
! En |

with positive real numbers

— (0 foroddn,
Ey
> (0 forevenn.

This is in agreement with the valués,, ,, of Tables C.2 and C.3. The equilibrium is
not unique, since for each moment order there is a degreeefidmE,,. By choosing a
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specific density function, alt,, with n > 2 can be expressed as functions of the bunch
sizeE,, which is then the only degree of freedom
In particular, the equilibrium of the first four central momg are

Eso] [ Ea]
Exp E> Es,o 8 Esn 0
Eip| =1]0], 2 =7, Exp| = |1E4] - (4.29)
E, E E12 0 E, °0
0,2 2 E03 0 1,3
’ | Eo,4 | Eyq |

System (4.28) can formulate as the nonlinear state-spadefho
XIB: X =Argx+ Brg(x)u = Argx + [le + Bl] u1 + Bous. (4.30)

The matrixN; results from the fact that the input is multiplied with states such as
By or C;,_1 in Equations (4.28). System (4.30) is a nonlinear contfiii@& sys-
tem. In addition, some authors assign this type of systenméostibclass of bilinear
systems [99, 120, 124], whereas other authors are moréctiestin their definition of
bilinear systems. Bilinear systems are a first step in a gdimation of linear systems
towards nonlinear systems and are often good approxingfarproblems in engineer-
ing and physics. Significant theoretical progress has besdemecently in the analysis
and design of such systems. Introductions to the theoryliolair and affine control sys-
tems can be found in the above mentioned references. Ofesaalsd general methods
for nonlinear systems are useful in the following. Matheaoally oriented introductions
to nonlinear systems can be found in [49, 55, 101, 119, 124m&@ehensive discus-
sions of analysis and design methods for nonlinear systeithsawiew to engineering
applications are given in [6, 55, 123]. In [66], a computasibapproach is chosen with
MATHEMATICA -based software algorithms. Newer methods such as flabasssd con-
trol are described in [79].
The state vectaor is defined as

T
x=1[x1 X X3 X4 X5 ... X ... Xxp]
T
= [Bl,O BO,l CZ,O Cl,l CO,Z RN Cnx,ny RN CO/”model} , (4.31)
where
ny +n
Cnxlny = xk, k == X 2 y [1 + nx + ny:| + ny.

The equilibrium values are denoted By, ,,, cf. (4.29), and the deviations from this
equilibrium are

T

Ax =X — Xe = |:. .o CnJC/ny - Enxlny :| .

The state vectar is defined to include the basic moments and the central m@nogniod
a predefined finite order,, 41 < oo. Higher order moments are discarded to obtain a

DThe index LB refers tdinear bucketmodel.
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finite dimensional system and vector space RE. This is a truncation of the infinite
dimensional system (4.28). However, this is no further egjpnation of the moment
dynamics, since there is no coupling between the momentndizsa

The dimensiorl. of the system is

Nmodel

[ — Z [n 4 1] _ ”model[3+ nmodel]
n=1

2

In the following, systenk;p of (4.30) withn,,,4e1 = 4 is analyzed. The dimension of
this system id. = 14, it reads

A 0 0 0 b1 b

. _ |0 Ay 0 O b, 0 | [y

X =Argx+ Big(x)u = 0 0 A; 0 X+ bs 0 luz (4.32)
0 0 0 Ay by 0

and the matriced\; g and B g are presented in detail in Appendix C.3. The null vec-
tors and matrice® in (4.32) and in the following are assumed to have the apptspr
dimensions to complete their matrices and vectors.

Since the system matriX; g has a block-diagonal shape, its eigenvalues are the eigen-
valuesA of the matriceA;:

Ap{A1} = {tiwsyn}, Azas{Ar} = {0; ti2weyn},
A6—9 {A3} = {:l:iwsyn} :|:13wsyn} , Mo—14 {A4} = {0} iizwsyn} ii4wsyn}

The eigenvalues-imwsyn correspond to the frequencies of the coherent medagain,
there is no one-to-one correspondence between moments@tesnthe eigenvalues are
repeated in higher order moments. For instance, the eig@s/icwsyn, appear in the
matrix A, of the basic moments and the matAx of the central moments of order= 3.
Without feedback, the dynamics defined by the four matrikgsk = 1, ... 4 are fully
decoupled.

The equilibrium of system (4.32) for, = u, = 0is

NN
Xe,1 0 '
iy Ex 0 ;

Xe= |22, Xe1=|n|, Xe2= |0, Xe3 = , Xea = |3E4| . (4.33)
Xe,3 0 E 0 0
Xe4 ’ 0 E4

These moments describe a matched bunch for a linear bucket.bdsic moments are
zero, i. e. the bunch is centered, and the varianggs— Cp, = E; are identical and the
covariance i ; = 0. Possible distributions that satisfy these conditionssacentered
circle with a uniform density or a Gaussian distributionhwaircles as contour lines. If
a specific density distribution is chosdty, can be expressed as a functionfef This is
shown in detail in Appendix C.2.1. For example, a GaussiasitieyieldsE, = 3E§ and
the parameteE, fully determines the size and the equilibrium of the bunch.
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The linearization of system (4.32) at the paint x. with Ax = x — x. simply reads
YALB © Ax = A gAx + B(xe)u.
B

However, this linear model with dimensidn = 14 will not be used further, since the
dimension can be reduced due to two invariants of motionatepresent in the nonlinear
system (4.32):
Iz(t) = CZ,OCO,Z — C%,l = const. (4.343.)
14(t) = C4/0C0,4 - 4C3,1C1,3 + 3C%/2 = const. (4.34Db)
The two eigenvalues in the origin of the complex plane= Ay = 0 of matricesA,
and A4 are due to the invariants andly. The derivation ofl, and I, with respect to

the time and the insertion of the moment dynamics of syste&Rj4serifies that these are
constants. For example,

I(t) = Co0Cop + C20Co2 —2C11Cr1
= (—2C11) Co2 + Co0 (2C1 1 +2Cq qup) —2C1 1 (Co0 — Cop + Coouq)
= 0.

The invariants define sub-manifolds of the state space.amnple, for a given valué,
the dynamics ok g () are bounded to the sub-manifold

C2,0Co2 — Ci 1 = x3(t)x5(t) — x4(1) = L.
For given values of, andly, only those equilibrium points of the set can be reached

that belong to the sub-manifold. At the equilibrium paipg = xe, cf. (4.33),

4
b =E5=const, = gEi = const.

holds. Since onl\{E, > 0 andE4 > 0 represent physical meaningful bunches, this can be

rewritten as
3
EZ =V 121 E4 = 1141

and this defines a unique equilibrium.
Each subsystem with moments of an even ordeas an invariant, for example

I = C6,0C0,6 — 6C5/1 C1,5 + 15C4,2C2,4 — 10C§/3 (4.35)

is the invariant for the order = 6.
There are several possibilities to use the invariants fedaction of the dimensioh,
one choice is to rewrite (4.34) as

I + C%,l I4 +4C31C13 — 3C§,2
02=—7—", Coa = :
Coo Ca0

(4.36)
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This is always possible, since the mome@tsy andC4 o are strictly positive for posi-
tive and nonzero real distribution§x, v). A linearization of (4.36) around the equilib-
rium (4.33) leads ta\Cpp =~ —ACyp andACy 4 ~ —ACy 9 — 2ACy .

With the relations (4.36), the nonlinear system (4.32) camdaluced td. = 12 state
variables. The new state vector will be denotedupyg, this vector results fromx by
discarding the states; = Cp, andxy4 = Cp4 and the reduced nonlinear system is

2IBR : ¥ BR = ALBRXLBR + BLBR(XLBR)Y.

If only the basic and second central moments are considér@deduced nonlinear system
reads

By —Boa

B BL() + Blloul + uy

Cgl(lj — wSyn _2C1/1 . (437)
5 L+C}

Cl,l Cz/o — ZCz,oM + C2,0u1

A linearization of the complete reduced systenxpfr yields the linear system

ZALBR : Ax1pr = ALgrAXLBR + Brpr(E2, Esq)u. (4.38)

The matricesA| gr andBy gr are given in Appendix C.3.

The controllability of the multi-input multi-output (MIMPsystemZ A gr IS deter-
mined by its controllability matrixC (Aygr, Bigr) @s defined by (4.10); foE, > 0,
its rank equalst and is thus smaller than the system dimendior= 12. However, a
controllable subspacg as given in (4.11) can be found:

H=[I 0] = rankHC =4,

whereH is a4 x 12 matrix, I the4 x 4 unity matrix and0 the4 x 8 zero matrix. This
shows that the subspace consisting of the first four stateiysontrollable. According
to Theorem 4.3, this leads to the conclusion that the noatisgstem (4.37) is locally
controllable at the equilibrium.

The set of state® that can be reached from the orighx; gr (equivalent to the equi-
librium x.) can be obtained by calculating the column spac€ .ofBasis vectorsn,
k=1,... 4, that span this column space are summarized in AppendixEagh reach-
able state is then given by a linear combination of theseovect

R = {AxLBR e R? . Ax1{gr = c1mq + comy + camz + cymy : €1,02,03,04 € ]R} .

The analysis of this set shows that — for the linearized systearbitrary values\B; ,
ABy 1, ACy 0, andACy ; can be reached if the bunch siZgis nonzero:

AB1g =c1, ABgj=cy, ACy=c3E, ACi1 =4k,
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whereas the remaining states are zero or depend on the (irdtédes:
AC30 = ACy1 = ACp = ACy3 =0,
E E
ACyp = 2E—4Ac2,0, ACsy = E—4AC1,1, ACyp =0, ACi3=ACs;. (4.39)
2 2

On the other hand, this implies that, for a linear bucket,iaithal bunch distribution with
deviations in the bunch center or variance may be stabitazéue equilibrium shape. The
controllability of the linearized system implies local ¢aoilability near the equilibrium
of the nonlinear systeit gr in the subspace with the statégy, By 1, C,0, andCy 1, i. €.

System (4.37) is locally controllable negd 0 E; O}T. This means that for suffi-
ciently small deviations in the stat&s o, By 1, C2 0, andC; 1, the beam can be stabilized
and damped to the equilibrium. In practice, constrainth sisanput saturations may limit
the set of stabilizability. For the higher order momentseaagal statement about the local
controllability cannot be made at this point based on thediization.

The result (4.39) is consistent with the calculations ofii@ments of an ellipsoidal
bunch in Appendix C.2.1. For example, the momépg can be written ag’y g = 3 C%,o
for a Gaussian densities (cf. Table C.1). A linearizatiauad the equilibriunt, o = Es,
C4/0 =E4 yields

Eq

E,=3E = E2:3E2

E
AC4,O ~ 6 Ez ACZ,O =2 E_;L ACZ,O/

which is in agreement with (4.39).

For control purposes, it is favorable to calculate the fi@m&inctions of the linear
system (4.38). It is assumed that the momeXis o, ACy 9, AC3z0, andACy can be
measured. The resulting transfer functions are

ABiy  ACyy  AGyp  ACy 0 iw'gyn *4E4wgyn(52+16w§yn)
U i I u _ 2 +H4wg, (s2 +4w§yn) (sz+16w§yn)
ABiy ACh ACy ACy | = Win
175} U 175 U 52-1-7 0 0 0
Syn
(4.40)

The Laplace variable is denoted bhyAgain, the frequency domain shows that the eigen-
values=ti3wsyn and=+idwsyn are not controllable. First, the gain f&C; o is zero. Sec-
ond, the eigenvaluesi4wsyn are cancelled in the transfer function &4 /1, and
third, the remaining part of this transfer function is prapmal to ACp o /11

Finally, the following important conclusions can be madea@rning the damping of
longitudinal bunch oscillationfr very small bunchesr bunches in éinear bucket

e Only in the stationary case, the phase modulation actsysahethe center of gravity
(modem = 1) and the amplitude modulation acts solely on the bunch kefrgbde
m = 2). In the acceleration case, the input variables are mixadyeheral, the
dynamics of the moments are nonlinear with respect to theimeku .
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e For the subspace consisting of the momdhtg, By 1, C2,0, andCp», the equilib-
rium is locally controllable and sufficiently small deviaris in these quantities can
be damped by a feedback system.

e Higher order moment dynamics are not first-order contréglahth respect to phase
and amplitude modulations. Local controllability may Iskie possible, cf. Re-
mark 4.1, but the decision of this question requires full lim@ar controllability
analysis. The simulation results of Section 4.1 indicatd the higher order dy-
namics are indeed not locally controllable. This impliesttbscillations of higher
order modes such asi3wsyn and +idwsyn cannot be damped ife andu, are
used as control inputs.

A full nonlinear controllability analysis will not be depled, because the next section
will deal with the nonlinear bucket and show that first-ordentrollability and thus local
controllability is also given for higher order moment dyrnies if the nonlinearity is taken
into account.

4.6 Nonlinear Bucket

For larger bunches in a nonlinear bu®egthe bilinearized dynamics (4.27) are no longer
suitable and higher order terms have to be taken into accbuptinciple, the calculation
of the moment dynamics is still straightforward, if higheder terms are included. How-
ever, higher order terms introduce coupling between the embrdynamics of different
ordern. This requires a new strategy for the truncation and ordsraton.

Anticipating some results of this section regarding thetilability, it is interesting
to note that the approximation of (4.8b) determines therodlability properties of the
moments:

e A linearization of (4.8b) cancels the input and leads to a local controllabil-
ity subspace containing only the basic moments;

¢ bilinearization leads to the results of the last sectioa, i0 a system where
both basic moments and moments of order two can be stahilized

e taking into account further terms of (4.8b) extends the madlable subspace
to higher order central moments.

2This means that the nonlinear single-particle dynamicsiseel and not the linearization of these dynamics.
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4.6.1 Model Derivation
Beam and Moment Dynamics
Equation (4.8b) can be rewritten with the use of the additr@orems [37]
sin(a & b) = sinacosb £ cosasinb, cos(a+b) = cosacosbFsinasinb
as
Y = Wsyn[1 + ue] [sinx cosuy — cosxsinug| +
+ wsyn [1 + 1] tan @R [cos x cos 1y + sinx sin | — wsyn tan g (4.41)

The trigonometric functions in (4.41) can be expanded asofagries

00 2k+1 3 5 k A2k+1
SOV PN SV S SIS k| A
smx_k;)[ 1] i TR 2k 1] +... (4.42a)
00 2k 2 4 k A2k
B g x> xs X [—1]*x
cosx—k;)[—l]w—l—f—i—ﬂ—...—l—w—i—... (4.42b)

and the truncation of these seriescat k leads to an approximation of the longitudinal
beam dynamics which is polynomial inandy:

J'C — _wSyn y

Y~ wsyn[1+ ue] [ag(x) cosugy — ap(x) sinug| +

+ wsyn[1 + ue] tan @R [a2(x) cos g + a1(x) sinig] — wsyn tan g,
with polynomials
[_1]kx2k+1 [_1]123(212
—_—, ap(x)=1+... 4+ ———
2k + 1] 2(%) [2]!
In the following, the moment dynamics are calculated forgtaionary caser = 0

with k < 3 for a model with moments up to the ordey,,q.; = 6 With the assistance of
MATHEMATICA [138]. In principle, the calculation for the more generaear # 0 and

for higherk can be performed in the very same manner, but with an incie@sdculation
effort. The calculation yields the moment dynamics in thelmear, stationary bucket

ZNB : x(t) - fNB (x(t)/ x*(t)/ L[g(t), uq)(t)/ (PR) ’ (443)
where the state vectaragain contains the moments

a(x) =x+...+

T
X = |:B1,0 BO,l C2,0 Cl,l C0,2 e Cnx,ny t Cornmodel}
The function f\;; depends on the Taylor series truncation orklerin contrast to the
calculation for the linear buckef,z also depends on the additional state vector
T
Xy = [Candel+1/O e CO/nmax}
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that contains moments up to an order of
Nmax = Mmodel + 2K, (4.44)

if the dynamics of moments of order up #g + 1, = 71,04, are considered. A linear

bucket impliest = 0 and thuSimax = Nmodel- AS SO0N as a nonlinear bucket with higher
order terms inx is considered, coupling is introduced between the ordedsnasments
appear of ordeny + 1y > nyedel-

The question is how the nonlinear equations of motion chaonggared to the case of
a linear bucket. For the stationary cagg = 0 andk = 2, the calculation yields

o — = _BO,l (4458.)
syn

Boa 1 3 1 1.5
1 _n [B —[—B — 3By (Crg—C } —[B

+ 1OB:13,0C2/0 + 103%,()(:3/0 +5B19Cy + C5/0H — [1 4+ ug) sin Ugp {14—

1 1
+ 5 [—Bio — Cz/o} + o1 [B%,O + 6B%,OC2,O + 431/0(:3,0 + C4/0] ] . (4.45Db)

Compared to the case of a linear bucket, there are two mderelices:

e the dynamics are highly nonlinear

e there is a strong coupling with higher order central momeptso orderm,x =
1+2-2=5

This is also true for the dynamics of the central momentshérfallowing, the calculations
will focus on the stationary casez = 0.

The performance of a truncation of the Taylor series (4.4%)=a 3 is shown in Fig-
ure 4.4. The relative approximation error grows for inciegs, but is belows% for most
of the interval[—7; 7], this is indicated by the dashed lindsHowever, conclusions
about the overall model accuracy in terms of the solui¢f) of the moment dynamics
is not readily deducible from these plots; rather, simalaiare necessary to evaluate the
model accuracy.

An alternative to the Taylor series expansion would be to filgnomial of a given
degree to the nonlinear function of the RF voltage. The auefits of the polynomial can
for example be obtained by a least squares method. For momglew nonlinearities, this
will be usually superior in terms of accuracy compared toTaglor series for a given
polynomial degree. Nevertheless, the Taylor series wilised in the following, because
this leads to models that are equivalent to the case of almezket for very small bunch
sizes. Thus, it will be easier to check the results for plailityi. In addition, the accuracy
of the series is satisfactory for the given nonlinearitiesine and cosine for the single
harmonic RF case.

3)The relative error at and near the zero crossingsfx) is not taken into account in this consideration.
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sin(x), TS(sin(x))
cos(x), TS(cos(x))

Figure 4.4: Taylor series approximations (TS, blue) of sine and coditeck) fork <

~

k = 3 and boundary of the domain with a relative error beli% (dashed lines).

Equilibrium and Linearization for a Stationary Beam

The equilibrium of the nonlinear dynamics (4.43) can be waled withx = 0 and

ue = up = 0. This results in a set of,,qe1 NONlinear equations that contains moments
up to an order ofiax @s given by (4.44). For the stationary case, the assumjtairati
moments of odd order

Big=Byp1=C30=Cp1 =C10=Cp3=C50=...=0 (4.46)

are equal to zero greatly simplifies the equations to caieulee equilibrium. This as-
sumption is reasonable, because the stationary bucketdjastories that are symmetric
with respect to theg-axis of the phase space. A particle density that represemistched
bunch will have to be axially symmetric as well, this impligsmt the moments of odd
order must be zero. With assumption (4.46y, = 0, andk = 3, the equilibrium reads

:|T

Xe = [0 0 Ez/o 0 Eo/z EO,6 (4.47)

with

1 1 1
Eopp = Exp — €E4'0 + EE@O — MES,O-

The complete equilibrium fon, + n, < 6 can be found in Appendix C.4.1 fdr = 3.
As before, the variablé&,, ., is used to denote the equilibrium of the central moment
Cn,n,- Inthe following, it will be assumed that the equilibriumiwes for the higher order
moments withiy + 1, > 15,401 = 6 have the same pattern as (4.47), iEg,n, = 0
for oddny + n, and odd pairgny,ny).

The equilibrium is similar to the case of a linear bucket. Welr bucket is obtained
for k = 1 or for very small bunch sizeB, . For very small bunch sizes, the higher
order moments can be neglected with respect to the momentsl@f 2 and 4 and (4.47)
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simplifies to (4.29). It is important to note that — as in theeaf the linear bucket —
the equilibrium still has some degree of freedom. The momEng, E4 o, . . . are again
determined by the bunch size and the particular densityilolision that is chosen. For
example, a bunch with a given variangg, and a uniform density will have different
higher order momentg, o,E¢ o, ... as a bunch with the same variance but a Gaussian
density.

The nonlinear model can be linearized around the equilibny. The resulting linear
model

. Ax u
ZANB . Ax(t) = ANB le*] + BNB l 8] (448)

Ue
describes small deviatiomsx = x — x, of the bunch shape with respect to its matched
shape. The linear equations fo, qe1 = 4 andk = 3 are given in Appendix C.4.2.
The result shows that the maximum moment order agrees witldY4and iSnmax =
442-3=10.

Before proceeding, the result can be checked for plaugilith a simple calculation.
Assume an ellipsoidal bunch with a uniform density (3.25)e™oments of this bunch
have been summarized in Appendix C.2.1. Further, assumeribetation® = 0. In
many cases, this might be an appropriate approximation rimattahed bunch in a station-
ary bucket. The only degrees of freedom are the half-&es= R, andR; := Rp,.
The following moments can be taken from Table C.1, p.174:

R2 2
Coo = TX, Coz = Zy’ Cio =2C3y, Ce0=5C3, Cgo=14C3,. (4.49)

In the following, the bunch is considered a model for a maddench, i. e. the moments
are denoted b¥,_n,, for instanceC, o = E;o. The above calculated equilibrium for
Co2 Is given by

1 1 1
Eop = Epo — 8E4,o + EE@O - MES,O- (4.50)

Inserting the moments (4.49) yields the condition

1 1 1
2 _p2 L pa L one 8
Ry = R 12 Ry + 384Rx 23040Rx (4.51)
for the semi-axes of the matched bunch. This can be compar#tttrajectory prop-
erty (2.54), p.32. The exact shape of the matched bunch neustibal to the trajectory,
thus the intersections will give a good estimation of theisaxes of the bunch. Renaming

Awy = Ry andA¢ = Ry, Equation (2.54) can be rewritten as

1 1 1
_ _ _ 2 _ 1 p4 6 _ 8 9
R, = \/2 1— cos(Ry)] = \/Rx SRE+ RS~ — RS+ O(RY)
This equation can be regarded as the exact condition betReeand R, for matched
bunches with a uniform density. The comparison with (4.%bwes a good agreement in
spite of the approximations that were made.
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Nmax = Mmodel T+ 2k

I n
k l l model Linearization
Iong|tud.|nal TANB
dynamics
x:fNB(x'x*'u) Ax_ANB xe/x*e lA 1
moment X
dynamics x=0= xe +BNB (Xe, X1 0)u
Truncation Method l
Ax, = FrAx LANBT

Xie = fr1(%e) =P Ax = Anpr(Ezo)Ax+

xe = fr2(E20) +BNB(E20)u

Figure 4.5: Linearization and truncation of the nonlinear systefg. The state vectors
x5« and Ax, contain momentSan,ny that are beyond the scope of the model, i. e. with
Ny + 1y > Nmedel- 1€ truncation method expresses these moments as a funétice
moments withny + 1, < 10401 The resultis the linear, truncated systEangr.

Truncation

As stated above, the equations for a nonlinear bucket stiltain moments withz, +

Ny > Nmodel, this is due to (4.44). Without any further simplificationswould be
necessary to calculate the dynamics of every central mo@gnt, and to investigate an
infinite dimensional system. To obtain simpler finite dimenal models for a controller
design, a truncation of the state vector is necessary. Iiolf@ving, different models
are derived, but the truncation procedure is always simifarfirst approach is shown

in Figure 4.5. After calculation of the nonlinear systemhaitarameteré and Nmodel

a linearization around the equilibriufx, x., #) = (xe, X+, 0). The resulting system

> aNB Still contains the statAx. that establishes the coupling with higher order moments.
This coupling is resolved through the truncation

Axy, = FTAX, Xie = fT,e(xe)r Xe = fT,z(EZ,O)

whereFr is a matrix with the dimensiok x #,,,40; and frp : Rifmodel R2K, fro:
R +— IR"™medel gre real functions. The matrix and functions depend on tinecttion
method and the assumed density distribution. The resultrisngated linear state-space
systemXanpT that depends only on the bunch sizgy.

An alternative approach is given in Figure 4.6: The trurmrats directly chosen as a
function of the state vectarand applied to the nonlinear system, before the lineaonati
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Nmax = Mmodel T+ 2k

]AC l l Mmodel
2NB

Iong|tud.|nal SNBT
dynamics
= fap (6 x0,u) [P :
moment _ NP ' x = fupr(xu)
dynamics ¥ =0=xe I

l Linearization

Truncation Method

2 ANBT

X = fT(x)

Ax = ANpTAX + BNpTH

Figure 4.6: Alternative to Figure 4.5. The truncation is applied befibre linearization.

The shown procedures are quite general and also includeadeeaf a linear bucket
with k = 1. However, in that case the truncation functions are obspleicause the state
vectorx, is empty.

There are several possibilities for a truncation and elatiam of the higher order mo-
ments:

T1 The simplest solution is to neglect higher order momentl wit+ 1y > 7y,04el
and to set their equilibrium and deviations equal to zeto= Ax, = 0. There is
however no reason to believe that this will lead to accureselts [18].

T2 The moments withiy + 1y > 13040 Can be assumed to be approximately con-
stant:x, = x. Or Ax, = 0. If the particle density is approximately Gaussian or
uniform and the bunch shape is ellipsoidal, the moments blfeT@.3 can be used.
For example, the density is Gaussian &g = 105]5%,0 andACg o = 0. This may
be more exact, but does not represent the dependenciesibetwandx and does
not lead to the correct bunch shape oscillation frequencies

T3 In Appendix C.2, the moments of mode-shaped bunches are atip@d. These
relations are approximations of first order and can be usedglment the trunca-
tion of Figure 4.5. This will be described in more detail irc8en 4.6.2.

T4 In Appendix C.1, the moments of ellipsoidal bunches areegntesl. These re-
lations enable the use of the procedure of Figure 4.6 andatitli®e subject of
Section 4.6.3.
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At first sight, it seems that truncation method T1 needs natiadd! assumptions about
the density. However, the equilibrium (C.4.1) does not 8pés, o, E4 o and other higher
order moments. These values must be specified by definingchlsireE, o and further
assumptions about the density function must be made. Fonmraa Gaussian density
implies thatE, o is approximately equal tGEiO. Because the value, o, E;, and
Ee,0 are unknown and depend on the bunch size and density, thasétms have to be
measured or estimated.

Although the derivation of the moment dynamics is only basethe longitudinal
dynamics of the beam and does not depend on the densityodisin function, the
final feedback models will depend on the bunch size and defhsiction. This is
also true for the case = 1 of a linear bucket, since there are additional parameters
(such ag£,) that depend on the bunch size and the density function.

4.6.2 Models for Coherent Modes

The results of Tables C.2 and C.3 and of Section 4.4.3 enlablgrocedure of Figure 4.5.
This will be demonstrated first for the dipole mode.

Dipole Mode Assume the linearized dynamics (C.1) for the basic momehtg, 180.
This is systent g Of Figure 4.5 fork = 3 andn,o4e1 = 1. The highest moment order
IS imax = 7. Assuming the uniform density and using ré&«,,,, (r1) of Table C.2, the
truncation functions may be chosen as

AC3/0 = AC5/0 = AC7/0 =0- ABLO = Axy, =0

and the equilibriumEyy = 2E3, andEqo = 5E3,. This leads to the linear system
> ANBT. Written as a transfer function:

2 Exp E%,o Eg,o
Guu(s) = 2BuC) oo |15+ 5 - i
1uls) = ; = .
MG"(S) 2 2 1 — Exo % _ %
$° + Wgyn > T 13 — 144

This is the transfer function of a harmonic oscillator thepends on the bunch size. For
very small bunches, the frequencyudsy,. For larger bunches, the dipole mode frequency
for uniform densities is

1 1, 1

wl,u (EZ,O) = wsyn\/l - EEZ/O + EEZIO - mEZ,O‘

This can be compared with the tracking simulations in Sacdi®.5. These simulations
lead to the hypothesis (3.47) that estimates the frequeimtydem with

(4.52)

7T

Wiy = MM Wsyn 2K (sin (1/Co0 = Ezp))

(4.53)
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Dipole Mode: Frequencies Dipole Mode: DC Gain
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Figure 4.7: Properties of the dipole mode = 1 transfer function for a uniform (black,
+) and Gaussian (gray ) density.Left: frequencyw /wsyn versus the bunch sizg
andwy py (solid line). Right: DC gain of the transfer function. The dashed line marks the

bunch size whergw; ,, — wy hy|/ w1 ny grows larger thas%.
The expansion of function (4.53) in a Taylor series yields

7 19
~F2. - _—F
9620~ 2880 20 T

2
T 1
=1—-5Ep0+
))]

2K (sin (\ / EZ,O 2

This is very similar to the result (4.52) of the uniform depsi
For a Gaussian density, the procedure is analog. Table Eldsyi

T T
. = [ACsp ACsy ACrg]" = [gEz,o BE2, %Eglo} ABi g

and the equilibriunEy g = 3E3 , andEg o = 15E3 , leading to

2 Exo E%,o Eg,o
ABl 0 (S) syn ll 2 8 48
Gie(s) = ’ = .
’g u S 2 3
5E 35E 35E
9"( ) 52 gYlﬂ [1 82,() 19%0 102240]

with the frequency

5 35 , 35 5
Wi,g (E20) = Wsyn \/1 - gEZ,O + @EZ,O - @EZ,O'

The left image of Figure 4.7 compares the frequencigg and w; ¢ with the fre-
quencyws hy- This shows thatvy 1,y is indeed a very good estimate for the dipole mode
frequency. There is reason to assume that,, may be very close or even equal to the
exact solution for a uniform density:
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e Observation: For small and medium bunch sizes, is very close tav; . This
holds not only for the dipole mode, but also for higheras the subsequent figures
will show.

e Physical interpretation: For a matched bunch with a unifdemsity, the bunch size
2,/E; ¢ is equal to the radius of the bunch. Very small deviations tdug mode
will change the boundary of the bunch slightly, but inside Bunch will remain
unchanged. The frequency of the modes thus mainly dependseoftequency
of the particles on the boundary of the bunch, i.e. the sytobm frequency at

x = 2./Ey . This frequency is given bgvllhy.
The differences between ,, andw 1,y are due to the following reasons:

e The Taylor series truncation of the nonlinear RF potentibduces an error, but
this has been shown to be rather small. The error grows fon@easing bunch
size.

e The moments for a specific mode from Tables C.2 and C.3 areoxippations.
They are exact for ellipsoidal bunch shapes only. Theseoxppations will intro-
duce an error that increases with the bunch size.

e The linearization and truncation of the model.

Both error sources lead to an error that increases Witfy This is in agreement with
the observations of Figure 4.7 (left image). Therefore, dhantity e = [wy, —
wl,hy] /w1 ny Will be used in the following as a measure for the accuracyhefttans-

fer functions. In the figures, the dashed lines indicate tvech sizeﬁzo for which e;
becomes$%. ForE;o < Ez,o the accuracy of the transfer functions is assumed to be
acceptable. It has to be noted that — as the exact analyticaia is not known — this is
only a reasonable estimate.

Quadrupole Mode If the model size is extended t@,,,3.; = 2, transfer functions
for the quadrupole mode are readily obtained. This is dubéddct that the dynamics
of the basic moments (C.1) and moments of order- 1, = 2 (C.2) are completely
independent from each other, at least in the consideradrsaay case withpr = 0.
The transfer function of the quadrupole maode= 2 has the shape
s —2by(Ez0)wiyn

Gols) = =
2(s) 5 2+ m(Ero)wd

4

whereb, anda, are functions ofE, o. A summary of these functions for Gaussian and
uniform densities is given in Appendix C.4.3. Transfer fume G, (s) has a zero and pole
ats = 0 that cancel each other, this means that the pose=at0 is neither controllable
nor observable. The pole = 0 is due to the invariant of motiof, that was already
discussed in (4.34a) for the linear bucket. The physicarpretation is as follows: due to
the linearization, only infinitesimal deviatiods” from the matched shape are considered.
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Quadrupole Mode: Frequencies Quadrupole Mode: DC Gain
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Figure 4.8: Frequencies and DC gains of the transfer functions of thellgy@le mode

m = 2 for uniform (+, black) and Gaussian densities (x, gray) cared to the frequencies
wo ny Of (4.53) (solid, black). The dashed lines mark a relativerdoetween the uniform
density andv; ., of 5%.

From the fact that the eigenvalues of the transfer functamesstill purely imaginary, it
can be concluded that Landau damping or filamentation doesaour, even for large
bunches, and the bunch arkais a constant of motion. For small bunch sizes,= 4,
and a quadrupole frequency 2ibsyr, is obtained. This is consistent with the results for a
linear bucket.

Modesm € {1,2,3,4} The same procedure will now be used to construct a model that
describes the dynamics of the first four modes. The modekmgmeters aré = 3 and
Nmodel = 4. It will be assumed that the bunch shape is a combinationl éda modes,

its boundary is defined by (cf. (3.17))

4
P(O) =14 ) rusin (m[0 — 6,,0]) .

m=1

There is one complication that has to be taken into accoumtalthe fact that one mode
may excite several moments. For example, Table C.2 reveai$ar a uniform density

45E5 ,ACyo form =2

(4.54)
12E2/0AC4’0 form =4

AC6,0 =~ {

holds. In case of a combination of the modes= 2 andm = 4, the momentACe
should not be replaced by the sum of these two componentbybut

AC@O = 15E%,O [ACZ,O — 0 ] + 6E2,0 [AC4,0 — 4E2,0AC2,0 ] (455)
ACy0(m=4) ACy(m=2)
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Uniform Density Gaussian Density
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Figure 4.9: Eigenvalues of systems (4.56). Th&eigenvalues are purely imaginary and
each dotted line represents a complex conjugated pair adddgdotted, blue) or even
(dotted, red) model. The solid lines are the nonlinear sgatobn frequenciesv,, iy -
Right: Truncation for a uniform density.eft: Truncation for a Gaussian density.

This can be explained as follows: For the mane= 2, ACy ( is not zero. To obtain the
correct result (4.54), a correction tetvCy o(m = 2) has to be included in (4.55). The
same applies foAC; o. This guarantees that (4.55) is in agreement with (4.54jfer 2
andm = 4. Analog correction terms will be used for all other odd andremoments
of Tables C.2 and C.3 to obtain the truncation makjxof Figure 4.5; an example for a
Gaussian density is

55 35 3
ACs = §E§,o[31,0 - 0 ]+ = F20 [AC30 — ZEZ,OBLO]-
ABL()(W!:?)) AC3Ov(m:1)

To obtain the functiong; andf,, the equilibrium of Appendix C.4.1 is used. In addi-
tion, E4 o and higher ord/eEnx,ny with ny +ny > 4 are taken from Tables C.2 and C.3.
This results in functiongy; andf, that only depend o# . In principle, it would also
be possible to take aan,ny as functions directly from Tables C.2 and C.3. But, as stated
in Remark 4.3, the use of the equilibrium of Appendix C.4.piaves the result.

The final result is the state-space modglygt With dimension 14 and this model
depends on the single parameféry,. The odd and even moments in this model are
completely decoupled and can be written as two independ& Systems:

AXeven = Aeven (EZ,O ) AXeven + Deven (EZ,O ) U

. (4.56)
Axodd = Aodd (E2,0)AX0dd + bodd (E2,0)u2

The system matrices and input vectors are summarized inmgppeC.4.3 for uniform
and Gaussian densities. Hoyg < 1, the dynamics are approximately equal to the linear
bucket case.

The matricesA,qq and Aeven Of Systems (4.56) have in total 7 pairs of purely imagi-
nary, complex conjugated eigenvaluegv,, k = 1,...,7. The frequencies) are plotted
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versus the bunch sizg, o in Figure 4.9 and compared with the frequenaie,ghy. For
uniform densities, the agreement between the eigenvaldégpothesis frequencies is
excellent ifE; o < 1. This result is also in agreement with the tracking simalagi of
Figure 3.18 forn = 1 andm = 2. Besides the obvious 8 eigenvalues due to the modes
m € {1,2,3,4}, there are additional eigenvalues

:l:io ° wSyn, :l:il ° wSyn, :i:iz ° wSyn.

For the Gaussian density, the eigenvalues tend to be sligimaller and are only shown
up toE; o = 1.21, because they then become real. This indicates that thalatbn for a
Gaussian density is less accurate and a hifheuld be preferrable to increase the model
accuracy. The results of Figures 4.7 and 4.81fgpq. € {1,2} seem more accurate and
a possible reason may be that for higher, 4.1, k should also be increased to obtain a
similar accuracy. However, the calculations of Table C&8amputationally demanding;
higherk will therefore be chosen in Section 4.6.3 for an alternativecation method that
is computationally easier to handle.

Hautus’ criterion shows that all eigenvalues of the mod€ISq) are controllable, ex-
cept for the eigenvalues; , = £i0. As for the linear bucket, the uncontrollable eigenval-
uesA, » are due to invariants such as (4.32), as the models do natietlandau damping
and the emittance is a constant of motion. The fact that b#rogigenvalues of the lin-
ear models are controllable strongly indicates that firdeocontrollability and thus local
controllability is given for systerng. However, an exact proof is challenging and The-
orem 4.3 is not sufficient, since system (4.43) is infiniteeisional and models (4.56)
can only be obtained after a linearization and truncation.

Despite the open theoretical questions that were addrebsed are strong indications
to make the following conclusions. These conclusions appaertied by the simulation
results of Section 4.1

In a stationary nonlinear bucket:

e the odd moments and modes= 1, m = 3 are dynamically coupled and can
be damped by phase modulatians= u,

e the even moments and modes= 2, m = 4 are dynamically coupled and
can be damped by amplitude modulations= u.

e the purely imaginary eigenvalues demonstrate that Landenpahg is not in-
cluded in the model; this may be due to the linearization ertthincation

e the frequency of mode: obeysw,, = Wi, hy with Wi, hy of hypothesis (3.47)
for uniform densities

For a controller design, odd and even moments may be treadegéndently. However,
a seperate feedback design for every single mode seemssiilés because mode = 3
is coupled withru = 1 and moden = 4 with m = 2.
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4.6.3 Models for Ellipsoidal Bunches

If only the center of gravity and the variance of the bunchadiiaterest and an ellipsoidal
bunch shape is a sufficient model, the alternative truncaifd-igure 4.6 can be used to
create a model of the bunch shape dynamics. In this casesl#t®ns of Table C.1 can be
used. As the results of Table C.1 are exact for ellipsoidathes, its relations can be used
in the nonlinear dynamics to obtain a nonlinear model. Hanehis will again lead to a
neglect of filamentation and Landau damping, because ofdsenaption that the bunch
shape will remain ellipsoidal even in presence of distucean this does not allow any
filamentation of the bunch. For small deviations of the sbiplal shape, the filamentation
is usually small and the model provides an appropriate gegnr of the bunch dynamics.
Since feedback systems for small deviations are of inteadstearization of the resulting
equations is reasonable.

The relations of Table C.1 show that for ellipsoidal buncinesments with orden, +
ny > 2 can be expressed as functions of the moments of order n, = 2. Itis thus
possible to reduce the state vector to

x=[By Bo1 Cao Ci1 Copl'

After inserting the relations (functioifit(x of the truncation block in Figure 4.6), the
resulting nonlinear model is

YNBT x(t) = fpr (2(8), ue(t), ug(t)) (4.57)

and depends on the set of density functidnghat is assumed, i.e. Gaussian or uni-
form density functions. Calculations for both density ftios show that the invariari
of (4.34a) is also an invariant of motion for this system {4.5This clearly demonstrates
that this model neglects filamentation.

A linearization around the referenag = [0 0 Epg 0 EO,Z}T yields system

2 ANBT-

—AABOJ i 0 |
Eyo, k, D) ABy, _
amo | ( Zf)zAcl,)l CoL (Ez'gk P)ue . (@58)
Wsyn ay (EZ,OI IAC, D) ACyo — ACpo by (Ezlo, ]AC, D) Ue
] as (EZ,OI ]A(, 'D) AC1,1 | i 0 i

with
Ax = x — Xe =: [ABLQ ABO,l ACZ,O ACM ACOIﬂT

The coefficientsy, a5, a3, andb; are functions of the bunch siz® o, the parametd% of
the Taylor series truncation, and the type of density fumci?. The functionsiy, a», as,
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andb; are presented in Appendix C.4.4 for uniform and Gaussiasities andk = 6.
The following transfer functions can be derived from thdéestgppace modelongr:

ABio(s) — WinM ACy(s)

up(s) 82+ winay’ e (s)

_zwgynbl
2+ C‘]gym [2512 + 513] '

(4.59)

S
S

These transfer functions are very similar to the transfections of (4.40) for a linear
bucket. In fact, for very small bunches with < 1 the approximations

a =1, by = Ep), a, ~ 1, az ~ 2

hold for both the uniform and the Gaussian density, leadingxictly the same transfer
functions as for the linear bucket. Thus, the calculationtfie nonlinear bucket is as
expected a generalization of the linear bucket case.

Regardless of the bunch size, the transfer function©f reveals an uncontrollable
pole ats = 0, as it is canceled by a zero at= 0. As before, this is due to the invari-
ancel, of the bunch area and confirms the statement that filamentatioot included in
model. This can also be explained as follows: The invariamf (4.34a) can be written
in differential form by assuming the case of a stationarykietigvith

Coo=Exo+ACyy, Ci1=ACi1, Coo = Epp+ACp.

Introducing these relations in (4.34a) and neglecting énginder terms (i. eﬁC% 1) leads
o

AL =0= EO,ZACZ,O -+ EZ,OACO,Z/

wherel, = const. = Al, = 0 was used. This can be written as

Eo» Eso Eepo Egp
AChy = —=22AChg = — |1 — —% 0 280 1 AG,, 4.60
0.2 Epo 20 l 6 T 120 5040 " 20 (4.60)

where the equilibrium for the stationary bucket of Appendi®.1 was used. For a uniform
density (cf. Table C.2), this equals

ACyp, (4.61)

E,o E3y E3,
ACyr = — |1 — =% 0 _ 20,
Co2 [ 3 T 360 T

Thus, there exists an algebraic relation between the statesandC; o and they cannot
be changed independently from each other. The same infammigtincluded in model
> ANBT Of (4.58). Comparing the third and fifth row of the state spacelel yields

. a .
ACyp = —E3AC2,0

a
=ACoa(t) — ACoa(ty) = — 5 [ACa0(t) — ACo0(to)]
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Figure 4.10: Frequenciesv, wy of the linearized model for ellipsoidal bunchegngT-
The solid lines are the nonlinear synchrotron frequenaigs,, of (3.47) (p. 79), the

dashed lines are the eigenvalues of model (4.58) for diffeteand are gray fok <
{3,4,5} and black fork = 6. Left: uniform density.Right: Gaussian density.

with the initial valuesAC; o (tg) andACy > (fg). At the equilibriumACy o(t) = ACp(t) =
0 must hold, thus the equilibrium can only be reachedX@s ((ty) = —a3zACq 2 (tg)/2
and this leads to

E E2 E3
20 4 220 20 1 AG,,, (4.62)

as
AChr = —BAChg = — |1— .
02 20 3 24 360

2

whereaz was replaced with the function for uniform densities. Thsn agreement
with (4.61). An analog result is obtained for the Gaussiamsdg and the relation
Eo»
az =2——
Ezp
that follows from (4.60) and (4.62) seems to hold in general.
The remaining poles of the transfer functions are purelygimary for the considered
domain ofE, o and can be written as

. . . . [2ay 4+ a
1,2 = Fiwy = Fiwsyn+/a1, $3,4 = Tiwy = Fi2wsyn %

Figure 4.10 displays the frequencieg andw, as a function of the bunch size for different
k. The dashed gray lines are the frequencies of the modéleEo{?:, 4,5} and the dashed
lines in black belong t& = 6. The curves for differenk allow an estimation of the
convergence of the solutions to the exact solutionkfer co. Also, the frequencies are
compared tav,, 1,y 0f (4.53). The results show that:

e For a uniform density, the curve fér= 3 is already very close to the real solution,
whereas the convergence in case of the Gaussian densityisrshndk = 6 is
necessary for a satisfactory solution.
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e For the uniform density, the hypothesis (4.53) is excell&r larger bunch sizes,
the assumption of ellipsoidal bunches is only a rough moatehfatched bunches
and the differences fdt, > 1 may be mainly due to this reason. Compared to the
uniform density, the Gaussian density leads to a frequehd g that is slightly
larger, whereas the frequency@©f  is distinctly smaller. This is in agreement with
the tracking simulation results of Figure 3.18.

e |tis interesting to note that for a uniform distributi@n, + a3 = 4a, holds. This
implies that independently of the bunch size, the mon@nt oscillates with ex-
actly two times the frequency df; o, just as one expects from simplified physical
considerations.

e In addition, the DC gain of the transfer function Bf 4(s) is exactly 1 for both
the uniform and Gaussian density. This result deviates fileenright image of
Figure 4.7. For the interpretation of this difference, isha be kept in mind that
there is no exact one-to-one correspondence between tbke dimdern = 1 and
the basic moment, .

4.6.4 Models of Filamentation

The models of the previous sections use truncation meth8dmndT4. This leads to a
good estimate of the mode frequencies, but neglects filaahientand Landau damping,
becaus@3 andT4 assume bunch shapes that cannot filament.

To study filamentation, the nonlinear equations (4.43) @odmbined with truncation
method T2, where the moment vector, is assumed to be constant. This yields the
dynamics

x(t) = fapro (2(1), ue(t), ug(t)) . (4.63)

The calculation of the invariardy = C,0Cp2 — C%l yields

Ir(t) = fi, (ue, 19, B10,C20,C11,...) # 0.

Consequently, the model may represent some effects of #radiitation. Inserting the
equilibrium moments = x. for a matched bunch leads ip = 0. This does make sense,
since a matched bunch will neither oscillate nor experidit@mentation.

A linearization of the dynamick around the equilibrium of a matched bunch for small
deviations reads

L(t) ~ =—=A R
2(t) ox ¥ 0 [ue,uy] [Mgo

Esp Ego Ezp Ezp
3 o+ 11— 3G+ 2 ACs1 #
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For a small bunchK; o < 1) with a uniform density, the following approximations are
valid:

~ F2 ~ 22 ~ B3
Iz ~ EZ,O’ E4/0 ~ 2E2/0, E6/0 ~ 5E2,0

and this leads to

Further, it is reasonable to assume that
ACy1 ~ O (Eyp), ACp~O (Eio) , ACs1~O (Eg’,o) ,

I.e. the momenAC; ; depends oI, o and for a decreasingj o, it will decrease by the
same order of magnitude, and so forth. Thus,Hgp — 0, we also havd, /I, — 0,
I. e. the relative change of the emittance becomes negigiliiis is in agreement with the
observation that very small bunches in a nonlinear buckied\z similar to bunches in a
linear bucket and show few filamentation.

This leads to the following conclusions with respect to thariants and filamentation:

¢ In a linear bucket, there are invariants of motienl,, andl that are due to
the invariant bunch area. Filamentation or Landau dampa®gs ¢hot occur. It
is reasonable to expect that there is an infinite number @friamts, one for
each even moment order, i. e. Ig, I, etc.

e For very small bunches in a nonlinear bucket, the situasoapiproximately
the same as for the linear bucket case.

e For large matched bunches in a nonlinear bucket, the bueehisstill invari-
ant and there is no filamentation.

e Large bunches with mismatches in nonlinear buckets losentlaiants of
motion due to filamentation.

4.7 Conclusion

4.7.1 Comparison of RF Feedback Models

Transfer functions for bunch phase and length oscillatiares presented for example
in [107] and in [13]. These transfer functions are equivaken(4.40) if g = 0 is
assumed. In addition, the models use the synchrotron freyuesy, so that the models
are valid for linear buckets or very small bunches only.
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Table 4.2: Developed models for coherent oscillation modes, statjobacket.

Modem 1 2 3 4 >4
Linear Bucket v v v v ?
Nonlinear Bucket v @ v Vv V ?

An early model for the control of bunch-shape oscillatians= 2 was given by Here-
ward [40]. Hereward defined quantities that are similar ®\hrianceC, o and the co-
varianceCy ;. As a main quantity, he considered the difference of theavages;, =
Co0 — Coo. Appropriate damping leads to a matched bunch wjth= 0. However, it is
obvious that this calculation is valid for a linear buckesarall bunches only, since only
then the trajectories can be normalized as circles@ngd= Cy, for matched bunches.
In [40], the nonlinearity of the RF dynamics is approximagd function inx = Ag and
x2. After the linearization, the model for the bunch lengthilestions is a harmonic os-
cillator with the frequencRwsyn. This is consistent with the transfer functidi; o /14
of (4.40). Hereward proposed the phase inpgitto damp the bunch length oscillations.
Equation (4.27c) shows that this is possible onlyggr# 0, because only then the input
uy is coupled withu,. This is in agreement with [40], since Hereward’s model deise
ongR.

The model was further developed in [113]. The model deveis equivalent to [40].
To damp quadrupole modes, both amplitude and phase mamhdatre proposed as feed-
back. In case of amplitude modulations, the damping rate/engas

K
~ 3/2
OCd ~ Cll wsyn,

whereK is a feedback gain, and in case of phase modulations as

K 32
ngp ~ tan(gRr) 1 wg’}{n.

This is consistent with the results of this chapter, becausas shown that in a
stationary bucket, i. eog = 0, the phase has no influence on the moments of secpnd
order and thus on the quadrupole mode and the damping ratdoews = 0.

The mentioned references show that the typical models wsadalyze bunch oscilla-
tions are based on a linearization of the single-particleadyics. One drawback of these
models is that they cannot be used to analyze the dampinglo¢éhorder modes. Another
disadvantage is that the frequency of the modes is not repied correctly.

Table 4.2 summarizes the contribution of this chapter. New s have been obtained
and analyzed for modegs < 4 for the linear and nonlinear bucket. In addition, Sys-
tem (4.56) models not only the dynamics, but also the coggigtween the modes.
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So far, all models are valid for the stationary case. Howeter modeling scheme
may be applied to the general cagg # 0. Also, higher order modes: > 4 can be
analyzed in principle. So far, the only limiting factor févet modeling scheme is given by
the calculations of Section 4.4.3; to obtain the momentsgfan density function, this
function has to integrated analytically and the effort @ages with the moment order.

4.7.2 Summary of the Results

The statistical description of the particle ensemble ledads simple formulation of the
control problem: A particle bunch has reached its equilitrif the density function is
time-invariant. The advantage of this formulation is thas ialso valid for nonlinear RF
potentials. Still, the controller analysis and design fos system is a complex task, as
its dynamics are governed by a PDE. To obtain simplified nmdemodeling approach
has been suggested based on moments. Moment methods leadydleen in use for
time-efficient simulations of beam dynamics and some mo+bhaséd models exist for
the coherent mode: = 2. These models are however valid for linear buckets only.
What is novel in this chapter is the use of a moment method taiminodels for bunch
shape oscillations in the nonlinear bucket and the subsguealysis using methods from
control theory.

The modeling scheme is based on raw and central moments larthgudinal phase
space. It has been shown that the control problem can benwefated in terms of mo-
ments under mild assumptions. Time-invariant momentstee equivalent to a time-
invariant density function and thus to a matched bunch. ¢tlheen demonstrated that
although there is no one-to-one correlation between thleinviunch modes: and the
moments, the central moments of orderare useful as a measure for the within-bunch
modem. The calculation of the moment dynamics leads to a set ofimeal equations
that describe the coherent oscillations. In case of a liheeket, these dynamics are only
coupled with respect to the input variables. A linearizatieads to transfer functions
for the bunch center and variance that are in agreement withwvik models. An analy-
sis of the higher order moments indicates that they are natraitable and thus cannot
be damped in a linear bucket by phase or amplitude modufationcase of a nonlinear
bucket, the nonlinear RF potential has to be approximatealfihte polynomial series so
that the rate of change of the moments can be expressed adiafusf the moments. Due
to the nonlinearity, the obtained model is not closed andiacttion is necessary. Dif-
ferent truncation methods have been proposed. One tronaaethod uses the relations
between moments and within-bunch modet® derive a state-space model for the modes.
The eigenvalues of this model depend on the bunch size gquagtiE; o and the frequen-
cies fall for increasing bunch sizes, which is in agreematit the simulation results. A
second truncation method is applicable for ellipsoidaldnas and leads to models for
the bunch phase and length. Both truncation methods anthtaization lead to models
that neglect Landau damping. It has to be noted that Landapidag is a highly complex
and nonlinear process. It can only be described accuraydlyebVlasov equation, i. e. an
infinite dimensional model, or a particle ensemble, i. e ghhfdimensional model.
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In this chapter, the models (4.58) and (4.59) that were ddriin the last chapter are used
in Section 5.1 to analyze a bunch length feedback systemedi¢lavy-ion synchrotron

SIS18 at GSI. The stability of the feedback is analyzed aag#rformance evaluated by
means of tracking simulations. In Section 5.2, measuresnainh beam experiment are
used to verify the analytical and simulation results. Hinglome possible applications of
nonlinear methods for stability analysis and controllesige are discussed in Section 5.3.

5.1 Analysis of RF Feedback Systems of the SIS18 at GSI

In this section, mathematical models are developed for twddedback loops at GSI.
These models are simplified, leading to linear transfer tfans that approximate the
closed-loop behavior. Next, the stability of the linear relod analyzed and finally, simu-
lations are used to evaluate the performance of the feedback

5.1.1 Structure of RF Feedback Loops

A simplified diagram of the feedback structure at GSI for thedh position and length is
shown in Figure 5.1. The individual blocks are describedafbllowing.

Cavity The cavity produces the sinusoidal RF voltage

Ugap(t) = U1R[1 -+ ue(t)] sin (9(t) — (1)), (5.1)

where the phase is the integral over time of the RF frequenogg. Strictly speaking, the
cavity itself is a subsystem with dynamics and even feedhsaps of its own. Often, the
cavity is modeled as a parallel resonant circuit. The casitriven by an amplifier and a
DDS (Direct Digital Synthesis) unit. The DDS receives thegjiencyvgrg and produces a
sinusoidal signal with this frequency using a look-up tabllee amplitude modulator AM
receives the reference amplituﬁIQIR. The output of the modulator is then amplified and
fed to the cavity, where it drives the resonator to inducevtiitagel,p. Feedback loops
are used to stabilize the amplitude and phastlgf, at their reference values. In case
of a high-current beam, the beam currgpi,,, acts back on the cavity, because a voltage
is induced in the cavity by the beam. This changes the gapg®land is referred to as
beam loading Beam loading or other collective effects will not be coesell directly as
mentioned above.

These remarks about the RF cavity already show that it is gExTsubsystem and
there are still important open research questions conugrits behavior and control.
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Figure 5.1: Simplified feedback structure of bunch phase and varianGSatAM: am-
plitude modulator. Courtesy H. Klingbeil (GSI), [60].

However, in many cases it is sufficient to model the cavity gimapler way. Important
conditions are:

e moderate rate of change of the modulatiopgndu

o well adjusted control loops for phase and amplitudélef,

However, it has to be noted that is difficult to choose spebifiundaries for the above
mentioned conditions. It will be assumed that these cambtare fulfilled, but the model
restrictions have to be kept in mind.

The DDS unit sums up the frequency correction valdesy and can be modeled as
an integrator [59]

Apgap (s) 1

A@gap = — | Awgp dt G = 50—

Pgap / WRF = pDs () AR (5) S

Due to the cavity dynamics, i.e. its finite bandwith, the ghesodulationu, from the
gap voltage (5.1) is not exactly equalAgg,p. Assuming a controlled cavity, the phase
modulationu, will follow changes inA¢g,p With a certain time constaritay,, and this
may be described by the first order system

up(s) 1

- Apoap(s)  Teav,ps+1°
(5.2)

uq)(t) + Tcavlq)qu)(t) — Aq)gap (t) = GC&V,([)(S)
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Similarly, the amplitude correction is modeled by the fingter system

ue(s) 1

ue(t) + Teavetle(t) = €(t) = Geave(s) = e(s) " Teaves + 1
cav,e

(5.3)

Typically, the time constants of the cavity feedback loopes @nsiderably smaller than
the time constants of the closed bunch position and bundthefeedback loops. For
this reason, the time constarits,y,e and Tcav,, Will be neglected in Section 5.1.3 and
subsequent sections.

Bunch Phase A detailed description of the phase loop is presented in. [38f main
parts are shortly summarized for the sake of completehess.

For an ellipsoidal bunch with only small variations from #wgilibrium, the moments
B1p and G, are sufficient to describe the dynamics of the beam with sjoethe
modulations and transfer functions (4.59) can be used. ransfer function for the bunch
position is

2

ABL()(S) wsynal
Gbp(s) -y (s) - 2+ w2 a1’
¢ syn 1

The bunch position is not measured directly. Rather, a bdsasgmonitor (BPM) mea-
sures the beam currefyt,,, and the phase detection subsystem compares the gap voltage
and the first harmonic of the beam current. The density Higion of a bunch is often
approximately Gaussian and in this case Equations (3.44) Dae to (3.44b), the phase

of the first harmonic ofy,e,py, is ¢1 = —AB; o. The phaseg; are defined in such a way
that ¢, > 0 implies an advanced wave, cf. definition (A.5). Because tinesps of the
beam and the gap voltage are defined in the opposite way, #me pkease

A(Pbeam = —¢1 = ABl,O

will be used instead. The comparison in fitease detectiosubsystem yields the detected
phase

A(Pdet(s) _ s) —
el ~Cw© -1

The detected phasep.; is used as input of a finite impulse response (FIR) filter. The
basic idea of the FIR filter is to have a band-pass filter thafdass frequency components
near the frequency of the mode that should be detected andethf69]. The center
frequency of the passband will be denotedfyss. If for example the dipole mode is
considered, it is reasonable to chog‘%gss close to the synchrotron frequengfg&rl to
detect bunch phase oscillations.

AQdet = APpeam — Ug = AB1g — Uy, =

DAn important difference of this summary compared to [59his tefined beam model that depends on the bunch
size. The theoretical analysis of [59] is however still galbecause the shape of the transfer functions remains
the same. The only difference is the change from the synurdtequencywsy, to the effective frequency
Va1 wsyn With a; from Appendix C.4.4.



130 5 Damping of Single-Bunch Oscillations

10
-200

~~

-400

w) in degree

-3

|Gy (iw) |

[
o
1

£ Gﬁr (
&
3

10" 10° 10° ! 10° 10°

w w

=Y
o

Figure 5.2: Magnitude and phase @, (iw) for wpass = 1kHz (logarithmic and semi-
logarithmic scale).

Additional desired filter properties are a rejection of th€ Bomponent and a phase
lag of —180° at fpass. The rejection of the DC component is important, becausein ¢
eral measured quantities of the bunch suclBagandC,y may contain DC offsets. In
addition, the exact equilibrium of the varian€g g is not known and a DC rejection is
useful to obtain relative quantities such/sB; o andAC, o. The phase shift of-180° is
important for the stability, a detailed analysis can be thuim[59].

The FIR filter has the discrete form [59]

1 1 fsamp 1 fsamp
: — e = xe _ e _ 4
yﬁr(”) 4xf1r(n) + zxﬁr (n 2fpass> 4xf1r (n fpass ’ (5 )

wherexg, are the inputyy, the output, andsamp = wsamp /27t the sampling rate of the
filter, respectively. The discrete time stepsi#re) = 1/ fsamp. Writing the discrete filter
as a transfer function yields

e 2fpsass + e_ 2fpsass
2

1 s
Ggir (s = iw) = 5e 2fpass [1 —
The frequency response is thus given by

1 —ig—v
Ggir (s = iw) = Ee T Gpass ll — COSs (ﬂw;ss>] .

The magnitudg Gg;, (iw)| and phaseGg;, (iw)| are shown in Figure 5.2 fabpass =
1kHz. The filter indeed has a bandpass characteristi@ at [2k + 1]wpass (k =
0,1,...).

Finally, the filter is followed by a gaik; and a time delayly. The time delay cov-
ers the time that the digital and analog hardware needs tepsahe information. The
resulting frequency correction is

Awgp(s) = e 1 Ky G () APger (s)-
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Bunch Length The transfer function of the bunch length is given by (cf58})

B AC2,0 (S) B —ngynbl
Ue (S) 52 + wgyn [2612 + OZ3] ‘

Gpi(s)

(5.5)

After measuring the beam current, the amplitutleof the first harmonic is determined.
Assuming a Gaussian density, (3.44b) yields

. _1
A1(t) = 2ipeame 2C20,
Linearizing around’; o = E;  yields

- _1 - _1
Ap = Ape+ AA] = 2peame 250 — fpeame 2E20AC, g

BAY _ o ik (5.6)
ACZ,O beam .

= Gp =

If a similar FIR filter as (5.4) is chosen, the DC compondnt, is rejected and only
AAq is relevant. In [93, 95], an FIR filter is proposed that hascdyahe same structure
as (5.4). The only differences are the choic¢afs, which will be close to the frequency
of transfer function (5.5), and an additional discretegnagor

yi(n) =yi(n —1) + Kygxi(n) = Gi(z) = n(z) _ Kiq i .
x1(z) z—1

Its continuous transfer function is approximately [9]

Kig 1
Tsamp s’

Gi(s) =

whereTsamp = 1/ fsamp i again the sampling time of the feedback loop. With the time
delayTy, the amplitude correction reads
Kigq 1

e(s) = e 10 T Grir(s) Ga AC(s)
samp S

and the modeling of the control loops is complete.

Remarks.1 The transfer function (5.6) introduces a dependency on #snnbeam cur-
rent. If ip.,m Can be measured as well, this can be avoidethif Ag = A1/ (2ipeam ) iS
used as input to the filter. This has the advantage that the santroller gains could be
used for experiments with different beam current levels.

Remark5.2 There is an alternative to the described measurement ofuhehdength.
In [13], the measurement of the peak line density of the basdk said to be a usual
procedure and the transfer function

Al/T  [2wsyn)*a
e(s)  s2+ [20wgyn]?’

(5.7)
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is given, where it is stated that= 1/4 for smgll bunches. The bunch heidltborresponds
to the peak line density or peak beam curmgpt,,. Assuming an ellipsoidal bunch with
a Gaussian density, (3.44a) yields a peak beam current of

2~ . - 27-(
Ibeam = lbeam(x = 0) = lpeam GO

The equilibrium can be defined éb%am,e = Ipeam \/ 270/ E2 o @nd the relative change in
this peak current is then

Ibeam — ibeam,e _ A_l _ EZ,O 1~ _ACZ,O
Z'beam,e ! CZ'O 2E2’0

and the approximation is valid for small deviation§, ¢ = Cp0 — Ezp. This leads
with (5.5) to the transfer function

A/I(s)  AIJI(s) ACap(s)  F@Wim

es)  ACyo(s) e(s) 2 + wWin[2a2 +a3]’

Indeed, for small bunches$; /E; o ~ 1 and2a; + a3 ~ 4 holds and (5.7) is obtained
with « = 1/4. It has to be noted that (5.7) is given without derivation anty « is said
to depend on on the bunch size. As the last considerationg shimore precise transfer
function is given by (5.8) in case of larger bunches.

An advantage of this transfer function is that is does noteddpon the mean beam
current. However, the measurement of the peak beam curraytb@ prone to noise,
whereas the calculation of the first harmonic amplitutieis equivalent to a low-pass
filtering of the beam current signal.

(5.8)

Open Loop Transfer Functions The pass filter frequency of the bunch phase loop will
be denoted byfy,ss,1, Whereas for the bunch length loop the frequerigys > will be
used. The complete open loop transfer function of the buhels@ can be written as

Gi(s) = = |Gup(5) = 1] Geir(s) Gos(s) Geav,p(s) Ky e

_2f Zss, ﬁ _Zf :Ssr
= —K1— . 5 e “passl 1_elpl-l-e pass 1 o Tas
[5? +wi] [Teavgs +1] 2 2
(5.9
wherew; = wsyn+/a1 is the effective synchrotron frequency of the phase.
The open loop of the amplitude is described by
Ga(s) = —Gpi(s) Ga Giir(s) Gi(s) Geav,e(s) e ¢
_ K2 w% 1 1 eizfpass,z 1 _ ezfpass,z _|_ ei zfpass,Z edeS
2+ w3 8 Taaves +1 2 2 ’

(5.10)
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with the effective frequency, = 27 f, and the gairky

, ——— _ - Y S
W2 = Wgyn 2612 + as, Kz = _ZZbeame 2520 T 2a2 s .
samp

The purpose of the feedback design is to choose the feedbaahpterKy, K g, fpass,1,
and fpass 2 such that the loops are stable and well damped. The othempéees depend
on the synchrotron design and the beam properties. Fordhersiry case that is consid-
ered here, all parameters are constant for a given beam size.

5.1.2 Stability of Linear Time Delay Systems

Both the bunch phase and bunch length feedback loop haverttmeof the general feed-
back loop with multiple delays shown in Figure 5.3. The loopsists of a transfer func-
tion Gy (s) and a sum of delays withregl > 0,1 = 1,... L, and real coefficients;. For
example, for the transfer functiasy (s) in (5.10), a possible choice 6%(s) is given by

2
w 1 1
Go(s) = K 2 __ .
O(S) 252 +w§ S Tcav,ss + 1

In the following it is assumed thak(s) is a rational function with real coefficients
and its numerator and denominator do not have a common rod&@is strictly proper,
i.e.Gp(c0) = 0. The closed-loop transfer function betweaerandy is given by

() _ Gs) = Go(s) .
W(s) 1+ Go(s) Zfq ky e

This system can also be expressed in the time domairy (if) is written in state space
representation

dx(t)
dt
with u = —7 and leads to the linear time-invariant delay differentguation (LTDDE)

— Agx() +bou(t),  y(t) = chx(b),

dx(t L
() = Apx(f) + Z Aix(t—1), (5.11)
dt i
wherex is then-dimensional state vector ant}), A; = —boklcbr are constant real x n

matrices.
In case of a single delay, i.&.= 1, and provided tha6G,(0) > 0, the poles ofG(s)
are the zeros of the characteristic equation

1+ Go(s)kie ™ =0 (5.12)

and the closed loop is stable if and only if all roots of thigracteristic equatiorie in
the open left complex plan€_ [26]. These roots are also calletiaracteristic roots
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Figure 5.3: Linear feedback system with multiple delays.

Since Equation (5.12) is a quasi-polynomial for nonzeragehlnd thus a transcendental
equation, the number of roots in the complex pl&hés infinite and their analysis not
straightforward [122]. However, it can be shown that theagahNyquist criterion (cf.
[8, 27]) can be applied [26]. This leads to the analysis ofrtie locusGy (s = iw) and
its encirclements of the critical poirt1 in the complex plane.

In the general case of multiple delays, the Laplace transfof (5.11) leads to the
characteristic equation

L
1+ Go(s) Y ke ™ =0. (5.13)
=1

Again, (5.11) is stable if and only if all the characteristoots of (5.13) lie inC_ [10].
Thus, it is necessary and sufficient that the root with thgdsir real part lies i€ _. To
analyze the roots, use is made of the fact that their movemgntrespect to changing
parameters irC is continuous. For zero delays = 0, = 1,...,L, the stability is
determined by the finite number of roots@§. As soon as the delays increase and become
nonzero, an infinite number of new roots appear. For suffiigiemall delays, all of these
roots lie inC_ and their absolute values tend to infinity for— 07, i. e. they proceed
in C_ from the left with increasing delays [133]. With increasuigays, the roots due to
the delays and the eigenvaluesAj will move and may cross the imaginary axis. Due
to the continuity of the movement, a necessary conditioraftransition of stability to
instability or vice versa is the crossing of the imaginarysaMany stability conditions
thus rely on the calculation of the characteristic rootssfet icv, which is similar to the
Nyquist criterion. For commensurate delays, i.e. for delay= It that are multiples
of a basic delayr, it can be shown that the crossings of the imaginary axis ai fin
number and stability tests exist [133]. Unfortunately, dieéays of (5.9) and (5.10) are not
commensurate in general.

In general delays are not desirable because they reducd#se pnargin of the open
loop system. However, it is also possible to give examplesre/feedback containing time
delays may stabilize an otherwise unstable system forinerédues of the delay [122].
One possible example are unstable systems that can bezetdhiking a derivative con-
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troller. The continuous derivative may be approximatedigyfinite difference

g K=Y T)

with the sample timd,. The right hand side contains a time delgy For sufficiently
small Ty, the approximation error is small and the closed loop wiktable. For largefy,
this is no longer valid and the closed loop may become urstablgeneral, the stability
will depend on the specific value of the time delay and therg beaseveral intervals on
the Ty-axis with closed-loop stability.

For Teav ¢ ~ 0 and without the delays, the bunch length feedback loop fefotm

sz%
s[s2 + w3]

This linear system can be stabilized by the (non-propengstex functions? of a second

derivative. In the following, filter (5.4) is shown to be slarito a second derivative. This

indicates that the given FIR filter is indeed useful for trabgization of the open loop.
Writing the derivativey(t) = %(t) as a difference quotient

y(t) = ¥(t) ~ Tio lx(t) - ;(()t —To) x(t—To) ;Ox(t —2TO)]
2 R SO S S (5.14)
__T_g [_le( )+§x( — 0)_4_19(( — 0)1

with sample timeT| leads to the same structure as (5.4]jf= 1/2fpass and an addi-

tional gain—4/T0*2 are applied to the FIR filter. However, approximation (5.&4alid
only if T is sufficiently small. This is apparent from the transferdiion of (5.14)

1
G(s) = 2 [1 —2e Tos 4 e_ZTOS] :
0
Using a series representation for the exponential funstiGrmay be rewritten as
1 T3s? 4Ts?
G(S):T—gll—le—Tos—i—T—... + |1 —2Tys + ||

=52+ %O ([Tos]3) :
0
Thus, forTy — 0 the transfer function of a second derivative is obtained.

More precisely, T, should be considerably smaller than the time constant otiyhe
namics ofx(t). For the bunch length feedback, the time constant of therdiesis1/ f,
and the conditiofy < 1/ f, is then equivalent t@,ass > f>. Together with the integral
controller, the second derivative leads to the necessagebhift o®0° for damping. In
case the time delaYy and measurement noise are neglible, the feedbackfpith > f»
is stable forK, > 0.
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For the considered feedback loops, there are several reagonthe simple previous
stability analysis forfpass > f» does not automatically appW. First, a typical choice
iS fpass & f2, because bunch length oscillations should pass the filtecor®l, a pure
derivative will increase the effect of noise and this immoa@ upper bound Offpass.
Third, a bound is given by the digital hardware and the faat tequation (5.4) is only
feasible forfpass < fsamp/2. The conclusion is that a general stability analysis for
arbitrary values ofpass is needed.

In the next section, the stability analysis of (5.10) wiliyren the calculation of the zero
crossings of the imaginary axis. From (5.13) it follows ttias is equivalent to calculating
the crossing of the critical point1 by the root locuss, (iw) = Gg(iw) Zlel ke~ T,
Nyquist plots will be used in addition to check the directafriraverse of the root locus.

5.1.3 Stability Analysis of Bunch Length Feedback

In this section, the stability of the bunch length feedbackmnalyzed depending on the
feedback parametets, and fpass for the stationary case. All other parameters of the
system are fixed and can be calculated from known paramefténe synchrotron and
RF setup and from the beam properties. An important beamepos the bunch size,
because the mode frequenciesandw, depend on it.

The stability of the phase loop has been considered in detfB] and its analysis is
also valid for large bunches, if the synchrotron frequerscgdjusted appropriately from
the linear frequencysyn to the effective frequency

W1 = Wsyn/ a1 (EZ,O)/

with a1 from Section 4.6.3 depending on the bunch dizg. For this reason, the stability
analysis will focus on the feedback loop for the bunch lengthe line of argument is
based on the Nyquist criterion and is similar to [59].

The frequency response of the open loop is obtained by neglac= iw in (5.10) and

reads
1 — cos < tew )1 ,
X2W>

L fpass,2 _ wy __ 2ar+a3
Xz «.— —f2 Y f2 — E — wayn 4

was used. Due to the symmetry of the frequency response egtrad taw, only positive
frequenciesv > 0 will be regarded in the following. The filter frequengyass> will

: s
—1w |:X2<U2 +Td}

_&1e

Gy (iw) =
2(i) 21— @ wli— Teay,ew)
w3

where the definition

2)In spite of the following considerations, it is interestitiggnote what the properties of the control loop are for
the limit casefpass > fo.
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be chosen close to the mode frequerfgyi. e. x»
singularity atw = w», its magnitude is

1. The frequency response has a

G (ie0)] = |Ks| [1 —cos( i )}

X2w2

1+ T2
and its phase is

cav, sw

KGZ 1aJ {

—w szz

} — [5 +arctan (Teay ew)]

for Ky, w € A;,

+ Td} [72T + arctan (Tcav,sw)} for Ky, w € A,,
where

A1 :{Kz,a}E]R :

[Kp > 0and0 < w < wy] or [Ky < 0andw > w»|}
AZZ{Kz,wER :

[K; > 0andw > wy] or [Kx < 0and0 < w < wy}.
The Nyquist plots of5, in Figure 5.4 show that for, = 1, a necessary condition for
stability isK, > 0, as the locus, (iw) is traversed in clockwise direction féf, < 0

On the other hand, a necessary condition for a transitiaon &tability to instability is that
G, (iw) crosses the critical point1. The frequency at which the crossing

G2 (iwerit)| = 1 (5.15a)
LGy (iWerit) = —pTT, pe{1,35...} (5.15b)
occurs will be denoted by, i+ and the gain byK; ;. Under the assumption that the
cavity feedback loops have a fast response, more preciely. w| < 1, the time
constantl.,y ¢ can be neglectédand (5.15b) can be solved analytically for= wy it:¥

P2
_ Wauit(p) _ ) 5 +2Taf2 for¢ <landk; >0 y
A [ A 516)
Lot (076> 1andk; > 0.
Solving (5.15a) foK, (p) yields
[Ka(p)| _ ,16(p) [1 = 2(P)]]
(,Uz )

o COS( X(z ) : (5.17)

For a giveny, the critical gainky .t is the lowes&, (p)

|K2,crit| = mpin |K2(p)| ’

p €{1,3;5;...}.

3)For a small but nonzer®.,, ¢, this assumption can only be satisfied in a limited frequenoge|w| < wmax

“The ratio& appears on both the left hand and right hand side, becaugehtise ofG, is discontinuous at
w = wy, cf. the definition of4; and.4,. The calculation of is performed separately fgr> 1 and¢ < 1
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Figure 5.4: Nyquist plots ofG, (iw) for w, = 31.32kHz, Ty = 107> s, andTeay ¢ = 0.
The locus consists of the following sectionsro < w < —w» (gray, dashedy-w,; <
w < 0 (black, dashed)) < w < w»y (black, solid),w, < w < oo (gray, solid).

Table 5.1: Calculation of the critical gain fog, = 1, Ty = 102, andf, = 4985 Hz.

p=1 p=3 p=>5

5 Ble Sle &
§<1:| 0455 0.841] - | - | ...
¢>1:| 1.36 166|318 316/ 5 120] ...

The decision about the sign &, i for a certainy, can be made by analyzing the
direction of traverse of the Nyquist plot as already desatibrable 5.1 shows an example
of the calculation. The minimal gain is obtained for= 1 and the critical gain i&y it =
0.841. With this procedure, a stability diagram can be obtainatishows the critical gain
as a function of the filter frequency. Figure 5.5 shows thkiktgdiagrams for the bunch
phase and length for typical valueswf, w,, andT4. The diagram of the bunch phase is
based on the calculation of [59]. The shape of the bunchlietiggram does only depend
on the producty f, ~ 0.05. This follows directly from (5.16) and (5.17).

5.1.4 Tracking, Linear Model, and Feedback Performance

The derived diagram describes the stability of the feedpbagkdoes not reveal anything
about the feedback performance. To evaluate this perfaejgarameter scans are pre-
sented in this section for both bunch phase and bunch lesgitations in the linear and
nonlinear bucket. The parameters of the tracking simulatare summarized in Table 5.2.
The stability analysis of the FIR feedback relies on thedirteansfer functions; (s)
andG;(s), cf. Equations (5.9) and (5.10). Itis thus reasonable tt &fith an evaluation
of these continuous models. All elements in the feedbagh tetransfer functions, time
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Figure 5.5: Stability diagrams for the bunch phase (dipole mode, [58] the bunch
length (quadrupole mode) far; = 15.66kHz, w, = 31.32kHz, andT4 = 10~°s. The
gray areas are combinations of gain and filter frequencyyike#t a stable closed loop.

Table 5.2: Parameters for simulation and experiment.

lon species Argon!8+ Kinetic energy ~ 11.4 MeV
TR 1.0122 Br 0.15503
TR 4.663-107°s | 91 5.45

h 8 fRE 1.715MHz
U r 5kV — 10kV | fenatl0kV  3312Hz

T4 107 %s OrbitlengthLg ~ 216.72m
Ibeam 2mA feamp = Toamp ~ 375.44kHz

delays, FIR filter, and feedback — are discretized with adxsenple timel. With regard
to the simulation accuracy, the sample tiffig should be chosen as small as possible,
but of course this is limited by the available computing powks a compromise]y =
Tr /7 is chosen for the simulation of the bunch length feedbackiang 2Ty /7 for the
bunch phase feedback. For the latter simulation, the satimpéecan be chosen twice as
high, because the bunch phase oscillation frequencig lower by a factor of about two
compared to the bunch lenght oscillation frequetagy Based on the discretized models,
parameter scans with differeqt andK;, i = 1,2, are then performed. It is assumed that
the bunch density is Gaussian, the parameters of the scassmmarized in Table 5.3.

To evaluate the performance, the following quality measure

absolute area okB; o with feedback fOTe“d |AB1o(x1,Kq,t)] dt
absolute area without feedback fOTend |AB1(0,0,t)| dt

Jin1 (x1,K1) ==
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is defined for the beam phase and

Ten
Jo o IACo0(x2, Ko, )| dt
Jo= |AC20(0,0,1)] dt

Jiin2 (x2,K2) 1=

for the beam length. If the feedback is effective and inasdke damping of the bunch
phase and length oscillations, the absolute area undeuticidnsAB; () andACy o (t)
will be smaller compared to the uncontrolled case Apd, Jiin2 €]0; 1[. Perfect control
in the sense of immediate damping impligs, = 0. In the following, runs that are
unstable or lead tgy;,, > 1 will be assigned the valu@;,, = 1. Since the following
simulations are discrete, the integrals/gf ; andJj;, » are approximated by sums.

Figure 5.6 shows the results of the scan. For this scan, amlylations of the closed
loop systems using the transfer functiagksandG, are used. The performance matches
well with the theoretical stability limits. The best restdt the bunch phase is obtained
for x; = 0.97 andK; /w; = 0.32, the performance ig;, ;1 = 0.034. The best result
for the bunch length igy;,, , = 0.041 and is obtained fox, = 1.15 andK;/w, = 0.34.
The first contour line around the optimum in both diagramp;is= 0.1. Thus it can be
concluded that there is a rather large parameter area wiblh@ gerformance.

Linear Bucket The transfer function&, andG, are already approximations for a linear
bucket, because they rely on linearized dynamics. In addithere might be an influence
because of the different sampling times of bedig)(and feedbackTisamp). Figure 5.7
compares three different cases:

e simulation of the transfer functiorns; andG, with the basic sample timé,,

e tracking simulation for a linear bucket (cf. Section 4.5)wmthe basic sample time
To,

e tracking simulation for a linear bucket with realistic sdenpmesTy (beam) and
Tsamp (feedback).

For the tracking simulations, an ellipsoidal bunch with au&€aan density is initialized
with a random distribution oNmacro = 6 - 10* macro particles in the phase space. The
bunch parameters ang = 0.1, yo = 0, 0x = 1.01, 0y = 0.927, andE; o = 0.92. The
histogram of the beam current hiafg;,, = 50 bins.

It can be observed from Figure 5.7 that the difference du@ntmtizatio® is small,
whereas the sample times have a larger impact. However, alel® show a similar
behavior.

Nonlinear Bucket and Large Mismatch The simulations are repeated for a nonlinear
bucket. This time, nonlinear particle tracking simulasare used to evaluate the feed-
back performance. The longitudinal mapping equations ®fidam are already discrete

%) The dynamics for a linear bucket are nonlinear in the inplite transfer functions are based on a linearization
of these nonlinear dynamics, whereas the tracking sinwatare exact.
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Bunch Phase Bunch Length

Figure 5.6: Parameter scan for the ideal linear bucket. The contous lofehe center
diagrams ar¢ = [0.1,0.2, ..., 1].

with the sample timdy = 4.663 us. On the other hand, the feedback loop has its own
frequencyfsamp and sample timdsamp = 2.664 us as given in Table 5.2. To obtain a
realistic result, the basic sample tirfig should be chosen such th&t and Tsamp are
approximately multiples ofy. The choicely = Tr/7 leads to4Ty = 2.665 us and this

is very close tdlsamp. The simulation is thus performed with the basic sample ftiigie
the mapping equations are evaluated only every seventhstepeand the feedback loop
only every fourth time step.

For the scans of the bunch phase feedback, the initial bustfibdtion is matched for
10kV with a bunch size of, y = 0.928. and the bunch is shifted Wy1rad in phase.
In case of the bunch length feedback, the initial bunch iBistion is matched fob kV
and the voltage is raised stepwisef at 0 to 10kV, leading to a large mismatch of the
bunch length. The bunch size after the voltage ste@/'@ = 0.928. The parameters of
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Figure 5.7: Linear bucket, closed-loop damping of the bunch phase andiblength
oscillations. Optimal parameterg1; Ky /wy) = (0.97;0.32) and (x2; Ka/w2) =
(1.15;0.34). Simulation of transfer function&; (s) and G, (s) with sample timeTj
(blue). Tracking simulation witil (red). Tracking simulation with realistic sample
times for beam and feedback (black).

the tracking simulations are given in Table 5.2 and the audit parameters of the scan
can be found in Table 5.3.

In case of the nonlinear bucket, the modeling differencéwéen the tracking simula-
tions and the transfer functionis;, G, are not only due to linearization and the sampling
times, but also due to the fact thaf andG, do not include Landau damping. To evaluate
the feedback performance, a new quantity is chosen thattljineflects the increase in
bunch area and is thus directly related to the beam qualitybBth the bunch phase and
length, it is chosen as

J = b (XirKirTend) — 12(0/0,0)
nl — 7
I (OIOrTend) — D (0/010)

wherel, (x;,Kit) = Coo(t)Cop(t) — Cil(t) is the square of the bunch area in case of
feedback with the parameteysandK;, i = 1,2. Again, without any feedbacl,; equals
1 and with perfect control,; = 0.

The results of the scan for the nonlinear bucket are shownguar€& 5.8 for bothyy;,,

andJ,; and the performances are given in Table 5.3. The followingeolations can be
made:

e The performancgy;, for the nonlinear bucket is inferior compared to the linear
bucket. This could be expected, because in a nonlinear hubleecontroller has
to outperform the fast Landau damping. Simulation resuitsisthat Landau and
controller damping times cannot be added together in arliwas.

e The bunch phase control is very effective in terms/gf For the optimum, the
increase inl, for the closed loop is onlg% compared to the increase for the open
loop. Both optima have similar parametéps, Kq /wq).
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Figure 5.8: Parameter scan for the nonlinear bucket. Again, the cotitoes mark dif-
ferencesAJ,,; = 0.1 in the performancég,;. (x): Optima of the scans.cf: Settings of
the experiment.

e The bunch length control shows a good efficierigy = 38%, but a poor damp-
ing performance in terms qf;,. In addition, both optima occur at considerably
different gainsks.

It has to be noted that the stability regions in the paranstace(y, K) of the bunch
position and bunch length feedback for the nonlinear buateehot readily apparent from
the scans of Figure 5.8. These scans show the feedbackrmparfoe relative to the open
loop simulation, i. e. relative to Landau damping. The whiteas are parameter settings
for which the integral of the absolute error or the emittaimceease is larger than in case
of the open loop system. This does not automatically impgyahility.

Figure 5.9 compares the results of the feedback in the reanlibucket for the transfer
functions and the tracking simulation. The choice of theapaaters is not the optimum
obtained in Figure 5.8, but is rather chosen with regard ecatialysis of a beam experi-
ment in Section 5.2. In contrast to the earlier Figure 5.& niodels do vary significantly,
because the transfer functions do not reproduce the Laratapidg, which is larger than
the damping due to feedback in this particular simulatiohe initial frequencies of the
nonlinear oscillations are however reproduced very wethigytransfer functions. As can
be expected, simulations show that the smaller the bunehisia nonlinear bucket, the
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Table 5.3: Performance scans.
Bunch phase Bunch length
Linear Bucket
Bunch size EZ,O =0.92 Ez/o = 0.92
Transfer fct. ap =1 by = Eyp,2ap + a3 = 4
Frequencies f= fsyn fo= 2fsyn
Sample time Ty = 2TR Ty = +Tx
Sim. length 3000TR 1500TR
Initial values B1p=01,By; =0 Co=1,C1=0,Cpp =084
Optimum Jjin (Xl' o T ) = (X o2 T ) =
7wy’ Min,1 27wy Jlin2
(0.97; 0.32; 0.034) (1.15; 0.34; 0.041)
Nonlinear Bucket
Bunch size Eyp = 0.928 Epp = 0.928
Transfer fct. a1 = 0.62876 2ay + az = 1.9316, b; = 0.58349
Frequencies f1 =0.793fsyn f2 = 0.69491 - 2 fsyn
Sample time Ty = %TR (basic),Tr (beam), andsamp (feedback)
Sim. length/y;,, 1000TR 400TR
Sim. length/,; 3000Tr 1500Tg
Initial distribution matched at0 kV, matched ab kV,
phase shift 00.1 rad voltage step td0 kV
OptimumJjin (Xl' o T 1) = (Xz' o2 I 2) =
7wy’ m, 7wy’ n,
(1.18; 0.395; 0.62) (1.58; 0.178; 0.80)
Optimum]y; (Xl} o1; ]nl) = (Xz; 2; Im) =
(1.05; 0.73; 0.06) (1.26; 0.78; 0.38)

more the behavior becomes similar to the linear bucket ddss.is demonstrated in Fig-
ure 5.10 which shows a similar simulation for a smaller busiale £,y = 0.55. The
damping of the tracking solution is slightly larger due tai@idnal Landau damping, but
the results do agree well.

The results of this section lead to the following conclusion

e The transfer function§ and G, describe the feedback dynamics very wel
for the linear bucket. They can be used for the stability ysisland a con-
troller design. In addition, the simulation of the trandianctions is consider-
ably faster than the corresponding tracking simulations.
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Figure 5.9: Nonlinear bucket, closed-loop damping of the bunch phase amch
length oscillations with parametefy; K1 /w1) = (1.33;0.41) and (x2; Ka/wy) =
(1.95;0.285). (solid, blue): transfer function&;(s) and G,(s) with the basic sample
time Ty = %TR, (solid, black): tracking simulation with realistic saragimes.

' voltage step ' ' Figure 5.10: Comparison of trans-

' 1 fer functions (blue) and tracking
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feedback on. Same simulation pa-

rameters as Fig 5.9 except for the

1 the bunch sizef;p = 0.55 and a
filamentation voltage step froml0kV to 15kV.
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e In case of the nonlinear bucket, the transfer functions eamsed if the damp-
ing of the feedback is large compared to Landau damping. i$hisually the
case, because this is the objective of the controller degigrssible improve-
ment could be to introduce additional damping terms in tAedfer functions
to approximate Landau damping.

5.2 Analysis of a Beam Experiment

The results of a beam experiment are used in this sectionrify Wee developed theory
and the simulation resulf.A more detailed description of the experimental setup can be

found in [60] and [95].

6 The beam experiment was realized at the SIS18 at GSI by DaltHKtingbeil, Monika Mehler, Dr. Bernhard
Zipfel, Dr. Ulrich Laier, and Dr. Klaus-Peter Ningel. The aseirement data in this section is courtesy of Dr.
Harald Klingbeil, GSI.
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5.2.1 Introduction

The simulation parameters of Section 5.1.4 were chosen thiatlthey match with the
beam experiment. The parameters of Table 5.2 are thus didarvéhis section.

The initial RF amplitude is agaiBkV and is raised stepwise 1d kV to induce large
amplitudes of bunch length oscillations. The evolutiontw bunch shape is shown in
Figure 5.11 in a simplified way. The figures show a uniformribstion, but the reasoning
is equally valid for other distributions.

First, the bunch is matched before the voltage step. Therbhas a size o2oy, =
¢ and a variance, o. The bunch shape matches with a trajectory in the phase space
(Ap, Ag). In alinear approximation the solution (2.37)

A@(t) = ¢ cos(wsynt)
holds and the intersections of the trajectory ae= ¢ andA¢ = ¢wsyn. The constant
Py o is not important here and will be omitted.

Second, the voltage is doubled and this changes the synzhifoéquency by a factor
of /2, as follows from (2.38). This leads to

Ag(t) = ¢ cos(V2wsynt)

and the trajectories are stretched by a factoy/@fin direction ofA¢ (Figure 5.11, center).
The bunch shape is not altered by the voltage step but is nematched, i. efizo = Epp.
The patrticles of the bunch will then follow the new trajeasr resulting in bunch length
oscillations.

Third, the bunch will settle at a new equilibrium due to filartagion or feedback. If
the feedback is fast enough and filamentation is negligible,bunch area will remain
constant. The new equilibrium is then given BXO = Ez,o/\/i (Figure 5.11, right).

The relative mismatch of the bunch due to the voltage stepheenbe expressed as

20 ~F20 _ 51~ m1%.
Ezp
In normalized coordinatelst = Ag,y = Aw), the increase of the RF amplitude does not
change the trajectories, but corresponds to a comprestitie dunch in direction of
by a factor ofy/2. The final bunch area is thus smaller by a factox/@ compared to the
area before the voltage step.

It has to be emphasized that this experiment is an extrenmtisih that usually should
not occur during normal operation. The large oscillatiomphlimdes are intended to test
the theory and the validity of the feedback setup [60].

The experiment comprised three runs:

L The feedback loops were switched off and the oscillationsevealy damped by
Landau damping.

Q The quadrupole (i. e. bunch length) feedback loop was sedtan.

DQ Both the dipole (i.e. bunch phase) and quadrupole (i. e. lblergth) feedback
loops were switched on.
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Figure 5.11: Simplified evolution of the bunch shape during the experimen

5.2.2 Beam Profile

To be able to simulate the experimental setup, the follommgsing parameters have to
be defined: the bunch density function and the parameteredéedback loop.

It is assumed that the bunch approximately has the Gaussiasitg (3.33). For a
matched bunch, the translatieand the orientatio® can be set to zero and the remaining
degrees of freedom are the standard deviatigns= ¢7,, andoy, := 03,. In addition,
the choice of one standard deviation will determine the rogt@ndard deviation. For
example, for small bunches it will be reasonable to chagse- oy. For large bunches,
the density (3.33) will not lead to exactly matched shapes,itds possible to make a
good approximation. As it has become clear in Chapter 4,dnhabme2c, is an important
quantity that determines the bunch dynamics. A possiblelosion that is confirmed by
simulations is to interpre2o, and2c; as effective half-axes of the bunch [56, 60]. It
seems thus reasonable to match the bunch at the contouf lihe-@c,.. This is done as
follows. In a nonlinear stationary bucket the intersediofthe trajectories are given by

(cf. (2.54))

where againe := Ag andy := Aw was used. Choosing = 20y and® = 20y finally

leads to
1 — cos(20-
oy = [T 510

This gives an extra condition for the matched shape andagntgmains as the last degree
of freedom.

Equation (5.18) is only used to have a good starting pointforA subsequent fine-
tuning in the simulation is done fer, ando;, to minimize any bunch oscillations before
the voltage step. As the measurements are given in arbiraty, the fitting procedure
also includes finding appropriate scaling factors. It isuagsd that the measurements
Ypeam Of the beam curren,,,,, are scaled with the gaify and the offsef as

ybeam(t) =5 'ibeam(t) — 50- (5-19)
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Figure 5.12:Beam current measuremenis.., before the voltage step for the three runs
L (only Landau damping), Q (bunch length feedback), and Dah¢h phase and length
feedback): measurement (solid) and nonlinear trackinglsition (dotted).

Table 5.4: Initial shape and scaling parameters of the bunches bdferedltage step.

Ox Oy (5.18) Ez/o = 0'3% EO,Z = 0']3 Sl S()
unit rad rad rad ratd rack Al 1
Run L 1.0654 0.8313 0.87497 1.135 0.691 180 0.475
Run Q 1.1476 0.8894 0.91178 1.317 0.791 195 0.45
RunDQ 1.1459 0.8881 0.91107 1.313 0.789 200 05

It is also assumed th&t andSy do not change during a given experiment, but may vary
between different experiments.

With the two standard deviations and the scaling paramedtezee are four degrees of
freedom for the fitting. Three features of the beam curremthosen: the maximum, the
minimum, and the width of the beam curreft., (t). The parametersy, oy, S1, and
Sy were chosen such that the features of the simulation maé&cm#asurement and such
that the bunch oscillations before the voltage step aremah{matched bunch).

The result of the fitting is shown in Figure 5.12 for the thréfedent runs and Table 5.4
summarizes the standard deviations and compares thes¢5uiiB). The difference be-
tween the fine-tuned, and (5.18) is only a few percent. The scaling parameterslsoe a
given in Table 5.4.

Now that the bunch sizé&, o before the voltage step has been determined, the equi-
librium £, after the voltage step can be calculated according to thsidemtions of



5.2 Analysis of a Beam Experiment 149

Table 5.5: Effective frequencies and gains.

~ E ~ ~ ~
Ero  E0="73 wn (E20) 22 (E20) it (Ezp)

Run L 1.135 0.803 0.818 0.731 0.251
Run Q 1.317 0.931 0.792 0.694 0.303
RunDQ 1.313 0.928 0.793 0.695 0.302

Figure 5.11. WithE, g = Ep/ V2, the effective frequencies

~ wo ~ 2612 (Ez 0) —+ as (Ez 0)
E = Ero), E = . .
( 7SYI'1 ( 2/0) al ( 2/0) 2: 7SYI'1 ( 2/0) \/ 4

can be calculated using the coefficiemisa,, a3, andb; of Appendix C.4.4 for Gaussian
densities. The results are presented in Table 5.5.

5.2.3 Tracking Simulations

The experimental results are now compared with the nonlilnaeking simulations. The
simulation program uses the nonlinear discrete mappingtems inA¢ andAW /wgrr

for the longitudinal dynamics. The particle positions irapl space are converted to the
(x, y) plane with the variables = A¢ andy = Aw = —A¢/wsyn. The beam current
signal is calculated as a histogram using bins omtpeaxis. The beam signal amplitude
and phase are obtained by a FFT of the beam current signale Soherent modes were
excited in the experiment, only one bunch is simulated anmdpased with one bunch
of theh = 8 measured bunch signals. At the voltage step0dtV, the cavity dynam-
ics are taken into account by the time constaits . = 20 ys andTcav,p = 0 s, cf.
Equations (5.2) and (5.3). This improves the agreementd®ivthe simulation and ex-
perimental results. In addition, a small dipole oscillatis excited by shifting the bunch
in the phase space. These additional assumptions incteaagreement between the sim-
ulation and the measured data. The reason for the excitatiarsmall dipole oscillation
seems to be that the cavity was detuned at the moment thgeali@s increased.

The parameters of the feedback loops are given in Table 5eg8aue the two runs
Q and DQ are very similar in terms of the bunch size, only thechusize of the run
DQ is considered. The filter frequencigsss are exactly known from the experiment.
The resulting relative filter frequencigs andyx, can be calculated, because the effective
frequencies; andf, were already determined in Table 5.5.

In contrast to the frequenciésass, the gainsk; andKj 4 of the feedback loops are not
exactly known. For this reason, they are adjusted in the lsition as well to optimize
the agreement between simulation and experiment of theitaaigpld; and the phase
A@g4et- These results are shown in Figure 5.13. They agree well tivehmeasurements
that are presented in [60]. Particularly, the oscillatidrrun L in Figure 5.13 shows a
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Table 5.6: Feedback parameters.

Bunch phase Bunch length
h 0.793 fsyn | f2 0.695 - fsyn
f pass,1 3500 Hz f, pass,2 9000 Hz
Ky 6711 K14 -28.9
K K
wr 0.41 o 0.285
o=l 133 == 105
]Iin,l 0.72 ]lin,Z 0.94
Jni 0.38 Jnl 0.96
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Figure 5.13: Nonlinear tracking simulations: amplitudé; and phase\g4e;. Run L

(lower curves), run Q (middle curves), and run DQ (upper es)yvThe scaling and offset

parameters are given in Table 5.7.

period of abouR00 us. The period of a quadrupole oscillation in a linear bucketih
be (2fsyn)*1 = 150 us, this corresponds to a ratio of 0.75 which is very close & th
calculated raticwz/Zwsyn = 0.731 of Table 5.5. Again,A; is measured in arbitrary
units and a scaling as in (5.19) is assumed. The corresppsdaling factors are given in
Table 5.7.

It is important to note that all scaling parameters excepttfe feedback gaink; and
Kj 4 are fitted only for the beginning of the simulation, i.e. tor= 0 to have the same
initial configuration for simulation and experiment.

The upper diagram of Figure 5.14 compares the measuredmnthsed beam current
at the first maximum ofA; after the voltage jump. There are some deviations, but the
general agreement between experiment and simulation is Tine same is valid for the
comparison at the end of the simulation, shown in the lowagm@im of Figure 5.14.

Figure 5.15 shows the variances obtained by the trackinglations. The initial vari-
ances before the voltage stept at 0 are the variancek; o of Table 5.5. The calculation
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Table 5.7: Scaling parameters of Figure 5.13.

S1(A1)  So(A1)  S1(A@get)  So(Aget)
RunL 289+ O 1 —10°
RunQ 2891 0125 1 0°
RunDQ 289+ 0.2 1 10°

Run L Run Q
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Figure 5.14: Top. Beam current measurememis.,,, at the first maximum of4; after
the voltage stept(= 0.11ms) for the three runs L, Q, and DQ: measurement (solid)
and simulation (dotted)Bottom: Beam current measuremenfs..,, at the end of the
simulation for the three runs Lt (= 1ms), Q (t = 0.6ms), and DQ ( = 0.6 ms):
measurement (solid) and simulation (dotted).

of the equilibriak, o given in the same table and defined in Figure 5.11 is basedeon th
assumption that there is no filamentation. Consequentyyaniance<’; o at the end of
the nonlinear tracking simulations are slightly largercas be observed from Figure 5.15.
A comparison yields an increase in variance betw&erand10%.
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Figure 5.15: Tracking simulations: variancé&s, o andE; o for coordinatesc andy. (a):
Ca,0, (b): \/ C2,0Co2 — Cfl, (): Copo.

The results show that the most important dynamics of the agahihe feedback loops
have been taken into account in the nonlinear macro pasioielation and the results
obtained in Section 5.1 can be applied. In particular, BduB shows that the feedback
parameters in the experiment were chosen close to the opiithaespect tg;, .

5.3 Exemplary Nonlinear Controller Design

The previous stability results rely on linearized models.tHis section, two nonlinear
approaches for the stability analysis and controller deaig proposed for Model (4.37).
The intention is to show how nonlinear methods could be useshhance the feedback
analysis and performance. An important topic will be therdifin of and the explicit
consideration of input constraints fo§. Due to limited RF power and high-voltage con-
straints, the amplitude of the gap voltage is limited. Tk it will be assumed in the
following that the amplitude modulatiom. = 14 is limited to 10% of the nominal gap
voltage amplitude, i. @1 max = 0.1. This value is reasonable for the present RF setup of
the synchrotron SIS18. The section presents preliminayltethat should be extended
before they can be used in real experiments. Neverthelesexamples show what is
possible in principle.

The methods in this section rely on the stability theory ojynov, more specifically
on the direct method [123]. The validity of the results ignieted to very small bunches
or bunches in a linear bucket. In addition, no time delaystaken into account. In
principle, methods based on convex optimization existdnaable to include time delays.
At present, the manageable model complexity is howevetdunio systems with a few
states due to computational reasons. New developmentsversonight overcome this
limitation.
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constant, since the dynamics
\/ are valid for a linear bucket
1 without filamentation.
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5.3.1 Stability of the Quadrupole Mode

System (4.37) has one coupling tetqyu; that couples the basic moments with the
second order moments. Damping oscillations of the variampgthus induce oscillations
of the bunch center. The coupling is weak, since dth andu; are usually small, and
can be cancelled by choosing the control law

Upy = Ll; — Blloul.

The actuator variables; andu, are given in (4.27c) and are a combination of the phase
modulationu, and the amplitude modulatian.
Considering only the second order moments, system (4.3ieaewritten as

_ —2x(t)

x(t) = wsyn [xl(t) B Iz;rlazgt)(t)
with the statesc; = Cy9 andxy, = Cp 1. A linearization of this system, as has been
considered in (4.38) may be a valid approximation in thenigiof the equilibrium, but
in general it will be more accurate to analyze the nonlingaathics. Figure (5.16) shows
the trajectories of the uncontrolled nonlinear systemérstiate spacec;,x,) € RR2. Only
the open right half-plang; = C, > 0 is of physical interest, since a positive density
function leads to a positive variance. As can be expectedy#pectories do not cross the
axisx; = 0. Near the equilibriumxeq = (x1,x2) = (1/I,0), the trajectories become
similar to the linearization (4.38), i.e. to the trajecéwiof a harmonic oscillator. For
larger amplitudes, the trajectories are deformed but nerclased.

The majority of methods for nonlinear control systems ratytioe Lyapunov theory.

If it is possible to find a Lyapunov or a so-call&bntrol-Lyapunov functiomandidate,
further methods can be applied [6, 124]. Roughly speakirg,a@unov functionV(x)
represents a generalized energy function of the nonlinesie. If it can be shown that
the energy or value df decreases along the trajectories of the system, it can lwductad
that the system is asymptotically stable, without the ngtyeso explicitly calculate the
trajectoriesx(t) of the system.

un [0y 10 = a0 +b@n 620
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The method of Krasovskii is a constructive method to geeeaaltyapunov function
candidate [123]. The basic idea is to simply check whethectioice

) 2
X1

w? (5.21)

syn

V(x) = a(x)Ta(x) = | 2L 4+ x3 4223 +

is a Lyapunov function of the autonomous system (5.20) fareu; = 0. For the uncon-
trolled system, the derivative &f with respect to time is

I + X%
X1

V = |2x1x1 +4x0%r + 2

2 2n =200,

2x0%p%1 — [Ip + x%]ﬁﬁ] > (5.20)

In additionV'(x) > V(xeq) = 0. Thus,V is a constant of motion for the uncontrolled
system and is a possible Lyapunov function.
For the controlled system with a feedback= 11 (x)

x=a(x)+b(x)ui(x) = g(x), (5.22)
the derivative ofV is
I + x%

2
X1

V= a(x)TVe(x) + {bT(x)Vx(x)} ui(x) = 4a)§ynx1x2 1+ ui(x),

whereV, denotes the gradient &f, and the controller; = u;(x) can be chosen such
thatV < 0 on the open right half-plane except for the set

b(x)TVi(x) =0 = My:= {x €eR? : x; >0andx, = 0}. (5.23)

For example, a possible choice wouldibgx) = —x;xp. In the setM the inputu; has
no influence on the system afd= 0.

This shows thaV is not a Control-Lyapunov function [6, 124], because theeera-
gions in the open right half-plane wheveequals zero.

The following definition of invariant sets is now useful.

Definition 5.1 ([123], p.68) A setM; is aninvariant setfor a dynamic system if every
system trajectory which starts from a pointA; remains inM; for all future time.

In the setM of (5.23), only the equilibrium is an invariant set; sincedgery element
of My with x; > 0

. (5.20) I =0 forx; =+I
2 = lx1 B x_] Wsyn {7& 0 else

holds, every trajectory that enters the Zeffy will immediately leave it, except for the
equilibrium

M = {x x = /I, X0 = 0}. (5.24)

Next, to guarantee asymptotic stability, the invariangeqpple of Barbashin, Krasovskii,
and LaSalle can be applied.
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Theorem 5.1 (Local Invariant Set Theorem, [123], p.69Consider the nonlinear, au-
tonomous systel(®.22)with a continuous vector fielgd : X — IR” defined on the open
subsetY of R". LetV(x) be a scalar function with continuous first partial derivags
Assume further that

e for somel > 0, the region); defined by (x) < I is bounded and

o V(x)<Oforallx €V

Let M be the set of all points withi; whereV (x) equals zero, and\M1; be the largest
invariant set inM. Then, every solution(t) originating in ), tends toM; ast — oo.

ForV <0, the Lyapunov function (5.21) is equivalent to the equation

2

L =|x1—/bh+ —— + x%.
4wdm 4wdm

This equation describes circles in the open right half-plen > 0 with the radius =
\/V/Zwsyn and the centef\/ I, + r2,0) and it can thus be concluded that the set

V= {x ) V(x) <1, 0<I<cof (5.25)

with V(x) from (5.21) is bounded.
If, in addition, the controller; (x) is chosen such that

12-|-x%

2
X1

V =4winxx |1+

ui(x) <0 for x € {xERz)x1>0andx27é0},

(5.26)

the second conditiolr < 0 of Theorem 5.1 is also satisfied ) and the system tends to
the invariant sefM; that contains only equilibrium (5.24). This equilibriumasymptot-
ically stable and domains of attraction are given by (5.2%xhy finitel.

The following important statement can be made:

In a linear bucket, assuming dynamics (5.20), any controligx) that satis-
fies (5.26) will lead to asymptotic stability of the bunch d¢éimC, o for arbitrary
initial values.

Remark5.3. This statement is also valid for saturating controllers, controllers that
have a saturation of their amplitude;| < uq max, With a givenuj n,x. This can be
shown as follows: For every givel;, a nonsaturating controller can be found; =
h(x) = —kxp with k > 0 satisfies (5.26) ané can be chosen small enough such that
|h(x)| < ujpmax iN V. According to the stability theorems for saturating coltérs,

cf. [47,77] and [78, Theorem 2], it is then sufficient to findexend control law; =
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k(x) that also satisfies (5.26), but is allowed to have amplitdaieger tharu; .. The
controller

—U1,max for k(x) < —U1,max
up = sat (k(x)) := ¢ k(x) for [k(x)| < 11 max
U1 max for k(x) > U1, max

will then lead to an asymptotic stable equilibrium (5.24).

Strictly speaking, the mentioned theorems from [47, 77, ré8lireV < 0 on the
complete seV; \ M and this is not the case for the system under considerationwetrer,
the theorems can be adjusted using Theorem 5.1.

5.3.2 Optimization Based Controller Design

Sum of Squares The last section has shown the stability analysis based gajpunov
function for a given controllek(x). The set of possible control laws is large and, usually,
stability is not the only important criterion. Further r@éguments can be the damping
rate or the size of the region of attraction. If the contmolechosen rather randomly,
an iterative trial-and-error search will be necessaryrduwhich several controllers are
chosen and their performance is evaluated by means of diongaUsually, optimization
based approaches can improve the controller design. In cas®s, performance criteria
can be included in the optimization process.

Especially for nonlinear systems with actuator saturatsam of squares techniques
are an active research topic. The sum of squares decongposaties on the fact that a
sufficient condition for a given polynomial to be nonnegatoan be expressed as a vali-
dation problem with linear matrix inequalities (LMIs) [3%] The underlying idea is that
if the polynomial can be written as a sum of squared polyntanize. if it belongs to the
class of SOS polynomials, it surely is nonnegative. The @ggr is somewhat conserva-
tive, because there exist nonnegative polynomials thatatdme written as an SOS poly-
nomial. However, the approach is advantageous, becauseffcomputer algorithms
exist for LMI problems. In control applications, polynorsiare used as Lyapunov func-
tions and conditions for stability and other performandgeaa can be written as a set of
LMI conditions, which are then solved numerically.

A short overview of SOS is presented in [128]. Survey paperd¥04] and [21]. A
detailed description of the underlying optimization meth@f the following results can
be found in [33, 34, 36]. The following design can be found7B][ preliminary results
are given in [111].

Design Assumptions With the new normalized coordinates

. Go—EB N )
T = wsynt, xl — z —= — 1, xZ = = ,
E, vh

")The optimization results with SOS in this section are cayref Thomas GuRner.
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System (5.20) can be rewritten as

, Y
i=|. re|+ ll 0 ] 1y (). (5.27)
X1 + 1+%4 + 1

It is assumed that the initial statét = 0) is contained in the set

X = {x €R? | |/ +473 < 0.2} . (5.28)

Design Method and Results In [36], a design method is proposed for polynomial sys-
tems which can also be applied to rational systems. The rdéthmsed on sum of squares
decomposition and convex optimization. The results of dlesign are a polynomial or
rational control lawk(z) and an estimate of the region of attracBbrThe control law

up = sat(k(x))

is allowed to saturate, i. k(¥)| > 11 max = 0.1 might occur during stabilization. The
stability analysis is based on an extension of a theoremh [# the following, two
different scenarios and design objectives are discusseartaly be of interest during the
operation in a synchrotron:

e Maximize the region of attraction: This is useful if largev@gions or disturbances
are to be expected, e. g. at injection of the beam in the ring.

e Maximize the decay rate for the given set of initial value®): a fast damping
time can maintain the beam quality, e. g. during accelenaifdhe beam.

For the first scenario, a polynomial controller of degree 8 ampolynomial Lyapunov
function of degree 4 are optimized with respect to the regioattraction. The resulting
controller has only significant coefficients in the lineame¥; andx,:

11 roa (%) = sat(0.014%; — 0.252%,). (5.29)

Since control algorithms in modern RF feedback systemsgy/aregtlly implemented using

technologies like field programmable gate arrays (FPGAs]7¢59], this simple linear
controller is appealing from a practical point of view.

For the second scenario, a rational control law of degreedagrolynomial Lyapunov

function of degree 4 are optimized with respect to the deass;, which yields

. B3 e =2 31T
s (%)  sat (a. (71 X B Bn 1o xS’T} ) ,
b-[1 / xn ¥ B [

(5.30)

a=1[038 -254 0032 -0076 0012 —012],
b=[057 045 024 038 092 0.11].
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Table 5.8: Tracking simulation parameters.

lon species protons ws 3625.7Hz
Macro-particles 647 PR 0
Initial mo,, 0.25 Bunch length 2rad ~ 115°

Simulation Results Two different methods were used to compare the performahce o
the control strategies:

e Simulation of the closed loop system (5.27). This can begperéd independently
of the synchrotron parameters and the size of the bunch.

e The numerical results of a nonlinear macro particle tragldgimulation. An ellip-
soidal particle bunch with a homogeneous distribution weedu The simulation
parameters are shown in Table 5.8.

The performance of the controllers and their region of etiba are shown in Fig-
ure 5.17 for both simulation methods. Comparing theset®gbk following observations
can be made:

e For the chosen bunch size, the model (5.27) agrees very vitglltihe nonlinear
particle tracking and the control performance is very samibr both simulations.
This indicates that model (5.27) can be used for a contrdisign for small and
medium-sized bunches in a nonlinear bucket.

e Controller (5.29) with a large region of attraction allowsvétions of the second
moments of more thab0%.

In both cases, the Lyapunov function was part of the optitiingorocess and is assumed
to be a polynomial of a given order with unknown coefficieffiee use of the Lyapunov
function (5.21) could be used to further improve the results

Limitations Before the designed controllers may be implemented, sorpertant is-
sues have to be considered. Both controllers use the caagilte vector and the nor-
malized deviation of the variandg = AC; o/ E; 9. Since the equilibriunt; o is usually
not directly accessible to measuremeftsy has to be estimated. The same applies to the
covarianceC; 1. Possible solutions are the design of a nonlinear observardynamic
output-feedback control. The conventional FIR filters thate presented in previous sec-
tions of this chapter have a slower damping, but are of thpuitfeedback type and do
not require the estimation @, o due to their DC rejection.

The presented design with SOS is valid for linear bucketsiartkpendent on the
measurement or an estimation of both varian€gs and Cy,> and the equilibriume;.
Thus, for realistic bunch sizes, the existing FIR feedbamks@ered in Section 5.1 has

8The results are obtained using the Matlab toolboxes of [88][427].
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Figure 5.17: Upper diagrams control (5.29) with optimized region of attractionower
diagrams: control (5.30) with optimized decay rateeft and center: statex; and input
uq versus normalized time (+: tracking simulation,x: simulation of system (5.27),
Az top f(1) = 0.2 e 9257, bottom f(7) = 0.2 e~9°T). Right: stability analysis &:
trajectory of system (5.27)\: setA), +: domain of attractionV: limits of actuator
saturation).

several advantages. Nevertheless, further work may use sbthe nonlinear methods
discussed in this section to improve the feedback perfocean

5.4 Conclusion

The derived models have been used to analyze RF feedbackdb@$!1. The closed-loop
dynamics have been described by a linear time-invariaatyegifference equation. A sta-
bility analysis has been performed analytically and leadsability regions in the control

parameter space. Tracking simulations have then been as@luate the performance
of the feedback and of the additional Landau damping for dimear bucket. A compar-

ison with measurements from a beam experiment shows thea the good agreement
between measurements, simulations, and models. In partithe measured frequency
of the quadrupole mode agrees well with the frequency predlicy the model for the spe-
cific bunch size. Nevertheless, the results show some hiontaf the proposed models.
If Landau damping is considerably larger than the dampitigpdluced by the feedback
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loop, the validity of the linear models is limited. Howevéhis limitation is usually not
serious, because a desired result of the feedback desigmidgalty a damping rate that is
considerably larger compared to Landau damping.



161

6 Conclusion

The transport of bunched beams in a synchrotron is detedriigethe initial particle
distribution and the electromagnetic fields in the ring. rE¥er the ideal case where
interactions between the particles and self-fields of thechiwcan be neglected, this is a
high-dimensional, nonlinear problem and analytical sohg exist only for drastic simpli-
fications. Therefore, numerical particle tracking simiolas are typically used to evaluate
the beam dynamics. RF feedback loops are active measurabiire the bunched beam
in the longitudinal phase plane. Numerical simulationsl leavaluable conclusions, but
these are restricted to specific beam and synchrotron pteesndt is therefore desir-
able to have simplified, approximate models that describectbsed-loop dynamics in
an analytical way. Existing models of RF feedback loops asel on a linearization of
the single-particle dynamics. This limits their applidapito small bunches in the linear
regime of the bucket with bunch shape oscillations of ordet 1 andm = 2.

The main topic in this thesis is the question how longitublemagle-bunch oscillations
can be damped. The steps that were taken in this thesis tte tdak problem are the
following. First, new models of the bunch shape oscillagiavere developed. These are
state-space models that describe the dynamics of the msiwighe bunch with RF phase
and amplitude modulations as inputs. The models were aataising a newly developed
modeling procedure that comprises a moment approach andaation method. Second,
methods from control theory were used to analyse the priegestich as the controllability
and stability of the models. Third, the complete RF feedbacfs for bunch position and
bunch length feedback were modeled. An important new dmrttan for this part was
the modeling of the short-term spectrum of the beam curignatand the derivation of
simplified relations between the Fourier coefficients of lleam current signal and the
bunch shape, i. e. the bunch position and bunch length.

New insights and results of this thesis are summarized irfdl@wving. It has been
shown that, in general, the dynamics of the moments are edugohd nonlinear and a
model truncation is necessary to obtain a low-dimensioraeh For the stationary case,
the coupling is only between the odd moments on the one hahthareven moments on
the other hand. The moments of orderare correlated with mode, but in general there
iS no one-to-one correspondence. In the special case oinar Ibucket, the moment
dynamics are decoupled for different moment orders. Iniggnthe inputs, i. e. the phase
and amplitude modulations, act on all moments. A speciat tashe stationary case,
where the phase modulation acts only on the basic momeatghie center of gravity of
the bunch, and the amplitude modulation acts only on the@embments.

Concerning the controllability in the nonlinear bucketpmlnear truncated model with
moments and modes up to order four was analyzed. This moaelapproximation to the
real high-dimensional dynamics, because of the truncatimhthe Taylor series approxi-
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mation of the beam dynamics. The model was shown to be fidgraontrollable and it
can be concluded that the moments up to order four are locatiyrollable with the con-
sidered inputs, i. e. RF phase and amplitude modulationa:eMer, it has to be noted that,
as the model is an approximation due to the reasons stated,abfinal rigorous proof for
the original high or infinite-dimensional system remainaen topic. Nevertheless, the
controllability analysis provides a very strong argumédrat tthe first four bunch modes
can be damped by the two inputs phase and amplitude. Fomibarlbucket, a similar
model was analyzed which was shown to be not first-order olbaile. A more advanced
nonlinear controllability analysis would be necessarydoide if the model is indeed not
locally controllable. However, simulation results sugpbe indication that only dipole
and quadrupole oscillations can be damped in a linear bugkeimportant result of the
thesis is the calculation of the mode frequencies, i. e. gwdlation frequencies of the
bunch shape. It has been demonstrated that the mode fregsielepend on the bunch
size and the type of density function. An important paramgtethis is the two-sigma
length of the bunch, which can be interpreted as the efletialf axis of the bunch shape.

The preceding theory has been used to analyze the stalfilaybanch length feed-
back loop. A stability diagram for this feedback loop hasrbealculated and compared
with tracking simulations. In these simulations, two diffiet definitions of the damp-
ing performance have been compared: a fast damping ratesvarsmall increase of the
longitudinal emittance. For the bunch length feedbacksetaefinitions lead to different
feedback parameters for an optimal performance. The cosgpeof a beam experiment
with the tracking simulations and the analytical stabiibyalysis shows a good agreement
between the real beam behavior, the tracking simulatioréilze developed models. The
only major difference between the models and the simulatisthe fact that the models
do not reproduce Landau damping or filamentation. In manggake feedback is in-
troduced to increase the damping if Landau damping is néicgrit. In these cases, the
damping of the feedback should be considerably larger tlzandau damping and the de-
veloped models are perfectly suitable for a feedback degigressential overall result of
this thesis is the conclusion that nonlinearities in thenbbelgnamics should be taken into
account in the modeling procedure, because they have aystrgpact on the properties
of the RF feedback loops; important effects are the depaydefithe mode frequencies
on the bunch size and the controllability of higher order esd

Further work could focus on the refinement of the derived nwdead the effects of
Landau damping. Also, the existing control algorithm foe tiunch length may be fur-
ther optimized to achieve a larger damping. Because the finegeencies depend on the
bunch length, it would be desirable to adapt the feedbacknpaters to the bunch length.
For higher order oscillation modes, the derived models isfttiesis may be used for fur-
ther analysis and controller design. The controllabilityhigher modes in a linear bucket
could be further elaborated using methods to analyze reslinontrollability. Also, the
models developed in this thesis are valid for stationargdmand nonlinear buckets. It
would be desirable and is in principle possible to apply teetbped modeling approach
for accelerating buckets as well. As the moment approacérgatile, the investigation of
more complex RF potentials should be viable as well. Finailyre effects of longitudinal
beam dynamics could be included to examine RF feedback enafdarge beam currents.
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A Mathematical Formulae

A.1 Elliptic Integrals

The (incomplete) elliptic integral of the first kind is

¢
de
F(q)’k):/«/ 2l
) 1—k%sin“ 0
Fork > 1, the following transformation is given in Abramowitz/Steyg[2]:
F(ok) = %F (arcsin(k sin ), %) :

For the special cade= csc ¢ = sin~! ¢, this leads to

F(¢@,csc @) = sin ¢ K(sin ¢),
whereK (k) is the complete elliptic integral of the first kind

7T
K(k) = F (E,k) .

Special values are
n
2 4
The (incomplete) elliptic integral of the second kind is

¢
E(g.k) :/\/1—kzsin26d9.
0

KO0)=2, K(1) = co.

The complete elliptic integral of the second kind reads

7T
E(k) =E (E,k) .
Special values are

E(0)==, E(1)=1

(A.1)

(A.2)

In the special casg(¢, csc ¢), the incomplete elliptic integral of the second kind can be
written as a combination of the complete integrals of the &ngl second kind [135]:

E(¢,csc @) = csc ¢ E(sin @) — cos ¢ cot ¢ K(sin ¢), —g <<

(A.3)
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Table A.1: Properties of Bessel functions

Ip(_x) = (_1)p1p(x) = ]—p(x)
I;?(x) = % Up—l(x) - ]erl(x)}

1 =0
]p(O) - {0 lee

A.2 Special Functions

A large variety of properties and formulas for special fumts can be found in [2] and a
summary of properties of the Bessel functions is given ir}.[19
The Bessel function of the first ki (x) of orderp can be defined as the series

N
Jp(x) = k; KT(p+k+1) [E]

with the Gamma functiol'(n). For positive integers, the Gamma function reduces to
the factorial function

In)y=m-1'=n-1]-n-2]- ... -2-1

and the Bessel function of the first kind of ordeis

2

- [—1)k Frkﬂ?_ 1 {xr - 1 [;]P”

Jp(x) = ==

P ,;)k! [1+p+k]! L2 p! p+1]!
Further properties of, are summarized in Table A.1. The Bessel function of the firet k
of order 1is

3

X X X X

=0 16 384 1sam

5 7

B o0 [_1]k x72k+1
Ji(x) = Igm b}

For smallx < 1, the following approximation holds:

1 2
hi") o (A.4)
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A.3 Spectrum of Phase Modulated Signals

To calculate the spectrum of frequency modulated signagsexpressions in this section
are useful. An overview of the theory of signal processing fta example be found
in [53] and modulation processes are described in morel de{a].

A.3.1 General Notation
A periodic functionf (t) with period T and the frequencyy = 27t/ Tj

f(t+Ty) = f(t) VteR
can be written as a Fourier series

f(t) = % + Y Agcos(kwot + ) = ) et (A.5)
k=1

k=—c0
The complex Fourier coefficients can be calculated as

to+To
1 .
k= =— / F(t) e kot g
To
to

with an arbitrary real constatg. If f(¢) is a real function for alt,

C_j = Ck

holds, wherer denotes the conjugate-complex valuecofThe amplitudesA; and the
phasesp; are given by

Im Ci

A = 2|ci], = A} = arctan .
k= 2]ck| Px k Rec,

If f() is a time-limited, aperiodic signal, the limfly — oo can be considered and the
Fourier series becomes a Fourier transform

F(w) = / F(1) e it gt (A.6)
andF(w) is the spectral density ¢f(¢). The inverse transformation is
1 i iwt
) = — / F(w) et dw.

With these transformations, the following symmetry prépéolds (cf. [28], pp.192):
f(t)o—eF(w) <« F(t)o—e2nf(—w).



166 A Mathematical Formulae

In particular, this leads to the correspondence for thedfaction
S(t+a)o—eelW, Wfo e2m5(w — wy). (A7)

A more formal and general theorem is the Poisson Sum Rulg.[12E(w ) is the Fourier
transform off (¢), then

if(tz zii ( ?) (A.8)

n——oo

holds.

A.3.2 Dirac Series and Phase Modulation
An infinite comb of Dirac delta functions
flty =) &(t—nTo)
n=-—oo
can be written as a Fourier series. The coefficientsare 1/T, and
1 .
£(t) Z O(t—nTg) = = 3 el (A.9)
n=-—00 0 k=—c0

This series can be Fourier transformed element by elemerthaleads to the correspon-
dence

T, 4 e o o—e T, _Z: O(w — kawy) (A.10a)

0 k=—co k=—c0

2D Y st —nTy) 2Dy einTow (A.10b)
n=—00 n=—0o0

A.3.3 Aperiodic and Periodic Signals

If the aperiodic signafap (t) with length Ty is continued such that it becomes a periodic
function

z: ﬂm nTb

n——oo

with periodTy and frequencyvg = 27t/ T, a Fourier series calculation yields

1 7 B 1
oo =g [ Faplt) e db = oo (k) (A11)
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whereFap (w) is the spectral density of the aperiodic sigfigl(t) and the fact thafap (¢)

is zero outside the interval € [ty ; to+Ty| was used. In additiorify has to be chosen
such that there is no overlapping. This calculation denmratest that the Fourier series co-
efficientsc, can be interpreted as sampling value$gf(w) with the sampling frequency
wg. The periodic signal can be written as the Fourier series

B = Y gee

k=—o00

Its spectral density follows using (A.10) and is

Fp(w) =21 i cr O0(w — kwy) = wy i Fap (kwp) d(w — kawy).

k:—oo k:—oo
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B Accelerator Physics

B.1 Relativistic Relations

The aim of this section is to summarize some relativistiatrehs that are needed in
the calculations of the main part of the thesis. A more cotepdelection of relativistic
formulas can be found in [14, 58].

Definitions To deduce the following relations, we have to define the ket normal-
ized velocityp, the relativistic normalized energy the total energyV, the kinetic energy
Wiin, the momentunp, and the relativistic mass:

v 1
IBZE 7:—2 m = ymg
1-[2]

W =ymoc>  Wign = W — moc® = [y — 1]myoc?

p = mv = ymgfc

Relations The following relations are derived by using only the abogéritions. It is
possible to express each variable as a function of just drex gariable:

1 W Wiin

= V1-—p? - moc2  mpc?

F1=4/1+ [ir (B.1)

=__F (B.2)
mZCZ + pZ
2
moc
W = ymgc? = \/%7132 = Wiin + moc® = \/c2p? + m3ct (B.3)
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moc 1
p= ,/72—1;1100:'3—1%’32:2,/W2_m(2)c4

1
= E \/Wkin[wkin + 2m0C2]

Relative Deviations The derivation ofW with respect t leads to

2 2
c;W: 2cp :Cv\f- (B.4)
P2y /c2p? + mdct
Equation (B.4) can also be written as
Ap . Cymope
= — o — . B
dWw W dp g2 dp = Bcdp (B.5)

Equation (B.4) leads to

AW _Sptdpesy  p  dpea  pt dp_ pdp

W W2 p 2p? +mict p p? +m3c? p p
Derivating
_ pmgc omy
p /1 — ‘32 02
-z
with respect tw yields
dp 1 3
% = my 1)2 3/2 moy
1— =
-3

Thus, we have

Similar derivations lead to

do_dp_ 1 dy 1 dy_ 1 dW

v B =19 Py PBRWS
For small deviations the obtained results can be summainizigg following approxima-
tion:

A'yN

AW Av AB

2 2 2 2

— BB — — Y. B.6
W 0% 7 v U B (B-6)
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As B € [0;1] andy € [1; 00, Equation (B.6) has the consequence
Ap AW _ Ay Ap Mo AR

p - W o' p v B
I. e. the relative momentum deviation is an upper limit fg thlative deviations in energy
and velocity.

(B.7)

B.2 Simulation Parameters

Basic Constants and Parameters of the Heavy-lon SynchrotroSI1S18

Parameter Symbol Value

Circumference LR 216.72m

Transition energy Yir 5.45

Momentum compaction ap = 7,2  0.03367

Curvature radius r 10m

Speed of light c 2.99792458 -103 m/s
Atomic mass Mamu 1.660538782 - 102" kg
Rest energy of amu Wamu 931.494028 - 106 eV
Elementary charge e 1.602176487(40) - 10719 C

Parameters of Several Beam Experiments

Parameter Unit Protons “OArgont®  238yran>t

h 4 4 4

PR 0 0 0

i amu 1.0079 39.948 238.03

Q e +1 +18 +73
Wign/mp 2% 2.10° 80-10° 11.4-10°
Wr J 4.7339-10710  6.4739.107? 3.5959-10~8
TR 3.1471 1.0859 1.0122

BR 0.94817 0.38978 0.15503

08 Y, 16000 12000 8000

Tr S 7.6241-1077  1.8546-107° 4.6629-10°
foyn Hz  666.3 2302.9 1728.3
Ten/TR  Hz 19685 234.13 124.09

Br T 0.93452 0.29186 0.15899

B.3 Longitudinal Tracking Algorithm

In this section the equations are summarized that are reegdss a longitudinal tracking
algorithm. With the main focus on the implementation, deserequations are considered.
The notation will be as followsf (1) refers to the discrete valyeat turns.
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Step1 Atthe beginning of the acceleration cycle, it is necessadetermine the follow-
ing machine and beam constants: the ch&gend rest massi per particle, the bending
radiusr of the dipole magnets, the harmonic numbethe lengthLy of the reference
orbit, and the momentum compactiap. The acceleration cycle itself is determined by
the choice of the magnetic fieBk (7). The initial magnetic field can be calculated from
the injection energy.

Step 2 If the initial kinetic energyWy, i, (0) or the initial total energy

W (0) = Wg kin + moc?

per particle is given, the momentum

\/ W2 (0) — mjct,

the magnetic field

By (0) = RO _ = \/WZ — 24,

Qr
and the following parameters can be calculated:
Wr(0) 2 Ly Lg
0) = , 0) =4/1— 0), Tr(0) = =
'VR( ) m0c2 ,BR( ) ')’R ( ) R( ) UR(O) ‘BR(O)C
Br(0)c

fr(0) = T/ wrr(0) = hwgr(0) = h27fR(0)

Step 3 The initial distribution of a particle bunch witN particles has to be chosen:
T
AW(0) = [AW;(0) ... AW, (0) ... AWN(0)]

9(0) = [¢1(0) ... 9(0) ... on(0)]"

with as phase space coordinates the RF plgaaed the energy deviatioAWW. The re-
maining degree of freedom is the choice of the seBgén), n = 0,1,...,1g, that
describe the rate of change of the magnetic field
Br(n +1) — Br(n)

Tr(n) '

The magnetic field should be chosen such that the neces$argree voltage

BR(t) ~

UR ~ LRT’BR,

is lower than the maximum voltage of the cavity. Furthermdine maximum and mini-
mum values oB are limited by the magnet design. Thlig, has an upper limit that has
to be taken into account.
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Step 4 The simulation from turm to n + 1 is achieved by the following three steps:

4.1 Mapping of the reference energy: The reference voltage earalculated as

Ur(n+1) = moCZ\/l + l—QrBR(n il 1)12 —~ mocz\/l + lQrB—R(n)r,

mpcC mocC

which leads to the new reference energy
Wr(n+1) = Wr(n) + QUg(n +1).

If the reference phase is needed, it can be calculated as
PR = ugap(uR( ))

WhereuaD denotes the inverse function of the RF voltage. For a sihgleaonic cavity,

this equals
UR)
a, )

The last equation shows thél; should be chosen larger thal.

@R = arcsin <

4.11  Calculation of the other time varying parameters:

pr(n+1) = \/W2 (n+1) — mct ’YR(W+1):%;—1)
Br(n+1) = /11521 +1) an(n+ 1) = 2P E

R(n+1) = ap — 7 (n +1)
4111  Mapping of the particles:

AWp(n+1) = AWk(n) + Q [ugap((/)k(”)) — Ur(n+ 1)}

or(n+1) = PRUTD (0 ) o(n) — kepor(n)] +
Br(n)
+ 27;};:]711; (n+1)AW(n+1) 4+ @e(n +1) + krper(n + 1).

The constankgg is 0 or 1, depending on which cavity RF program has been cha$en
(2.25). In this thesiskrg = 1. In principle also other phase space coordinates may be
used for the mapping, as long as the discrete equations asemlsuch that their Jacobian

is correct. The RF voltaglap (@) can be chosen as a single-harmonic function, but also
as a higher harmonic or a general periodic function with¥asging amplitude and phase.
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C Modeling Results

C.1 Coherent Oscillation Frequencies

The following table summarizes the frequencies of the aafitedipole and quadrupole
mode of oscillation of Figure 3.18. The relative frequerigy is defined as

fm
mfsyn,

wherem = 1,2 is the mode numberf,,, the coherent oscillation frequency of moale
obtained from tracking simulations arfg, is the linear synchrotron frequency.

frel =

Uniform Gaussian

Dipole (n =1) Quadrupolef: =2) Dipole (n =1) Quadrupolerf: = 2)
Ca0 frel Co0 frel Co0 frel C20 frel
0.0624 0.98 0.0624 0.97 0.0631 0.985 0.0631 0.985
0.14 0.965 0.14 0.955 0.1423 0.965 0.1423 0.965
0.248 0.938 0.248 0.925 0.245 0.94 0.245 0.92
0.389 0.9 0.389 0.89 0.394 0.89 0.394 0.80
0.556 0.855 0.556 0.85 0.56 0.89 0.56 0.73
0.753 0.8 0.753 0.8 0.783 0.85 0.783 0.7
0.997 0.73 0.997 0.73 0.996 0.8 0.996 0.57
1.254 0.65 1.254 0.66 1.273 0.8 1.273 0.54
1.56 0.54 1.56 0.58 1.52 0.8 1.52 0.65

C.2 Moments and Modes

C.2.1 Ellipsoidal Bunches

The bunch is assumed to be ellipsoidal with the uniform dgrfignction f (x,y,xo,y0,P)

of (3.25) or the Gaussian density function of (3.33). Theapaatersyy, vy, and® may

be functions of time or depend ensynt to obtain a rotating bunch in the phase plane as
shown in (3.24). The basic and central momehisy, ananx,ny are given in Table C.1.
Because of the symmetry between the momehtsandC; ;, only half of the results are
summarized for higher order modes.
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Table C.1: Moments of ellipsoidal bunches.
Uniform Density Gaussian Density
Bi) X0 X0
Boa Yo Yo
Ca 1 [R?, cos® @ + R2, sin* @] 02, cos> ® + 03, sin? @
Cia g [Rf, — R3] sin(2®) 1[o2. — 03 ] sin(2®)
Cop 1 [R? sin®* ® + R, cos? @] 02, sin® @ + 02, cos? P
Ciytny=3 | O 0
Cup 2C3, 3C3,
C31 2C20C1 3C20C11
Cop %C%l + 2C0Cop ZC%J + C2,0Co2
Ci3 2Co2C1 3Cp2C11
Cou 2G5, 3C3,
Cnx+ny=5 0 0
Ce,0 5C3, 15C3
Cs1 5C3,C11 15C3,C11
C4,2 Cz/o 4Ci1 + Cz/o CO,Z] 3C2/0 4Ci1 + Cz/o CO,Z]
C33 C11 |2C2, +3C50Co, | 3C1,1 [2C3 +3C20C0s |
Cnx+ny=7 0 0
Cs,0 14C3, 105C3,
C71 14C3,C11 105C3,C1,1
Co.2 2C3, [6CF; + C20Coz 15C2, [6C2, + C20Co2 |
Cs 3 2C20C11 [4c§/1 + 3c2,0c0,2] 15C,0C1 1 [4c§/1 + 3c2,0c0,2]
Cyg 8C2,Ca, + P Cr0Co2C2 4+ 2C | 9CE,CE, +72C50Co2CE +24CT
Cnx+ny=9 0 0
C10,0 42C3,, 945C3,
Co 42C3,C11 945C3 (C1,1
Cs. 3, [8C2, + CooCop] 105C3, |8C2, + Ca0Cos |
C7,3 14C§/0C1,1 |:2Ci1 + C2/0C0/2] 315C§/0C1,1 |:2Ci1 + C2/0C0,2]
Coa 2C20[8CH, +12C}; Co0Con+ 45C20|8CH , +12C3, CooCop+
+ C%,ocg,z} ‘|‘C%,0C(%,2}
Css 2C11[8CE; +40C3, Co0Cop+ 15C1,1 |8C1 +40C3 , Co0Coa+
+15C34C3,| +15C3,C3, |
Cnx+ny:11 0 0
C120 132C5, 10395C3,
Cii1 132C3,C11 10395C3 1C11
Continued on next pagd
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Table C.1 — continued from previous page

Uniform Density Gaussian Density

Ci.2 12C4, [10C2, + Co0Cos | 945C4, [10C3 ; + C5,0Cop |

Cos 12C34Ci,1 [8C3 +3C20C0s | 945C3C11 [8C3; +3C20Co2 |

Csa 4C3,[16C1 ; +16C2, CaoCon+ 315C3, |16C1 ; +16C2, Co0Coa+
+C3, C%,z} +C3p C(%,z}

Crs [8CH; +20C2,Co0Coa+ 18CH, +20C2,Co0Coa+
+5C2(C3, ] 4C11Ca +5C2,C3,|315C1 1Ca

Co6 3168, + 120, Co0Cop+ 45|16C% , +120C} ,Co0Coa+
+90C2,C34C3, +5C3,C3, | +90C2 3,3, +5C3,4C3, |

Coim13 | O 0

Ciap0 429C7 135135C7

Ci3.1 429C8\C11 135135C8 ,C: 4

Cizz 33C3 [12C3, + Ca0Cos | 10395C3,, [12C3, + Ca0Cos |

Ci1s 33C4,Ci1 [10CF, +3C20Copz | 10395C4 4C1,1 [10CF, +3C0Copz |

C104 3C3, [scg{l +60C3 1C2,0Co2+ 945C3 [scg{l +60C3 1 Co,0Co.0+
+3C%,0C3,2] +3C3 C(2),2]

Cos [48CE, +80C2Co0Coa+ 148C; +80C2, Co0Coa+
+15C2,C3,]3C14C3, +15C2,C3,]945C1,1C3,

Cso Co,0[64CS, +240C4 1 Co0Co+ 315C2,0 [64CY ; -+ 240C} , Ca0Coa+
+120C2,C3,C3, +5C3,C3, | +120C2,C3,C3, +5C3,4C3, |

Cr7 C1,1[16C5; +168C} 1 Co0Coa+ 315C1,1 |16C5, + 168CH; Co0Coa+
+210C2,C3,C3, +35C3,C3, | +210C2,C3,C3, +35C3,4C3, |

C.2.2 Bunches with Single-Bunch Modes

In this section, the density functions (3.16) and (3.18)camesidered. Only the first four
modes will be analyzed, i. e. the coefficienfsare set to zero fom > 4. Only the first
order approximations will be given in the following. The lasioments are denoted by
Byo andBp1. The central moments,, ,, have equilibrium values that will be denoted
by Enx,ny. For odd ordersz, + n, or oddn, Enx,ny = 0 holds, cf. (4.33). Choosing a
moder,, # 0 leads to deviations

Acnx,ny = Cnx,ny - Enx,ny~

of the equilibriumk;, », .
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Uniform Density The bunch is assumed to have a uniform density and a buncle shap
according to the mode definition (3.16) afgis chosen such that the integral pover

the phase plane equals unity. The momentsifor- 1, < 10 are given in Table C.2.
These are first order approximations. Also, the bunch ragjius replaced by, = 20y,

this makes it easier to compare these results with the sefartGaussian densities of
Table C.3. Because of the symmetry betwégn andC;;, only half of the results are

summarized for higher order modes.

Table C.2: Moments of coherent bunch oscillations for uniform deasifffirst order ap-

proximations).

Uniform Density, ry = 20y
Cnx,ny Enx,ny Acnx,ny (rl ) Acnx,ny (72) Acnx,ny (73) Acnx,ny (7’4)
Bl,O 0 —20’0 sin(Go)r1 0 0 0
Bo,l 0 20’0 COS(G())T‘l 0 0 0
Cap Eyo = 03 0 —202sin(26p)r, | O 0
Ci1 0 0 203 cos(260o)r2 0 0
Co2 Eop = 03 0 20¢ sin(26p )12 0 0
C3,0 0 0 0 *2(78 sin (390)1’3 0
Ca1 0 0 0 203 cos(36p)r3 0
C1,z 0 0 0 20’3 sin(390 )1’3 0
Co/g 0 0 0 *2(78 COS(39() )1’3 0
C4/0 ZE%,() 0 4E2,() ACQ,O 0 720’61 sin(490 )1’4
C3,1 0 0 ZEZ,Q ACl,l 0 20’6L COS(490)1"4
Cop 2E0E0, | O 0 0 203 sin (4600 )74
Cis 0 0 2Eo»AC1 0 —2061 cos(46y)r4
C0,4 ZE%),Z 0 4E0,2 ACQ,Z 0 —2(761 sin(460 )7’4
Cs0 0 0 0 5E>0AC3p 0
Ca1 0 0 0 3E>0ACy, 0
Cs2 0 0 0 E»0ACqp 0
Ce,0 SEZ’,O 0 15E§/0AC2,0 0 6E>0ACyp
Cs1 0 0 5E3,AC1, 0 4E0ACsq
Cs2 E%,o Eop 0 Ez0E0pACo 0 2B, 0ACyp
Cas 0 0 3Ey0E0pACH1 0 0
Cro 0 0 0 21E§,OAC3,0 0
Ce1 0 0 0 9E§/0AC2,1 0
Csp 0 0 0 E%/OACLZ 0
Cy3 0 0 0 3E>0E0pAC 0
Cso 145%,0 0 56E§/OAC2,0 0 28E§/OAC4,0
Cr71 0 0 14E§/OAC1,1 0 14E§/0AC3,1
Ce2 ZE%O Eop» 0 4E§,0 EopACyyp 0 4E§/0AC2,2
Css 0 0 6E§,0 Eo2ACq, 0 2E>0E0pAC3
Caa §E3,E3, | O 0 0 4E;0Eg2ACas
Cop 0 0 0 84E§’,0AC3,0 0
Cs1 0 0 0 28E§,OAC2,1 0

Continued on next pags
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Table C.2 — continued from previous page

Uniform Density, ry = 20y
Cnx,ny Enx,ny Acnx,ny (rl) Acnx,ny (72) Acnx ny( ) Acnx,ny (7’4)
Cro 0 0 0 0 0
Co3 0 0 0 8E§,o Eo2ACy 0
Csa 0 0 0 4E§,0 EopACyp 0
Cio,0 42E§/0 0 210E‘2{OAC2,0 0 120E§,0AC4,0
Cop 0 0 42E3 \AC1, 0 48E3,ACs1
Cgp % E‘Z{O Eop» 0 14E§/0 Ep2ACay 0 SE%OACZ,Z
Cr3 0 0 14E§/0 EopACia 0 8E§,o Eo2ACs
Coa 21—33,O E(%,z 0 21—3%O E(z),zAcz,o 0 81—3%O EopACyp
Css5 0 0 10E§/0E5,2ACM 0 0

Gaussian Density The bunch is now assumed to have a Gaussian density and a bunch
shape according to the mode definition (3.18) &nts chosen such that the integral of
over the phase plane equals unity. The momentsfer n, < 10 are given in Table C.3.

Again, these are first order approximations and becausesitimmetry betwee€; ; and

C],l y

Table C.3: Moments of coherent bunch oscillations for Gaussian dess(first order

approximations).

only half of the results are summarized for higher order esod

Gaussian Density
E”x,”y ACuy, ny (r1) AC"X/HV (r2) AC”x,ny (r3) AC”x,HV (r4)
By 0 — 3/ Fopsin(fp)r 0 0 0
Boa 0 31/ Fopcos(bp)r1 0 0 0
Cap Eyp =03 0 —20% sin(26 )1y 0 0
C11 0 0 207 cos(20p)ra 0 0
Con Eop = 02 0 207 sin (26 )r> 0 0
C3,O 0 I E2,OB1,O 0 - % % 9 sin(390)r3 0
Can 0 1E20Bo1 0 /%08 cos(30p)r3 0
Cio 0 1E02B1o 0 /%03 sin(30p)r3 0
CO,3 0 4E02B01 0 —%,/ % 8C05(390)1’3 0
Cy 3E3, 0 6E20ACa 0 —304 sin(46))r4
C31 0 0 3E50ACy 1 0 30 cos(460)r4
Can ExoEo»2 0 0 0 304 sin (46 )r4
C13 0 0 3E02ACy 1 0 —30 cos(460)r4
Cos 3EZ, 0 6E02ACo o 0 —304 sin(460)r4
Cs0 0 F15201910 0 %EZOACM) 0
Cy1 0 §E30Bos 0 4 LEy0ACy, 0
Csp | O 1L E, 1 EgaBrg 0 1E20AC1o 0
Ce0 15E3 0 45E3 ,ACa 0 12E59ACy
Cs1 0 0 15E3 ,ACy 1 0 8E50ACs 1
Continued on next pagg
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Table C.4: State vectox = [x; xo ...]T.
x1=B19 x3=C0 x=0C30 x10="Cyp
x2=Bp1 x4=Cinp wr=C1 x11=C5
x5 =Cop xg=C1p x120=0Cop
x9g =Cosz x13=0C13
x14 = Coz
Table C.3 — continued from previous page
Gaussian Density
Enx,ny ACpy,ny (r1) ACpy,ny (r2) ACpy ny (r3) ACpy ny (rg)
Ciz | 3E34E02 0 3E0E02ACo 0 4E5 0ACy
C33 0 0 9E)0E02ACy 0 0
Cro 0 B E3 0B 0 B8 E2)ACs0 0
Co1 0 2 E3 ) Boa 0 37 E3 0ACo1 0
Cso 0 O E3 0 Eo2B10 0 S E3)ACIo 0
Cy3 0 380 E2 )E02Bo1 0 B Ey0E020Co 0
Cs0 105E3 0 420E3 \ACa 0 0 140E3 1 ACy
Cy1 0 0 105E3 ) ACy 1 0 70E3 1 AC31
Cop 15E3 o2 0 30E3 1 Eg,2ACa0 0 20E3 (ACy
Cs3 0 0 45E3 (E2ACy 0 10Ep,0Eg2AC3 1
Cyq 9E3 )EZ, 0 0 0 20E0E2ACy o
Co 0 0 23 E3)B1o 0 PS8 E3 ACs0 0
Cs1 0 108%° E3 0Bo,1 0 HLES )AC21 0
Cro | O s> E3 0Eo2B1,0 0 0 0
Ces | O 2455 E3 0E02Boj1 0 8% E3 0 E020Ca 1 0
Cs4 0 46035 E2 1 Eo,2B10 0 62 E2 E02ACi o 0
Cioo | 945E3, 0 4725E3 1 AC 0 1800E3 , ACy 9
Co 0 0 945E4 ) ACy 1 0 720E3 AC3 1
Cgp | 105E30Egn | O 315E3 1 Eo2ACo0 | O 120E3 ) ACy
Cr3 0 0 315E3 Eo2ACy1 | O 120E3 4 Eg2AC31
Cou | 45E3,E5, 0 45E3 \E§,ACo0 0 120E3 1 Eg2ACp
Cs5 0 0 225E3 E2,AC11 | O 0

C.3 Moment Dynamics in a Linear Stationary Bucket

For npogqe1 = 4, SystemX;p of (4.30) has the state vectmras defined by (4.31) with

dimensionL = 14. The states are shown in Table C.4. The dynamics are

% = Aigx + Brg(x)u =

oo o P
—_

0
0
Az

0
A
0
0 0

0 b1,
0 b,
0 x+ bs
Ay by

by,
0
0
0

)
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with
0 1 0 —2 0
A = Wsyn 1 RE A; = Wsyn (1) g _01 ’
v o3 0 o 0 —4 0 0 0
Lo o o 1 0 -3 0 0
A3 — wsyn 0 2 O 1 , A4 — wsyn O 2 O _2 0 ,
0 0 3 0 0O O 3 0 -1
: 0 0 0 4 0]
and
by 1 T bip T b T
~— =10 By ,—==1[0 1], 2 — 0 Coo 2Ci4],
Wsyn Wsyn Wsyn
b T b T
3 —[0 C3p 2Cy; 3Cin], ——=1[0 Cyo 2C31 3Gy 4C15] .
Wsyn Wsyn

The null vectors and matricé&sare assumed to have the appropriate dimensions to com-
plete their matrices and vectors.

The reduced and linearized syst&lr; ggr has the state vectdrxy gr that is obtained
from the difference vector — x., if the states corresponding@ , andCj 4 are removed,
I. e. the statess andxy4 (cf. Table C.4). The equilibrium, is given in (4.33). System
LBR reads

A 0 0 0 b11 b1y
B |0 A, 0 o0 b, 0 | [ug
Axppr = ALBRAYLBR + Brgr# = | Ay 0 x+ by 0 [uz
0 0 0 Ay by 0
with dimensionl, = 12, where
0O —4 0 0
- - -2 1 O -3 0
Al — Alr A2 - wsyn lz 0 ] 7 A3 - A3/ A4 - wsyn O 2 0 _2 7
1 0 5 0
and
~ ~ } 0 . 0
b1 l()] b1, lO] b, lO] b3 0 by _ |E4
Wsyn 0]’ Wsyn 1]’ Wsyn E; ’ Wsyn 0’ Wsyn 0
0 E,
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The controllability matrixC (A gr,Brgr) has dimensioi2 x 24. Its column space is
spanned by the vectors

00000O0GO0OTO OO OO0 0
0 00000O0O0TO0O0O
E;, 00 0 0 0 26 0 0 O

0 EL 00 0 0 0 Ef 0 Eg

}T

}T

o O = O

my = [1
my = [0
mz = [0
my = [0 ]’

C.4 Moment Dynamics in a Nonlinear Stationary Bucket

C.4.1 Equilibrium of the Stationary and Nonlinear Bucket

The Taylor series (4.42) are truncated with¢ k = 3. With assumption (4.46pr = 0,
the equilibrium for the moment orders upng, 4o = 4 reads

C 0
C2 0 EZ,O 30
Bl,O 0 4 0 C2,1 0
B = lol’ Ci1| = e = ol
0,2 02 = £E20 6 120 ~— 5040 Cos 0
_C4,0— [ E4,O i
C31 0
C — E,, — E20 _ Eeo | Eso _ Fup
22| = 22 = 73 18 T 360 — 15120
C1,3 0
C — _ Eeo Eip | Eso | Eso  Ewpo  Eso
|~04]  LEg4 = E40 — ¢ >~ T 10 T 20 ~ 5040 — T680-

C.4.2 Linearized Dynamics

The linearization of the nonlinear dynamics around the ldgium of Section C.4.1 is
presented for a stationary bucket. The nonlinear dynamiesalculated according to
Section 4.6.1 withpg = 0, k = 3. The dynamics of moments up to the order=
Nmodel = 4 are summarized in this section. The equilibrium valligs,, are given in
Section C.4.1 and the deviations from this equilibrium at®,, ,, = Cy,n, — En,n,-
For the basic moment$; o = AB; o andBy; = AB(; holds. The dynamics of the basic
moments are

ABl,O

= —AB C.la
oyn 0,1 (C.1a)
ABy 1 Exop  Eso  Eep 1
ZA 0 2001 AR ] — 2A
Weyn >t g 7| [ABlo—up] — gAGe+
1 1
+ —==ACs50 — =——=ACy9 (C.1b)

120 5040
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The dynamics of the central moments of ordex 2 are given by

AC
20— _2ACy, (C.2a)
Wsyn
ACq 1 1 1 1
w z == ACZ/O - ACO/Z - 8AC4’0 + @AC@O - %ACS,O—i_
syn
Eso Eeo  Egpo
Erg— — A 4 C.2b
P20 g T 10 5040 | e (C.2b)
ACy 5 1 1 1
= =2AC;1 — =AC —ACs1 — ——AC C.2c
oyn 11— 348G, + 502651 — 55552071 ( )

The dynamics of the central moments of ordet 3 read

ACs
= = —3ACy,
Wsyn
ACZ 1 1 5 1 1
=5 [Pk 51 [E6o — E2oE —~ [EpoFEe0 — Esol| -
Wsyn lz [ 2,0 4,0} Y [E6,0 — E2,0E40] + 70 [E20Ee,0 8,0]]
EZ/O 1 EZ,O
. [ABLO - uq)} + ll + T] AC?),O — ZACLZ — lg + m AC5,O+
1 | Eyxp 1
* l1zo + 5040] 70 = 50292 C00
AC1 1 1 .
AC03 3 1
== |5 [E20E02— E = [Eqp — EooF — [EgoEeq—E
Gayn l 5 [E20E02 — Eap] + ¢ [Ea2 — EopEao] + 575 [Eo2Ee0 — Ee2]
- [BBug — ttg] + Z22AC30 +3AC1p — 2 Cs0 — 583 + 15 ACs o+
Eo» 1
’ A o —AC
T 1680270 ~ 16800072

The dynamics of the central moments of ordet 4 are

AC
syn
ACs 1 1 1 1
= = ACy9 —3ACyp — =ACgg+ —ACgg — ——ACy90+
E E E
+ E4,0 B 6,0 8,0 10,0 e

6 120 5040



182 C Modeling Results

AC 1 1
- 22 — DAC31 —2ACy 5 — 3ACs1+ 5AC,
syn

ACy 3 1 1 Esr Ee¢p  Ego

~ =3ACry — AChyg — =AC —AC 3E)y) — — = ’
Wayn 272 04— 5042 + 402062 + 272 > + 0 1680 Ue
ACp4 2 1

= = 4ACi53 — =AC —AC
Wayn 13— 38633 + 302653

C.4.3 Models for Coherent Modes

In this sectionk = 3 and#,,g4e1 € {1,2,4} were chosen to obtain transfer functions for
the dipole and quadrupole mode in a nonlinear stationargdiugr = 0).

Modem =1 For the choic& = 3, 11,,,4¢; = 1, the transfer function has the shape

2 12 144 3 24 360

2
ABl,O (S) blw
Gy(s) = = (C.3)
uq’(s) S +alwsyn
For a uniform density and with Table C.2
2 3
b b =1 E20 B0 Exo
= 2 12 144
For a Gaussian density and with Table C.3
g —1_ 220 35E3,  35E3, _ ., Exp E3y E3g
! 8 192 1024 " ! 2 8 48"
Mode m = 2 The transfer function ofz = 2 is given by
ACZ,O (S) S b2w§yn
GZ(S):i :_'ﬁ.
ue(s) s 8%+ apwin
For a uniform density, the columns f@,, ,, andAC,, »,(r2) of Table C.2 yield
Eso =2E5,, Eeo=>5E5, Eso=14E;,
ACyp = 4Ey0ACy, ACep = 15E50ACy0, ACsg = 56E; (AC
AC31 =2Ep0ACy1, ACsy =5E50ACy;, ACyy =14E3,ACy4
This leads to
E E3, E3 E E3, E3
b — 4|1 =20 720 2,0] , by = —2Es [1_ 20 , 220 _ 220
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For a Gaussian density, the columns By, ,, andACy,, ., (12) of Table C.3 yield

Eyo = 315%/0, Ego = 15E§’IO, Ego = 10515;{0
ACyg = 6E20ACag, ACep = 45E%/0AC2,0, ACgg = 420E§/0Ac2,0
AC3I1 == 3E2/0AC1,1, AC5,1 == 15E%IOAC1,1, AC7,1 == 105E§/0AC1/1

This leads to

2 3 2 3
N Eyo  SE30 by — —2F, . |1 £20 4 B0 Ep
4 4 9 |7 ? 20 2 "8 48

Modesm € {1,2,3,4} The dynamics of the moments of order +n, € {1,3} are

Axogd = Aodd (E2,0)Ax0dd + bodd (E2,0)u2

with
[0 -1 0 0 0 0 7 [0
a1 0 a3 0 0 0 bZ
N 0 0]0 -3 0 0 b |0
odd — ®syn |, 11 0 (g3 0 ) 0 odd — Wsyn by
0 asp 0 as 4 0 —1 0
| 61 0 |ag3 0 ag5 0 | be
For a uniform density, the entries are
1 1 3 > , 1.3 4
m1=1-cEo+ oE0—E0 a1 =—5E0+ gE0— grEp0
1, 5.4 7 3 5 0 1 ¢
= B2, — 2B} 4+ —Ef — —E3,+ —ES,, =0
To1 = 35207 52720 T 10 20 T 330 20 T 1950 20 12
1. 1 2 A 2.0 1.3
=~ —FEyo— ——FE —1-ZE+—E2,— —E
125 = "5 T 3020 T g 20 M3 3720F 15720 7 gp a0
1 7 52 3 s 1 s
= “Epo— —E3y+ —~E3,— —F} +-—F
963 = 5520 T 31520 T 39720 T 330720 T To50 20
a5, =2 —E +3E2 B +iE2
5,4 - 2,0 20 2,0 90 2/0/ 6,5 - 2 2,0 40 2[0
1 1, 1, 1., 1.,
bZ =—-1 + EEZ’O - EEZ,O’ b4 == EEZIO - gEZ/O -+ %EZ,O
1 7 3
po— ‘2 9p3 7 a3 s 1 g6
6= "0 T 55520 7 755720 T 350720 T 195020
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For a Gaussian density, the entries are

1 49 7 101, 1039 5 857
—1—_F E2.— ' E — g2 o4 P73 997

21 2720 T 36420 7 355200 A4 96 “20 T 1920520 T 144720
) (15, 6035 4707 4 203 5 483 .
6.1 327207 640 720 7 10240 20 " 4096 20 81920 20
1, 1.4 53 4
— __—p2 4 _—_p3 2
152 = T35 20 T 55720 T 15360 20

1 7 21 31 1183 21
= ——+ —FEyg— —F3 =1—-=E ——E50— —=E;
23 = " T 9620 T Tpgpt20r 43 2420 F o5 128 20
1 15, 283 ., 133 _, 63 s
= CEyp— —FE3g+ ——E3,— —— ——_E
963 = 5520 = 35520 T 1780520 ~ 2560 720 T 10240 20
7 189 77 4 7 63
=2—-E —E — —E5,, =3——-E _ E?
54 =2~ R0 T 555 640 20 165 g 720t gz0720
1 1 s 1., 1., 1, 1.4
bz == —1 ‘|— EEZ,O - gEZIO, b4 == EZ,O - EEZIO + gEzlo, b6 == _EEZ,O + EEZ,O
The dynamics of the moments of order + n, € {2,4} are
AXeven = Aeven(EZ,O)Axeven + beven(EZ,O)ul
with
0 -2 0 0 0 0 0 0 ] [ 0 T
a1 0 -1 a4 0 0 0 0 bz
0 asn 0 0 as5 0 0 0 0
Acven _ 0 0 0 0 —4 0 0 0 beven _ 0
wsyn 615,1 0 0 615,4 0 -3 0 0 ! wsyn b5
0 ae,2 0 0 6,5 0 -2 0 0
az1 0 0 0 0 az 6 0 —1 b7
i 0 asgpo 0 0 ass 0 4 0 i | 0 i
For a uniform density, the entries are
3 5, 1 4 3., 7.5 3.,
m1 =1=35E0+ k20 510 = 5E50— 75E0 T 5¢E20
1, 4 13 1 1 1 5
1= —3F20+ 50~ aggta0 T aggtro 2 =2~ g5Fa0+ g5Fa0
7 11 19 1
2
62 = EZ,O o %EZ,O’ ago = _2E2,0 + = 15 EZO 180 EZO + 35 360 EZO

1 1 1, 7 1
o4 —FEpg— —F =1-Eyo+ —E%2,— —E
a4 G + 5020 T 1ggt20r 954 2,0 T 75 30720 T 15720
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1 1 1 4 7
=—>+4 —Eyg— —E =2—_F ~E
735 = "3 1 1520~ 150200 965 320 F 35520
1 1 4 1 1.
1., 1 4 1 , 5 7 4 1 s
by = Ep0 — zE30+ 5720 — 3ggF20r b5 =2E30 — gEz,o + 25F20 ~ 1opE20r
4 1 29 13 1
by =2E3,— —E3,+ -E3, — —E3 ES,— ——E5,.
7= 220 7 3520 T 3720 7 750720 T 350720 T ggag 20

For a Gaussian density, the entries are

9 , 1, 9, 7.5 135,
ﬂz/l =1- EEZ,O + EEZ’OI a5,1 - EEZ,O - EEZ,O + EEZ,O
32 33 94 35 3 13
a71 = —5E0t B0~ ebot 3pE20 432 =2 2_0E2,0 +51E20
7 7 1
a2 = 3E5y— SE5o, asy = —6E30+ E3 0 —Eyg+ —E3
4 2~ 16 ~
1 1 1 70 5.3
a24__8+1_0E20_%E2’0’ a5,4:1_2E2,0+8E2,0_ﬁE2,0
1 2 i 8 7

1 1 1 1
ﬂ8,5 == §E%’O — EE%O + ﬂEZZL/O’ “7,6 =3— 2E2,O + EE%’O

1, 1.3 1 4 > 5.3 7.4 3 5
by = Ezo— 5E50+ gF20 — 1gE200 bs =3E5, — yE20+ gE20 — 7 E20r

2
5 o 1

7
2 3 4 5 7
b; =3E5 () —4E;(+2E; ) — TeE20 T gzE20 — g E20

C.4.4 Models for Ellipsoidal Bunches

For bunches with an ellipsoidal shape, the linearized dycsare given by

[AB1] [ —ABy1 ] [0 ]
AB.Orl alABLO —d1Ue
Aiyp = |ACy0 | = Wsyn —2AC 1 +Wsyn | 0
ACM EleCzlo — ACO,Z blue
_ACO,Z_ i a3ACq 1 | | 0

The transfer functions of the basic and second order monag@ats
ABl,O (S) _ 611 ACZ,() (S) o —2b1
ufp(s) -1-611 ue(s) + 2a, -1-613

Syl’\ syn

S
S
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The calculation for an ellipsoidal bunch wittuaiform density and withk = 6 yields

2 3 4 5 6
4 =1 E20 Eoo  Eao | Eoo  E3p n E20
1 2 12 144 ' 2880 86400 ' 3628800
E2 E3 25 E3 ES E7
by = E»q— 220 4 F20 _ 220 20 _ 20 2,0
1= 5207 73 24 360 ' 8640 302400 @ 14515200
2 3 4 5 6
2 — 1 2E20 E5o  Eyp n Eco B n Edo
2 3 8 90 ' 1728 50400 ' 2073600
2E E2 E3 E4 E5 E©
gy = 2 — 2520 20 _Fa0 220 20 a0

3 12 180 = 4320 151200 = 7257600
20y 4 a3 = 4aq

The calculation for an ellipsoidal bunch withGaussian densityand withk = 6 yields

2 3 4 5 6
Exo Eao Eyo  E2o B30 | E3p

m=te 2 " 8 48 ' 384 3840 ' 46080
by = Erp — a0 + Eso B0 [ B30 Edp Eyo
! 207 8 48 384 3840 46080
2 3 4 5 6
ar» =1—E>g+ 3E2,0 _ EZ/O 5E2,0 B Ez,o 7E2,0
2 20T g 12 7384 640 ' 46080
Ga =2 — Eoq 4 Eoo Eyo B0 Eo | E2p
’ 20 4 24 192 1920 23040
2 3 4 5 6
20y +a3 =4 |1— 3Es0 | Eao  OE5p n Eoo 7B | Edp
Y 4 4 96 ' 128 7680 ' 11520
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