
E�cient and Compatible

Bidirectional Formal Language Translators

based on

Extended Triple Graph Grammars

Vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

vorgelegt von
Dipl.-Inform. Felix Klar

geboren in Frankfurt am Main

Referent: Prof. Dr. rer. nat. Andy Schürr
Korreferent: Prof. Dr. rer. nat. Albert Zündorf
Tag der Einreichung: 15.09.2011
Tag der Mündlichen Prüfung: 10.02.2012

D 17
Darmstadt 2012

Language is some biological property of human beings.

[Noam Chomsky]

in his talk about �Poverty of Stimulus� at JG University Mainz, 24.03.2010

For my parents,
Ursula

and
Reinhard

Abstract

In the context of model-driven engineering, models play an important role in everyday life.
Models are used to abstract from certain subjects and to describe artifacts and procedures.
In software engineering, a system under development is often modeled on di�erent levels of
abstraction and from multiple perspectives which results in plenty of models. Moreover, the
resulting models depend on each other and the need for automatically translating between
related models arises in order to reduce costs, errors, and laborious manual work and to speed-
up development processes.
The model-driven engineering approach proposes model transformations as a key concept of

model-based development which allows to automatically re�ne and transform models or trans-
late between related models. Especially, bidirectional translators are often required which are
able to automatically keep related models in a consistent state. The goal of bidirectional model
transformations, which allow to execute transformations de�ned between a source and target
model in both directions, is to assist in such situations. To be able to specify (bidirectional)
model transformations the need for (bidirectional) model transformation languages arises.
Triple graph grammars (TGGs) are a formally founded bidirectional transformation lan-

guage based on graph transformations with precisely de�ned semantics. A TGG speci�cation
describes correspondence relationships between two languages and consists of a set of produc-
tions that declaratively specify the simultaneous evolution of both related models. The main
advantage of triple graph grammars is the possibility to automatically derive bidirectionally
working forward and backward translators from a TGG speci�cation that ful�ll the fundamen-
tal properties e�ciency and compatibility.
The grand challenge is to build translators that are e�cient on the one hand and are com-

patible with respect to the TGG speci�cation on the other hand. Compatibility means that
translators are correct and complete with respect to the speci�cation, i.e., pairs of models are
in a consistent state after the translation operation and valid models are able to be translated
into corresponding models. Moreover, the overall expressiveness of the triple graph grammar
language has to be increased in order to create usable transformation speci�cations. But, it
has to be ensured that derived translators still ful�ll the fundamental properties.
In this thesis, the expressiveness of triple graph grammars is increased by supporting neg-

ative application conditions (NACs) that allow to restrict the applicability of transformation
rules, which is required in certain cases. In addition, we accept the challenge of providing an
e�ciently working translation algorithm that still ful�lls the properties correctness and com-
pleteness. We extend the expressiveness of triple graph grammars by a precisely de�ned class
of NACs together with a new translation algorithm such that for the �rst time the fundamental
properties of TGG-based translators are still satis�ed. The resulting translators nevertheless
have a polynomial runtime complexity and, therefore, can be considered e�cient. Moreover,
they are compatible with their triple graph grammar, which makes these translators usable in
practice. In conclusion, the extended triple graph grammar formalism is applicable in real
world scenarios, where model transformations are bidirectionally executed to keep related mod-
els in a consistent state.

Zusammenfassung

Im Zusammenhang mit der modellgetriebenen Entwicklung spielen Modelle eine wichtige Rolle
im täglichen Leben. Modelle werden verwendet um von bestimmten Gegebenheiten zu ab-
strahieren und um Artefakte und Abläufe zu beschreiben. In der Software-Entwicklung wird ein
zu entwickelndes System zumeist auf unterschiedlichen Abstraktionsebenen und von mehreren
Perspektiven aus betrachtet, was in einer Vielzahl von Modellen resultiert. Die daraus resul-
tierenden Modelle hängen voneinander ab und eine automatische Übersetzung zwischen diesen
Modellen ist wünschenswert, um Kosten, Fehler und mühsame Handarbeiten zu reduzieren
und Entwicklungsprozesse zu beschleunigen.
Der modellgetriebene Entwicklungsansatz schlägt Modelltransformationen als ein Schlüs-

selkonzept der modellbasierten Entwicklung vor, das es erlaubt automatisch Modelle zu ver-
feinern und zu transformieren oder zwischen zueinander in Beziehung stehenden Modellen
zu übersetzen. Insbesondere werden oft bidirektionale Übersetzer benötigt, die in der Lage
sind in Beziehung stehende Modelle automatisch in einem konsistenten Zustand zu halten.
Das Ziel von bidirektionalen Modelltransformationen ist es, in den genannten Situationen
zu unterstützen. Bidirektionale Transformationen erlauben es, die zwischen einem Quell-
und Zielmodell de�nierten Transformationen in beide Richtungen auszuführen. Um (bidirek-
tionale) Modelltransformationen zu spezi�zieren, werden (bidirektionale) Modelltransforma-
tionssprachen benötigt.
Tripel-Graph-Grammatiken (TGGs) sind eine formal fundierte bidirektionale Transforma-

tionssprache, die auf Graphtransformationen beruht und eine präzise de�nierte Semantik be-
sitzt. Eine TGG-Spezi�kation gibt die übereinstimmenden Zusammenhänge zwischen zwei
Sprachen an und besteht aus einem Satz von Produktionen, die in deklarativer Weise die si-
multane Entwicklung zweier in Beziehung stehender Modelle beschreibt. Ein Hauptvorzug von
Tripel-Graph-Grammatiken ist die Möglichkeit automatisch bidirektional arbeitende Vorwärts-
und Rückwärtsübersetzer aus einer TGG-Spezi�kation abzuleiten, die die fundamentalen Eigen-
schaften �E�zienz� und �Kompatibilität� erfüllen.
Die groÿe Herausforderung ist es Übersetzer zu bauen, die auf der einen Seite e�zient sind

und auf der anderen Seite kompatibel bezogen auf ihre TGG-Spezi�kation. Kompatibilität be-
deutet, dass Übersetzer korrekt und vollständig bezogen auf ihre Spezi�kation sind, d.h. Paare
von Modellen sind nach dem Übersetzungsprozess in einem konsistenten Zustand und Modelle,
die gültig gemäÿ Spezi�kation sind, können in entsprechende Modelle übersetzt werden. Zu-
dem wird die Ausdrucksstärke von Tripel-Graph-Grammatiken erhöht, um in der Lage zu sein
benutzbare Transformations-Spezi�kationen zu erstellen. Dabei muss immer darauf geachtet
werden, dass abgeleitete Übersetzer die oben genannten fundamentalen Eigenschaften erfüllen.
In dieser Arbeit wird die Ausdrucksstärke von Tripel-Graph-Grammatiken durch negative

Anwendungsbedingungen (NACs) erhöht. Diese erlauben es die Anwendbarkeit von Transfor-
mationsregeln einzuschränken, was in bestimmten Fällen nötig ist. Zusätzlich stellen wir uns
der Herausforderung einen e�zient arbeitenden Übersetzungs-Algorithmus zu entwickeln, der
zusätzlich die Eigenschaften �Korrektheit� und �Vollständigkeit� erfüllt. Wir erhöhen die Aus-
drucksstärke von Tripel-Graph-Grammatiken um eine präzise de�nierte Klasse von NACs und
stellen einen neuen e�zienten Übersetzungs-Algorithmus vor, so dass gleichzeitig die funda-
mentalen Eigenschaften von TGG-basierenden Übersetzern erfüllt bleiben. Die resultierenden

Übersetzer haben trotzdem polynomielle Laufzeitkomplexität und können daher als e�zient
angesehen werden. Desweiteren sind sie kompatibel mit ihrer Tripel-Graph-Grammatik, was
diese Übersetzer in der Praxis einsetzbar macht. Zusammenfassend lässt sich sagen, dass der
erweiterte Tripel-Graph-Grammatik-Formalismus in Alltagsszenarien einsetzbar ist, in denen
Modelltransformationen bidirektional ausgeführt werden, um miteinander in Beziehung ste-
hende Modelle in einem konsistenten Zustand zu halten.

Contents

Abstract vii

Zusammenfassung ix

Contents xi

List of Figures xv

List of Tables xix

1. Introduction 1
1.1. Motivation . 1
1.2. Scope . 3
1.3. State of the Art . 5
1.4. Contributions . 6
1.5. Outline . 7

2. Fundamentals 9
2.1. Domains . 9
2.2. Models and Languages . 12

2.2.1. Models . 12
2.2.2. Abstract and Concrete Syntax . 14
2.2.3. Relationships Between Model and Subject 16
2.2.4. Languages . 18
2.2.5. Metamodels . 20

2.3. Modeling Languages . 23
2.3.1. MOF . 24
2.3.2. OCL . 25
2.3.3. UML . 26
2.3.4. Domain-Speci�c Languages (DSLs) . 28

2.4. Model-Driven Engineering and the MDA . 29
2.5. Model Transformation . 31
2.6. Graphs . 33
2.7. Graph Grammars and Graph Transformation 36
2.8. Model Transformation Based on Graph Transformation 41

2.8.1. Mapping Models to Graphs . 42
2.8.2. Models Mapped to Graphs: Two Examples 45

xi

Contents

2.8.3. Realizing Model Transformation with Graph Transformation 49

3. Integration of Formal Languages 55
3.1. CAB: A Natural Language Translation Analogy 55
3.2. Relationships in Translation Processes . 58
3.3. Integrating Class Diagrams and Database Schemata 60

3.3.1. Syntax of CD and DS Language Models 61
3.3.2. Constraints in CD and DS Language Models 62
3.3.3. Producing CD and DS Models . 63
3.3.4. Examples of CD and DS Models . 67
3.3.5. Mapping CD and DS . 71

3.4. Similarities in Natural and Formal Language Translation 73
3.5. Challenges Realizing Bidirectional Translators 75
3.6. Model-Driven Language Integration with TiE 77

4. Triple Graph Grammars 81
4.1. Overview . 81
4.2. TGG Schema . 84
4.3. TGG Productions . 85
4.4. Productions of TGGCDDS . 88
4.5. Simultaneous Evolution of Graph Triples . 90
4.6. Language Translators based on TGGs . 92
4.7. Fundamental Properties of TGGs and Translators 94

5. Extended Triple Graph Grammars 97
5.1. Labels and Attributes . 97
5.2. Formalization of Constrained TGGs with NACs 98

5.2.1. Integrity Preserving Productions . 99
5.2.2. Constrained and Typed Triple Graph Grammars with NACs 104
5.2.3. Splitting of Production Triples with NACs 106
5.2.4. Local Completeness Criterion . 111
5.2.5. Conclusion . 113

5.3. Dangling Edge Condition (DEC) . 114
5.3.1. Motivation . 114
5.3.2. Formal introduction to LNCC and DEC 115
5.3.3. Extracting LNCC from TGG productions 118
5.3.4. Dangling Edge Condition by Example 120

6. Graph Translators for Extended TGGs 121
6.1. Graph Translation Algorithm Framework . 121
6.2. Core Rules . 123
6.3. Simple Graph Translation Algorithm . 124
6.4. Forward Translation Example . 125
6.5. Discussion of Simple Algorithm . 128

xii

Contents

6.6. Advanced Graph Translation Algorithm . 129
6.7. Backward Translation Example . 134
6.8. Properties of Advanced Translation Algorithm 138

6.8.1. Termination . 138
6.8.2. E�ciency . 140
6.8.3. Correctness . 141
6.8.4. Completeness . 142
6.8.5. Consequences . 144

6.9. Consistency Check Algorithm . 144

7. Implementation of Approach 149
7.1. The MOFLON meta-CASE Tool . 149

7.1.1. Architecture of MOFLON . 149
7.1.2. MOFLON editors . 151

7.2. TGG in MOFLON . 154
7.2.1. TGG Editor . 154
7.2.2. Translating a TGG Project . 157

7.3. Tool Integration Framework . 164
7.3.1. Accessing Repositories . 166

8. Related Work 169
8.1. Decision Criteria . 169
8.2. Related Model Transformation and Model Integration Approaches 170

8.2.1. ATL . 171
8.2.2. Viatra2 . 171
8.2.3. Tefkat . 172
8.2.4. Epsilon Transformation Language . 172
8.2.5. AToM3 . 173
8.2.6. GRoundTram . 173
8.2.7. QVT . 174

8.3. Triple Graph Grammar Approaches . 177
8.3.1. Own Approaches . 178
8.3.2. Becker et al. 178
8.3.3. Giese and Wagner . 179
8.3.4. Königs . 179
8.3.5. Greenyer and Kindler . 181
8.3.6. Ehrig et al. 181

8.4. Comparison Matrix . 182

9. Conclusion and Future Work 185
9.1. Conclusion . 185
9.2. Future Work . 187

Bibliography 191

xiii

Contents

Index 203

A. Glossary 207
A.1. Terminology of Graphs . 207
A.2. Terminology at TGG Level . 208
A.3. Terminology at Translator Level . 209

A.3.1. Translation Direction Dependent . 209
A.3.2. Translation Direction Independent . 210

A.4. Original TGG Terms Related With Terms Used in This Thesis 211

B. Issues in Original TGG Publication 213

C. Curriculum Vitae 215

xiv

List of Figures

1.1. Overview of bidirectional model translators. 2
1.2. Overview of bidirectional transformations based on relations. 4
1.3. Composition of the MOFLON Speci�cation Language (MOSL) (from [Kön09]). 5

2.1. A domain with domain model MDOM and systems S1 to S4. 10
2.2. Domain DOM with subdomains A to D. 11
2.3. Condensed view of models used in the library domain. 13
2.4. Detailed view of models used in the library management domain. 15
2.5. Di�erent kinds of models. 17
2.6. Example of di�erent roles a model may have. 17
2.7. Relations between models and languages by example. 18
2.8. Relations between models and languages�schematic with stack. 20
2.9. Modern usages of the term �meta�. 21
2.10. Usage of the term �metamodel�. 22
2.11. Relationsship between selected modeling languages. 23
2.12. Example of an OCL expression. 26
2.13. Book model based on di�erent languages: UML vs. DSL 27
2.14. Models and languages in the MDA 4-layer stack. 30
2.15. Endogenous vs exogenous and horizontal vs vertical transformations. 32
2.16. Notation of graph elements: nodes connected by a directed edge. 34
2.17. Example of a typed graph. 35
2.18. Notation of graph production. 37
2.19. Example of a production set. 38
2.20. Example of a pushout which glues two graphs G and R. 39
2.21. Direct transformation with p=addAuthor that produces Fig. 2.17. 40
2.22. Mapping of models to graphs�classes and objects. 42
2.23. Mapping of models to graphs�properties, slots, and values. 43
2.24. Mapping of models to graphs�associations and links. 44
2.25. Models mapped to graphs�in the context of a DSL. 46
2.26. Models mapped to graphs�in the context of the UML Superstructure. 47
2.27. Schematic view of story patterns. 50
2.28. Advanced library language model. 51
2.29. Story diagram that models �lending a book to a reader�. 52

3.1. Relations between components involved in a translation process. 58
3.2. Language models of simple class diagrams and database schemata. 61
3.3. Story patterns that produce types in (a) LMCD and (b) LMDS. 64

xv

List of Figures

3.4. Story patterns that produce properties in (a) LMCD and (b) LMDS. 64
3.5. Story patterns that produce relationships in (a) LMCD and (b) LMDS. 65
3.6. Story patterns that produce generalizations in (a) LMCD and (b) LMDS. . . . 66
3.7. Examples of invalid CD and DS models. 68
3.8. Examples of valid CD and DS models. 69
3.9. Association class that realizes a many-to-many relationship. 72
3.10. Architecture of the tool integration environment TiE (adapted from [KRS09]). 78

4.1. A graph triple: model notations and graph notation. 82
4.2. Type preserving graph triple morphism (gS, gC , gT). 84
4.3. TGG schema of TGGCDDS that relates class diagrams and database schemata. 85
4.4. Schematic view of a TGG production. 86
4.5. Abstract example of a TGG production. 86
4.6. TGG productions of TGGCDDS that create types, properties, relationships, and

inheritance structures. 89
4.7. Schema compliant graph triple GT5 produced by TGGCDDS. 91
4.8. Schema compliant graph triple GT ∗5 produced by TGGCDDS. 92
4.9. Abstract example of forward and backward translation rules. 93

5.1. Diagrams used in Def. 14, Def. 15, and in proof of Corollary 3. 100
5.2. Languages of graphs and languages of graphs generated by graph grammars. . 104
5.3. Extended �Pair of Cubes� diagram utilized by Integrity-Preserving Graph Triple

Rewriting. 105
5.4. Languages of graph triples and languages of graph triples that are generated

by extended triple graph grammars. 106
5.5. Splitting of Production Triple Application into rS and rST 107
5.6. Forward translation rules rST derived from TGGCDDS. 108
5.7. Backward translation rules rTS derived from TGGCDDS. 109
5.8. (a) Input graph given to the FGT, (b) Input graph partially translated, (c)

Input graph translated with dangling edges . 115
5.9. TGG production fragments relevant and irrelevant for LNCCS(1). 116
5.10. Patterns in input graph that violate DEC(1). 117
5.11. Extracting LNCC from TGG production fragments. 119

6.1. FGT core rules crST and BGT core rules crTS derived from TGGCDDS. 123
6.2. Input graph given to forward translator. 126
6.3. Intermediate graph triple produced by forward translator. 127
6.4. Graph triple produced by forward translator. 128
6.5. A TGG that raises cycle errors. 131
6.6. Input graph given to backward translator. 135
6.7. Intermediate graph triple produced by backward translator. 136
6.8. Graph triple produced by backward translator. 137
6.9. A TGG that raises a cycle error due to an an invalid input graph. 140
6.10. Consistency check rules rCC derived from TGGCDDS. 145

xvi

List of Figures

7.1. Architecture of MOFLON (from [AKK+08]). 150
7.2. Screenshot of MOFLON. 152
7.3. MOFLON's OCL expression editor. 153
7.4. Architecture of the TGG-Editor (from [KKS07]). 155
7.5. TGG schema editor: packages and link types. 156
7.6. TGG rule editor: TGG productions. 157
7.7. MOF project generated from TGG project. 158
7.8. Operational rule translateForward generated from TGG production. 160
7.9. Java code generated for operational rule translateForward (part 1 of 2). 162
7.10. Java code generated for operational rule translateForward (part 2 of 2). 163
7.11. Screenshot of the Integration Framework. 164
7.12. Integration Framework after forward translation. 165
7.13. Class diagram of the repository registry. 167

8.1. Feature comparison of discussed model transformation approaches. 184

xvii

List of Figures

xviii

List of Tables

2.1. Related terms of modeling domain and domain of graphs. 42

5.1. LOCC of source and target domain extracted from TGGCDDS. 119

A.1. TGG terms used in [Sch94] and [Sch95] related with the terms used in this thesis.211

xix

List of Tables

xx

1. Introduction

This chapter gives an introduction to this thesis. We start in Sect. 1.1 with a short motivation
of model-based development and model translation. Then, Sect. 1.2 more precisely de�nes
the scope of this thesis. Section 1.3 discusses the state of the art when this thesis was started.
The contributions of this thesis are presented in Sect. 1.4. Finally, Sect. 1.5 gives an outline
of this thesis and gives a suggestion of how to read this thesis.

1.1. Motivation

Nowadays, computers are widely used to assist their users in di�erent domains of the real
world. Amongst other things computers store and manipulate data, perform calculations,
automate and simulate complex processes, facilitate communication and display information
in various ways. Domains that bene�t from the usage of computers are, e.g., �nance, banking,
sports, entertainment, astronomy, mechanical engineering, and software engineering. In order
to be computable, the artifacts and procedures of these domains are mapped�as models�to
the world of computers. Such models are stored inside a computer as structured data which
complies with a formal language. A model conforms to a speci�c language which speci�es the
syntax and semantics of the model's elements so the meaning of the model becomes clear to
a viewer. Speci�c domains of the world require speci�c languages which are nowadays often
called domain-speci�c language (DSL)s [FP10]. These DSLs are tailored to the speci�c needs
of a group of people that are involved in the execution of speci�c tasks in a given domain.
Let us consider the software engineering domain where one task is to build software systems.

To achieve this goal common development processes like the V-model, Rational Uni�ed Pro-
cess, or XP are typically applied. These development processes divide the whole process into
a series of operations which are called activities, steps, and phases respectively. According to
[Som07] and [JBR99] these activities are software speci�cation (i.e., requirements analysis),
software design, implementation, testing, deployment, and maintenance. Depending on the
underlying speci�c development process the activities are executed iteratively in a de�ned
order until the realization of the software system is �nally completed. Di�erent activities
produce models on di�erent levels of abstraction. Early activities yield more abstract mod-
els, whereas later activities typically produce more concrete models. In particular, textual or
graphical models, like textual requirement documents and graphical system interrelationship
documents are created, edited, and then passed to other activities, where they are enriched
and re�ned or used as foundation for new models. Each activity represents a specialized
(sub)domain that has its own domain experts which are responsible for di�erent aspects of
the system. In most cases, these subdomains have a non-empty intersection. Consequently,
there are DSLs for these subdomains that share the same artifacts of the real world and of

1

1. Introduction

the software system. These DSLs may di�er in their representation of artifacts only, or they
regard additional aspects that are not relevant in the other subdomain. Moreover, compet-
ing DSLs of di�erent organizations may exist that represent the same domain but, e.g., use
di�erent naming conventions and have a di�erent language design. Hence, model elements in
the DSLs of speci�c subdomains are often related to each other.

An example for di�erent representations of models that share the same domain are use
cases that are created during requirements analysis. For example, use cases are represented as
UML use case that depicts actors, use cases, and their relationships graphically, or they are
represented textually based on a set of templates (cf. Fig. 1.1). Graphical use cases are used in
a rough overview of the system, whereas textual use cases contain more detailed information.
Intersecting subdomains that are related to each other are implementation and testing, as
each implemented feature of a software system has tests that cover the implementation in
order to ensure the quality of the implementation.

Bidirectional
Relationship

Domain A Domain B

Forward Translator

Backward Translator

«based on»

Language A Language B

Model A Model B

«based on»

e.g., textual
use cases

e.g., graphical
use cases

Figure 1.1.: Overview of bidirectional model translators.

DSLs typically come with tool support and, therefore, many tools are used throughout a
software engineering process. Each tool has its own data structures due to the DSL it imple-
ments and is applicable in its specialized domain. In general these tools come from di�erent
vendors and are heterogeneous regarding their import/export capabilities. Therefore, it is a
quite common scenario that models managed by one tool are translated into models of another
tool manually to o�er domain experts the information required to perform their tasks. In ad-
dition, iterative development processes cause activities to be executed over and over again.
One of the worst cases in software engineering is to detect �aws in the requirements during

2

1.2. Scope

advanced phases of the design and implementation activities. In this case many models are
a�ected and have to be reviewed when eliminating the �aw in order to remove inconsistencies
that arise among related model elements.
Due to these facts the need for (semi-)automatic model translators emerges. The need for

translators is not restricted to the domain of software engineering. Instead, translators are
more generally required in various other domains mentioned earlier. Translators should be
able to translate instances of one language into another language, detect inconsistencies and
perform incremental updates after changes occurred in a model. In order to keep related
models in a consistent state, bidirectional model translators are required. These translators
have no �xed order of creating and changing interrelated model elements and are able to
translate forward and backward between models that depend on each other. Typically, a
bidirectional relationship is speci�ed between the elements of two related languages from
which forward and backward translators are derived (cf. Fig. 1.1). Models based on one
language are then translatable into the corresponding language and vice versa.
The grand challenge is to build bidirectional translators that are e�cient and compatible

with respect to their speci�cation. Moreover, the speci�cation language needs to provide
enough language features such that the expressiveness of the language has the capability to
create speci�cations that are applicable in practice. The compatibility property consists of
the two properties correctness and completeness. A translator is correct if it creates pairs of
related models that are in a consistent state with respect to the speci�ed model consistency
relation. Completeness is ful�lled if every model that is an element of the language de�ned by
the speci�cation is translatable into its corresponding representation in the related language.
The mentioned properties compete against each other. Especially, it is hard to guarantee
e�ciency in conjunction with completeness. In the following chapters we will accept the
challenge for providing an expressive language for creating bidirectional translators that ful�ll
the properties e�ciency and compatibility.

1.2. Scope

In the context of model-driven engineering and theModel Driven Architecture (MDA) [KWB03]
the Object Management Group (OMG) proposes to build software systems based on models
using modeling languages like UML and MOF and the standardized model transformation
language QVT [Obj08]. An overview to model transformations is given by [SK03]. A classi�-
cation of model transformation is presented by Czarnecky and Helsen in [CH03] and [CH06].
The taxonomy of model transformation is discussed by Mens et al. in [MCG05]. There is
an active community behind model transformations which discusses topics of interest in the
International Conference on Model Transformation (ICMT)1. According to the ICMT, topics
of interest include, but are not limited to languages, scalability, reuse, semantics, implemen-
tation, generation, merging, maintenance, evolution, methodologies, tools, case studies of/for
model transformations.
A model is typically transformed by applying a set of transformation rules. A rule consists

of a matching part that �nds a given situation in the model and a transformation part that

1http://www.model-transformation.org/

3

http://www.model-transformation.org/

1. Introduction

Bidirectional
RelationshipDomain A Domain B

Forward Rules

Backward Rules

Forward Transformation

Backward Transformation

output model

output model input model

input model

«derive»

«derive»

«use»

«use»

Figure 1.2.: Overview of bidirectional transformations based on relations.

modi�es the model according to the rule semantics. A transformation rule is either unidi-
rectional which means the rule is able to transform one-way only and another rule is needed
that speci�es the way back, or bidirectional which means the rule is applicable forward and
backward. Translations as discussed in the preceding section are a special kind of model trans-
formation that translate from one (domain-speci�c) language into another2. One approach for
building translators based on relations is to derive forward and backward rules from a bidirec-
tional relation speci�cation, which are then utilized by forward and backward transformations
(cf. Fig. 1.2).
The MDA approach coincides with our previously discussed perception that models are a

vital part of di�erent processes and that models should be transformed automatically. To build
computer aided translators for formal languages it seems rather consequent to also develop
such translators in a model-based way. So, the advantages of model-based development, e.g.,
increased productivity and quality, are directly transferable to the model-based building of
translators.
In research activities of the Real-Time Systems Lab at the Technische Universität Darm-

stadt the metamodeling languageMOSL (MOFLON Speci�cation Language) has been created
(cf. [Ame09] and [Kön09]). By means of MOSL it is possible to develop formal languages and
the mentioned bidirectional translators in a model-based way. MOSL consists of the standard-
ized languages MOF [Obj06] and OCL [Obj10b] and the well-known graph grammar based
languages SDM [FNTZ00] and TGG [Sch95] (cf. Fig. 1.3). MOF and OCL are used to specify
the structure and the static semantics of the language under development. SDM (Story Driven
Modeling) is used to manipulate language instances and to de�ne their dynamic semantics by
means of unidirectional model transformations. TGGs (Triple Graph Grammars) are used to
relate corresponding elements of two languages. Therefore, bidirectional transformation rules,

2In contrast, transformations in general do not necessarily change the language of the resulting model.

4

1.3. State of the Art1 Introduction

MOSL

MOF 2.0 OCL 2.0

SDM TGG

Figure 1.3: Composition of the MOFLON Specification Language (MOSL)

order from QVT. As a result we come up with a model integration approach that
the reader hopefully considers to be highly expressive, user-friendly, and formally
well-defined.

1.5 Overall picture

This thesis presents work that has been done as part of the research activities of
the Real-Time Systems Lab, TU Darmstadt, Germany. The general goal of our
lab is to provide a meta-CASE (Computer Aided Software Engineering) tool. A
meta-CASE tool is a CASE tool which can be used to specify and implement
CASE tools. The tasks of the lab are to provide an appropriate and easy to use
specification language, implement a tool that allows for the application of this
language and generate corresponding code, and apply our approach to case studies
that demonstrate the usefulness of our approach.

As we will discuss later on in detail we have chosen to realize the desired speci-
fication language on the foundation of the Meta Object Facility (MOF) [OMG06a]
and related standards as proposed by the Object Management Group (OMG) and
the formalism of (Triple) Graph Grammars [Sch94]. As illustrated in Figure 1.3

10

Figure 1.3.: Composition of the MOFLON Speci�cation Language (MOSL) (from [Kön09]).

so-called TGG productions, are created in a TGG speci�cation. Translators for both directions
are then derived from a TGG speci�cation. SDM and TGGs realize model transformations
and translations. Both SDM and TGG are languages based on graph grammars and graph
replacement systems which are formally founded and well studied [EEKR97, EEKR99].
Within the scope of this thesis model translators based on these technologies are studied and

new concepts are developed to extend current bidirectional model translation approaches. We
have chosen to use the well-known mapping of class diagrams and relational database schemata
as running example. The extensions are evaluated in this running example.

1.3. State of the Art

When this thesis was started in 2006, bidirectional model transformations based on triple
graph grammars became of interest in many research labs. This becomes visible when looking
at the number of publications that were produced at this time in the context of TGGs3.
In [SK08] we have stated some fundamental problems that were still unsolved in 2008 when
this publication was written:

1. TGGs have been invented to specify mappings between two languages of graphs, but
most published approaches either use ine�cient graph grammar parsing and/or back-
tracking algorithms or rely on not very well-de�ned constraints of processed TGGs such
that they are not able to guarantee important properties of derived forward and back-
ward graph translations (FGTs/BGTs) with their TGG.

2. In practice urgently needed negative application conditions (NACs) of TGG productions
are either simply excluded or handled in a way that destroys the fundamental properties
of TGGs, i.e. derived FGTs/BGTs may generate graph triples that can't be generated
by the original TGG.

3cf. http://www.es.tu-darmstadt.de/english/research/projects/tgg/publications/ for a more or
less complete survey of TGG publications published between 1994 and 2008.

5

http://www.es.tu-darmstadt.de/english/research/projects/tgg/publications/

1. Introduction

3. Finally, appropriate means for modularization, re�nement, and reuse of TGGs have not
been studied until recently despite of the fact that quite large TGG speci�cations have
already been created and used in industrial case studies.

As already mentioned, important properties of translators are correctness and completeness
with respect to a TGG speci�cation and e�ciency of translators by means of space and time
consumption. Translators presented so far refrain from providing e�cient translators that
also ful�ll the completeness property. Moreover NACs are not handled in an appropriate way
such that translators ful�ll the correctness property. The overall goal at TGG language level
is to provide certain language features such that the expressiveness of TGGs is increased in
such a way that it becomes usable in practice.
The work of Königs [Kön09], which directly precedes the work done in this thesis, pro-

vides an algorithm that de�nes correct translators, but has an exponential worst-case runtime
behavior, i.e., is not e�cient.
In 2009, Ehrig et al. started addressing problems 1 and 2 listed above from a formal point of

view in [EHS09] and [EEHP09]. E�ciency was out of scope in these publications. But, Ehrig et
al. recently also addressed the e�ciency property of translators in [HEGO10]. However, they
discuss solutions on a very formal level and provide concepts that may be implemented by tool
developers but do not provide concrete algorithm implementations applicable by translators.
In [SK08], [KLKS10], and in this thesis we focus on problems 1 and 2 listed above. Problem 3

was addressed by us in [KKS07] but is out of scope in this thesis and is up to future work.

1.4. Contributions

This thesis is based upon the original triple graph grammar approach presented in [Sch95].
Moreover, this thesis is an extended version of [KLKS10] which in turn is based on ideas
�rstly presented in [SK08]. The work presented in this thesis contributes to the meta-CASE
tool MOFLON [AKRS06] and publications based thereon, e.g., [Kön09], [Ame09], [AKK+08],
[KRS09], and [KS06].
This thesis presents a formalism based on triple graph grammars that can be utilized to

derive bidirectional working language translators. Therefore, the triple graph grammar for-
malism originally presented in [Sch95] is extended by a certain class of negative application
conditions to increase its expressiveness. We present for the �rst time a translation algorithm
for translators based on triple graph grammars that is correct and complete with respect to a
TGG speci�cation and e�cient in terms of space and time consumption. Moreover, the code
generators of the MOFLON project have been adjusted for generating more sophisticated
translation implementations.
The main results of this thesis are as follows:

• We introduce a well-de�ned class of negative application conditions for restricting the
applicability of TGG productions. As a consequence, supported TGG productions must
have the property that they are integrity-preserving, i.e., the graph that results from a
translation satis�es a set of constraints after production application.

6

1.5. Outline

• We propose a handling of NACs when deriving forward and backward translators from
a TGG speci�cation. We found that NACs can be safely removed from the input com-
ponent of derived translation rules under certain conditions.

• We propose local completeness criteria for triple graph grammars. These criteria, which
a�ect either the source domain or the target domain of a TGG production, are used to
prove the completeness property of translators derived from a TGG speci�cation.

• We introduce a so-called dangling edge condition for triple graph grammars. This condi-
tion causes a transformation rule to be only applied if no dangling edges are produced in
the input graph given to a translator. The dangling edge condition a�ects the e�ciency
of translators derived from a TGG speci�cation because rule applications are prevented
that would produce an incomplete translation due to the calculation of a sequence of
translation steps that results in a dead-end and would require backtracking.

• We propose an advanced graph translation algorithm based on extended triple graph
grammars. We prove that translators which apply this algorithm are e�cient and com-
patible with respect to their TGG speci�cation.

• The presented algorithm is designed to handle TGG productions that create more than
one model element in source and target domain. This situation frequently occurs in
typical TGG productions and, therefore, should be supported by TGG-based algorithms.

• We present a mapping from models to graphs that is used to demonstrate how graphs
can be used as formal basis for model-driven purposes.

Based on the main results it is now possible to specify bidirectional relationships between
related domain-speci�c languages with an extended triple graph grammar formalism. The
translators derived from such a speci�cation are correct and complete with respect to the
speci�cation and can be executed e�ciently.

1.5. Outline

This thesis is structured as follows. Chapter 2 explains the fundamental concepts used
throughout this contribution. Afterwards, application domains of the approach presented
in this thesis are discussed in Chap. 3. There, fundamental properties that are important
when building translators that are based on formal bidirectional transformation languages
are discussed. The triple graph grammar language used to realize the mentioned translators
is then presented in Chap. 4, where its main features and current limitations are discussed.
Afterwards, the triple graph grammar approach is extended due to reasons of expressiveness
in Chap. 5 to make it more usable in practice and to improve its acceptance. Especially, we
formally extend the TGG approach by a certain class of negative application conditions in
Sect. 5.2. Moreover, we demand that TGG speci�cations ful�ll a local completeness criterion
in Sect. 5.2.4 and that translators only perform a transformation step if a dangling edge con-
dition is satis�ed (cf. Sect. 5.3). Chapter 6 then presents a new e�cient translation algorithm

7

1. Introduction

utilized by forward and backward translators derived from TGG speci�cations that is correct
and complete with respect to the TGG speci�cation. The implementation of the extended
approach in the meta-CASE tool MOFLON is described in Chap. 7. Chapter 8 compares our
approach with related work. Finally, Chap. 9 concludes this thesis and gives suggestions for
future work.
We suggest reading this thesis in a sequential order starting in Chap. 2, where the funda-

mentals of this thesis are discussed. Especially, Sects. 2.5, 2.6, and 2.7 that discuss model
transformations in general, graphs, graph grammars and graph transformation are of interest.
Then, Sect. 2.8 presents our mapping of models to graphs, which explains how models are
realizable by graphs. The fundamental chapter closes in Sect. 2.8.3 by discussing how model
transformations are realized with the story driven modeling language, which is based on graph
transformations. Readers familiar with these fundamental issues may, however, skip the fun-
damentals chapter. A natural language translation analogy is discussed in Sects. 3.1 and 3.2,
which is optional but informative. Likewise, Sect. 3.4 which presents the similarities in natural
and formal language translation is optional reading. The discussion of the running example
of mapping class diagrams and database schemata onto each other is started in Sect. 3.3.
Readers familiar with this example may quickly review this section. Sections 3.5 and 3.6,
which close Chap. 3 are mandatory. Chapter 4 is optional for readers familiar with triple
graph grammars, but absolutely required for readers not familiar with triple graph grammars.
However, Sect. 4.7, where the fundamental properties of TGGs and translators are discussed,
is mandatory reading even for TGG experts. Chapters 5 and 6�more precisely Sects. 5.2, 5.3,
6.6, 6.8�contain the main results of this thesis and, therefore, are mandatory. Readers that
are interested in the implementation of the approach discussed in this thesis are encouraged to
read Chap.7. Chapter 8, which contains an overview of related work, is dedicated to readers
that like to compare the approach discussed in this thesis with related approaches.
Readers that only want to get a quick overview of this thesis are encouraged to read Chap. 1

and Sect. 9.1.
Interested readers may �nd some auxiliary material in the appendices. Appendix A con-

tains a glossary of the most important terms related to (triple) graph grammars and derived
translators. Appendix B hints at some issues in the extended version [Sch94] of the original
TGG publication [Sch95].

8

2. Fundamentals

The main goal of software engineers is to develop software systems�applying software en-
gineering techniques. On the one hand, the level of abstraction of involved artifacts must
be high enough so the engineer can e�ectively perform his tasks. On the other hand, the
artifacts must be formal enough so computers are able to process them. There are many dif-
ferent approaches that have been developed during the last decades. Starting with assembler
languages, continuing to higher level programming languages like FORTRAN, Java, C++,
and many others, up to model-based engineering techniques applied today.
In this chapter we give an overview of the fundamental approaches and techniques ap-

plied in this thesis. We relate the terms �language�, �graph�, and �domain� to the context of
model-driven (software) engineering (MDE) which is the model-based approach to software
engineering. Then, we will present some modeling languages used by software engineers today.
Subsequently, we will explain how these modeling languages are applicable in the modeling
framework Model Driven Architecture (MDA). Afterwards, we point out the importance of
model transformation in the MDE context. Finally, we introduce graph grammars, a formal
approach that is applicable to realize model transformation.

2.1. Domains

The term �domain� is comprehensive and used in di�erent �elds of activity which include
biology, mathematics, physics, and information technology. In a broad sense a domain is

[...] an area of knowledge or activity [...]

[Merriam-Webster's Dictionary [Per08]]

[...] an area of activity or knowledge [...] ORIGIN Old French demeine `belonging to a lord'.

[Oxford English Dictionary [SHE06]]

In the context of this thesis, we understand a domain, more precisely problem domain, as
an application area that demands software to solve a problem. To build a software system
that assists solving problems in a particular domain, common software engineering principles,
methods, and processes are applied [Som07]. In practice many software systems are built that
share the same problem domain. In order to facilitate reuse of common parts of these similar
systems a software engineering concept named domain analysis has proven to be helpful. This
concept was introduced by Neighbors [Nei80]. A domain analysis produces domain models

9

2. Fundamentals

which consist of the elements1 and operations of the activities that are speci�c to the domain.
A domain model is a key feature to enable software reuse [dCLF93] and to produce sys-
tems related to the regarded application area rather e�ciently. According to [PD90], domain
experts and domain analysts extract relevant information from di�erent sources of domain
knowledge and analyze and abstract it. Then, domain engineers organize and encapsulate
the results in the form of domain models, standards, and collections of reusable components.
Domain models range from domain taxonomy to functional models, domain languages, and
standards. The latter may include requirements speci�cations and design methods, coding
standards, development procedures, management policies, and maintenance procedures for
libraries containing reusable components.
Examples of problem domains are:

tra�c management How do vehicles get through the streets without causing a tra�c jam?

sales A customer has purchased an item with his credit card. How does the vendor get his
money?

reservation systems A person wants to go to holiday. Which hotel is appropriate and how
to get there?

library management A public libary o�ers to borrow books. Which documents of a partic-
ular author are available? Which documents are related to a particular topic?

«domain»

S1

S2

S3

S4

MDOM

Figure 2.1.: A domain with domain model MDOM and systems S1 to S4.

Figure 2.1 depicts the situation, where a domain analysis has produced the domain model
MDOM of a domain, e.g., the library management domain. The elements of the domain
model are, e.g., stock, books, authors, and topics. The operations are query stock by given
author and query stock by given topic. Based on this model four library systems S1 to S4
are created, where S1 is, e.g., the Universitäts- und Landesbibliothek Darmstadt (ULB) and

1In [Nei80] the term �object� is used. To avoid clashes with other usages of �object� later on in this thesis,
we use the equivalent term �element�

10

2.1. Domains

S2 the Universitätsbibliothek Kassel (UBK). The library systems are then used to solve the
problems in the library management domain, e.g., by the query: query stock of S1 where
topic = �software engineering�. These two library systems are probably not just two di�erent
instances of the same software system, but represent two di�erent incarnations of a family of
software products that share a number of features. Moreover, they also o�er functions that
are speci�c for a given location, i.e., ULB and UBK respectively.
Another example of a problem domain is software engineering. The main problem of the

software engineering domain could be stated as �How to build and maintain a software sys-
tem?�. One might argue that software engineering is a meta domain which produces software
solutions that are used to solve problems in other domains (cf. term �meta� in Sect. 2.2.5).

«domain»

DOM

XAB
A

B

XBD
XCD

D

C

Figure 2.2.: Domain DOM with subdomains A to D.

Figure 2.2 depicts a domain DOM that consists of a number of subdomains A, B, C,
and D. A subdomain contributes to solve the problems existing in the domain DOM . The
problems regarded in a subdomain are focussed on a subset of all the problems that arise in
the superdomain DOM . Some of the subdomains intersect (XAB, XBD, and XCD), i.e., they
share a subset of concepts. Hence, they share elements and operations.
Applied to the software engineering domain, requirements analysis, software development

processes, and tool integration are subdomains. All of them are related to the problem of
building software systems. Requirements analysis handles problems related to determining
the requirements of a software system. The domain of software development processes is con-
cerned with the problem of managing the work�ows and activities while building a software
system. Finally, tool integration handles the problems that arise when integrating existing
software systems (i.e., tools) into a new software system. Revisiting Fig. 2.1, a domain model
is produced for each of the subdomains during domain analysis. The domain models are then
used to create systems for the speci�c problem domains. In case of the subdomain require-
ments analysis, this would result in building di�erent software systems that are applicable by
requirements analysts. In the more general case of the domain software engineering, tools are
built that assist software engineers in building other tools.

11

2. Fundamentals

2.2. Models and Languages

Models are widely used ever since in di�erent areas and nowadays gain more and more at-
tention in software engineering. In this section we will discuss what models are, how they
are represented, and how models are related to each other and to languages. In addition, the
term �metamodel�, its relation to languages and metalanguages is discussed, and its usage in
the context of this thesis. These discussions are performed on an informal level. A formal
de�nition of the terms �model� and �metamodel� is out of scope and is still a topic of on-
going discussion. The interested reader is referred to a recent contribution on this issue by
Kühne [Küh06b] and a discussion that originated from this contribution between Hesse [Hes06]
and Kühne [Küh06a].

2.2.1. Models

Let us have a look at two de�nitions2 of the term �model� in the MDE context.

A model is an abstraction of a (real or language-based) system allowing predictions
or inferences to be made.

[Kühne [Küh06b]]

A model is a simpli�cation of a system built with an intended goal in mind [...].

[Bézivin and Gerbé [BG01]]

In these de�nitions the term �system� is used as synonym for subject of a model and original
of a model. Moreover, this includes both systems to be built in the solution domain and systems
to be described in the problem domain [Küh06a]. So, software systems as discussed in Sect. 2.1
are also part of these de�nitions. But, the de�nitions are not limited to such systems. The
de�nitions also include that another model may play the role of the system (i.e, subject). In
this case, a more abstract model of a model is created. We will see later on in this section
that there are di�erent kinds of inter-model-relationships.
The previous de�nitions indicate that a model represents real or language-based subjects3.

Furthermore, they show that a model is no copy of a subject. A copy does not abstract from
details. Contrary, a model represents the subject on a more abstract or simpli�ed level. This
of course results in loss of details compared to the original. Details of the subject are hidden
by the model. The model concentrates on the essence of the subject and to a given purpose.
According to [BG01], a model should be able to answer questions in place of the subject. The
answers provided by the model should be the same as those given by the subject itself.
Examples of models are easy to �nd in the domain of software engineering, as �everything is a

model� [B�04]. Let us reconsider the example of the domain of library management introduced

2For more de�nitions of the term �model� we refer to [MFB09] which summarizes the most popular de�nitions.
3For now, we will regard a model as an instance of a certain (model of a) language. The relationship between
model and language is discussed in more detail in Sect. 2.2.4

12

2.2. Models and Languages

Real Book «model»
(ULB) Book

«model»
Library

Domain Model

Library
Domain

Language

◄ models

defines ►

«instanceOf»

expressed using ►

«model»
(ULB)
Library
System

◄ models

Real
Library

◄ models

▼ contains

provides ►

«model»
(ULB)

Library Model
(ULB)
Library

Language

defines ►

*

implements ►

1

◄ models «model»
(ULB) Library
Transaction

provides ►

ex
pr

es
se

d
us

in
g
►

*
1

Real
Transaction

◄
occurs in

*

1

1

◄ models

Library Transaction Model

Book Model

Figure 2.3.: Condensed view of models used in the library domain.

in Sect. 2.1. Figure 2.3 is a condensed view of the models participating in this domain. It
depicts the subjects Real Library, Real Book, and Real Transaction that are modeled. In this
example the Universitäts- und Landesbibliothek Darmstadt (ULB) is modeled (cf. Sect. 2.1).
Furthermore, it depicts the involved model languages Library Domain Language LLibraryDOM

and Library Language LLibrary, as well as the occurring models4. Finally, the �gure depicts
the most important relationships between the depicted elements.

A library system MLibrarySystem models one speci�c real library. It might be thought of
as a software system consisting of programs and databases that implement the system. The
system is then used in the context of one real library. Note that MLibrarySystem is a model
residing on the program level and is not the runtime instance of the program5.

The content of a library, i.e., the real books available in a real libary, are represented as
models of the content of a library. One physical instance of a book is represented by one model
of a bookMBook. The transactions that occur in a real library, e.g., borrowing a book or query-
ing the stock, are modeled by library transactions. One library transaction MLibraryTransaction

models one real transaction. Consequently, MLibrarySystem provides library transactions and
books. This has been explicitly depicted in Fig. 2.3 by the �provides� relationship. However,
this relationship is also implicitly stated by the �models� relationship between MLibrarySystem

and Real Library and the relationship between the real elements because it is part of the
transitive closure of the latter relationships.

4Models are tagged with stereotype �model� in Fig. 2.3 and referred to as M(abbrev.)NameOfModel.
5The reason will become clear in Sect. 2.4 when discussing modeling levels in the context of the MDA.

13

2. Fundamentals

The domain model of the library domain MLibraryDOM (cf. Sect. 2.1) is a model, too. It is a
model of many library systems and it de�nes a language LLibraryDOM that speci�es the syntax
and semantics of library models. One model of library models (i.e., MLibraryModel of the ULB)
is a specialized model based on the domain model. Likewise to MLibraryDOM , MLibraryModel

also de�nes a language. But in contrast to the language LLibraryDOM de�ned by MLibraryDOM ,
the language LLibrary de�ned by MLibraryModel is a special library language used in the context
of one speci�c library system�the ULB.
The ULB library model contains, e.g., speci�c concepts and constraints that are applied in

the real ULB but need not to be applied in other libraries, e.g., the Universitätsbibliothek
Kassel (UBK). MLibraryModel serves as an implementation basis for one library system�the
ULB library system. Therefore, MLibraryModel also has an implicit relationship to the real
library. The specialization is depicted by a generalization arrow between MLibraryDOM and
MLibraryModel

6. MLibraryModel aggregates the submodelsMLibraryTransactionModel andMBookModel.
That is, these submodels are part of MLibraryModel. A book model is an instance of the
submodel MBookModel which is depicted by the �instanceOf� relationship between MBook and
MLibraryModel

7. MBookModel is depicted in more detail in Fig 2.4. Library transactions are
modeled by the submodel MLibraryTransactionModel. Both types of models, library transactions
and books, are expressed using the library language de�ned by MLibraryModel.

2.2.2. Abstract and Concrete Syntax

A model is represented either in abstract syntax or in concrete syntax. Figure 2.4 depicts
concrete syntax representations of the models MBook and MBookModel (which is a subset of
MLibraryModel) on the right-hand side and their abstract syntax representations on the left-
hand side. The models in the lower part are MBook models. The models in the upper part
are MBookModel models. In this example, a book is more generally called Publication. A
publication has a title and a number of authors.
In this thesis we will mostly8 use the UML 2.2 object diagram notation to depict a model in

abstract syntax. This notation is described in the classes package of the UML 2.2 Superstruc-
ture [Obj09b]. An object is an instance of a class and is depicted as rectangle containing the
identifying name of the object followed by a colon and the name of the object's classi�er�
which are all underlined. Values of attributes that belong to the object's classi�er are depicted
as slots in a separate section of an object below the object's identi�er. A link is an instance
of an association and is depicted as line, optionally with arrow heads, which connects objects.
The classi�ers of objects and links are de�ned in the language used to express the model (cf.
Sect. 2.2.4). It is important to notice that the elements depicted in abstract syntax are neither
UML object nor UML link in terms of instances of classi�er InstanceSpeci�cation of the UML
Superstructure (cf. Sect.2.3.3). Instead, they are instances of the classi�er identi�ed by the
name after the colon.

6It is important to notice that the �generalization� relation between MLibraryDOM and MLibraryModel ab-
stracts from library models in terms of generalization but not in terms of classi�cation (cf. Sect. 2.2.3).

7An �instanceOf� relation between a type and its instance also denotes that the type is a model that abstracts
from its instances in terms of classi�cation.

8From Sect. 2.6 on we will also use graph notations to depict abstract syntax.

14

2.2. Models and Languages

d1:Publication

a1:Author

Author Publication

publication

0..*
Writes

name:String title:String

title=“Allgemeine Modelltheorie”

name=“Stachowiak”

«instanceOf»

Allgemeine

Modelltheorie

Stachowiak

c1:Class
name=“Author”

c2:Class
name=“Publication”

p1:Property
name=“name”

p2:Property
name=“title”

as1:Association
name=“Writes”

end1:Property

end2:Property
name=“publication”
lower= 0
upper= *

str:PrimitiveType
name=“String”

type

type

memberEnd

memberEnd

navigableOwnedEnd

ownedAttribute

ownedAttribute

type type

MBook

MBookModel

abstract syntax concrete syntax

publication

MLibraryModel∩

Figure 2.4.: Detailed view of models used in the library management domain.

15

2. Fundamentals

The concrete syntax of a model depends on speci�c representations of the modeled subjects
in the according domain. Such concrete syntax representations vary from printed text to
graphical representations of the subjects. The concrete syntax of MBook�as depicted on the
lower part of the right-hand side�has been chosen to be as close to the real world book
as possible9. The concrete syntax notation of MBookModel�as depicted on the upper part
of the right-hand side�is the common notation of class diagrams speci�ed in the UML 2.2
Superstructure.

The left-hand side model MBookModel is an abstract syntax representation of its right-hand
side counterpart. The model MBook�on the lower left-hand side of the �gure�consists of
objects that are instances of Publication and Author and a link between both objects. The
link is an instance of the association Writes.
The dashed arrows in Fig. 2.4 map elements of one model to corresponding elements. The

horizontal arrows between the two representations of MBook de�ne a mapping of elements of
the di�erent representations of book models. We omitted the mapping from the class diagram
representation of MBookModel to its abstract syntax representation due to visualization issues,
but assume that the reader is familiar with the UML and is able to reproduce the mapping.
The vertical arrows between MBook and MBookModel de�ne the �instanceOf� relation, between
a model's elements and their classi�ers.

2.2.3. Relationships Between Model and Subject

The library example shows that di�erent kinds of models [Küh06b] occur while modeling a
domain. The kinds of models are determined by the relation between two models or, more
generally, a model and its subject. Figure 2.5 depicts the di�erent roles of the models discussed
in Fig. 2.3. The model of real world books MBook is a so-called token model in the context
of real books and library systems, hence the relationship to its subjects are called �token
model of�. Elements of a token model capture singular aspects of the original's elements.
The abstraction process for creating a token model involves no further abstraction beyond
projection and translation. So, a token model maps elements but does not classify elements
by means of �instanceOf�. In addition, MLibrarySystem and MLibraryTransaction are token models
of a library and of transactions respectively, since they project a real library and a real
transaction to the world of computers.

Contrary, a type model captures the universal aspects of subjects by means of classi�cation,
i.e., it contains elements that are classi�ers of subjects. This is true for the modelMLibraryDOM

which classi�es a number of library systems. Similarly, the model MLibraryModel is also a type
model which classi�es, e.g., book instances by providing the representatives Author, Writes,
and Publication and de�nes kinds of library transactions, e.g., borrowing books. Hence,
MLibraryModel has a �type model of� relation to MBook and MLibraryTransaction. It is also a type
model of a library system, because it speci�es the types and operations that are necessary
to realize a library system. The last kind of model relation that occurs in our situation is
the �super model of� relation between MLibraryDOM and MLibraryModel. This relation maps

9This representation is also a model and no real world subject. A real world subject would be depicted by
an exact copy of the book �Allgemeine Modelltheorie�, e.g., a photography of the book (cf. Fig 2.7).

16

2.2. Models and Languages

Real Book «model»
(ULB) Book

«model»
Library

Domain Model

«model»
(ULB)
Library
System

Real
Library

▼ contains

«model»
(ULB) Library
Transaction

*

Real
Transaction

◄
occurs in

* type model of

type
model of

super model of

type model of

token model of

type model of

token model of

token model of

«model»
(ULB)

Library Model
Library Transaction Model

Book Model

Figure 2.5.: Di�erent kinds of models.

equivalent subject elements onto the same model element using an equivalence relation. For
example, the specialized library models of the ULB and the UBK are mapped onto the library
domain model using the generalization relation. It is important to notice that generalization
only makes sense for type models and that generalization is not classi�cation. Generalization
maps many concepts to one (super-)concept, whereas classi�cation maps many elements to
one concept [Küh06b].

«model»
Library
System

Real
Library

«model»
Library Model

as Java

token model of type model of

«model»
Library Model

as UML

token model of

Figure 2.6.: Example of di�erent roles a model may have.

Whether a model is a token model or a type model depends on the relationship to the
modeled subject. Accordingly, a model may play the role of a token model in one context
and the role of a type model in another context [Küh06b]. Let us consider the situation
depicted in Fig. 2.6 that is an extension of Fig. 2.5. Now, MLibraryModel models a set of Java
classes that implement the structure of a library system. In this context, MLibraryModel could
be realized by UML diagrams that model Java classes. Thus, MLibraryModel does not classify
the Java elements but only projects the Java language to the language used in MLibraryModel.

17

2. Fundamentals

Therefore, MLibraryModel has the role of a token model of Java classes in the scenario depicted
in Fig. 2.6.

2.2.4. Languages

In model-driven engineering a model is written in a well-de�ned (modeling) language. Model-
ing languages have well-de�ned form (syntax) and meaning (semantics) that can be interpreted
by a computer [KWB03]. Such formal modeling languages are often called metamodel. On
the one hand, the term �metamodel� is accepted in the modeling community and widely used
in practice. On the other hand, �metamodel� is not precisely de�ned, i.e., there is no consen-
sus on what exactly a metamodel is or is not (cf. [Küh06b]). Therefore, we call the formal
model that de�nes a modeling language a language model and discuss the relation of the term
�metamodel� to the term �language model� in Sect. 2.2.5.

Library
Language

◄ models

defines ►

elementOf ►

▲ is extension of«instanceOf»

expressed using ►

modeling domain linguistic domain

Library Language
Specification

▲ has intension

library has books
books have authors
…

Author Publication

publication

0..*
Writes

name:String title:String

Graph-Grammatiken

Nagl

M
od

el
 D

riv
en

Ar
ch

ite
ct

ur
e

Fr
an

ke
l

Allgemeine

Modelltheorie

Stachowiak

Graph-Grammatiken

Nagl

… …

«model»
Library Model

«model»
Book

Figure 2.7.: Relations between models and languages by example.

Fig. 2.7 depicts the relationships between some of the models occurring in the library domain
introduced in the previous sections and the library language. It depicts a model of a book that
models a certain subject�a real book. The book model is expressed in a certain language�
the library language. Each language has an intension which is stated by the speci�cation of
the language. The language has an extension which consists of all words or sentences which
can be generated with the language. The book model is an instance of the modelMLibraryModel

because it is an element of the set of all sentences of the library language which is de�ned by
MLibraryModel. Henceforth we call models like MLibraryModel that de�ne a language �language
model� and use the following de�nition. A language model LM is a type model of models
that de�nes a language L. A model expressed in this language is an instance of LM if it is
an element of the set of all sentences which can be generated with the language L associated
with the language model LM [Küh06b].
A model can be considered as a word, sentence, or instance of a certain language. A

model is created, e.g., according to the rules of a formal grammar which may be part of a

18

2.2. Models and Languages

language speci�cation. The language de�nes the syntax and semantics of the models that are
expressed in this language [Met05]. The syntax (also syntactic notation) is a possibly in�nite
set of elements that can be used in the communication, together with their meaning [HR00].
Given a model one can, e.g., check whether the model is syntactically correct regarding a
certain language. Furthermore, the model must convey a certain unambiguous meaning in
order to be useful. Therefore, carefully devised semantics assign unambiguous meaning to
each syntactically allowed instance of the language [HR00]. Rigid well-formedness rules�also
called static semantics�are required that prescribe the allowed form of a syntactically well-
formed instance. In addition, rules are required that prescribe the semantic de�nition of the
language�also called dynamic semantics.

A semantic de�nition for a language L, or simply a semantics, consists of two
parts: a semantic domain, which we denote generically by SL, or simply S when
there is no confusion, and a semantic mapping from the syntax to the semantic
domain, denoted byML, or simplyM.

[Harel and Rumpe [HR00]]

The set of syntactically correct sentences of a speci�ed language are (in our case) instances of
MOF-compliant types. The set of semantically correct sentences is a subset of these sentences10

from which sentences are removed that do not satisfy additional well-formedness rules, i.e.,
the static semantics. A model is well-formed or valid, if it is syntactically and semantically
correct according to its language speci�cation.
In our approach the syntax of a language is speci�ed using the MOF (cf. Sect. 2.3.1). The

constraint language OCL (cf. Sect. 2.3.2) is used to specify the static semantics. Well-formed
models are, e.g., produced by applying production rules (e.g., SDM patterns) that belong to
a (grammar-based) language model. So, these rules have to be speci�ed carefully in order to
not allow production of invalid models11. Story driven modeling and triple graph grammars,
which are both modeling languages based on graph grammars (cf. Sect. 2.8.3 and Chap. 4),
can be used to specify the semantic mapping of the language's syntax to a semantic domain.
Figure 2.8, which is based on Fig. 8 and 9 of [Küh06b], gives a schematic view on the

situation depicted in Fig. 2.7. In addition, it depicts that the language model is expressed in
a language, too, a metalanguage. This metalanguage12 is de�ned by a formal metalanguage
model of which the language model is an instance of. Each model resides on a certain level,
called modeling level. Models that have an �instanceOf� relationship reside on di�erent mod-
eling levels13. This leads to a language de�nition stack where the lower part of Fig. 2.8 is

10In more informal terms, a model is semantically correct if an expert examining the model will agree that the
model makes sense and does not contain errors according to the speci�ed syntax and (static and dynamic)
semantics of the language model.

11However, sometimes it is convenient and common practice to produce models which do not ful�ll their
constraints temporarily but are repaired later on.

12Figure 2.8 does not relate metalanguage and language because it depicts an object model and a language
L1 need not to be expressed using the same metalanguage ML1 that is used to express the language model
LM1 that de�nes the language L1. Instead a metalanguage ML2 could be used to express language L1.

13This condition does not hold for level M3 in the MDA framework (cf. Sect. 2.4).

19

2. Fundamentals

:Subject

:Model

:Language Model

:Metalanguage
Model :Metalanguage

:Language

«instanceOf»

◄ models
:Language
Sentence

defines ►

elementOf ►

▲ is extension of
«instanceOf»

expressed using ►

defines ►

modeling domain linguistic domain

expressed using ►
stack

Figure 2.8.: Relations between models and languages�schematic with stack.

copied and shifted up one level. The �model�-role is assigned to �language model� and the role
of the subject to �model�14. Such a language de�nition stack is a vital part of the modeling
architecture presented in Sect. 2.4, which consists of a �xed number of modeling levels.
We have chosen to use the terms �language model� and �metalanguage model� as they

seem to be rather intuitive. They are direct derivations of their counterparts in the linguistic
domain. So, a language is de�ned by a language model and a metalanguage is de�ned by a
metalanguage model.
For an in-depth discussion of the term �metamodel� one has to distinguish between linguistic

and ontological instantiation (the interested reader is referred to [Küh06b]). In this thesis,
we regard ontological language models (e.g., the author-publication model) as de�nitions of
domain-speci�c languages (e.g., library language). This way we turn an ontological language
model into a linguistic language model and, therefore, don't have to worry about linguistic
and ontological instantiation. Keeping this at the back of the mind, we are now able to discuss
the term �metamodel�.

2.2.5. Metamodels

The pre�x �meta� comes from the greek preposition and pre�x µετά. In the context of the
arrangement of the Aristotelian canon made by Andronicus of Rhodes, the preposition �meta�
was used to describe a treatise about physics (cf. [CH11, Vol. 18: �Metaphysics�]). This
treatise known as �metaphysics� was placed after another related treatise about physics from
Aristotle in this canon. Therefore, meta was used as description for a treatise that was ordered
spatiotemporal �after the physical treatises�.
The modern meaning of �meta� is somewhat di�erent and typically indicates a concept

which abstracts from another concept. Therefore, the meaning of �meta� refers to something
�above� (i.e., �about�, �beyond�, or �transcending�) something. In addition, there is also a

14�Meta-Language Sentences� and �(Meta-)Language Speci�cation� are intentionally not depicted in Fig. 2.8
to keep the �gure more compact.

20

2.2. Models and Languages

:X

«meta-X»
x:X

f

f

:S

:discussion

meta-discussion
:discussion

to discuss

to discuss

strict usage of “meta”

an X about X a discussion about discussionsconcept abstracting from another concept

non-strict usage of “meta”

«meta-S»
x:?

:S

abstract
from

:discussion

meta-discussion:?

abstract
from

∈ ∈

Figure 2.9.: Modern usages of the term �meta�.

strict usage of �meta� that originated in the term �metatheorem� by Willard Van Orman
Quine [Qui37]. Quine uses �metatheorem� to refer to a theorem about theorems which in
turn are about systems. Douglas Hofstadter carried this strict usage of meta on, e.g., in the
term �meta-description� which has the meaning of descriptions of descriptions [Hof99, chapter
XIX �Arti�cial Intelligence: Prospects�]. In both cases, the pre�x �meta� more strictly refers
to �an X about X� (i.e., x about X | x ∈ X, X is a category, i.e., contains classi�ers of
elements). This indicates that an abstraction operation f is applied twice in order to achieve
meta-ness. These two di�erent modern usages of the term �meta� (non-strict and strict) are
depicted in Fig. 2.9. Examples of these modern meanings of �meta� can be found in terms like
�meta-discussion� which indicates a discussion about discussions15, �metadata� which relates
to data about data16, and �metalanguage� which is a language used to make statements about
statements in other languages31. Strict usages allow for self-reference, since if something
(i.e., x ∈ X) is about the category to which it belongs, it can be about itself [Hof99, chapter
XVI �Self-Ref and Self-Rep�]. Non-strict usage of �meta� indicates that x is about or beyond
a system S but does not demand that x constitutes an S (i.e., it is permitted that x /∈ S). It
is also possible to use a non-strict �meta�-term x in a strict fashion and the other way round.

In the context of model-driven software engineering, a metamodel is typically thought of
as a model that de�nes the syntax and static semantics of a language whereas the semantic
mapping is often speci�ed using a combination of formalisms and precise (but informal) natural
language (cf. [Obj06] and [Obj09a]). Metamodels are often modeled using class diagrams in

15Funnily, this thesis is a publication about an extended version of the TGG approach which is also about other
publications that are extended versions of the TGG approach (cf. discussion of other TGG approaches,
which also discuss the TGG approach, in Chap. 8) and are also about the TGG approach. This makes this
thesis a metapublication discussing publications (and the TGG approach) because (a) it is a publication
and (b) it is about other publications which, for the purpose of comparison, discuss the TGG approach.

16� noticed that it is hard to �nd examples of meta-meta and in common cases meta-meta is not necessary! �17

like footnotes that transcend system barriers and provide information on information given in a system
31cf. the metalanguage MOF introduced in Sect. 2.3.1

21

2. Fundamentals

conjunction with textual constraint expressions. The relationship between a metamodel and
the models that are expressed in the language de�ned by the metamodel is typically named
�instanceOf�. The models are denoted �instances� of the metamodel.

:Model

:Language Model

«instanceOf»
f2

modeling domain

„correct“ usage of „strict meta“:
Metalanguage Model is a Language Model

f1 ∈ F f2 ∈ F
f1 ~ f2 = „type model of“

Metamodel

„correct“ usage of „non-strict meta“:
(Meta)Language Model abstracts

from (Language) Model

:Real-
World

Subject token model of

:Metalanguage
Model

«instanceOf»
f1type model of

type model of

„wrong“ usage of „strict meta“:
Language Model is a Model

f2 ∈ F f3 ∉ F
f2 = „type model of“ ~ f3 = „token model of“

f3

F = {f | f is a classifying abstraction operation}

«non-strict»

«non-strict»

«strict»

«strict»

∈
∈

Figure 2.10.: Usage of the term �metamodel�.

A main question in model-driven engineering is �when to grant the metamodel status to
a model?�. Kühne discusses this issue in [Küh06b] and proposes to di�erentiate between
di�erent kinds of models��token model of� and �type model of��regarding their relationship
(i.e., representation, linguistic instantiation, ontological instantiation, and generalization).
Summarizing this discussion, a token model of a token model is no metamodel by means
of strict nor non-strict �meta� because a token model maps elements but does not classify
elements by means of �instanceOf�. Moreover, a type model of a type model is a metamodel
because the relationship �type model of� is applied twice which results in meta-ness (in both
strict and non-strict approaches).

Concluding, the term �metamodel� conveys di�erent meanings if used strictly or non-strictly.
Figure 2.10 depicts both the non-strict and the strict meaning of metamodel. In the non-
strict approach, the term �metamodel� is used synonym to the terms �language model� and
�metalanguage model� because a language model abstracts from its instances and, therefore,
is �above� these models. Moreover, a metalanguage model is part of the language stack (cf.
Fig. 2.8) which makes it �above� language models and models. The strict usage of �metamodel�
allows to grant metamodel-status to metalanguage models because the operation �type model
of� is applied twice in this context and a metalanguage model also is a language model.
But, the strict usage disallows to grant metamodel-status to language models even though a
language model is a model because the abstraction operation �type model of� is not applied
twice. Instead, a di�erent (non-classifying) abstraction operation �token model of� is applied
in the chain of abstraction operations�between model and real-world subject.

22

2.3. Modeling Languages

Throughout this thesis we will use the non-strict de�nition of metamodel (cf. OMG's
de�nition of �metamodel� in Sect. 2.3.1). This allows us to grant metamodel status to lots of
models that are commonly thought of beeing metamodels: metalanguage models and language
models32. Accordingly, we are able to reference language models and metalanguage models
with the term �metamodel��and, therefore, ensure �backwards compatibility�. In addition,
we are able to use the more precise term �metalanguage model� in order to reference a speci�c
type of language models, i.e., language models that de�ne a metalanguage. This leads to
our de�nition of the term �metalanguage model�: a metalanguage model is a language model
(that de�nes a metalanguage) that is a type model of language models that are type models of
models.

2.3. Modeling Languages

So far, we have discussed models and languages. Now it's time to present some formal lan-
guages that are applicable in the context of modeling software systems. We will focus on
standardized modeling languages. First, we introduce the metalanguage MOF which is used
to specify other modeling languages. Then we have a closer look at the constraint language
OCL. Afterwards, we brie�y explain parts of the general purpose modeling language UML
that are relevant in this thesis. Finally, the idea of domain-speci�c languages and its relation
to the UML is discussed. The relationships between these languages is depicted in Fig. 2.11
and will be explained throughout this section. We utilize version 2 of the languages MOF,
OCL, and UML throughout this thesis. All three language speci�cations have been released
by the Object Management Group (OMG), a computer industry standards consortium.

MOF 2

«described using»

«abstract»
UML 2 Infrastructure OCL

DSLs

«described using»

«merge»
«uses well-defined subset of»

«based on»

UML 2 Superstructure

EMOF

CMOF

«described using»

«merge»

«merge»

«merge»

Figure 2.11.: Relationsship between selected modeling languages.

32Like in the MDA or in domain-speci�c modeling as we will see in Sect. 2.4.

23

2. Fundamentals

2.3.1. MOF

The Meta Object Facility (MOF) [Obj06] is a modeling language that has �meta� capability.
The MOF 2.0 speci�cation states:

A metamodel is a model used to model modeling itself. The MOF 2 Model is used
to model itself as well as other models and other metamodels (such as UML 2 and
CWM 2 etc.).

Therefore, MOF can be used to de�ne and integrate a family of language models, i.e.,
languages that share certain elements, using simple class modeling concepts. In addition,
domain-speci�c languages can be de�ned using the MOF. MOF provides concepts like classes,
associations, properties, and modularization, as well as re�ective capabilities, i.e., the ability
to navigate from an instance to its classi�er (its metaobject). The MOF speci�cation uses a
subset of UML, OCL (called Essential OCL, cf. [Obj10b]), and precise natural language to
precisely describe the abstract syntax and semantics of the MOF.
The MOF speci�cation has two compliance points. The Essential MOF (EMOF) which

basically models simple classes with attributes and operations to �x the basic mapping from
MOF to XML and Java. And the Complete MOF (CMOF) which is the language model used
to specify other language models33�such as the UML. EMOF and CMOF are constructed by
merging packages34 of the UML Infrastructure. In addition, EMOF merges the MOF capabil-
ities Re�ection, Identi�ers, and Extension. Whereas CMOF additionally merges EMOF. In
the following we will have a closer look at CMOF and EMOF.
Chapter 8 �Language Formalism� of the MOF speci�cation states:

In particular, EMOF and CMOF are both described using CMOF, [...]. EMOF
is also completely described in EMOF by applying package import, and merge se-
mantics from its CMOF description. As a result, EMOF and CMOF are described
using themselves, and each is derived from, or reuses part of, the UML Infrastruc-
ture.

Chapter 12 �The Essential MOF (EMOF) Model� of the MOF speci�cation states:

A primary goal of EMOF is to allow simple metamodels to be de�ned using simple
concepts while supporting extensions [...] for more sophisticated metamodeling
using CMOF. [...]. EMOF, like all metamodels in the MOF 2 and UML 2 family,
is described as a CMOF model. However, full support of EMOF requires it to be
speci�ed in itself, removing any package merge and rede�nitions that may have
been speci�ed in the CMOF model. [...]. The reason for specifying the complete,
merged EMOF model in this chapter is to provide a metamodel that can be used to
bootstrap metamodel tools rooted in EMOF without requiring an implementation
of CMOF and package merge semantics.�

33In this thesis we refer to CMOF when talking about MOF.
34�Package merging combines the features of the merged package with the merging package to de�ne new

integrated language capabilities. After package merge, classes in the merging package contain all the
features of similarly named classes in the merged package.� [Obj06]

24

2.3. Modeling Languages

Consequently, we may disregard the �complete, merged EMOF model� in our approach
(because we rely on the CMOF) and use the �default� EMOF instead. Figure 2.11 depicts
the relationships between �default� EMOF, CMOF, OCL, and the UML Infrastructure. In
addition, it depicts the relationship of the UML Superstructure (which is also a metamodel
in the UML family, cf. Sect. 2.3.3) and DSLs (cf. Sect. 2.3.4) to the MOF.
MOF de�nes some constraints on the language elements derived from the UML and de�nes

some extensions. The most important di�erences to the UML are as follows. MOF adds
an additional modeling element �Tag� to add key-value pairs to MOF elements. Tags are
evaluated, e.g., by code generators. Moreover, the MOF constrains n-ary associations as
de�ned in the UML to binary associations. In addition, the MOF provides concepts to query
an instance of a language element during runtime about its language in a re�ective way.
MOF and the derived technologies XMI and JMI are used for metadata-driven interchange

and metadata manipulation, i.e., standardized exchange and manipulation of models (and
metamodels). XMI (XMLMetadata Interchange) [Obj07] is an OMG speci�cation that de�nes
a mapping from MOF to XML. JMI (Java Metadata Interface) speci�es a mapping from MOF
to Java�cf. Java Community Process JSR 040 [JSR02].
Revisiting Fig. 2.4 (cf. Sect. 2.2.2), the abstract syntax representation of MBook and

MBookModel indicate that the languages used to express the models provide certain classi�ers.
On the one hand, model MBook indicates that MBookModel de�nes a language LBook (which is
part of the language LLibrary) which provides the classi�ers Author, Publication, and Writes.
On the other hand MBookModel indicates that there must be another (meta-)language which
provides the used classi�ers. The classes Class, Property, Association, and PrimitiveType and
some associations that relate these classes (e.g., an association between Class and Property)
must be provided by this language. MOF provides these classi�ers and, therefore, can be used
to describe the library language LLibrary.

2.3.2. OCL

The Object Constraint Language (OCL) [Obj10b] is a formal language which is used to
describe expressions in UML and MOF based models. UML and MOF sometimes do not
provide enough capability to express speci�c constraints about the elements in the model,
such as complex invariants that must hold for the system being modeled. Therefore, it would
be necessary to describe these constraints in natural language. OCL is used to describe
additional constraints about the objects in the model instead of describing these constraints
in natural language which often results in ambiguities. OCL is used to query models, to
specify invariants on classi�ers of a model, de�ne pre- and post-conditions on operations and
methods, and derive rules for attributes and associations. An OCL expression is guaranteed
to be without side e�ects. So, a model is not changed when evaluating an OCL expression.
Basic types as boolean, numbers, and strings are supported by OCL. The types come

along with basic operations like logic operations, +,−, ∗, /, and string operations. An OCL
expression allows to navigate starting from a certain context element along the structure
de�ned in a MOF or UML based language model.
Figure 2.12 depicts two OCL expressions that have been added to the library language

model. An OCL expression is always in a certain context of an instance of a classi�er. This

25

2. Fundamentals

Author Publication

publication

0..*
Writes

name:String title:String

inv: self.name.size() > 0 context Author
inv: self.publication size() >= 1

Figure 2.12.: Example of an OCL expression.

context is either established by the keyword �context� or�if depicted graphically�by a line
that is connected to the context. To reference this instance from an expression the keyword
�self� is used. Both expressions depicted in the �gure are in the context of the class Author
and are invariants that must hold for every instance of this class. The �rst expression demands
that the size of the string containing the name of an author must be at least one. The second
expression navigates from the author to its publications. The publications are returned as
collection by the call to �self.publication�. The collection operation �size()� returns the number
of instances of publications attached to the author. Operations on collections are always
preceded by an arrow following the name of the operation. Here, an author must have written
at least one publication in order to be a valid author.

2.3.3. UML

The Uni�ed Modeling Language (UML) [Obj09a, Obj09b] is a general purpose modeling
language. In model-driven development it is used analogous to general purpose programming
languages, like Java and C++.
The UML consists of the UML Infrastructure and the UML Superstructure. The Infras-

tructure constitutes the core of the UML and the MOF. The MOF 2.0 speci�cation states:

The UML 2.0 Infrastructure Library uses �ne grained packages to bootstrap the
rest of UML 2.0. A design goal is to reuse this infrastructure in the de�nition of
the MOF 2.0 Model.

The Infrastructure contains elements and concepts required for modeling class-based struc-
tures. Therefore, it de�nes elements that are known in the context of class and package
diagrams and concepts like modularization and visibility. The UML Superstructure provides
a variety of diagram types used to model the structure and behavior of a system. Thus, it
also speci�es elements used to model class diagrams (similar but not equal to MOF class
diagrams). In addition, it allows to model components, composite structures, deployments.
The concepts supported for describing the behavior of a system include actions, activities,
interactions, state machines, and use cases. UML models are both used for documentation
purposes and for designing a system. But, in the context of model-driven engineering are also
used as basis for generating (part of) an executable system from these models.
To show the di�erence between structural models based on the UML and structural models

based on the MOF, Fig. 2.13 depicts a book model MBook of the library system in both

26

2.3. Modeling Languages

d1:Publication

a1:Author

title=“Allgemeine Modelltheorie”

name=“Stachowiak”

MUMLSuperstructure

publication

c1:Class
name=“Author”

c2:Class
name=“Publication”

p1:Property
name=“name”

p2:Property
name=“title”

as1:Association
name=“Writes”

end1:Property

end2:Property
name=“publication”
lower= 0
upper= *

type

type

memberEnd

memberEnd

navigableOwnedEnd

ownedAttribute

ownedAttribute

d1:InstanceSpecification :Slot

:LiteralString
value=“Allgemeine Modelltheorie”

classifier definingFeature

value

a1:InstanceSpecification

:InstanceValue
instance

w1:InstanceSpecification
:Slot

:Slot

definingFeature

definingFeature

value

value
:InstanceValue

instance

classifier

classifier

:Slot

:LiteralString
value=“Stachowiak”

definingFeature

value

MBook,Library

w1:Writes

«instanceOf»

M
B

oo
k,

U
M

L

M2

M1

M
Li

br
ar

yM
od

el
,U

M
L

MMOF MMOF

«instanceOf»

M3

MBookModel

MLibraryModel∩

Figure 2.13.: Book model based on di�erent languages: UML vs. DSL

27

2. Fundamentals

approaches. Both versions refer to the same subject and look equal in concrete syntax (cf.
lower right-hand side of Fig. 2.4). But, they are based on di�erent languages. Therefore, both
book models are depicted in abstract syntax in order to see the di�erence.

The model MBook,Library on the right-hand side is based on the domain-speci�c language
LLibrary de�ned byMLibraryModel

35 (cf. Fig. 2.4). On the contrary, the modelMBook,UML on the
left-hand side is based on the general purpose language UML Superstructure which is modeled
by MUMLSuperstructure. The models MLibraryModel,UML and MLibraryModel are almost identical

36,
except that they are based on the�closely related�languages UML Superstructure and MOF
respectively. Moreover, they are used in di�erent modeling levels.

The publication object d1, the author object a1, and the �Writes� link w1, contained in
the model MBook,UML, are all instances of the type InstanceSpeci�cation, being UML objects
and UML links respectively which are de�ned in the UML Superstructure. An instance
speci�cation represents an instance in a system modeled with the UML. The title of the
publication d1 and the name of the author a1 are so-called slots. Slots are linked to instances
of type ValueSpeci�cation (cf. [Obj09b, Figs. 7.6 and 7.8]). In this example, instances of
LiteralString and InstanceValue, which are subtypes of ValueSpeci�cation, are linked to the
slots. Both slots related to the objects d1 and a1 are related to their de�ning feature which
is the attribute title and name respectively. The according value is contained in an instance
of the type LiteralString. The literal strings contain the publication title value �Allgemeine
Modelltheorie� and the author name value �Stachowiak�. The link w1 has two slots that are
associated with the member ends of the related Writes association as1. The values of these
slots are instance values�instances of type InstanceValue�which are associated with the
instance speci�cations of the objects d1 and a1 respectively. This way the ends of the link w1
are associated with objects d1 and a1 and, therefore, w1 links both objects.

The main di�erence of both MBook models is the relation of elements to their language
model. In MBook,UML, the author and publication instances a1 and d1 are linked with their
classi�ers c1 and c2 de�ned in MLibraryModel,UML. However, this is not an �instanceOf� rela-
tion to their classifying elements in the language model MUMLSuperstructure de�ning the UML
language. An �instanceOf� relation would change the modeling level in the MDA framework
(cf. Sect. 2.4). Each instance may only have one classi�er on the next modeling level. Instead,
the author and publication instances a1 and d1 are each linked to an object at the same level
that represents their classifying element. Their classi�er in terms of �instanceOf� is the ele-
ment InstanceSpeci�cation which indicates that a1 and d1 are both UML objects. Therefore,
MLibraryModel,UML is no language model according to our de�nitions (cf. Sect. 2.2.4. Instead,
it is a model, residing in the modeling level, which simulates a language model.

2.3.4. Domain-Speci�c Languages (DSLs)

A domain-speci�c language (DSL) is a language related to a particular problem domain. It
is tailored to the activities in that problem domain. A DSL is applied by domain experts to

35more precisely MLibraryModel,MOF as it is based on the MOF language
36We omitted object �str:PrimitiveType� in MLibraryModel,UML to save some space.

28

2.4. Model-Driven Engineering and the MDA

solve tasks in the domain. It is created by language designers and domain experts. DSLs are
only usable in the domain they have been designed for or in very closely related domains.
A contrary approach to DSLs is a general purpose modeling language (GPML) like the UML

which is applicable in many domains. In general, it is easier for a domain expert to learn and
comprehend a DSL that has been designed especially for his domain than a GPML. However,
a software engineer who creates systems applied in di�erent domains would reasonable learn
one GPML rather than learning many DSLs. Hence, he would create the systems based on this
GPML. To sum up, one has to reason whether the GPML or the DSL approach is advisable
in a particular scenario before going for DSL or GPML.
As we have seen in Sect. 2.1, a domain(-speci�c) language may be the result of a domain

analysis. The library language introduced in Sect. 2.2 is an example of a domain-speci�c
language. In this thesis we use the metalanguage MOF to describe domain-speci�c languages.
The resulting language models are called DSL models. Domain-speci�c models are then cre-
ated based on these DSL models.

2.4. Model-Driven Engineering and the MDA

Likewise to high-level programming languages where competing approaches exist, there ex-
ist di�erent approaches to model-based software engineering. The approaches have in com-
mon that they all use models as �rst-class artifact during the development process. That
is, models are created and maintained and used throughout the development chain. Rather
neutral terms when talking about model-based software engineering are model-driven engi-
neering (MDE) and model-driven development (MDD). The terms Model Driven Architecture
(MDA) [KWB03] and Domain-Speci�c Modeling (DSM) [KT08] refer to speci�c approaches.
Both approaches postulate to apply particular modeling and transformation languages, code
generators, and activities. Which approach is suitable depends on the situation and even on
the matter of taste. A software engineer who has to build an embedded system that has
real-time requests would not apply standard Java but would instead use a more appropri-
ate language in this situation. Likewise, this engineer would refuse inappropriate modeling
approaches if he is asked to choose a modeling approach instead of a programming approach.
As our aim is to relate models based on di�erent languages with each other the MDA frame-

work proposed by the OMG �ts our needs. The main ideas of MDA are stated in [KWB03]
and [MKU04] as follows. Models are used as primary artifacts and are all written in a well-
de�ned language. A platform independent model (PIM) describes a system without any
knowledge of the �nal implementation platform. Whereas a platform speci�c model (PSM)
describes a system having full knowledge of the �nal implementation platform. A PIM is de-
veloped based on a computational independent model (CIM). A CIM is a software independent
model used to describe a business system.
PIMs are used as input for model transformations that re�ne the models to PSMs. Finally,

code is produced from PSMs to realize an executable system for a particular platform. Ex-
amples of PIMs of metadata speci�ed by the OMG include UML, MOF itself, CWM, SPEM,
Java EJB, EDOC, EAI [Obj06]. Examples of PIM to PSM mappings include MOF-to-IDL
mapping (de�ned in the MOF speci�cation), MOF-to-XML DTD mapping (de�ned in the

29

2. Fundamentals

XMI speci�cation), MOF-to-XML Schema mapping (de�ned in the XMI production of XML
Schema speci�cation), and MOF-to-Java (de�ned in the JMI speci�cation) [Obj06]. According
to [KWB03], automatic derivation of PIMs from a CIM is not possible, because the choices of
what pieces of a CIM are to be supported by a software system are always human. The OMG
proposes to use the standard modeling languages UML, MOF, and OCL and in addition the
model transformation language QVT [Obj08].

M0

M1

M2

M3

«instanceOf»

m
od

el
in

g
le

ve
ls

a
sy

st
em

 a
t

ru
nt

im
e

«instanceOf»

«representedBy»

«instanceOf»

modeling level

metamodeling level

system level

meta-metamodeling level

“runtime”

models

language models

metalanguage models

meta

MOF / EBNF / …

UML, DSLs / Java, PHP / …

a UML model, a DSL model / a Java Program / …
representedBy

meta

Subject

Real
World

simulates

System

(domain)
(specific)

model

specific (domain)
language model

(domain)
language model

metalanguage
model

(D)LM

specific
(D)LM

(DS)M

real world elements, operations,
computer systems at runtime

no models!no models!

m
od

el
s

m
od

el
s

MLM

Figure 2.14.: Models and languages in the MDA 4-layer stack.

Figure 2.14�inspired by [KWB03, BG01, MKU04, Küh06b]�depicts the di�erent modeling
levels of OMG's 4-layer MDA framework. In this approach level M0 depicts the runtime of a
system simulating or representing real world elements, i.e., a program p that is executed. M0

is not a modeling layer but a system, subject, or a situation being modeled. So, it does not
contain models. Instead it contains runtime instances of real world elements and situations
beeing modeled.

Levels M3, M2, and M1 are the modeling layers. It is important to understand that these
layers are not abstraction layers [BG01]. Therefore, modeling levels are changed by means
of instantiation of classi�ers, i.e., by �instanceOf� relations. Generalization does not change
the modeling level. Another important constraint is that each model element has exactly
one classi�er in the MDA framework [BG01]. Changes between M0 and M1 are treated
di�erently. There, the relation between the elements is not �instanceOf� but rather �repre-
sentedBy� [BG01]. Going fromM1 toM0 is similar to compiling a java program into bytecode
and then executing the compiled program in a Java virtual machine. Going back to M1 is
achieved by the re�ective mechanisms provided by the Java platform, i.e., a runtime object

30

2.5. Model Transformation

may re�ect about itself or others by querying language dependent information like classes,
�elds, method signatures, etc.
Level M1 contains models. These may be object models (object diagrams) as well as type

models (class diagrams), which depends on the language model present in the next level. We
have discussed this situation in Sect. 2.3.3 where we explained the di�erence between models
based on the UML Superstructure and models based on a DSL. If a program p is executed
in level M0 then M1 contains a model of program p. Going meta we arrive at level M2

that contains the language models of models in M1. Level M2 is the �metamodeling� level
containing the modeling languages, i.e., the language in which p is written. When embedding
the DSL approach into the MDA, domain language models (DLM), e.g., MLibraryDOM , and
speci�c DLMs like MLibraryModel (cf. Fig. 2.4) are located in this level. Finally, the �meta-
metamodeling� level M3 contains the metalanguage models, i.e., the language in which the
language of M2 is expressed. In our approach this is a model of the MOF language. The
looping �instanceOf� relation indicates that a level at M3 has the ability to describe itself in
the MDA framework. A programming metalanguage equivalent to modeling metalanguages
is the Extended Backus-Naur Form (EBNF). A popular metalanguage model is Ecore which
is based on the EMOF and used in conjunction with the Eclipse Modeling Framework (EMF)
in the software development environment Eclipse37.

2.5. Model Transformation

The preceding section discussed the MDA framework and we learned that the MDA�as well
as many other model-driven approaches�demand for model transformation. Subsequently, we
will brie�y present terms and features of model transformations used and developed in this
thesis. For an in-depth discussion of model transformation approaches and a classi�cation
schema we refer to [CH03]. A taxonomy for model transformations is given in [MCG05].
Bidirectional model transformation approaches are discussed in [CFH+09] and [Ste10].
According to [KWB03], a model transformation takes models as input and produces other

models as output. Therefore, a de�nition that describes how a model should be transformed
is required. In [KWB03] such a de�nition is called transformation de�nition or transformation
speci�cation which consists of a collection of transformation rules. A transformation de�nition
relates elements of the input language/domain with elements of the output language/domain
to be independent of speci�c input models. Therefore, each transformation rule describes how
and under which conditions one or more elements in the input language are transformed into
one or more elements in the output language.
In common transformation terminology the input to a transformation is also called �source�

whereas the output is called �target� because transformations are mostly executed in one di-
rection only�from a source model to a target model. This is not su�cient when discussing
bidirectional transformations which are executed in both directions, i.e., �forward� from source
model to target model and �backwards� from target model to source model. That is, the source
and target roles of a transformation are exchanged when transforming backwards. When using
direction dependent terms this gets confusing when talking about backward transformations

37http://www.eclipse.org

31

http://www.eclipse.org

2. Fundamentals

because in this case the source of the transformation would be the target model. Usage of
direction independent transformation terms avoids such collisions. Therefore, we will use the
direction independent transformation terms �input� and �output� in this thesis whenever ap-
propriate. Note that besides the model of the input domain a transformation may additionally
operate on other models given to the translation process, e.g., an out-of-date model of the
output domain in case of incremental transformations.

exogenous horizontal

level of
abstraction

endogenous horizontal

endogenous vertical exogenous vertical

models
of language L1

models
of language L1

models
of language L2

models
of language L2

Figure 2.15.: Endogenous vs exogenous and horizontal vs vertical transformations.

Source and target language of models participating in a transformation may be equal or
di�erent (cf. Fig. 2.15). A transformation between models of the same language is called
endogenous transformation, whereas it is called exogenous transformation if the languages
are di�erent [MCG05]. Exogenous transformations only make sense if the domains of the
languages overlap, i.e., the languages share meaning or purpose (cf. Sect. 2.1). [MCG05]
proposes to use the term �rephrasing� for an endogenous transformation, while to use the
term �translation� for an exogenous transformation. A transformation where the abstraction
level of input and output model are equal is called �horizontal transformation�. Contrary,
transformations that produce output models residing at a di�erent abstraction level are called
�vertical transformation� [MCG05].
According to [MCG05], endogenous/exogenous and horizontal/vertical are orthogonal di-

mensions of model transformations. Therefore, the terms can be combined. Examples of
endogenous horizontal transformations are refactoring operations performed on a model and
normalization according to some guidelines. Formal re�nement is an example of endogenous
vertical transformations. Language migration is an example of an exogenous horizontal trans-
formation, assuming that the languages are located on the same level of abstraction, i.e., either
M2 or M3. A transformation that generates code from a model for a speci�c programming
language is an exogenous vertical transformation as the programming language is another
language and resides on a lower level of abstraction than a modeling language.
Transformations preserve certain aspects of the input model in the transformed output

model [MCG05]. The properties that are preserved di�er on the type of transformation.
For example, with refactorings the behavior of the modeled system needs to be preserved.

32

2.6. Graphs

Exogenous transformations preserve, e.g., information and meaning between input and out-
put models. However, some information might be lost due to an exogenous transformation
depending on the capabilities of the output language to encode the informational features
provided by the input language.
Likewise to models, transformation speci�cations are expressed in a particular language�

a transformation language. Transformations are executed by a transformation tool. Which
features are supported depends on the transformation language and on the transformation
tool. Henceforth, we summarize the features discussed in [CH03] that are important in the
context of this thesis. An �in-place transformation� reuses models given to the transformator
when producing the output, i.e., produces output models by modifying the given models.
Contrary, an �out-place transformation�38 does not reuse given models. It creates new models
leaving its inputs untouched, e.g., copies the input models and performs transformations
on the copy. If a transformation rule is applicable at more than one match an application
strategy can be deterministic, non-deterministic, or interactive (i.e., querying the user). Non-
deterministic strategies include one-point application, where a rule is applied choosing one of
the possible matches or by applying the rule concurrently to every possible match. Likewise,
many rules could be applicable in one context. A transformation tool has to decide what to
do in this case. A transformation language or tool may keep track of created, modi�ed or
deleted elements in the output models that resulted from the context of elements of the input
models and the rule that was applied. Therefore, it can establish traceability links between
related elements in source and target models.
Finally, we will brie�y discuss bidirectional approaches to model transformation. We will go

into detail in the subsequent chapters. According to [CFH+09], bidirectional transformations
are a mechanism for maintaining the consistency of two (or more) related sources of informa-
tion. Endogenous bidirectional out-place transformations, which result in unmodi�ed input
models and new output models, demand mechanisms for keeping these models consistent. The
same holds for exogenous bidirectional transformations because such transformations always
produce related source and target models that have to be synchronized if one of these models
is modi�ed later on. Therefore, bidirectional approaches to code generation and language
migration (which are both exogenous) require mechanisms that enable roundtrip engineering
in order to apply changes made in the model of the output domain back to the original model.
Consequently, a bidirectional approach should feature traceability management between ele-
ments of source and target models.

2.6. Graphs

Graphs are well suited to describe the underlying structures of visual models. Especially
transformations of visual models are naturally formulated by graph transformations [TEG+05].
Accordingly, graph-based transformation systems became of interest in the area of model-
driven engineering in recent years [GGZ+05]. As the approach presented in this thesis is based
on graphs we now introduce the notation and a formal de�nition of graphs. The de�nitions
presented here base upon the de�nitions in [EEPT06].

38The term �out-place transformation� is not used in [CH03].

33

2. Fundamentals

directed edgesource node / initial node
n1

n2
target node / head node

e1

Figure 2.16.: Notation of graph elements: nodes connected by a directed edge.

Figure 2.16 depicts a directed graph which consists of two nodes n1, n2 and one directed
edge e1 that connects the two nodes with each other. An edge starts at its source node and
ends at its target node. The source node of e1 is s(e1) = n1 and t(e1) = n2 is its target.
Elements are optionally labeled39. A label is placed near its related element. An optional
identi�er of nodes is placed inside its graphical representation whereas an identi�er of edges
is placed near or on its graphical representation. Sometimes it is convenient to place a small
black dot on an edge (cf. right-hand side of Fig. 2.16) when relating edges with other edges
via morphisms.
The formal de�nition of graphs consisting of nodes and directed edges is as follows.

De�nition 1. Graphs.
A quadruple G := (V,E, s, t) is a graph with elements(G) := V ∪ E, where
(1) V is a �nite set of nodes (also called vertices),
(2) E is a �nite set of edges, and
(3) s, t : E → V are functions assigning sources and targets to edges.

The graph morphism concept is a low level construct which plays a key role in the algebraic
approach to graph grammars as we will see in the next section. Graph morphisms are used to
relate two graphs by relating the nodes and edges of one graph with another graph, preserving
source and target of each edge [Ehr79, EEPT06].

De�nition 2. Graph Morphisms.
Let G := (V,E, s, t), G′ := (V ′, E ′, s′, t′) be two graphs.
A graph morphism h : G → G′ from G to G′ consists of a pair of functions h := (hV , hE)
with hV : V → V ′ and hE : E → E ′ that preserve the source and target functions, i.e.,
(1) ∀e ∈ E: hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)) .

A graph morphism h is injective (or surjective) if both functions hV , hE are injective (or
surjective); h is called isomorphic if there exists a morphism h−1G′ → G from G′ to G such
that h◦h−1 = idG′ and h−1◦h = idG. An isomorphism is bijective, which means both injective
and surjective.

A function is injective if every element of its codomain is mapped to by at most one element
of its domain. A function surjective if (and only if) for every element y in the codomain there
is at least one element x in its domain such that y is an image of x. Likewise to the vocabulary
used for functions we say that G is the domain of h and G′ is the codomain. Whenever we use
the notation graph morphism (or morphism to simplify matters) we assume that the functions

39According to [EEPT06] labeled graphs and labeled graph morphisms can be considered as special cases of
typed graphs and typed graph morphisms. So, we introduce typing later on but will not formally introduce
labeling. However, the theory can also be applied to labeled graphs.

34

2.6. Graphs

hV and hE are total functions, i.e., every element in V and E has an image in the according
codomain. Contrary, we use the notation partial graph morphism if the functions hV and hE

are partial functions, i.e., there could be elements in V and E which have no image in the
codomain.

De�nition 3. Graph Operators.
The binary operators ⊆,∪,∩, \ are de�ned as usual. A subgraph A of B is denoted A ⊆ B.
The union of two graphs with gluing of nodes and edges (with same identi�ers) is denoted
A ∪ B. An intersection of graphs where the resulting graph contains only elements that are
members of both intersected graphs, is denoted A ∩ B. The relative complement where the
resulting graph contains elements that are in A but elements with same identi�ers in B are
removed, is denoted A\B.
With h : G → G′ being a graph morphism, h(G) ⊆ G′ denotes that subgraph in G′ which is
the image of h.

Note that a valid graph has no dangling edges, i.e., each edge must connect a source with
a target node. The operators de�ned above delete such dangling edges in order to produce a
valid graph. The gluing of graphs uses a technique called pushout which is described in the
next section.

n1
n2

Author
Publication

Writes

a1

a2

Pfaltz

Rosenfeld

d1
Web Grammars

e1 Type Graph

Graph

type

Figure 2.17.: Example of a typed graph.

Now, we extend the de�nition of graphs to typed graphs. This allows to distinguish between
certain types of nodes and edges in a graph. Moreover, it allows to de�ne graph schemata
which are equivalent to metamodels in the world of models.

De�nition 4. Typed Graphs and Type Preserving Graph Morphisms.
A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG).
VTG and ETG are called the node and the edge type alphabets respectively.
A tuple (G, type) of a graph G together with a graph morphism type : G→ TG is called typed
graph. G is called instance of TG and TG is called type of G.
A typed graph morphism g : GT

1 → GT
2 , with given typed graphs GT

1 = (G1, type1), GT
2 =

(G2, type2), is a type preserving graph morphism g : G1 → G2 i� the following diagram
commutes:

35

2. Fundamentals

type1 type2

TG

G1 G2

g

=

L(TG) is the set of all graphs of type TG.

Figure 2.17 depicts an example of a typed graph. The lower graph consists of two persons
named Pfaltz and Rosenfeld which are identi�ed by the nodes a1 and a2. They have writ-
ten a publication entitled Web Grammars which is identi�ed by node d1. Thus, the nodes
representing both persons are connected to d1. The type graph, also called graph schema, is
depicted in the upper part of the �gure. It consists of a node n1 labeled Author and a node
n2 labeled Publication. An author is connected to a publication via edge e1 labeled Writes.
The typed graph morphism �type� (cf. right-hand side of Fig. 2.17) relates elements of the
instance graph with elements of the type graph. The relation of pairs of elements is depicted
by morphism arrows (cf. dashed arrows on the left-hand side of Fig. 2.17) that relate graph
elements with elements of its type graph. In this example, the morphism relates Pfaltz and
Rosenfeld with the author node and Web Grammars with the publication node. In addition,
it relates both edges of the instance graph with edge e1 in the type graph.

De�nition 5 introduces constrained graphs. The regarded constraints are typed graph con-
straints (e.g., OCL invariants) in the spirit of [EEPT06], i.e, Boolean formulae over atomic
typed graph constraints. A typed graph G ful�lls a typed graph constraint c, e.g., if c is
evaluated to true.

De�nition 5. Constrained Typed Graph.
A type graph TG with a set of constraints C de�nes a subset L(TG, C) ⊆ L(TG) of the set
of all graphs of type TG that ful�ll the given set of constraints C. To simplify the following
de�nitions, constraints are forbidden which are violated by the empty graph G∅, i.e., the empty
graph G∅ ∈ L(TG, C). Furthermore, L(TG, C) := L(TG)\L(TG, C) denotes the set of all
graphs of type TG that violate a constraint in C.

Now, that we have formally de�ned directed, typed, constrained graphs and relations be-
tween graphs we are ready to start discussing the rule-based transformation of graphs. In the
following, we assume that all morphisms between graphs of the same type are type preserving.

2.7. Graph Grammars and Graph Transformation

Graph grammars originated in the late 1960's [PR69] and early 1970's [HJS71], were worked
out in the subsequent years, and are still actively researched [CEM+06, SNZ08, EHRT08,
ERRS10]. The motivation for their introduction was their application in the areas of pat-
tern recognition, compiler construction, and data type speci�cation [EEKR97]. But, graph
grammars are also applicable in various other �elds like, e.g., in software speci�cation and
development and they are relevant for industrial use [SNZ08].

36

2.7. Graph Grammars and Graph Transformation

Graph grammars are a natural generalization of formal language theory based on strings
and the theory of term rewriting on trees. Hence, graph grammars are used to specify formal
(graph) languages. Likewise, string grammars are used to specify formal (string) languages.
The main component of a graph grammar is a set of productions that replace certain sub-
graphs in a host graph (or input graph) by another graph, i.e. transform graphs according
to well de�ned rules. These productions specify the dynamic behavior of the graph language
generated by their graph grammar. A production is, in general, a triple (M,D,E) where M
and D are graphs (the mother and daughter graph respectively) and E is an embedding
mechanism. Such a production can be applied to a host graph H whenever there is an oc-
currence of M in H. M is then removed from H and replaced by D using the embedding
mechanism E [EEKR97, chapter 1]. There are di�erent approaches to graph grammars and
two main types of embedding: gluing and connecting. The so-called algebraic approach uses
gluing, whereas the algorithmic approach (or set theoretic approach) uses connecting as em-
bedding type40. In this contribution we focus on the algebraic approach, which uses pushouts
as gluing mechanism, because the remainder of this thesis is based thereon. For an in-depth
discussion of the algebraic approach and its mathematical background we refer to [EEPT06].
For a general overview, the history of graph grammars, and a discussion of other approaches
and their relation to the algebraic approach we refer to [EEKR97].

::=

productionName

left-hand side
L

(mother graph)

right-hand side
R

(daughter graph)

Figure 2.18.: Notation of graph production.

The main component of graph grammars are a set of productions. The basic idea of all
graph transformation approaches is to perform direct derivations of graphs using productions
p : L R, i.e., to apply graph transformation rules [EEKR97, chapter 3]. The graphs L
and R are called the left-hand side (LHS)�i.e., the mother graph�and the right-hand side
(RHS)�i.e., the daughter graph �of the production respectively (cf. Fig. 2.18).
Figure 2.19 depicts a set of three productions named �createAuthor�, �createPublication�,

and �addAuthor�. Production �createAuthor� is an axiomatic production. It does not require
any context as there are no elements on the left-hand side and produces a new author which is
denoted by node n1 labeled :Author. The preceding colon indicates that the name following
the colon identi�es the type of the node in the type graph. Production �createPublication�
requires an author as context and connects this author to a new publication. Production
�addAuthor� requires an author and a publication as context and connects both elements,
indicating that the author also participated in writing the publication.

A direct derivation G
p@m
=⇒ G′ (also G

p@m
 G′) produces a graph G′ by �xing an occurrence

of L by a match m in the given graph G and replacing the occurrence of L by R. To de-
�ne a direct derivation step, pushouts are used which glue the graphs involved in the direct

40Recent algorithmic approaches (e.g., [Cam09]) additionally support gluing.

37

2. Fundamentals

n1::=

createAuthor

createPublication

::=

addAuthor

n1 n2

:Author :Publication
:Writes

e1n1

:Author

:Author

n2

:Publication

n1 n2

:Author :Publication
:Writes

e1

::=

n1

:Author

Figure 2.19.: Example of a production set.

derivation. There are two di�erent approaches. The double-pushout (DPO) approach intro-
duced in [EPS73], which is historically the �rst of the algebraic approaches, uses two gluing
diagrams (i.e., pushouts) in the category41 of graphs and total graph morphisms. The single-
pushout (SPO) approach initiated by [Rao84] de�nes a derivation step as a single pushout in
the category of graphs and partial graph morphisms.
The pushout construct (PO) is a technique to glue two graphs together along a common

subgraph. The common subgraph is used as substructure and all other nodes and edges from
both graphs are added [EEPT06].

De�nition 6. Pushout.
Given morphisms f : A → B and g : A → C in the category of graphs, a pushout (D, f ′, g′)
over f and g is de�ned by
(1) a pushout object D and
(2) morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f

such that the following universal property is ful�lled:
For all objects X and morphisms h : B → X and k : C → X with k ◦ g = h ◦ f ,
there is a unique morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k:

C D

A B

X

=

f´

g g´

f

h

x

k
=

=

We write D = B +A C for the pushout object D, where D is called the gluing of B and
C via A (over f and g). Alternatively, we write D = B ∪ C and demand that A = B ∩ C.
41A category is a mathematical structure consisting of a class of objects, morphisms for each pair of objects,

an associative composition operation ◦, and for each object an identity morphism id. In the category of
graphs the objects are graphs from the class of all graphs.

38

2.7. Graph Grammars and Graph Transformation

An important fact is that the pushout object D is unique up to isomorphism (cf. [EEPT06,
Fact 2.20]), i.e., all other objectsX that are pushouts (X, h, k) via A over f and g are isomorph
to D.

a1

a2

Pfaltz

Rosenfeld

d1
Web Grammars

G G´

L R

POm m´

n1
n2

:Author
:Publication

:Writes

e1

a1

Pfaltz

a2Rosenfeld

n1

:Author i

i´

Figure 2.20.: Example of a pushout which glues two graphs G and R.

Figure 2.20 is an example of a pushout. Production �addPublication� (cf. Fig. 2.19) in
the upper part of the pushout diagram is applied to G located in the lower left corner. G
is a predecessor graph of the typed graph depicted in Fig. 2.17, where Pfaltz and Rosenfeld
have not yet written the publication Web Grammars. In this example, the left-hand side of
the production is the common subgraph. G and R are the graphs to be glued. The derived
graph G′ is created by adding an isomorphic copy of new elements in R, i.e., R\L, to G and
�nally setting source and target nodes of new edges (here e1) to the elements in the copy of
G identi�ed by m and i (here the source node of e1 is set to Pfaltz).
As we have seen in this example a direct derivation can be performed using one pushout in

the category of graphs and total graph morphisms. This is only possible because all produc-
tions in the example production set (cf. Fig. 2.19) are monotonic42, i.e., they do not delete
any graph elements. But, this is not true in the general case where L also contains elements
not present in R which are to be deleted (cf. Sect. 2.8.3). Both, the DPO and SPO ap-
proach support such non-monotonic productions. Monotonic productions are suitable for the
extended triple graph grammar approach developed in this thesis. Hence, we formally intro-
duce graph transformation based on monotonic productions only�instead of non-monotonic
productions�and use these de�nitions as su�cient base for the extensions of the triple graph
grammar formalism (cf. Chap. 4). For a formal de�nition of graph transformations based on
non-monotonic productions we refer to [EEPT06].

De�nition 7. Monotonic Graph Productions.
A typed monotonic graph production p = (L

i→ R) and L ⊆ R consists of typed graphs L and
R, called the left-hand side and the right-hand side respectively, and one injective typed graph
morphism i.
42In a monotonic production the left-hand side graph L is a subgraph of R.

39

2. Fundamentals

De�nition 8. Graph Transformation with Monotonic Graph Productions.
Given a typed monotonic graph production p, a typed graph G ∈ L(TG), and a typed graph

morphism m : L→ G, i.e., a match of L in G, a direct typed graph transformation G
p@m
=⇒ G′

(also G
p@m
 G′) from G to a typed graph G′ ∈ L(TG) is given by the following pushout

diagram:
i

G G´
i´

L R

POm m´

A sequence SEQ = (G0 =⇒ G1 =⇒ ... =⇒ Gn) of direct typed graph transformations is called

a typed graph transformation and is denoted by G0
∗

=⇒ Gn or G0
SEQ
=⇒ Gn.

De�nition 9. Graph Grammar and Graph Language.
A graph grammar GG = (TG,P) over a graph type TG and a set of typed monotonic graph
productions P generates the following language of graphs
L(GG) = {G|∃ typed graph transformation ∅ ∗

=⇒ G}

According to De�nition 9, a graph is in the language produced by a graph grammar if
there exists a sequence of direct transformations that produce this graph. Let us validate
whether the graph GPRWeb at the bottom of Fig. 2.17 is in the language generated by the
graph grammar GGBib = (TGBib,PBib). The type graph TGBib depicted in the upper part of
Fig. 2.17 consists of authors that are associated with their publications. The set of productions
PBib = {createAuthor, createPublication, addAuthor} is depicted in Fig. 2.19.

a1

a2

Pfaltz

Rosenfeld

d1
Web Grammars

G G´

L R

POm m´

n1
n2

:Author
:Publication

:Writes

e1

a1

Pfaltz

d1
Web Grammars

a2Rosenfeld

n2

:Publicationn1

:Author i

i´

Figure 2.21.: Direct transformation with p=addAuthor that produces Fig. 2.17.

We must �nd a sequence of direct transformations that produce GPRWeb starting with an
empty graph. First, we produce the two authors by applying production �createAuthor� two
times. Then, we apply production �createPublication�. This leads to the situation depicted in

40

2.8. Model Transformation Based on Graph Transformation

Fig. 2.20, where Rosenfeld is not yet connected to publication Web Grammars. Now, we are
able to produce GPRWeb by applying production �addAuthor� (cf. Fig. 2.21). Consequently,
GPRWeb ∈ L(GGBib) because we have found a sequence of direct transformations.

These basic de�nitions of graphs, graph constraints, graph grammars, and graph transfor-
mations will serve as base for the triple graph grammar approach (cf. Chap. 4) which is used
to specify bidirectional transformations in order to realize bidirectional language translation.

In order to avoid problematic situations that might generally occur in (non-monotonic)
productions (i.e., potentially deleting productions) in the DPO approach, the match of the left-
hand side in the host graph must satisfy an application condition, called the gluing condition.
Otherwise, a DPO production is not applicable. The gluing condition consists of two parts:
(a) the dangling condition which demands that if the production speci�es the deletion of a
node in the host graph then it must specify also the deletion of all edges in the host graph
incident to this node; and (b) the identi�cation condition which requires that every element
of the host graph that should be deleted by the application of the production has only one
pre-image in L, i.e., the matching morphism in the host graph is injective for to-be-deleted
elements. Note that the triple graph grammar approach is based on the DPO approach. But,
it is a special case with only one pushout in each domain and non-monotonic productions
(i.e., productions that do not delete). Therefore, the gluing condition will never stop the
application of a TGG production. Nevertheless, we discussed this condition here because of
the dangling condition which inspired the dangling edge condition for triple graph grammars
(cf. Sect. 5.3) which is a main result of this thesis.

2.8. Model Transformation Based on Graph

Transformation

So far, we have investigated models, modeling languages, and model transformations on the
one hand and graphs, graph schemata, and graph transformations on the other hand. Now,
we will show the relation between the terms and concepts of the modeling domain and the
domain of graphs. As both domains are closely related, some terms from both domains can
be used interchangeably. Table 2.1 maps the terms that correspond to each other. The terms
�attribute� and �label� in the domain of graphs are set in parenthesis because we do not use
attributed and labeled graph grammars in this thesis. Instead, we simulate attributes (cf.
Fig. 2.23) and labels (cf. Sects. 2.6 and 5.1). In Sect. 2.8.1 we present a possible solution
for mapping models to graphs. This mapping de�nition will be used throughout this thesis
to relate models to the world of graphs�especially to the triple graph grammar approach
(cf. Chap. 4). Note that the presented mapping is just one of many possible solutions for
mapping models to graphs (cf. discussion in Sect. 3.3.5). Section 2.8.2 then gives two examples
of mapping �rst a model based on the DSL approach and second a model based on the UML
approach to the world of graphs. Finally, Sect. 2.8.3 will complete this chapter by showing
how model transformation can be realized by graph transformation.

41

2. Fundamentals

domain of models domain of graphs
language model / metamodel graph schema / type graph
classi�er type
class node type
association edge type
property / attribute (attribute)
model graph
object node
link edge
slot with value (label)
model transformation graph transformation
transformation rule production

Table 2.1.: Related terms of modeling domain and domain of graphs.

2.8.1. Mapping Models to Graphs

The next three �gures depict the mappings from model elements to elements in the domain
of graphs. Each model is mapped to a graph. The relation between an element in a modeling
level Mi and its classi�er in Mj is realized by morphisms in the domain of graphs between a
graph Gi and its type graph Gj. Consequently, every graph that corresponds to a model of
the MDA framework is related to a type graph. Morphisms are depicted as usual as dashed
line with an arrow head pointing to the classifying element. So, morphism arrows depict
�instanceOf� relations between an element (node or edge) and its classi�er. If no morphism
arrow is depicted in abstract syntax then the element in Mi has no image in its codomain Mj

by means of one of the functions of the graph morphism h : Mi →Mj (cf. Def. 2). Note that
every circle in abstract syntax depicts a node.

Classes
Classifier

Objects

abstract syntax Examples

Classes

mc
Class

c1

o1

mc
Class

c2

o2

c3

o3

Author

Alex

Book

“How to…”

c4

o4

Class

Author

classification levels

«metanode»

Figure 2.22.: Mapping of models to graphs�classes and objects.

Figure 2.22 depicts how classes and objects are mapped to graphs. The metaclass mc is a
classi�er of classes (classes are classi�ers of objects). In addition, mc is an object which is an

42

2.8. Model Transformation Based on Graph Transformation

instance of itself�which makes it a metanode. Therefore, the type (i.e., classi�er) of mc is mc,
too (self-reference like in MOF, cf. Sect. 2.4). This is depicted as a looping morphism arrow
at mc. Consequently, mc is contained both in a graph and its type graph. Other instances
of mc, located on the level of classes, are c1 to c4 which are objects representing a class, like
the class of authors c2, the class of books c3, and the class of classes c4. Note that c4 is a
semantic copy of mc which in normal circumstances is unnecessary. But, it helps to explain
that even mc, as a metaclass, is an object. In addition, it shows that objects might be used
on di�erent levels of classi�cation, like �Author� (c2 and o4) and �Class" (mc and c4). The
level of objects contains instances of classes, like the author named �Alex�, the book named
�How to...�, and the class named �Author�.

mpProperties
Classifier

Slots
and Values

abstract syntax concrete syntax

value of s1

p1

«slot with value»

Properties

mc
Class

c1

o1

Owns

value of s1
«slot»«value»

s1

classification levels

Primitive

str
«primitive»

me

«metaedge»

Property
HasPType

Figure 2.23.: Mapping of models to graphs�properties, slots, and values.

Figure 2.23 depicts how properties, slots, and values are mapped to graphs. The metaprop-
erty mp is a classi�er of properties (properties are classi�ers of slots). It is connected with the
metaclass mc which allows instances of mc (i.e., classes) to own properties�making them the
attributes of a class. In addition, mp is connected with a classi�er of primitive types. Both
edges �HasPType� and �Owns� are related via morphism arrows to their classifying edge me.
Edge me is an instance of itself�which makes it a metaedge. A property (e.g., p1) connected
to an instance of mc (e.g., c1) and being of primitive type (e.g., str which is a classi�er of
strings) becomes a slot with value on the next instanceOf level, i.e., level �Slots and Values�. A
slot (e.g., s1) is a node which is an instance of a property (e.g., p1). A slot is connected to an
object (e.g., o1) which is an instance of the class owning the property. The values (e.g., strings
or numbers) are connected to the slot and the primitive values are depicted as label next to
the value node. All edges depicted in Fig. 2.23 are related to their according classifying edge.

To be able to draw smaller graphs we introduce a concrete syntax representation of slots
which is depicted on the lower right-hand side of Fig. 2.23. The dotted node with an morphism
arrow to p1, marked as �slot with value�, denotes a slot of p1. The context to its classi�er p1
is made explicit by the morphism arrow.

43

2. Fundamentals

c1 c2as1

ma
Associations

Classifier

c1 c2Associations

Links

Association

abstract syntax concrete syntax

mc
Class

mp
Property HasEnd

classification levels

HasType
me

«metaedge»

«metanode»

«end2»«end1»

also

Figure 2.24.: Mapping of models to graphs�associations and links.

Figure 2.24 depicts how associations and links are mapped to graphs. The metaassociation
ma is a classi�er of associations (associations are classi�ers of links). It is connected with
the metaproperty mp via the edge �HasEnd� to realize the ends of an association. Similar
to MOF, we �x the number of properties connected to an association to two. So, links are
binary in this mapping approach. Therefore, an association has two ends which are instances
of the metaproperty mp. The ends are optionally marked with �end1� and �end2�. An end
is connected to its association (e.g., as1) via an edge of type HasEnd. Moreover, a property
connects to a class (e.g., c1 or c2) via an instance of edge HasType. A link consists of one
node representing the link element and two edges that connect a link with its two slots that
are instances of the classifying association's member ends. Moreover, each slot is connected
with one of the linked objects. All edges depicted in Fig. 2.24 are related to their according
classifying edge. The lower part on the right-hand side of Fig. 2.24 depicts a shorthand
notation for associations and links. The white diamond43 consists of an association connected
with its two member ends. Each association consists of seven elements (1 association node +
2 end nodes + 4 edges). Links are represented as black diamonds in shorthand notation or
as line between two objects without any arrow heads. Each link consists of seven elements
(1 link node + 2 slot nodes + 4 edges). Note that lines belonging to an association or link
have no arrow head in order to distinguish these lines from those lines representing an edge.
De�nition 10 gives a formal de�nition of links as a construct consisting of nodes and edges

43We decided to use a white diamond, in analogy to the white diamond that is used in the UML and in MOF,
to represent an instance of the metaassociation ma.

44

2.8. Model Transformation Based on Graph Transformation

based on the presented mapping.

De�nition 10. Let link l := (et1, s1, ee1, l1, ee2, s2, et2) be a higher-level construct consisting of
nodes and edges. I� o1 and o2 are nodes representing objects, s1 and s2 are nodes representing
slots, and et1, ee1, ee2, and et2 are edges where
t(et1) = o1, s(et1) = s1, t(ee1) = s1, s(ee1) = l1,
s(ee2) = l1, t(ee2) = s2, s(et2) = s2, t(et2) = o2,

then link l connects the objects o1 and o2. Node l1 is called the link node of link l.

With these mappings we have constructed graphs that correspond to concepts from the mod-
eling domain. Each graph is related with its type graph via a graph morphism hi : Gi → Gj

between graphs Gi and Gj with hi := (hV,i, hE,i). These morphisms map each node of Gi to
its classifying node in Gj with the function hV,i and each edge of Gi with its classifying edge
in Gj with the function hE,i. In addition, both functions hV,i and hE,i preserve source and
target functions of edges (cf. Figs. 2.22, 2.23, and 2.24 and Def. 2). Consequently, we have
constructed total graph morphisms because every node and edge in Gi have an image in their
codomain Gj and the morphism properties are satis�ed. Note that in general the morphisms
are non-injective because a classi�er is referred to by many instances. Accordingly, not every
element of the codomain of functions hV,i and hE,i (i.e., a classi�er) is mapped to by at most
one element of its domain (i.e., an instance) in the general case. However, a morphism is
surjective because for every classifying element (in the codomain of functions hV,i and hE,i)
there exists at least one instance (in the domain of functions hV,i and hE,i).

2.8.2. Models Mapped to Graphs: Two Examples

Based on the mapping de�nitions given in the previous section, we now discuss the translation
process of two models and their classifying models into corresponding graphs that are related
via morphisms. The �rst of these models is based on the DSL approach, the second model on
the UML approach. Producing graphs from these models is straightforward. The mapping
de�nitions depicted in Figs. 2.22, 2.23, and 2.24 are applied to every object, slot, and link
starting in the modeling level M1. This produces a graph G1, its type graph G2, and its
metatype graph G3 which correspond to the models located in M1, M2, and M3.
Figure 2.25 depicts a model of the library example on the left-hand side (cf. left-hand side of

Fig. 2.4 that depicts the abstract syntax of a quite similar model). The library's type model
is located in M2 and is an instance of the MOF (DSL approach). Instances of the library
type model are located in M1. Graphs that correspond to the models are depicted on the
right-hand side of Fig. 2.25. The graphs are depicted in concrete syntax to simplify matters.
First, objects, links, slots, and values are translated to nodes and edges and added to graph

G1 that corresponds to the model located in M1. This produces a representation of two
authors that have written a publication in the world of graphs. After all elements of M1 have
been translated, all not-yet-translated elements in M2 and afterwards in M3 are translated.
This adds additional information to the type graphs G2 and G3, e.g., the name of association
as1, i.e., Writes. Translating not-yet-translated objects ofM2 andM3 (i.e., classifying objects
in the (meta-)language model) will result in morphisms that are not surjective because the
corresponding nodes in type graphs G2 and G3 have no instances in G1 and G2 respectively.

45

2. Fundamentals

c1 c2

Author Publication

Writes

a1

a2

Pfaltz

Rosenfeld

d1

Web Grammars

d1:Publication

a1:Author

a2:Author

Author Publication

publication

0..*
Writes

name:String title:String

name=“Rosenfeld”

title=“Web Grammars”

name=“Pfaltz”

«instanceOf»

as1

p1

name

p2

title

publication

M1

M2

M3

mc

mp
Class

Association

w1:Writes

w2:Writes

«primitive»

«end1» «end2»

ma

Owns

w1

w2

HasEnd

MOF 2

«instanceOf»

HasType
man

name

String

Property

HasName

Figure 2.25.: Models mapped to graphs�in the context of a DSL.

46

2.8. Model Transformation Based on Graph Transformation

c1 c2

a1

a2

Pfaltz

Rosenfeld

d1

Web Grammars

d1:Publication

a1:Author

a2:Author

Author Publication

publication

0..*
Writes

name:String title:String

name=“Rosenfeld”

title=“Web Grammars”

name=“Pfaltz”

«linkedTo»

as1

p1

name String

p2
title

w1

w2

c

M1

M2 p as
UML 2 Superstructure

s

ls
is

w1:Writes

w2:Writes

«end1» «end2»

UML 2 Infrastructure

M3 mcmp
Property Class Association

ma
MOF 2

«instanceOf»

«instanceOf»

Publication

Writes

iv

publication

Author

«primitive»

Figure 2.26.: Models mapped to graphs�in the context of the UML Superstructure.

47

2. Fundamentals

Translating not-yet-translated slots, values and links of M2 and M3 will also result in sur-
jective morphisms because these elements do not classify other elements and, therefore, have
no instances. However, if the latter elements are not translated information will be lost, e.g.,
the name of association as1. When translating objects, links, slots, and values contained in
M2 and M3, G3 will be used as type graph and metatype graph of G2 and G3 respectively.
That is, classifying elements like mc, ma, mp, and me contained in G3 are reused.

The morphism arrows from link nodes w1 and w2 to association node as1 are a shorthand
notation (cf. Fig. 2.24). The origin of these morphism arrows is the link node inside the
black diamond. The link between association node as1 and its second member end, which is
depicted as black diamond, corresponds to the link navigableOwnedEnd which is depicted on
the left-hand side of Fig. 2.4 as link navigableOwnedEnd between as1 and end2.

Note that we omitted some elements and morphism arrows in G2 and G3 and depicted only
the most important elements. Therefore, the classifying association of link navigableOwnedEnd
is not depicted in G3 (cf. [Obj09a, p. 111, �11.3 Classes Diagram�]). Moreover, we omitted
the primitive type classi�er Primitive and the metaedge me (cf. Fig. 2.23) which are both
contained in G3. According to the mapping de�nition depicted in Fig. 2.23, a new property
man is created as an instance of type Property (i.e., the classifying node mp) when translating
slot name of association as1. Property man (i.e., name of metaassociation ma) is connected
to ma via a new edge HasName. The same applies to the names of authors, publications, and
primitive types which would result in additional properties mcn, mpn, and mprimn that are
not depicted in Fig. 2.25. Likewise, G2 does not depict the slots and values of the attributes
lower and upper which are owned by metaproperty Property (cf. [Obj09a, p. 95, �10.2 Classes
Diagram�] and property end2 depicted in Fig. 2.4). However, the missing elements can be
easily reconstructed by referring to the mapping de�nitions discussed in Sect. 2.8.1.

Due to our concrete syntax de�nitions of graphs, a model's representation as graph in
concrete syntax is almost similar to the model's abstract syntax representation. This becomes
clear if we compare the graphs depicted on the right-hand side of Fig. 2.25 with the abstract
syntax representation of their corresponding models depicted on the left-hand side of Fig. 2.4.

The resulting graphs G1, G2, and G3 look di�erent if the library language model and
library models are based on the general purpose modeling language speci�ed in the UML
Superstructure (UML approach). Both approaches (DSL approach and UML approach) use
a MOF metalanguage model in M3. But in the DSL approach, the library language model is
directly based on the MOF, whereas in the UML approach, the library language model and
its instances are both based on the UML Superstructure. This leads to di�erent �instanceOf�
relationships and links between objects. The graphs which correspond to models of the UML
approach are depicted in Fig. 2.26. Note that all lines without arrow head that connect two
objects are links�the black diamond has been omitted�and not edges (cf. Fig. 2.24).

Graph G2 contains classes (c), properties (p), associations (as), instance speci�cations (is)
(i.e., links and objects), slots (s)44, literal strings (ls), and instance values (iv)45. These
elements are �rst-class elements in the UML approach, i.e., classi�ers of model elements. This
is a contrast to the DSL approach, where objects, links, slots, and values are instances of

44To better distinguish instances of class Slot the according nodes have a dark background color.
45LiteralString and InstanceValue are subtypes of ValueSpeci�cation; cf. Sect. 2.3.3.

48

2.8. Model Transformation Based on Graph Transformation

instances of metaclass, metaassociation, and metaproperty respectively. Therefore, objects
and links of UML-based models are translated into instances of the classi�ers is, s, and iv,
whereas slots and values are translated into instances of s and ls (cf. left-hand side of Fig. 2.13
that depicts the abstract syntax of a quite similar model). Note, that much detail has been
omitted on the right-hand side of Fig. 2.26, e.g., morphism arrows and elements in G2 and G3.
We will not go into detail discussing Fig. 2.26. The examples show that the same concepts�

typed, attributed elements and relationships between elements�can be realized in di�erent
domain-speci�c languages�DSL approach, UML approach, category of graphs and total graph
morphisms�and that concepts can be translated between these languages. Furthermore, we
showed that models of both the DSL and UML approach can be mapped onto graphs and
that mapping even small models to labeled, typed graphs results in graphs containing many
elements (i.e., nodes and edges). Even though these graphs are more �ne-grained they can be
used as formal system providing formally founded approaches with precisely de�ned semantics
to realize formally founded models.

2.8.3. Realizing Model Transformation with Graph Transformation

Model transformations can be realized by graph transformations [TEG+05]. There are di�er-
ent approaches of graph-based transformation systems [FMRS07, CHM+02, dLV02]. One of
these approaches is called Story Driven Modeling (SDM) [Zün01] which is implemented in the
CASE tool Fujaba [NNZ00, FNTZ00]. SDMs are applicable in the domain of MDE to realize
model transformation [GGZ+05].
Story driven modeling uses the concrete syntax of UML activity diagrams, object diagrams,

and interaction diagrams. The �backend� of SDMs is formally de�ned relying on a 1st order
logic-based approach to graph grammars de�ned in the programmed graph replacement system
PROGRES [Sch91]. A unidirectional model transformation rule is de�ned in a story diagram�
similar to UML activity diagrams�which de�nes a control �ow between graph transformation
rules. This allows to react on the result of a match, i.e., whether a match was found or not. A
story diagram typically consists of activities and transitions that represent a certain control
�ow. An activity either contains a story pattern or a piece of Java code which is executed
during runtime whenever the control �ow enters the activity. Transitions are used to connect
certain activities. They may have guards which constrains the control �ow between a set
of activities. In addition, a story diagram control structure called for-each activity allows
to handle multiple matches of a pattern. Thus, a small graph transformation system is
composed of basic graph transformation rules inside a story diagram. Story diagrams are
used as implementation of methods. So, if a story diagram is executed it always runs in the
context of a class (static method) or an object (non-static method). Additional context is
passed to a story diagram as method parameters. Story diagrams may be used to de�ne some
of the dynamic semantics of language models by giving precisely de�ned meaning to a name of
a method which transforms instances of the language model into another state that conforms
to the syntax of the language model.
We decided to base our approach of bidirectional model transformation on SDMs. Therefore,

we use the meta-CASE tool MOFLON (cf. Sect. 7.1) which is based on the CASE tool Fujaba
and features SDM diagrams. From our bidirectional model transformation speci�cation (cf.

49

2. Fundamentals

Sect. 4.3) we derive unidirectional operational transformation rules and use these operational
rules in our language translation framework (cf. Sect. 4.6). Finally, executable Java code is
generated from SDM diagrams which implements the speci�ed model transformation. In the
following we will give a short overview of the elements of SDM diagrams which are used in
later chapters in derived operational rules.

createAuthor

createPublication

addAuthor

++
a1:Author

p1:Publicationa1
++

a2 p1
++

++
w1:Writes

w1:Writes

Figure 2.27.: Schematic view of story patterns.

The graph transformation rules are called story patterns and are visualized as a combina-
tion of object- and interaction diagrams. Figure 2.27 depicts three story patterns based on
the library language model (cf. Fig. 2.25) that are similar to the productions depicted in
Fig. 2.1946. Story patterns look up a model for a certain pattern in a given context. If the
pattern is matched the model is �nally transformed. This is analogous to the modi�cation of
a graph by a graph grammar production.
Story patterns use a shorthand notation for graph productions which summarizes the left-

and the right-hand side of the underlying production. Instead of depicting both LHS and
RHS as two separate parts of a story pattern, both sides are merged. The elements contained
in the LHS and the RHS of the production, i.e., the context elements L ∩ R, are denoted as
black elements without any additional markup. The elements contained in the RHS only, i.e.,
elements R\L that are created, are denoted as green elements with an additional �++� or
�create� markup. The story pattern �createAuthor� depicted in Fig. 2.27 creates a new author.
The author is bound to a variable a1 of type Author. The variable is visible to all other story
patterns in the scope of the execution of the story diagram. Pattern �createPublication� uses
an already bound author a1 and creates a new publication p1. A �bound object� is denoted
by only depicting the identi�er a1 of the object, i.e., without showing a colon followed by the
name of its classi�er. In addition, �createPublication� links the new publication to the author
indicating that the author has written the publication. Finally, the third pattern �addAuthor�
links a formerly bound author a2 with a formerly bound publication p1.

46The notation of models uses arrow heads at the ends of a link to depict navigable ends of the classifying
association (e.g., association Writes' navigable member end publication). This is contrary to our notation
of graphs that represent models as introduced in Sect. 2.8.1 (cf. Fig. 2.24) where arrow heads are only
used to denote edges.

50

2.8. Model Transformation Based on Graph Transformation

Story patterns support additional graph grammar features that are used throughout this
thesis and are not depicted in Fig. 2.27. They allow to specify deletion of elements, i.e.,
elements L\R that are contained in the LHS only. Elements to be deleted are denoted as red
elements with an additional �−−� or �delete� markup. In addition, elements may be marked
as optional which is indicated by a dashed border. Therefore, an element can be denoted to
be optionally created, deleted, or matched. Negative application conditions (NACs) are also
supported. An element marked negative (the element is crossed out (cf. Figs. 3.4 and 3.5 in
the next chapter) must not be present during a match of the pattern. It can be thought of as
a precondition of a pattern that must be met in order to apply the pattern.

0..1collection

*

entry IsPartOf

*

lending

1publication

1lender

*

lendingLendedBy

1reader

0..1account

BelongsTo

PublicationCollection

Boolean : /finished
Date : back
Date : start

Lending

LibraryCard

String : name

Entity

*

publication

*

author WritesPerson

HasBeenBorrowedBy

String : title

PublicationType : type

Publication
JOURNAL
BOOK
PROCEEDINGS
ARTICLE
IN_COLLECTION
IN_PROCEEDINGS
PHD

PublicationType
«enumeration»

Figure 2.28.: Advanced library language model.

Story patterns require a language model, e.g., a class diagram, that de�nes the elements of
the language. These elements can then be used in story patterns to de�ne model transforma-
tions for the elements of the language. The transformations are then applied to models of the
language. Figure 2.28 depicts an advanced version of the library language model introduced
in Fig. 2.4. Note that we slightly changed the design of the library language model. The class
Author has been renamed to Person and author is now used as role name (i.e., member end
of an association) in conjunction with the association Writes. This allows to reuse Person in
other situations, e.g. when it plays the role of a reader in conjunction with lending books
from the library. Therefore, the name of a person being a very basic property of entities has
been moved to its superclass Entity. As �publication� is a very general term, instances of pub-
lication are now categorized by their type (i.e., a literal of enumeration PublicationType). A
publication is either a PHD thesis, a paper that appeared in the proceedings of a conference, a
book, a part of a book (enumeration literal IN_COLLECTION), or an article that appeared
in a journal. In addition, a publication may also be an instance of PublicationCollection�a

51

2. Fundamentals

collection of smaller publications�like the proceedings of a conference that contains some
papers, a book that is composed of some IN_COLLECTION publications, or a journal which
consists of articles. Furthermore, a customer of the library, a reader, may now get an account
if he likes to borrow a publication from the library. Then a library card associated with the
reader is prepared where every publication that is lended by a reader is logged, i.e., a Lending
instance is added to the library card and linked to the lended publication.

Fig. 2.29 depicts a screenshot of a story diagram which contains some more of the elements
and features of the SDM language. It depicts a model transformation rule that de�nes the
semantics of lending one book to a registered reader in the context of the library system.

true

]end[

false

]success[

true==finished

lending

lendingpublication HasBeenBorrowedBy Lending:lendingpublication

lending

publication

«create»

HasBeenBorrowedBy

publication

lender

lending
«create»
LendedBy

«create»

NOW():=start

Lending:lending

reader

account

«create»

BelongsTo

«create»
LibraryCard:cardOfLender

lender

]each time[

]failure[

Librarian::lendPublication (publication: Publication, lender: Person): Boolean

Figure 2.29.: Story diagram that models �lending a book to a reader�.

The entry point and the start of the control �ow of a story diagram is its start node which is
connected to a method declaration. The declaration of the method appears at the top of the
start node. Story diagram 2.29 is attached to the method �lendPublication� contained in the
class Librarian. The method has two parameters which add additional context to the story
diagram. Therefore, the objects publication of type Publication and lender of type Publication
are bound to the story diagram's context. In addition, the declaration states that the story
diagram must return a boolean value. Story diagram 2.29 consists of the start node, three
activities, and two stop nodes. These elements are connected via transitions. Some of the

52

2.8. Model Transformation Based on Graph Transformation

transitions have guards that constrain the control �ow, i.e., a control token only follows a
constrained transition if the guard is ful�lled.
Each activity contains a story pattern. The story pattern of the for each activity directly

connected to the start node determines every lending occurrence in the context of the given
publication object. Therefore, every match of the story pattern in the given context (i.e.,
publication) is computed, i.e., the object lending is (re)bound every time a new match is
found. Then, the pattern contained in the activity connected via the [each time] transition is
invoked. This pattern then in turn checks whether the matched lending is already �nished.
If this is not the case the story diagram is aborted via the [failure] transition. This way
a precondition of the main activity of this story diagram is realized which ensures that a
publication can be lended only if it is present in the library, i.e., not currently lended to
another reader. After each match has been successfully checked, the main activity is now
entered via the transition with the [end] guard. The story pattern of the main activity checks
whether the lending person already has an account in form of a library card. If this is not the
case, a new library card is created and associated with the lending person. This behavior is
realized by the optional create construct depicted as object with a dashed border marked as
create. Furthermore, a new lending entry for the given publication is created and associated
with the library card. Finally, the start date of the lending is set to the current date. The
lending entry indicates that the publication is currently�or has once been�lended. If the
reader returns the publication, another operation then sets the return date so the lending will
be marked as �nished. Another person is then able to lend afresh the publication. The main
activity hands control to the stop node that returns the value �true�. A stop node leaves its
story diagram and returns control to the caller which is, e.g., a transformation tool that has
been triggered by a real librarian.

53

2. Fundamentals

54

3. Integration of Formal Languages

Let's consider now the problem of translating between two computer languages.

[Hofstadter [Hof99, p. 380]]

In the preceding chapter we presented the fundamental concepts required for realizing
model-based integration of formal languages. Now, we will discuss issues of language in-
tegration in order to �nally realize bidirectional translators. The term �integration� is used
throughout this thesis to indicate that two models, consisting of a number of elements, are
somehow mapped in order to bidirectionally translate between them. Both models may still
further exist on their own. The approach presented in this thesis uses model transformation
and translation concepts to integrate languages and to realize bidirectional formal language
translators. We start with an analogy of a natural language translation scenario in Sect. 3.1.
Section 3.2 then discusses the process of language translation based on this analogy. Subse-
quently, a popular example of formal language integration�the integration of class diagrams
and database schemata�is introduced in Sect. 3.3. Thereafter, the similarities between nat-
ural language translation and formal language translation are sketched in Sect. 3.4. Then, we
discuss challenges that arise when realizing bidirectional translators in Sect. 3.5. We conclude
this chapter with Sect. 3.6 by discussing the main ideas of model-driven integration and our
model-based bidirectional formal language translation approach in particular.

3.1. CAB: A Natural Language Translation Analogy

The following scenario introduces common situations that occur during natural language trans-
lation. In the next sections we will see that they also arise during formal language translation.
Alex, an author, writes a publication about �How to Play Guitars� in a certain language.

As a human being, Alex is capable of �speaking� at least one language�his native natural
language: english. Let's imagine Alex produces his publication based on�or expressed in�
the english language. Then the publication can be regarded as a model (model of thoughts of
the author on how to play guitars) which is a �sentence� of the english language (more precisely
the publication consists of many sentences). In general everything can be regarded as model
in the sense of the de�nition of model in Sect. 2.2.1. �Reality� is perceived by humans as token
model because humans �lter information from reality (by their organs of perception) until the
�perceived reality� �nally arrives �in the brain�. Even thoughts of a human being that are put
down on paper are only models of the thoughts of their author. Typically an author writes
his publication in his native language because the quality of the publication, e.g., syntactical
correctness and style (i.e., written in �perfect� english) depend on the linguistic capabilities of

55

3. Integration of Formal Languages

the author. In addition, the quality depends on the knowledge which the author has gained
in the domain he is writing about. It is questionable whether an author writing about �How
to Play Guitars� never having played a guitar may produce a good contribution.

The publication has an intention, i.e., transports a message from the author to the reader.
Here, the message is how to make music with a guitar. The publication is expressed in a
domain-speci�c language DSLenglish,guitar which is a combination of the english language and
the terms used to describe everything related to playing guitars (music theory, parts of guitars,
playing techniques like bending and sliding, etc.). Alex has developed an own internal speci�c
domain language model DLMenglish,guitar,Alex of DSLenglish,guitar (cf. Figs. 2.14 and 2.8) while
studying the subject �guitars and how to play them�. To ensure that the message of the
publication is interpreted by the reader as intended by the author, Alex' speci�c guitar DLM
is very close to the common domain language model DLMenglish,guitar of DSLenglish,guitar.
On the other hand, Alex might have chosen to use new terminology. For example the term
�gliding� to refer to creating continuous transitions in pitch�instead of the more common
term �sliding�. Though, he decided not to confuse his readers.

An example of variation in two related languages is the usage of the letters �H� (german
notation) and �B� (english notation) when referring to pitches in music. Both letters refer to
multiples of the frequency 493, 88 Hz, i.e., two tempered semitones above A1. Originally, �B�
was used in the german notation as well. But somewhen it became common to also use �H�
instead of �B� when referring to this special pitch. One explanation why �H� is used instead of
�B� in the german notation is given by [RE67]. In the 12th century a new feature was added
to music. �B� was split into a higher pitch two semitones above A (B durum denoted as \)
and a lower pitch one semitone above A (B molle denoted as b). When sheets of music were
mechanically reproduced with early printing presses in the 16th century, the character �H�
was used in movable type systems due to the visual similarity of the (handwritten) symbol
\ and the character �H�. Hence, it became common to use the notation �H� (instead of �B
(durum)� or \) to refer to the 7th pitch of the major scale based on C, which became the basic
scale since Zarlino (1571), in Germany.

Under normal circumstances this renaming of �H� to �B� would not matter at all. But
unfortunately �B� is used to refer to the frequency 466, 16 Hz2 in the german notation�
whereas �Bb� (speak: B �at) is used for this frequency in the english notation. So, the
meaning of �B� in the german notation collides with the meaning of �B� in the english notation.
This might lead to confusion because two musicians �rst have to agree on whether they are
talking in the german or english notation when saying �B� (either the frequency 493, 88 Hz
or 466, 16 Hz). This ambiguity is either resolved by explicitly stating the context in which
�B� is used (german or english notation) or even prevented by only using the non-ambiguous
notations �H� and �Bb�. Alex discusses the above mentioned issue in his publication and
decides to use the english notations �B� and �Bb�.

Let us now assume, Chris, a reader of �How to Play Guitars� enjoyed this publication and
wants to translate it into another language. She plans to translate it into her natural language,
german, in order to make it easier for germans to get access to the contents of the publica-

1f(2) = 440Hz ∗ 22/12 in twelve-equal temperament tunings with A = 440Hz.
2f(1) = 440Hz ∗ 21/12 in twelve-equal temperament tunings.

56

3.1. CAB: A Natural Language Translation Analogy

tion, i.e., she wants to translate the book written in DSLenglish,guitar into DSLgerman,guitar.
Hence, Chris plays the role of a translator and decides to produce another publication that
should correspond to its original. Therefore, she asks Alex if he likes to be involved into the
translation process because he is the one who knows how to interpret3 the original intention
of the publication best. In addition, she decides to use the computer-based translation system
Binaltas4 which acts as a bidirectional sentence translator. It is capable of �speaking� both
german and english, i.e., has internal language models of german and english. Moreover, it
is able to improve its knowledge in both languages (e.g., by learning new words) and even to
learn new languages. But, Binaltas does neither know anything about how to play guitars
nor is it able to automatically resolve ambiguities existing in sentences of the input language.
However, Binaltas is capable of reporting ambiguities to Chris who then in turn will ask5 Alex
so he might tell her about the intention he had when writing the ambiguous sentence in the
original publication. She will then choose from a list of alternatives given by Binaltas in order
to produce a translation that corresponds to its original. Binaltas in turn keeps track of the
relations between the words in the original publication and the translated version to be able
to trace the counterparts of sentences in the related publication.
Ambiguities arise in natural language sentences very frequently. Moreover, natural lan-

guages are informal and it is di�cult to express things precisely, allowing to interpret di�erent
meaning than originally intended. Here the title �How to Play Guitars� may be translated
in di�erent ways. It might be interpreted as (a) �Wie man Gitarre spielt� or (b) �Wie man
Gitarren spielt� both having di�erent meaning and di�erent degree of probability. The mean-
ing of (a) refers to �How to make music using the instrument of type guitar � let's say with
a chance of 5%, whereas (b) has the meaning of �How to play speci�c types of guitar� (e.g.,
'Stratocaster' or 'Les Paul')�in order to get special sounds in combination with speci�c am-
pli�ers and e�ects�with a chance of 95%. Binaltas detects these ambiguities and asks Chris
whether to use (a) or (b). It suggests to use (b) because the probability of (b) is greater than
(a). Instead, Chris comes to the conclusion that (a) is the right choice because she is aware of
the book's content and the intention of both (a) and (b) in the german language. She shortly
discusses this issue with Alex who internally marks the title to be reviewed in the next version
of his publication. Binaltas continues translating the remaining part of the publication in con-
junction with Chris and Alex which of course have to resolve further ambiguities. Moreover,
Chris decided to use the german notations �H� and �B� and, therefore, has to teach Binaltas to
automatically detect such notations and translate them appropriate. Finally, after completing
the translation process, Chris publishes the translated version of �How to Play Guitars�.
Later, Alex�who was inspired by the discussions with Chris�decides to review his initial

version of �How to Play Guitars�. He applies some changes, e.g., he changes the title to
�How to Play Guitar�. Binaltas�who still monitors activities in both publications�notices
this change and informs Chris so she might decide whether this change a�ects the translated
version. In this case, Chris does not need to react on the change as Alex did not change
the intention of the title. But, Alex continues his review and corrects typos, adds some new

3In general the author of a book becomes a reader of his own book somewhen, having to reinterpret the
original intentions he had when writing the book.

4
bidirectional natural language translation assistant (Binaltas, IPA:|baInælt@s|)

5Binaltas also assists in communication processes between Chris and Alex.

57

3. Integration of Formal Languages

chapters, rephrases some sentences, deletes outdated material, and resolves ambiguities he
was not aware of earlier. Happily, Binaltas assists Chris in managing to update the translated
version incrementally so she might produce a new version that is again consistent with the
new version in the original language.

3.2. Relationships in Translation Processes

Figure 3.1.: Relations between components involved in a translation process.

Figure 3.1 depicts a domain model of the structural dependencies of the situation sketched
in the Chris-Alex-Binaltas (CAB) example. It shows that humans as well as computer systems
are able to process subjects (cf. interface SubjectProcessor) and to produce models of these
subjects (cf. Sect. 2.2.1). Such processors will produce models if they have an intention for
doing so. Examples of models that are produced in the CAB example are the publication
and its translation, but also communication models such as emails exchanged between Chris
and Alex�this was not explicitly mentioned in Sect. 3.1. Everytime Chris gets an email from

58

3.2. Relationships in Translation Processes

Alex (e.g., an answer to a question that arises during translation) she processes this email and
produces another email containing her thoughts on Alex' answer.

Translators�humans or computer-based translation systems like Binaltas�produce an out-
put model given at least one input model. Therefore, a translator utilizes a number of
interpreters�either human beings or computer based systems�that �reason� about the inten-
tion of the (part of the) input model given to them by the translator and produce a translated
version of this model in the desired language�if the interpreter does not face any problems
during translation, like Binaltas who is not able to translate ambiguous models. To produce
the output, the translator somehow coordinates the interpretation results (this is done by
Chris in the CAB example). A translator does not need to interpret the given input model(s)
himself, e.g., if it concentrates itself on coordinating the results produced by the utilized in-
terpreters. However, if a human takes the role of a translator he might utilize himself as
interpreter and no additional interpreters. This is only suitable if he is capable of speaking
all languages of all input models he needs to process throughout the translation task in order
to produce a corresponding version of the to-be-translated model. Typically, the �reasoning
process� of a computer system is coded by a human software system engineer.

In general, an output is producible if the languages of the input model and the output model
have something in common. A language supports a number of features and two languages are
said to be related to each other if the languages share some features. General purpose lan-
guages typically provide features such as boolean logic, arithmetics, generics, ability to make
statements, modularization concepts, and re�nement. Features of domain-speci�c languages�
like the library language discussed in Sect. 2.2�are, e.g., the ability to express facts (e.g., a
book with a speci�c title which is written by an author) and activities (e.g., a book contained
in a library is lended by a reader) occurring in the domain. In particular, a translator will
only produce an output if the utilized interpreters �speak� the input and output languages,
i.e., they have internal representations of these languages. Such an internal representation is
a language model (e.g., Alex' internal domain language model DLMenglish,guitar,Alex) which is
typically a variation of a precise and complete language model that de�nes the language (e.g.,
DSLenglish,guitar).

For a description of the classes Language,Model, and LanguageModel and their relationships,
which are depicted in Fig. 3.1, we refer to the discussion in Sect. 2.2.4 (cf. Fig. 2.8). The
class ModelRelation is a directed relationship which allows to relate two models, e.g., to state
that one model is the token model of another model�its subject�(cf. Fig. 2.5 in Sect. 2.2.3).
The instanceOf relationship between Model and LanguageModel has been explicitly modeled
as association. It might be realized by an instance of ModelRelation of type TypeModelOf as
well. But association instanceOf might be regarded as a derived association which abbreviates
navigation from a model to its type model.

A language authority creates and speci�es new languages. Examples of such authorities are
the OMG6 which has speci�ed modeling standards such as UML, MOF, QVT, and OCL. The
World Wide Web Consortium (W3C)7 is another language authority which develops standards
(e.g., HTML, XML, and XSLT�a language for transforming XML documents) to ensure the

6http://www.omg.org
7http://www.w3.org

59

http://www.omg.org
http://www.w3.org

3. Integration of Formal Languages

long-term growth of the Web. Authorities for the written german language are, e.g., the
Duden8 or the Wahrig9, whereas [Per08] and [SHE06] are authorities for the written english
language. But even more uno�cial language authorities are imaginable, like companies or
speci�c groups of people that produce their own proprietary domain-speci�c languages.

3.3. Integrating Class Diagrams and Database Schemata

Based on the natural language translation analogy (the CAB example) we will now address
the question of how to build Bifaltas10�one of the siblings of Binaltas�throughout the rest
of this thesis. That is, building (semi-)automated bidirectional formal language translators.

Throughout this contribution we will discuss integration of formal languages referring to
mappings of class diagrams (object domain) to relational database schemata (data domain)
and vice versa. This integration scenario is abbreviated as CDDS. Both languages are well-
known to software engineers and share some features and concepts because they both belong
to the domain of relational data models. This example is quite popular and discussed in
numerous publications of the model and graph transformation community [Bru06, Obj08] as
well as in the database community [Amb03]. It can also be regarded as an o�cial benchmark
for QVT related approaches [Kön09] that are used to realize unidirectional or bidirectional
mappings between two languages. We adopt this example and slightly modify it such that it
(a) covers typical situations when integrating formal languages and (b) we are able to discuss
arising problems and some solutions which are presented in this contribution.

The main idea behind integrating the class diagrams language LCD and the database
schemata language LDS is to map persistent classes and database tables onto each other.
For example, if the library language model is speci�ed as class diagram expressed using LCD

this would lead to the situation depicted on the left-hand side in Fig. 2.26, where LCD plays
the role of the UML 2 Superstructure. Then, the class Author and its attribute name are
related with11 a table named Author and a column named name of an SQL based relational
database management system (RDBMS) which is utilized by the library. Note that instances
of a class (e.g., objects representing authors) and entries in a database table (i.e., rows of
a table) are not regarded in CDDS. That is, models containing the data of a library (i.e.,
object diagrams) and database entries are not mapped onto each other. This would require
an extension of the language models and additional mappings between instance speci�cations
(i.e., objects and links) and database entries. But this is not discussed in this thesis.

It is common practice to call the domains of the languages involved in a translation process
source domain and target domain. When talking about bidirectional translators one �xes these
roles and then distinguishes between forward translation and backward translation�instead of

8http://www.duden.de
9http://www.wahrig.de
10
bidirectional formal language translation assistant (Bifaltas, IPA:|baIfælt@s|)

11Note that we use the phrases �to relate sth. with sth.� and �to map sth. and sth. onto each other� to refer
to a bidirectional mapping. The phrases �to relate sth. to sth.� and �to map sth. to sth.� are used to refer
to a unidirectional mapping.

60

http://www.duden.de
http://www.wahrig.de

3.3. Integrating Class Diagrams and Database Schemata

reassigning the source and target roles. We assign the source role to class diagrams and the
target role to database schemata.

3.3.1. Syntax of CD and DS Language Models

Figure 3.2.: Language models of simple class diagrams and database schemata.

The language models of class diagrams LMCD and database schemata LMDS used in the
integration example are depicted in Fig. 3.2. It is important to notice that LMCD is a sim-
pli�ed language model of class diagrams and neither the class diagrams part of the UML nor
the MOF. Consequently, LMCD varies in some points compared with UML and MOF class
diagrams. If we are talking about integration of class diagrams and database schemata in the
following we always refer to LMCD and LMDS.
The syntax and static semantics of both language models LMCD and LMDS are expressed

using the MOF and OCL. We will �rst examine the structural features provided by the
languages. Both languages feature the concepts �types�, �properties�, and �relationships�.
The left-hand side of Fig. 3.2 depicts a language model of class diagrams. It de�nes classes,

primitive attributes, and directed associations. Classes may inherit features of other classes
which is indicated by the subclass to superclass relationship Inherits. As a special feature,
multiple inheritance is supported so each subclass may have zero to many superclasses. Classes
may be marked as persistent with the boolean �ag persistent. Furthermore, classes may
contain zero to many attributes which are ordered by the successor/predecessor relationship
Precedes. A successive attribute is identi�ed by the role next and a preceding attribute by the
role prev. Attributes are always primitive and its primitive datatype is encoded in the value
of property type. Relations between classes are realized by directed associations.

61

3. Integration of Formal Languages

The language model of relational database schemata is depicted on the right-hand side of
Fig. 3.2. It de�nes tables, columns, (primary) keys, and foreign keys. Each table has at least
one primary key which is used to identify entries in this table (i.e., rows of a table�which
are not part of this example). A table may be related to another table via a foreign key
which connects to the primary key of a foreign table. This way, entries of a table can be
related to entries in another table which is quite similar to the association concept in the class
diagram domain that relates a class with another class. Furthermore, each table may contain a
number of columns. Likewise to attributes, columns are ordered by the successor/predecessor
relationship Precedes.
Note that structuring and modularization of elements in both language models is not part of

the example in order to keep the example, especially models depicted later on, more compact.
However, all instances of Class and Association depicted in one diagram are assumed to
be contained in the same package, i.e., the class Package. Similarly, all instances of Table
depicted in one diagram are assumed to be contained in the same database schema, i.e., the
class Schema. Therefore, we specify OCL constraints that, e.g., check all classes contained
in one package in the context of Package and then navigate to its owned classes via the
association end class.

3.3.2. Constraints in CD and DS Language Models

Let us have a closer look at the constraints of the language models. Models must ful�ll these
constraints in order to be valid. Successors of attributes and columns are realized via the
association Precedes. The multiplicity �0..1� of the next endpoint of the association denotes
that each attribute and column may have a successor, but need not. These are multiplicity
constraints that might be expressed by OCL invariants invCD:P :n:mult

12 and invDS:P :n:mult. In
addition, the OCL invariants depicted in Fig. 3.2 constrain the number of elements without
successor. Due to these constraints, a class containing attributes must have exactly one
attribute that has no successor. Similarly, tables and columns are constrained by an analogous
OCL invariant.
There are more invariants that must be ful�lled by instances of both language models.

These are not depicted in Fig. 3.2 but given here in textual notation. There are still more
OCL invariants that could be added to the language models. For example invDS:F :inheritance

in Sect. 5.2.1 and constraints that forbid inheritance cycles in LMCD. The latter constraints
are not discussed in this thesis.

invCD:Pkg:assoc:unique Each association contained in a package must have a unique name.
context Package inv: assoc->forAll(a1, a2 | a1 <> a2 implies a1.name <> a2.name)

invCD:C:attr:unique Each attribute contained in a class must have a unique name.
context Class inv: attr->forAll(a1, a2 | a1 <> a2 implies a1.name <> a2.name)

invCD:C:attr:first If a class contains attributes then exactly one ��rst� attribute must exist (i.e., an
attribute that has no predecessor).
context Class inv: attr->size()>0 implies attr->select(prev->size()=0)->size()=1

12invCD:P :n:mult is a shortcut for CD : Precedes : next : multiplicity

62

3.3. Integrating Class Diagrams and Database Schemata

invCD:C:attr:last If a class contains attributes then exactly one �last� attribute must exist (i.e., an
attribute that has no successor).
context Class inv: attr->size()>0 implies attr->select(next->size()=0)->size()=1

invDS:T :col:unique Each column contained in a table must have a unique name.
context Table inv: column->forAll(o1, o2 | o1 <> o2 implies o1.name <> o2.name)

invDS:T :col:first If a table contains columns then exactly one ��rst� column must exist (i.e., a column
that has no predecessor).
context Table inv: column->size()>0 implies column->select(prev->size()=0)->size()=1

invDS:T :col:last If a table contains columns then exactly one �last� column must exist (i.e., a column
that has no successor).
context Table inv: column->size()>0 column->select(next->size()=0)->size()=1

In conjunction, the multiplicities of both ends of the association Precedes that relates at-
tributes (i.e., invCD:P :p:mult and invCD:P :n:mult) and the two OCL constraints invCD:C:attr:first

and invCD:C:attr:last are able to detect violations of a strict total ordering of attributes. The
same applies to the strict total ordering of columns in LMDS. Violations are detected by
constraints invDS:P :p:mult, invDS:P :n:mult, invDS:T :col:first, and invDS:T :col:last.

3.3.3. Producing CD and DS Models

In order to produce instances of both language models, production rules that create well-
formed models are speci�ed as story patterns in the SDM language. The patterns that build
types, properties, relations, and inheritance structures in both languages are depicted in
Figs. 3.3, 3.4, 3.5, and 3.6. Note that most of these patterns will be used later on Chap. 4
when creating a mapping speci�cation that integrates class diagrams and database schemata
according to the mapping requirements that will be stated in Sect. 3.3.5. Though, the depicted
patterns are not yet a mapping speci�cation!
Figure 3.3 (a) depicts the patterns �createPersistentClass�, �createPersistentSuperclass�, and

�createPersistentSubclass� which are part of LMCD and produce elements related to the type-
concept of LMCD that features multiple inheritance. Pattern �createPersistentClass� creates
a persistent class c1 and sets the name of the class to a free variable n. This variable has
to be speci�ed by the caller of the pattern. A persistent superclass c2 is created by pattern
�createPersistentSuperclass�. The pattern requires another class c1 as context. It links the
newly created superclass with c1 identifying the latter as the subclass of c2. Likewise, pattern
�createPersistentSubclass� creates a new subclass c1 and links it to its superclass c2.
Pattern �createTable�, depicted in Fig. 3.3 (b) creates a new table t1 and sets the table's

name to the free variable n. In addition, it creates a primary key pk1 and a new column o1.
The name of column o1 is set to the reserved column name �_entryID� which must not be
used for other columns. The type of the column is set to �NUMBER� which indicates that
numerical values will be stored in this column. Column o1 will contain the primary key values
of table entries and allows to uniquely identify entries of a table. Finally, the three objects
are linked with each other.

63

3. Integration of Formal Languages

c1:Class
++c1:Class

super ++ createPersistentClass

createPersistentSuperclass

(a)

name := n
persistent := true

c2:Class
++

name := n
persistent := true

c2:Class
super

++

createPersistentSubclass

c1:Class
++

name := n
persistent := true

t1:Table
++

createTable

(b)

o1:Column
++ ++

name := n

name := “_entryID”
type := “NUMBER”

pk1:Key
++

++

++

Figure 3.3.: Story patterns that produce types in (a) LMCD and (b) LMDS.

c1:Class

p1:Attr
++p2:Attr ++

c1:Class

p1:Attr
++

p2:Attr

p3:Attr
next

next

++

++

createFirstAttribute

createNextAttribute

(a)

name := n
type := tn

name := n
type := tn

createNextDataColumn

t1:Table

o1:Column
++

o2:Column

o3:Column

next

next

++

++

(b)

name := n
type := tn

name = n
o4:Column

name = n
p4:Attr

Figure 3.4.: Story patterns that produce properties in (a) LMCD and (b) LMDS.

64

3.3. Integrating Class Diagrams and Database Schemata

Figure 3.4 (a) depicts two patterns that feature adding an ordered number of attributes
to a class. Pattern �createFirstAttribute� is used to create the �rst attribute contained in
a class. This attribute has the feature that right after creation time it has no predecessor
and no successor. Due to the NAC this pattern is applicable only once�if the class does
not already contain an attribute. So, this NAC ensures that at most one attribute is created
per class that has no successor and, therefore, prohibit a violation of invCD:C:attr:last. Pattern
�createNextAttribute� is applicable in situations where a class has at least one attribute, i.e.,
pattern �createFirstAttribute� has been applied earlier. The �rst NAC ensures OCL constraint
invCD:C:attr:unique holds after rule application, i.e., no attribute p4 with the given name n must
be already contained in the class c1. Otherwise the pattern won't be executed. The second
NAC ensures that the created attribute p1 is the successor of an attribute p3 that does not
have a successor p2 yet. The e�ect of this NAC is that the pattern searches for the �last�
attribute of the class and then makes the newly created attribute p1 the new �last� attribute.
So, it ensures that the multiplicity constraint invCD:P :n:mult of the endpoint �next� holds after
application of the pattern. Moreover, it ensures that OCL constraints invCD:C:attr:first and
invCD:C:attr:last are satis�ed after rule application. That is, a valid ordering of attributes is
achieved because�except of the ��rst� and the �last� attribute contained in a class�every
other attribute of this class is linked with one predecessor and one successor.

Pattern �createNextDataColumn� creates ordered columns the same way as pattern �creat-
eNextAttribute� creates ordered attributes. No additional pattern is necessary that creates the
�rst column in a table because this is already ensured by pattern �createTable�. Consequently,
the column which stores primary keys of table entries is always the �rst column.

createAssociation relateTableWithTable

t2:Table

++

(b)

c2:Class
target

++

c1:Class

as1:Association
++

++

name := n

source

(a)

fko1:Column
++

++
name := concat(concat(sn, n), tn)
type := “NUMBER”

pk2:Key

++

fk1:ForeignKey
++

t1:Table

++

fko:Column
name = concat(concat(sn, n), tn)

owner

foreignIdentifier

referee
storage

on:Columno:Column
next

next
++

opk2:Column
name = “_entryID”
type = “NUMBER”

target

as:Association

source

name = n

Figure 3.5.: Story patterns that produce relationships in (a) LMCD and (b) LMDS.

Figure 3.5 depicts two patterns that create relations in both domains. Pattern �createAsso-
ciation� creates a directed association which is represented by an instance of class Association
using class c1 as its source and class c2 as its target. An association is only created if no
other association with the same name already exists (cf. OCL invariant invCD:Pkg:assoc:unique).

65

3. Integration of Formal Languages

Pattern �relateTableWithTable� de�nes a many-to-one relation between table t1 (the source
type of the relation) and table t2 (its target type). This is due to the fact that entries of table
t1 may reference up to one entry of table t2 with the newly created foreign key column fko1.
Entries of table t2 may be referenced by zero to many entries of table t1 using the foreign
key fk1 which refers to the primary key pk2 of table t2. The �rst NAC ensures invariant
invDS:T :col:unique, i.e., that no other column exists in the table that has the name which is
about to be given to the new column fko1. The result of this NAC is that the relation name
n is not allowed to be used twice in the context of one speci�c table to refer to the same
foreign table. The second NAC simply �searches� for the �last� column o of table t1. If the
NACs do not block the application of the pattern, it creates a foreign key fk1 and links it to
the primary key pk2 of the relation's target type. In addition, it creates a foreign key column
fko1 which will contain for every entry in table t1 that is related to an entry in t2 a value
in column fko1 which is equal to the value of the related entry in table t2 contained in the
primary key column opk2. The relation's name n is encoded in the foreign key column fko1
such that the name of the relation's source sn (i.e, the name of table t1), the relation's name
n, and the name of the relation's target tn (i.e, the name of table t2) are concatenated.
Note that the concatenation operation �concat� is invertible because it uses a unique re-

served character as separator13 when concatenating two strings. The operations �splitGet-
First� and �splitGetSecond� split a concatenated string and return the �rst and the second
string respectively that has been passed to the operation �concat�.

(a) (b)

c2:Class
super

++

c1:Class

fakeGeneralization

t2:Table

++
pko1:Column

++

fk1:ForeignKey

++

t1:Table

++

owner

foreignIdentifier

referee

storage

pk1:Key

name = “_entryID”
type = “NUMBER”storage

createGeneralization

pk2:Key
name = “_entryID”
type = “NUMBER”

pko2:Column
storage

super fk2:ForeignKey

Figure 3.6.: Story patterns that produce generalizations in (a) LMCD and (b) LMDS.

Finally, Fig. 3.6 depicts patterns that create inheritance structures in both domains. Pattern
�createGeneralization� establishes a new inheritance link between two already existing classes
c1 and c2 if no inheritance relationship has been established already. The role of the subclass
is applied to class c1, whereas the role of the superclass is applied to class c2. Pattern
�fakeGeneralization� creates a generalization in LMDS which is simulated by a foreign key.
This approach to realize inheritance in databases is discussed in [Amb03]. The pattern creates

13Throughout this thesis we will use the character '@' as separator.

66

3.3. Integrating Class Diagrams and Database Schemata

a new foreign key fk1 owned by the subtable t1 and connects this foreign key with the primary
key column pko1 of subtable t1. In addition, the foreign key is linked to the primary key pk2
of supertable t2 that has been created by pattern �createTable�.
Accordingly, the primary key column of a table is used both as primary key and foreign key

if the table is a subtable contained in an inheritance structure. Moreover, the primary key of
the root table of an inheritance structure is used by all its subtables. Therefore, in the case of
a subtable, its primary/foreign key is used to maintain the relationship to its supertable up
the inheritance structure to the root table. The same applies in case of multiple inheritance:
the primary key is then used by multiple foreign keys and the relationship to all supertables
up the inheritance structure to the root tables has to be maintained. Consequently, the ID of
every table entry in an inheritance structure must be unique in the inheritance structure.

3.3.4. Examples of CD and DS Models

In the following we discuss models of class diagrams and database schemata. First, we will
examine some invalid models which are depicted in Fig. 3.7. These models either do not
conform to the syntax de�nition of their language model or they violate an OCL constraint.
That is, the models are not well-formed (cf. Sect. 2.2.4).
Schema 3.7(a) (depicted in Fig. 3.7 (a)) contains a single table object. This violates multi-

plicity constraint invDS:Id:p:mult speci�ed in LMDS, which demands that exactly one primary
key�an instance of Key�must be linked to every table. The foreign key fk1 in schema 3.7(b)
violates three multiplicity constraints. Foreign key fk1 is neither related to an owning table
nor to a primary key that acts as a foreign identi�er. Moreover, it is not associated with a
column where the foreign key values are stored. Class c in package 3.7(c) does not violate a
multiplicity constraint but it does neither ful�ll invCD:C:attr:first nor invCD:C:attr:last, i.e., or-
dering of attributes is destroyed. This is due to the fact that c contains two ��rst� and two
�last� attributes which is forbidden by these constraints. Attribute a1 in package 3.7(d) is
contained in two classes which violates multiplicity constraint invCD:Cont:o:mult in LMCD. The
same multiplicity constraint is violated by the attributes a1 and a2 contained in package 3.7(e)
because none of these attributes is owned by any class. Package 3.7(f) contains an association
as1 which is linked to its source but the link to its target is missing. Therefore, the association
is broken because every association must be linked to exactly two classes�source and target.
Attribute a1 in package 3.7(g) violates multiplicity constraint invCD:P :n:mult because it is linked
to two successors. In addition, invariant invCD:C:attr:last is violated because class c contains two
attributes a2 and a3 which are �last� attributes. Finally, class c in package 3.7(h) violates both
invariants invCD:C:attr:first and invCD:C:attr:last because class c contains attributes but neither
a ��rst� nor a �last� attribute. Though, all attributes ful�ll their multiplicity constraints.
Now, we are going to discuss valid (i.e., well-formed) models of CDDS. Package 3.8(a)

which is depicted in Fig. 3.8 is valid according to LMCD. It contains a single class c which
was produced by applying pattern �createPersistentClass�. Contrary to table t depicted in
schema 3.7(a), class c does not violate any constraints in LMCD. Therefore, it is well-formed
according to the syntax of LMCD as well as to its static semantics. Package 3.8(b) is also
valid according to LMCD. It contains a class and three correctly ordered attributes which were
produced by applying patterns �createPersistentClass�, �createFirstAttribute�, �createNextAt-

67

3. Integration of Formal Languages

c:Class

a1:Attr a2:Attr

(c) invalid

fk1:ForeignKey

(b) invalid

c:Class

a1:Attr a2:Attr

(g) invalid

a3:Attr

next next

(h) invalid

next
nextnext

a1:Attr

(e) invalid

name = “finished”
type = “Boolean”

a2:Attr

name = “name”
type = “String”

c1:Class

name = “Author”
persistent = true

as1:Association

name = “Writes”

source

(f) invalid

c1:Class

name = “Table”
persistent = true

a1:Attr

name = “name”
type = “String”

c2:Class

name = “Column”
persistent = true

(d) invalid

c:Class

name = “Language”
persistent = true

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “meta”
type = “Boolean”

a3:Attr

name = “foo”
type = “NUMBER”

t:Table

name = “Class”

(a) invalid

Figure 3.7.: Examples of invalid CD and DS models.

68

3.3. Integrating Class Diagrams and Database Schemata

(b) valid

nextnext

c:Class

name = “Language”
persistent = true

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “meta”
type = “Boolean”

a3:Attr

name = “bar”
type = “NUMBER”

c3:Class

c1:Class c2:Class

(c) valid

c4:Class

super

sub

c:Class
name = “Table”
persistent = true

(a) valid

c1:Class

name = “Author”
persistent = true

as1:Association

name = “Writes”

source

(d) valid

c2:Class

name = “Publication”
persistent = true

target

t1:Table

name = “Author”

(e) valid

t2:Table

name = “Publication”

pk1:Key opk1:Column

name = “_entryID”
type = “NUMBER”

fk1:ForeignKey

pk2:Key opk2:Column

name = “_entryID”
type = “NUMBER”

ofk1:Column

name = “Author@Writes@Publication”
type = “NUMBER”

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “title”
type = “String”

o1:Column

name = “name”
type = “String”

o2:Column

name = “title”
type = “String”

next

next

next

Figure 3.8.: Examples of valid CD and DS models.

69

3. Integration of Formal Languages

tribute�, and �createNextAttribute� in that order. A diagram which contains a valid example
of multiple inheritance is depicted in package 3.8(c). It contains four classes. Class c3 and c4
both inherit from two superclasses c1 and c2. The elements of this package were produced by
the patterns �createPersistentClass�, �createPersistentClass� �createPersistentSubclass�, �cre-
atePersistentSubclass�, �createGeneralization�, and �createGeneralization�. But they may have
been produced also by applying patterns �createPersistentClass�, �createPersistentSubclass�,
�createPersistentSuperclass�, �createPersistentSubclass�, and �createGeneralization�. Or even
by applying �createPersistentClass�, �createPersistentClass�, �createPersistentClass�, �create-
PersistentClass�, �createGeneralization�, �createGeneralization�, �createGeneralization�, and
�createGeneralization�. The order of pattern applications is not reproducible by examining
the model. This example shows that there are rules which might be executed independently
from another leading to the same result (in terms of the graph grammar world this is called
�con�uence�). Note that pattern �createGeneralization� is always required when producing
this kind of inheritance relationship, i.e., patterns �createPersistentSubclass� and �createPer-
sistentSuperclass� in conjunction with pattern �createPersistentClass� are not su�cient.

Package 3.8(d), which is valid according to LMCD, contains two classes�each containing
an attribute�which are related via an association. The diagram re�ects the class diagram
example of the library domain depicted in the upper left part of Fig. 2.4. The elements of
package 3.8(d) were produced by the sequence of pattern applications SEQorig

CD:3.8(d) = (�create-
PersistentClass�, �createPersistentClass�, �createFirstAttribute�, �createFirstAttribute�, �cre-
ateAssociation�). The diagram may have been produced also by applying the patterns in the
following order: �createPersistentClass�, �createFirstAttribute�, �createPersistentClass�, �cre-
ateAssociation�, and �createFirstAttribute�. Or even by the pattern sequence SEQalt

CD:3.8(d) =

(�createPersistentClass�, �createPersistentClass�, �createAssociation�, �createFirstAttribute�,
�createFirstAttribute�). Finally, we discuss database schema 3.8(e) which is valid according
to LMDS. It contains a model that corresponds to the model depicted in package 3.8(d).
Its original sequence of pattern applications is SEQorig

DS:3.8(e) = (�createTable�, �createTable�,

�relateTableWithTable�, �createNextDataColumn�, �createNextDataColumn�). This database
schema realizes a many-to-one relationship from the author table to the publication table.
Each author entry may reference one publication entry by using column ofk1. A publication
entry in table t2 may be referenced by multiple author entries. Note the order (opk1, ofk1, o1)
of columns in table t1 and (opk2, o2) of columns in table t2 which is de�ned by the links of
type Precedes. The number of production sequence candidates is reduced dramatically for
tables that have many columns due to the given order of data columns and key columns.
This order informs about the moment of application of the patterns �createNextDataCol-
umn� and �relateTableWithTable�. Therefore, one of the impossible production sequences
is SEQinvalid

DS:3.8(e) = (�createTable�, �createTable�, �createNextDataColumn�, �createNextData-

Column�, �relateTableWithTable�) because then the order of columns in table t1 would be
(opk1, o1, ofk1).

70

3.3. Integrating Class Diagrams and Database Schemata

3.3.5. Mapping CD and DS

Now we discuss which elements of LMCD and LMDS will be mapped onto each other in our
example. In the general case there exists more than one possibility to de�ne a mapping be-
tween two languages and each mapping solution has its advantages and disadvantages. We will
apply some of the mapping proposals given in [Amb03] which discusses also di�erent mapping
approaches for class diagrams and database schemata. This section will serve as requirements
document that is used in Chap. 4 when creating the CDDS mapping speci�cation.
Sensibly, one package (i.e., class diagram) in the object domain and one schema in the data

domain are mapped onto each other. Classes are related with tables, attributes with columns
and associations with relations based on the foreign key concept. Ordering of attributes is
related with ordering of columns. We decided to relate each class of a class hierarchy with a
separate table. In our example the inheritance feature is supported directly only by LMCD

and not by LMDS. That is LMCD provides a language element�association Inherits�that
is intended to realize inheritance. Therefore, we have to encode the additional structural
information in the target domain (cf. pattern �fakeGeneralization� in Fig. 3.6 (b)) otherwise we
would lose this information present in the source domain during mapping. Another mapping
strategy would be to map the entire class hierarchy to a single table. We decided against the
latter strategy because it would make the mapping speci�cation much more complicated and
does not bear any advantages except for faster access of data because the data is in one table
(cf. discussion in [Amb03]).
The relationships (i.e., associations) Contains and Precedes are mapped one to one, i.e.,

each contains-link has one corresponding contains-link in the other domain. The relation of as-
sociations StartsAt and EndsAt in the context of the class Association with their counterparts
in the target domain is more complex because it is not a one to one mapping. Their relation to
the associations RelatesToForeignEntriesVia, RefersTo, StoresForeignKeysIn, Contains, and
Precedes in the context of ForeignKey will be discussed in Sect. 4.4.
For reasons of simplicity, we assume that each instance of type Association in LMCD is at

most many-to-one, i.e., either one-to-one or many-to-one. That is, many-to-many associations
are not directly supported in the class diagram system modeled by LMCD. Consequently, if
relationship Writes that relates authors with publications (cf. Fig. 3.8 (d)) is modeled as
association based on LMCD, Writes relates the source class Author with the target class
Publication. Further, we assume that the source class of an instance of Association is always
the �many class� and the target class is the �one class�. Then Author is the many class and
Publication the one class, i.e., association Writes is a many-to-one relation. Therefore, a
publication may be related with many authors but an author contained in this system could
be related with only one publication.
However, if a many-to-many relationships is required, it may be converted into two many-

to-one relationships involving an association class [Obj09b] in the object domain or associative
table in the data domain; [Amb03] states:

There are two ways to implement many-to-many associations in a relational database.
The �rst one is to implement in each table the foreign key column(s) to the other
table several times. [...] A better approach is to implement what is called an asso-
ciative table, [...], which includes the combination of the primary keys of the tables

71

3. Integration of Formal Languages

that it associates. [...] The basic �trick� is that the many-to-many relationship is
converted into two one-to-many relationships, both of which involve the associative
table.

Author Publication

publication

IsAn
name:String title:String

«association class»
PublicationAuthor WritesA1 10..*0..*

author

Writes0..* 0..*

Figure 3.9.: Association class that realizes a many-to-many relationship.

Thus, the relationship Writes could be modeled as association class PublicationAuthor (cf.
Fig. 3.9) that utilizes the two many-to-one associations IsAn and WritesA. This way one is
able to relate also many authors with one publication in the class diagram system modeled
by LMCD.
Note that it is also possible to specify a mapping that directly supports many-to-many

associations in LMCD. Therefore, the syntax de�nition of LMCD (cf. Fig. 3.2) has to be
extended by multiplicity information (whether the association is one-to-one, one-to-many,
many-to-one, or many-to-many) which is then taken into account by the mapping speci�cation.
But, this is only an optional requirement for a CDDS mapping speci�cation which will not be
implemented in the CDDS mapping speci�cation discussed in this thesis.
There is one specialty when translating a schema (backwards) into a class diagram based

on the mapping de�nitions. Columns are either data columns that are used to store values
of primitive type or key columns (i.e., primary key column or foreign key column) that store
identi�er values. According to the given constraints in LMDS all columns of a table are
ordered. That is, foreign key columns�which represent relations in the target domain�
are also ordered. Therefore, the target domain contains (ordering) information that is not
intended in the source domain. This either has to be taken into account when specifying the
mapping or this additional information is lost. In our mapping speci�cation this ordering
information is intentionally lost.
Now, we have argued which elements of LMCD and LMDS should be mapped onto each

other. Based on the mapping description we expect that translators produce a corresponding
representation of models of one language (either object or data domain) in the related language
(either data or object domain). That is, given package 3.8(d) as input to a �CD to DS� trans-
lator (i.e., forward translator) we assume that schema 3.8(e) or an equivalent schema, where
the ordering of columns in table t1 slightly di�ers, is produced as output. Likewise, a �DS to
CD� translator (i.e., backward translator) should produce package 3.8(d) given schema 3.8(e)
as input. In this special case the translator will always reproduce package 3.8(d) because there
exists no equivalent package�even though with an alternate sequence of patterns.
So far, we have not yet discussed how instances of LMCD and LMDS (i.e., class diagram and

database schemata models; cf. Fig. 3.8) are mapped onto each other. An intuitive approach
would be to somehow relate the patterns depicted in Figs. 3.3, 3.4, 3.5, and 3.6. For this
purpose we will use the triple graph grammar formalism which is explained in Chap. 4.

72

3.4. Similarities in Natural and Formal Language Translation

3.4. Similarities in Natural and Formal Language

Translation

Now that we have discussed an example of bidirectional natural language translation and
bidirectional formal language translation in the preceding section we will abstract from these
examples and examine the similarities of both activities in general.

The need for translators arises in situations where one stakeholder (human or computer
system) does not speak one language (well) and demands that documents/models expressed
in this foreign language are translated to a familiar language. If two stakeholders work on the
same document (or related ones) but do not speak the same language, bidirectional translators
are requested. Transfered to the CAB example where Chris and Alex work on the same con-
tent, Chris adds a new section to an already existing chapter to her version of the book (i.e.,
the new section is written in german). Alex who likes to integrate this new content in his en-
glish version of the book has to somehow translate the content. He utilizes Binaltas likewise to
Chris who had utilized it when translating Alex' original version earlier. In CDDS, a software
architect would work in cooperation with a database expert in order to design a maintainable
high-performance system by utilizing CD<>DS to translate ideas from the object-oriented
domain to the data domain and vice versa. Moreover, even experts in many languages de-
mand for translators because some languages are more appropriate in some cases than others
to express di�erent aspects. That is, experts often change their point of view by changing
to another more appropriate language. Therefore, such experts demand for translators that
automatically represent a model as a corresponding model of another language.

Reviewing Fig. 3.1 we see that the situation in the CD<>DS example is quite similar to
the CAB example. A main di�erence is that during formal language translation a computer
based translation system should take the role of the translator�instead of a human being.
Further, the translation system should not interact with humans that often during the trans-
lation process. In addition, we could add a new enumeration literal CorrespondsWith to the
enumeration RelationType of the domain model depicted in Fig. 3.1. A model relation of this
type could then be added as metainformation to relate two corresponding models that were
produced by a translation system. However, such a relation is too coarse-grained because it
just states that two models are related but not which elements of the model correspond to
each other. Our approach discussed in Sect. 3.6 supports managing relationships of mapped
elements�by utilizing traceability links�on a �ne-grained level.

When specifying a mapping between two languages, experts of both languages (i.e., users
of the language and the ones that have knowledge about the language speci�cation) should
be involved that are able to interpret models of the language [KRS08]. Moreover, language
translation experts should be involved in the speci�cation process. All involved experts will
communicate with each other while specifying the mapping. Note that there might exist
di�erent mapping strategies which have their advantages and disadvantages (cf. Sect. 3.3.5).
Like in CDDS, where di�erent solutions exist for mapping the class hierarchy onto tables.

In both cases�natural and formal translation�the participating languages provide a cer-
tain set of features. Some of these features are shared by both languages like typing and
relating. A model of one language that shares some features with another language can be

73

3. Integration of Formal Languages

(partially) translated into a model of the other language. This is true for natural languages
and formal languages. In the CAB example, a book about a subject written in english is trans-
lateable into a book about the same subject written in german. In CDDS an object-oriented
language is related with a data-oriented language, i.e., class diagram models are related with
database schemata models (cf. Figs. 3.8 (d) and (e)). Mapping features one to one is far
more easy than mapping features not one to one (cf. Sect. 3.3.5). In CDDS, mappings of
features that are (almost) one to one are the mappings Class<>Table and Attr<>Column.
In the CAB example, a feature which exists in both languages is the type pitch. However, the
names of the pitches are slightly di�erent which has to be taken into account in the mapping
speci�cation. �B� is related with �H� and �Bb� is related with �B� . In CDDS the name of a
relation is mapped di�erently (cf. Fig. 3.5).
Due to features not provided by one of the languages information is lost in some cases.

In CDDS, the ordering information of key columns will be lost when translating a database
schema into a class diagram. In natural language this loss of information occurs, e.g., when
mapping the german formal adressing with �Sie� to the english �you�. Mapping �you� back-
wards to the german language may result in �Sie� or in �Du� depending on the context and
information that is perhaps not present in the mapping system (i.e., whether the correspon-
dents are on a �rst-name basis).
An important issue in translation processes is encoding of information. For example, if a

language does not support a feature of the opposite language, the (additional) information
type of the not-supported feature may be related with a supported feature or a combination
of supported features. In CDDS, the inheritance feature of CD is not basically supported by
DS. Therefore, the inheritance structure of class diagrams is encoded using the foreign key
construct in the corresponding database schema. Another example where features are not
mapped one to one in CDDS is the mapping of relationships (cf. Fig. 3.5). There, associa-
tions are related with a combination of yet unused elements (i.e., foreign keys) and elements
still in use by the properties feature (i.e., columns). Encoding of additional information (e.g.,
by using generic elements) might also lead to reduced functionality due to required reserved
words or reserved structures. For example, CDDS utilizes operation �concat� in pattern �re-
lateTableWithTable�. This operation internally uses the character '@' to mark concatenation
points. This prohibits using the character '@' in names of tables and foreign key columns
if the inverse operations �splitGetFirst� and �splitGetSecond� should be able to extract the
tokens from the concatenated string. Otherwise the split operations might split at a wrong
�concatenation point��that is part of a token. We will see in Sect. 5.2.3 that these inverse
operations are required and that the character '@' must not be used for names of classes and
associations too in order to achieve �real� bidirectional translations.
Concerning the two issues�mapping features and encoding of information�discussed above,

[KWB03] states (a):

[...] complete bidirectional transformations between models are14 only possible if
the expressive power of the source and target modeling languages is identical.

and (b)15:

14In [KWB03] it is �is� instead of �are�.
15We slightly rephrased (b) to source/target-independent terms without destroying the original statement.

74

3.5. Challenges Realizing Bidirectional Translators

If additional information is added to one language, or if there is information in one
language that is not mapped to the other language, bidirectionality is impossible to
achieve.

The pitch example also shows that mappings may change over time because one of the
languages evolves. In this case the mappings have to be adjusted. Likewise, the CAB example
shows that changes might occur in mapped models. In several real world scenarios, changes
occur in both models which demands for bidirectional translators instead of only providing
unidirectional translators [CFH+09].
Once a model has been translated, the corresponding model elements should be trace-

able [CH03]. In the CAB example, Binaltas keeps track of related words in the original
publication and the translated version. This allows translators to provide an additional incre-
mental mode (besides the normal batch mode) which is able to synchronize source and target
model if they change. Due to performance issues this mode typically relies on metainforma-
tion that has been added during previous translation processes, e.g., correspondence graphs
(cf. [Sch95]) or traceability links (cf. [GW09]). In general a translator doing incremental up-
dates has higher performance compared to the batch mode which throws away the outdated
model and retranslates the modi�ed model. Performance is especially crucial when synchro-
nizing large models. In addition, the incremental mode should preserve additional information
present in the to-be-adjusted output model.

3.5. Challenges Realizing Bidirectional Translators

We will now summarize the challenges that have to be faced when providing support for
building bidirectional (model-to-model) translators and state these challenges as requirements
for bidirectional translators. Challenges that arise when building bidirectional translators
based on the triple graph grammar approach have been stated, e.g., in [Sch94], [KKS07],
[SK08], and [KLKS10]. The discussion in the previous sections showed that these challenges
are transferrable to the more general situation of building bidirectional translators based on
any translation language. Moreover, additional requirements, which are discussed in [CFH+09]
and [Ste10], will be added to the set of requirements.
First, we will state requirements that have to be met by languages that are used to specify

bidirectional translators (bx-language):

bxL1 A bx-language should support a general approach for mapping various kinds of DSLs,
i.e, the bx-language should be a geneneral-purpose bidirectional model transformation
language (GPbxL).

bxL2 A bx-language must have precisely de�ned semantics.

bxL3 A bx-language should be expressive in order to be �useful� in practice. Common mapping
scenarios must be supported.

bxL4 A bx-language should support non-bijective bidirectional translations due to cases where
both input and output models contain almost (but not quite) the same information. In

75

3. Integration of Formal Languages

such cases, many models exist in the output domain of a translator that might be related
to the input model.

bxL5 A bx-language should provide mechanisms that allow to reuse parts of model translation
speci�cations.

Note that we discussed bxL4 by example in Sect. 3.3.5. There, a �CD to DS� translator
might produce equivalent output models depending on its related mapping speci�cation.
Second, we state requirements that have to be met at runtime of bidirectional translators

(bx-translators) rather than at speci�cation time of a mapping:

bxT1 A translation process must always terminate. A very basic and intuitive property of
translators.

bxT2 Translators must be correct (cf. Sect. 4.7) with respect to their mapping speci�cation.
This de�nitional property is also called �consistency� in [SK08] and [KLKS10]. However,
the term �correctness� is more appropriate and used e.g., in [Sch94], [EHS09], and [Ste10].

bxT3 Translators should be complete (cf. Sect. 4.7) with respect to their mapping speci�ca-
tion.

bxT4 Translators should be executable e�ciently in order to be useful.

bxT5 Translators must not modify two corresponding models if they are already consistent
according to the mapping speci�cation. In [Ste10] this de�nitional property is called
hippocraticness.

bxT6 Translators should support the quality property incrementality, i.e., allow to perform
incremental change propagations in order to synchronize corresponding models.

bxT7 Translators should handle additional information present in a model of one domain in
such a way that it is not deleted if the user wants to keep this additional information.
This requirement is related to the incrementality property.

This thesis does not address the incrementality property, i.e., construction of incrementally
working translators. We leave it up to future work to transfer the results of this thesis
to sophisticated incremental approaches. We also omit the optional de�nitional property
undoability which is related to incrementality and described in [Ste10] as the following process
of operations. Let m and n be a consistent pair of corresponding models. Model m is
modi�ed�resulting in m0. The changes are propagated to model n such that it is replaced
by n0. Immediately, without making any other changes to either model, the model m0 is
reverted to the original version m. The changes are propagated to model n0. In this case, a
user expects that the e�ect of the modi�cation has been completely undone, i.e., n0 is returned
to its original state n. This property is omitted in this thesis because the author of this thesis
is of the opinion that this property is a rather technical property of a translation system and
can, e.g., be realized by versioning control mechanisms.

76

3.6. Model-Driven Language Integration with TiE

As stated in previous work (cf. [SK08, KLKS10]) translators should be e�cient (i.e., have
polynomial space and time complexity) and compatible with respect to their mapping speci�-
cation, i.e., be correct and complete (cf. Sect. 4.7). In addition, the language used to specify
the mapping must be expressive enough. In this thesis we will concentrate especially on the
expressiveness property of the bx-language and on the properties e�ciency, correctness, and
completeness of translators that work in batch mode. We will discuss these properties in more
detail in the next chapters.

3.6. Model-Driven Language Integration with TiE

In Sect. 2.5 we have discussed that bidirectional transformations are used for maintaining
the consistency of two related sources of information. According to [KWB03] and [CFH+09]
bidirectional transformations can be achieved in two ways. On the one hand two unidirectional
transformation de�nitions are speci�ed such that they are compatible to each other (i.e.,
�somehow� inverse). On the other hand both transformations are performed according to one
bidirectional transformation de�nition. In the following we will concentrate on the second
approach. We consequently follow the model- and language-driven approach discussed so far
and will use a formal model transformation language specialized in the language mapping and
translation domain to describe bidirectional mappings.
The approach to realize model-based bidirectional translators used in this thesis is based

on the tool integration environment TiE presented in [KRS09] and on the (meta-)model-
driven development (MMDD) process presented in [KRS08]. TiE utilizes the meta-CASE
tool MOFLON [AKRS06] which provides an implementation of the MOFLON speci�cation
language (MOSL) [Ame09, Kön09]. This speci�cation language composes the languages MOF,
OCL, SDM, and triple graph grammars (TGGs) and allows to create mapping speci�cations
in a model-driven process.
The architecture of the TiE approach is depicted in Fig. 3.10. The left-hand side of the �gure

depicts the relationship of the components that are produced in the analysis and design activity
of the MMDD process. The right-hand side depicts the relationship of the components that
are produced for the implementation activity of the MMDD process. The latter components
are executed at runtime of a tool integration scenario.
The requirements of the tool integration project are the �rst artifact produced in the MMDD

process. This is a vital artifact because all other components depend on it. For a detailed
explanation of this activity, which is aligned with common software development processes, we
refer to [KRS08]. Taking the integration requirements into account, the mapping is speci�ed
as a TGG (denoted as hexagonal element in Fig. 3.10) that consists of a TGG schema and
a set of TGG productions. The TGG relates corresponding elements of two languages A
and B. Supported languages are DSLs that are, e.g., implemented in a certain tool (i.e.,
software system). In general, our approach allows to map pairs of DSLs that share some
features onto each other (cf. requirement bxL1). The TGG schema de�nes the link types of
the correspondence links�or traceability links�that are established between corresponding
elements during runtime. TGG productions specify how elements in both related languages
and traceability links are created simultaneously.

77

3. Integration of Formal Languages

Tool A Tool B

TiE

requirements of
tool integration

project

Rule
Application
Strategies

Visualization

Editor

MOSL Tool Adapter A Tool Adapter B

Tool Adapter
Link Management

Generated
Translation Rule

Code

Language Model
of Tool A

Language Model
of Tool B

TGG Schema
(Link Language Model)

TGG Productions

Link
Management

Tool

Integration
Fram

ew
ork

Generated
Repository

Generated
Repository

Generated
Repository

model-based specification of mapping derived bidi translators

TGG

(meta-)modeling level code level

Figure 3.10.: Architecture of the tool integration environment TiE (adapted from [KRS09]).

78

3.6. Model-Driven Language Integration with TiE

After the mapping speci�cation is completed, MOFLON generates so-called repositories :
components that correspond to the language models and mapping speci�cation respectively.
Each repository contains a standard implementation of its related language model. This
includes data storage and data manipulation functions. In addition, well-de�ned interfaces
are provided that allow to access the language's elements and its instances programmatically.
Moreover, a repository has the capability to serialize its (meta)data using XMI in order to
exchange data with a related tool. The translation rule component, which is derived from the
set of TGG productions, contains modi�cation and checking routines that operate on runtime
instances of tool models and traceability links. This component provides the basic operations
required to achieve forward and backward translation, checking for consistency of related
tool elements, and performing incremental updates. In order to realize these operations the
translation rules require access to the interfaces of all generated repositories.
The implementation of a generated repository is extended to a so-called tool adapter. There-

fore, the generated implementation is adjusted to use the interface provided by the adapted
tool. The tool adapter uses for example the API of the tool and forwards access calls �online�
to the tool via this API. In this case, data management takes place in the tool�not in the
tool adapter. But, a tool adapter need not to directly access the tool it is responsible for and
the implementation of the generated repository may be used as is. In this case, tool data is
mirrored and managed by the generated repository and exchanged �o�ine� with the tool, e.g.,
via the XMI mechanism. The interface provided by a tool adapter must include the interface
de�nition provided by its repository.
Our approach allows to reuse tool adapters and language models for other integration

scenarios. That is, if a mapping is going to be de�ned between a tool A and a tool C and
tool A had been integrated with another tool B earlier, the language model of A and its tool
adapter could be reused. Therefore, creating tool adapters and language models is a one-time
e�ort.
The mapping speci�cation component, i.e., TGG, requires a rather high-level view on a

system. Therefore, a language model should look, e.g., like depicted in Fig. 3.2 using the
modeling-concept of associations to relate elements rather than modeling a proprietary ID-
based relation mechanism (which might be implemented in a tool). Therefore, language models
have to be designed using common model-driven design principles in order to be conveniently
usable by a mapping speci�cation. Consequently, a tool adapter allows to abstract from a
tool's data structure implementation. That is, the language model of a tool need not to
re�ect the tools data structure one-to-one. This allows integrating tools that have a rather
low-level implementation�which does not re�ect the concepts used in a higher-level modeling
language�and that do not support an XMI mechanism.
Finally, Fig. 3.10 depicts the integration framework of our approach that utilizes the tool

adapter components and the translation rule component. In conjunction with certain rule
application strategies (i.e., algorithms that perform various translation operations) the frame-
work supports various bidirectional translation scenarios. The framework controls certain
translation processes such as forward and backward translation. In addition, the framework
supports visualization of tool elements and traceability links, as well as basic editing opera-
tions on the model elements.
So far, we have discussed the concept of bidirectional language translation and the basic

79

3. Integration of Formal Languages

parts utilized by our approach to model-driven speci�cation of bidirectional translators. In
the chapters to come we will describe the parts used to realize bidirectional translators in
detail: theory and application of triple graph grammars, derivation of translation rules, and
implementation of rule application strategies. Moreover, we will keep in mind the requirements
for bidirectional translators stated in Sect. 3.5.

80

4. Triple Graph Grammars

There is some sort of abstract �conceptual skeleton� which must be lifted out of
the levels before you can carry out a meaningful comparison of two programs in
di�erent computer languages, [...]

[Hofstadter [Hof99, p. 381]]

In the previous chapters we motivated the need for bidirectional language translation and
discussed our model-driven language integration approach TiE and the fundamental concepts
required for its realization. TiE utilizes triple graph grammars to relate corresponding ele-
ments of two languages by so-called correspondence links. Now, we will discuss how to specify
bidirectional mappings with triple graph grammars (TGGs) in order to realize bidirectional
language translators. Section 4.1 gives a general overview to TGGs. Then, the TGG formal-
ism is explained by building a triple graph grammar speci�cation�called TGGCDDS�that
maps class diagrams and database schemata onto each other. This TGG will implement the
mapping requirements for the language models LMCD and LMDS collected in Sect. 3.3.5. The
syntax speci�cation of TGGs is discussed in Sect. 4.2 whereas TGG productions that evolve
graph triples are discussed in Sect. 4.3. The set of TGG productions for TGGCDDS is then
presented in Sect. 4.4. Next, Sect. 4.5 explains the simultaneous evolution of graph triples
by example. Section 4.6 shortly discusses the most vital feature of triple graph grammars:
the ability to derive forward and backward translation rules from one TGG speci�cation. To-
gether with sophisticated rule application strategies, these translation rules form bidirectional
language translators. Finally, Sect. 4.7 discusses the challenges arising in the TGG approach:
the TGG language must be expressive enough in order to support common translation sce-
narios but the correctness, completeness, and e�ciency properties of derived translators need
to be ensured.

4.1. Overview

Triple graph grammars are a formalism that allows for the speci�cation of correspondence
relationships between two languages of graphs. The concept of triple graph grammars was
introduced in [Sch94, Sch95]1. TGGs have been invented to support translation of documents
based on related graph-like data structures. As discussed in Sect. 2.8 this also includes docu-
ments that can be represented as model. The main feature of the TGG language is the ability
to derive bidirectional working translators from a TGG speci�cation. A TGG speci�cation is

1In contrast to the short version of triple graph grammars published in [Sch95], the technical report [Sch94]
contains an algorithm that is used to realize translators based on triple graph grammars.

81

4. Triple Graph Grammars

typically created in a model-driven way and �ts well in the MDE world (cf. Sect. 2.4) and the
relational part of OMG's model transformation standard QVT (cf. [GK07, Kön09, GK10]).
TGGs are grammars that generate graph triples by applying productions of the grammar to an
input graph triple (axiom). Therefore, TGG productions specify the simultaneous evolution
of triples of graphs. This allows to derive unidirectional forward and backward translation
rules from one TGG production. In addition, TGGs allow to check consistency of related
documents and to e�ciently restore consistency if changes occur in a document.

The three graphs of a graph tripleGT are often called source graphGS and target graphGT�
both representing the elements of the related languages�and correspondence graph GC . The
elements of the correspondence graph are called correspondence links and contain additional
information about the translation process. This allows for the realization of incremental
updates that are required if changes occur in the source or target model and the corresponding
model needs to be synchronized. The correspondence links serve as traceability links because
they allow to trace elements in both languages that correspond to each other. Correspondence
links are elements of a language, too�the correspondence language or link language that
relates elements of the source and target language. Throughout this contribution we will use
the terms �correspondence link� and �TGG links� interchangeably. It is important to notice
that TGG links are nodes in terms of the graph domain�and objects in terms of the modeling
domain�but that TGG links are neither edges nor �ordinary� links.

a2:a

c1:c ct1:ct t1:t

a1:a

o2:o

o1:o

ao2:ao

ao1:ao

(a) model notation (concrete syntax)

(b) model notation (abstract syntax)

TGS

TGT

TGC
typeS

typeT

typeC

GS

GT

GC

a1

c1

a2

c

a

o1
t1

o2

t

o

ct

ao

ao1

ct1

ao2

(c) graph notation

Figure 4.1.: A graph triple: model notations and graph notation.

Fig. 4.1 (a) depicts three models. The source model�an instance of LMCD�consists of
a class Author which contains two attributes. The target model�an instance of LMDS�
consists of a table author which contains two columns. The link model�denoted as hexago-
nal element�contains correspondence links that relate corresponding elements of source and

82

4.1. Overview

target model. Figure 4.1 (b) depicts the three models in abstract syntax. Note that infor-
mation has been omitted in Fig. 4.1 (b): class, attribute, table, and column names as well as
attribute and column types (i.e., String and varchar) are not depicted. Moreover, the names
of the classi�ers of the source and target language class, attribute, table, and column have
been abbreviated. Figure 4.1 (b) depicts TGG links on a more �ne-grained level and allows
to trace instances of source and target language that correspond to each other. Figure 4.1 (c)
represents the triple of models depicted in Fig. 4.1 (b) as graph triple. The inner elements

GS
typeS−→ TGS, GC

typeC−→ TGC , and GT
typeT−→ TGT depicted in Fig. 4.1 (c) are a schematic

representation of the typed graphs of source, correspondence, and target domain (cf. also
right-hand side of Fig. 2.17). Such schematic notations will be used in formal representations
of triple graph grammars throughout this thesis. Note that morphism arrows from links in
source and target graph to their classifying associations have been omitted in Fig. 4.1 (c).
The original TGG approach (cf. [Sch94]) is based on de�nitions of simple graphs. In this

thesis we will use the more elaborate de�nitions of constrained typed graphs given in Sect. 2.6
for the de�nitions of an extended TGG approach. De�nition 11 describes the conditions that
must be satis�ed by constrained typed graph triples. These conditions are analogous to the
conditions that must be satis�ed by constrained typed graphs (cf. Def. 5). Each graph of
a graph triple GT is in the set of graphs of a particular language, i.e., conforms to a graph
schema de�ned by a certain (constrained) type graph, e.g., LMCD and LMDS. Two morphisms
hS and hT relate elements of the correspondence graph GC with elements of the source graph
GS and target graph GT respectively. In conjunction, these two morphisms are an essential
part of triple graph grammars as they allow to trace corresponding elements in a graph triple.
The morphisms allow to identify corresponding elements, e.g., c1 and t1 which are elements of
the graph triple depicted in Fig. 4.1 (c). These two elements of source and target domain are
related via the same correspondence node ct1, i.e., c1 = hS(ct1) ∧ hT (ct1) = t1; also denoted
as c1← ct1→ t1 or c1↔ t1. In the following we assume that all graphs with su�x �S�, �C�,
and �T� have type graphs TGS, TGC , and TGT respectively.

De�nition 11. Graph Triple.
Let GS, GC, and GT be three graphs with morphisms hS : GC → GS and hT : GC → GT that
represent m-to-n relationships between GS and GT via GC in the following way:
xS ∈ GS is related to xT ∈ GT :⇔∃xC ∈ GC : xS = hS(xC) ∧ hT (xC) = xT .

Then GT := (GS
hS← GC

hT→ GT) is a graph triple.

Now, we will lift the de�nition of typed graphs and type preserving graph morphisms
(cf. Def. 4) to constrained typed graph triples and type preserving graph triple morphisms.
Constraints for correspondence graphs are disregarded in Def. 12, but can be added easily if
needed.

De�nition 12. Constrained Typed Graph Triples and Type Preserving Graph Triple Mor-
phisms.
Let L(TGS, CS) and L(TGT , CT) be languages of constrained typed graphs of source and target
domain of a graph triple GT , whereas L(TGC) de�nes a language of correspondence graphs of
type TGC that relate pairs of source and target graphs. GT is a properly typed graph triple
i�

83

4. Triple Graph Grammars

TGS

TGT

TGC
typeS type´S

gS

typeT type´T

gT

typeC type´C

gC

GS G´S

G´C

GT G´T

GC

=

=

=

=

=

=

=

Figure 4.2.: Type preserving graph triple morphism (gS, gC , gT).

(1) GS ∈ L(TGS, CS), (2) GC ∈ L(TGC), (3) GT ∈ L(TGT , CT).

A type graph triple TGT := (TGS
hS← TGC

hT→ TGT) is a distinguished graph triple. TGT
together with morphisms typeS : GS → TGS, typeC : GC → TGC, typeT : GT → TGT is
called type of GT . A graph triple morphism (gS, gC , gT) with gS : GS → G′S, gC : GC → G′C,
gT : GT → G′T is type preserving i� the so-called �toblerone� diagram (cf. Fig. 4.2) commutes.
L(TGT) is the set of all graph triples of type TGT .

Consequently, the graph triple depicted in Fig. 4.1 (c) is not properly typed (i.e., not well-
formed or invalid according to the terms introduced in Sect. 2.2.4), relating to LMDS. This is
due to the fact that GT does not contain a primary key and, therefore, violates a multiplicity
constraint of its graph schema because each table of LMDS must have at least one primary key
(cf. Fig. 3.2). But the graph triple depicted in Fig. 4.1 (c) can be easily modi�ed such that
it becomes a properly typed graph triple relating to LMCD and LMDS by adding a primary
key and a primary key column to GT .

Type preserving graph triple morphisms will be used in Def. 17 when de�ning graph triple
rewriting. Morphisms that are type preserving guarantee that elements do not change their
types, e.g., if they are rewritten by graph productions. A graph triple GT ∈ L(TGT) is
always syntactically correct but it need not to be semantically correct because it may violate
additional well-formedness rules, i.e., additional graph constraints (cf. graph triple depicted
in Fig. 4.1 (c)).

4.2. TGG Schema

TGGs consist of a TGG schema which describes the structural dependencies between the
elements of the two related languages and the correspondence language. The elements of both
languages are related via so called correspondence link types which are shortly called link types
and are located in the link domain. The notation of link types is similar to the notation of
classes except that link types are denoted with a hexagonal border instead of a rectangular
border. TGG links are instances of link types.

84

4.3. TGG Productions

Class

Attr

Table

Column

Type

Prop

Association ForeignKey

Key

Rel

sub

super
0..*

Inherits

0..*

Inh

Figure 4.3.: TGG schema of TGGCDDS that relates class diagrams and database schemata.

Figure 4.3 depicts the correspondence language of the TGG schema of TGGCDDS and the
elements of the source and target language, i.e., class diagrams and database schemata, that
are related by the correspondence language. The complete sets of elements of the source
and target language are depicted in Fig. 3.2. These languages and their constraints have
been discussed in Sect. 3.3 and will be reused in the triple graph grammar TGGCDDS. The
link type Type of TGGCDDS relates classes and tables, whereas the link type Prop relates
attributes and columns. The elements Association and ForeignKey that are used to realize
the relationship feature in both languages are related via the correspondence link type Rel.
Finally, link type Inh serves as classi�er for TGG links that relate inheritance information
present in both languages. Class diagrams decode inheritance relationships with instances
of the association Inherits, whereas in database schemata, the foreign key concept is used
to decode inheritance relationships. Therefore, link type Inh relates association Inherits and
class ForeignKey.

4.3. TGG Productions

In addition to the TGG schema, a set of TGG productions2 is speci�ed for each triple graph
grammar. In conjunction with the TGG schema, TGG productions de�ne a language L(TGG)
of consistent graph triples, i.e., they describe how related triples of graphs may evolve simul-
taneously and how the elements of the corresponding languages relate to each other. Likewise
to graph productions (cf. Sect. 2.7), each TGG production consists of a left-hand side L and
a right-hand side R. The left-hand side is a graph pattern that looks for a corresponding
match (redex) in a graph triple. If applied to a redex, a TGG production adds a copy of the
elements of its right-hand side that are not already part of the left-hand side to the regarded
graph triple.
We have already learned in Sects. 2.8.3 and 3.3.3 that negative application conditions

(NACs) can be added to graph productions. NACs can be used, e.g., to avoid creation of

2TGG productions are often called TGG rules in other publications. However, we stick to the term �TGG
production� to avoid clashes with translation rules that are derived from a TGG production.

85

4. Triple Graph Grammars

graphs that violate constraints de�ned in the graph schema. We will discuss the problems
that arise when adding the concepts of NACs to the TGG formalism in Chap. 5 in detail. For
now, we will assume that NACs may be added to TGG productions.

RC

NS ⊆⊇

NT ⊆⊇

⊆LC

LS

LT RT

RS

pS

pT

pC

fS

fT

f´S

f´T

hS

hTp

Figure 4.4.: Schematic view of a TGG production.

Figure 4.4 schematically depicts a TGG production p := (pS
hS← pC

hT→ pT) that supports
NACs. The TGG production consists of three production components pS, pC , and pT that
rewrite the source, correspondence, and target graph respectively. The source component
pS := (LS, RS,NS) and the target component pT := (LT , RT ,NT) of a TGG production are
graph productions with sets of NACs. The correspondence component pC is a simple graph

production (LC , RC) without sets of NACs. The left-hand side L := (LS
fS← LC

fT→ LT) of p

consists of the left-hand sides of its components. The right-hand side R := (RS

f ′S← RC

f ′T→ RT)
consists of the right-hand sides of its components.

:A’
a’

:A’

createExample p(ex)

:B’

++

:B’

c1:C

:C’

:C’ :C’’

:C’’
z = “hrdcdd”

c3:C’

pS pTpC

:C’’

c2:C’’
++

y := paramN
++

a1:A
++x := paramN

a’

A’

A

a’ *

C’

C’’

c’ *
C

B’

B

c’’

c’’

c’’

b1:B

TGG Schema

TGG Production

C’’’

:C’’’

:C’’’

:C’’’

++

++
c4:C’’’

Figure 4.5.: Abstract example of a TGG production.

Figure 4.5 depicts an abstract example of a TGG production p(ex) based on a TGG schema
depicted in the upper part of the �gure. This example re�ects all relevant production elements

86

4.3. TGG Productions

that are used throughout this thesis. Likewise to SDM patterns, we use a shorthand notation
for TGG productions. Instead of showing both left-hand side and right-hand side as two
separate parts of a production, both sides are merged (cf. Sect. 2.8.3). Moreover, the depicted
elements are objects and links belonging to the domain of models instead of nodes and edges
belonging to the domain of graphs (cf. Sect. 2.8 for a mapping of models to graphs; cf. Fig. 4.1
for a comparison of graph triples in model and graph notation). The hexagonal elements are
TGG links that belong to the correspondence component pC of a production. The notation
of TGG links is similar to the notation of objects except that TGG links are denoted with a
hexagonal border instead of a rectangular border to better distinguish elements contained in
the di�erent components of a production.

The elements contained in the left- and right-hand side of a TGG production L ∩ R are
context elements that de�ne a pattern that matches a redex in a host graph triple to which
the production is then applied. Context elements are denoted as black elements without any
additional markup. In the example, the expression z = �hrdcdd� denotes a context element
which matches a slot (cf. Fig. 2.23) in the host graph that is owned by the matched object
c3. The slot must be an instance of property z and must have the value �hrdcdd�.
The elements contained in the right-hand side only R\L are created during the application

of a TGG production to a redex. They are denoted as green elements with an additional ++
markup. An element that is created by a TGG production is called primary element�or more
speci�c primary node or primary edge. In our approach, each source and target production
component contains at most one primary element and the total quantity of primary elements in
source and target components must not be zero. The correspondence component must contain
exactly one primary element�a primary TGG link. Primary elements of source and target
domain (a1 and c1) are attached to the primary TGG link (b1). In general, TGG productions
may create additional secondary elements3 (e.g., c2) that are directly or transitively connected
with the primary element of their production component. Edges that are incident to a primary
node are always in R\L, i.e., they are always created by a production. Such edges are included
in the set of secondary elements. Nodes that are incident to a primary edge need not to be
created by a production. But if they are created by a production then they are secondary.

In our approach, all primary elements of a TGG production are primary nodes. This is
due to the fact that links�like c1�consist of one link node, two slot nodes, and four edges
according to our mapping of models to graphs (cf. Fig. 2.24 and Def. 10). Thus, the term
�primary link� refers to the link node, which is primary, and the slot nodes and edges, which are
secondary. The term �secondary link� refers to all elements of the link as secondary elements.

A TGG link�like b1�connects either to an object or to a link. If it connects to a link (e.g.,
c1), it relates to the link's link node�which in the case of c1 is an instance of association C's
association node. In graph terms, the node of TGG link b1 depicted in Fig. 4.5 is related via
morphism hT to the link node of link c1. Likewise to the concrete syntax notation for graphs,
a link is denoted as solid diamond in this case.

Our approach also supports TGG parameters (cf. [Kön09]). These parameters are given to a
TGG production during production application. A slot that is created by a TGG production
and bound to a TGG parameter will use the value of the TGG parameter as its own value. In

3Secondary elements are also called non-primary elements.

87

4. Triple Graph Grammars

Fig. 4.5, the value of TGG parameter paramN will be used as value for the slots of properties
x and y that are owned by the newly created objects a1 and c2 respectively.
TGG productions are usually monotonic, i.e., they do not delete any graph elements (cf.

Def. 7 in Sect. 2.7). Therefore, the set of elements L\R that are contained in the left-hand side
only must be empty. Consequently, all left-hand side graphs of TGG production components
are subgraphs of their right-hand side graphs. According to [Sch94], monotonicity is no
disadvantage because TGGs are not intended to model editing processes on related graphs�
that is, they are not intended to realize triple graph rewriting/replacement systems�but are
a generative description of graph languages and their relationships and are used to derive
bidirectional language translators. Such translators get either a graph of the source or target
domain as input and have to translate this graph into a graph of the corresponding domain.
Therefore, translators have to realize an e�ciently working graph parser in order to reconstruct
a proper sequence of TGG production applications whose input components (either pS or pT)
have created the given input graph. Monotonicity considerably simpli�es development of
bidirectional working forward and backward translators based on TGGs because an input
graph directly contains all information about its derivation history.

4.4. Productions of TGGCDDS

Based on the TGG schema depicted in Figs. 4.3 and 3.2 and the discussion in Sect. 3.3 we
will now start building the set of TGG productions for TGGCDDS that speci�es the mapping
between class diagrams and database schemata. In Sect. 3.3.5 we collected the requirements
of a mapping between CD and DS and mentioned to map CD and DS by somehow using
the graph productions depicted in Figs. 3.3, 3.4, 3.5, and 3.6 (cf. Sect. 3.3.3 for a detailed
discussion of these patterns). In the following we will see that most of these patterns can
be used as source and target production components when constructing TGG productions of
TGGCDDS. This is due to the fact that modeling a TGG production is similar to modeling a
graph production. The di�erence is that a graph production is �one-dimensional�, whereas a
TGG production is �three-dimensional�, i.e., consists of three graph production components
(cf. Sect. 4.3).
The TGG productions of TGGCDDS are depicted in Fig. 4.6. Production �createType� p(t)

creates elements that realize the concept of typing in CD and DS and relates the corresponding
elements via a TGG link. Therefore, a new persistent class c1 is created in the source domain
and a new table t1 in the target domain. A newly created TGG link l1 of type Type relates c1
and t1. Note that a parameter n of type String has to be passed to the TGG production which
is assigned to the name of class c1 and table t1. Elements c1, l1, and t1 are primary nodes.
The target component contains additional secondary objects, a primary key pk1 and its storage
o1, which are connected to the newly created table t1 via secondary links. Production p(t) is
applicable in any situation, as it has no required context elements.
Productions �createFirstProperty� p(fp) and �createNextProperty� p(np) create the �rst prop-

erty belonging to a type and the next properties belonging to a type respectively. Both TGG
productions are di�erent combinations of the patterns depicted in Fig. 3.4. They are only
applicable if a class c1 and a table t1 exist that are already related via a TGG link l2. The

88

4.4. Productions of TGGCDDS

c1:Class
++

name := n
persistent := true

t1:Table
++

createType p(t)

o1:Column
++ ++

name := n

name := “_entryID”
type := “NUMBER”

pk1:Key
++

++

++
l1:Type
++

c1:Class

p1:Attr
++

p2:Attr ++

c1:Class

p1:Attr
++

p2:Attr

p3:Attr
next

next

++

++

createFirstProperty p(fp)

createNextProperty p(np)

name := n
type := tn

name := n
type := tn

t1:Table

o1:Column
++

o2:Column

o3:Column

next

next

++

++
name := n
type := tn

name = n
o4:Column

name = n
p4:Attr

l2:Type

l1:Prop
++

t1:Table

o1:Column
++

o2:Column

o3:Column

next

next

++

++
name := n
type := tn

name = n
o4:Column

l2:Type

l1:Prop
++

createRelation p(r)

t2:Table

++

c2:Class
target

++

c1:Class

as1:Association
++

++

name := n

source

fko1:Column
++

++
name := concat(concat(sn, n), tn)
type := “NUMBER”

pk2:Key

++

fk1:ForeignKey
++

t1:Table

++

fko:Column
name = concat(concat(sn, n), tn)

owner

foreignIdentifier

referee
storage

on:Columno:Column
next

next
++

l2:Type

l3:Rel
++

l1:Type

opk2:Column
name = “_entryID”
type = “NUMBER”

concat(concat(t1.name, n), t2.name)

as:Association

source

name = n

c2:Class
super

++

c1:Class

createInheritanceRelation p(i)

l2:Type

l3:Inh
++

l1:Type

i1:Inherits

t2:Table

++
pko1:Column

++

fk1:ForeignKey

++

t1:Table

++

owner

foreignIdentifier

referee

storage

pk1:Key

name = “_entryID”
type = “NUMBER”storage

pk2:Key
name = “_entryID”
type = “NUMBER”

pko2:Column
storage

super

fk2:ForeignKey

Figure 4.6.: TGG productions of TGGCDDS that create types, properties, relationships, and
inheritance structures.

89

4. Triple Graph Grammars

correspondence and target component of both productions p(fp) and p(np) are identical. In
conjunction, the source components of p(fp) and p(np) ensure that each class containing an
attribute has exactly one attribute without predecessor and at most one attribute without
successor. Production p(fp) is only applicable once for every related class and table because
the NAC in the source component ensures that the production is only applied if the matched
class does not already contain an attribute. Production p(fp) blocks its own further application
in the context of c1 because it adds an attribute to c1 which results in a blocking NAC. But
the newly created attribute p1 and column o1 both have no successor and, therefore, enable
production p(np) to be applied from now on. Note that the source and target components of
production p(np) are symmetric, i.e., have a one-to-one correspondence relationship. That is,
the construction speci�cation of �next� properties of source and target domain is identical up
to isomorphism. Therefore, the types Attr and Column and the associations Contains and
Precedes of both languages are mapped one to one.
Production �createRelation� p(r) creates relationships between two types. The primary

nodes as1 and fk1, which identify a relationship in CD and DS, correspond to each other.
The links which end at source and owner as well as the links that end at target and for-
eignIdenti�er correspond to each other. The target component has an additional secondary
object�column fko1�which is connected to the foreign key and added as last column to
table t1. Therefore, the mapping of relationships in both languages is not one to one due
to these additional secondary elements. Note that the target component contains a NAC
which blocks the application if table t1 (the source of the relation) already contains a column
with the same name, i.e., a relation with the same name has already been created between t1
and t2. Likewise, the source component restricts associations that relate c1 and c2 to have
unique names. The name of column fko1 which encodes the name of the relation will become
interesting when deriving backward translation rules from TGGCDDS (cf. Sect. 5.2.3). This
is due to the fact that the concat operations which are used to calculate the name of column
fko1 depend on the names of source table t1 and target table t2�static information used by
the production�and the given TGG parameter n�dynamic information.

Finally, production �createInheritanceRelation� p(i) creates inheritance structures between
two types. The primary TGG link l3 relates the primary link i1 of the source component with
the primary object fk1. The mapping of inheritance relations is not one to one�but nearly
one to one�due to the additional secondary link which connects fk1 with pko1 in the target
component.

4.5. Simultaneous Evolution of Graph Triples

We will now discuss the simultaneous evolution of graph triples by applying TGG productions
of TGGCDDS to an empty graph triple. The resulting graph triple GT5 (cf. Fig. 4.7) is an
element of the language of the just introduced TGG. Its source and target graph components
have already been discussed as valid models of CDDS in Sect. 3.3.4 (cf. package 3.8(d)
and database schema 3.8(e)). We have marked secondary objects with a dark background
color to better distinguish them from primary objects. The graph triple is produced by
applying production p(t) to the empty graph triple twice and afterwards production p(r) to the

90

4.5. Simultaneous Evolution of Graph Triples

resulting graph triple. Finally, production p(fp) is applied twice. Thus, GT5 is produced by
sequence SEQ5 = (p(t), p(t), p(r), p(fp), p(fp)). In the following we will abbreviate distinct TGG
productions by their superscripts.

c1:Class

name = “Author”
persistent = true

as1:Association

name = “Writes”

source

c2:Class

name = “Publication”
persistent = true

target

t1:Table

name = “Author”

t2:Table

name = “Publication”

pk1:Key opk1:Column

name = “_entryID”
type = “NUMBER”

fk1:ForeignKey

pk2:Key opk2:Column

name = “_entryID”
type = “NUMBER”

ofk1:Column

name = “Author@Writes@Publication”
type = “NUMBER”

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “title”
type = “String”

o1:Column

name = “name”
type = “String”

o2:Column

name = “title”
type = “String”

next

next

next

l1:Type

l2:Type

l3:Rel

l4:Prop

l5:Prop

Figure 4.7.: Schema compliant graph triple GT5 produced by TGGCDDS.

First, production (t) simultaneously creates class c1 and table t1 (together with the sec-
ondary objects pk1 and opk1) and relates them via TGG link l1. Next, the second appli-
cation of production (t) creates class c2 and table t2 (together with the secondary objects
pk2 and opk2) and relates them via TGG link l2. Note that the context in which a produc-
tion is applied is important: the context in which production (r) is applicable now is either
(c1 ← l1 → t1, c2 ← l2 → t2) or (c2 ← l2 → t2, c1 ← l1 → t1). The source of the
relationship is either c1↔ t1 or c2↔ t2. In this example, we choose c1↔ t1 as source of the
relationship. The application of production (r) creates association as1 and foreign key fk1
and relates them via TGG link l3. Moreover, foreign key column ofk1, a secondary object, is
created and linked to fk1, t1, and opk1.

Next, production (fp) is applicable in the context of c1 ↔ t1 or c2 ↔ t2 because neither
classes c1 and c2 nor tables t1 and t2 contain elements at this moment. We choose c1 ↔ t1
and as a consequence attribute a1 and column o1 together with TGG link l4 are created.
From now on, production (fp) is not applicable in the context of c1↔ t1 due to the NAC in
the source component that blocks because class c1 already contains an attribute. Therefore,
the second application of production (fp) only matches in the context of c2↔ t2 and adds a
new attribute a2 and a new column o2 to the graph triple which are related via TGG link l5.

This leads to production application sequence
SEQ5 = (p(t)@∅, p(t)@∅, p(r)@(c1↔ t1, c2↔ t2), p(fp)@(c1↔ t1), p(fp)@(c2↔ t2))
that contains additional match information and the �nal situation depicted in Fig. 4.7.

91

4. Triple Graph Grammars

c1:Class

name = “Author”
persistent = true

as1:Association

name = “Writes”

source

c2:Class

name = “Publication”
persistent = true

target

t1:Table

name = “Author”

t2:Table

name = “Publication”

pk1:Key opk1:Column

name = “_entryID”
type = “NUMBER”

fk1:ForeignKey

pk2:Key opk2:Column

name = “_entryID”
type = “NUMBER”

ofk1:Column

name = “Author@Writes@Publication”
type = “NUMBER”

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “title”
type = “String”

o1:Column

name = “name”
type = “String”

o2:Column

name = “title”
type = “String”

next

next

next

l1:Type

l2:Type

l4:Rel

l3:Prop

l5:Prop

Figure 4.8.: Schema compliant graph triple GT ∗5 produced by TGGCDDS.

The order of columns in GT5 is determined by the sequence of production applications
SEQ5. The ordering is (opk1, ofk1, o1) in table t1 and (opk2, o2) in table t2. If SEQ5 is
changed such that production (fp) is applied in the context of c1↔ t1 before production (r)
is applied, this leads to sequence
SEQ∗5 = (p(t)@∅, p(t)@∅, p(fp)@(c1↔ t1), p(r)@(c1↔ t1, c2↔ t2), p(fp)@(c2↔ t2)).

In this modi�ed sequence of production applications, the order of the columns in tables t1
and t2 is (opk1, o1, ofk1) and (opk2, o2) respectively leading to graph triple GT ∗5 (cf. Fig. 4.8).
We consider graph triples GT5 and GT

∗
5 to be semantically equivalent according to TGGCDDS

because the relative order of attributes in classes c1 and c2 is not destroyed and the relative
order of columns of a relational database does not matter in a �pure� relational calculus.

4.6. Language Translators based on TGGs

This section gives a general overview to language translators based on triple graph grammars.
A detailed discussion of the translation process, a control algorithm, and the translators
derived from TGGCDDS follows in Chap. 6. For a detailed description of the derivation
process of translators we refer to Sect. 5.2.3.

A TGG can be compiled into a pair of forward and backward graph translators (FGTs and
BGTs). The generated translators take a graph of the input domain, either source or target,
and produce a graph triple that consists of the given input graph, the corresponding graph of
the output domain, either target or source, and the correspondence graph which connects the
related source and target graph elements.

92

4.6. Language Translators based on TGGs

A translator mainly consists of a set of graph translation rules and an algorithm that con-
trols the stepwise translation of a given input graph into the related output graph. Each
forward/backward graph translation rule (FGT/BGT rule), often called operational rule, is
directly derived from a single TGG production. Therefore, TGG productions are split into
sets of local rules and the aforementioned translation rules [Sch94] (cf. Sect. 5.2.3 for a for-
mal view of the splitting process). Local rules generate graphs of the input domain ensuring
that only valid graphs are produced. Hence, local rules are applicable only if NACs are not
violated.

:A’
a’

:A’

createExample rST
(ex)

:B’

++

:B’

c1:C

:C’

:C’ :C’’

:C’’
z = “hrdcdd”

c3:C’

:C’’

c2:C’’
++

y := a1.x

a1 ++

a’

c’’

c’’

b1:B

FGT Rule rST

:C’’’

:C’’’

:C’’’

p-
S,id pTpC

c4:C’’’

input domain output domain

:A’
a’

:A’

createExample rTS
(ex)

:B’

++

:B’

c1

:C’

:C’ :C’’

:C’’
z = “hrdcdd”

c3:C’

c2:C’’
++

a1:A
x := c2.y

a’

b1:B

BGT Rule rTS

:C’’’

:C’’’

:C’’’

++

++

pS p-
T,idpC

c4:C’’’

input domainoutput domain

Figure 4.9.: Abstract example of forward and backward translation rules.

Speaking in terms of the modeling domain, a graph translator constructs an output model
that corresponds to the input model. For example, if the class diagram contained in pack-
age 3.8 (d) is given as input to an FGT derived from TGGCDDS then either GT5 or GT ∗5
(cf. Figs. 4.7 and 4.8), which both contain a corresponding database schema, is produced
by the translator. Likewise, if database schema 3.8 (e) is given as input to a BGT derived
from TGGCDDS then GT5, which contains a corresponding class diagram, is produced by
the translator. Consequently, the sequence of translation rule applications is not necessarily

93

4. Triple Graph Grammars

identical to the sequence of TGG production applications (cf. Sect. 4.5). But neverthe-
less, a translator produces an output which corresponds to the input model and is somehow
equivalent�according to the speci�ed TGG�to the output model produced by an according
sequence of TGG production applications.

Figure 4.9 depicts the FGT rule r(ex)
ST and the BGT rule r(ex)

TS derived from TGG produc-
tion p(ex) (cf. Fig. 4.5). Likewise to TGG productions, translation rules consist of source,
correspondence, and target graph components. The elements of the input domain's graph
component are read-only as they have been created earlier by a corresponding local rule.
Consequently, translation rules only produce elements of the output and correspondence do-
main. Empty checkboxes in the input component denote elements of the input component
that are created by the corresponding TGG production. In a translation rule, these elements
are to-be-translated elements and must not be translated yet, i.e., no corresponding elements in
the output domain have been created by another translation operation beforehand. A transla-
tor will mark all elements of the input graph that have been matched by the to-be-translated
elements of the input component as �translated��i.e., add a check mark to the checkbox that
indicates the translation status�right after a translation rule has been applied successfully.

Elements that were context elements in a TGG production must be translated before a rule
is applicable. This is denoted as enabled checkbox placed next to or inside these elements.
NACs of the input domain may be omitted under certain conditions, as we will learn in
Sect. 5.2.3, whereas NACs of the output domain are retained.

A translation algorithm applies the operational rules to the input graph such that it sim-
ulates the simultaneous evolution of the computed graph triple with respect to the given set
of TGG productions. Therefore, a translator must be able to determine the order in which
elements of the input graph would have been created by a sequence of TGG productions. In-
terleaved with the stepwise computation of a sequence of TGG productions and the resulting
derivation of the input graph, the corresponding sequence of operational rules is executed by
a translator to generate the related output and correspondence graph instances.

Guessing the proper choice of translation rule applications is one of the di�culties that
arise when the simultaneous evolution of graph triples is simulated by a translator. This is
due to the fact that in the general case multiple decision points exist while determining the
sequence of translation rules [Sch94]. If a translator chooses a wrong path in the possible tree
of sequences this will lead into a dead-end (i.e., wrong translation alternative which requires
backtracking). Consequently, the translator has to track back to the wrong decision point
and try the next alternative. In general, the computation of an appropriate sequence of rules
requires a graph grammar parsing algorithm with exponential runtime behavior [RS97], i.e.,
such parsing algorithms are not e�cient in general.

4.7. Fundamental Properties of TGGs and Translators

In Sect. 3.5 we discussed properties of bx-languages and translators for the general case.
Now, we will discuss expressiveness in the context of triple graph grammars and e�ciency,
correctness, and completeness in the context of derived forward and backward translators.

94

4.7. Fundamental Properties of TGGs and Translators

Expressiveness requires that the TGG formalism is able to capture all important �mapping
techniques� between studied pairs of languages. Common mapping scenarios include mapping
of objects and relationships between objects, i.e., links. Relationships can be one-to-one (cf.
relationships of LMCD and LMDS depicted in Fig. 3.2, e.g., Precedes and StoresKeysIn), one-
to-many (e.g., relationships Contains and RelatesToForeignEntriesVia), many-to-one (e.g.,
relationships EndsAt and StartsAt), or many-to-many (e.g., relationship Inherits). Such rela-
tionships can be used in the speci�cation of TGG productions as shown in Sect. 4.4 to relate
corresponding concepts of two languages. (Negative) application conditions are also required
in practice when specifying mapping de�nitions with triple graph grammars, e.g., to avoid
creating graph triples that violate their schema de�nition. Moreover, secondary elements are
required, e.g., to encode additional information or to realize features not natively supported by
a language. Finally, basic operations�like operation �concat��are required when calculating
attribute values of objects.
These features can be added more or less easily to the triple graph grammar formalism (cf.

Chap. 5). But in addition to adding these features to the TGG formalism, they also have to
be added to the level of translators without destroying the fundamental properties e�ciency,
correctness, and completeness (cf. Chap. 6).
Especially, e�ciency of translators competes against the properties correctness and com-

pleteness. After more than 15 years of TGG research activities the TGG community still faces,
e.g., problems to handle TGGs with NACs appropriately, i.e., to �nd the right compromise be-
tween expressiveness of TGG productions on the one hand and the correctness, completeness,
and e�ciency properties of derived translators on the other hand [SK08, KLKS10]. According
to [KLKS10], e�cient translators have polynomial space and time complexity O

(
m× nk

)
with m = number of rules, n = size of input graph, and k = maximum number of elements
of a rule. This requirement is based on two worst case assumptions:

(1) nk is the worst-case complexity of the pattern matching step of a graph translation rule
with k elements.

(2) Without starting the pattern matching process for a selected rule we cannot determine
whether this rule can be used to translate a just regarded element.

As a consequence we require that derived translators do somehow process the elements of
an input graph in a given order such that no element has to be regarded and translated more
than a constant number of times. Selecting always somehow the �right� translation rules we
do not have to explore multiple translation alternatives using, e.g., a depth-�rst backtracking
algorithm for that purpose.
Correctness is guaranteed if a translator translates an input graph into a graph triple

GT that is always an element of the language L(TGG) de�ned by the TGG. Completeness
demands that for every graph triple GT that is an element of L(TGG), a translator is able
to produce this graph triple (or an equivalent one) given the graph of the graph triple, which
belongs to the translator's input domain.
As a consequence the original TGG approach [Sch94] is continuously extended such that

it supports, e.g., handling of attributed typed graphs [EEE+07] as well as the de�nition of
productions with NACs [SK08, EHS09, EEHP09, KLKS10].

95

4. Triple Graph Grammars

In the next chapter we will prepare the building blocks that will allow us to build e�cient,
correct, and complete translators based on triple graph grammars that support the features
related to expressiveness discussed above. Chapter 6 then explains how such translators based
on triple graph grammars are built.

96

5. Extended Triple Graph Grammars

[Sch94] formally introduces simple triple graph grammars and proves that forward and back-
ward translators can be derived from TGGs. In addition, it sketches an abstract algorithm
that is able to realize translators. Moreover, it sketches extended triple graph grammars which
improve the expressiveness of TGGs. According to [Sch94] such extended TGGs are needed
if the triple graph grammar formalism should be of any practical relevance. But such exten-
sions should not violate the fundamental properties of derived translators, i.e., termination,
correctness, completeness, and the overall goal of e�ciency. [Sch94] discusses the three steps
to extended TGGs:

(1) Introduce vertex/node and edge labels for each regarded class of graphs, i.e., introduce
type graphs as discussed in Sect. 4.1.

(2) Deal with attributes for vertices/nodes (and edges) and attribute value parameters, i.e.,
TGG parameters as discussed in Sect. 4.3.

(3) Introduce additional means for restricting the applicability of productions, i.e., a su�-
ciently large set of application conditions.

In Chap. 5 we will tackle these steps such that we are able to derive translators in Chap. 6
that still ful�ll the fundamental properties of TGG-based translators. We start discussing
steps (1) and (2) in Sect. 5.1. Afterwards, we discuss step (3) in Sect. 5.2 where we introduce
a certain subset of negative application conditions to the TGG formalism. We will continue
with further discussions that are related to the derivation process of translation rules and the
problems that arise when constructing a translation algorithm that controls these translation
rules at translator level in order to simulate simultaneous evolution processes at TGG level.
Therefore, Sect. 5.3 introduces the so-called dangling edge condition.

5.1. Labels and Attributes

According to [EEPT06], labeled graphs can be considered as special case of typed graphs.
Therefore, the theory of graphs and typed graphs can also be applied to labeled graphs (cf.
Sect. 2.6). Hence, we will base the extended triple graph grammar approach on typed graphs
(cf. Def. 12 in Sect. 4.1) to achieve step (1). Consequently, we demand in our graph triple
rewriting formalism (cf. Def. 17 in Sect. 5.2.2) that all morphisms between graph components
of GT and GT ′ are type preserving when rewriting a typed (and labeled) graph triple GT into
another graph triple GT ′ in a direct derivation. Furthermore, we know from [EEPT06] that
we are able to �attach� labels to typed graph triples using a distinguished type graph which

97

5. Extended Triple Graph Grammars

simulates labels. That is, if required we will simulate labels utilizing an additional label graph
for each graph component of a graph triple.

Concerning step (2), we will simulate attributes, slots, and values inside a graph by uti-
lizing a mapping de�nition, e.g., utilizing the de�nition that we used to map the concept of
attributes/properties from the world of models to the world of graphs (cf. Fig. 2.23). That
is, we use a reserved graph structure�i.e., unambiguous graph structure�for representing
attributes, slots, and values in a graph1 for representing the concept of attributes inside a
graph. A TGG production that creates slots and values or compares certain attribute values
will then internally operate on that reserved graph structure. Therefore, we require that each
attribute belonging to a class is uniquely determinable, e.g., by name. In addition, we will
always treat such simulated attributes, slots, and values as secondary elements inside a TGG
production. Finally, TGG parameters used inside a TGG production are speci�cally handled
when deriving operational rules from a TGG production (cf. Sects. 5.2.3 and 6.9).

5.2. Formalization of Constrained TGGs with NACs

In the preceding chapter we have informally introduced TGGs with NACs (cf. Sect. 4.3). In
order to realize step (3) of extended TGGs, we will now formally introduce a certain subset
of negative application conditions. In general, application conditions allow to restrict the
application of productions and are important for increasing the expressive power of graph
transformation systems [EEPT06, p. 64]. A NAC will block the application of a production
if a match m of the left-hand side violates the conditions speci�ed by the NAC. We have al-
ready learned that NACs are additional preconditions that must be satis�ed so a production
is applicable. NACs are, e.g., used to prohibit the construction of graph triples that violate
constraints de�ned in the schema of the source and target domain. Likewise, (positive) appli-
cation conditions (PACs) prevent application of a production if a match m of the left-hand
side does not satisfy the conditions speci�ed by the PAC. Unfortunately, the concept of neg-
ative application conditions as well as the concept of (positive) application conditions is not
part of the original TGG formalism, but is needed in practice to increase the expressiveness
of the TGG language. Simple PACs can be realized by extending the context of a production.
For example, a transformation step will check for the existence of certain nodes and edges,
if these elements are speci�ed as context elements of the production, before the production
is applied. In the following, we will increase the expressiveness of the TGG formalism by
supporting a certain category of negative application conditions.

The introduction of NACs into the world of TGGs also introduces a new kind of rule ap-
plication con�ict that has to be taken into account by graph translators. That is, enabling
NACs in a TGG production results in potential rule application con�icts. Essentially, the
de�nition and application of TGG productions is restricted in such a way that a rule applica-
tion control algorithm never has to resolve rule application con�icts by making an arbitrary
choice. Potential rule application con�icts of graph translators are as follows:

1This allows to use high-level operations �getAttributes(Class)� and �getSlots(Object)� that are able to de-
termine attributes, slots, and values inside a given graph.

98

5.2. Formalization of Constrained TGGs with NACs

1. A positive/negative rule application con�ict of two operational rules r1 and r2 w.r.t.
speci�c redexes exists if r1 creates or translates a graph element that is forbidden by a
NAC of r2.

2. A positive/positive rule application con�ict of two operational rules r1 and r2 w.r.t.
speci�c redexes exists if both rules compete to translate the same graph element.

For reasons of e�ciency rule application con�icts should be avoided if possible. In order
that an algorithm may not run into positive/negative con�icts we replace NACs on the input
graph side of a translation by graph constraints. Therefore, we will identify a sort of TGG
productions with NACs which do not lead to positive/negative FGT/BGT rule application
con�icts for any input graph. These TGG productions are called integrity-preserving produc-
tions (cf. Sect. 5.2.1). This is a �rst step towards our goal to eliminate all kinds of FGT/BGT
rule application con�icts and thereby to guarantee completeness of derived translation func-
tions. For this purpose we extend the TGG formalism as introduced in [Sch94] by NACs
that are used to preserve the integrity of graph triples (i.e., resulting graph triples never vio-
late constraints�neither temporary) without destroying the fundamental propositions proved
in [Sch94]. Therefore, TGGs will operate on typed constrained graphs and support NACs in a
way that derived translators do not violate the mentioned compatibility properties correctness
and completeness. Permitted NACs will be ignored on the input graph of translation rules
assuming that integrity violations of input graphs are captured before a translation process
starts.

Positive/positive rule application con�icts are then eliminated by inspecting the context of
those nodes more closely that are just translated by a given rule (cf. Sect. 5.3). Inspired by
the de�nition of the double-pushout (DPO) graph grammar approach [EEPT06] (cf. Sect. 2.7)
a new kind of �dangling edge condition� is, therefore, introduced in Sect. 5.3 that blocks the
translation of nodes with afterwards still untranslated incident edges under certain conditions.
Consequently, an algorithm does not have to make decisions which lead into dead-ends because
only one rule�more precisely one kind of rules�remains applicable.

5.2.1. Integrity Preserving Productions

Based on the de�nitions in Sect. 2.7 we will now de�ne graph productions with NACs and
graph rewriting with NACs, which are then used for the de�nition of TGGs that generate
triples of typed and constrained graphs in Sect. 5.2.2. We will start with the de�nition of
monotonic productions with NACs which is based on Def. 7 (cf. Sect. 2.7).

De�nition 13. Monotonic Graph Productions with NACs.
The set of all monotonic productions P(TG,C) with negative application conditions N for a
type graph TG with a set of constraints C is de�ned as follows:
(L,R,N) ∈ P(TG, C) i�
(1) L,R ∈ L(TG, C) ∧ L ⊆ R
(2) N ⊆ L(TG) ∧ ∀N ∈ N :N ⊇ L

99

5. Extended Triple Graph Grammars

(b) (c)

G G´

L RN

POm m´n

⊆

⊆

⊇

Gi Gi+1

L RN

m m´n

pG G´

L RN

POm m´n

⊆

⊆

⊇

(a)

Figure 5.1.: Diagrams used in Def. 14, Def. 15, and in proof of Corollary 3.

Now we de�ne graph rewriting for the just introduced monotonic productions. Such produc-
tions rewrite a graph G into a graph G′ almost like regular productions but only if no match
is found for any of the production's negative application conditions in the host graph G.

De�nition 14. Graph Rewriting for Monotonic Productions with NACs.
A monotonic production p := (L,R,N) ∈ P(TG, C) rewrites a graph G ∈ L(TG) into a graph

G′ ∈ L(TG) with a redex (match) m : L→ G, i.e., G
p@m
 G′ i�

(1) m′ : R→ G′ is de�ned by building the pushout diagram presented in Fig. 5.1 (a)
(2) ¬(∃N ∈ N , n : N → G: n|L = m), i.e., there exists no N such that
mapping n is identical to m w.r.t. the left-hand side graph L

(3) all morphisms are type preserving

We will limit productions with NACs to so-called integrity-preserving productions in Def. 15
such that NACs are only used to prevent the creation of graphs which violate the set of con-
straints C. These productions have the important properties that (1) given a valid input graph,
a valid output graph is produced, (2) if productions where NACs are eliminated produce a
valid graph then the input graph is also valid, and (3) a production that would block due to
a NAC otherwise would always produce an invalid graph. Due to contraposition of (1) all
invalid output graphs are derived from invalid input graphs. So, integrity-preserving produc-
tions produce only invalid output graphs if the input graph was already invalid. Moreover,
contraposition of (2) (i.e, (2∗)) states that invalid input graphs result in invalid output graphs
even if NACs are eliminated from a production; i.e., productions with or without NACs do
not repair invalid graphs.

De�nition 15. Integrity-Preserving Productions.
Let p be a monotonic production (L,R,N) ∈ P(TG, C) and p− := (L,R, ∅) being the corre-
sponding production of p where all negative application conditions have been eliminated. Then,
p is integrity-preserving i�
(1) ∀G,G′ ∈ L(TG) ∧G p

 G′: G ∈ L(TG, C)⇒ G′ ∈ L(TG, C)
(2) ∀G,G′ ∈ L(TG) ∧G p−

 G′: G′ ∈ L(TG, C)⇒ G ∈ L(TG, C)
(3) ∀N ∈ N : the existence of the diagram depicted in Fig. 5.1 (b) with
type preserving morphisms n|L = m = m′|L implies G′ ∈ L(TG, C)

Now, we show for TGGCDDS that the source and target production components (i.e., class
diagram and database schema components; cf. Fig. 4.6) satisfy the conditions of Def. 15.
In order that productions of TGGCDDS are integrity-preserving, the following OCL invariant

has to be added to the TGG schema.

100

5.2. Formalization of Constrained TGGs with NACs

invDS:F :inheritance Only one foreign key element may be added to a database schema to ex-
press the inheritance relationship of two tables. Such a foreign key uses the primary key
column of the subtable as its storage, i.e., the name of the storage is �_entryID�. Every
two foreign keys that have the same owner, i.e., subtable, must have di�erent foreign
identi�ers, i.e., supertables.
context ForeignKey inv: ForeignKey.allInstances()->select(storage.name = �_entryID�)->forAll(fk1,
fk2 | fk1 <> fk2 and fk1.owner = fk2.owner implies fk1.foreignIdenti�er <> fk2.foreignIdenti�er)

Now, all productions satisfy condition (1), i.e., given a valid graph, productions where
NACs are not removed produce only graphs that are valid according to the TGG schema (cf.
Sect. 3.3.1 and Sect. 4.2) and the set of constraints of TGGCDDS (cf. Sect.3.3.2):

• Source and target components of TGG production �createType� satisfy condition (1).
The class diagram component produces one single class which is a valid situation ac-
cording to LMCD.

The database schemata component produces a table, a primary key and a column.
The latter two objects are produced and linked with the new table, which is necessary
in order to satisfy the lower bound �1� of the multiplicity constraints of associations
Identi�esEntriesWith and StoresKeysIn of LMDS (cf. Fig. 3.2). Moreover, the new
column is the ��rst� and the �last� column contained by the table, i.e., every table
initially contains one column.

• Source component of TGG production �createFirstProperty� creates an attribute p1
and adds it as the �rst attribute to a given class. OCL invariants invCD:C:attr:first and
invCD:C:attr:last demand that at most one ��rst� and one �last� attribute are contained in
a class. These constraints are not violated by adding this ��rst� attribute p1 which is
also the one and only �last� attribute after application of the production.

The database component of TGG production �createFirstProperty� selects the last col-
umn o3 of the given table and adds a new column o1. In order to not violate OCL
invariant invDS:T :col:last the new column o1 is set as successor of the former last column
o3. This is necessary because otherwise the table would contain two last columns o1 and
o3 which is forbidden by invDS:T :col:last. By setting o1 as successor of o3, column o3 is
no longer a last column, which keeps the number of �last� columns at a constant level,
i.e., ensures that every table contains at most one �last� column, Moreover, the name of
o1 is guaranteed to be unique in the given table, which is demanded by invDS:T :col:unique

and ensured by the NAC containing column o4.

• Source and target components of TGG production �createNextProperty� are similar
to the database component of TGG production �createFirstProperty� and, therefore,
satisfy condition (1) for the same reasons.

• Source component of TGG production �createRelation� creates an association which is
linked to a source and a target class. This ensures multiplicity constraint �1� of the
association's source and target class.

101

5. Extended Triple Graph Grammars

Similarly, the target component creates a foreign key, a storage column, and links these
elements. This ensures multiplicity constraints �1�. Moreover, the new column is guar-
anteed to be set as new �last� column.

• Source component of TGG production �createInheritanceRelation� creates a new in-
heritance link between two classes, which always produces a valid graph according to
LMCD. The target component produces a new foreign key which is linked appropriately
according to the multiplicity constraints of LMDS.

If productions �createFirstProperty�, �createNextProperty�, �createRelation�, and �createIn-
heritanceRelation� without NACs produce valid output graphs under certain conditions then
the input graph was also valid due to the fact that none of the productions is able to repair
invalid graphs even if their NACs are ignored. Therefore, TGGCDDS satis�es condition (2)
(and its contraposition (2∗)) of Def. 15 because:

• Source component of TGG production �createFirstProperty� would produce even more
(invalid) attributes without predecessor and successor if NACs are ignored.

• Target component of TGG production �createFirstProperty� and source and target com-
ponent of TGG production �createNextProperty� do not reduce the number of attributes
and columns without predecessor. Moreover, they preserve or even increase the number
of attributes and columns without successor that violate invCD:P :n:mult and invDS:P :n:mult.

• Likewise, target component of TGG production �createRelation� does not reduce the
number of columns without successor.

• Source component of TGG production �createRelation� would produce even more asso-
ciations with a non-unique name if NACs are ignored.

• Components of TGG production �createInheritanceRelation� increase the number of
inheritance links and foreign keys that indicate an inheritance relationship respectively.
If a resulting database schema is valid, i.e., constraint invDS:F :inheritance is ful�lled, then
the original schema was also valid because no inheritance structure existed between the
given tables.

Condition (3) of Def. 15 is satis�ed because:

• A blocking NAC of source component of production �createFirstProperty� prevents the
production of an additional attribute without successor.

• Blocking NACs in target component of production �createFirstProperty� and source and
target component of production �createNextProperty� prevent violation of the multiplic-
ity constraint of a �Precedes� link invCD:P :n:mult and invDS:P :n:mult. Therefore, violation
of invCD:C:attr:last and invDS:T :col:last is prevented. Moreover, the second NACs prevent
violation of invariants invCD:C:attr:unique and invDS:T :col:unique, i.e., attributes and columns
must have unique names.

102

5.2. Formalization of Constrained TGGs with NACs

• Similarly, a blocking NAC in source and target component of production �createRelation�
prevents violation of invariants invCD:Pkg:assoc:unique, invDS:T :col:unique, and invDS:T :col:last.

• A blocking NAC of source component of production �createInheritanceRelation� prevents
creation of multiple links of the same type between two objects as this is not supported
by the utilized framework. Likewise, the NAC in the target component blocks if the
resulting graph would violate constraint invDS:F :inheritance.

Therefore, the set of productions of TGGCDDS is integrity-preserving. The productions of
TGGCDDS that make use of NACs guarantee that no invalid graph triples are produced by
the productions. An invalid graph triple would either violate a multiplicity constraint or an
OCL invariant of the TGG schema (cf. Figs. 4.3 and 3.2 and constraints of LMCD and LMDS

discussed in Sect. 3.3.2).
Productions that destroy the integrity of graphs�i.e., integrity-destroying productions�as

well as integrity-restoring productions are not supported in our approach.
Finally, Def. 16 states how graph grammars produce constrained typed graphs.

De�nition 16. Language of Typed and Constrained Graph Grammars.
A graph grammar GG := (TG, C,P) over a type graph TG, a set of constraints C, and a
�nite set of integrity-preserving productions P ⊆ P(TG, C), with G∅ being the empty graph,
generates the following language of graphs
L(GG) := {G ∈ L(TG, C)|G∅

p1 G1
p2 ...

pn Gn = G with p1, ..., pn ∈ P}

With the following corollaries we show that we can safely remove NACs from an integrity-
preserving production and check after production application if constraints are satis�ed.
Corollary 1 states that the language that is generated by a graph grammar GG as de�ned

in Def. 16 (i.e., the graphs that are producible by the grammar) is a subset of the set of graphs
of type TG that ful�ll the given set of constraints C.

Corollary 1. L(GG) ⊆ L(TG, C)

Proof. Follows from Def. 15 and directly from Def. 16.

Furthermore, Corollary 2 states that the language L(GG−) generated by a graph grammar
where NACs of productions have been eliminated contains at least the same graphs as the
language L(GG) generated by this graph grammar with NACs.

Corollary 2. Let GG− be a graph grammar derived from a graph grammar GG, where all
negative application conditions of productions have been eliminated. Then L(GG−) ⊇ L(GG).

Proof. Due to the fact that a valid application of a production p with NACs is also a valid
application of the production p− where NACs are ignored, L(GG−) is at least as large as
L(GG).

Moreover, Corollary 3 states that L(GG) is the intersection of the graphs producible by
L(GG−) and the set of graphs of type TG that ful�ll the given set of constraints C.

103

5. Extended Triple Graph Grammars

),(CTGL

),(CTGL

)(TGL

)(GGL

)(−GGL
B

Figure 5.2.: Languages of graphs and languages of graphs generated by graph grammars.

Corollary 3. Let GG− be a graph grammar derived from a graph grammar GG as de�ned in
Def. 16, where all negative application conditions of productions have been eliminated. Then
L(GG) = L(GG−) ∩ L(TG, C).

Proof. Due to Corollary 1 and Corollary 2 the intersection of sets of graphs de�ned by
L(TG, C), L(TG, C), L(GG), and L(GG−) looks like depicted in Fig. 5.2.
Therefore, we only have to show that B := L(GG−)∩L(TG, C)\L(GG) is empty. Let G ∈ B,
i.e., G is generated by a sequence of production applications

G∅ . . . Gi
p−

 Gi+1 . . . G
with p = (L,R,N) being an integrity-preserving production of GG and p− = (L,R, ∅) be-
ing the corresponding production of GG− such that ∃N ∈ N so the diagram depicted in
Fig. 5.1 (c) commutes, i.e., p is blocked by N , but p− rewrites Gi into Gi+1.
⇒ Gi+1 ∈ L(TG, C). This is a direct consequence of Def. 15 (3), which requires that the ap-
plication of p− produces a graph Gi+1, which violates at least one constraint if the application
of p is blocked by its NAC N .
⇒ G ∈ L(TG, C). This is a direct consequence of Def. 15 (2∗) because all graphs on the deriva-
tion path from Gi+1 to G (including G) are invalid due to the fact that productions of GG−

preserve the property of a graph to violate some constraint. This leads to contradiction.

As a consequence of Def. 15 and due to Corollary 3, we can either check NACs during the
execution of a (TGG) production to prohibit the violation of graph constraints immediately
or check potentially violated graph constraints after a sequence of graph rewriting steps that
simply ignore NACs; for a more detailed discussion of the relationship of (positive) pre- and
postconditions of graph transformation rules and graph constraints we refer to [HC07].

5.2.2. Constrained and Typed Triple Graph Grammars with NACs

Having introduced de�nitions and properties of graph grammars with NACs for languages of
constrained typed graphs we now present the corresponding de�nitions of TGGs with NACs
for constrained typed graph triples. We lift graph rewriting (cf. Def. 14) based on monotonic
productions (cf. Def. 13) and integrity-preserving productions (cf. Def. 15) to graph triple
rewriting in Def. 17.

De�nition 17. Integrity-Preserving Graph Triple Rewriting.

Let p := (pS
hS← pC

hT→ pT) be a production triple with NACs and
(1) pS := (LS, RS,NS) ∈ P(TGS, CS) be an integrity-preserving production

104

5.2. Formalization of Constrained TGGs with NACs

G´C

NS

mS m´SnS

⊆

⊆

⊇
GT G´T

NT

mT m´TnT

⊆

⊆

⊇

mC m´C

⊆

⊆

GS G´S

GC

LC

LS

LT

RC

RT

RS

GT GT´
= =

Figure 5.3.: Extended �Pair of Cubes� diagram utilized by Integrity-Preserving Graph Triple
Rewriting.

(2) pC := (LC , RC , ∅) ∈ P(TGC , ∅) be a simple production
(3) pT := (LT , RT ,NT) ∈ P(TGT , CT) be an integrity-preserving production
(4) hS : RC → RS, hS|LC

: LC → LS and (5) hT : RC → RT , hT |LC
: LC → LT

The application of such a production triple to a graph triple GT produces another graph triple
GT ′, i.e., GT

p
 GT ′, which is uniquely de�ned (up to isomorphism) by the existence of the

extended �pair of cubes� diagram depicted in Fig. 5.3.
This diagram consists of commuting square-like subdiagrams only and contains a pushout
subdiagram for each application of a production component (i.e, pS, pC, and pT) to its corre-
sponding graph component.

The �pair of cubes� diagram depicts the application of a TGG production at a given typed
host graph triple GT . The rewriting step is type preserving, i.e., the graph triple morphism
between GT and the resulting graph triple GT ′ is part of a commuting �toblerone� diagram
(cf. Fig. 4.2).
For the details of the de�nition and the proof that production triples applied to graph triples

at a given redex always produce another graph triple uniquely de�ned up to isomorphism,
cf. [Sch94]. NACs introduced here do not destroy the constructions and proofs introduced
in [Sch94] due to the fact that they do not (further) in�uence the application of a production
to a given graph (triple) after all NAC applicability checks have been executed. Based on
the presented de�nitions we introduce typed triple graph grammars and their languages. For
reasons of readability we omit the pre�x �typed� throughout the rest of this contribution.

De�nition 18. Triple Graph Grammar and Triple Graph Grammar Language.
A triple graph grammar TGG over a triple of type graphs (TGS, TGC , TGT) is a tuple
(P,GT∅), where P is the set of its TGG productions and GT∅ is the empty graph triple.
The language L(TGG) is the set of all graph triples that can be derived from
GT∅ := (G∅

ε← G∅
ε→ G∅) using a �nite number of TGG production rewriting steps.

Similarly to Corollary 3, we can show that a triple graph grammar TGG−, where all NACs
(that prevent the creation of graph triples that violate graph constraints) are removed from

105

5. Extended Triple Graph Grammars

TGG productions, produces the same set of constrained graph triples that is produced by the
unmodi�ed triple graph grammar TGG.

),(SS CTGL

),(SS CTGL

)(STGL

)(SGGL

)(−
SGGL

SB

),(TT CTGL

),(TT CTGL

)(TTGL

)(TGGL

)(−
TGGL

TB

)(CTGL
)(CGGL

Figure 5.4.: Languages of graph triples and languages of graph triples that are generated by
extended triple graph grammars.

Theorem 1. With L(TGG) being the language of graph triples generated by a triple graph
grammar TGG over (TGS, TGC , TGT) we can show:
(1) for all (GS ← GC → GT) ∈ L(TGG):
GS ∈ L(TGS, CS), GC ∈ L(TGC), GT ∈ L(TGT , CT)

(2) with TGG− being the triple graph grammar derived from TGG
where all NACs of productions have been removed:
(GS ← GC → GT) ∈ L(TGG)
⇔ (GS ← GC → GT) ∈ L(TGG−) ∧ (GS, GC , GT) ∈ L(TGS, CS)× L(TGC)× L(TGT , CT)

Proof. Follows from Def. 17 (which lifts graph to graph triple rewriting) and Corollaries 1 and
2. The proof that uses Fig. 5.4 is analogous to the proof of Corollary 3.

5.2.3. Splitting of Production Triples with NACs

It is a direct consequence of Theorem 1 that checking of NACs can be replaced by check-
ing integrity of generated graphs with respect to their sets of constraints and vice versa.
This observation directly a�ects translators derived from a given TGG as follows: According
to [Sch94], a production triple p may be split into pairs of production triples (rI , rIO), where
rI is an (input-) local rule and rIO its corresponding (input-to-output domain) translation rule,
with GT

p
 GT ′ ⇔ GT

rI GTI
rIO GT ′. Forward translation is based on (rS, rST), whereas

(rT , rTS) is used in the reverse direction.
To rewrite the source graph only, the source-local production triple, i.e., source-local rule

rS := (pS
ε← (∅, ∅, ∅) ε→ (∅, ∅, ∅)) is applied (cf. left-hand side of Fig. 5.5). To rewrite the

106

5.2. Formalization of Constrained TGGs with NACs

target graph only, the target-local rule rT := ((∅, ∅, ∅) ε← (∅, ∅, ∅) ε→ pT) is applied. The source-
local and target-local rules of TGGCDDS are equal to the productions depicted in Figs. 3.3,
3.4, 3.5, and 3.6 (cf. Sect. 3.3.3).

GC

NS

mS m´SnS

⊆

⊆

⊇
GT GT

ε ε

⊆

⊆ε ε
⊆

⊆

GS G´S

GC

Ø

LS

Ø

Ø

Ø

RS

GT GTS
= =

G´C
m´S m´S

⊆

⊆

GT G´T

NT

mT m´TnT

⊆

⊆

⊇

mC m´C

⊆

⊆

G´S G´S

GC

LC

RS

LT

RC

RT

RS

GTS GT´
= =

Figure 5.5.: Splitting of Production Triple Application into rS and rST .

The application of the source-to-target domain translating production triple, i.e., forward
graph translation rule rST (cf. right-hand side of Fig. 5.5) keeps the source graph unmodi�ed
but adjusts the correspondence and target graph as follows: the e�ect of applying �rst rS and
then rST to a given graph triple is the same as applying p itself if (and only if) we keep the
source domain redex, i.e., the morphism m′S, �xed. Figure 5.5 depicts the two rewriting steps

GT
rS GTS

rST GT ′. These two rewriting steps are equal to GT
p
 GT ′, i.e., the combination

of left-hand and right-hand side of Fig. 5.5 is equal to Fig. 5.3.
Thanks to Theorem 1 the source component of rST does not have to check any NACs on

the source graph as long as any regarded source graph does not violate any graph constraints,
i.e., as long as it has been constructed by means of integrity-preserving productions only. As
a consequence, we need no longer care about positive/negative rule application con�icts on
the source side when translating a source graph into a related target graph.

De�nition 19. Forward Graph Translation Rules.
With p being constructed as listed above in Def. 18 the derived forward graph translation rule

(FGT rule) is rST := (p−S,id

hS← pC
hT→ pT) with components:

(1) p−S,id := (RS, RS, ∅), i.e., the source component pS of p without any NACs
that matches and preserves the required subgraph of the source graph only

(2) pC := (LC , RC , ∅), i.e., the unmodi�ed correspondence component of p
(3) pT := (LT , RT ,NT), i.e., the unmodi�ed target component of p

For a detailed de�nition of rST that includes the morphisms between its rule components
as well as for the de�nition of rS the reader is referred to [Sch94]. The de�nitions presented
there can be adapted easily to the scenario of integrity-preserving graph triple rewriting as
done here for the case of FGT rules rST .
The de�nition of a backward graph translation rule (BGT rule) rTS is as follows.

De�nition 20. Backward Graph Translation Rules.
With p being constructed as listed above in Def. 18 the derived backward graph translation

107

5. Extended Triple Graph Grammars

c1

persistent = true

t1:Table
++

createType rST
(t)

o1:Column
++ ++

name := c1.name

name := “_entryID”
type := “NUMBER”

pk1:Key
++

++

++
l1:Type
++

p-
S,id pTpC

c1:Class

p1

c1:Class

p1p3:Attr
next

createFirstProperty rST
(fp)

createNextProperty rST
(np)

t1:Table

o1:Column
++

o2:Column

o3:Column

next

next

++

++
name := p1.name
type := p1.type

name = n
o4:Column

l2:Type

l1:Prop
++

t1:Table

o1:Column
++

o2:Column

o3:Column

next

next

++

++
name := p1.name
type := p1.type

name = n
o4:Column

l2:Type

l1:Prop
++

createRelation rST
(r)

t2:Table

++

c2:Class
target

c1:Class

as1

source

fko1:Column
++

++
name := …
type := “NUMBER”

pk2:Key

++

fk1:ForeignKey
++

t1:Table

++

fko:Column
name = …

owner

foreignIdentifier

referee
storage

on:Columno:Column
next

next
++

l2:Type

l3:Rel
++

l1:Type

opk2:Column
name = “_entryID”
type = “NUMBER”

concat(concat(t1.name, as1.name), t2.name)

c2:Class
super

c1:Class

createInheritanceRelation rST
(i)

l2:Type

l3:Inh
++

l1:Type

t2:Table

++
pko1:Column

++

fk1:ForeignKey

++

t1:Table

++

owner

foreignIdentifier

referee

storage

pk1:Key

name = “_entryID”
type = “NUMBER”storage

pk2:Key
name = “_entryID”
type = “NUMBER”

pko2:Column
storage

i1

fk2:ForeignKey

Figure 5.6.: Forward translation rules rST derived from TGGCDDS.

108

5.2. Formalization of Constrained TGGs with NACs

c1:Class
++

name := t1.name
persistent := true

t1

createType rTS
(t)

o1:Column
name = “_entryID”
type = “NUMBER”

pk1:Key

l1:Type
++

pS p-
T,idpC

c1:Class

p1:Attr
++

p2:Attr ++

c1:Class

p1:Attr
++

p2:Attr

p3:Attr
next

next

++

++

createFirstProperty rTS
(fp)

createNextProperty rTS
(np)

name := o1.name
type := o1.type

name := o1.name
type := o1.type

t1:Table

o1 o3:Column
next

name = n
p4:Attr

l2:Type

l1:Prop
++

t1:Table

o1 o3:Column
next

l2:Type

l1:Prop
++

createRelation rTS
(r)

t2:Tablec2:Class
target

++

c1:Class

as1:Association
++

++

name := …

source

fko1:Column

type = “NUMBER”

pk2:Key

fk1

t1:Table
owner

foreignIdentifier

referee
storage

o:Column

next

l2:Type

l3:Rel
++

l1:Type

opk2:Column
name = “_entryID”
type = “NUMBER”

splitGetSecond(splitGetFirst(fko1.name))

as:Association

source

name = …

c2:Class
super

++

c1:Class

createInheritanceRelation rTS
(i)

l2:Type

l3:Inh
++

l1:Type

i1:Inherits

t2:Table

pko1:Columnfk1

t1:Table
owner

foreignIdentifier

referee

storage

pk1:Key

name = “_entryID”
type = “NUMBER”storage

pk2:Key
name = “_entryID”
type = “NUMBER”

pko2:Column
storage

super

Figure 5.7.: Backward translation rules rTS derived from TGGCDDS.

109

5. Extended Triple Graph Grammars

rule (BGT rule) is rTS := (pS
hS← pC

hT→ p−T,id) with components:
(1) pS := (LS, RS,NS), i.e., the unmodi�ed source component of p
(2) pC := (LC , RC , ∅), i.e., the unmodi�ed correspondence component of p
(3) p−T,id := (RT , RT , ∅), i.e., the target component pT of p without any NACs
that matches and preserves the required subgraph of the target graph only

Figures 5.6 and 5.7 depict the forward translation rules rST and backward translation rules
rTS respectively that have been derived from the productions of TGGCDDS (cf. Fig. 4.6). The
derivation process of forward/backward translation rules from a TGG production involves the
following steps:

• The primary element of the input component is set to �bound� (cf. Sect. 2.8.3). That
is, a primary element contained in the input graph component of a graph triple is given
as parameter to the translation rule.

• NACs are removed from the input component.

• Elements contained in the input component that are marked as �create� are marked as
to-be-translated by an empty checkbox. The �create� annotation is then removed.

• �context� elements in the input component are marked as have-to-be-translated-already
by a marked checkbox.

• Attributes with TGG parameter: the parameter in the output domain is replaced by the
corresponding value of the input domain. The attribute in the input domain is removed.

• Remaining attributes in the input component that are set to �:=� are set to �=�.

When the backward translation rule r
(r)
TS is derived from TGG production �createRela-

tion� the operation �concat� has to be treated in a special way. Concat's inverse operations
�splitGetFirst� and �splitGetSecond� have to be used when calculating the attribute value of
association's as1 attribute name in the source domain using the name of column fko1 of the
target domain. The value is extracted from the concatenated string stored in fko1.name by
the following call: splitGetSecond(splitGetFirst(fko1.name))
The implementation of operation �splitGetFirst� searches for the last �concatenation point�,

i.e., the last occurrence of the reserved character '@'. It then returns the left-hand side string,
i.e., the string before the concatenation point. Let us assume fko1.name has been set to the
value �Author@Writes@Publication�. Then �splitGetFirst� returns �Author@Writes�. Finally,
operation �splitGetSecond� searches for the �rst �concatenation point�, i.e., the �rst occurrence
of character '@'. Therefore, if �Author@Writes� is given to operation �splitGetSecond� it
returns the string after the �rst concatenation point, i.e., �Writes�. Consequently, the name
of assocation as1 is set to �Writes�.

splitGetSecond(splitGetFirst(�Author@Writes@Publication�)) =
splitGetSecond(�Author@Writes�)) = �Writes�
It is important that the names of classes and tables as well as parameter n do not contain the

reserved character '@'. Otherwise �splitGetFirst� and �splitGetSecond� would return wrong

110

5.2. Formalization of Constrained TGGs with NACs

values. Imagine the source table has been wrongly named �Famous@Author� and the target
table �Famous@Publication�. The TGG parameter n given to the local rule was �Writes�. The
resulting name of the foreign key column is �Famous@Author@Writes@Famous@Publication�.
During backward translation the name of association as1 would be calculated as follows:

splitGetSecond(splitGetFirst(�Famous@Author@Writes@Famous@Publication�)) =
splitGetSecond(�Famous@Author@Writes@Famous�) = �Author@Writes@Famous�

That is, the name would be wrongly set to �Author@Writes@Famous� instead of �Writes�.

5.2.4. Local Completeness Criterion

De�nition 21 introduces the so-called local completeness criterion of the source domain which
must be satis�ed by the productions of a TGG. Essentially the de�nition requires that any
sequence SEQn

i=1(rS,i) of source-local rules can be completed to a sequence SEQn
i=1(rST,i) of

derivation steps of a graph triple GT that exactly mimics the derivation of its source graph
GS. This criterion will be used later on in Sect. 6.8 to prove the completeness of the introduced
algorithm that translates a given source graph GS into a compatible target graph GT together
with a graph GC that connects GS and GT appropriately.

De�nition 21. Source-Local Completeness Criterion.
A triple graph grammar TGG ful�lls the source-local completeness criterion i�
for all GTi := (GS ← GC → GT) ∈ L(TGG) and

p := (pS ← pC → pT) ∈ P with GS
pS@mS G′S

exists p∗ := (p∗S ← p∗C → p∗T) ∈ P, m∗ := (m∗S,m
∗
C ,m

∗
T), and

GT ∗i+1 := (G′S ← G′C → G′T) ∈ L(TGG)

such that GTi
p∗@m∗

 GT ∗i+1

De�nition 22 de�nes a similar criterion of the target domain.

De�nition 22. Target-Local Completeness Criterion.
A triple graph grammar TGG ful�lls the target-local completeness criterion i�
for all GTi := (GS ← GC → GT) ∈ L(TGG) and

p := (pS ← pC → pT) ∈ P with GT
pT @mT G′T

exists p∗ := (p∗S ← p∗C → p∗T) ∈ P, m∗ := (m∗S,m
∗
C ,m

∗
T), and

GT ∗i+1 := (G′S ← G′C → G′T) ∈ L(TGG)

such that GTi
p∗@m∗

 GT ∗i+1

The local completeness criteria demand that for each local graph (GS or GT) of all graph
triples GT ∈ L(TGG), which is rewritten by the local component of a production p (into
G′S or G′T), there must be at least one production p∗ (p∗ may equal p) which rewrites the
graph triple GT into GT ∗. Therefore, each match m′I(RI\LI) of an input component p−I,id

of a translation rule rIO that identi�es not yet translated elements in an input graph can
be completed to a full match on the correspondence and output graphs. This is due to the
fact that at least one local rule rI (derived from a production p) exists that has created the
matched yet untranslated elements in the input graph. According to the local completeness

111

5. Extended Triple Graph Grammars

criterion a production p∗ exists from which a local rule r∗I is derived that creates the same
elements as rI . That is, the to-be-created elements of p and p∗ are equal. For example, the to-
be-created elements in the source components of TGG productions �createFirstProperty� and
�createNextProperty� are equal. Hence, a translation rule r∗IO exists that has an equivalent
input component to rIO which is able to translate the matched not yet translated elements.
In order that productions of TGGCDDS satisfy both local completeness criteria of the source

and target domain, the following OCL invariants have to be added to the TGG schema.

invCD:CD:reservedChar Reserved character '@' must not be used in the name of any classdiagram
element, i.e., class, association, and attribute.
context CDElement inv: name.indexOf(�@�) = 0

invDS:T :reservedChar Reserved character '@' must not be used in the name of any table.
context Table inv: name.indexOf(�@�) = 0

invCD:A:reservedName The reserved name �_entryID� must not be used as attribute name.
context Attr inv: name <> �_entryID�

Now, TGGCDDS satis�es the local completeness criteria. The local completeness criteria
demand that when a local rule (rS or rT) is applied to an input graph (GS or GT) then at least
one TGG production p∗ must exist that rewrites the complete graph triple GT . Therefore,
the local completeness criteria do not allow to de�ne TGG productions that make restrictions
in one domain which is not present in the other domain. That is, they enforce a one-to-one
translation. In general, symmetric productions satisfy the local completeness criteria.

• TGG production �createType� satis�es the criteria because this production is always
applicable and its application is not blocked by any negative application condition.

• If the source component of �createFirstProperty� rewrites the source graph of a valid
graph triple then the target component will always �nd a last column to which it may
add the newly created column. The NAC in the target domain that checks whether
there exists a column with the same name will never block because any yet existing
column will either have the name �_entryID�, which is forbidden as attribute name, or
will contain two '@' characters due to the name of a column that belongs to a foreign
key relation.

If the source component of �createNextProperty� rewrites the source graph then the
target and correspondence graph are rewritten too because the TGG production is
symmetric.

The target components of TGG productions �createFirstProperty� and �createNextProp-
erty� are equal. If one of these productions rewrites a target graph of a valid graph triple,
the source and correspondence components will always be able to rewrite the source and
correspondence graphs because one of these productions is always applicable: either
�createFirstProperty� if the �rst attribute is created or �createNextProperty� if at least
one attribute already exists in the context class.

112

5.2. Formalization of Constrained TGGs with NACs

• If the source component of TGG production �createRelation� rewrites a source graph
then the newly created association needs to have a unique name. The NAC in the target
domain that ensures that the target graph contains only relations with unique names
would only block if an association with the same name was created earlier (which is not
the case because the NAC in the source domain did not block).

The target component of TGG production �createRelation� adds a foreign key and col-
umn to the target graph when rewriting a target graph. The name of the relation must
be unique in the target graph and, therefore, will be unique in the source graph which
is always rewritable because there are no further restrictions in the source domain.

• TGG productions �createRelation� and �createInheritanceRelation� ful�ll the local com-
pleteness criteria because they have symmetric source and target components.

5.2.5. Conclusion

We have introduced a class of NACs that allow us to derive translators that satisfy the
correctness and completeness properties. This class of NACs is used in integrity-preserving
TGG productions to generate graphs that ful�ll certain graph constraints. As a consequence,
derived translation rules are complete, i.e., they can be used to translate any given input graph
of a TGG language into a properly related graph. Furthermore, Theorem 1 guarantees the
correctness of derived translation rules even if NACs are omitted. Consequently, derived rules
never translate input graphs of a TGG language into output graphs such that the resulting
graph triple is not an element of the just regarded TGG language.

Due to these achievements we are able to build translators that are correct and complete
with respect to their TGG. During the translation process a translator parses a given input
graph in order to �nd a valid sequence of translation rules rST and rTS that mimics the deriva-
tion of the input graph. Although the TGG productions contain NACs these can be safely
ignored in the parsing process in the case of integrity-preserving productions. Therefore, pos-
itive/negative rule application con�icts are prevented on the input graph. Positive/negative
con�icts on the output graph will not lead to dead-ends during parsing because the local
completeness criterion guarantees that for each remaining untranslated element in the input
graph, created by a local rule, a translation rule exists that is able to translate these elements.

Unfortunately, we still have to solve one problem: in general we are only able to guarantee
the completeness of a derived graph translator if we explore an exponential number of deriva-
tion paths (w.r.t. the size of a given input graph) due to the remaining positive/positive rule
application con�icts. The following section 5.3 will solve this e�ciency problem for a su�-
ciently large class of TGGs (from a practical point of view) by introducing a new application
condition for translation rules. This condition rules out any situation, where more than one
rule can be used to translate a just regarded node of the input domain in a related subgraph
of the output domain.

113

5. Extended Triple Graph Grammars

5.3. Dangling Edge Condition (DEC)

Translators derived from a TGG face certain di�culties concerning the selection of an appro-
priate sequence of translation rules in the presence of positive/positive rule application con-
�icts. Therefore, we have introduced a mechanism named dangling edge condition in [KLKS10]
that checks whether there are incident edges to the node that is currently translated before a
translation rule is applied. If some incident edge remains untranslated and is not translatable
later on the translation rule is not applied. In the subsequent sections we will discuss the
dangling edge condition.

5.3.1. Motivation

Reconsider our triple graph grammar TGGCDDS from Sect. 4.4. An FGT derived from
TGGCDDS translates class diagrams to database schemata.
Figure 5.8 (a) depicts a graph that consists of one class c and two attributes a1 and a2. The

empty checkboxes denote that the elements next to them are not yet translated. The graph
is valid, as it is derivable by applying TGG productions p(t) and afterwards p(fp) and p(np)

of TGGCDDS (cf. Fig. 4.6 in Sect. 4.4) to the empty graph triple. The graph is given

as input graph to the FGT. First, the translator applies FGT rule r
(t)
ST derived from TGG

production p(t), which translates class c. Next, rule r
(fp)
ST is applicable in the context of class c

that translates attribute a1 (cf. Fig. 5.8 (b)). Finally, both rules r
(fp)
ST and r

(np)
ST are applicable

in the context of class c that are able to translate attribute a2. If the translator chooses to
translate attribute a2 via rule r

(fp)
ST the source graph would contain two translated attributes

a1 and a2 with an untranslated link2 between them (cf. Fig. 5.8 (c)). Unfortunately, no rule
exists that is able to translate the remaining untranslated edges.
So, the translator produced a so-called dangling edge in the source graph. Consequently,

the translator states at the end of the translation process that it is not able to translate the
(valid) input graph completely due to the dangling edge. Alternatively, the translator could

perform backtracking to the decision point in Fig. 5.8 (b) and apply rule r
(np)
ST instead of r

(fp)
ST .

Whenever constellations in the input graph appear, where two or more rules are applicable
that translate overlapping sets of input graph elements, translation algorithms are demanding
for help to select the appropriate rule. We propose an extension that is inspired by building
parsers for compilers and related techniques for parsing words that are passed to the compiler.
Typically, top-down and bottom-up parsers decide on more information than just the recent
input: they take a look-ahead into account. In the following we introduce the so-called dangling
edge condition (DEC) that prevents the application of a rule if the rule would produce a
dangling edge. TGG translators produce dangling edges if an edge is still untranslated at
the end of the translation process. So, translators must ensure that before applying a rule
another translation rule exists that is able to translate this currently �dangling� edge later
on. This DEC is inspired by an analogous condition in DPO approaches, which explicitly
prohibits deleting a node without deleting all incident context edges as part of the same rule
application step. This way, our DEC eliminates positive/positive rule application con�icts.

2Note that a link consists of 3 nodes and 4 edges in our approach that maps models to graphs (cf. Sect. 2.8.1).

114

5.3. Dangling Edge Condition (DEC)

next

c:Class

name = “Language”
persistent = true

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “meta”
type = “Boolean”

next

c:Class

name = “Language”
persistent = true

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “meta”
type = “Boolean”

next

c:Class

name = “Language”
persistent = true

a1:Attr

name = “name”
type = “String”

a2:Attr

name = “meta”
type = “Boolean”

(a) (b) (c)

Figure 5.8.: (a) Input graph given to the FGT, (b) Input graph partially translated, (c) Input
graph translated with dangling edges

We restrict our focus to forward translators in the sequel, but all concepts and ideas can be
transferred to backward translators as well.
The core idea of the DEC is that several productions may be applicable such that their

matches overlap in some node. If the production with the smaller match is applied, incident
edges cannot be translated later on. The DEC resolves con�icts where context-sensitive
productions create one primary node that is connected via new edges to at least one context
node. It does not o�er a solution for those cases where the created nodes are not connected.
In the following, we regard TGG productions that create only one primary node on each

side. Primary nodes of context-sensitive productions must be connected to at least one context
node. Secondary nodes must be either connected to a primary node or another secondary
node. The graphs that result by applying such productions are either graph structures that
are not connected to other structures (in case of applying initial context-free productions like
production p(t) of TGGCDDS) or connected graph structures (in case of applying context-
sensitive productions p(fp), p(np), p(r), and p(i) of TGGCDDS).

5.3.2. Formal introduction to LNCC and DEC

As shown in Sect. 5.3.1, application of certain translation rules may lead to invalid graph
triples since some edges in the graph of the input domain remain untranslated. Based on
this observation we de�ne for the source graph of a TGG the so-called Legal Node Creation
Context relation with a look-ahead of one LNCCS(1) that will be used to control the selection
and application of FGT rules. A relation LNCCT (1) used by BGTs is constructed similarly.
TGG productions can be broken down to certain fragments, where at most two nodes make
up a part of the production. Elements of LNCCS(1) are 4-tuples that represent certain kinds
of source graph production fragments. The �rst and third component of a tuple represent the
type of the node that is the source and target of an edge e created by a production respectively.
The type of this edge e is used as second component. The fourth component denotes whether
the source node, target node, or both nodes are used as context in the production fragment.
Tuples of LNCCS(1) are derived from a given TGG as follows:

115

5. Extended Triple Graph Grammars

De�nition 23. Legal Node Creation Context with a look-ahead of 1.
LNCCS(1) ⊆ VTGS

× ETGS
× VTGS

× {s, t, st} is the smallest legal node creation context
relation for the source graph of a given TGG such that

(vts, et, vtt, c) ∈ LNCCS(1) i�

(1) ∃ TGG production ((LS, RS,NS)
hS← pC

hT→ pT) that creates edge e ∈ RS\LS

with at least one incident already existing context node s(e) or t(e) ∈ LS

(2) vts = type(s(e)), (3) et = type(e), (4) vtt = type(t(e))
(5) c ∈ {s, t, st}, with the following semantics:
(5.1) s: s(e) ∈ LS, t(e) ∈ RS\LS

(5.2) t: t(e) ∈ LS, s(e) ∈ RS\LS

(5.3) st: s(e), t(e) ∈ LS

Figures 5.9 (a), (b), and (c) identify all possible node and edge constellations that contribute
tuples to LNCCS(1). In addition, Figs. 5.9 (d), (e), and (f) depict those production fragments
that do not contribute any tuples to LNCCS(1).

c:C

d:D d:D

(d) (e) (f)

c:C

d:D
++

e:E ++ e:E
++

++
c:C

d:D

++
++

c:C

d:D

e:E ++ e:E

(b) (D, E, C, t) (c) (D, E, C, st)

c:C

d:D

++
++ e:E

(a) (D, E, C, s)

Figure 5.9.: TGG production fragments relevant and irrelevant for LNCCS(1).

The motivation behind the de�nition of LNCCS(1) is to block a translation of a node of the
source graph that has incident edges that are not translated in the same step and that cannot
be translated later on (i.e., to avoid dangling edges). This situation occurs if a TGG contains
overlapping productions (e.g., productions p(fp) and p(np) of TGGCDDS). These productions
are applicable in the same context and create a node of the same type (both p(fp) and p(np)

create nodes of type �Attr�) but at least one production creates an edge that relates the new
node to an already existing node (p(np) creates a link from the new attribute to its predecessing
attribute). Therefore, a translator that applies one of the rules derived from these productions
would destroy the match of the other rule and potentially leave an untranslatable edge. In
order to identify such dangling edge situations, TGG production fragments must be inspected
which create edges where the source or the target of the edge already exists, i.e., is used as
context (cf. Figs. 5.9 (a), (b), and (c)). Translation rules derived from TGG productions
containing these fragments have the potential to translate edges of the input graph using one
or two already translated incident nodes as context. As patterns (d) to (f) do not translate
such edges they can be neglected. Pattern (a) depicts a production fragment in which node
d is the already existing context for the new node c and d is the source of the new edge e
(s(e) = d). In production fragment (b) node c is used as context and c is the target of edge e
(t(e) = c). Pattern (c) depicts a situation where a new edge between nodes c and d is created,
i.e., both nodes are used as context.

116

5.3. Dangling Edge Condition (DEC)

c1:C

«not translatable»
translated
not translated

e1:E

d1:D

c1:C

e1:E

d1:D

c1:C

e1:E

d1:D

(b))1(),,,(SLNCCtCED ∉(a))1(),,,(SLNCCsCED ∉ (c))1(),,,(SLNCCstCED ∉

«not translatable» «not translatable»

Figure 5.10.: Patterns in input graph that violate DEC(1).

Whenever we encounter a not translated edge with an already translated incident node,
we will use the relation LNCCS(1) to check whether an FGT rule exists that can be used
later on to translate the regarded edge. If LNCCS(1) does not contain an appropriate tuple
then the just regarded edge cannot be translated. On the other hand, the existence of an
appropriate tuple does not guarantee that the edge is translatable. This is due to the fact
that FGT rules rST containing a tuple are only applicable if a match of a rule's complete
left-hand side (RS ← LC → LT) is found in the host graph triple and no NAC in the target
domain blocks. In general we have to restrict the application of translation rules such that
the situations depicted in Fig. 5.10 are avoided:
(a) Node c1 is not translated yet but d1 (the source of e1) is and there exists no

rule with production fragment (D,E,C, s) that may translate e1 later on.
(b) Node d1 is not translated yet but c1 (the target of e1) is and there exists no

rule with production fragment (D,E,C, t) that may translate e1 later on.
(c) Nodes d1 (source) and c1 (target) are both translated and there exists no

rule with production fragment (D,E,C, st) that may translate e1 later on.
Therefore, the application of a translation rule must satisfy certain application conditions
given in Def. 24 including the Dangling Edge Condition (DEC(1)).

De�nition 24. Rule application conditions for FGTs with a look-ahead of 1.
Let TX be the set of already translated elements of the source graph GS, e ∈ ES, and p be

a TGG production ((LS, RS,NS)
hS← pC

hT→ pT). Thus, for each match m′S of translation rule
rST in GS the rule application conditions (1) to (3) must hold including the dangling edge
condition DEC(1) that consists of the subconditions DEC1(1), DEC2(1), and DEC3(1) in
order to apply rST to (GS ← . . .→ . . .):

(1) m′S(LS) ⊆ TX (context elements are already translated)
(2) ∀x ∈ m′S(RS\LS) : x /∈ TX (no element x shall be translated twice)
(3) TX ′ := TX ∪m′S(RS\LS) (TX is extended with translated elements)

(DEC1(1)) ∀e /∈ TX ′ where s(e) ∈ TX ′, t(e) /∈ TX ′:
(type(s(e)), type(e), type(t(e)), s) ∈ LNCCS(1)

(DEC2(1)) ∀e /∈ TX ′ where t(e) ∈ TX ′, s(e) /∈ TX ′:
(type(s(e)), type(e), type(t(e)), t) ∈ LNCCS(1)

(DEC3(1)) ∀e /∈ TX ′ where s(e), t(e) ∈ TX ′:
(type(s(e)), type(e), type(t(e)), st) ∈ LNCCS(1)

Def. 24 thus introduces a rather straightforward way to decide if a translation rule shall

117

5. Extended Triple Graph Grammars

be applied or not just by looking at the 1-context of a to-be-translated node. By adding
this condition to the translation algorithm de�ned in [SK08] (cf. Listing 4 in Sect. 6.6), we
are able to reduce the number of situations signi�cantly, where we were forced to choose
one of the applicable rules nondeterministically and run into dead-ends due to the wrong
choice. In general, Def. 24 is not able to resolve all positive/positive con�icts, i.e., there
may be multiple rules that are able to translate a node using di�erent matches, i.e., matches
containing di�erent to-be-translated elements. Therefore, algorithm in Listing 4 will abort in
this case. Alternatively, the user could be asked which of these elements should be translated
or rule priorities [Kön09] can be used to reduce the number of di�erent matches if more than
one rule is applicable by �ltering matches of rules with low priority.
Though, the algorithm permits multiple locally-applicable rules, i.e., rules that translate the

same elements. A locally-applicable rule is either applicable also on the whole graph triple or
its application is prevented, e.g., due to NACs in the output component.
The set of productions of TGGCDDS contains multiple locally-applicable rules. BGT

rules (fp) and (np) are both applicable in the context of the non-�rst column of a table.
These rules are disjoint applicable, i.e., only one of the locally-applicable rules is applicable
on the whole graph triple (cf. translation example in Sect. 6.7). In general, multiple locally-
applicable rules need not to be disjoint applicable because they translate the same elements.
Executing one of the locally-applicable rules nondeterministically does not lead into dead-ends
due to the local completeness criterion and the same reason why positive/negative con�icts
on the target side do not lead into dead-ends (cf. Def. 21 and subsequent discussion).

5.3.3. Extracting LNCC from TGG productions

Given a set of TGG productions we have to extract the LNCCs of the source and target
domain. Unfortunately, the discussed TGG productions of our running example TGGCDDS

(cf. Fig. 4.6 in Sect. 4.4) contain links and objects rather than edges and nodes (cf. Sect. 4.3).
So, we �rst have to convert the TGG productions of TGGCDDS into a graph representation
by using the mapping from models to graphs discussed in Sect. 2.8.1. Then we are able to
extract LNCC entries from these graphs.
Figure 5.11 depicts three TGG production fragments that use the link and object rep-

resentation of TGG elements (cf. left-hand sides of Figs. 5.11 (a), (b), and (c)) and their
representation as graph using the mapping de�ned in Sect. 2.8.1 (cf. right-hand sides of
Figs. 5.11 (a), (b), and (c)). The left-hand sides of Fig. 5.11 depict all TGG production frag-
ments that contribute tuples to LNCC. A triangle next to a link indicates which of the ends is
the �rst and second end respectively. The links are translated into a representation consisting
of one link node e, two slot nodes s1 and s2, and four edges. Edges et1 and et2 that connect
the slot nodes with the linked objects are of relevancy. According to the mapping de�nition
these edges and the slot nodes are typed. This results in unique combinations of node and
edge types after mapping linked objects from the modeling domain to the graph domain.
We will informally introduce the so-called Legal Object Creation Context (LOCC) that

refers to the higher level constructs object and link of a TGG production fragment. Entries
of a LOCC are more human readable than the resulting LNCC tuples and are used in this
contribution when discussing DEC examples. A LOCC is very similar to a LNCC. Each entry

118

5.3. Dangling Edge Condition (DEC)

c:C

d:D

++

++

e:E

(a) (D, E, C, e1)
(type(s1), type(et1), D, t)

c:C

d:D

++

++

▲e:E
++
++
++

++
++
++

s2

s1
et1

c:C

d:D

++

++

e:E

(b) (D, E, C, e2)
(type(s2), type(et2), C, t)

c:C

d:D

++

++

▲e:E
++
++
++

++
++
++

s2

s1

et2

c:C

d:D

++ e:E

(c) (D, E, C, e12)
(type(s1), type(et1), D, t)

& (type(s2), type(et2), C, t)

c:C

d:D

++ ▲e:E
++
++
++

++
++
++

s2

s1
et1

et2

Figure 5.11.: Extracting LNCC from TGG production fragments.

is a 4-tuple. The �rst and third component of a tuple represent the type of an object, i.e., a
class. The second component represents the link type, i.e., association, that connects these
two objects. The �rst component is the �rst end of the link, whereas the third component is
the second end of the link. The fourth component denotes whether the �rst and/or second
end of the link is used as context in the production fragment. It may contain one of the
following values: {e1, e2, e12} depending on whether the �rst, the second or both ends of a
link are used as context.

The LOCC entry extracted from Fig. 5.11 (a) is (D,E,C, e1) which means that a link is
created between objects of types C and D, where D is used as context and is the �rst end of the
link and C the second end. The LNCC tuple derived from this LOCC entry is the fragment
containing the type of slot node s1, the type of node d and the type of edge et1 which con-
nects both nodes: (type(s1), type(et1), D, t). The LOCC entries extracted from Figs. 5.11 (b)
and (c) are (D,E,C, e2) and (D,E,C, e12). The LNCC tuples derived from these LOCC en-
tries are (type(s2), type(et2), C, t) and (type(s1), type(et1), D, t) & (type(s2), type(et2), C, t)
respectively.

All LOCC entries of source and target domain that are extractable from TGGCDDS are de-
picted in Table 5.1. These entries can be translated into their LNCC representation using the
mapping de�ned in Fig. 5.11. For example, the LOCC entry extracted from the source com-
ponent of TGG production �createFirstProperty� is (Class, Contains, Attr, e1). The LNCC
entry derived from this LOCC entry is (type(Contains::s1), type(Contains::et1), Class, t).

(Class, Contains, Attr, e1) (Table, Contains, Column, e1)
(Attr, Precedes, Attr, e1) (Column, Precedes, Column, e1)
(Association, StartsAt, Class, e2) (ForeignKey, RefersTo, Key, e2)
(Association, EndsAt, Class, e2) (Table, RelatesToForeignEntriesVia, ForeignKey, e1)
(Class, Inherits, Class, e12) (ForeignKey, StoresForeignKeysIn, Column, e2)

LOCCS LOCCT

Table 5.1.: LOCC of source and target domain extracted from TGGCDDS.

119

5. Extended Triple Graph Grammars

5.3.4. Dangling Edge Condition by Example

Now, we show by example that checking for dangling edges helps deciding which rule should
be applied by translators derived from a TGG if multiple rules are applicable at overlapping
matches. Therefore, we consider again the FGT derived from TGGCDDS and the input graph
depicted in Fig. 5.8 (b) which has been discussed in Sect. 5.3.1.
As we have already shown, both translation rules (fp) and (np) are applicable after applying

rules (t) and (fp) to this input graph. Based on the classi�cation scheme of Fig. 5.11 we
construct the set of tuples from the TGG productions of TGGCDDS which results in LOCCS(1)
shown in Table 5.1. Next, we pretend to apply rule (fp) in the context of attribute a2. Then,
we calculate the set of incident edges of a2 that are not yet translated. We must check
whether all of these edges are translatable by further rewriting steps, i.e., whether DEC(1)
is satis�ed. There is one untranslated edge which belongs to the link between a1 and a2:
the �next� link. As both �rst and second end of this link are already translated, the tuple
(Attr, Precedes, Attr, e12) must be in LOCCS(1) which is not the case. As a consequence, we
do not apply FGT rule (fp), because this would result in a dangling edge (cf. Fig. 5.8 (c)) and
proceed pretending to apply rule (np). In this case the set of incident edges of a2 that are not
yet translated is empty. So, the rule application conditions given in Def. 24 are satis�ed, i.e.,
there are no dangling edges. Concluding, we were able to translate the input graph completely
due to the fact that the DEC prohibited selecting a wrong translation rule match.

120

6. Graph Translators for Extended

TGGs

Let link [...] be [...] nodes and edges.

[Sect. 2.8.1, Def. 10]

In this chapter we discuss the graph translation algorithms presented in [SK08] and [KLKS10]
that are used to implement forward and backward graph translators. In Sect. 6.1 we discuss
a framework for common translation algorithms. Afterwards, Sect. 6.2 introduces so-called
core rules which are used by the translation algorithms. Section 6.3 discusses the algorithm
from [SK08] which supports NACs but does not guarantee completeness. We present this
algorithm to demonstrate the overall idea of a translation algorithm and state examples
and shortcomings in Sects. 6.4 and 6.5. Section 6.6 discusses a more advanced algorithm
from [KLKS10] that handles extended triple graph grammars (cf. Chap. 5) especially NACs
as presented in Sect. 5.2 and implements the dangling edge condition (cf. Sect. 5.3). In ad-
dition, the algorithm from [KLKS10] has been extended to handle secondary elements. More
translation examples are given in Sect. 6.7. Section 6.8 compares the properties of this al-
gorithm with the requirements stated for bidirectional translators in Sect. 3.5. Finally, an
algorithm that checks given graph triples for consistency is discussed in Sect. 6.9.

6.1. Graph Translation Algorithm Framework

In our translation framework each translator implements procedure evolve : GTin ∗ GTout

which simulates the simultaneous evolution of a given graph triple GTin (cf. Listing 1). The
input graph triple GTin is either (GS ← G∅ → G∅) in case of an FGT or (G∅ ← G∅ → GT) in
case of a BGT1. The input graph Ginput is either GS or GT depending on the type of translator
(FGT/BGT), whereas the output graph Goutput is either GT or GS. Procedure evolve assumes
that the underlying TGG is integrity-preserving and that the input graph GTin was produced
by a sequence of input-local rules rI , i.e., Ginput ∈ L(GGI). Evolve is able to cope with
situations where the underlying TGG or the input is invalid. It throws errors if it detects
an invalid TGG speci�cation and exceptions in case of invalid inputs. A valid translation
produces an output graph triple GTout = (GS ← GC → GT) ∈ L(TGG). Resulting graph
triples of invalid translations are unde�ned.

1In the general case, when incremental updates are performed with a translator, the correspondence graph
and the graph of the opposite domain need not to be empty.

121

6. Graph Translators for Extended TGGs

Procedure evolve is the main entry point of our translation framework. It �rst initializes
a set of global variables that are then available to all subroutines. Two global sets guaran-
tee that nodes of the input graph are only translated once (set translatedElements) and that
cycles, which might occur due to recursive calls of translation functions, are broken (set justRe-
gardedElements). Subsequently, the input graph is checked for validity. Now, evolve invokes
function translate(GraphTriple), which translates the given graph triple. Finally, the output
graph is checked for validity and whether all elements of the input graph have been trans-
lated. If all tests are successful then a valid graph triple has been produced and is returned.
Otherwise the set of TGG productions might contain integrity-destroying productions. This
is the case if a valid input graph has been translated into an invalid output graph. If this is
also not the case then the input graph was not derivable by the set of TGG productions.
1 procedure GraphTriple evolve(inputGraphTriple: GraphTriple) { // GTin

2 global inputGraph: Graph = Translator.getInputGraph(inputGraphTriple); // Ginput

3 global translatedElements: ElementSet = inputGraph.getTranslatedElements(); // TX
4 global justRegardedElements: ElementSet = ∅;
5

6 inputValid: boolean = inputGraph.verifyConstraints(); // Def.11(1)/(3) satisfied?

7 outputGraphTriple: GraphTriple = translate(inputGraphTriple); // produce GTout

8 outputValid:boolean= Translator.getOutputGraph(outputGraphTriple).verifyConstraints();

9

10 translated: boolean = inputGraph.isCompletelyTranslated();

11 if (inputValid && outputValid && translated)

12 return outputGraphTriple; // successfully produced GTout

13 else if (inputValid && not outputValid) // Def.17(1) or (3) violated!

14 throw TGGContainsIntegrityDestroyingProductionsError(outputGraphTriple, translated);

15 else throw InputGraphNotPartOfDerivableGraphTripleException(// user-error: ...

16 outputGraphTriple, inputValid, outputValid, translated); // ...Ginput 6∈ L(GGI)
17 }

Listing 1: Procedure evolve: entry point of translation algorithms.

Procedure evolve calls subroutine translate(GraphTriple) (cf. Listing 2), which in turn
calls procedure translate(Node) for all nodes in the input graph Ginput. Procedure trans-
late(GraphTriple) translates all objects and links that are contained in the input graph. This
procedure might be overridden by an algorithm implementation if required, e.g., to sort the
elements to be translated beforehand. Procedure translate(GraphTriple) �rst translates all
objects contained in the given graph triple and afterwards translates remaining untranslated
links. Therefore, the nodes that belong to the objects and links are fetched and passed to
subroutine translate(Node). This subroutine is implemented by every algorithm and contains
the main logic that translates a given graph element utilizing derived operational rules. The
framework assumes that this implementation satis�es the correctness and completeness prop-
erties. The implementation of procedures getObjectNodes(Graph):Set<Node> and getLink-
Nodes(Graph):Set<Node> assumes that objects as well as links are realized by nodes in the
underlying graph structure (cf. Sect.2.8.1 for a mapping of models to graphs). Consequently,
the algorithm operates on nodes only and does not need to operate on edges.
1 procedure GraphTriple translate(graphTriple: GraphTriple) {

2 inputGraph: Graph = Translator.getInputGraph(graphTriple);

3 forall (objectNode ∈ getObjectNodes(inputGraph)) { translate(objectNode); }

4 forall (linkNode ∈ getLinkNodes(inputGraph)) { translate(linkNode); }

5 return graphTriple;

6 }

Listing 2: Procedure that translates a graph triple by iterating through all nodes.

122

6.2. Core Rules

6.2. Core Rules

«context»
c1:Class

«primary»
a1:Attr

crST
(fp)

«context»
c1:Class

«primary»
a1:Attr

«context»
a3:Attr

next

«primary»

c1:Class

crST
(t)

«primary»
t1:Table

«secondary»
o1:Column

«secondary»
pk1:Key

FGT:

BGT:

crST
(np)

crTS
(fp) + crTS

(np)

«context»
t1:Table

«primary»
o1:Column

«context»
o3:Columnnext

crTS
(t)

crST
(i)

crTS
(r)

«context»
c2:Class

target

«context»
c1:Class

«primary»

as1:Association

source

crST
(r)

«context»
t2:Table

«secondary»
fko1:Column

«context»
pk2:Key

«primary»
fk1:ForeignKey

«context»
t1:Table

owner

foreignIdentifier

referee storage

«context»
o:Column

next

«context»
c2:Class

super

«context»
c1:Class

«primary»

i1:Inherits

«context»
t2:Table

«primary»
fk1:ForeignKey

«context»
t1:Table

owner

referee

crTS
(i)

name = “_entryID”
type = “NUMBER”

persistent = true

type = “NUMBER”

«context»
opk2:Column
name = “_entryID”
type = “NUMBER”

«context»
pko1:Column

foreignIdentifier

storage

«context»
pk1:Key

name = “_entryID”
type = “NUMBER”

storage

«context»
pk2:Key

name = “_entryID”
type = “NUMBER”

«context»
pko2:Column

Figure 6.1.: FGT core rules crST and BGT core rules crTS derived from TGGCDDS.

The presented algorithms use so-called core rules (cf. [SK08]) to determine core matches
of translation rules in the input graph and to determine whether a given node is a secondary
node. A core rule is closely related to the input component p−I,id (either p−S,id or p−T,id) of a
translation rule (cf. Def. 19). Fig. 6.1 depicts the core rules crST and crTS derived from
TGGCDDS, which are used by forward and backward translators respectively. Two core rules
derived from di�erent TGG productions may have an identical core (cf. cr

(fp)
TS and cr

(np)
TS). In

the general case, a core rule may have multiple core matches that consist of the same elements
(resulting, e.g., from permutation).
A core rule looks up the context elements of a given primary element in Ginput, which

may or may not be translated already but must be translated before the primary element is
translatable (cf. Def. 24 (1)). Therefore, the primary element is given as parameter to the core
rule and used as starting point of the pattern matching. The resulting operation is used by
algorithms to determine the required context elements (cf. lines 21, 23, and 25 of Listing 4 in
Sect. 6.6) and the to-be-translated elements (cf. lines 21, 31, and 44 of Listing 4 in Sect. 6.6),
i.e., the primary element and additional secondary elements.
Moreover, a core rule may be used to determine whether a given node is a secondary node

and to retrieve the corresponding primary node. This is implemented in the two operations
�isSecondaryNode� and �getPrimaryNode� which are required by the algorithm in Listing 4
discussed in Sect. 6.6 (cf. lines 8 and 9). Therefore, the secondary node is given as parameter
to the core rule. The operations bind the given secondary node to a type compatible secondary
node of a core rule, use this node as starting point of the pattern matching, and search for
a full match of the core rule in the host graph. If a match is found, the given node is a
secondary node. The associated primary node is uniquely determined by the match and
returned by operation �getPrimaryNode�. Note that these operations can only work properly

123

6. Graph Translators for Extended TGGs

if the matching structure of secondary elements is unique in all speci�ed TGG productions. It
is the responsibility of the TGG designer to make secondary elements uniquely determinable.
According to the core rules of TGGCDDS, columns or primary key elements in the target
domain may be secondary elements.

Core rules contain elements of the input graph only. NACs are not contained in a core rule.
The primary and secondary elements and additional incident edges given to a core rule must
not be translated yet. This is indicated by the empty checkboxes next to these elements.

6.3. Simple Graph Translation Algorithm

In this section we discuss an algorithm presented in [SK08] that has been embedded into our
translation framework and slightly adjusted due to readability. This algorithm is not complete
because it might not always �nd a sequence of translation rules that are able to completely
translate every given valid input graph. Moreover, the algorithm translates an element of the
input graph non-deterministically if more than one rule is able to translate this element by
executing one of the appropriate rules non-deterministically. But, the algorithm is able to
cope with NACs in general and is not limited to the class of NACs discussed in Sect. 5.2.1,
i.e., NACs that are only used to prevent the creation of graphs which violate constraints in
the source or target domain. The translation algorithm from [SK08] is depicted in Listing 3.

Procedure translate(Node) immediately returns if the regarded node has been translated
already or if the node is just regarded. The latter might happen if the current procedure call
is nested in another call to translate(Node) due to recursive context translation. If the node is
not translated and not regarded right now it is marked as regarded and the algorithm starts
searching for a translation rule that is able to translate the node. Therefore, the algorithm
calculates a core rule match of any rule that is able to translate nodes of the same type.
If a match is found then all nodes that are required as context for the current node are
recursively translated. If all required context elements are translated afterwards then the rule
is marked as appropriate rule. The algorithm proceeds collecting all appropriate rules. After
all appropriate rules have been collected it executes one appropriate translation rule for some
match that includes the node to be translated non-deterministically. If the appropriate rule has
been executed successfully the application of further appropriate rules is stopped and elements
that have been translated are marked as translated. Contrary to the proposed handling of
NACs of the input domain�i.e., NACs can be safely removed from the input component of a
translation rule derived from an integrity-preserving production (cf. Chap. 5)�NACs of the
input domain are not removed from the input domain in this algorithm. That is, translation
rules derived from a TGG production (cf. Figs 5.6 and 5.7 in Sect. 5.2.3) contain NACs
in their input domain (which is not depicted in the �gures). The elements in these NACs
have marked checkboxes indicating that these elements might exist in the input graph but
must not be translated already. Note that it might be possible that the execution of one rule
prevents another rule that contains a NAC from being applied because it creates a structure
which is forbidden by this NAC (cf. positive/negative rule application con�ict in Sect. 5.2).
Such a situation might result in an incomplete translation because the appropriate sequence
of translation rules cannot be determined by the algorithm in this case. Procedure evolve of

124

6.4. Forward Translation Example

the algorithm framework assumes that the translation operation implemented by a translation
algorithm always ful�lls the completeness property. Consequently, it would wrongly state that
the input graph is not part of a graph triple that is an element of the language de�ned by the
TGG because the implementation of procedure translate(Node) in Listing 3 does not ful�ll
the completeness property.

1 procedure void translate(n: Node) {

2 if (n ∈ translatedElements or n ∈ justRegardedElements)

3 return;

4 else {

5 justRegardedElements.add(n);

6 candidateRules: RuleSet = select rules where r.primaryInputNode.type equals n.type;

7 forall (rule ∈ candidateRules) {

8 compute core matches of rule in inputGraph with n as primary node;

9 if (at least one core match found) {

10 forall (contextNode ∈ context elements of core match)

11 { translate(contextNode); }

12 if (translatedElements contains all context elements of core match)

13 appropriateRules.add(rule, core match);

14 } }

15 forall ((rule, core match) ∈ appropriateRules) {

16 execute rule for some completed match and extend outputGraph

17 (regarding NACs that must not find a match with translatedElements);

18 if (successfully executed) {

19 translatedElements.add(elements of inputGraph translated by rule);

20 break;

21 } }

22 justRegardedElements.remove(n);

23 } }

Listing 3: TGG Algorithm equivalent to algorithm from [SK08].

6.4. Forward Translation Example

In the following we discuss an example of a forward translator derived from TGGCDDS which
uses the algorithm in Listing 3. The input graph given to the translator is the class dia-
gram depicted in Fig. 6.2. The class diagram contains two classes that have an inheritance
relationship and three ordered attributes. The class diagram was produced by applying pat-
terns �createPersistentClass�, �createPersistentClass�, �createGeneralization�, �createFirstAt-
tribute�, �createNextAttribute�, and �createNextAttribute� in that order. The algorithm now
has to �nd a sequence of translation rules that mimics the simultaneous evolution of a proper
graph triple. An appropriate sequence is, e.g., (r

(t)
ST , r

(fp)
ST , r

(np)
ST , r

(np)
ST , r

(t)
ST , r

(i)
ST). The algorithm

may start the translation process with any node because it recursively translates the context
of the current node before it translates the node itself. Let us assume the translation order
in procedure translate(GraphTriple) of objects is (c2, c1, a2, a3, a1) and the order of links is
(e2, e6, e3, e5, e4, e1). The algorithm framework calls procedure translate(Node) passing the
according object and link nodes.

The �rst object which is translated is class c2. Translation rule r
(t)
ST is the only candidate

rule. The core rule match contains class c2 only. No additional context has to be translated
beforehand. Therefore, r

(t)
ST is marked as appropriate rule and then executed. The output

graph and the correspondence graph are extended by a new table, a primary key, a primary

125

6. Graph Translators for Extended TGGs

c2:Class

a2:Attr

a3:Attr

c1:Class

a1:Attr

e1:Inherits

e2:Contains

e5:Precedes

e6:Precedes

e3:Contains

e4:Contains

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

name = “FormalLanguage”
persistent = true

name = “Language”
persistent = true

Figure 6.2.: Input graph given to forward translator.

key column, and a TGG link that connects class c2 with the newly created table (cf. Fig. 6.3).
Class c2 is added to the set of translated elements.

Next, class c1 is translated. The operating sequence is identical to the translation of class
c2. So, translation rule r

(t)
ST is executed which produces another table, additional secondary

elements and a TGG link that connects class c1 and the table. Class c1 is added to the set of
translated elements.

Right now, the second attribute a2 of class c1 is translated. There are two candidate
rules: r

(fp)
ST and r

(np)
ST . The additional context which has to be translated beforehand is class

c1, attribute a1, and contains link e2. Class c1 is already translated so the translation call
translate(c1) immediately returns. The call translate(a1) will recursively translate attribute
a1 before attribute a2 is translated. The only candidate rule that �nds a match in the context
of a1 is r

(fp)
ST . Candidate rule r

(np)
ST does not �nd a match in the context of a1 in the input

graph. As the owning class c1 is already translated, the algorithm proceeds and executes r
(fp)
ST .

The NAC in the input graph does not block because no other attribute contained in class c1
has been translated already. Therefore, r

(fp)
ST is successfully executed and a corresponding

column is added to the corresponding table. Attribute a1 and the contains link e2 are added
to the set of translated elements.

Now that the context elements c1, a1, and e2 of attribute a2 are translated, the algorithm
resumes translating a2. The appropriate rules are r

(fp)
ST and r

(np)
ST . The algorithm �rst executes

r
(fp)
ST . But the NAC in the input domain blocks its application because attribute a1 contained

126

6.4. Forward Translation Example

l1:Typec2:Class

a2:Attr

a3:Attr

c1:Class

a1:Attr

e1:Inherits

e2:Contains

e5:Precedes

e6:Precedes

e3:Contains

e4:Contains

t2:Table

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

opk2:Column

name = “_entryID”
type = “NUMBER”

pk2:Key

name = “FormalLanguage”
persistent = true

name = “Language”
persistent = true

name = “FormalLanguage”

Figure 6.3.: Intermediate graph triple produced by forward translator.

in class c1 has already been translated. So, the algorithm proceeds and successfully executes
r
(np)
ST which translates a2, e3, and e5.

Next, the algorithm translates attribute a3. Both candidate rules r
(fp)
ST and r

(np)
ST are also

appropriate. But only r
(np)
ST can be executed successfully because the NAC of r

(fp)
ST blocks its

application. So, a3 is translated by r
(np)
ST and a3, e4, and e6 are added to the set of translated

elements.

The last object in the list of to-be-translated objects is a1. But as a1 has already been
translated during a recursive call to procedure translate the algorithm instantly returns and
proceeds translating the list of links (e2, e6, e3, e5, e4, e1). All links except e1 are already
translated. So, the algorithm only has to translate inheritance link e1. The candidate rule
that �nds a core match in the context of inheritance link e1 is r

(i)
ST . The context nodes c1 and

c2 are already translated, so rule r
(i)
ST is also appropriate. Its execution succeeds and produces

a foreign key in the target domain that represents an inheritance relationship. Link e1 is
added to the set of translated elements.

Finally, all elements have been translated by the algorithm and the produced graph triple
looks like depicted in Fig. 6.4. The sequence of translation rules determined by the algorithm
is (r

(t)
ST @∅, r(t)

ST @∅, r(fp)
ST @c1, r

(np)
ST @c1, r

(np)
ST @c1, r

(i)
ST @c1c2).

127

6. Graph Translators for Extended TGGs

l2:Type t1:Table

l1:Type

o2:Column

o3:Column

o1:Column

l4:Prop

l3:Prop

l5:Prop

next

next

c2:Class

a2:Attr

a3:Attr

c1:Class

a1:Attr

e1:Inherits

e2:Contains

e5:Precedes

e6:Precedes

e3:Contains

e4:Contains

t2:Table

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

opk1:Column

name = “_entryID”
type = “NUMBER”

pk1:Key

opk2:Column

name = “_entryID”
type = “NUMBER”

pk2:Key

next

name = “FormalLanguage”
persistent = true

name = “Language”
persistent = true name = “Language”

name = “FormalLanguage”

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

fk1:ForeignKeyl6:Inh

Figure 6.4.: Graph triple produced by forward translator.

6.5. Discussion of Simple Algorithm

The presented algorithm from [SK08] automatically determines a proper ordering of for-
ward/backward rule applications even in the presence of NACs using an eager, demand-driven
rule ordering approach. Therefore, it does not rely on a prede�ned order of the elements of an
input graph or TGG productions. The algorithm uses recursive calls of the procedure trans-
late(Node) to reorder node visits on demand. It is the job of the recursively de�ned procedure
translate(Node) to compute the appropriate order in which rules are applied to their primary
node matches in the input graph. Whenever a node of the input graph shall be translated into
a new subgraph of the output graph, the procedure in a �rst step guarantees the following
property: all context nodes in the input graph that are potentially needed by any rule that
may translate the input node are determined by a core rule match and translated recursively
beforehand (if possible). The algorithm translates a given input graph in a single pass into
an output graph without any book keeping overhead rather e�ciently.

The main drawback of the algorithm lies in the fact that we cannot guarantee its complete-
ness for arbitrary TGGs. The algorithm does not implement complete FGT/BGT functions in
the general case for the following reasons: procedure translate(Node) executes an arbitrarily
selected rule with an arbitrarily selected match if more than one rule with more than one
match can be used to translate a regarded primary node of the input graph. Furthermore,
procedure translate(Node) uses an eager approach that translates context nodes of a just
regarded input node as early as possible. As a consequence it may happen that the check

128

6.6. Advanced Graph Translation Algorithm

of a NAC fails due to the fact that some elements in the input graph have been translated
too early. Thus we either have to modify the algorithm such that it is able to explore all
derivation alternatives, which would have signi�cant impact on its e�ciency, or to use the
class of TGGs with integrity-preserving productions with NACs for which we can guarantee
the completeness of the developed algorithm.
The algorithm does not explicitly handle secondary elements. But in the case of TGGCDDS

this is necessary when translating backward. If a secondary node is passed to the algorithm
this node cannot be translated. Only if the associated primary node is passed to the algorithm
the secondary node is translated as a side-e�ect. This results in problems if a secondary node
is translated due to a recursive context translation but the associated primary node is not
used as context because the algorithm demands that all context elements must be translated.
In general TGG-based translators have to face the following challenges

• Simulate the simultaneous evolution of the whole graph triple.

• Parsing of input graph: which rule to apply to which node?

• Find a sequence of rules that simulates the evolution of the input graph.

• Handling of Multiple Applicable Rules.

• Handling of Multiple Matches of a rule at a given context.

• How to distinguish primary from secondary elements?

• How to determine a right translation sequence of nodes/edges that exactly mimics the
TGG production application sequence?

• If context is translated recursively: how to break cycles in recursive context translation?

6.6. Advanced Graph Translation Algorithm

The algorithm depicted in Listing 4 is a modi�ed version of the algorithm presented in [KLKS10]
and is based on the algorithm in [SK08], i.e., Listing 3. This modi�ed version additionally sup-
ports secondary elements. Likewise to the algorithm in [SK08], the algorithm from [KLKS10]
uses an eager, demand-driven rule ordering approach (cf. Sect. 6.3). That is, it recursively
translates all context nodes that are required by the node that is currently translated. Con-
trary to the algorithm in [SK08], the algorithm in Listing 4 regards multiple matches of rules
in the input graph. Moreover, the algorithm is complete, it implements the dangling edge
condition, and has a more sophisticated error detection.
There are other possibilities to realize a TGG translation algorithm that is able to cope with

non-deterministic behavior of TGG productions. First, an algorithm could use backtracking
and try other translation sequences until it �nds a translation sequence that produces a correct
output graph triple. But, backtracking is very expensive, i.e., not e�cient in our terms, and

129

6. Graph Translators for Extended TGGs

not necessary in general. Second, one could use critical pair analysis2 to check whether the
set of TGG productions is con�uent3. That is, the application order of multiple applicable
translation rules does not matter because the result of their application in di�erent order is
equal or isomorphic. But, it is questionable whether TGGs ful�ll the con�uence property in
general. Our approach relies on the local completeness criterion introduced in Sect. 5.2.4.
This criterion guarantees that the input graph, i.e., source graph or target graph, can be
parsed deterministically if more than one rule is applicable because all rules translate the
same elements and every match of a translation rule in the input graph is extendable to a
match in the output graph.
The algorithm in Listing 4 is based on the following assumptions:

• Given a node, the algorithm is able to determine whether the node is secondary. Given
a secondary node, the algorithm is able to navigate deterministically from a secondary
node to its primary node.

• If a primary node is matched by a translation rule, then all to-be-created elements are
uniquely determined, i.e., all additional secondary elements are matched deterministi-
cally.

• TGG production components are always integrity-preserving. That is, they never pro-
duce graphs that are invalid according to their well-foundness rules of the graph schema,
i.e., all graphs produced by a translation rule are syntactically and semantically correct
(cf. Sect. 5.2.2).

The algorithm in Listing 4 can be divided into several activities: The algorithm ensures
that elements are only translated once (line 2). The algorithm detects cycles in the recursive
context translation (lines 3 to 4). It handles secondary elements (lines 8 to 11). It determines
appropriate rules (lines 17 to 27), then applicable rules (lines 29 to 35). It examines the
determined applicable rules, whether they satisfy certain conditions (lines 37 to 44). Finally,
it executes a translation rule that translates certain elements of the input graph (lines 46 to
48). In the following we will discuss these activities of the algorithm in more detail.

Cycles in Recursive Context Translation The algorithm in Listing 4 aborts with a cycle in
recursive context translation error if an element that is currently translated is translated again
due to a recursive translation call. This situation occurs, e.g., if two certain TGG production
fragments are used in conjunction. Figure 6.5 depicts a TGG that contains TGG production
fragments that raise such a forbidden situation.
In order to give an example, where a cycle error occurs, we pass the model depicted in

Fig. 6.5 as input graph to a forward translator derived from the depicted TGG. The translator
starts translating node a1. It marks this node as just regarded element. Afterwards, it
determines the set of candidate rules. Rules 1 and 2 are candidates that also �nd matches

2A critical pair (of translation rules) is a pair of parallel dependent direct transformations [EEPT06]. Ac-
cording to [HEGO10], critical pairs de�ne con�icts of rule applications in a minimal context.

3In a con�uent transformation system, the order in which productions are applied yields the same result up
to isomorphism.

130

6.6. Advanced Graph Translation Algorithm

createExample p(1)

++
:A’

++++
:A

B

A

b *

B’

A’

b’ *
C

L2

L1

:L1

TGG Schema

TGG Production

C
a * a’ *

:A

createExample p(3)

:L1

++

:A’

:B’
++++

:B

++

:L2

++

:B

createExample p(2)

:L2 :B’

++++

++
:A’

++++
:A :L1

Input Graph

b1:B

a1:A
c1:C

Figure 6.5.: A TGG that raises cycle errors.

in the input graph. Let us assume rule 2 is checked �rst. The dangling edge condition is
satis�ed and the additional context b1 needs to be translated beforehand. Therefore, b1 is
recursively translated. The only candidate rule for translating b1 is rule 3. It �nds a match and
satis�es the dangling edge condition. In addition, it requires the context a1 to be translated
beforehand. Therefore, a1 is recursively translated. The algorithm notices that a1 is a just
regarded element and, therefore, throws a cycle in recursive context translation error, as it is
already translated somewhere up in the translation chain.

Consequently, we forbid the combination of the patterns depicted in TGG production com-
ponents p

(2)
S and p

(3)
S (cf. Fig. 6.5) to avoid cycle errors. Developing a statical analysis

mechanism that checks a given set of TGG productions for such a combination of patterns is
future work.

Translation of Secondary Elements Second, the algorithm in Listing 4 determines whether
the given node is secondary utilizing operation �isSecondaryNode(Node)�. If this is the case,
the corresponding primary node is fetched with operation �getPrimaryNode(Node)� and ac-
tively translated, which in turn also translates the secondary node. The operations �isSec-
ondaryNode(Node):boolean� and �getPrimaryNode(Node):Node� are derived from core rules
as described in Sect. 6.2. These operations must always uniquely determine whether a given
node is primary or secondary and uniquely determine the corresponding primary node of a
given secondary node respectively.

If a node is detected to be secondary then the translation of its primary node always
translates the secondary node, too. Note that the corresponding primary node of a secondary
node has to be actively translated. Otherwise the algorithm would fail if the secondary
node is used as context in another rule, i.e., is translated during a call to a recursive context

131

6. Graph Translators for Extended TGGs

translation, because such a call must always translate every element that is required as context.
A �lazy� translation is not su�cient in this case.
An implicit property of secondary elements is that no rule exists that is able to translate

the secondary element passing it as primary node to a candidate rule. The speci�cator of a set
of TGG productions has to ensure this property. Developing a statical analysis mechanism
that checks a given set of TGG productions for this property is up to future work. Note
that the algorithm in Listing 4 never translates a node actively if it detects that this node
is a secondary node. Instead, it determines and translates the corresponding primary node
which implicitly translates the secondary node and further secondary elements. Consequently,
the translation operation of the secondary node returns (cf. line 11 of Listing 4) right after
translating the primary node.

Determination of Appropriate Rules Third, the algorithm determines appropriate rules
from the set of candidate rules. A rule is a candidate if its primary node in the input domain
is type compatible with the to-be-translated primary node. An appropriate rule has at least
one core match which contains the primary node. A core match satis�es Def. 24 (2), i.e., all
to-be-translated elements are not translated yet. If multiple matches of one rule in the input
graph exist4, the algorithm checks for every match if the rule is appropriate. In order to be
appropriate, every context node required by the primary node is recursively translated. But,
the context is only translated if the dangling edge condition would be satis�ed afterwards (cf.
Def. 24 DEC(1)). If the DEC fails this indicates that the current node has incident edges that
are not producible by the TGG if the current rule is applied. Therefore, the algorithm skips
the current core match and proceeds with the next core match or rule candidate.
Note that the algorithm in Listing 4 is greedy in the sense that it translates every ele-

ment used as context of every match of every candidate rule. This might translate more
elements then required as context elements by the applicable rule that is �nally applied at an
appropriate match including the to-be-translated primary node.

Determination of Applicable Rules Fourth, the algorithm determines applicable rules from
the set of appropriate rules. The application condition Def. 24 DEC(1) has to be reassured
because it might have been invalidated due to potential competing recursive context trans-
lations. In addition, the core match of an applicable rule must be completed in the rule's
left-hand side (i.e., input, link, and output domain) and the NACs in the output domain must
not block.

Examination of Applicable Rules If no applicable rule is determined then either a match
exists in the input domain but it may not be completed or the to-be-translated node is not
even locally translatable. In the �rst case the set of TGG productions violates the local
completeness criterion (cf. Def. 21) and a corresponding error is thrown. This error states
that the TGG speci�cation is erroneous. In the latter case the input graph is invalid and a
corresponding exception is thrown. This exception states that the input graph given to the
translation algorithm is invalid and, therefore, cannot be translated successfully.

4In TGGCDDS at most one core match exists for any rule in a valid input graph.

132

6.6. Advanced Graph Translation Algorithm

1 procedure void translate(n: Node) {

2 if (n ∈ translatedElements) return;

3 else if (n ∈ justRegardedElements)

4 throw CycleInRecursiveContextTranslationError(n, justRegardedElements);

5 else {

6 justRegardedElements.add(n);

7

8 if (isSecondaryNode(n)) {

9 translate(getPrimaryNode(n));

10 justRegardedElements.remove(n);

11 return;

12 }

13

14 nodeLocallyTranslatable: boolean = false;

15 appropriateRules, applicableRules: PairSet<Rule, Match> = ∅;
16

17 candidateRules: RuleSet = select rules where r.primaryInputNode.type equals n.type;

18 forall (rule ∈ candidateRules) { // collect appropriate rules and core matches

19 compute core matches of rule in inputGraph with n as primary node;

20 forall (cm ∈ core matches) { // Def.24(2): m′I(RI\LI) ∩ TX = ∅ satisfied!

21 if (not isDECSatisfied(n, join(cm.toBe, cm.context))) // m′I(RI\LI) ∪m′I(LI)
22 { continue; } // do not translate context if Def.24(DEC(1)) would be violated

23 forall (contextNode ∈ context elements of core match)

24 { translate(contextNode); } // recursively translate required context

25 if (all context elements of core match are translated)

26 { appropriateRules.add(rule, cm); } // Def.24(1): m′I(LI) ⊆ TX satisfied!

27 } } // end of appropriate rule at core match with n as primary node calculation

28

29 forall ((rule, cm) ∈ appropriateRules) { // collect rules applicable at full match

30 // reassure Def.24(DEC(1)): may be violated due to competing context translation

31 if (not isDECSatisfied(n, cm.toBe)) { continue; }

32 nodeLocallyTranslatable = true; // now n must be translatable due to Def.21

33 if (cm can be completed in other domains and NACs in output domain don't block)

34 { applicableRules.add(rule, full match); }

35 } // end of applicable rule at full match with n as primary node calculation

36

37 if (applicableRules.isEmpty()) { // node is not translatable

38 if (nodeLocallyTranslatable) // match could not be completed in other domain(s)

39 throw LocalCompletenessCriterionError(n, appropriateRules); // Def.21 violated!

40 else

41 throw InputGraphNotPartOfDerivableGraphTripleException(n); // Ginput 6∈ L(GGI)
42 }

43 if (not applicableRules.matches->forAll(m1, m2 | m1 <> m2 implies

44 m1.cm.toBe = m2.cm.toBe)) throw CompetingCoreMatchesError(n, applicableRules);

45

46 select one rule/match pair from applicableRules;

47 apply rule at match; // evolve GT GT ′ with rIO@mIO

48 translatedElements.add(elements of inputGraph translated by rule); // m′I(RI\LI)
49 justRegardedElements.remove(n);

50 } }

51

52 procedure boolean isDECSatisfied(node: Node, toBeTranslated: ElementSet) {

53 translatedElements' = translatedElements ∪ toBeTranslated; // TX′ (cf. Def.24(3))

54 select all incident edges e of node where (e 6∈ translatedElements')

55 and (s(e) or t(e) ∈ translatedElements')

56 forall (e ∈ selected incident edges)

57 { if (not (DEC(1) satisfied for e)) { return false; } } // ensure Def.24(DEC(1))

58 return true; // all edges translatable

59 }

Listing 4: Algorithm that handles NACs and checks for dangling edges.

133

6. Graph Translators for Extended TGGs

If multiple rules are applicable at some completed match, the algorithm ensures that their
to-be-translated elements in the core match are identical. Otherwise it aborts with an error
indicating that there are competing core matches, i.e., there are di�erent to-be-translated
elements, as this might lead into dead-ends (cf. Sect. 5.3.2). It is up to the developer of a set
of TGG productions to guarantee that this will never happen in practice. Consequently, the
error reports that the TGG speci�cation is erroneous.

Execution of Translation Rules Finally, the algorithm translates the primary node. It
selects one entry from the set of applicable rules, applies the rule at its match, and extends
the set of translated elements (cf. Def. 24 (3)).

Note that the translation of a primary node always translates its secondary elements as
well. Moreover, if the translation operation was invoked by a call to �translate(Node)� in
line 9 of the algorithm in Listing 4 then the secondary node that was used to determine the
primary node is translated if the translation of the primary node succeeds. This is guaranteed
due to the property that must hold for operation �getPrimaryNode(Node):Node� (i.e., unique
determination of primary node) and the construction of translation rules. Translation rules are
based on core rules, likewise to the construction of operation �getPrimaryNode(Node):Node�
which is also based on core rules. Consequently, if operation �getPrimaryNode(Node):Node�
was able to uniquely determine the primary node from a given secondary node, a distinguished
translation rule must exist that translates the primary node as well as the original secondary
node. Thanks to the examination of applicable rules, as described in the preceding paragraph,
the algorithm would throw a competing core matches error if there exists any other applicable
rule that would translate other elements than the distinguished rule. So, the distinguished rule
or any other equivalent rule that translates the same elements is executed in order to translate
a primary node corresponding to a secondary node given by a call to line 9. Consequently,
we have shown that a secondary node is translated due to the call in line 9 if the translation
of its primary node succeeds, i.e., no exception or error is thrown.

Implementation of Dangling Edge Condition The implementation of the dangling edge
condition in procedure isDECSatis�ed(Node, ElementSet) is straightforward. The �rst param-
eter is the node to be checked for dangling edges. The second parameter is a set of elements
that should be added temporarily to the set of current translated elements. All edges that are
incident to the given node and are not contained in the temporary set of translated elements
TX ′ but source or target node of this edge are in TX ′ are checked for the dangling edge
condition (cf. Def. 24 (DEC(1))). If at least one of these edges violates the dangling edge
condition then the procedure returns immediately stating that the dangling edge condition is
not satis�ed.

6.7. Backward Translation Example

Now, we will discuss a translation process with the backward translator derived from TGGCDDS

which uses the advanced algorithm in Listing 4. The input graph given to the translator is

134

6.7. Backward Translation Example

the database schema depicted in Fig. 6.6. This database schema is the result of the forward
translation discussed in Sect. 6.4.

t1:Table

o2:Column

o3:Column

o1:Column

next

next

t2:Table

opk1:Column

name = “_entryID”
type = “NUMBER”

pk1:Key

opk2:Column

name = “_entryID”
type = “NUMBER”

pk2:Key

next

name = “Language”

name = “FormalLanguage”

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

fk1:ForeignKey
e13:

e11:

e10: e14:

e1:

e2:

e4:

e3:

e15:

e12:

e6:

e8:
e9:

e7:

e5:

Figure 6.6.: Input graph given to backward translator.

Let us assume the translation order of object nodes is (opk1, fk1, pk1, t1, pk2, opk2, t2, o3, o1,
o2). Then, the algorithm starts the translation process with column opk1, which is the column
used to store primary keys of table t1. The algorithm �rst checks whether this node is a sec-
ondary node. Therefore, it utilizes the backward core rules (cf. Fig. 6.1). It selects those core
rules where the type of a secondary node equals the type of opk1, i.e., Column, and where a
match of this rule is found in the input graph. According to TGGCDDS nodes of type Column
or Key have the potential for being secondary nodes. In the case of opk1 core rule cr

(t)
TS �nds

a match using opk1 as secondary node. Therefore, the algorithm identi�es opk1 as secondary
node and translates its according primary node, table t1. BGT rule (t) (i.e., r

(t)
TS) is the only

candidate that has the capability to translate t1. The algorithm checks whether application
of rule (t) satis�es DEC(1). Therefore, it determines the elements in Ginput created by the

corresponding local rule r
(t)
T (i.e., {t1, opk1, pk1, e1, e2, e3}) and joins these elements, the re-

quired context elements (i.e., ∅), and the set of currently translated elements (i.e., ∅) which
results in set TX ′ := {t1, opk1, pk1, e1, e2, e3} . Then, it checks whether condition DEC(1) is
satis�ed for all not translated incident links of node t1, i.e., inc(t1) := {e4, e6, e8}. According
to Sect. 5.3.3, the required tuple for inc(t1) is (Table, Contains, Column, e1). So, DEC(1) is
satis�ed because LOCCT (1) contains this tuple (cf. Table 5.1 in Sect. 5.3.3). Since t1 does
not have any context, no additional elements need to be translated and rule (t) is marked

appropriate. Moreover, its core match can be completed to a full match. Therefore, r
(t)
TS is an

135

6. Graph Translators for Extended TGGs

applicable rule. As it is the only applicable rule it is applied at the complete match which
translates table t1, key pk1, column opk1, links e1, e2, and e3 and creates a corresponding
class in the source domain.

l1:Type t1:Table

l2:Type

o2:Column

o3:Column

o1:Column

next

next

c2:Class

c1:Class

t2:Table

opk1:Column

name = “_entryID”
type = “NUMBER”

pk1:Key

opk2:Column

name = “_entryID”
type = “NUMBER”

pk2:Key

next

name = “FormalLanguage”
persistent = true

name = “Language”
persistent = true name = “Language”

name = “FormalLanguage”

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

fk1:ForeignKey
e13:

e11:

e10: e14:

e1:

e2:

e4:

e3:

e15:

e12:

e6:

e8:
e9:

e7:

e5:

Figure 6.7.: Intermediate graph triple produced by backward translator.

The algorithm proceeds translating by selecting foreign key fk1 from the set of remaining
object nodes. Candidate rules are BGT rules (r) and (i) but only (i) �nds a match in the input
graph. The DEC check succeeds because no incident untranslated links remain if fk1 would
be translated. Now, all context nodes of fk1, i.e., {t1, pk1, opk1, e1, e3, t2, pk2, opk2, e10, e12},
are recursively translated. As t1, pk1, opk1, e1, and e3 are already translated these nodes
are skipped and the algorithm proceeds translating table t2. Likewise to table t1, table t2
is translated with BGT rule (t) into a corresponding class as DEC(1) is satis�ed due to the
existence of LOCCT entry (Table, RelatesToForeignEntriesV ia, ForeignKey, e1), i.e., link

e13 is translatable afterwards. So, t2 is translated by r
(t)
TS and t2, pk2, opk2, e10, and e12 are

added to the set of translated elements. The graph triple now looks like depicted in Fig. 6.7.
After all context elements of fk1 are translated the algorithm resumes translating fk1 with

the appropriate BGT rule (i), whose match can be completed in the other domains. Moreover,
the NAC in the output domain does not block. So, after translating fk1 with BGT rule (i)
the elements fk1, e13, e14, and e15 are added to the set of translated elements.
Now, the algorithm proceeds translating the set of remaining object nodes. Nodes pk1, t1,

pk2, opk2, and t2 are already translated so the algorithm proceeds translating column o3.
This column is not a secondary node, so the algorithm tries to translate it as primary node.
BGT rules (fp) and (np) are candidate rules for translating o3. The same core match, which

136

6.7. Backward Translation Example

requires table t1 and column o2 as context, exists for both rules. DEC(1) is satis�ed as there
are no untranslated incident edges after o3 would be translated.

l1:Type t1:Table

l2:Type

o2:Column

o3:Column

o1:Column

l5:Prop

l4:Prop

l6:Prop

next

next

c2:Class

a2:Attr

a3:Attr

c1:Class

a1:Attr

t2:Table

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

opk1:Column

name = “_entryID”
type = “NUMBER”

pk1:Key

opk2:Column

name = “_entryID”
type = “NUMBER”

pk2:Key

next

name = “FormalLanguage”
persistent = true

name = “Language”
persistent = true name = “Language”

name = “FormalLanguage”

name = “name”
type = “String”

name = “meta”
type = “Boolean”

name = “bar”
type = “NUMBER”

fk1:ForeignKeyl3:Inh
e13:

e11:

e10: e14:

e1:

e2:

e4:

e3:

e15:

e12:

e6:

e8:
e9:

e7:

e5:

Figure 6.8.: Graph triple produced by backward translator.

But before translating o3, �rst its context o2 has to be translated. Another recursive
context translation step has to be executed when o2 is translated because it requires o1 as
already translated context element. So, the algorithm reorders the elements to be translated
such that �rst it translates o1, then o2, then o3. In all three cases the candidate rules are
BGT rules (fp) and (np). DEC(1) is satis�ed for inc(o1) = {e7} and inc(o2) = {e9} as
(Column, Precedes, Column, e1) ∈ LOCCT (1). When translating o1 the match of rule (fp)
is the only one that can be completed in the source domain, i.e., the only applicable rule.
Rule (np) is not applicable as o1 is the �rst attribute which is added to the class that cor-
responds to table t1. Hence, rule (np) is the only rule that can be completed in the source
domain when translating o2 and o3 as the NAC in the source domain blocks the application
because an attribute is already present in the class corresponding to table t1. Consequently,
both locally-applicable rules r

(fp)
TS and r

(np)
TS are disjoint applicable in this case (cf. discussion

in Sect. 5.3.2). After translating o1, o2, and o3 the graph triple looks as depicted in Fig. 6.8.

Finally, the algorithm translates all links belonging to the input graph. But, all links have
already been translated earlier while translating the object nodes. Therefore, the algorithm
simply skips the translation of the link nodes e1 to e15.

So, the algorithm has successfully translated all objects and links of the input graph to a
corresponding output graph. The sequence of applied BGT rules
SEQ(rTS) = (r

(t)
TS@∅, r(t)

TS@∅, r(i)
TS@t1t2, r

(fp)
TS @t1, r

(np)
TS @t1, r

(np)
TS @t1) constructed in this exam-

137

6. Graph Translators for Extended TGGs

ple translates the primary nodes in this order: (t1, t2, fk1, o1, o2, o3). In conjunction with the
also constructed correspondence graph a graph triple GTout was produced which is equivalent
to the graph triple produced by the forward translator (cf. Fig. 6.4).

6.8. Properties of Advanced Translation Algorithm

The next theorems state that translators based on the advanced algorithm speci�ed in Listing 4
terminate, are e�cient as well as correct and complete with respect to their TGG if the
algorithm never aborts with an exception for any given valid input graph. If the algorithm
aborts with an exception then Ginput 6∈ L(GGI) and if the algorithm aborts with an error then
the TGG speci�cation is erroneous, i.e., does not satisfy the conditions stated throughout this
contribution.

6.8.1. Termination

The algorithm terminates if it stops after a �nite number of steps and returns a result or
throws an error or exception. First, we argue that the procedures of the algorithm framework
evolve(GraphTriple) and translate(GraphTriple) terminate. Then, we show that the proce-
dures of the algorithm translate(Node) and isDECSatis�ed(Node, ElementSet) terminate. In
general, a procedure terminates if every call to a subroutine terminates and if loops are some-
how bounded, e.g., if they iterate through a �nite number of elements.

Theorem 2. Termination of Graph Translation.
The translation algorithm in Listing 4, which is composed of procedures �evolve(GraphTriple)�,
�translate(GraphTriple)�, �translate(Node)�, and �isDECSatis�ed(Node, ElementSet)�, termi-
nates.

Proof.
Procedure evolve does not have any loops or recursive calls. So, it terminates if all subroutine
calls terminate. This has to be proven for translate(GraphTriple) but is true for all other
subroutines.

Procedure translate(GraphTriple) has two loops that iterate through a �nite number of
objects and links of a given input graph and calls procedure translate(Node) for every such
object and link. Therefore, this procedure terminates if the calls to translate(Node) terminate.
Procedure translate(Node) in Listing 4 terminates. This is due to the fact that the set of

TGG productions is �nite and so are the set of translation rules rIO and the set of core rules.
Moreover, the number of elements in a graph is �nite, and every element is only translated
once. Therefore, all recursive calls to translate(Node) terminate if the given node is already
translated or if it is successfully translated or the translation produces an error or exception.
Recursion cycles are detected and explicitly broken by the algorithm, i.e., the algorithm cannot
run into in�nite recursion calls. The number of matches determined for any rule is �nite, as
well as the number of context elements of a core match. Therefore, the loops of procedure
translate(Node) are bounded and terminate.

138

6.8. Properties of Advanced Translation Algorithm

Procedure isDECSatis�ed(Node, ElementSet) terminates because the number of incident
edges of a node is �nite.

After the translation algorithm terminates it may be in three di�erent modes. The �rst
mode is the desired mode for the translation of a valid input graph: the translation was
successful and the output graph triple is part of the language de�ned by the TGG. In the
second and third mode we distinguish between exception and error. An exception is less severe
and states that the user has made a fault, e.g., by passing an input to the translator that is
not translatable. In this case, the algorithm throws an input graph not part of derivable graph
triple exception (cf. line 15 in Listing 1 and line 41 in Listing 4). An error is more severe
stating that the underlying TGG speci�cation is erroneous and it has to be reviewed by a
TGG designer. The translation algorithm has the following error states:

• cycle in recursive context translation error (cf. line 4 in Listing 4): A recursive call to
procedure �translate(Node)� has produced a cycle, i.e., an element that is currently in
the translation chain is about to be translated again. This error is a special case as
it might occur due to an invalid TGG speci�cation (cf. discussion on cycle errors in
Sect. 6.6), but also due to an invalid input graph. A situation where an invalid input
graph raises a cycle in recursive context translation error is depicted in Fig. 6.9. The
TGG schema is already known from the TGGCDDS example. The two TGG productions
satisfy the condidtions that must hold for TGG productions. The �rst TGG production
is a simpli�ed version of TGG production �createType� from TGGCDDS (cf. Fig. 4.6 in
Sect. 4.4). The second TGG production creates a subclass and links this subclass to the
table that corresponds to the superclass5.

An invalid input graph consisting of two classes c1 and c2 with an inheritance cycle
(made up by inheritance links i1 and i2) is given to a forward translator that utilizes
the algorithm in Listing 4. This input graph is not producible by the two TGG pro-
ductions �createType� p(1) and �createSubtype� p(2), i.e., it is invalid according to the
TGG speci�cation. The translator starts translating node c1. It marks this node as just
regarded element. Afterwards, it determines the set of candidate rules. Rules 1 and 2
are candidates that also �nd matches in the input graph. Let us assume rule 2 is checked
�rst. The dangling edge condition is satis�ed and the additional context c2 needs to be
translated beforehand. Therefore, c2 is recursively translated. The two candidate rules
for translating c2 are rules 1 and 2. Rule 1 does not satisfy the dangling edge condition,
but rule 2 does. Rule 2 �nds a match and in addition, it requires the context c1 to be
translated beforehand. Therefore, c1 is recursively translated. The algorithm notices
that c1 is a just regarded element and, therefore, throws a cycle in recursive context
translation error, as it is already translated somewhere up in the translation chain. As
already mentioned, the error does not state a TGG speci�cation error in this case but a
user error. The only way to prevent such an error is to add constraints to the metamodel
of the TGG speci�cation that forbids cycles in input graphs and, therefore, allows to
detect invalid input graphs in the constraint check in line 6 of Listing 1. A constraint

5This TGG production is a well-known example for a di�erent realization of inheritance of classes (and
tables) in the CDDS example (cf. [Kön05, EEE+07, SK08, KLKS10]).

139

6. Graph Translators for Extended TGGs

check could then be added to the algorithm in Listing 4 that checks for validity of the
input graph before throwing a cycle error.

• local completeness criterion error (cf. line 39 in Listing 4): The TGG speci�cation does
not satisfy the local completeness criterion as given in Defs. 21 and 22 in Sect. 5.2.4.

• competing core matches error (cf. line 44 in Listing 4): Two or more translation rules
compete translating the same primary node but with di�erent secondary elements, i.e.,
incident edges or adjacent nodes.

• TGG contains integrity-destroying productions error (cf. line 14 in Listing 1): The
TGG is not composed of integrity-preserving productions only (as required by Def. 17
in Sect. 5.2.2) but contains productions that destroy the integrity of a graph.

createType p(1)

++
:Table
++++

:Class

Classsub
* TableType

:Type

TGG Schema

TGG Production

Inherits

super *

:Class

createSubtype p(2)

:Type

++

:Table

++
:Class :Type

++

(invalid) Input Graph
c2:Classc1:Class

i1:Inherits

super

sub

sub

super sub

super
i2:Inherits

Figure 6.9.: A TGG that raises a cycle error due to an an invalid input graph.

In the case of an error that is reported by the algorithm, the TGG is assumed to violate
one of the properties it has to satisfy. Therefore, the TGG speci�cation has to be reviewed
and the operational rules have to be derived again in order to be applicable successfully by
the algorithm.

6.8.2. E�ciency

In the following theorem we will discuss the e�ciency of the algorithm in Listing 4. We will
see that it has a polynomial space and time complexity in the worst case. This is due to the
fact that the algorithm processes the elements of the input graph in a given order such that no
element is regarded more than a constant number of times and translated only once. Multiple
translation alternatives are not explored because this indicates a TGG speci�cation error.

140

6.8. Properties of Advanced Translation Algorithm

Theorem 3. E�ciency of Graph Translation.
The algorithm in Listing 4 has worst case runtime complexity of O(nk) with n being the number
of nodes of Ginput and k being a constant that depends on the regarded TGG.

Proof.
Sketch:

(1) The algorithm just loops through the set of all n nodes of the input graph; the implicit
reordering of the translation of input graph elements in the loop for not yet translated
context elements of a just regarded graph element does not a�ect its runtime complexity.

(2) The book keeping overhead of the algorithm is neglectible and the execution time for
basic graph operations like traversing an edge or creating a new graph element is bounded
by a constant (otherwise we should add a logarithmic or linear term depending on the
implementation of the underlying graph data structure).

(3) The worst case execution time of all needed rules applied to a given (primary) input
graph node is (n + n′)k−1, where n′ is the number of nodes of the output graph, and
k is the maximum number of elements of any applicable rule. In the worst case the
match of the primary node is extended by testing all possible (n+ n′)k−1 permutations
of source/target graph elements.

(4) Furthermore, n′ ≤ c ∗ n for a given constant c that is the maximum number of new
nodes of the output component of any TGG production.

(5) The recursive calls to procedure �translate(Node)� in lines 9 and 24 of Listing 4 do only
translate the a�ected nodes of the input graph once. The procedure returns immediately
if the node that is to be translated is already translated (cf. line 2 of Listing 4). If the
translation fails then the algorithm aborts with an error or exception. Otherwise the
translation is successful and the a�ected nodes are added to the set of translated elements
and are never translated again.

In the case of TGGCDDS, the complexity of a forward translation is O(n2) for the following
reasons: The worst case execution time of its rules (cf. Fig. 5.6) is O(n′) ≤ O(n), with n′

being the maximum number of columns of a table in the output graph, due to the fact that
the primary node is known and rules (t) and (i) have a constant execution time, whereas
rules (fp), (np), and (r) have to determine the last column node of a table node. Assuming
that all nodes of the output graph are columns of the just regarded table n′ ≤ n nodes have
to be inspected in the worst case.

6.8.3. Correctness

The following theorem states that the algorithm is correct with respect to a TGG speci�cation.
The correctness of a forward or backward translator is guaranteed if it translates an input
graph into a graph triple that is always an element of the language L(TGG) de�ned by the

141

6. Graph Translators for Extended TGGs

TGG. Furthermore, the output graph is an element of the language L(TGO, CO) de�ned by
the output type graph and the set of constraints.

Theorem 4. Correctness of Graph Translation.
Let GI ∈ L(TGI , CI) be an input graph (either GS or GT)
and GO be an output graph (either GT or GS).
If FGT (GS ← G∅ → G∅) = (GS ← GC → GT)
is a not aborting complete translation of GI with the algorithm in Listing 4 then:
(1) (GS ← GC → GT) ∈ L(TGG) and
(2) GO ∈ L(TGO, CO).

If BGT (G∅ ← G∅ → GT) = (GS ← GC → GT)
is a not aborting complete translation of GI with the algorithm in Listing 4 then:
(1) (GS ← GC → GT) ∈ L(TGG) and
(2) GO ∈ L(TGO, CO).

Proof.
Sketch:

(1) (GS ← GC → GT) ∈ L(TGG) is a direct consequence of Theorem 1 (cf. Sect. 5.2.2)
and the fact that GI ∈ L(TGI , CI). As a consequence the simulated application of TGG
productions without NACs in the input domain does not have any e�ect concerning the
applicability of translation rules.

(2) The behavior of translation rules on the output side is identical with the behavior of
the related TGG production: i.e., a rule �nds a match on the output side i� the related
TGG production has the same match.
GO ∈ L(TGO, CO) is then a direct consequence of (1).

6.8.4. Completeness

The next theorem states that the algorithm in Listing 4 is complete with respect to a TGG
speci�cation. The completeness property demands that for every graph triple that is an
element of L(TGG), a translator is able to produce this graph triple (or an equivalent one)
given the graph of the graph triple, which belongs to the translator's input domain.

Theorem 5. Completeness of Graph Translation.
Let (GS ← GC → GT) ∈ L(TGG) and let us assume that the execution of the algorithm in
Listing 4 does not abort with any error. Then, we can guarantee that graphs G∗C, G

∗
T and G∗S,

G∗C exist such that:
FGT (GS ← G∅ → G∅) = (GS ← G∗C → G∗T) ∈ L(TGG) and
BGT (G∅ ← G∅ → GT) = (G∗S ← G∗C → GT) ∈ L(TGG) respectively;

i.e., the algorithm terminates without throwing any exception.

142

6.8. Properties of Advanced Translation Algorithm

Proof.
(by induction) Sketch:
Let GTout ∈ L(TGG) be a graph triple that has been derived using a sequence of derivation
steps SEQn

i=1(pi) = ((p@m)1, . . . , (p@m)n) of length n and let SEQn
i=1(rI,i) = ((rI@mI)1, . . . ,

(rI@mI)n) be the projection of the regarded sequence of graph triple derivation steps on its
input graph. Furthermore, let SEQj

i=0(rIO,i) with 0 ≤ j ≤ n be the sequence of the �rst j
translation rule applications ((rIO@mIO)1, . . . , (rIO@mIO)j) generated by the algorithm that
exactly mimics the derivation of GTout.

Case 1, j = 0: A translation rule sequence of length 0 trivially mimics the derivation of the
empty graph triple GT∅.

Case 2, 0 < j < n: We have to show that the algorithm extends the given sequence of
rule applications of length j to a sequence of length j + 1 such that it simulates either the
original sequence of TGG productions SEQ(p) or a slightly modi�ed sequence SEQ(p∗) that
still generates the same input graph. Let (vI)i be the primary node of the input graph of each
rule application (rIO@mIO)i and TGG production application (p@m)i with 1 ≤ i ≤ j. Let v
be the next to-be-translated primary node which is selected by the algorithm6. Furthermore,
we assume that the algorithm has already translated successfully the context nodes of all rules
that might be able to translate node v.

Case 2.1, v = (vI)j+1: Due to the fact that the algorithm does not throw a competing
core matches error we can safely assume that there exists at most one set of translation rules
with the same to-be-translated elements in their core match including node v. Furthermore,
we know that there exists at least one rule with p−I,id (that is the input component of the
translation rule derived from pj+1) that matches node v = (vI)j+1. The local completeness
criterion (cf. Def. 21 in Sect. 5.2.4) guarantees that the algorithm �nds a TGG production
application p∗@m∗ that corresponds to one of the translation rules r∗IO that is able to handle
the translation of the selected node v. Applying Def. 21 multiple times we can generate a new
sequence of TGG production applications SEQn

i=1(p
∗
i) such that:

1 ≤ i ≤ j: (p∗@m∗)i = (p@m)i

i = j + 1: (p∗@m∗)i = p∗@m∗

j + 1 < i ≤ n: (p∗@m∗)i is a new production application that mimics (p@m)i

As a consequence the algorithm is able to create a sequence of translation steps SEQ(r∗IO) of
length j+1 that has the same properties as the given sequence of translation steps SEQ(rIO)
of length j w.r.t. the new sequence SEQn

i=1(p
∗
i) that replaces SEQn

i=1(pi).

Case 2.2, v 6= (vI)j+1: Due to the fact that the selected node v is not yet translated and that
(vI)1, ..., (vI)n is the complete set of all primary nodes of the given input graph (generated by
the given sequence of TGG production applications) there exists an index k > j+ 1 such that
v = (vI)k. Let (p−I,id)k be the input component of the translation rule derived from (p@m)k.

We know that all context nodes potentially required by (p−I,id)k are already translated. Again
relying on the fact that the algorithm does not throw any error and on Def. 21 we know that
a rule r∗IO exists, derived from a production p∗, which is able to translate the given primary

6If v is a secondary node then the algorithm is able to uniquely determine its primary node v′ and it translates
v′ instead of v. The secondary node v is implicitly translated due to the translation of its primary node v′

(cf. discussion at the end of Sect. 6.6)

143

6. Graph Translators for Extended TGGs

node v. Using the same line of arguments as in case 2.1 we can construct a new sequence of
TGG productions p∗ of length n with the same properties as listed above. As a consequence
the algorithm is again able to create a sequence of translation steps SEQ(r∗IO) of length j+ 1
that has the same properties as the given sequence of translation steps of length j.
Case 3, j = n: The translation rule sequence mimics the complete derivation of the input

graph, i.e., generates a valid translation into a graph triple GT ∗out that has the same input
graph as GTout but may have di�erent correspondence and output graphs then GTout.

6.8.5. Consequences

The consequence of the proof sketches is as follows. If we are able to show for a given correct
TGG that derived translators never abort with an error then:

(1) The presented algorithm terminates.

(2) The presented algorithm can be executed e�ciently (polynomial complexity) as long as
the matches of all translation rules can be computed e�ciently.

(3) Forward and backward translation results are correct, i.e., do only produce graph triples
that belong to the language of the regarded TGG.

(4) Forward and backward translations are complete, i.e., will always produce a result for a
given input graph if the language of the regarded TGG contains a graph triple that has
this input graph as a component.

Finally, our running example shows that in the general case the result of a graph translation
is not uniquely determined up to isomorphism, i.e., sets of TGG productions needed in practice
often do not satisfy any (local) con�uence criteria. Therefore, it was of importance to develop
an e�ciently working graph translation algorithm that does not rely on (local) con�uence
criteria of TGG productions or translation rules, but nevertheless ful�lls the initially presented
expressiveness, correctness, and completeness properties, too!

6.9. Consistency Check Algorithm

The consistency of a graph triple may have been corrupted if one of the graph components
is modi�ed after the initial translation process. A consistency check algorithm detects incon-
sistencies that arise due to these modi�cations. Therefore, a consistency check algorithm can
be utilized by a process that performs incremental updates, i.e., repairs inconsistencies due to
modi�cations of graph components.
The consistency check algorithm described in this section utilizes consistency check rules

(CC rules rCC). Likewise to forward and backward graph translation rules, a CC rule is
derived from a TGG production. A CC rule checks for a given TGG link contained in the
correspondence graph if its current situation in the graph triple is consistent with the situation
de�ned in an according TGG production. That is, starting with a given TGG link, a CC rule

144

6.9. Consistency Check Algorithm

c1:Class
name = t1.name
persistent = true

t1:Table

createType rCC
(t)

o1:Column
name = “_entryID”
type = “NUMBER”

pk1:Key

l1

p-
S,id p-

T,idpC,id

«Type»

c1:Class

p1:Attr

c1:Class

p1:Attr

p3:Attr
next

createFirstProperty rCC
(fp)

createNextProperty rCC
(np)

name = o1.name
type = o1.type

name = o1.name
type = o1.type

t1:Table

o1:Column

o3:Column
next

l2:Type

l1

t1:Table

o1:Column

o3:Column
next

l2:Type

l1
«Prop»

«Prop»

createRelation rCC
(r)

t2:Tablec2:Class
target

c1:Class

as1:Association

source

fko1:Column
name = …
type = “NUMBER”

pk2:Key

fk1:ForeignKey

t1:Table
owner

foreignIdentifier

referee
storage

o:Column

next

l2:Type

l3

l1:Type

opk2:Column
name = “_entryID”
type = “NUMBER”

concat(concat(t1.name, as1.name), t2.name)

«Rel»

c2:Class
super

c1:Class

createInheritanceRelation rCC
(i)

l2:Type

l3

l1:Type

i1:Inherits

t2:Table

pko1:Columnfk1:ForeignKey

t1:Table
owner

foreignIdentifier

referee

storage

pk1:Key

name = “_entryID”
type = “NUMBER”storage

pk2:Key
name = “_entryID”
type = “NUMBER”

pko2:Column
storage

«Inh»

Figure 6.10.: Consistency check rules rCC derived from TGGCDDS.

145

6. Graph Translators for Extended TGGs

checks whether it �nds some match in the graph triple that corresponds to the simultaneous
evolution process de�ned for this TGG link in an according TGG production.
The consistency check rules derived from TGGCDDS are depicted in Fig. 6.107. The compo-

nents of a CC rule are the components of its TGG production where NACs have been removed.
The elements that are created by the TGG production are checked for existence in a CC rule,
i.e., the components of a CC rule rCC are (p−S,id ← pC,id → p−T,id). The derivation process of
CC rules from a TGG production is quite similar to the derivation process of FGT rules and
BGT rules (cf. Sect. 5.2.3). The derivation process of consistency check rules involves the
following steps:

• The primary TGG link contained in the correspondence component of the TGG pro-
duction is set to �bound�. The �create� annotation is removed from the primary TGG
link.

• NACs are removed from the input component and the output component.

• �create� annotations are removed from all elements contained in the source and target
component. This is due to the fact that all elements created by a TGG production�or
by a translator�must be present in the context of the TGG link that was created by
the TGG production.

• TGG parameters that are bound to attributes in both source and target production
components are resolved either in source or target domain and the corresponding at-
tribute is dropped. This is due to the fact that we demand that every operation that
calculates an attribute value is invertible8. In general, the preference for resolving the
TGG parameter either in source or target domain is equal. But, if a TGG parameter
is used in a well-known operation in one of the components (e.g., operation �concat� in
target component of p(r)) then this domain is chosen. Otherwise, the TGG parameter
is resolved in the source domain and the attribute in the target domain is dropped.
Therefore, we have a derivation rule for TGG parameters that can be implemented
deterministically.

• Attributes which are bound to a TGG parameter but have no corresponding attribute
in the opposite domain are dropped. Such attributes are neither context elements of the
TGG production nor do they have a corresponding attribute. Therefore, such attributes
need not to be involved in the consistency check process.

• All assignment operators �:=� of attributes are set to the comparison operator �=�.

The consistency check algorithm (cf. Listing 5) loops through all TGG links. For every
TGG link in the graph triple the algorithm selects the CC rule derived from a TGG production

7Note that we have augmented the consistency check rules depicted in Fig. 6.10 with a stereotype that
depicts the name of the classifying TGG link type of the primary TGG link because this information is
not depicted due to the �bound� notation. The stereotype is placed near the primary TGG link.

8Otherwise, the TGG parameter would have to be resolved in both domains and none of the attribute
assertions would be dropped.

146

6.9. Consistency Check Algorithm

that has created the TGG link. That is, we assume that every TGG link knows which TGG
production (or derived translation rule) created the TGG link. Then the consistency check
rule is executed and it checks whether the given TGG link is consistent. If this is not the case,
the TGG link is added to a set of inconsistent TGG links. Operation �isConsistent(TGGLink)�
corresponds to the derived CC rule and binds the given TGG link to the TGG link of the CC
rule that has been set to �bound�. Finally, the set of inconsistent TGG links is returned by
the algorithm. If the set is empty then all TGG links are consistent according to their TGG
rule speci�cation. Otherwise the set contains all TGG links that are inconsistent according
to their TGG rule speci�cation.

1 procedure Set<TGGLink> checkTGGLinkConsistency(graphTriple: GraphTriple) {

2 inconsistentLinks: Set<TGGLink>;

3 tggLinkGraph: Graph = graphTriple.getCorrespondenceGraph();

4 forall (tggLinkNode ∈ tggLinkGraph) {

5 select ccRule derived from tggProduction that created tggLinkNode;

6 if (not ccRule.isConsistent(tggLinkNode)) {

7 inconsistentLinks.add(tggLinkNode);

8 } }

9 return inconsistentLinks;

10 }

Listing 5: Algorithm that checks consistency of TGG links.

Note that the consistency check algorithm in Listing 5 is only able to check the consistency
of already existing TGG links. It is not able to detect new elements that have been added to
the source or target domain that are not connected with a TGG link. Such new elements are
untranslated, i.e., have an unmarked checkbox in our notation of elements. However, a check
that searches the source and target domain for newly created elements that make the resulting
graph triple inconsistent according to the TGG speci�cation can be added easily in a separate
algorithm. Moreover, the consistency check algorithm is not able to detect missing TGG
links in the correspondence domain, i.e., TGG links that must be added to the graph triple to
connect new elements that have been added to the source and target domain. The consistency
check algorithm in Listing 5 has been designed to only check the consistency of a given set
of TGG links according to the TGG speci�cation. The algorithm can be used in a tool that
visualizes TGG links to mark TGG links as inconsistent. Another feature of this algorithm is
that it only marks TGG links as inconsistent that have �direct� inconsistent context elements
in source, target, or correspondence domain. Inconsistencies in context elements of related
TGG links are not propagated. For example, an inconsistency in a TGG link of TGGCDDS

that relates a class with a table would not propagate this inconsistency to TGG links that
relate an attribute with a column. This way only �direct� inconsistencies of TGG links are
reported and consecutive or inherited inconsistencies are suppressed.

147

6. Graph Translators for Extended TGGs

148

7. Implementation of Approach

This chapter describes the implementation of the approach presented in this thesis. First,
the MOFLON meta-CASE tool is presented in Sect. 7.1. Then, the implementation of the
TGG components is discussed in Sect. 7.2. Finally, we discuss the tool integration framework,
which is used to control the execution of integration scenarios, in Sect. 7.3. More detailed
tutorials for MOFLON and the TGG editor can be found at http://moflon.org.

7.1. The MOFLON meta-CASE Tool

The concepts presented in this thesis are implemented in the meta-CASE tool MOFLON.
MOFLON originated in 2003 at the Real-Time Systems Lab of the Technische Universität
Darmstadt in order to provide MOF metamodeling support. For a description of the his-
tory of MOFLON we refer to [Kön09]. MOFLON [AKRS06] is based on the CASE tool
Fujaba [NNZ00]. Fujaba provides an open plugin architecture and o�ers a GUI framework
for diagram editors based on Java Swing. Fujaba supports creation of structural diagrams
(UML 1.5-like class diagrams) and behavioral diagrams (story driven modeling diagrams) as
well as code generation for both structural and behavioral diagrams. Plugins can (re)use and
extend these structural and behavioral parts and the code generator. The current version of
MOFLON uses Fujaba as basic editing platform, reuses some of its functionality, especially
story driven modeling, and adds new functionality on top. To this end, MOFLON supports
creation of MOF-compliant models, OCL expressions, story driven modeling, triple graph
grammars and code generation for the provided models.

7.1.1. Architecture of MOFLON

Figure 7.1 depicts the architecture of MOFLON. MOFLON provides a MOF 2.0 editor, an
SDM editor (which comes from Fujaba) as well as a TGG editor. These editors allow for the
creation of MOF/OCL, SDM and TGG speci�cations. MOF/OCL speci�cations can also be
imported by an XMI module from other CASE tools. The created speci�cations are given
to a set of code generators and compilers which create JMI-compliant Java code from these
speci�cations. The code generators utilized by MOFLON are: An XSLT based code generation
engine called MOMoC [Bic04] which generates code for MOF models. Moreover, the Dresden
OCL compiler toolkit1 generates an implementation for OCL expressions. Finally, a code
generation engine provided by Fujaba, which is modi�ed by an alternative set of templates,
is used to compile SDM diagrams into Java code.

1http://www.dresden-ocl.org

149

http://moflon.org
http://www.dresden-ocl.org

7. Implementation of Approach

Graph

generate

transform

instantiate

Legend:

Visual MOF 2.0 Editor

Model Integration
Model Transformation

Model Analysis

M O F L O N

M O F L O N

import

repair

augment

Visual SDM Editor

OCL Compiler SDM CompilerRepository Generator

(Rational Rose,
CASE Tools

COTS

Enterprise Architect,
etc.)

Domain Specific Metamodels
Tool Representations

Java Repository

XML
Representation

Tailored
Interfaces

Reflective
Interfaces Metaobjects

Event
Notification

Constraint
Checking

Repair
Transformation

Transformation
Fujaba

MOF 2.0
Metamodel

refine Constraints
(OCL, Java)

XML Interchange
(XMI)

Triple Graph
Grammar

Visual TGG Editor

Figure 7.1.: Architecture of MOFLON (from [AKK+08]).

150

7.1. The MOFLON meta-CASE Tool

The generated code is bundled in a so-called (JMI) repository which provides a standardized
set of interfaces, metaobjects, event noti�cations, and constraint checking operations. JMI is
a standard which has been developed for MOF 1.4. Unfortunately, there exists no updated
version of the JMI standard for MOF 2.0 up till now. Therefore, repositories generated
by MOFLON are either based purely on JMI or on an extended set of interfaces derived
from the JMI interfaces in order to provide certain concepts of MOF 2.0. For example,
JMI provides a Java interface named RefAssociationLink, which is used to implement an
instance of an association, i.e., a link. This interface simply provides methods for accessing
the two members of the link, i.e., the two objects this link connects. MOFLON provides an
interface MOFLONAssociationLink that extends RefAssociationLink and adds a new method
�getClassi�er� which returns the association that classi�es the link as supposed by the CMOF
Abstract Semantics of MOF 2.0 [Obj06].

A repository can be used by other programs or frameworks for model analysis, transforma-
tion or integration tasks. This thesis focuses on model integration tasks and the generated
repositories are used by our integration framework as discussed in Fig. 3.10 (cf. Sect. 3.6).

7.1.2. MOFLON editors

Figure 7.2 depicts a screenshot of MOFLON. The editing pane is divided into a left- and a
right-hand side. On the left-hand side there is a tree view which allows to select MOF and
TGG projects. Moreover, it shows the elements contained in the packages belonging to a
project. The right-hand side shows the diagrams of a project. In Fig. 7.2 two MOF diagrams
have been opened that show the language models of class diagrams and database schemata
(cf. Fig. 3.2 in Sect. 3.3.1) that have been speci�ed as two MOF projects with MOFLON.
The MOF editor uses a bootstrapped MOF 2.0 metamodel implementation and, therefore,
supports all MOF 2.0 elements, e.g., packages, package imports and merges, classes, data
types, primitive types, enumerations, associations, attributes, operations, constraints, and
tags. Graph/model transformations are speci�ed as SDM diagrams which are attached to
certain operations.

Fujaba is based on a proprietary metamodel which provides an abstraction layer for model
elements. This level of abstraction is provided as a set of interfaces, named F-interfaces.
The Fujaba GUI framework requires these F-interfaces to be implemented by elements that
should be visualized by the framework. Whenever changes occur in the model an event
based mechanism automatically updates the GUI. Likewise, whenever changes occur in a
graphical representation of a model element the underlying data structure is synchronized.
Moreover, SDM diagrams require a structural model to be implemented as F-interfaces in
order to function properly. Therefore, the MOFLON MOF-editor has implemented a so-called
Fujaba-MOF-Adapter layer to connect the bootstrapped MOF repository to the F-interfaces.
This adapter is hard to maintain if changes occur in either the MOF implementation or
in the F-interfaces. The integration into the Fujaba GUI framework is even more di�cult.
Unfortunately, Fujaba's GUI framework does not provide certain features typical for modern
GUI frameworks, as zooming and auto-routing. Consequently, the MOFLON architecture is
currently changed such that other GUI frameworks are usable by MOFLON in future versions.

151

7. Implementation of Approach

Figure 7.2.: Screenshot of MOFLON.

152

7.1. The MOFLON meta-CASE Tool

Fujaba's editing framework provides a transaction based persistence support mechanism.
Every time a model element is changed the change is persisted, i.e. deltas that occur in a
model are persisted. During development this produced many problems in persisted �les when
errors occurred while a change was in progress. Consequently, un�nished transactions were
rolled back but during the rollback further errors occurred which leaded to inconsistent (i.e.,
corrupted) model states.

Figure 7.3.: MOFLON's OCL expression editor.

MOFLON provides support for enriching certain MOF elements with OCL expressions (cf.
Fig. 7.3). During code generation, OCL expressions are passed to the Dresden OCL compiler
toolkit which generates Java code from these expressions. The code generated by the OCL
compiler is then integrated with the code generated by the repository generator. Figure 7.3
depicts the OCL invariant attached to the context of a class that demands that every two
attributes owned by a class must have di�erent names (cf. Sect. 3.3.2). During runtime a
distinguished operation can be performed which checks whether this constraint is ful�lled.

In addition, the repository generator adds multiplicity constraint checks for every associa-
tion end. This enables to check at repository runtime whether the multiplicity constraints of
an association end (e.g., �1..*�) are ful�lled.

153

7. Implementation of Approach

7.2. TGG in MOFLON

Figure 7.4 depicts the architecture of the work�ow of MOFLON's TGG editor. The TGG
editor consists of a TGG schema editor, a TGG rule editor2, a generator, and a set of rule
derivation strategies. The schema editor requires a source and target metamodel to which it
connects the speci�ed TGG link types. The rule editor depends on the schema editor because
each TGG production is attached to a certain TGG link type. Both TGG schema and rule
speci�cation are given as TGG project to the generator that translates this TGG project into a
MOF and SDM representation. The resulting MOF speci�cation contains the structural part
of the TGG project, whereas the behavioral part (i.e., the operational rules) is speci�ed as
SDM diagrams. The resulting MOFLONMOF project is then passed to MOFLON's generator
and compiler backend (cf. Fig 7.1) which results in JMI compliant integration rule code. This
integration rule code corresponds to the two components generated translation rule code and
generated repository of link management tool adapter depicted in Fig. 3.10 (cf. Sect. 3.6). The
integration framework, i.e., the integrator, then uses this code to perform certain integration
tasks in the integration scenario it is currently executing.

7.2.1. TGG Editor

The TGG editor is implemented as Fujaba plugin. As a structural editor, the TGG schema
editor implements certain structural F-interfaces. Contrary, the TGG rule editor is a be-
havioral editor, which has been designed as a specialization of the SDM implementation. It
extends certain SDM datatypes and, in addition, the rule editor is aligned with the SDM
editor. The implementation of the TGG editor is based upon two metamodels. One for the
schema editor and one for the rule editor. The description of these metamodels is out of scope
for this contribution. The interested reader is referred to [Kön09] where these metamodels
are explained in detail.

A screenshot of the TGG schema editor is depicted in Fig. 7.5. The TGG schema editor
allows to create TGG link types and to structure them in TGG packages. The outermost TGG
package cdds attaches to the packages that contain the language models of class diagrams
and database schemata, which allows to integrate the elements of both language models in
this TGG package. Five TGG link types have been speci�ed in Fig. 7.5. Note that due to
technical reasons association Inherits has been �normalized� to a class named Generalization
because instances of an association, i.e., links, cannot be treated as �rst class members in the
current story driven modeling implementation, e.g., no connections can be attached to links.
The depicted TGG link types are the realization of the TGG schema depicted in Fig. 4.3
(cf. Sect. 4.2). To each of the TGG link types a TGG production is attached. Note that
the multiplicities of the ends of TGG link types have been set to either �1� or �0..1�. The
semantics is as follows: If the multiplicity of an end of a TGG link type, e.g., type Class, is set
to �1�, then for each instance of the opposite end, e.g., type Table, an instance of a TGG link
type must exist that connects the opposite instance with an instance of the other end of the
TGG link type. If the multiplicity of an end of a TGG link type, e.g., type Attribute, is set

2Due to historical reasons it is TGG rule editor instead of TGG production editor.

154

7.2. TGG in MOFLON

TGG Editor

Schema Editor

Rule Editor

MOFLON

<<depends on>>

to be integrated
metamodels as

MOF specification
<<requires>>

GeneratorMOF2.0 /
SDM Rule Set

<<generates>>

compiler

JMI compliant
integration rule code

<<generates>>

Rule Derivation Strategies

IntegratorSource
Model

Target
Model

Correspondence
Links

<<links>> <<links>>

Figure 7.4.: Architecture of the TGG-Editor (from [KKS07]).

155

7. Implementation of Approach

Figure 7.5.: TGG schema editor: packages and link types.

156

7.2. TGG in MOFLON

to �0..1�, then for each instance of the opposite end, e.g., type Column, an instance of a TGG
link type may�but need not�exist that connects the opposite instance with an instance of
the other end of the TGG link type. The rationale for this is rather intuitive: for each class
there must exist a corresponding table and for each table there must exist a corresponding
class. Furthermore, for each attribute there must exist a corresponding column. But, for each
column there need not exist a corresponding class because according to the TGG productions
of TGGCDDS (cf. Fig. 4.6 in Sect. 4.4) there are some columns that are used as secondary
elements which do not have a corresponding element in the opposite domain.

Figure 7.6.: TGG rule editor: TGG productions.

TGG productions are edited in the TGG rule editor. A screenshot that shows the TGG
production associated with TGG link type Relation (cf. Fig. 4.6) is depicted in Fig. 7.6. As
already mentioned, the rule editor is a behavioral editor that allows to model declarative TGG
productions. Figure 7.6 contains a pattern consisting of certain (negative) objects, links, and
TGG links (cf. Sects. 4.3 and 4.4 for a detailed discussion of TGG productions).

7.2.2. Translating a TGG Project

A TGG project is translated into a MOFLON MOF project in order to generate code from
it. The MOF project is an intermediate modeling artifact and is used for debugging purposes
only.

157

7. Implementation of Approach

Figure 7.7.: MOF project generated from TGG project.

158

7.2. TGG in MOFLON

Figure 7.7 depicts the MOF project generated from the TGG schema depicted in Fig. 7.5
and the operational rules generated from the TGG productions of TGGCDDS. Besides two
technical packages containing referenced types and primitive types, a package named �links�
containing a part of the TGG links runtime metamodel is generated. However, from these
packages no code will be generated because the code still exists in a library and is accessed
from the generated code. In addition, for each TGG package a MOF package is created.
For these packages code is generated later on. Then, each TGG link type is mapped to a
MOF class that derives from the class TGGLink. The mapped class is connected via two
associations to the elements of the source and the target domain respectively. The TGG
elements in the TGG project and their corresponding elements in the MOF project have been
marked in Fig. 7.7.
Class TGGLink de�nes an interface that must be implemented by every deriving TGG link

so the integration framework is able to execute TGG algorithms successfully. Altogether,
quite a number of operational rules that are derived from a TGG production are part of
this interface. However, most of them are used to perform incremental update operations
which are out of scope in this contribution. The operational rules which are relevant for this
contribution are:

• �isAppropriateFor(RefObject): Boolean�: This operation checks whether the given ob-
ject is type compatible with the primary element of source and target domain respec-
tively. This operation is used by TGG algorithms in order to determine the candidate
rules for translating a given primary object.

• �translateForward(RefObject): RuleResult�: This operation translates the given pri-
mary element of the source domain into a corresponding element structure of the target
domain according to the speci�cation in the TGG production. The return object of
type RuleResult is part of the TGG links runtime metamodel and contains the following
information about the translation process:

� whether the translation process was successful,

� which elements are required as context elements by the translation process,

� which secondary elements are included in the translation process,

� which elements where created in the opposite domain, i.e., target domain, and

� a pointer to the TGG link created by this operation.

• �translateBackward(RefObject): RuleResult�: Same as operation �translateForward�
but for translating in the reverse direction, i.e., from target domain to source domain.

• �isConsistent(): Boolean�: This operation checks whether an instance of this TGG link
is consistent with the situation speci�ed in the TGG production.

Figure 7.8 depicts operational rule �translateForward� derived from the TGG link type Type
and its corresponding TGG production. This rule is used by TGG algorithms during forward
translation. The rule derivation strategy applied to generate this operational rule is inspired by
the derivation process of forward/backward translation rules from a TGG production described

159

7. Implementation of Approach

Figure 7.8.: Operational rule translateForward generated from TGG production.

160

7.2. TGG in MOFLON

in Sect. 5.2.3. The operational rule �translateForward� is divided into four activities. First,
an instance of type RuleResult is created. Then, the main operation that tries to translate a
given class element into a corresponding table structure is executed. A TGG link of type Type
is then created that connects the given class element with the newly created table element. If
this operation fails then the rule result object is simply returned stating that the operation was
not successful. In the general case, i.e., when context elements are matched by a translation
rule, these context elements are also added to the set of required elements managed by the rule
result object when the operation fails. Moreover, additional secondary elements, i.e., elements
to-be-translated by the rule, are also added to the set of of included elements managed by the
rule result object. Otherwise, if the main operation succeeds, then the rule result object is
modi�ed, such that the newly created elements in the target domain are added to the collection
of opposite elements. Moreover, the newly created TGG link is added to the collection of TGG
links managed by the rule result object. As the TGG production does not create additional
secondary elements in the source domain no elements need to be added to the collection of
included elements managed by the rule result object. Likewise, no additional context elements
are required to be translated beforehand, so the collection of required elements managed by
the rule result object does not need to be modi�ed.
The rule result object manages all elements touched by the translation rule. Note that core

rules (cf. Sect. 6.2) are used by the algorithm in Listing 4 (cf. Sect. 6.6). These core rules are
used to identify the core matches of a translation rule. The core rules of all TGG productions
of TGGCDDS used by our algorithm have been presented in Fig. 6.1 and are already discussed
in Sect. 6.2. They look very similar to the operational forward and backward operations.
Moreover, they are almost identical despite the fact that only elements of the input domain
are part of a core rule. So, core rules and operational translation rules use the same rule
result structure to identify elements that are used as context elements or that are secondary
elements to-be-translated by the corresponding translation rule. The elements matched by a
core rule are passed to the algorithm via the rule result object. So, the algorithm in Listing 4
operates on elements that are managed by the rule result object after a call to a core rule.
Figures 7.9 and 7.10 depict the Java code that corresponds to the operational rule depicted

in Fig. 7.8. The four activities belonging to operation �translateForward� that contain story
patterns have been highlighted in Figs. 7.9 and 7.10 for better readability. The Java code
is generated with the SDM compiler CodeGen2. The SDM compiler uses a special set of
templates that is able to establish a connection to a repository registry implementation. The
repository registry is used every time an element from source, link, or target domain is queried
or created (cf. Sect. 7.3.1 that explains why a registry is necessary in this case). In line 205
the repository registry is used to create an instance of a rule result element. This rule result
element is used to mark distinguished created elements or elements used as context in the
input domain. The call in line 225 creates a TGG link of type Type in the link domain.
Lines 228 to 235 create three objects in the target domain�a table, a column, and a primary
key. These objects are then linked with each other and with the TGG link in lines 250
to 281. Lines 312 to 328 update the rule result object. Therefore, the created TGG link
and the created objects contained in the opposite domain are added to distinguished sets of
the rule result object. Moreover, elements that are required as context elements before the
translation operation is possible and additional secondary elements of the input domain are

161

7. Implementation of Approach

Figure 7.9.: Java code generated for operational rule translateForward (part 1 of 2).

162

7.2. TGG in MOFLON

Figure 7.10.: Java code generated for operational rule translateForward (part 2 of 2).

163

7. Implementation of Approach

added to the rule result object if they exist in the operational rule. In this example there
are no such elements. However, the backward translation operation of TGG link type Type
would add the column and the primary key as additional secondary elements to the rule result
object. Moreover, the code generated for the operational rules derived from the other TGG
productions �FirstProperty�, �NextProperty�, �Relation�, and �InheritanceRelation� would add
required context elements to the rule result object (cf. Figs. 5.6 and 5.7 in Sect. 5.2.3 for the
operational rules derived from the TGG productions).

7.3. Tool Integration Framework

The tool integration framework is used to instantiate three repositories: one for the source
domain, one for the target domain, and one for the link domain that integrates source and
target domain. Moreover, it is used to control operations that are performed on these repos-
itories. An overview of the architecture of the integration framework has already been given
in Sect. 3.6.

Figure 7.11.: Screenshot of the Integration Framework.

The integration framework (depicted in Fig. 7.11) provides a graphical user interface which
is divided into three sections. The �rst section allows for the con�guration of a TGG scenario.
In our case, the class diagrams to database schemata integration scenario has been chosen.

164

7.3. Tool Integration Framework

The second section o�ers the possibility to con�gure an algorithm that performs certain op-
erations on the three repositories. The third section provides a graphical view onto the three
repositories. This view is realized by a linkbrowser component, which is a modi�ed version
of a software component named matrix browser [ZKB02]. After the repositories have been
instantiated and an operation has been executed (cf. Fig. 7.12), the linkbrowser is refreshed
and the interrelations between corresponding elements are visualized. On the left-hand side
of the linkbrowser the elements of the source domain are visualized in a column. In the upper
part of the linkbrowser the elements of the target domain are visualized in a row. The TGG
links that connect elements from the source domain with elements from the target domain are
visualized in between as entries of the matrix made up by the entries of the row and column.

Figure 7.12.: Integration Framework after forward translation.

The linkbrowser marks elements with di�erent colors:

• black: No changes where made to this element recently.

165

7. Implementation of Approach

• green: The element has been created recently.

• red: The element has been deleted recently.

• cyan: A property of this element has been changed recently.

The linkbrowser allows to collapse elements that are in a certain hierarchy relation. For
example, attributes are modeled as part of a composite relation to classes. Consequently,
attributes are visualized beneath classes and can be folded.
Unfortunately, the linkbrowser visualization does not scale well if large models containing

more than 1000 elements are displayed.
The implementation of the integration framework is divided into model, view, and con-

troller according to the MVC pattern [GHJV95]. Consequently, the GUI is divided from
the logic. TGG algorithms are stored in a separate module. However, di�erent TGG algo-
rithm implementations may be con�gured in the integration framework as a TGG algorithm
implementation may have certain variation points.
The implementation of TGG links has an in-memory representation according to the JMI

repository generated from the TGG project. However, serialization and visualization of TGG
links is realized with two maps that are synchronized with the TGG link in-memory repre-
sentation by using the provided event mechanisms. The maps are ID based as every element
of the source and target domain has a unique ID. The connection of a TGG link to its source
and target domain element is re�ected by the existence of an entry in both maps.
The integration framework allows to check constraints during runtime of a repository, ei-

ther source, link, or target repository. It simply calls the according operation �refVerifyCon-
straints(boolean deepVerify): Collection<javax.jmi.re�ect.JmiException>� provided by the
JMI standard. If this operation is called on the outermost package of a repository (with
the parameter �deepVerify� set to true) then the whole repository is checked for ful�lling the
speci�ed constraints, also OCL constraints.

7.3.1. Accessing Repositories

The code generated for operational rules resides in the link domain repository. It needs to
get access to elements that reside in foreign repositories, namely the source and the target
domain repository. This is due to the fact that operational rules create, modify, and analyze
elements in the source and target domain.
The problem is that MOF compliant implementations do not have the possibility to get

outside of their repository. That is, the scope of a repository is limited to this repository
and other repositories are not visible. For example, the repository of the link domain cannot
access the source and target domain repositories directly. The OMG provides a solution for
this insu�ciency. It proposes a facility mechanism that is able to provide an entry connection
point to the metadata contained in a repository [Obj10a]. A mechanism that is based on the
ideas presented in this proposal has been implemented in MOFLON. Figure 7.13 depicts a
class diagram of the vital part of the repository registry that realizes this mechanism. With
this registry, the repository containing the translation code is able to access all necessary
repositories: the source, target, and link domain repositories.

166

7.3. Tool Integration Framework

Figure 7.13.: Class diagram of the repository registry.

This registry is used for getting access to types3 de�ned by the metamodel of a JMI com-
pliant repository. The registry mainly allows to query types and to create instances of classes.
An outermost package of a metamodel contained in a repository may be registered with a
unique key. Typically, a metamodel contains exactly one outermost package, but in general
is not restricted to only have one outermost package. Starting at the outermost package of a
metamodel all nested elements can be queried by name using re�ection. The registry imple-
mentation can also be used to search for a type in all registered outermost packages. However,
there may be collisions if the type is available in more than one outermost package.

In terms of the MOF 2.0 Facility and Object Lifecycle Speci�cation (MOFFOL) [Obj10a]
this registry can be compared to a �Facility�. A Facility contains zero to many Extents and
represents the means for clients to �connect� to models and elements, which are accessed
via Extents. An �Extent� is the MOF2 equivalent of the JMI �RefPackage� in MOF1.4. A
Repository is the equivalent of the MOF2 concept �Extent�. The Extents supported by this
registry are �outermost packages�. The registry uses unique keys associated to Extents instead
of Extent::name to identify an Extent in this Facility.

The following modi�cations had to be done in the implementation of MOFLON. MOMoC
was adjusted such that during creation time of a repository, a key is dynamically associ-
ated with this repository at runtime, i.e., a unique key is generated and used to register the
repository at the facility. The TGG generator was adjusted such that each link repository,
containing the TGG implementation, stores the keys of its source and target repository and
provides a mechanism for getting access to this piece of information. The generator for SDMs
that produces code for accessing elements of a foreign repository had to be adjusted, such
that the code generated from operational rules uses the registry mechanism passing source
and target keys to the registry when accessing elements residing in foreign repositories. Fi-
nally, the integration framework now assigns the keys of the source and target repository to
the link repository at runtime.

The registry provides the following operations:

3The registry currently supports the meta types class and association.

167

7. Implementation of Approach

• �get(): RepositoryRegistry�: Gets the singleton instance of this class which is unique in
every Java Virtual Machine. Returns the one and only instance of this class.

• �registerRepository(String repositoryKey, RefPackage outermostPackage): boolean�: Reg-
isters an outermost package of a repository at this registry. An outermost package may
be registered with multiple unique keys. Each unique key identi�es exactly one out-
ermost package. Returns a boolean value specifying whether the outermost package is
now registered with the given key.

• �unregisterRepository(String repositoryKey): RefPackage�: Unregisters a formerly regis-
tered outermost package by removing the key from this registry. Returns the outermost
package that was registered with the given key or null if no outermost package was
registered with the given key.

• �unregisterRepository(RefPackage outermostPackage): RefPackage�: Unregisters a for-
merly registered outermost package by removing all associated keys from this registry.
Returns null if no keys are associated with the given outermost package or the outermost
package otherwise.

• �getRepositoryKeys(): Set<String>�: Gets all keys that are currently registered.

• �getRepositoryKeys(RefPackage outermostPackage): Set<String>�: Gets all keys asso-
ciated with the given outermost package.

• �getMetamodel(String key): RefPackage�: Gets an outermost package that has been
formerly registered with the given key. Returns the outermost package if it has been
registered with the given key. Null otherwise.

• �getClass(String repositoryKey, String qName): RefClass�: Looks up a class in the given
outermost package. �qName� is the full quali�ed name of the class to be looked up in
the outermost package. Returns the class if it exists in the outermost package. Null
otherwise.

• �getInstance(String repositoryKey, String qName): RefObject�: Convenience method
that creates an instance of a class in the given outermost package. Returns an instance
of the class with the speci�ed name if it exists in the outermost package. Null otherwise.

• �getAssociation(String repositoryKey, String qName): RefAssociation�: Looks up an
association in the given outermost package. �qName� is the full quali�ed name of the
class to be looked up in the outermost package. Returns the association if it exists in
the outermost package. Null otherwise.

Furthermore, the registry can be switched with attribute queryAllRepositories into a mode
that looks up all registered repositories when a query for the existence of a class or association
is requested instead of looking up just the repository with the speci�ed key. This especially
increases robustness and takes e�ect if due to some issue a repository is reregistered with
another key at the repository during runtime. However, this mode signi�cantly slows down
the execution time of operations �getClass� and �getAssociation�.

168

8. Related Work

Based on the characterization of �useful� TGGs in Chap. 4 we proposed extensions to triple
graph grammars in Chap. 5 and a new translation algorithm in Chap. 6 which is applicable by
bidirectional language translators. In this chapter we compare our approach of mapping two
di�erent formal languages onto each other with several related approaches. Therefore, we have
chosen a number of representatives of this sort of model transformation approaches. We start
with a discussion of decision criteria for unidirectional and bidirectional model transformation
approaches in Sect. 8.1. In Sect. 8.2 we will have a look at selected model transformation
approaches. Section 8.3 gives an overview of the di�erent approaches to triple graph grammars
that are all based on TGGs as de�ned by Schürr in [Sch95]. The chapter is concluded by a
summary of the discussed approaches in a feature matrix in Sect. 8.4.

8.1. Decision Criteria

In the following, we will review some of the criteria, published by Czarnecki et al. in [CH03]
and [CH06], used to compare di�erent model transformation approaches. Some of the criteria
will be discussed in the text, whereas others will only be given in the feature matrix in Sect. 8.4.
As we have learned already in the preceding chapters, transformation rules consist of two

parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS accesses the input model,
whereas the RHS expands in the output model. Both LHS and RHS can be represented using
any mixture of variables, patterns, and logic. Patterns can be string, term, and graph patterns.
String patterns are used in textual templates, whereas model-to-model transformations (as in
our case) usually use term or graph patterns. Patterns can be represented using abstract or
concrete syntax of the corresponding input or output model language, and the syntax can be
textual and/or graphical. Logic expresses computations and constraints on model elements.
Logic may be non-executable or executable. We focus on transformation languages which
provide an executable logic, which can take a declarative or imperative form. In the declarative
form the program describes what should be accomplished. Whereas in the imperative form a
control �ow and an algorithm are given which describe how a problem should be solved.
Another aspect is bidirectionality of a rule which allows execution in both directions. In the

case of TGGs, two so-called operational rules are derived from one bidirectional TGG rule,
which allow to execute forward and backward transformations. Most other approaches are
unidirectional. The e�ect is that if both forward and backward transformations are required
these have to be speci�ed in two separate rules which have to be kept in a consistent state
manually.
We will also have a look at rule organization. Especially, we are interested in modularization,

i.e. packaging rules into modules, and reuse mechanisms like inheritance between rules. In

169

8. Related Work

addition we will have a look at the traceability support of transformation approaches. Some
tools have integrated support for traceability, which allows, e.g., synchronization between
models, i.e., incremental updates and determining the output of a transformation. Some
approaches provide dedicated support for traceability, while others expect the user to encode
traceability using the same mechanisms as for adding any other kinds of links in models. Some
approaches with dedicated support for traceability require developers to manually encode the
creation of traceability links in the transformation rules, while other create traceability links
automatically.

Stevens discusses a framework for bidirectional transformations in [Ste10] based on thoughts
about QVT. She focuses on basic requirements which bidirectional transformations should sat-
isfy. The basic requirement that is pointed out by Stevens is coherence, i.e., satisfaction of the
three conditions (1) correctness meaning that forward and backward transformations ensure
that source and target model are in a consistent state according to the transformation relation,
(2) hippocraticness or �check then enforce� semantics, i.e., transformations do not modify a
pair of models if they are already in the speci�ed relation, and (3) undoability, i.e., the ability
to revert a modi�ed model to the original version. Her theoretical approach is based on math-
ematical relations. She assumes that forward and backward transformations are expressible
as mathematical functions. Furthermore, she states that a bidirectional transformation need
not to be bijective. The behavior of a transformation may depend on the current value of the
target model as well as on the source model. Furthermore, the behavior of a transformation
should be deterministic, so that modeling it by a mathematical function is appropriate. The
same transformation, given the same pair of models, should always return the same proposed
modi�cation. Her approach requires transformations to be total in the sense that forward and
backward transformation are total functions.

The requirements for bidirectional transformations stated by Stevens are applicable to the
implementation of bidirectional translators derived from a TGG speci�cation. So, they become
interesting when comparing di�erent tool implementations of TGG-based translators. Instead
we will focus on the comparison of di�erent approaches to the TGG language in Sect. 8.3 and
will not compare di�erent tool implementations of TGGs.

8.2. Related Model Transformation and Model

Integration Approaches

In this section we will discuss some selected model transformation approaches. Namely, we will
have a look at ATL, Viatra2, Tefkat, ETL, AToM3, and GRoundTram. These approaches serve
as a representative (but by no means complete) set of currently relevant model transformation
approaches based on di�erent technologies or formalisms. Most of them are unidirectional
approaches and can, e.g., be used as underlying language for the de�nition of operational
rules derived from a bidirectional TGG speci�cation. Note that we have already discussed
Story Driven Modeling (SDM), which is implemented in the CASE tool Fujaba and used by our
tool MOFLON (cf. Chap. 7), in Sect. 2.8.3. In principle, all discussed model transformation
approaches could be used to specify the operational rules derived from a TGG assumed that

170

8.2. Related Model Transformation and Model Integration Approaches

they are feature compatible with SDMs. For a more comprehensive survey of bidirectional
(model) transformation approaches we refer to [CFH+09]. As a representative of bidirectional
model transformation approaches, we conclude this section with a discussion of QVT, the
model transformation standard proposed by the OMG, and its relation to the TGG language.

8.2.1. ATL

ATL (ATLAS Transformation Language) is a hybrid model transformation language that al-
lows both declarative and imperative constructs to be used in transformation de�nitions [JK05].
ATL is developed as part of the AMMA (ATLAS Model Management Architecture) platform.
ATL transformations are unidirectional, operating on read-only source models and produc-
ing write-only target models. A bidirectional transformation is implemented as a couple of
transformations: one for each direction. In ATL rule inheritance can be used as a code
reuse mechanism and also as a mechanism for specifying polymorphic rules. ATL is able
to handle metamodels that have been speci�ed according to either the MOF or the Ecore
semantics [atl11a].
Declarative ATL rules are composed of a source pattern and of a target pattern. A source

pattern speci�es a set of source types and a guard (an OCL Boolean expression). A source
pattern is evaluated to a set of matches in source models. The target pattern is composed of a
set of elements. Every element speci�es a target type and a set of bindings. A binding refers
to a feature of the type (i.e. an attribute, a reference or an association end) and speci�es an
initialization expression for the feature value. Declarative rules are executed over matches of
their source pattern. For a given match the target elements of the speci�ed types are created
in the target model and their features are initialized using the bindings. Executing a rule on a
match additionally creates a traceability link in the internal structures of the transformation
engine. This link relates three components: the rule, the match (i.e. source elements) and
the newly created target elements.
ATL is accompanied by a set of tools that include the ATL transformation engine, the

ATL integrated development environment (IDE) based on Eclipse [atl11b], and the ATL
debugger. ATL transformations are compiled to programs in specialized byte-code. Byte-
code is executed by the ATL virtual machine. The virtual machine is specialized in handling
models and provides a set of instructions for model manipulation.
ATL and OMG's QVT (cf. Sect. 8.2.7) share some common features as they initially shared

the same set of requirements de�ned in the QVT Request For Proposal�once ATL was one
implementation of this proposal. However, actual ATL requirements have changed over time
as this language matured [JK06].

8.2.2. Viatra2

Viatra [CHM+02] is a model transformation tool integrated into Eclipse and available under
the Eclipse Public License [via11]. Viatra supports speci�cation, design, execution, valida-
tion, and maintenance of transformations within and between various modeling languages and
domains. Similarly to MOF and EMF it provides a proprietary model space for uniform rep-
resentation of models and metamodels. Its transformation language has both declarative and

171

8. Related Work

imperative features and is based upon formal mathematical techniques of graph transformation
and abstract state machines [VB07]. The abstract state machines allow to assemble complex
transformation programs. In Viatra, transformation rules are unidirectional. The transforma-
tion engine supports incremental model transformations and is realized as an interpretative
approach. Contrary to traditional pattern matching approaches, Viatra's incremental pat-
tern matching approach determines and updates matches in graphs after modi�cation of the
graph incrementally, which a�ects the e�ciency of model-to-model transformations. When
performing inter model transformations, a traceability model can be explicitly added and used
separately. Consequently one could also use the Viatra framework for realizing a triple graph
grammar engine.

8.2.3. Tefkat

Tefkat [LS05, tef11] is a model transformation engine which is embedded into the Eclipse
Modeling Framework EMF. It realizes a declarative implementation of model transformation
and is based on Frame Logic (F-logic) [KLW95]. The Tefkat language was designed speci�cally
for the transformation of MOF models using patterns and rules. One of the design issues of
Tefkat was to address the OMG's QVT request for proposal, which resulted in a language
that is quite similar to the QVT Relations language. Change propagation, i.e., incremen-
tal transformations, can be supported through a model-merge process. In order to enable
traceability, Tefkat uses so-called tracking classes to represent mapping relationships between
source and target elements. A Tefkat transformation rule is unidirectional. It matches and
then constrains objects either from the source model or from the trackings, and then creates
a number of target model objects with a set of constraints. Besides a standalone implementa-
tion, Tefkat is also implemented as Eclipse plugin which provides a syntax-highlighting editor
and supports debugging.

8.2.4. Epsilon Transformation Language

The Epsilon Transformation Language (ETL) [KRP11, KPP08] is a hybrid, rule-based model-
to-model transformation language that is built upon the Epsilon Object Language (EOL)
[KPP06]. Both are part of the Epsilon framework which is implemented as Eclipse GMT
component. ETL is seamlessly integrated with a number of other task-speci�c languages to
help to realize composite model management work�ows, e.g., model-to-text transformation,
model comparison, validation, merging and unit testing. The idea behind EOL is to provide
the meta-modeling community with a general approach to access and manipulate models
regardless of their underlying formalism (e.g., MOF, Ecore, KM3, etc.). EOL is an OCL-
based imperative language that provides features such as model modi�cation, multiple model
access, conventional programming constructs (variables, loops, branches etc.), user interaction,
pro�ling, and support for transactions. EOL was designed to overcome the restrictions of
OCL but still comply to precise semantics. ETL is a hybrid approach allowing for declarative
patterns and an imperative fallback to call EOL methods and ETL rules. Traceability is
implicitly maintained that allows for additional cross model checking with EVL�the Epsilon
Validation Language. The model transformation engine runs in batch mode and also in

172

8.2. Related Model Transformation and Model Integration Approaches

a (semi-)interactive mode by specifying rules that prompt the user for input during their
execution. Incremental model transformations utilize the previously established trace model
and in addition regard speci�cation information that de�nes which elements have to be kept.
ETL is designed as a unidirectional transformation language. It is highly reusable due to its
precise semantics of inheritance [WKK+11] and modules (via EOL modules). Furthermore,
ETL is not limited to transformation speci�cations that cope with one source and target
model only, but with m source and n target models simultaneously, i.e., an arbitrary number
of source models can be transformed into an arbitrary number of target models.

8.2.5. AToM3

AToM3 is a meta-modeling tool which uses graph grammars as underlying mechanism for
model transformations [dLV02]. Models are internally represented as Abstract Syntax Graphs
(ASGs). The left- and right-hand sides of a graph pattern are modeled separately. Patterns
in graph transformation rules may be enriched with additional textual conditions speci�ed
in Python or in OCL. The execution order of rules during graph rewriting is based on a
user-de�ned priority.
AToM3 has been extended to support triple graph grammars based on type graphs with

inheritance [GdL04, TEG+05]. A formalization of inheritance on type graphs with triple graph
grammars was out of scope in our contribution. However, inheritance is supported in our
implementation of TGGs in MOFLON. (Negative) application conditions are also supported
in TGG productions based on [GdL04]. Moreover, AToM3 allows to model TGG productions
which delete elements. However, AToM3 is not able to derive forward and backward translators
from a TGG speci�cation�which is done in our approach. Instead, a triple graph replacement
system is generated from the triple speci�cation. A user is now able to build models with
this system according to the speci�ed syntax. The system triggers events if the user performs
a creation, editing, or deletion operation in one domain. This invokes the application of
rules which modify the graphs of the opposite and correspondence domain. In [GdL04] this
is called a combination of event-driven grammars and triple grammars. The e�ect is that
modi�ed elements in one domain allow for small incremental updates according to the invoked
operation. The main advantage is that the triple graph replacement system which serves as
an integration system always knows�thanks to the triggered events�which TGG production
is applied by the user. Instead, our integration system, i.e., TGG algorithm, has to �gure
out which TGG production is applied on his own by parsing the input graph and comparing
the situation in the input graph with patterns contained in the TGG productions. So, the
approach to TGGs at translator level in AToM3 is orthogonal to our approach and, therefore,
does not need to be evaluated in detail further here.

8.2.6. GRoundTram

GRoundTram (Graph Roundtrip Transformation for Models) is a system that can be used
to build a bidirectional transformation between two models (graphs) [HHI+10, HHI+11]. A
model transformation is described in UnQL+, which is functional (rather than rule-based)
and compositional with high modularity for reuse and maintenance. UnQL+ is a high-level,

173

8. Related Work

SQL-like programming language for describing queries / graph transformations in a textual
syntax. In the GRoundTram system, all UnQL+ programs are �rst compiled (also called
desugared) into UnCAL and then run. UnCAL (Unstructured Calculus) is the core graph
algebra of UnQL+. It is rather low-level and more machine-friendly. UnCAL consists of a
set of constructors for building graphs and a powerful structural recursion for manipulating
graphs. This graph algebra has clear bidirectional semantics and is evaluated in a bidirectional
manner.
Graphs in UnQL+ and UnCAL are rooted and directed cyclic graphs with no order between

outgoing edges. They are edge-labeled in the sense that all information is stored as labels on
edges and the labels on nodes serve as a unique identi�er and have no particular meaning.
Input and output graphs for an UnQL+ program are written in the UnCAL format. UnCAL
can also describe graph transformations, not just graphs themselves. Metamodels are repre-
sented in the KM3 format [JB06] (Kernel MetaMetaModel�an implementation-independent
language to write metamodels; developed at INRIA and supported under the Eclipse platform;
structurally close to eMOF 2.0 and Ecore).
Due to the bidirectional semantics of UnCAL, a backward model transformation can be

automatically derived from a forward model transformation, so that both transformations
can form a consistent bidirectional model transformation. GRoundTram implicitly keeps trace
information between source and target models after transformations which is then used for
bidirectional transformations. The produced target model is a traceable view that has trace
IDs assigned to all of its nodes. GRoundTram has been designed to support bidirectional
transformations in the sense that after applying a forward transformation the system can also
propagate changes on the target model back to the source (backward updating/evaluation).
In database speci�c terms, a forward transformation is used to produce a target view from
a source, while the backward transformation is used to re�ect modi�cation on the view to
the source. So, GRoundTram interprets UnQL+/UnCAL source �les for modi�ed output
graphs and produces an input graph in which modi�cation on the output graph is re�ected.
Consequently, a backward transformation is performed after a forward transformation has
been successfully executed. This is contrary to our approach which derives both forward
and backward transformation rules from one single bidirectional rule which are executable
independently from each other.

8.2.7. QVT

The OMG has standardized the transformation language QVT (Query / View / Transfor-
mation) in 2008 [Obj08]. QVT is based on MOF and OCL. QVT is mainly used to specify
a transformation of models of one domain into models of another domain. Its architecture
consists of a declarative and an imperative part. The declarative part consists of the two
languages Relations and Core, which are on di�erent abstraction levels. The QVT standard
de�nes a mapping from the Relations language to the Core language. QVT Core is equally
powerful to the Relations language, but QVT Relations is more user-friendly. The imperative
part is made up of the Operational Mappings language and Black Box implementations. Only
the declarative part is of relevance when comparing QVT with TGGs. QVT Relations sup-
ports complex object pattern matching and object template creation which is quite similar

174

8.2. Related Model Transformation and Model Integration Approaches

to graph pattern matching. Correspondences of two (or more) domains are speci�ed in a
relational way. Besides a textual abstract syntax the Relations language supports a graphical
representation1, too. QVT Core is a small language that only supports pattern matching over
a �at set of variables. Both QVT and TGGs establish traceability links while performing a
transformation. QVT Relations implicitly de�nes the trace (meta)model, whereas it is ex-
plicitly de�ned by QVT Core and TGGs. QVT has a �check then enforce� semantics, which
means that a transformation is only enforced if a former check reveals that the source and
target models are in an inconsistent state.

Kurtev discusses the state of the art of QVT in [Kur08]. He gives an overview to the QVT
languages and summarizes the currently available QVT tools.

Königs [Kön09] as well as Greenyer and Kindler [Gre06, GK10] investigated the similarities
of QVT and TGGs. They found that both languages have much in common and that QVT can
be realized by TGGs. Greenyer and Kindler propose a transformation of QVT Core mappings
to TGG productions. This way QVT Core mappings can be translated into a TGG. In
conjunction with the transformation speci�cation from QVT Relations to QVT Core given in
the QVT speci�cation, both declarative languages of QVT may be executed by TGG engines.
More generally, QVT can be realized with graph grammar-based approaches [LLVC06, RN08].

QVT Relational circumvents the e�ciency versus completeness tradeo� problem as follows:
it simply applies all matches of all translation rules to a given input model in parallel and
merges afterwards elements of the generated output model based on key attributes. This ap-
proach is rather error-prone and requires a deep insight of the QVT tool developer as well as
its users how rules match and interact with each other. As a consequence, [GK10] shows that
today existing QVT Relational tools may produce rather di�erent results when processing
the same input. [GK10] identi�es a semantic gap in the QVT standard which leads to dif-
ferent behavior in di�erent QVT implementations. They discuss that QVT implementations
use di�erent interpretations of binding semantics. The QVT speci�cation does not specify
whether bindings of model patterns of di�erent rule applications may overlap in the instance
model. The result of a comparison of di�erent QVT implementations in the master's thesis
of Guan [Gua09] substantiates this statement. He found that di�erent QVT implementations
produce di�erent results when transforming the same models according to a given transfor-
mation description. Contrary to this semantic gap in the QVT speci�cation, TGGs use a
precisely de�ned interpretation for variable bindings, which is called bind-exactly-once seman-
tics in [GK10]. That is, every element of a completely translated input graph is bound to
exactly one produced node of an application of a TGG production. In other words, every
element is created by exactly one application of a TGG production. Consequently, every ele-
ment of the input graph is translated by exactly one match of a translation rule. If there are
elements that are not translated /bound in the end, then the translation process is incomplete
in the TGG approach, i.e., not successful. The QVT speci�cation states in this case that
elements which are not bound in the end shall be deleted.

In QVT, the direction of a transformation, i.e., forward or backward, is chosen at runtime.
A transformation invoked for enforcement is executed in a particular direction by selecting one

1The hexagonal element that represents a TGG link was inspired by the graphical representation of a rela-
tionship in the QVT Relations language.

175

8. Related Work

of the candidate models as the target. [...] The execution of the transformation proceeds by �rst
checking whether the relations hold, and for relations for which the check fails, attempting to
make the relations hold by creating, deleting, or modifying only the target model, thus enforcing
the relationship [Obj08, 7.1.1]. In the TGG approach, forward and backward translators are
derived from a TGG speci�cation.
Likewise to TGGs, QVT bears bidirectional capabilities. Whether a QVT speci�cation is

bidirectional depends on the speci�cation itself. The QVT standard does not explicitly discuss
this issue and only gives the following hint on bidirectionality: Bi-directional transformations
are only possible if an inverse operational implementation is provided separately [Obj08, 6.3].
Another hint whether a speci�cation is bidirectional is given by the keywords checkonly and
enforce which are explicitly encoded in a QVT relation and are of relevance in conjunction with
the transformation direction. Whether or not the relationship may be enforced is determined by
the target domain, which may be marked as checkonly or enforced. When a transformation is
enforced in the direction of a checkonly domain, it is simply checked to see if there exists a valid
match in the relevant model that satis�es the relationship. When a transformation executes in
the direction of the model of an enforced domain, if checking fails, the target model is modi�ed
so as to satisfy the relationship, i.e., a check-before-enforce semantics [Obj08, 7.2.3]. The
examples given in the QVT standard never use a combination of enforce/enforce which is
necessary in order to result in a really bidirectional transformation speci�cation. Instead the
examples use the combinations checkonly/enforce and checkonly/checkonly. When translating
forward, the checkonly/enforce combination of domains A and B (domain A is checkonly,
domain B is enforced) will adjust the target model (i.e., model of domain B) such that the
relationship is satis�ed. But, when translating backward the target model (now the model of
domain A) is only checked but not adjusted. Consequently, one only speci�es a unidirectional
translator and a consistency checker when not using the combination enforce/enforce but the
combination checkonly/enforce.
Both QVT and TGGs normally operate in three domains: domain A (or source domain),

domain B (or target domain), and trace domain (or link or correspondence domain). However,
neither QVT nor TGGs are in principle limited to three domains and a speci�cation may
contain a (theoretically) unlimited number of domains [KS05].
QVT as a transformation standard of the OMG does not come with a native implementation

provided by the OMG. However, di�erent implementations exist for the QVT languages. An
overview of the currently active available QVT tools, which have been investigated in the
master's thesis of Guan [Gua09], that provide support for QVT Relations and QVT Core is
given subsequently.

medini QVT is an implementation of the QVT Relations language by ikv++ [ikv11]. Medini
QVT features the execution of QVT transformations expressed in the textual concrete
syntax of the Relations language. Medini QVT is based on Eclipse and provides an edi-
tor with code assistant and the possibility of debugging. Traces are managed which en-
ables incremental update during re-transformation. The QVT key concept is supported
which enables incremental update as well as the transition from manual modeling to
automation through transformations in the absence of traces. In addition, bidirectional
transformations are supported.

176

8.3. Triple Graph Grammar Approaches

ModelMorf is a commercial tool from Tata Consultancy Services which supports the speci�-
cation and execution of model transformations in the QVT Relations language [Tat11].
Modelmorf is a non open source implementation which also supports incremental execu-
tion. It currently does not come with an integrated development environment. Trans-
formation rules have to be speci�ed with an external editor and are then passed as an
XML representation, e.g., in Ecore/EMF format, to the transformation engine.

M2M QVTR Model to model is an Eclipse project that aims at the implementation of the
OMG QVT standard [Ecl11]. The M2M project will deliver a framework for model-to-
model transformation languages. There are three transformation engines that are devel-
oped in the scope of this project: ATL, procedural QVT (Operational), and declarative
QVT (Core and Relational). The QVT Declarative (QVTd) component aims to provide
a complete Eclipse based IDE for the Core (QVTc) and Relations (QVTr) Languages
de�ned by the OMG QVT Relations (QVTR) language. QVT Declarative currently
provides editors, parsers, and meta-models for QVTc and QVTr. QVT Declarative will
provide a dedicated perspective, an execution environment for QVTc and QVTo, and
an integrated debugger for QVTc and QVTo.

8.3. Triple Graph Grammar Approaches

There are certain TGG approaches which are all based on the original TGG approach [Sch94,
Sch95] from 1994. Some of them formally or informally extend or modify the original approach.
In the following sections we will have a look at certain representative TGG approaches and
compare them with our TGG approach.

The �rst TGG publication [Sch94] introduced a rather straight-forward construction of
translators. It relied on the existence of graph grammar parsing algorithms with exponential
worst-case space and time complexity. As a consequence a �rst generation of follow-up pub-
lications [Lef94, JSZ96] all made the assumption that the regarded graphs have a dominant
tree structure and that the components of a TGG production possess one and only one pri-
mary node. Based on these assumptions an algorithm is used that simply traverses the tree
skeleton of an input graph node by node and selects an arbitrary matching FGT/BGT rule
for a regarded node that has a node of this type as its primary node. This algorithm de�nes
translation functions that are neither correct nor complete in the general case. Both proper-
ties are endangered by the fact that the selected tree traversal order does not guarantee that
rules are applied in the appropriate order. It may happen that the application of a rule fails
because one of its context nodes has not been processed yet or that a rule is applied despite
of the fact that one of its context nodes has not been matched by another rule beforehand.

NACs where introduced in [HHT96] in the context of model transformation approaches
based on graph transformation. Most TGG approaches developed in the �rst 15 years re-
frain from the usage of NACs. Some of them even argued that NACs cannot be added to
TGGs without destroying their fundamental properties! But, rather recently some application-
oriented TGG publications simply introduced NACs without explaining how derived transla-
tion rules and their rule application strategies have to be adapted precisely. The publications

177

8. Related Work

even give the reader the impression that NACs can be evaluated faithfully on a given in-
put graph without regarding the derivation history of this graph with respect to its related
TGG. [KW07], e.g., explicitly makes the proposal to handle complex graph constraints in
this way, whereas [GGL05] ignores the problems associated with the usage of NACs com-
pletely. [GdL04, TEG+05] introduce NACs at TGG level but do not consider their handling
at translator level (cf. Sect. 8.2.5).

8.3.1. Own Approaches

In [KKS07] we have discussed modularization concepts for TGG productions. The package
concepts nesting, import, and merge as well as inheritance on link types have been presented.
These concepts were out-of-scope in this thesis and, therefore, have not been discussed here.
In [SK08] we discussed translators based on TGGs with NACs that already guarantee

correctness but not completeness for derived translators without introducing a backtracking
algorithm, i.e., without trading e�ciency for completeness. In [KLKS10] we presented e�-
cient, correct, and complete translators based on TGGs with a certain subset of NACs, but
without giving support for secondary elements and many-to-many relationships in source and
target domain. Translating many-to-many relationships contained in graphs given to a TGG
translator as input graph either require a combination of the patterns depicted in Figs. 5.11 (a)
AND (b) in TGG productions OR the pattern depicted in Fig. 5.11 (c) in order to successfully
parse cyclic or acyclic input graphs. Both possibilities are not supported by the algorithm
presented in [KLKS10]: a combination of patterns (a) and (b) would result in a CycleInRecur-
siveContextTranslation error (cf. Sect. 6.6) and primary links as depicted in pattern (c) are
not supported in TGG productions of this approach. Consequently, the algorithm presented
in this thesis also does not support a combination of patterns (a) and (b)�due to the CycleIn-
RecursiveContextTranslation error. But, primary links in TGG productions are supported in
the algorithm presented in this thesis (cf. Sect. 4.3 and Fig. 5.11 (c) in Sect. 5.3.3) and so are
many-to-many relationships in instance graphs that are translated by the algorithm.
In [KLKS10] we have introduced the so-called dangling edge condition. In this thesis, we

lifted this rather basic condition which applies to the world of graphs to the world of models.
That is, this condition checks for dangling links that are contained in a graph and are somehow
represented as a combination of nodes and/or edges (cf. mapping of models to graphs in
Sect. 2.8.1). Therefore, we have added a level of indirection to the dangling condition for
TGGs.

8.3.2. Becker et al.

Becker et al. concentrate on consistency maintenance in incremental and interactive integra-
tion tools [BHLW07]. They especially focus on scenarios where user interaction is inherently
required because the e�ects of changes cannot be determined automatically and determin-
istically. Therefore, they support user interactions so the user can control the integration
process. Their approach is based on triple graph grammars. The underlying formalism uses
directed, typed, and attributed graphs. Instead of story driven modeling its predecessor lan-
guage PROGRES is used as speci�cation language for graph transformations and also for

178

8.3. Triple Graph Grammar Approaches

TGG productions. PROGRES does not use a compact notation for graph productions like
SDM. Instead it uses the more detailed representation where left-hand and right-hand side
are shown separately.
The approach distinguishes between primary and secondary elements attached to a TGG

link in a TGG production. They are called dominant increment and normal increment respec-
tively. Moreover, a TGG link is connected to context nodes of the source and target domain
as well as to other TGG (sub)links.
Becker et al. present an algorithm which maintains consistency in integration tools. Like-

wise to our algorithm, the algorithm in [BHLW07] looks for con�icts among rules. But contrary
to our approach it presents con�icts to the user, who performs a selection among the con�ict-
ing rules. The algorithm is speci�ed using the PROGRES development environment [Sch91].
[BHLW07] decouples pattern matching from graph transformation, i.e., splits pattern match-
ing and execution of FGT and BGT rules derived from TGG productions in order to allow
con�ict detection and user interaction during execution of the algorithm. This can be com-
pared to our introduction of core rules which are used in our algorithm to �nd applicable rules.
Unfortunately, Becker et al. do not give proofs for the properties correctness, completeness,
and e�ciency of their algorithm.

8.3.3. Giese and Wagner

Giese and Wagner focus on the e�cient execution of transformation rules derived from a
TGG and how to achieve an incremental model transformation for synchronization pur-
poses [GW09]. They show that due to the speedup for the incremental processing in the
average case even larger models can be tackled. Their approach is implemented as an exten-
sion of the TGG implementation of Fujaba. In the approach of [GW09], TGG links from the
link domain are passed to forward and backward graph translation rules as parameter in the
transformation algorithm. So, this approach attacks the rule ordering problem in a rather
di�erent way. It introduces a kind of controlled TGGs, where each rule explicitly creates a
number of child rule instances that must be processed afterwards. Thus, one of the main
advantages of a rule-based approach is in danger that basic rules can be added and removed
independently of each other and that it is not necessary to encode a proper graph traversal
algorithm explicitly. This is contrary to our proposed algorithm which passes elements from
the input domain, i.e., source or target domain, to FGT /BGT rules. [GW09] does not dis-
cuss whether their algorithm satis�es the properties correctness, completeness, and e�ciency.
[HEO+11] tries to close this gap by discussing the properties correctness and completeness
for an incremental algorithm that is based on the work on incremental synchronization by
Giese and Wagner and further assumes that forward and backward propagation operations
are deterministic.

8.3.4. Königs

In his PhD thesis [Kön09], Königs extends the original TGG approach of Schürr [Sch94, Sch95].
The resulting approach is based on recent (OMG) standards and integrates with the QVT
standard where reasonable by means of syntax and concepts. Like in our approach the source

179

8. Related Work

and target metamodels are speci�ed as MOF-based metamodels. A TGG speci�cation is
translated into operational SDM rules from which executable code can be generated. The work
of Königs directly precedes the work done in this thesis. The tool support that implements
the concepts of [Kön09] which is provided by MOFLON has been reused and extended in this
thesis. Königs does not precisely de�ne his TGG approach by means of formal de�nitions
like we do. Instead he speci�es the metamodel of his approach by utilizing CMOF and relies
on the formal foundations provided by the original TGG approach. Contrary to the original
approach his approach bases on typed and attributed graphs. Our approach formally extends
the original TGG approach and relies on the metamodel for TGGs speci�ed in [Kön09].

Königs introduces TGG parameters, which are used as attribute values in a TGG produc-
tion. By adding parameters to the declaration of TGG productions he clari�es the concept of
specifying attribute value expressions and their processing at rule derivation time. This has
been discussed also in this thesis. The following extensions of the TGG approach were made
by Königs from which the implementation in MOFLON and, therefore, our approach indi-
rectly bene�ts. He adopts MOF's concepts for modularization and reusability, which allows
for modularization of TGG productions and using inheritance of link types. Moreover, TGG
link types can be enriched with OCL constraints, which allows to constrain the correspon-
dence domain. This was out-of-scope in our approach and therefore has not been formally
introduced.

Königs introduces an algorithm which is used by TGG translators implemented in the
integration framework. He adopts the concept for explicitly controlling the rule application
order from QVT. The main ideas of this algorithm are: (a) traversing model elements in a top-
down fashion, i.e., elements that serve as a container are traversed �rst. (b) The application
of a rule is delayed until required (context) elements have been processed. (c) The algorithm
applies all possible rules if multiple rules are applicable and (d) a rule is applied to all matches
if multiple matches exist. Case (b) is contrary to our approach where context elements are
eagerly translated whenever required. Moreover, our algorithm aborts its execution in case
(c) and only applies a rule to at most one match if case (d) occurs. As a consequence, [Kön09]
introduces an algorithm that still relies on a tree traversal, but keeps track of the set of already
processed nodes and uses a waiting queue to delay the application of rules if needed. This
algorithm de�nes correct translators, but has an exponential worst-case behavior concerning
the number of re-applications of delayed rule instances.

[Kön09] intentionally does not support negative application conditions because they cause
problems at rule derivation time. He argues that one does not know how to handle NACs
when deriving operational translation rules. Instead the concept of rule priorities is supported,
which is able to often simulate NACs. Rule application con�icts are resolved or avoided by
using priorities because rules with a higher priority are chosen to be applied before a rule
with a lower priority would be applied. Our approach supports a certain class of NACs and
introduces the dangling edge condition which is evaluated at rule application time which allows
to remove NACs from the input domain of translation rules. If needed our algorithm can be
extended such that it also evaluates priorities of TGG productions. However, it is necessary
to ensure that the fundamental properties correctness, completeness, and e�ciency are not
violated due to this extension.

180

8.3. Triple Graph Grammar Approaches

8.3.5. Greenyer and Kindler

Greenyer and Kindler reconcile TGGs with QVT [GK10]. Their approach is described in de-
tail in the master thesis of Greenyer [Gre06]. The TGG implementation of Greenyer is based
on an interpretative approach to TGGs instead of compiling the TGGs. Their approach is
an extension of the original TGG approach and is based on attributed and typed graphs.
The implementation supports Multi Graph Grammars [KS05] which is a major improvement
of TGGs because transformations can be speci�ed between multiple models. They present
a metamodel for TGGs aligned with the QVT metamodel and Ecore. A TGG editor has
been implemented for the Eclipse platform using the Eclipse Graphical Modeling Framework
(GMF). This editor is based on EMF and Ecore and allows to conveniently specify TGG pro-
ductions and aids to design only such graph patterns which are syntactically correct according
to the referenced domain models.

Greenyer and Kindler increase the expressiveness of their TGG approach by certain con-
cepts. A construct that is equivalent to the herein discussed TGG parameters is supported.
A so-called attribute equality constraint is used to specify that two attributes of di�erent do-
mains should have the same value. In addition, so-called gray nodes or reusable nodes are
supported. These nodes are context nodes of a TGG production which match nodes in a
host graph that do not need to be translated already by a previous call to a TGG translation
rule. Similar to the original TGG approach, [GK10] allow TGG productions with more than
one TGG link that is created. This is contrary to the approach speci�ed in this thesis that
explicitly allows only one TGG link that is created per TGG production in order to determine
the primary elements in both domains. This way derived translators can distinguish primary
from secondary elements in every domain. However, this is only a technical limitation of the
approach in this thesis and may be resolved in another way such that also many TGG links
which are created are supported in TGG productions. Negative application conditions are
not supported by [GK10] but a related concept that allows to model so-called NULL nodes.
The algorithm of [Gre06] implemented in the interpreter simply applies TGG translation

rules (if possible) as long as there are untranslated elements in the input graph. The transfor-
mation terminates either if there are no more input elements left to translate or if there are no
more rules that can be applied. Multiple matches and multiple applicable rules are not han-
dled by this algorithm. It is up to the speci�cator of the TGG to ensure that non-determinism
is avoided and a con�uent set of TGG productions are modeled.

8.3.6. Ehrig et al.

Ehrig et al. have produced most of the publications concerning the formalization of the TGG
language. They have examined the fundamental properties of TGGs, i.e., expressiveness,
correctness, completeness, and e�ciency, in great detail from a formal point of view. Unfor-
tunately, they do not present algorithms in their publications. Instead, they provide concepts
which could be used as a formal foundation for an implementation of an algorithm.

Ehrig et al. started the formal construction and analysis of model transformations based
on TGGs de�ned by Schürr [Sch94] and Königs and Schürr [KS06] in [EEE+07] by analyzing
information preservation of bidirectional model transformations. There, a formal result is

181

8. Related Work

presented that shows under which conditions a given forward transformation sequence has
an inverse backward sequence in the sense that both together are information preserving
concerning the source graphs. [EEE+07] extends the concept of triple graphs based on simple
graphs to triple graphs based on typed, attributed graphs and on concepts from category
theory.
Two formalisms ensuring that elements are translated only once, which is also a vital part

of our translation algorithm, are discussed in [EP08] and [HEOG10, HEGO10]. [EP08] intro-
duces so-called kernel NACs that ensure that a translation rule cannot be applied twice at
the same match. [HEOG10, HEGO10] introduce so-called translation attributes, which keep
track of the elements which have been translated already. Translation attributes are the for-
malized equivalent of the visual representation of the translation status as marked/unmarked
checkboxes placed next to an element as used, e.g., here or in [KLKS10].
[EEE+07] has a main focus on correctness, whereas e�ciency, expressiveness, and complete-

ness are out-of-scope. Follow-up publications (e.g., [EHS09] and [EEHP09]) then introduced
NACs de�ned in the source or target domain in an appropriate way and proved that transla-
tors may be derived from a TGG with NACs that are compatible with their TGG. Moreover,
[EEHP09] discusses a formalism that constructs correct and complete model transformation
sequences on-the-�y, i.e., correctness and completeness properties of a model transformation
need not to be analyzed after completion, but are ensured by construction. This behavior is
similar to the behavior of our algorithm which either produces a correct and complete transla-
tion or aborts in case of an error. Unfortunately, both [EHS09] and [EEHP09] trade e�ciency
for completeness. That is, neither [EHS09] nor [EEHP09] present an algorithm that is able
to �nd an appropriate sequence of translation rules in polynomial time which is necessary to
create e�ciently working translators.
Therefore, [HEGO10] introduces so called �lter NACs which are used in a translation pro-

cess to avoid translation sequences that produce wrong output graph triples. [HEGO10] sug-
gests either to use a static approach to generate �lter NACs or a (semi-automatic) dynamic
generation of �lter NACs based on critical pair analysis. In the static approach a procedure is
discussed that generates �lter NACs which have the same purpose as our dangling edge condi-
tion: to avoid translation sequences that produce untranslated edges that are not translatable
later on. In [HEGO10], �lter NACs are embedded as usual NACs in a translation rule and
are checked before the translation rule is applied. In our approach, each untranslated incident
edge of a primary node is checked to satisfy the dangling edge condition for each translation
rule candidate in a translation step executed by our algorithm. Our algorithm ensures that
the dangling edge condition is satis�ed before it applies a translation rule candidate. Both
approaches avoid backtracking during a forward or backward translation which dramatically
increases the e�ciency of the translation process.

8.4. Comparison Matrix

In order to give a brief summary of the discussed model transformation approaches, the table
depicted in Fig. 8.1 summarizes the features supported by the discussed model transformation
approaches. A part of the comparison criteria has been taken from the requirements that

182

8.4. Comparison Matrix

have to be met by languages that are used to specify bidirectional translators (cf. Sect. 3.5).
Other criteria for comparison have been taken from the classi�cation of model transformation
approaches discussed in [CH03] and [CH06].

183

8. Related Work

A
TL

Vi
at

ra
2

Te
fk

at
ET

L
A

To
M

3
G

R
ou

nd
Tr

am
Q

VT
SD

M
TG

G
ge

ne
ra

l a
pp

ro
ac

h
(b

xL
1)

+
+

+
+

+
+

+
+

+
pr

ec
is

e
se

m
an

tic
s

(b
xL

2)
+

+
+

+
+

+
o

+
+

fo
rm

al
is

m
-

gr
ap

h
tra

ns
fo

rm
at

io
n

&

ab
st

ra
ct

 s
ta

te
 m

ac
hi

ne
s

F-
lo

gi
c

ep
si

lo
n

ob
je

ct

la
ng

ua
ge

gr
ap

h
gr

am
m

ar
s

gr
ap

h-
ba

se
d

-
gr

ap
h

gr
am

m
ar

s
gr

ap
h

gr
am

m
ar

s

ex
pr

es
si

ve
ne

ss
 (b

xL
3)

+
+

+
+

+
+

+
+

o
ty

pe
 o

f t
ra

ns
fo

rm
at

io
n

ru
le

s
un

id
ire

ct
io

na
l

un
id

ire
ct

io
na

l
un

id
ire

ct
io

na
l

un
id

ire
ct

io
na

l
bo

th
bi

di
re

ct
io

na
l*

un
i/b

id
ire

ct
io

na
l

un
id

ire
ct

io
na

l
bi

di
re

ct
io

na
l

re
us

ab
ili

ty
 (b

xL
5)

ru
le

 in
he

rit
an

ce
+

+
in

he
rit

an
ce

o
o

+
o

o
 m

od
ul

ar
iz

at
io

n
-

+
-

+
+

+
o

-
+

to
ol

 s
up

po
rt

+
+

+
+

+
+

+
+

+
de

cl
ar

at
iv

e
/ i

m
pe

ra
tiv

e
bo

th
bo

th
de

cl
ar

at
iv

e
bo

th
de

cl
ar

at
iv

e
de

cl
ar

at
iv

e
bo

th
bo

th
de

cl
ar

at
iv

e
sy

nt
ax

 (g
ra

ph
ic

al
, t

ex
tu

al
)

te
xt

ua
l

te
xt

ua
l

te
xt

ua
l

te
xt

ua
l

gr
ap

hi
ca

l
te

xt
ua

l
bo

th
gr

ap
hi

ca
l

gr
ap

hi
ca

l
in

cr
em

en
ta

lit
y

(b
xT

6)
-

+
-

+
+

+
+

-
+

tr
ac

ea
bi

lit
y

+
-

-
+

+
(w

ith
 T

G
G

s)
+

+
-

+

Figure 8.1.: Feature comparison of discussed model transformation approaches.

184

9. Conclusion and Future Work

In this chapter we conclude this thesis by summarizing the main aspects discussed therein in
Sect. 9.1. Finally, Sect. 9.2 closes this thesis by discussing some issues that are still subject
for further investigation.

9.1. Conclusion

In Chap. 2, we discussed languages, model-driven engineering, models and graphs, and model
and graph transformation. Especially the more precise term language model has been in-
troduced for a particular subset of models that are called metamodel in the model-driven
world. Moreover, we presented a mapping from models to graphs that includes the mapping
of classes, associations, and properties to typed and labeled graphs. This mapping is used in
the following chapters to demonstrate how graphs can be used as formal basis for model-driven
purposes.
Chapter 3 then discusses the integration of languages in general utilizing a natural language

translation analogy. After this introduction to the �eld of language translation we discussed
the integration of formal languages in particular utilizing the well-known example of mapping
class diagrams and relational database schemata. Therefore, the language models consisting
of syntax and constraint de�nitions of class diagrams and database schemata have been dis-
cussed. Afterwards, productions have been presented that are used to construct valid model
instances of class diagrams and database schemata according to the language speci�cation.
Then, a concrete mapping of class diagrams and database schemata is discussed informally.
The chapter closes with a discussion of similarities in natural and formal language transla-
tion. There, the natural language translation example from the beginning of the chapter is
related to the formal language translation example of class diagrams and database schemata.
We found out that both approaches have many things in common: the need for automated
language translators, usage of traceability links on a �ne-grained level, involving language ex-
perts, loss of information, encoding of information, the need for bidirectional translators, and
synchronization of information after changes. Summarizing we state challenges for realizing
bidirectional translators. These challenges are related to the languages that are used to specify
bidirectional translators as well as to the runtime level of bidirectional translators. Finally, the
chapter presents our approach of model-driven language integration. This approach named
TiE (tool integration environment) consists of techniques from the �elds of requirement en-
gineering, metamodeling, model transformation, code generation, and tool adaptation. The
resulting products generated by TiE are operated by our tool integration framework.
The mapping discussion of class diagrams and database schemata is used in Chap. 4 to

specify a bidirectional formal mapping with triple graph grammars (TGGs). Triple graph

185

9. Conclusion and Future Work

grammars are a formalism that is able to specify the bidirectional simultaneous evolution of
two related languages in a declarative and visual style. The main advantage of triple graph
grammars is the derivation of forward and backward translators from a set of bidirectional
TGG productions. The formalism behind TGGs is reviewed and the set of TGG productions
for integrating class diagrams and database schemata is built. Finally, the fundamental prop-
erties of TGGs and derived translators is discussed. The main aspects are the expressiveness
of the speci�cation language and the termination, correctness, completeness, and e�ciency of
derived language translators.
Chapter 5 now discusses extensions of (simple) triple graph grammars. Lifting of triple

graph grammars based on simple graphs to extended triple graph grammars based on typed
and attributed graphs is discussed. The �rst main result of this thesis is the introduction of
a well-de�ned class of negative application conditions for restricting the applicability of TGG
productions. Therefore, so-called integrity-preserving productions are introduced which must
ful�ll the property that an application of such a production does not destroy the integrity of
a graph, i.e., the graph must satisfy a set of constraints after production application. The
second main result of this thesis is given in Theorem 1 in Sect. 5.2.2. This theorem directly
a�ects the derivation of forward and backward translation rules from a TGG production which
are utilized by forward and backward translators. The consequence of this theorem is that
NACs can be safely removed from the input component of derived translation rules if the
translation algorithm checks the integrity of generated graphs with respect to their sets of
constraints. The third main result of this thesis is the introduction of the local completeness
criterion for triple graph grammars. This criterion is used to prove the completeness property
of translators derived from a TGG speci�cation. As the fourth main result of this thesis, the
so-called dangling edge condition is introduced to the world of triple graph grammars. This
condition mainly states that after translating a node of the input graph every incident edge
that is not currently translated must be translatable in future translation steps. The dangling
edge condition is regarded by our translation algorithm introduced in the next chapter.
Now, Chap. 6 discusses the translation level of TGGs, i.e., translators that utilize rules

derived from a TGG speci�cation. At �rst, a framework is presented that can be used by
translation algorithms based on triple graph grammars. So-called core rules are discussed
which are used by algorithms to identify context elements of a given node that is about to
be translated. Moreover, these core rules are used to handle secondary elements during the
translation process. Then, as an introductory step, a simple graph translation algorithm is
discussed. The main disadvantage of this algorithm is that it does not ful�ll the completeness
property of TGG-based translators. Consequently, as the �fth main result of this thesis, a more
advanced graph translation algorithm is introduced. This algorithm is based on the results for
extended triple graph grammars as discussed in Chap. 5 that are still expressive enough to cope
with common mapping situations. [Sch94] and other TGG related publications have shown
that it is possible to build e�cient and compatible translators. But they did not show how to
build them. We have shown, with the advanced algorithm in Listing 4, how to build e�cient
translators that are compatible with their TGG. The presented algorithm can be utilized by
bidirectional working translators derived from certain TGG speci�cations. This algorithm is
rather e�cient and correct as well as complete regarding to the TGG corresponding to the
derived translators. The algorithm takes triples of graphs as input but it treats these graphs

186

9.2. Future Work

as models and especially treats links as nodes. This is possible due to the ability of mapping
models to graphs as presented by a mapping of MDA-style models into the semantic domain of
typed graphs in the category of graphs and total graph morphisms (cf. Sect. 2.8.1). The TGG
productions supported by this algorithm are either based on graph patterns that represent
model transformation patterns�consisting of higher-level constructs: object, link, slot, value,
and classi�er�or graph patterns�consisting of lower-level constructs: node, edge, and graph
morphism. After discussing the algorithm, its properties termination, e�ciency, correctness,
and completeness are proved. The chapter is completed by a discussion of a simple consistency
check algorithm. This algorithm is able to check for a given set of TGG links, whether these
are consistent with their TGG speci�cation.
Chapter 7 presents the implementation of the approach of this thesis. The approach is

implemented in the meta-CASE tool MOFLON. MOFLON is based on the CASE tool Fujaba
and supports story driven modeling (SDM), OCL, code generation, and triple graph grammars.
The generated code for a TGG speci�cation can be executed in our tool integration framework,
which is able to visualize both source and target models as well as TGG links.
Finally, we discuss related work in Chap. 8. We see that other TGG approaches have also

extended the original approach of triple graph grammars. But, the main di�culty is to be
able to derive translators from an extended TGG speci�cation that still ful�ll the fundamental
properties e�ciency, correctness, and completeness. Especially e�ciency and completeness
compete against each other.

9.2. Future Work

In this thesis we identi�ed a class of TGGs with NACs for which we can guarantee the com-
pleteness of the developed algorithm that are useful in practice due to a polynomial runtime
complexity. But, we limited NACs to only prevent creating invalid graphs according to the
graph constraints given in the source and target graph languages. This limited class of TGGs
with NACs has to be enlarged but compatibility and e�ciency properties of derived translators
have to be ensured. De�nition 15 in Sect. 5.2.1 limits productions such that invalid graphs
never become valid after applying a production where NACs are removed. How other classes
of NACs are to be treated in translators is still an open question. We suppose these NACs
to be equivalent to partial/temporal constraints. Such NACs have another character because
an output graph triple tends to temporarily violate corresponding constraints. Therefore, one
cannot replace the check for a NAC with a check for its corresponding constraint at any time
like we did for the class of NACs supported in this thesis.
The introduced dangling edge condition is only able to examine edges directly incident to

a node, i.e., the look-ahead used for examination is 1. It is up to future work to increase
this look-ahead by a meaningful amount, so also indirectly referenced nodes are taken into
account.
It is also up to future work to develop decision criteria which can be checked already at

compile time and which guarantee that the translation rules derived from a given TGG never
raise errors at runtime. For example, the presented translation algorithm stops with an error
message whenever it encounters a situation where more than one rule is applicable to translate

187

9. Conclusion and Future Work

a speci�c input graph element. Con�uence checking techniques should o�er the right means
for the detection and classi�cation of potential rule application con�icts at compile time. The
con�uence checking algorithms of the tool AGG [HKT02], which are based on critical pair
analysis, could be adapted for this purpose. We could also use results from Ehrig et al. (cf.,
e.g., [EEHP09]) regarding con�uence so we are able to cope with situations where multiple
rules are applicable that would lead to equivalent output graph triples. In this way we would
be able to guarantee already at compile time that a graph translator derived from a speci�c
class of TGGs will not stop its execution with an error instead of generating an existing
output graph for a given input graph. Furthermore, constraint veri�cation techniques of the
tool GROOVE [Ren08] should allow to check the here introduced requirements already at
compile time: (a) TGG productions never create graph triples that violate graph constraints
of the related schema, (b) NACs are only used to block graph modi�cations that would
violate a graph constraint, (c) TGG productions never repair constraint violations by rewriting
an invalid graph into a valid graph, and (d) TGGs ful�ll the local completeness criterion.
Until then, TGG developers have to design and test their TGGs carefully such that TGG
productions do not violate the presented conditions of integrity-preserving productions.
To further increase expressiveness of the triple graph grammar formalism rule priorities

could be added to the speci�cation level of TGG productions (cf. Sects. 5.3.2 and 8.3.4).
There are di�erent possibilities to implement rule priorities in the presented algorithm (cf.
Listing 4 in Sect. 6.6). The algorithm can be modi�ed such that the di�erent activities of the
algorithm operate on ordered sets of rules and the activities are only executed for the rules with
the highest priority. Rules with a higher priority would be checked �rst and rules with lower
priority are only taken into account if the algorithm fails for rules with higher priority. Another
possibility is to modify the activity of the algorithm in Listing 4 that checks for competing
core matches. The modi�cation would only throw an according error if the competing matches
where found by rules with the same priority. Consequently, line 46 of algorithm in Listing 4
would select one rule with the highest priority. Besides the modi�cation of the algorithm,
the correctness and completeness proofs have to be revisited, so it is guaranteed that these
important properties are still ful�lled after the modi�cations for rule priorities.
An important issue for future work is to further study and improve techniques for incremen-

tal updates performed by translators, i.e., improve support for model synchronization [GW09].
In this thesis, model synchronization and incremental updates were out-of-scope, but support
for this issue is urgently required in practice. Successfully performing incremental updates
bears advantages in performance especially when dealing with large models. Moreover, addi-
tional information that is only present in one domain is not lost during retranslation. But,
as history shows, incremental updates are di�cult to realize in practice because models that
were formerly consistent are modi�ed and have to be synchronized later on. Due to these
modi�cation operations existing corresponding structures need to be deleted, cleaned up, and
reconstructed. In order to determine which elements need to be deleted, dependencies between
TGG links have to be considered. The challenge during a cleanup is to carefully delete infor-
mation from source, target, and correspondence domain and to reuse as much of the existing
structures as possible. Incremental updates only make sense if the cleanup process is less
costly then a new translation or if additional information is kept during synchronization. It is
up to future work to use the presented algorithm in Listing 4 for synchronization operations

188

9.2. Future Work

or, in general, to guarantee the properties e�ciency, correctness, and completeness also for
incremental algorithms.
A �rst step towards incremental translations based on the presented algorithm has been

made recently in [LK11]. There, precedence triple graph grammars are presented that are used
for a topological sorting of the elements of the input graph given to a TGG-based translator.
The sorted set of input elements aims at providing the elements created by the sequence of
corresponding TGG productions in an appropriate order. The right sequence of translation
rules is derived from this ordered set of elements. Another advantage of precedence TGGs is
their ability to detect cycle errors, like discussed in Sect. 6.6, already at compile time. It is up
to future work to integrate the results from precedence TGGs into the proposed framework
for translation algorithms.
Concepts for modularization and inheritance of TGGs have been discussed in [KKS07]

and [WKK+11] but are still an issue for future work. The results for related TGG productions,
e.g., creation of TGG links that inherit from the same TGG link type, have to be further
investigated. It is likely that such TGG productions are similarly assembled which demands
for concepts that avoid replication of elements which form a TGG production at speci�cation
time. A formal introduction of inheritance concepts to node and TGG link types of the
underlying graph formalism for TGGs is discussed in [LK11]. Inheritance of node types in the
input graph a�ects the creation of Legal Node Creation Context (LNCC) tuples (discussed in
Sect. 5.3.2). The synthesis of LNCC tuples from TGG productions has to be reconsidered if
inheritance is introduced on node types, which results in additional tuples that also consider
inherited node types.
Evaluations of the here presented class of TGGs with NACs in research cooperations with

our industrial partners, where TGGs are used to ensure consistency of design artifacts, will
show whether our claim is true that the here introduced new class of TGGs is still expressive
enough for the speci�cation of a su�ciently large class of bidirectional model translations that
are needed in practice.

189

9. Conclusion and Future Work

190

Bibliography

[AKK+08] Carsten Amelunxen, Felix Klar, Alexander Königs, Tobias Rötschke, and Andy
Schürr. Metamodel-based Tool Integration with MOFLON. In 30th International
Conference on Software Engineering, pages 807�810, Leipzig, Germany, May 10 -
18 2008. ACM New York, NY, USA. Formal Research Demonstration.

[AKRS06] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr.
MOFLON: A standard-compliant metamodeling framework with graph transfor-
mations. In A. Rensink and J. Warmer, editors, ECMDA - Foundations and
Applications, volume 4066 of LNCS, pages 361�375. Springer Verlag, 2006.

[Amb03] Scott W. Ambler. Agile Database Techniques. John Wiley & Sons, 2003.

[Ame09] Carsten Amelunxen. Metamodel-based Design Rule Checking and Enforcement.
PhD thesis, Technische Universität Darmstadt, 2009.

[atl11a] ATL - EclipseWiki. www, August 2011. http://wiki.eclipse.org/ATL.

[atl11b] ATL at Eclipse. www, August 2011. http://eclipse.org/atl/.

[B�04] Jean Bézivin. In Search of a Basic Principle for Model Driven Engineering. UP-
GRADE, The European Journal for the Informatics Professional, V(2):21�24,
April 2004.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise De�nition of the OMG/MDA
Framework. In ASE '01: Proceedings of the 16th IEEE international conference
on Automated software engineering, pages 273�280, Washington, DC, USA, 2001.
IEEE Computer Society.

[BHLW07] Simon M. Becker, Sebastian Herold, Sebastian Lohmann, and Bernhard West-
fechtel. A graph-based algorithm for consistency maintenance in incremental and
interactive integration tools. Software and Systems Modeling (SoSyM), 6(3):287�
315, September 2007.

[Bic04] Lutz Bichler. Codegeneratoren für MOF-basierte Modellierungssprachen. PhD
thesis, Universität der Bundeswehr München, 2004.

[Bru06] Jean-Michel Bruel, editor. Satellite Events at the MoDELS 2005 Conference,
MoDELS 2005 International Workshops, Doctoral Symposium, Educators Sympo-
sium, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Papers, volume
3844 of LNCS. Springer, 2006.

191

http://wiki.eclipse.org/ATL
http://eclipse.org/atl/

Bibliography

[Cam09] Matthew Campbell. A Graph Grammar Methodology for Generative Systems.
Technical report, University of Texas at Austin, Department of Mechanical Engi-
neering, 2009. published in UT Faculty/Researcher Works collection.

[CEM+06] Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz
Rozenberg, editors. Graph Transformations, Third International Conference,
ICGT 2006, Natal, Rio Grande do Norte, Brazil, September 17-23, 2006, Pro-
ceedings, volume 4178 of LNCS. Springer, 2006.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. Bidirectional Transformations: A Cross-Discipline Per-
spective. In Theory and Practice of Model Transformations: Second International
Conference, ICMT2009, volume 32 of Lecture Notes in Computer Science (LNCS),
pages 260�283, Heidelberg, June 2009. Springer Verlag.

[CH11] Hugh Chisholm and Franklin Henry Hooper, editors. The Encyclopeadia Britan-
nica. Encyclopaedia Britannica, New York, 11th edition, 1911.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classi�cation of Model Transformation
Approaches. In OOPSLA'03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture, 2003.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model Transfor-
mation Approaches. IBM Systems Journal, 45(3):621�645, 2006.

[CHM+02] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,
and Dániel Varró. VIATRA - Visual Automated Transformations for Formal
Veri�cation and Validation of UML Models. In Proceedings of the 17th IEEE
international conference on Automated software engineering, ASE '02, page 267,
Washington, DC, USA, 2002. IEEE Computer Society.

[dCLF93] Dennis de Champeaux, Douglas Lea, and Penelope Faure. Domain Analysis. In
Object-Oriented System Development, chapter 13. Addison Wesley, 1993.

[dLV02] Juan de Lara and Hans Vangheluwe. AToM3: A Tool for Multi-Formalism and
Meta-Modelling. In FASE'02, volume 2306 of LNCS, pages 174�188. Springer,
2002.

[Ecl11] Eclipse. Model To Model (M2M). www, July 2011. http://www.eclipse.org/
m2m/.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabi
Taentzer. Information Preserving Bidirectional Model Transformations. In Fun-
damental Approaches to Software Engineering (FASE), volume 4422 of LNCS.
Springer, 2007.

192

http://www.eclipse.org/m2m/
http://www.eclipse.org/m2m/

Bibliography

[EEHP09] Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange. On-the-Fly
Construction, Correctness and Completeness of Model Transformations based on
Triple Graph Grammars. In Andy Schürr and Bran Selic, editors, Model Driven
Engineering Languages and Systems. Proceedings of MODELS 2009, volume 5795
of LNCS, pages 241�255. Springer, 2009.

[EEKR97] Ehrig, Engels, Kreowski, and Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 1. World Scienti�c Publishing,
1997.

[EEKR99] Ehrig, Engels, Kreowski, and Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2. World Scienti�c Publishing,
1999.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of Algebraic Graph Transformation. EATCS Series. Springer-Verlag, 2006.

[Ehr79] Hartmut Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A
Survey). In Proceedings of the International Workshop on Graph-Grammars and
Their Application to Computer Science and Biology, volume 73 of Lecture Notes
In Computer Science (LNCS), pages 1�69, London, UK, 1979. Springer-Verlag.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, edi-
tors. Graph Transformations, 4th International Conference, ICGT 2008, Leices-
ter, United Kingdom, September 7-13, 2008, Proceedings, volume 5214 of LNCS.
Springer, 2008.

[EHS09] Hartmut Ehrig, Frank Hermann, and Christoph Sartorius. Completeness and
Correctness of Model Transformations based on Triple Graph Grammars with
Negative Application Conditions. ECEASST, 18, 2009.

[EP08] Hartmut Ehrig and Ulrike Prange. Formal Analysis of Model Transformations
Based on Triple Graph Rules with Kernels. In Hartmut Ehrig, Reiko Heckel,
Grzegorz Rozenberg, and Gabi Taentzer, editors, Proceedings of the International
Conference on Graph Transformation (ICGT'08), volume 5214 of LNCS, pages
178�193, Heidelberg, 2008. Springer.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph Grammars:
an Algebraic Approach. In IEEE Conf. on Automata and Switching Theory, pages
167�10, 1973.

[ERRS10] Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy Schürr, editors.
Graph Transformations, 5th International Conference, ICGT 2010, Twente, The
Netherlands, September 27�October 2, 2010, Proceedings, volume 6372 of LNCS.
Springer, 2010.

193

Bibliography

[FMRS07] Christian Fuss, Christof Mosler, Ulrike Ranger, and Erhard Schultchen. The Jury
is still out: A Comparison of AGG, Fujaba, and PROGRES. In Proceedings of
the Sixth International Workshop on Graph Transformation and Visual Model-
ing Techniques (GT-VMT 2007), volume 6 of Electronic Communications of the
EASST, 2007.

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story Diagrams:
A New Graph Rewrite Language Based on the Uni�ed Modeling Language and
Java. In Theory and Application of Graph Transformations, volume 1764 of Lec-
ture Notes in Computer Science, pages 157�167, 2000.

[FP10] Martin Fowler and Rebecca Parsons. Domain Speci�c Languages. Addison Wesley,
2010.

[GdL04] Esther Guerra and Juan de Lara. Event-Driven Grammars: Towards the Integra-
tion of Meta-Modelling and Graph Transformation. In Graph Transformations,
Second International Conference, ICGT 2004, volume 3256 of LNCS, pages 54�69.
Springer, 2004.

[GGL05] Lars Grunske, Leif Geiger, and Michael Lawley. A Graphical Speci�cation of
Model Transformations with Triple Graph Grammars. In A. Hartman and
D. Kreische, editors, First European Conference on Model Driven Architecture
- Foundations and Applications, ECMDA-FA, volume 3748 of LNCS, pages 284�
298, Nuremberg, Germany, November 2005. Springer.

[GGZ+05] Lars Grunske, Leif Geiger, Albert Zündorf, Niels van Eetvelde, Pieter van Gorp,
and Daniel Varro. Using Graph Transformation for Practical Model-Driven Soft-
ware Engineering. InModel-Driven Software Development, pages 91�117. Springer
Berlin Heidelberg, 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GK07] Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In Model
Driven Engineering Languages and Systems (MoDELS), volume 4735 of LNCS,
pages 16�30, Nashville, TN, USA, 2007.

[GK10] Joel Greenyer and Ekkart Kindler. Comparing relational model transforma-
tion technologies: implementing Query/View/Transformation with Triple Graph
Grammars. Software and Systems Modeling, 9(1):21�46, 2010. Special Section
Paper.

[Gre06] Joel Greenyer. A Study of Model Transformation Technologies: Reconciling TGGs
with QVT. Diploma thesis, Universität Paderborn, July 2006.

[Gua09] Yuan Guan. Vergleich von QVT-Implementierungen mit Triple Graph Grammars.
Master thesis, Technische Universität Darmstadt, July 2009. (in German).

194

Bibliography

[GW09] Holger Giese and Robert Wagner. From model transformation to incremental
bidirectional model synchronization. Software and Systems Modeling, 8(1):21�43,
2009.

[HC07] Reiko Heckel and Alexey Cherchago. Structural and behavioural compatibility of
graphical service speci�cations. J. Log. Algebr. Program., 70(1):15�33, 2007.

[HEGO10] Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. E�cient
Analysis and Execution of Correct and Complete Model Transformations Based
on Triple Graph Grammars. In J. Bézivin, R.M. Soley, and A. Vallecillo, editors,
Proc. Int. Workshop on Model Driven Interoperability (MDI'10), MDI '10, pages
22�31, New York, NY, USA, 2010. ACM.

[HEO+11] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy
Diskin, and Yingfei Xiong. Correctness of Model Synchronization Based on Triple
Graph Grammars. In 14th International Conference on Model Driven Engineering
Languages and Systems (MODELS'11), 2011. (accepted for publication).

[HEOG10] Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ulrike Golas. Formal Anal-
ysis of Functional Behaviour for Model Transformations Based on Triple Graph
Grammars. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy
Schürr, editors, Proceedings of the International Conference on Graph Transfor-
mation (ICGT' 10), volume 6372 of LNCS, pages 155�170. Springer, 2010.

[Hes06] Wolfgang Hesse. More matters on (meta-)modelling: remarks on Thomas Kühne's
"matters". Software and Systems Modeling, 5(4):387�394, 2006.

[HHI+10] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka Mat-
suda, and Keisuke Nakano. Bidirectionalizing Graph Transformations. In Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 205�216, New York, NY, USA, 2010. ACM.

[HHI+11] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka Mat-
suda, and Keisuke Nakano. GRoundTram Version 0.9.2 User Manual, May 2011.
http://www.biglab.org/pdf/manual.pdf.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae, 26(3-4):287�313,
1996.

[HJS71] Hans Jürgen Schneider. Chomsky-like systems for partially ordered symbol sets.
Technical Report Informationsverarbeitung II, Technische Universität, Berlin,
1971.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Con�uence of Typed
Attributed Graph Transformation Systems. In Proceedings of the First Interna-
tional Conference on Graph Transformation, volume 2505 of LNCS, pages 161�
176. Springer, 2002.

195

http://www.biglab.org/pdf/manual.pdf

Bibliography

[Hof99] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Penguin
Books, 1999. 20th-anniversary Edition (the original appeared 1979).

[HR00] David Harel and Bernhard Rumpe. Modeling Languages: Syntax, Semantics and
All That Stu�, Part I: The Basic Stu�. Technical Report MCS00-16, Weizmann
Science Press of Israel, 2000.

[ikv11] ikv++ technologies ag. medini QVT. www, July 2011. http://projects.ikv.
de/qvt/.

[JB06] Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Speci�cation. In
Proceedings of 8th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems, volume 4037 of LNCS, pages 171�185, Bologna,
Italy, 2006.

[JBR99] Ivar Jacobsen, Grady Booch, and James Rumbaugh. The Uni�ed Software De-
velopment Process. Addison-Wesley, 1999.

[JK05] Frederic Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-
Michel Bruel, editor, Satellite Events at the MoDELS 2005 Conference, volume
3844 of LNCS, pages 128�138, Montego Bay, Jamaica, October 2-7 2005.

[JK06] Frederic Jouault and Ivan Kurtev. On the architectural alignment of ATL
and QVT. In Proceedings of the 2006 ACM symposium on Applied computing
(SAC'06), pages 1188�1195. ACM New York, NY, USA, 2006.

[JSR02] JavaTM Metadata Interface (JMI) Speci�cation, Version 1.0, June 2002. JSR 040
Java Community Process; Speci�cation Lead: Ravi Dirckze, Unisys Corporation.

[JSZ96] Jens Jahnke, Wilhelm Schäfer, and Albert Zündorf. A Design Environment for
Migrating Relational to Object Oriented Database Systems. In 12th International
Conference on Software Maintenance (ICSM'96), pages 163�170, 1996.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model Transformation in the
Large. In The 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 285�294, Dubrovnik, Croatia, September 03 - 07 2007. ACM New York,
NY, USA.

[KLKS10] Felix Klar, Marius Lauder, Alexander Königs, and Andy Schürr. Extended Triple
Graph Grammars with E�cient and Compatible Graph Translators. In Gregor
Engels, Claus Lewerentz, Wilhelm Schäfer, Andy Schürr, and Bernhard Westfech-
tel, editors, Graph Transformations and Model-Driven Engineering, volume 5765
of LNCS, pages 141�174. Springer, 2010.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42:741�843, 1995.

196

http://projects.ikv.de/qvt/
http://projects.ikv.de/qvt/

Bibliography

[Kön05] Alexander Königs. Model Transformation with Triple Graph Grammars. InModel
Transformations in Practice Satellite Workshop of MODELS 2005, Montego Bay,
Jamaica, 2005.

[Kön09] Alexander Königs. Model Integration and Transformation - A Triple Graph
Grammar-based QVT Implementation. PhD thesis, TU Darmstadt, January 2009.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The Epsilon
Object Language (EOL). In Proceedings of the European Conference in Model
Driven Architecture (EC-MDA), pages 128�142. Springer, 2006.

[KPP08] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Transformation
Language. In Antonio Vallecillo, Je� Gray, and Alfonso Pierantonio, editors,
Theory and Practice of Model Transformations, volume 5063 of Lecture Notes in
Computer Science, pages 46�60. Springer Berlin / Heidelberg, 2008.

[KRP11] Dimitrios Kolovos, Louis Rose, and Richard Paige. The Epsilon Book. unpub-
lished, 2011. http://www.eclipse.org/gmt/epsilon/doc/book/.

[KRS08] Felix Klar, Sebastian Rose, and Andy Schürr. A Meta-Model-Driven Tool Inte-
gration Development Process. In 2nd International United Information Systems
Conference, Lecture Notes in Business Information Processing (LNBIP), pages
201�212. Springer, April 2008.

[KRS09] Felix Klar, Sebastian Rose, and Andy Schürr. TiE - A Tool Integration Environ-
ment. In Proceedings of the 5th ECMDA Traceability Workshop, volume WP09-09
of CTIT Workshop Proceedings, pages 39�48, 2009. http://www.utwente.nl/

projecten/ecmda2009/workshops/ECMDA2009-TW.pdf.

[KS05] Alexander Königs and Andy Schürr. MDI - a Rule-Based Multi-Document and
Tool Integration Approach. Special Section on Model-based Tool Integration in
Journal of Software&System Modeling, 2005. accepted for publication.

[KS06] Alexander Königs and Andy Schürr. Tool Integration with Triple Graph Gram-
mars - A Survey. Proceedings of the SegraVis School on Foundations of Vi-
sual Modelling Techniques, Electronic Notes in Theoretical Computer Science,
148:113�150, 2006.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Speci�c Modeling. John Wiley
& Sons, 2008.

[Küh06a] Thomas Kühne. Clarifying matters of (meta-) modeling: an author's reply. Soft-
ware and Systems Modeling, 5(4):395�401, 2006.

[Küh06b] Thomas Kühne. Matters of (Meta-) Modeling. Software and Systems Modeling,
5(4):369�385, 2006.

197

http://www.eclipse.org/gmt/epsilon/doc/book/
http://www.utwente.nl/projecten/ecmda2009/workshops/ECMDA2009-TW.pdf
http://www.utwente.nl/projecten/ecmda2009/workshops/ECMDA2009-TW.pdf

Bibliography

[Kur08] Ivan Kurtev. State of the Art of QVT: A Model Transformation Language Stan-
dard. In Andy Schürr, Manfred Nagl, and Albert Zündorf, editors, Applications
of Graph Transformations with Industrial Relevance (AGTIVE), volume 5088 of
Lecture Notes in Computer Science, pages 377�393, 2008. Third International
Symposium, AGTIVE 2007, Revised Selected and Invited Papers.

[KW07] Ekkart Kindler and Robert Wagner. Triple Graph Grammars: Concepts, Exten-
sions, Implementations, and Application Scenarios. Technical Report tr-ri-07-284,
Department of Computer Science, University of Paderborn, Germany, June 2007.

[KWB03] Kleppe, Warmer, and Bast. MDA Explained. Addison-Wesley, 2003.

[Lef94] Martin Lefering. Software Document Integration Using Graph Grammar Speci�-
cations. In 6th International Conference on Computing and Information, volume 1
of Journal of Computing and Information, pages 1222�1243, 1994.

[LK11] Marius Lauder and Felix Klar. Precedence Triple Graph Grammars. In Proceed-
ings of the International Symposium of Applications of Graph Transformation
With Industrial Relevance (AGTIVE 2011), 2011. (accepted for publication).

[LLVC06] Laszlo Lengyel, Tihamer Levendovszky, Tamas Vajk, and Hassan Charaf. Re-
alizing QVT with Graph Rewriting-Based Model Transformation. In Proceed-
ings of the Second International Workshop on Graph and Model Transformation
(GraMoT), volume 4 of Electronic Communications of the EASST, Brighton, UK,
September 2006.

[LS05] Michael Lawley and Jim Steel. Practical Declarative Model Transformation with
Tefkat. In Jean-Michel Bruel, editor, Satellite Events at the MoDELS 2005 Con-
ference, volume 3844 of LNCS, pages 139�150, Montego Bay, Jamaica, October
2-7 2005.

[MCG05] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A Taxonomy of Model
Transformations. In Jean Bezivin and Reiko Heckel, editors, Language Engineer-
ing for Model-Driven Software Development, number 04101 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005.

[Met05] Andreas Metzger. A Systematic Look at Model Transformations. InModel-Driven
Software Development, pages 19�33. Springer Berlin Heidelberg, 2005.

[MFB09] Pierre-Alain Muller, Frederic Fondement, and Benoit Baudry. Modeling Modeling.
InModel Driven Engineering Languages and Systems, volume 5795 of LNCS, pages
2�16. Springer, 2009.

[MKU04] Stephen J. Mellor, Scott Kendall, and Axel Uhl. MDA Distilled. Addison-Wesley
Professional, 2004.

198

Bibliography

[Nei80] James M. Neighbors. Software Construction Using Components. PhD thesis,
Department of Information and Computer Science University of California, Irvine,
1980.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In
ICSE '00: Proceedings of the 22nd international conference on Software engineer-
ing, pages 742�745, New York, NY, USA, 2000. ACM.

[Obj06] Object Management Group. Meta Object Facility (MOF) Core Speci�cation,
January 2006. formal/06-01-01.

[Obj07] Object Management Group. MOF 2.0/XMI Mapping, Version 2.1.1, December
2007. formal/2007-12-01.

[Obj08] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Speci�cation, v1.0, April 2008. formal/2008-04-03.

[Obj09a] Object Management Group. Uni�ed Modeling Language Infrastructure Version
2.2, February 2009. formal/2009-02-04.

[Obj09b] Object Management Group. Uni�ed Modeling Language Superstructure Version
2.2, February 2009. formal/2009-02-02.

[Obj10a] Object Management Group. MOF Facility Object Lifecycle (MOFFOL), March
2010. formal/2010-03-04.

[Obj10b] Object Management Group. Object Constraint Language, February 2010.
formal/2010-02-01.

[PD90] Rubén Prieto-Díaz. Domain Analysis: An Introduction. SIGSOFT Software
Engineering Notes, 15(2):47�54, 1990.

[Per08] Stephen J. Perrault, editor. Merriam-Webster's Advanced Learner's English Dic-
tionary. Merriam-Webster, Incorporated, 2008.

[PR69] John L. Pfaltz and Azriel Rosenfeld. Web Grammars. In D. E. Walker and
L. M. Norton, editors, Proceedings of the 1st International Joint Conference On
Arti�cial Intelligence, pages 609�620, San Francisco, CA, USA, 1969. Morgan
Kaufmann Publishers Inc.

[Qui37] Willard Van Orman Quine. Logic Based on Inclusion and Abstraction. The
Journal of Symbolic Logic, 2(4):145�152, December 1937.

[Rao84] Jean-Claude Raoult. On Graph Rewriting. Theoretical Computer Science, 32:1�
24, 1984.

[RE67] Hugo Riemann and Hans Heinrich Eggebrecht, editors. Riemann Musiklexikon
Sachteil. Schott Music, Mainz, 1967.

199

Bibliography

[Ren08] Arend Rensink. Explicit State Model Checking for Graph Grammars. In R. De
Nicola, P. Degano, and J. Meseguer, editors, Concurrency, Graphs and Models,
volume 5065 of LNCS, pages 114�132. Springer Verlag, Berlin, June 2008.

[RN08] Arend Rensink and Ronald Nederpel. Graph Transformation Semantics for a
QVT Language. Electronic Notes in Theoretical Computer Science, 211:51�62,
April 2008.

[RS97] Jan Rekers and Andy Schürr. De�ning and Parsing Visual Languages with Lay-
ered Graph Grammars. Journal of Visual Languages and Computing, 8(1):27�55,
1997.

[Sch91] Andreas Schürr. Operationales Spezi�zieren mit programmierten Grapherset-
zungssystemen. PhD thesis, TH Aachen, 1991.

[Sch94] Andy Schürr. Speci�cation of Graph Translators with Triple Graph Grammars.
Technical Report AIB-94-12, RWTH Aachen, Fachgruppe Informatik Germany,
1994. (extended version).

[Sch95] Andy Schürr. Speci�cation of Graph Translators with Triple Graph Grammars.
In G. Tinhofer, editor, 20th International Workshop on Graph-Theoretic Concepts
in Computer Science, volume 903 of Lecture Notes in Computer Science, pages
151�163, Heidelberg, 1995. Springer.

[SHE06] Catherine Soanes, Sara Hawker, and Julia Elliot, editors. Oxford English Dictio-
nary. Oxford University Press, 6th edition, 2006.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model Transformation � the Heart and
Soul of Model-Driven Software Development. Software, IEEE, 20(5):42�45, 2003.

[SK08] Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars - Research
Challenges, New Contributions, Open Problems. In 4th International Conference
on Graph Transformation, volume 5214 of Lecture Notes in Computer Science
(LNCS), pages 411�425, Heidelberg, 2008. Springer Verlag.

[SNZ08] Andy Schürr, Manfred Nagl, and Albert Zündorf, editors. Applications of Graph
Transformations with Industrial Relevance, Third International Symposium, AG-
TIVE 2007, Kassel, Germany, October 10-12, 2007, Revised Selected and Invited
Papers, volume 5088 of LNCS. Springer, 2008.

[Som07] Ian Sommerville. Software Engineering. Addision Wesley, 8th edition, 2007.

[Ste10] Perdita Stevens. Bidirectional Model Transformations in QVT: Semantic Issues
and Open Questions. Software and Systems Modeling (SoSyM), 9(1):7�20, Jan-
uary 2010.

[Tat11] Tata Consultancy Services. Modelmorf. www, July 2011. http://www.tcs-

trddc.com/trddc_website/ModelMorf/ModelMorf.htm.

200

http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

Bibliography

[tef11] Tefkat. www, July 2011. http://www.tefkat.net.

[TEG+05] Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel,
Tihamer Levendovszky, Ulrike Prange, Daniel Varro, and Szilvia Varro-Gyapay.
Model Transformation by Graph Transformation: A Comparative Study. InModel
Transformation in Practice (MTiP'05), workshop at MODELS'05, Jamaica, 2005.

[VB07] Dániel Varró and András Balogh. The model transformation language of the
VIATRA2 framework. Science of Computer Programming, 68(3):214 � 234, 2007.
Special Issue on Model Transformation.

[via11] VIATRA2 Documentation. www, July 2011. http://wiki.eclipse.org/

VIATRA2.

[WKK+11] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes
Schönböck, Wieland Schwinger, Dimitrios Kolovos, Richard Paige, Marius Lauder,
Andy Schürr, and Dennis Wagelaar. A Comparison of Rule Inheritance in Model-
to-Model Transformation Languages. In ICMT2011 - International Conference
on Model Transformation, Zurich, Suisse, June 2011.

[ZKB02] Jürgen Ziegler, Christoph Kunz, and Veit Botsch. Matrix browser: visualizing
and exploring large networked information spaces. In Proceedings of the CHI EA
'02 extended abstracts on Human factors in computing systems. ACM New York,
NY, USA, 2002.

[Zün01] Albert Zündorf. Rigorous Object Oriented Software Development. University of
Paderborn, 2001. Habilitation Thesis.

201

http://www.tefkat.net
http://wiki.eclipse.org/VIATRA2
http://wiki.eclipse.org/VIATRA2

Bibliography

202

Index

abstract syntax, 14
algebraic approach, 37
algorithmic approach, 37
association, 44
association class, 71
association node, 87
associative table, 71
attribute, 43
attribute value parameter, 97

backtracking, 5, 94, 95, 114, 129, 178, 182
backward, 4
backward translation, 60
backwards, 31
batch mode, 75
BGT, 92
BGT rule, 94
bidirectional, 4, 31, 33, 41, 49, 55, 57, 60,

73�75, 77, 79, 81, 88, 169, 171, 173,
176, 181

bijective, 34, 170
bound, 50, 87, 110

category, 38
CC rule, 144
CDDS, 60
class, 42
codomain, 34
completeness, 3, 94, 142, 187
concrete syntax, 14
con�uence, 70
con�uent, 130
connect, 45
consistency check rule, 144
constraint, 36
context element, 87

core rules, 161, 186
correctness, 3, 94, 141, 187
correspondence graph, 82
correspondence language, 82
correspondence link, 82
correspondence link type, 84
critical pair, 130

dangling condition, 41
dangling edge, 35
dangling edge condition, 41, 97, 114, 178,

186
data domain, 60
dead-end, 94
derived graph, 39
direct derivation, 37
direct typed graph transformation, 40
directed edge, 34
directed graph, 34
domain, 1, 9, 34
domain analysis, 9
domain analyst, 10
domain engineer, 10
domain expert, 1, 10
domain model, 9
domain-speci�c language, 28
domain-speci�c language (DSL), 1
Domain-Speci�c Modeling (DSM), 29
DSL model, 29
dynamic semantics, 19

edge, 34
e�ciency, 94, 187
endogenous transformation, 32
exogenous transformation, 32
expressiveness, 94

203

Index

FGT, 92
FGT rule, 94
for-each activity, 49
forward, 4, 31
forward graph translation rule, 107
forward translation, 60
Fujaba, 149

gluing condition, 41
graph, 34
graph component, 105
graph constraint, 36
graph morphism, 34
graph schema, 36
graph translation rule, 93
graph translator, 92
graph triple, 82, 83
graph triple morphism, 84

horizontal transformation, 32
host graph, 37

identi�cation condition, 41
in-place transformation, 33
incremental mode, 75
injective, 34
input, 32
input domain, 92
input graph, 37
instance, 35
instance speci�cation, 28
instance value, 28
integration, 55
integrity-destroying production, 103
integrity-preserving, 130
integrity-preserving production, 100, 104,

186
integrity-restoring production, 103
intersection, 35
isomorphic, 34

JMI, 25

label graph, 98
language model, 18, 185

LHS, 37
link, 14, 44, 45
link domain, 84
link language, 82
link node, 45, 87
link type, 84
linkbrowser, 165
local completeness criterion, 111, 186
local rule, 93

match, 37
meta, 20
meta domain, 11
meta-meta, 21
metaassociation, 44
metaclass, 42
metaedge, 43
metalanguage, 19
metalanguage model, 23
metamodel, 18, 21, 185
metanode, 43
metaproperty, 43
metatype graph, 45
model, 12
Model Driven Architecture (MDA), 29
model translator, 3
model-driven development (MDD), 29
model-driven engineering (MDE), 29
modeling level, 19
MOFLON, 149
MOMoC, 149
monotonic, 39, 88
morphism, 34
morphism arrow, 36
MOSL, 4

NAC, 85
node, 34
non-primary element, 87

object, 14, 42
object domain, 60
operational rule, 93
optional create, 53
out-place transformation, 33

204

Index

output, 32
output domain, 92

PAC, 98
pair of cubes, 105
partial graph morphism, 35
predecessor graph, 39
primary edge, 87
primary element, 87
primary link, 87, 90
primary node, 87
primary object, 90
problem domain, 9
production, 37
production application sequence, 91
production component, 105
production triple with NACs, 104
properly typed, 83
property, 43
pushout, 35, 38
pushout object, 38

redex, 85
relative complement, 35
repository registry, 166
RHS, 37

secondary element, 87
secondary link, 87, 88
secondary object, 88
semantic de�nition, 19
semantic domain, 19
semantic mapping, 19
semantically correct, 19, 84
semantics, 19
set theoretic approach, 37
simple production, 105
slot, 28, 43
slot node, 87
source, 31
source domain, 60
source graph, 82
source node, 34
source-local rule, 106
static semantics, 19

story diagram, 49
Story Driven Modeling (SDM), 49
story pattern, 50
structured data, 1
subdomain, 1, 11
subgraph, 35
surjective, 34
syntactically correct, 19, 84
syntax, 19

target, 31
target domain, 60
target graph, 82
target node, 34
target-local rule, 107
termination, 187
TGG language, 81
TGG level, 97
TGG link, 82
TGG parameter, 87
TGG production, 5, 85
TGG rule, 85
TGG speci�cation, 81
TGGs, 81
TiE, 77, 81, 185
to-be-translated element, 94
token model, 16
tool, 2
tool integration framework, 164
total, 35
traceability link, 82
transformation de�nition, 31
transformation language, 3
transformation rules, 31
transformation speci�cation, 31
translation, 32
translation rule, 85, 93
translator level, 97
triple graph grammars, 81
type, 35
type graph, 35
type graph triple, 84
type model, 16
type preserving, 84, 97

205

Index

type preserving graph morphism, 35
typed graph, 35
typed graph morphism, 35
typed graph transformation, 40

unidirectional, 4, 49, 50, 60, 75, 77, 82, 169�
173, 176

union, 35

vertical transformation, 32
vertice, 34

well-formed, 19, 84

XMI, 25

206

A. Glossary

The most important symbols and terms used throughout this thesis have been collected and
summarized in this chapter for the reader's convenience.

A.1. Terminology of Graphs

node Basic element. Represents (an instance of) something.

edge Basic element. An edge e connects two nodes n1 and n1. Edges used throughout this
thesis are directed. An edge starts at its source node s(e) and ends at its target node
t(e). The source node is also called initial node and the target node is called head
node1 in order to avoid collisions with the terms �source/target graph�, �domain�, and
�component� when talking in TGG terms. Each of the two nodes has a speci�c role in
the context of an edge. The role depends on whether a node is the initial node or the
head node, i.e., either n1 or n2 may take the role of the initial node or head node. The
subscript of a node (e.g., 1 or 2) does not automatically denote whether the node is the
source or target of an edge.

adjacency Two nodes n1 and n2 are called adjacent if an edge exists between them.

neighborhood Nodes adjacent to a node n not including n itself are the (open) neighborhood
of n and denoted N(n). When n is also included, it is called a closed neighborhood and
denoted N [v].

incidence If an edge e connects two nodes n1, n2 these two nodes are said to be incident to
that edge and the edge is said to be incident to those two nodes. The set of incident
edges of a node n is denoted inc(n).

elements Nodes and edges.

graph A set of elements.

graph (homo)morphism A mathematical construct to relate (the elements of) two graphs.

(graph) production A construct for creating (and modifying and deleting) elements of a
host graph. Also graph rewriting rule. Consists of a set of elements. The elements of
a production are contained in the left-hand side (LHS) L, the right-hand side(RHS) R,
or the set of negative application conditions (NACs). Elements contained in the LHS

1�Head� because this node appears at the arrow head.

207

A. Glossary

must be present in the host graph in order to apply the production. The RHS speci�es,
in conjunction with the LHS, the elements that are created (R\L) and the existing
elements that are deleted (L\R) when applying the production. NACs specify which
elements must not be present in the host graph in order to apply the production.

match A match identi�es elements in a graph which are related to elements in a production.
A match is a morphism from a production to a graph.

redex A redex is a subgraph within a host graph matching a given production's LHS or
RHS. That is, a redex is a set of elements in the host graph identi�ed by a match of a
production in a host graph.

A.2. Terminology at TGG Level

graph triple A set of three (related) graphs. A triple of graphs consisting of a source graph
GS, a target graph GT , and a correspondence graph GC (also link graph). The corre-
spondence graph relates (corresponding elements of) the source and target graph. Note
that the initial and head node of an edge are contained in the same graph. The corre-
spondence graph �links� to the source and target graph via morphisms.

(graph) production triple p := (pS
hS← pC

hT→ pT) Also: TGG production. A construct for
simultaneously creating elements in the three graphs of a graph triple. That is, the
production triple is used to evolve graphs of the graph triple simultaneously. Consists
of three related production components (i.e., graph productions pS, pC , and pT) that
rewrite the source, correspondence, and target graphs.

triple graph grammar (TGG) A graph grammar based approach for specifying languages of
graph triples. The core part of a TGG speci�cation is a set of TGG productions. Source-
to-target translators as well as target-to-source translators can be derived from a TGG
speci�cation. In order to simplify the development process of translators the production
components of a TGG production are monotonic (i.e., they do not delete elements).
Certain rules may be derived from a TGG production which are used to perform certain
operations on a graph triple. For example, a production triple may be split into pairs of
operational rules (rS, rST) and (rT , rTS)�a local rule and its corresponding translation
rule. The elements created by a local rule are translated by its corresponding translation
rule. These elements are the to-be-translated elements identi�ed by a core match. Other
rules derived from a single production triple are, e.g., used to check a graph triple for
consistency or for restoring consistency after certain elements in some graph of a graph
triple were changed.

source domain The elements contained in the source graph of a graph triple are said to be
in the source domain.

target domain The elements contained in the target graph of a graph triple are said to be
in the target domain.

208

A.3. Terminology at Translator Level

link domain The elements contained in the correspondence graph of a graph triple are said
to be in the link domain.

A.3. Terminology at Translator Level

The terms presented in the following two subsections enable to speak either in terms that
depend on the direction of a translator (i.e, forward or backward) or in terms that are inde-
pendent of the direction of a translator.

A.3.1. Translation Direction Dependent

forward graph translator (FGT) A translator based on the TGG language. An FGT trans-
lates a graph of the source domain to a corresponding graph of the target domain. A
speci�c FGT which is based on a speci�c TGG (e.g., TGGCDDS) translates, e.g., class
diagrams to database schemata.

backward graph translator (BGT) A translator based on the TGG language. A BGT
translates a graph of the target domain to a corresponding graph of the source do-
main. A speci�c BGT which is based on a speci�c TGG (e.g., TGGCDDS) translates,
e.g., database schemata to class diagrams.

source-local rule rS An operational rule derived from a production triple. Used to create
elements of the source domain only. Consists of three production components of which
the link and target domain component are empty.

forward graph translation rule rST Also source-to-target domain translating production triple.
An operational rule derived from a production triple. Used by a FGT in order to sim-
ulate the simultaneous evolution of a graph triple. That is, the translator produces the
elements in link and target domain which correspond to the elements in source domain.
This translation rule consists of three components of which the source component is
read-only.

target-local rule rT An operational rule derived from a production triple. Used to create
elements of the target domain only. Consists of three components of which the source
and link domain component are empty.

backward graph translation rule rTS Also target-to-source domain translating production
triple. An operational rule derived from a production triple. Used by a BGT in order to
simulate the simultaneous evolution of a graph triple. That is, the translator produces
the elements in source and link domain which correspond to the elements in target do-
main. This translation rule consists of three components of which the target component
is read-only.

209

A. Glossary

A.3.2. Translation Direction Independent

input domain The domain of a graph triple which a translator uses as main source of infor-
mation to produce an output. Either the source domain (in the case of an FGT) or the
target domain (in the case of a BGT).

output domain The domain of a graph triple in which a translator produces elements which
correspond to the elements in the input domain. Either the target domain (in the case
of an FGT) or the source domain (in the case of a BGT).

(graph) translator Translates a graph of the input domain to a corresponding graph of the
output domain. Typically consists of a static part�a framework�(e.g., translation
algorithms that do not depend on a speci�c TGG) and a dynamic part (e.g., a set of
operational rules derived from a speci�c TGG).

GTin The graph triple that is given as input to a translator.

GTout The graph triple that is produced as output by a translator.

Ginput The graph of the input domain. A component of a graph triple. Either GS (in the
case of an FGT) or GT (in the case of a BGT). In common cases a translator does not
modify the graph of the input domain during translation, i.e., Ginput is read-only.

Goutput The graph of the output domain. A component of a graph triple. Either GT (in the
case of an FGT) or GS (in the case of a BGT).

translated elements TX The set of elements (nodes and edges) of the input domain that
are already translated.

(input-)local rule rI Either rS (in the case of an FGT) or rT (in the case of a BGT).

(input-to-output domain) translation rule rIO Either rST (in the case of an FGT) or rTS

(in the case of a BGT).

mI Match (mI , ε, ε) of a local rule's left-hand side in the input graph GI identi�es the context
elements required by a local rule rI .

m′I Match (m′I , ε, ε) of a local rule's right-hand side in the input graph GI identi�es the
context elements which were required by a local rule rI and the elements that have been
created by rI . Also known as core match in the context of a translation rule rIO.

mIO Match of the full left-hand side mIO := (m′I ,mC ,mO) of a translation rule rIO.

m′I(LI) Part of the match m′I which identi�es the elements in the input graph GI that are
required as context by a local rule rI . These elements are also required as context by
the corresponding translation rule rIO (i.e., the context elements of a core match).

m′I(RI\LI) Part of the match m′I which identi�es the elements that have been created by a
local rule rI . This part of the match also identi�es the elements that will be translated
by a translation rule rIO (i.e., the to-be-translated elements of a core match).

210

A.4. Original TGG Terms Related With Terms Used in This Thesis

A.4. Original TGG Terms Related With Terms Used in

This Thesis

Table A.1 relates the terms used in the original TGG publication [Sch95] and its extended
version [Sch94] with the terms used in this thesis.

[Sch94] / [Sch95] this thesis description

vertex node

GT := (LG← lr−CG−rr → RG) GT := (GS
hS← GC

hT→ GT) graph triple

p := (lp← lh− cp− rh→ rp) p := (pS
hS← pC

hT→ pT) production triple p
lp := (LL, LR) pS := (LS , RS) source component of p
cp := (CL, CR) pC := (LC , RC) correspondence component of p
rp := (RL,RR) pT := (LT , RT) target component of p

GT ∼p(g)∼> GT' GT
p@m
 GT ′ graph triple rewriting

left to right translation forward translation
right to left translation backward translation

GT∼pL∼>HT ∧ HT∼pLR∼>GT' GT
rS GTS

rST GT ′ simulated simultaneous evolu-
tion of GT (forward translation)

left-local production triple pL source-local rule rS

left-to-right translating
production triple pLR

forward
graph translation rule rST

lg′ m′
S important morphism of LR-

Splitting of Production Triples

expressiveness of TGG formalism expressiveness of TGG formalism a property of (bidirectional)
translation languages

e�ciently working graph parser e�ciency of translators a property of translators
correctness
of results produced by algorithm

correctness
of translators wrt. a TGG

a property of translators

completeness
of algorithm

completeness
of translators wrt. a TGG

a property of translators

termination of algorithm termination of translation process a property of translators

Table A.1.: TGG terms used in [Sch94] and [Sch95] related with the terms used in this thesis.

211

A. Glossary

212

B. Issues in Original TGG Publication

In the following we hint to some issues in the extended version [Sch94] of the original TGG
publication [Sch95]. In conjunction with the terminology in Appendix A and especially Ta-
ble A.1 the following hints will hopefully assist TGG novices while studying the original TGG
publication.

Section 3 References to �gures in Sect. 3 are broken in the text. All numbers referencing
a �gure in Sect. 3 have to be incremented by one to restore the consistency of these
references.

De�nition 3.1 (4) The de�nition of the morphism functions hV and hE contains two typos
(cf., e.g., [EEPT06] for the de�nition of a graph morphism). The given de�nition
�∀e ∈ E : hV (s(e)) = s(hE(e)) ∧ hV (t(e)) = t(hE(e))�
has to be adjusted to
�∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e))�

Proposition 3.6 LR-Splitting of Production Triples Proposition 3.6 gives a formal intro-
duction to LR-splitting of production triples p into pL and pLR. The proof of Propo-
sition 3.6, which refers to Fig. 7, demands that all production applications (p, pL, and
pLR) use the same morphism lg′ (depicted in Fig. 7) to select an image of graph LR (i.e.,
right-hand side RS of p) in LG′ (i.e., source graph GS that is rewritten by pL/pS and p
into G′S). The preceding paragraph to Proposition 3.6 gives an informal introduction to
LR-splitting. It refers to morphisms lg that have to be kept �xed when applying �rst pL

and then pLR (in order to simulate application of p). One has to be careful to not mix
the morphisms lg from this informal introduction to Proposition 3.6 with the morphism
lg depicted in Fig. 7. In general these morphisms lg are not identical!

Proposition 3.9 Computing LR-Translations This proposition sketches an algorithm that
may be used to compute forward translations. The algorithm contains the following
pseudo-code fragment involved in selecting a match (morphism lg) while translating
the input graph, where newLR(p) are the to-be-translated elements in the input graph.
�CoveredElements� are the elements in the source domain which have been translated
so far and the corresponding elements in the link and target domain which have been
created by translation rules:
�with lg(newLR(p)) ∩ CoveredElements 6= ∅�
The intention of this fragment is to select the morphism lg if the to-be-translated ele-
ments are not yet translated. Therefore, the intersection of to-be-translated and covered
elements must be the empty set. Consequently, the code fragment should be:
�with lg(newLR(p)) ∩ CoveredElements = ∅�.

213

B. Issues in Original TGG Publication

214

C. Curriculum Vitae

09/2005 - 09/2011 Research assistant at Technische Universität Darmstadt
09/1999 - 08/2005 Student assistant at Fraunhofer Institut für Graphische Datenver-

arbeitung (IGD) in Darmstadt
10/1998 - 04/2005 Studies of Computer Science at Technische Universität Darmstadt
06/1997 Abitur at Gymnasium Hohe Landesschule Hanau

215

C. Curriculum Vitae

216

Erklärung laut �9 Promotionsordnung

Ich versichere hiermit, dass ich die vorliegende Dissertation allein und nur unter Verwendung
der angegebenen Literatur verfasst habe. Die Arbeit hat bisher noch nicht zu Prüfungszwecken
gedient.

Darmstadt, den 15.09.2011 Felix Klar

217

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Scope
	State of the Art
	Contributions
	Outline

	Fundamentals
	Domains
	Models and Languages
	Models
	Abstract and Concrete Syntax
	Relationships Between Model and Subject
	Languages
	Metamodels

	Modeling Languages
	MOF
	OCL
	UML
	Domain-Specific Languages (DSLs)

	Model-Driven Engineering and the MDA
	Model Transformation
	Graphs
	Graph Grammars and Graph Transformation
	Model Transformation Based on Graph Transformation
	Mapping Models to Graphs
	Models Mapped to Graphs: Two Examples
	Realizing Model Transformation with Graph Transformation

	Integration of Formal Languages
	CAB: A Natural Language Translation Analogy
	Relationships in Translation Processes
	Integrating Class Diagrams and Database Schemata
	Syntax of CD and DS Language Models
	Constraints in CD and DS Language Models
	Producing CD and DS Models
	Examples of CD and DS Models
	Mapping CD and DS

	Similarities in Natural and Formal Language Translation
	Challenges Realizing Bidirectional Translators
	Model-Driven Language Integration with TiE

	Triple Graph Grammars
	Overview
	TGG Schema
	TGG Productions
	Productions of TGGCDDS
	Simultaneous Evolution of Graph Triples
	Language Translators based on TGGs
	Fundamental Properties of TGGs and Translators

	Extended Triple Graph Grammars
	Labels and Attributes
	Formalization of Constrained TGGs with NACs
	Integrity Preserving Productions
	Constrained and Typed Triple Graph Grammars with NACs
	Splitting of Production Triples with NACs
	Local Completeness Criterion
	Conclusion

	Dangling Edge Condition (DEC)
	Motivation
	Formal introduction to LNCC and DEC
	Extracting LNCC from TGG productions
	Dangling Edge Condition by Example

	Graph Translators for Extended TGGs
	Graph Translation Algorithm Framework
	Core Rules
	Simple Graph Translation Algorithm
	Forward Translation Example
	Discussion of Simple Algorithm
	Advanced Graph Translation Algorithm
	Backward Translation Example
	Properties of Advanced Translation Algorithm
	Termination
	Efficiency
	Correctness
	Completeness
	Consequences

	Consistency Check Algorithm

	Implementation of Approach
	The MOFLON meta-CASE Tool
	Architecture of MOFLON
	MOFLON editors

	TGG in MOFLON
	TGG Editor
	Translating a TGG Project

	Tool Integration Framework
	Accessing Repositories

	Related Work
	Decision Criteria
	Related Model Transformation and Model Integration Approaches
	ATL
	Viatra2
	Tefkat
	Epsilon Transformation Language
	AToM3
	GRoundTram
	QVT

	Triple Graph Grammar Approaches
	Own Approaches
	Becker et al.
	Giese and Wagner
	Königs
	Greenyer and Kindler
	Ehrig et al.

	Comparison Matrix

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Index
	Glossary
	Terminology of Graphs
	Terminology at TGG Level
	Terminology at Translator Level
	Translation Direction Dependent
	Translation Direction Independent

	Original TGG Terms Related With Terms Used in This Thesis

	Issues in Original TGG Publication
	Curriculum Vitae

