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Abstract
In this thesis, we consider three challenging and longstanding problems in computer
vision: people detection, people tracking and articulated pose estimation. Generic
solutions to these problems are essential building blocks for understanding images
containing people, an exciting and challenging task with numerous applications in
automotive safety, robotic navigation, human-computer interaction, and automatic
image indexing and retrieval. Indeed, human actions, intentions and emotions can
often be inferred from accurate estimates of human body poses and their movement
over time. However, untill recently, accurate estimation of body poses has been pos-
sible only in controlled laboratory conditions, typically requiring multiple cameras
and specialized motion capture equipment. In order to address this shortcoming, we
propose algorithms capable of automatically finding people in uncontrolled outdoor
environments, tracking them over time and estimating their body configurations. In
the process, we also tackle several important technical challenges, including the large
appearance variability of humans, the full and partial occlusions that frequently oc-
cur in typical street scenes, and ambiguities in 2D to 3D lifting and data association.

Humans appear in images wearing a large variety of clothing, in a large number
of possible body poses and visible from various viewpoints. Jointly, these factors
create very complex appearance patterns that are hard to model and detect well. In
order to deal with the large appearance variability, we propose an approach based
on the pictorial structures paradigm in which we represent the human body as a
flexible configuration of rigid body parts and model the appearance of each body
part using local image descriptors and discriminative classifiers. We demonstrate the
generality of our approach by successfully applying it to various human detection
and pose estimation problems.

One of the goals of this work is to demonstrate the advantages of a tight coupling
of people detection, pose estimation and tracking. Tracking of people in uncontrolled
conditions is difficult not only due to appearance variability, but also to frequent
full and partial occlusions, which often happen when multiple people are present in
the scene. Presence of multiple people also severely complicates data association
between frames of the sequence. In order to address this challenge, we propose a
tracking-by-detection framework that combines evidence from single-frame detec-
tions over several subsequent frames using a dynamical model of body articulations.
We demonstrate the effectiveness of our tracking-by-detection approach by applying
it to the problem of monocular 3D pose estimation of people in uncontrolled street
environments.
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Zusammenfassung
In dieser Dissertation untersuchen wir drei komplexe und zusammenhängende Frage-
stellungen aus dem Bereich des maschinellen Sehens: Menschenerkennung, Menschen-
Tracking, und Posenschätzung. Generische Lösungen für diese Aufgaben sind wichtige
Bausteine für das automatische Bildverstehen und haben viele Anwendungen in
der Automobilindustrie, Roboter Navigation, Mensch-Maschiene Interaktion, Bild
Indizierung und Retrieval. In der tat, ist es in vielen Fällen möglich die Posen
und Bewegungen von Menschen zu verwenden um auf die Aktivitäten, Intentionen
und Emotionen von Menschen Rückschlüsse zu ziehen. Allerdings war das präzise
Schätzen von menschlichen Posen bisher nur unter kontrollierten Labor-Bedingungen
möglich, und erforderte den Einsatz mehrerer Kameras und spezieller Ausrüstung.
Um diesen Mangel zu beheben, schlagen wir in dieser Arbeit Algorithmen vor, die
es erlauben die Menschen unter unkontrollierten Bedingungen zu erkennen, über die
Zeit zu verfolgen und ihre Posen zu schätzen. Dabei befassen wir uns mit solchen
wichtigen technischen Herausforderungen wie grosse Variabilität im Aussehen von
Menschen, volle und partielle Verdeckungen und Mehrdeutigkeiten in der Daten-
Assoziierung und 3D Rekonstruktion.

Menschen erscheinen in Bildern in unterschiedlicher Bekleidung, nehmen unter-
schiedliche Posen an, und können aus unterschiedlichen Bildwinkeln dargestellt wer-
den. Gemeinsam tragen diese Faktoren dazu bei, dass daraus resultierende Muster
schwer zu repräsentieren und zu erkennen sind. Um mit solche grosser Variabilität
umgehen zu können, schlagen wir den Ansatz, der auf dem “pictorial structures”
Modell basiert und in dem der menschliche Körper durch eine flexible Konfigura-
tion aus den starren Körperteilen repräsentiert wird vor. Dabei modellieren wir das
Aussehen jedes Körperteils mit Hilfe von lokalen Discriptoren und diskriminiativen
Klassifikatoren. Wir demonstrieren die Allgemeinheit unseres Ansatzes, indem wir
ihn erfolgreich auf unterschiedliche Aufgaben in der Menschenerkennung und Posen-
schätzung anwenden.

Eines der wichtigen Ziele dieser Arbeit ist, die Vorteile von enger Kopplung zwis-
chen Menschenerkennung, Tracking und Posenschätzung zu demonstrieren. Track-
ing von Menschen unter unkontrollierten Bedingungen ist nicht nur wegen der kom-
plexen visuellen Muster schwer, sondern auch wegen häufiger voller und partieller
Verdeckungen. Die Präsenz von mehreren Leuten in einer Szene macht es auch
schwierig die Hypothesen zwischen einzelnen Bildern zu assoziieren. Um dieser Her-
ausforderung zu begegnen, schlagen wir den “tracking-by-detection” Ansatz vor, in
dem die Beobachtungen über mehrere einzelne Bilder anhand des dynamischen Kör-
permodells kombiniert und verfeinert werden. Um die Effektivität unseres“tracking-
by-detection”Ansatzes zu demonstrieren wenden wir Ihn auf das Problem der monoku-
larer 3D Posenschätzung von mehreren Menschen in unkontrollierten Strassenbedin-
gungen an.
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1
Introduction

Es hört doch jeder nur, was er versteht.

Johann Wolfgang von Goethe,
from Maximen und Reflexionen

Computer systems are ubiquitous in our everyday life. These systems take on dif-
ferent forms, including traditional personal computers, mobile phones, robotic as-
sistants and embedded devices. However, what is common to the majority of these
systems is that they are designed to help us achieve more in less time and make our
life more enjoyable and fulfilling. The ability of these systems to realize their purpose
depends on how well they can interact with and perceive the human environment
and how well they can interpret the motivations, intentions and actions of people.
It is therefore an important research objective to develop theories and methods that
enable computer systems to see patterns and recover high-level representations of
the world from low level sensor measurements, such as sound and camera images.

Building computers that see is therefore a fundamental goal and an important
milestone on the way to building autonomous and intelligent computer systems.
Seeing may mean many things in this context. It may mean that computers can
reliably recover structures contained in the image at various levels of detail. At the
coarse level, this could include objects in the scene, important scene surfaces such
as walls and pathways, and the rough 3D scene geometry. At the finer scale, the
objective is to obtain more detailed descriptions of each of the scene’s objects to
understand what parts they are built from and what physical properties they might
have. Seeing might also mean understanding the visual scene, which allows the
system to predict its evolution over time, and the ability to explain these predictions.

This thesis is about developing the models and algorithms necessary for enabling
computers to understand images that contain people. In general, the goal of image
understanding is difficult to define precisely. This is because the type of the problem
one is trying to address often dictates the kind of scene interpretation one would like
to achieve. For example, in an automotive scenario, it might be sufficient to recover
only positions of pedestrians and the drivable surface in the image, while correctly
interpreting social situations such as those shown in Fig. 1.1 might require both
knowing where people are in the image and what poses they assume. Furthermore,
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2 Chapter 1. Introduction

a household robotic assistant could be interested in understanding the emotions and
intentions of the surrounding people, which might require detailed information about
their 3D pose and facial expression. Depending on the task, different levels of detail
may be necessary. In the automotive example, it might be helpful to know a person
orientation with respect to the camera in addition to his or her position in order
to infer whether the person is attempting to cross the street and when and where
that might occur. In this thesis, in order to address these diverse requirements, we
develop methods for people detection and human pose estimation at different levels
of detail both in still images and in image sequences.

Visual people detection and pose estimation are rather challenging problems.
Fig. 1.2 shows several example images containing people, which are ordered from
left to right by their complexity for pose estimation. The ordering also reflects our
intuition about the relative difficulty of the challenges encountered in visual people
detection. People typically wear a large variety of clothing and are capable of as-
suming numerous body poses. Complex body poses mean that body parts will often
be fully or partially occluded. The appearance and dimensions of individual body
parts also change significantly depending on the body shape, pose, viewpoint, and
imaging conditions. Jointly, these factors result in complex appearance patterns that
are difficult to represent and detect. In addition, the detection of people is a special
case of generic object category detection, so it inherits all the difficulties common to
this problem, such as the necessity to deal with large amount of background clutter,
the limited number of training examples and the variability of lighting conditions.
Due to the complex layout and large appearance variability of body parts, it is very
difficult to determine which image regions belong to body parts of the person and
which are merely background clutter. This problem becomes even more complex
when multiple people are present in the image. Finally, even assuming that this
problem is solved and we managed to locate the image positions of body parts, we
are still facing the ambiguities inherent to recovering a 3D body pose given its image
projection. Indeed, we have to get many things right in order to correctly interpret
images containing people in unconstrained settings.

As is common in cases where the ultimate problem is very difficult, the immediate
research often is focused on various special cases for which at least some progress
seems possible in the near future. Such specialization brings various additional
constraints which, while unapplicable in general, often lead to interesting practi-
cal results. One important special case of generic people detection is pedestrian
detection. In this thesis, we consider this problem in Chapters 3 and 5. While
people walking on the street still vary greatly in their appearance, we can safely
assume that they appear in the images in the upright position with their body part
configurations constrained by their walking motion. This allows us to learn compact
models for both the global appearance of pedestrians and their body parts as well
as for the spatial layout of the body configurations. As we demonstrate, we can
use such models to go beyond simply detecting people in images and employ them
for 3D pose estimation and tracking of specific people in image sequences that
contain multiple people frequently occluding each other.



1.1. Contributions 3

In practice, any constraints on the possible body configurations and viewpoints
of people appear to be helpful. For example when looking for injured people laying
on the ground in search and rescue scenarios, the position and orientation of each
person is restricted by the ground plane. This restriction makes people detection in
this setting tractable. At the same time, this setting is still very interesting from
the research standpoint because it exhibits such challenges as arbitrary body ar-
ticulations and body part occlusions, neither of which is handled satisfactorily by
state-of-the-art people detectors. We explore this setting in Chapter 6. We demon-
strate that algorithms based on learning the global appearance of people, which are
successful for pedestrian detection do not perform well in this setting. Instead, local
approaches based on the assembly of partial body configurations are necessary. To
this end, we apply an approach based on our model for people detection and 2D
pose estimation that we present in Chapter 4. This approach is the furthest we
got on our quest towards generic people detection and pose estimation. It still oper-
ates only with 2D part configurations and does not explicitly model foreshortening
or occlusions of body parts 1. Nonetheless, we show that it improves over the pre-
vious methods that were developed specifically for special cases such as pedestrian
detection and upper body pose estimation.

One of the general themes pursued in this thesis is the development of algorithms
capable of recovering increasingly fine-grained descriptions of people seen in images.
As a first step, in Chapter 3, we have developed a new method for pedestrian detec-
tion that provided estimates of image scale and position for each detected person. In
Chapter 4, we developed a new approach to 2D pose estimation that is also capable
of estimating the 2D positions and orientations of the body parts. Finally, in Chap-
ter 5, we proposed an approach that in addition to detection also recovers viewpoints
of people, estimates their 3D poses and tracks individual people in crowded street
scenes.

Another theme underlying our work was to move from restricted to more generic
scenarios for people detection and pose estimation. Our initial approach, introduced
in Chapter 3, was applicable to pedestrians seen from the predefined viewpoint
only. In the course of our work we have developed an approach for pose estimation
of people in arbitrary environments (Chapter 4) and an approach to multi-view
pedestrian detection (Chapter 5). In Chapter 6, we have also developed an approach
for people detection in “search and rescue” scenarios, which is significantly more
difficult and general setting compared to pedestrian detection.

1.1 Contributions

This thesis makes several contributions in the area of people detection as well as in
2D human pose estimation, 3D human pose estimation and multi-person tracking.

1In the case of people detection in search and rescue scenarios we manage to escape these issues
by employing several realizations of our model, each with different number of body parts.



4 Chapter 1. Introduction

Figure 1.1: Several examples of images containing two people interacting with each
other. Notice that the poses of the people often provide essential cues for determining
the type of interaction.

Complexity

Rare poses

Foreshortening of
 body parts

Complex viewpoints

Occlusions

Figure 1.2: Several examples of images with people that illustrate some of the chal-
lenges for people detection and articulated pose estimation. The images are ordered
from left to right by their complexity for 2D pose estimation as measured by the
percentage of body parts correctly localized by the approach of Andriluka et al.
(2009).
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We propose two novel approaches for people detection and 2D pose estimation.
Both of them build on the pictorial structures framework of Fischler and Elschlager
(1973) and Felzenszwalb and Huttenlocher (2005), but they differ in the appearance
model and the inference algorithm. In the first approach, partISM, we employ the
implicit shape model (ISM) (Leibe et al., 2004) in order to represent the appear-
ance of body parts, and we subsequently combine part evidence using a generalized
distance transform. We evaluate our approach on the task of pedestrian detection,
where it shows improved performance over the previously proposed approach of Dalal
and Triggs (2005), which uses a global appearance representation, and over the ap-
proach of Seemann and Schiele (2006), which uses a similar ISM-based appearance
representation, but does not rely on a part-based model. The important advantage
of our approach is that, in addition to detecting people, it also provides evidence
for their body configurations. By employing long range dependencies between local
image features and positions of body parts, our approach is also capable of handling
the partial occlusions that frequently occur in crowded street scenes.

Our second approach to people detection builds on a tree-structured body model
and represents the appearance of individual body parts with densely sampled local
features and discriminative classifiers. Our approach further pushes the state-of-the-
art in pedestrian detection by improving over the previous partISM approach and
the more recent approach of Gall and Lempitsky (2009). The important advantage
of our second approach is its generality. In addition to pedestrian detection, it is
also applicable to upper-body pose estimation and full-body pose estimation, and
it significantly improves over results of Ferrari et al. (2008) and Ramanan (2006)
on standard benchmark datasets. In chapter 6, we also apply this approach to the
detection of arbitrarily articulated people from the on-board camera of an unmanned
aerial vehicle. In order to foster further research on human detection and pose
estimation, we have made the source code of our implementation publicly available2,
which has enabled other researchers to use it in their work (Freifeld et al., 2010; Yao
and Fei-Fei, 2010; Eichner and Ferrari, 2010; Stark et al., 2010a) or directly compare
their results to ours (Karlinsky et al., 2010; Sapp, Jordan and Taskar, 2010; Sapp,
Toshev and Taskar, 2010; Tian and Sclaroff, 2010a,b).

As a second major contribution of this thesis, we have developed a tracking-
by-detection framework that builds on our results in single frame people detection
and 2D pose estimation. Given a monocular image sequence obtained in uncon-
trolled street conditions with an uncalibrated and potentially moving camera, our
framework is capable of automatically finding people, tracking them over time and
estimating their body poses. In this framework, we combine the initial position and
articulation estimates with the non-parametric dynamical model of Lawrence and
Moore (2007) in order to obtain short-term tracking hypotheses (tracklets), and we
subsequently use them to infer tracks of multiple people in crowded street scenes.
The important property of our approach is its ability to deal with long-term occlu-
sions of people, which we handle with the help of person-specific appearance models

2http://www.d2.mpi-inf.mpg.de/code

http://www.d2.mpi-inf.mpg.de/code


6 Chapter 1. Introduction

obtained using estimates of body configurations.

Our third contribution is an approach to 3D pose estimation of pedestrians in
monocular image sequences, which builds both on our tracking-by-detection frame-
work and on our results in 2D pose estimation. We propose a novel formulation of
the 3D pose likelihood that relies on the estimates of the 2D body position, the 2D
body pose, and the viewpoint obtained from a bank of viewpoint-specific pictorial
structures models. Contrary to many approaches in the literature (e.g., (Ormoneit
et al., 2001; Sigal et al., 2004)), we avoid the assumption of conditional independence
of 2D evidence in each frame of the sequence. Instead, we proceed by integrating
2D evidence over multiple frames using temporal consistency, subsequently using
the improved 2D estimates in order to define the 3D pose likelihood. This approach
allows us to significantly reduce the number of spurious local optima in the 3D like-
lihood and also provides an effective means for initializing the 3D pose estimation
procedure. We evaluate our approach on a standard benchmark in 3D human pose
estimation where it compares favorably to the state of the art and demonstrate
its applicability to images taken in uncontrolled street conditions with static and
moving cameras.

1.2 Outline

In this section, we briefly outline the structure of this dissertation.

Chapter 2 reviews the literature on people detection, tracking and human pose
estimation. We present the most prominent approaches relevant to our work, high-
light commonalities and differences between them, and discuss various paradigms in
representation, modelling and detection of people in images and image sequences.

Chapter 3 presents a partISM approach to people detection and pose esti-
mation based on the implicit shape model (Leibe et al., 2004) and pictorial struc-
tures model (Felzenszwalb and Huttenlocher, 2005). This chapter also introduces a
tracking-by-detection framework that combines detection, tracking and pose estima-
tion in order to reliably track people in crowded street scenes with frequent full and
partial occlusions.

Chapter 4 introduces a generic model for people detection and articulated pose
estimation. Similarly to partISM, it builds on the pictorial structures model. How-
ever, it uses discriminative appearance representations and a more flexible kinematic
tree prior on human poses. We perform a detailed evaluation of various aspects of
the appearance model, such as the type and parameters of the local descriptors,
type of belief propagation algorithm, and compare tree and non-tree versions of our
approach. We directly compare our appearance model to the template-based appear-
ance model of Ramanan (2006) by integrating it into our system and demonstrating
that our approach to appearance modeling leads to significant improvements in per-
formance. Due to its flexible appearance and pose representation, our approach is
applicable to a wide variety of tasks. We demonstrate this by applying it to pedes-
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trian detection and frontal upper body and generic full body pose estimation. In
each case, we use previously proposed datasets and show that our approach improves
over the state of the art, outperforming methods designed specifically for each of
these tasks.

Chapter 5 describes an approach to 3D pose estimation of pedestrians in re-
alistic street conditions. Leveraging the results from Chapter 4, we develop a novel
approach to pedestrian detection and viewpoint estimation that builds on a bank of
part-based viewpoint-specific detectors. We integrate position and viewpoint esti-
mates over time and use them within the tracking-by-detection framework introduced
in Chapter 3 in order to recover 3D poses of people.

Chapter 6 presents the application of our approach from Chapter 4 to the
task of people detection from unmanned aerial vehicles. In order to further improve
the performance of our approach in this novel setting, we augment it with on-board
sensor measurements, which we use to obtain an informative prior on the scale
of people in images and cope with the effects of perspective distortion. We also
demonstrate the effectiveness of combining multiple models for coping with partial
occlusions.

Chapter 7 presents concluding remarks and sketches possible directions for
future work.





2
Related Work

Fifteen years of research he’d filed from
one planet alone and they’d cut it to two
words. ”Mostly Harmless.”

Douglas Adams, from Mostly Harmless

The pictorial structures approach is central to the work presented in this thesis.
Therefore, we begin this chapter by introducing it in Sec. 2.1, and then proceed by
describing its applications in the literature and comparing the pictorial structures
approach with other approaches to people detection in Sec. 2.2 and 2D human pose
estimation in Sec. 2.3. In Sec. 2.4 we review the state of the art in 3D pose estimation,
and conclude this chapter with Sec. 2.5, in which we survey the literature on people
detection using other sensors and sensor fusion. When applicable, we also refer to
the literature on people tracking, both in the 2D and 3D setting, and relate it to
our work on people tracking presented in Chapters 3 and 5.

In addition to reviewing the literature related to the pictorial structures model
and the state of the art in pose estimation, detection, and tracking, we pursue
two additional goals in this chapter. On the one hand we highlight the currently
established benchmarks in computer vision that are relevant for people detection
and pose estimation. For each of the tasks considered in this thesis, there are
established datasets and evaluation criteria that allow for the direct comparison of
various approaches with each other. Such benchmarks play an important role in
the computer vision research, as they allow the research community to focus their
efforts and monitor their achieved progress.

As a second goal, we highlight the relationship of the described approaches to
various paradigms in visual data modeling that have been established over the years
in computer vision literature. In particular, we indicate whether the presented
approaches are model-based or model-free, employ top-down or bottom-up inference,
and generative or discriminative modeling. Whenever possible, we also point out
how these paradigms are combined in various settings.

9
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(a)

(b)

Figure 2.1: Diagram showing spatial relations between parts of the face, and likeli-
hood functions (or reference description) for the left edge of the face (a) and the eye
(b). This figure is reproduced from the original pictorial structures work of Fischler
and Elschlager (1973).
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Figure 2.2: Diagram showing the main components of the pictorial structures based
people detection and pose estimation system proposed here.
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2.1 Pictorial Structures Approach

The pictorial structures model, originally introduced by Fischler and Elschlager
(1973), has a long history in computer vision. The key ideas of representing objects
as a set of rigid components with pairwise constraints on their spatial layout, and
matching algorithms based on dynamic programming were introduced already in
the original work of Fischler and Elschlager (1973). Fig. 2.1 shows an example of
the face model considered in their work, along with the corresponding likelihood
functions (referred to as reference description) for two of the model parts. Fischler
and Elschlager discuss the principal difficulties of finding the arrangement of parts
that maximizes the criteria combining the likelihood of individual parts and pair-
wise terms representing spatial constraints on part positions. As they point out, the
structure of the part dependencies has strong implications on the complexity of the
inference. In the case of part dependencies without loops optimal solution can be
found in polynomial time with the algorithm based on the dynamic programming.
This algorithm exploits conditional independencies between part positions in order
to perform computations efficiently and is not applicable in cases where such depen-
dencies have a loopy structure (e.g., as in the case of the face model in Fig. 2.1).
In order to deal with the generic case, Fischler and Elschlager propose a heuristic
approach that, while not guaranteed to find the optimal solution, appears to work
well in their experiments.

The pictorial structures approach naturally lends itself to a probabilistic inter-
pretation. Denoting the location of part i by li, the joint configuration of parts by
L, and the evidence in the form of image features by E, the problem of finding the
optimal configuration of parts corresponds to finding the maximum of the posterior
distribution

p(L|E) ∝ P (E|L)p(L). (2.1)

The assumption that the appearance of a part is independent of the other parts
corresponds to the decomposition of the likelihood term into the product of individ-
ual part likelihoods

p(E|L) =
∏
i

p(E|li). (2.2)

This probabilistic interpretation of pictorial structures served as a basis for the
development of constellation models (Burl et al., 1998; Fergus et al., 2003) and tree-
structured pictorial structures models (Felzenszwalb and Huttenlocher, 2005). The
latter, in addition to the likelihood decomposition in Eq. 2.2, assumes that prior
distribution p(L) has a tree structure and can be decomposed into the product of
unary and pairwise terms

P (L) = p(l0)
∏

(i,j)∈G

p(li|lj). (2.3)

The probabilistic interpretation of pictorial structures also suggests inference algo-
rithms for finding optimal locations of individual parts and their joint configurations.
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The best location of a particular part i is given by the maximum of the marginal
posterior distribution

p(li|E) =
∑
L\li

p(L|E), (2.4)

which in the case of a tree-structured model can be computed in polynomial time
with sum-product belief propagation algorithm, and the optimal configuration of
body parts can be found efficiently with max-product belief propagation (Pearl,
1988; Bishop, 2006). In the more generic case, the posterior marginals can be ap-
proximated using loopy belief propagation (Frey, 1998), or a number of alternative
approximate inference techniques (Jordan et al., 1999; Yedidia et al., 2000).

The domain of the part locations li plays an important role in the choice of in-
ference algorithm. In the case where the set of possible part locations is finite and
relatively small and the model has only a few parts, exhaustive enumeration of the
state space of each part is possible. An example of such a case is the constellation
model that identifies the set of potential part locations using an interest point de-
tector. In the case where the domain of li is continuous, the solution can be found
using sampling-based techniques (e.g. non-parametric belief propagation (Sudderth
et al., 2003; Isard, 2003)). Sampling-based techniques are also applicable in the case
of a discrete representation and allow tractable approximate inference even when
the number of candidate part locations becomes large (Stark et al., 2010b).

In many cases it is also possible to represent the domain of li as a finite multi-
dimensional grid by discretizing it along each dimension. This approach avoids the
need to preselect a set of candidate part locations as is necessary in the constella-
tion models and allows to perform inference exactly in contrast to sampling-based
techniques. Felzenszwalb and Huttenlocher (2005) have employed such a grid-based
representation in conjunction with a tree-structured prior distribution on part con-
figurations and a Gaussian assumption on the relationship between body parts in
order to further reduce inference cost. Given these additional assumptions, the MAP
estimate of the body configuration can be found with generalized distance transform
in the time linear in the number of discrete grid locations (Felzenszwalb and Hut-
tenlocher, 2004). Similarly, one can also efficiently compute the marginal posterior
distribution for the position of each body part using Gaussian convolution. Another
important contribution of Felzenszwalb and Huttenlocher (2005) is the application
of the pictorial structures model to 2D articulated pose estimation, and the descrip-
tion of a joint transformation that permits to perform linear time inference, even
when part dependencies are non-Gaussian in the spatial domain. In the context of
belief propagation, the approach to linear time inference introduced by Felzenszwalb
and Huttenlocher (2005) can be interpreted as a way to quickly compute messages
between model variables during message passing.

The pictorial structures model specifies the decomposition of the object into
parts, constraints on the relative locations of parts, and criteria for judging the
quality of the part assembly. For example, in the case of 2D human pose estimation,
the representation frequently used in the literature consists of 10 parts, correspond-
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ing to torso, head, and left/right legs, upper arms and forearms. Approaches of this
type are often referred to as being model-based. At the same time, the pictorial
structures approach is flexible with respect to the choice of parameter learning and
inference algorithm. In the approach of Felzenszwalb and Huttenlocher (2005) spa-
tial parameters are learned in a generative way, by maximizing the likelihood of the
training data, and inference proceeds by combining a bottom-up inference step to
compute the part marginals, and a top-down step in which the best sample from the
marginal is selected using a Chamfer measure. This procedure effectively combines
local foreground segmentation and global shape cues and mitigates effects of the
evidence overcounting.

The appearance representation used in the work of Fischler and Elschlager is
rather simple and employs local image filters and heuristically constructed part de-
tectors, which are shown in Fig. 2.1 (a,b). Fig. 2.2 shows the main components of
our people detection and pose estimation approach based on the pictorial structures
model described in more detail in Chapter 4. While the key concepts of the picto-
rial structures model have remained the same since its original introduction, new
appearance representations and inference algorithms have been developed over the
years, incorporating advances in generic object-class recognition and machine learn-
ing. In the remainder of this chapter we will introduce some of these developments
and discuss them in more detail.

2.2 People Detection and Tracking

Much of the recent work on people detection has focused on detection of pedestrians
and people in upright orientation. Pedestrians exhibit significantly more regularities
in pose and appearance compared to people in general, which makes their detec-
tion more tractable. At the same time, the detection of pedestrians is also of great
practical importance, with the numerous applications in automotive safety, robotic
navigation and surveillance. In this section we proceed by first reviewing the litera-
ture on pedestrian detection and then discussing recent approaches to generic people
detection and tracking.

2.2.1 Pedestrian Detection

Early progress in the detection of pedestrians was made using global silhouette
matching methods, performing detection by exhaustively comparing an image with
a hierarchy of silhouette exemplars (Gavrila, 1999, 2000). These methods relied on
the distance transform in order to efficiently compute the Chamfer distance between
image edges and silhouettes for every possible image position, allowing them to
operate in real time. Although computationally efficient, these exemplar matching
methods did not exhibit several important properties which underlie the success
of more recent detection approaches. Firstly, they did not employ any form of
local pooling of gradient information. Local pooling is important for making the
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appearance model robust to image noise and small local image deformations and
was shown to be an important component of optical character recognition systems
(LeCun et al., 1989, 1998), and local image descriptors (Lowe, 2004; Mikolajczyk and
Schmid, 2005). Silhouette matching methods have to encode such variability either
by means of a large collection of exemplars or by directly modeling the variability of
silhouettes, as is for example done in the active shape model (Cootes et al., 1995).
While both of these methods are applicable in controlled laboratory conditions, they
are difficult to implement in realistic street environments due to large amounts of
background clutter, a large variability in pedestrian silhouettes and a limited number
of training examples. Another drawback of a silhouette-based approach turned out
to be the difficulty of combining it with discriminative machine learning techniques.
Although Felzenszwalb (2001) has developed an approach to learn discriminative
shape-based models, this approach was not further explored in the literature.

Robust image representations and discriminative learning algorithms appear to
be the key to recent advances in pedestrian detection. Many of the recently proposed
approaches follow the top-down sliding-window paradigm to object detection. In
this approach an image is exhaustively scanned with a detection window of fixed
aspect ratio at a fixed step in scale and position. For each window an independent
decision is made about the presence or absence of the person. Since the system is
required to examine large numbers of overlapping windows, the features describing
each window are typically designed so that they can be computed quickly or can
be reused for representation of the windows that are close to each other. Early
work in this direction (Oren et al., 1997; Papageorgiou and Poggio, 1999) relied
on Haar wavelet features to describe window contents and support vector machine
for window classification (Vapnik, 1999). The Haar wavelet features correspond to
differences between the sums of pixels in the rectangular image areas and can be
computed quickly using the integral image representation. At the same time, these
features are also robust to noise and image transformations since image intensities
are aggregated from the entire rectangular region. Similar rectangular filters were
used in (Viola et al., 2003), who build on their earlier work on face detection, and
employed AdaBoost (Freund and Schapire, 1997) in order to identify the important
features and combine them into strong classifiers.

An approach based on the histograms of oriented gradients (HOG), introduced
by Dalal and Triggs (2005), follows a similar sliding-window paradigm. However,
the careful design of image representation allowed it to achieve significant improve-
ments in performance over the previously proposed approaches of this type. The
HOG representation is based on the local gradient histograms, which are computed
for a set of rectangular regions denoted as cells that densely conver the entire area of
the detection window. The gradient of image intensity at each pixel contributes to
each of the histograms of its adjacent cells through trilinear interpolation. The cells
are grouped into overlapping blocks, and cell histograms are normalized jointly for
each block. There are several aspects of this approach that made the HOG represen-
tation successful. The representation is based on the local distributions of gradient
locations and orientations which appear to be more effective for modeling object
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appearance compared to Haar features, while at the same being robust to noise and
intra-class variability. The HOG representation encodes the contents of the entire
window, allowing the classifier decide which features are important. Interpolation of
the gradient information between histogram bins makes the representation robust to
in-plane translations and rotations. Block normalization makes the HOG descriptor
robust to illumination changes and encodes the relative strength of gradient in each
cell with respect to different subsets of its neighbors.

The approach of Dalal and Triggs (2005) achieved near perfect results on the MIT
Pedestrian dataset (Oren et al., 1997), which contains images of pedestrians predom-
inantly in front and back views rescaled to the same scale and cropped around the
person bounding box. In order to evaluate their approach in a more challenging set-
ting Dalal and Triggs (2005) introduced the INRIA Person dataset, which remains
and important benchmark in pedestrian detection to date. This dataset contains
full images of pedestrians at multiple scales and seen from a variety of viewpoints,
and in addition includes a separate set of images without pedestrians to asses the
robustness of the detector to background clutter.

Much of the recent work on pedestrian detection has been using HOG-based de-
tector of Dalal and Triggs (2005) as a baseline, and focused on the development of
new image features (Dollár, Tu, Perona and Belongie, 2009), combining appearance
with new sources of information, such as optical flow (Dalal et al., 2006) and im-
age disparity (Walk, Schindler and Schiele, 2010), and more powerful approaches to
classification (Wojek et al., 2009). These developments led to introduction of new
datasets such as “ETH” (Ess et al., 2007) and “TUD-Brussels” (Wojek et al., 2009)
that permit computation of stereo- and motion-based features. Recent datasets also
address important applications of pedestrian detection. For example, Caltech Pedes-
trian (Dollar, Wojek, Schiele and Perona, 2009a), and Daimler Detection Benchmark
datasets (Enzweiler and Gavrila, 2009) specifically address the automotive scenario
and focus on challenges encountered in this setting, such as detection of partially
occluded people and detection of people at very small scales.

While demonstrating excellent performance, top-down approaches based on mono-
lithic representations (such as HOG) have difficulties handling detection of people
in the presence of occlusions and in cases where people exhibit especially large pose
variability. In order to handle these challenges, several approaches have been de-
veloped that build on more flexible part-based representations that represent object
via a collection of rigid parts and their spatial relationships. Part-based approaches
differ significantly in what is considered to be a model part, how the appearance
of each part is represented, and what structure is imposed on part configurations
(Murphy, 2005). These approaches include ad-hoc decomposition of the detection
bounding box in rectangular regions (Mohan et al., 2001), association of model parts
with anatomically meaningful parts such as torso, arms and legs (Andriluka et al.,
2009) and automatic mining of parts using image statistics (Leibe et al., 2005) or
their discriminative properties (Felzenszwalb et al., 2008; Bourdev and Malik, 2009).

An important example of the part-based approach to pedestrian detection is
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the Implicit Shape Model (ISM) of Leibe et al. (2005). In this approach visual
appearance of a person is represented using a codebook of visual words, along with
the learned spatial relationships between each visual word and the center of the
person bounding box. Inference proceeds in bottom-up fashion using the generalized
Hough transform. In the first stage, local regions found with the interest point
detector are matched to the codebook, and each match is used to cast probabilistic
votes for the center of the bounding box according to the learned spatial distribution.
People hypothesis in the image correspond to the local maxima in the voting space
and can be effciently found with the mean-shift algorithm. The ISM approach is able
to deal with intra-class variability and changes in appearance due to articulation
by encoding them via a large collection of visual words. Since each visual word
captures only local information and each image feature contributes to the overall
hypothesis score independently this approach is robust to partial occlusions. The
original ISM approach introduced in (Leibe et al., 2004, 2005), has been further
developed by Seemann and Schiele (2006), who introduced additional articulation-
based constraints into the model, and by Gall and Lempitsky (2009) and Maji and
Malik (2009b), who have developed methods to discriminatively learn the weights
of the visual words. The ISM approach also generalizes to situations when multiple
people are present in the image by explicitly modeling relationships between people
hypothesis and image features and performing additional inference steps that ensure
that each feature contributes to one person hypothesis only (Leibe et al., 2008;
Barinova et al., 2010).

2.2.2 People Detection

Perhaps due to its difficulty, the problem of generic people detection in unconstrained
environments has only recently shifted into the focus of attention of the computer
vision literature. People in this setting exhibit a much larger pose variability com-
pared to pedestrians, making it challenging to learn a single template-based model
for their appearance.

Recall that the pictorial structures model introduced in Sec. 2.1, permits the
representation of complex appearance patterns in terms of appearance of a fixed
number of components and their spatial arrangement. Such representation seems
appealing for generic people detection, since people can be viewed as a set of rigid
components corresponding to anatomic body parts, connected with each other by
body joints. However, anatomic body parts are not guaranteed to be easily detected
in the images. For example, parts such as hands and forearms are relatively small
and will be frequently occluded or foreshortened. It appears that better models can
be obtained using generic parts that do not carry any semantic information and are
selected purely by their visual saliency. Recently Felzenszwalb et al. (2009) have
proposed an approach for generic people detection that builds on the pictorial struc-
tures model and is capable of discovering model parts in an unsupervised manner.
Given a rough initialization, their algorithm employs an iterative procedure which
interchangingably estimates the locations of parts and the parameters of the spa-
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Figure 2.3: Several examples of detections obtained with the model of Felzenszwalb
et al. (2009).

tial and appearance models. Note that according to Eq. 2.2 the pictorial structures
model represents object likelihood as a product of local part likelihoods. Conse-
quently, low likelihood of even one of the parts may lead to a low likelihood for the
whole configuration. Such low part likelihood may be the result of occlusion, image
noise or bad contrast. By choosing parts automatically, these effects can be taken
into account at the training stage, which leads to a more robust model. In addition,
automatic part discovery allows the application of the model to various other object
classes without the need for a human expert to determine the model parts.

The pictorial structures model does not explicitly take occlusion of parts into
account and expects that all model parts are simultaneously present in the image.
In practice, this results in models with relatively few generic parts where each part
appears to be rather insensitive to fine details of the object’s appearance. Fig. 2.3
shows several examples of detections obtained with the model of Felzenszwalb et al.
(2009). Note how in the first and second images the same part is matched to two
different configurations of the upper legs. Also note that the part corresponding
to head and shoulders captures various head poses and viewpoints. Although such
generic parts are robust to image noise and pose variations, they are also uninfor-
mative for particular body configuration and hence are not suitable as evidence for
pose estimation. In addition, appearance models of such generic parts disregard
important features if they appear in only a few body configurations.

In order to address these shortcomings Bourdev and Malik (2009) have proposed
a part-based model which, in contrast to six parts used in (Felzenszwalb et al.,
2009), relies on hundreds parts. These parts, denoted as poselets, correspond to
regions with stable appearance that are also informative for the underlying partial
body configurations. Individual poselets are discovered in an unsupervised manner,
using a dataset of images of people with detailed annotations of 3D body poses.
There is a strong similarity between the model of Bourdev and Malik (2009) and
the ISM model of Leibe et al. (2005). In particular, similarly to ISM, scores of
individual poselets are combined using the generalized Hough transform, and the
poselets themselves can be seen as a kind of appearance codebook. The crucial
difference lies in the appearance model for individual poselets, which relies on HOG
representation and discriminative learning. In addition poselets typically cover a
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significantly larger area then local features used in (Leibe et al., 2005), and can
therefore be detected more reliably.

It is interesting to note that the models proposed in (Bourdev and Malik, 2009)
and (Felzenszwalb et al., 2009), both build on the components that have proven
to be effective for detection of pedestrians. In particular, both of them use the
HOG appearance representation, SVM classifiers, and sliding-window paradigm to
detect model parts. At the same time they rely on deformable part models, such
as pictorial structures and ISM, to represent part configurations. In this thesis,
following a similar strategy, we proceed by first developing a part-based approach
to pedestrian detection. We subsequently use the components of this approach for
human pose estimation and tracking.

2.2.3 People Tracking

Visual object tracking deals with the problem of detection and trajectory estimation
of objects in image sequences. Many of the tracking algorithms are online, i.e. they
sequentially process the incoming images, maintaining states of the tracked objects
and updating these states over time. Although such online algorithms are essential
in real-time applications such as automotive safety and robotic navigation, there also
exist numerous cases in which the whole image sequence is available in advance. For
example, in surveillance or video indexing one typically has access to large volumes of
image data and can jointly infer object states over several subsequent images. The
principal components of any tracking algorithm area an appearance or likelihood
model, which reflects the probability of observing an object in the image given its
state, and a dynamical model, which allows for the prediction of the object’s position
in future frames and also gives the criterion for the temporal compatibility of object
states in several subsequent frames.

A large body of the tracking literature is dedicated to a class of model-free track-
ing algorithms that avoid using a-priori assumptions on the type of the objects
being tracked. The algorithms of this type frequently rely on manual initializa-
tion, although other methods for initialization such as background subtraction or
visual and motion coherence exist (Schiele, 2005; Yilmaz and Shah, 2006). Since the
appearance of the tracked object is likely to change significantly over time, model-
free tracking algorithms maintain an on-line appearance model that is dynamically
updated with each incoming image.

Handling of rapid changes in appearance and recovery from full and partial oc-
clusions are among the key difficulties for tracking. In order to address them in a
principled manner, several authors have proposed tracking methods that combine
static and dynamically updated models of appearance (Grabner et al., 2008), or rely
entirely on appearance models in the form of object detectors. The latter strategy is
often referred to as tracking-by-detection, and is effective when the class of tracked
objects is known a-priori as, for example, in the case of people tracking-by-detection
(Okuma et al., 2004; Wu and Nevatia, 2007; Leibe et al., 2007; Andriluka et al.,
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2008; Breitenstein et al., 2009b).

Approaches to people tracking vary significantly with respect to their represen-
tation of the person state, ranging from a simple bounding box up to a realistic
model of the body shape (Balan, Sigal, Black, Davis and Haussecker, 2007). The
bounding box representation is often used in the context of visual surveillance in
urban environments, where the focus is mainly on tracking of walking and standing
people. Due to recent progress in the detection of people in such conditions (see
Sec. 2.2.1), tracking can often be implemented by simply linking the detection hy-
potheses throughout the image sequence. Therefore, the active research in this area
has shifted towards tracking of multiple people and handling of occlusions (Isard
and MacCormick, 2001; Leibe et al., 2007; Breitenstein et al., 2009b,a; Kuo et al.,
2010). There is also a large body of literature on articulated people tracking that
aims at the recovery of both positions and poses of people in image sequences. We
will revisit this literature in Sections 2.3 and 2.4 together with other approaches to
human pose estimation.

2.3 2D Human Pose Estimation

We begin the review of computer vision literature on 2D human pose estimation by
discussing the applications of pictorial structures to this problem, following it with a
brief survey of other related work and a discussion of applications of pose estimation
to high-level image understanding tasks.

As we have discussed in Sec. 2.1, the pictorial structures approach consists of two
main components: an appearance model for individual parts and a spatial model
that describes pairwise part relationships. Much of the research since the origi-
nal publication of Fischler and Elschlager (1973), has focused on the improvement
of these components, but also on the development of novel learning and inference
algorithms and approaches that go beyond pairwise dependencies between parts.

The appearance model used for human pose estimation in (Felzenszwalb and
Huttenlocher, 2005) consisted of simple rectangular part templates and relied on
background subtraction. In static images with a cluttered background, or in videos
in which the background is constantly changing due to camera motion and mul-
tiple moving objects, reliable background subtraction is difficult. Therefore, the
method of Felzenszwalb and Huttenlocher (2005) has been applied to images with
relatively clean backgrounds taken under laboratory conditions. In order to address
this shortcoming, Ronfard et al. (2002) have developed a discriminative appearance
model, while still building on the simple image features based on Gaussian deriva-
tives. Ramanan (2006) proposed to extract more powerful part templates using an
iterative parsing approach. His approach was later extended by Ferrari et al. (2008,
2009b) and Eichner and Ferrari (2009), who furthermore integrated features from
an automatic foreground segmentation step to improve performance. The latter two
approaches iteratively build more powerful detectors to reduce the search space of
valid articulations but use relatively weak edge cues at the initial detection stage.
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In (Andriluka et al., 2009), we have proposed an appearance model built on
strong discriminatively-trained part detectors that do not require iterative parsing
or other ways of reducing the search space, other than of course an articulated body
model. In our model, we employ dense appearance representations based on the
local image descriptors (Belongie et al., 2000; Lowe, 2004; Mikolajczyk and Schmid,
2005), and use AdaBoost (Freund and Schapire, 1997) to train discriminative part
classifiers. Strong detectors of this type have been commonplace in the pedestrian
detection literature (Viola et al., 2003; Leibe et al., 2005; Mikolajczyk et al., 2006;
Andriluka et al., 2008; Gall and Lempitsky, 2009). In these cases, however, the
employed body models are often simplistic. A simple star model for representing
part articulations is, for example, used in our work (Andriluka et al., 2008) and
in (Felzenszwalb et al., 2008), whereas Leibe et al. (2005) and Gall and Lempitsky
(2009) do not use an explicit part representation at all. This precludes the appli-
cability of these approaches to strongly articulated people and, consequently, they
have been applied to upright people detection only.

There also exists prior work on appearance models for pictorial structures that
specifically addresses tracking and pose estimation of people in image sequences.
Ramanan et al. (2007) have developed a tracking by model building and detection ap-
proach. This approach proceeds by detecting people in characteristic poses (e.g. peo-
ple in side-view with legs far apart), learning discriminative color-based appearance
models of body parts from such detections and then relying on these models to
recover poses in other frames of the sequence. Color based features used in this
model are demonstrated to generalize well to unseen poses of people and are able
to capture the characteristic differences between foreground and background color
distributions. One of the limitations of this approach is that the people are not
guaranteed to appear in predefined characteristic poses, e.g. in many scenes people
are never seen in a side-view orientation as is expected by the key-pose detector.
The proposed color-based appearance model is also not always effective for discrim-
ination among multiple people present in the scene. In Chapters 3 and 5 of this
thesis we build on the ideas similar to Ramanan et al. (2007). However, we also
build on our previous results in 2D pose estimation and tracking, which allows us
to estimate appearance of subjects from detections in multiple frames and rely on
much broader class of body poses as considered in their approach.

In addition to the appearance model, another important aspect of the pictorial
structures approach is the representation and structure of the part dependencies. Al-
though kinematic constraints between parts are well captured by the tree-structured
model, incorporating appearance and coordination constraints requires a more com-
plex model structure. The focus of recent research has therefore been on the devel-
opment of models that are capable of incorporating such additional constraints and,
at the same time, allowing for efficient inference. In order to address this challenge,
several authors have proposed approaches that rely on families of pictorial structure
models. Lan and Huttenlocher (2005) have developed the common factor model that
augments the tree-structured model with an additional latent variable responsible
for capturing activity-induced correlations between arms and legs. Common factor
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models are similar in spirit to k-fan models proposed in (Crandall et al., 2005).
Both of them contain just a few core variables that explain most of the non-tree
dependencies within the model. Conditioning the common factor model on a value
of the latent factor transforms it into a tree, which allows efficient inference. In
the test image, the inference proceeds by taking the maximum over the output of
multiple tree-structured models where each such model corresponds to a particular
discretization value of the common factor.

Recently, Sapp, Jordan and Taskar (2010) have proposed the adaptive pictorial
structures model (APS), which dynamically chooses the parameters of the prior dis-
tribution on part configurations depending on the content of the test image. The
key intuition behind this approach is that it is often possible to estimate the rough
layout of the body configuration by global comparison of the test image with the
dataset of annotated training images. More specifically, the adaptive pictorial struc-
tures model employs kernel regression in order to infer the parameters of the spatial
prior given image features, and then localizes the parts using standard inference in
the tree-structured model. In comparison to the common factor model, APS is more
efficient, since inference in the tree model has to be performed only once. On the
other hand, the APS model is also dependent on the ability of the kernel regressor
to identify a pictorial structure model that is sufficiently close to the true body
configuration.

The approach employed in the APS model can be seen as a way to combine global
and local appearance models, in which the global model is used to select prior and
local appearance model is subsequently used to localize body parts. Interestingly,
similar combination of global and local appearance information has been previously
used by Felzenszwalb and Huttenlocher (2005). There the local appearance infor-
mation is used during the first stage to compute distribution over poses, and the
global appearance model is subsequently employed to select the best sample from
this distribution. The adaptive pictorial structures model is also related to the local
probabilistic regression (Urtasun and Darrell, 2008) and to the mixture of experts
model (Jacobs et al., 1991). These models approach complex prediction problems
by combining output from several local predictors denoted as experts using a data
dependent gating function that controls the influence of experts in different regions
of the input domain. In the case of APS, the role of experts is played by the picto-
rial structures models, and the gating function corresponds to the kernel regression
component, which selects the most appropriate pictorial structures model given the
input image.

Besides the already mentioned related work on 2D human pose estimation with
pictorial structures, there exists a large body of literature relevant to this problem.
The proposed approaches differ in various aspects, such as whether they are model-
free or model-based, discriminative or generative, bottom-up or top-down. These
paradigms are often combined within a single approach. For example, discriminative
part models have been previously used in conjunction with generative body models.
Lee and Cohen (2004) and Sigal and Black (2006c) use them as proposal distributions
(“shouters”) for MCMC or non-parametric belief propagation. In our approach to
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2D pose estimation (see Chapter 4), we also rely on discriminative part detectors
and generatively learned body model. However, in contrast to the approaches of Lee
and Cohen (2004) and Sigal and Black (2006c) we use discriminative part detectors
directly as the appearance model.

A large body of work has focused on strong body models and inference algo-
rithms, necessary for the reliable assembly of a bottom-up part hypothesis. This
work however frequently relied on rather simple appearance models based on edge
templates, silhouettes and background subtraction. Such strong body models have
appeared in various forms. A certain focus has been the development of non-tree
models. Ren et al. (2005) propose a model which imposes constraints not only
between limbs on the same extremity, but also between extremities, and rely on
integer programming for inference. Another approach incorporating self-occlusion
in a non-tree model was proposed by Jiang and Martin (2008). Both approaches
rely on the matching of simple line features and have only been shown to work on
relatively clean backgrounds. Sigal and Black (2006b) also use non-tree models to
improve occlusion handling but still rely on simple features such as color. A fully
connected graphical model for representing articulations was proposed by Bergth-
oldt et al. (2009), who also used discriminative part detectors. However, the method
has several restrictions, such as relying on absolute part orientations, which makes
it applicable to people in upright poses only. Moreover, the fully connected graph
complicates inference. Ramanan and Sminchisescu (2006) have proposed discrimi-
native tree-structured models, but due to the use of simple features their method
was not shown to perform well for cluttered scenes.

The 2D human pose estimation is also being increasingly more often considered
in the context of high level image understanding tasks such as image annotation (Jie
et al., 2009) and action recognition (Yang, Wang and Mori, 2010; Yao and Fei-Fei,
2010; Schindler et al., 2008). Poses of people can provide essential cues for their ac-
tions, and recognizing actions of people is in turn helpful for understanding the entire
visual scene. At the same time, high level knowledge about the scene provides useful
context for solving other recognition tasks, such as object detection, and might in
fact be useful for narrowing down the space of possible poses of people. An example
of such an integrated approach is the work of Jie et al. (2009), where face detection,
people detection, pose estimation, and text parsing are brought together in order to
automatically learn appearances of specific people and the correspondence between
verbs and poses from a large collection of images and text annotations. Learning
appearance of people from noisy text annotations is difficult because images often
contain multiple people, and it is unclear which tag in the annotation corresponds
to which person in the image. The authors show that the estimated poses can be
often helpful in resolving such ambiguities because names of people are often used
in conjunction with verbs describing their actions.

A somewhat different approach to integration of pose estimation into a larger
image understanding system was proposed by Yao and Fei-Fei (2010). The focus of
this work is on modeling interaction between activities, objects, and poses of people.
In sports scenes, considered in this work, objects of interest (such as a tennis racket or
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volleyball) are often difficult to detect due to their small size, a cluttered background
and out-of-plane rotations. However, poses of people interacting with objects provide
strong bias for the object location, which results in better object detection. At the
same time, object detection can be used to constrain the space of body poses and can
be used as additional evidence for body limbs interacting with the object. Finally
both objects and poses have strong connection to the activities of people present in
the images. As demonstrated by Yao and Fei-Fei (2010), one can approach action
recognition, object detection, and pose estimation in a unified manner and exploit
statistical dependencies between them in order to improve recognition performance
for each task.

2.4 3D Human Pose Estimation

Chapter 5 of this thesis deals with the problem of 3D human pose estimation in image
sequences taken in uncontrolled street environments with an uncalibrated, monoc-
ular, and potentially moving camera. Images obtained under such conditions often
feature cluttered, dynamically-changing backgrounds and contain multiple people
who frequently occlude each other. This is one of the most difficult settings consid-
ered in the 3D human pose estimation literature. In contrast, due to the inherent
difficulties of reliable 2D to 3D lifting and data association, this problem has often
been considered in controlled laboratory conditions (Balan, Sigal, Black, Davis and
Haussecker, 2007; Deutscher and Reid, 2005; Gall et al., 2010; Sigal and Black, 2006b;
Vondrak et al., 2008), with solutions frequently relying on background subtraction
and simple image evidence, such as silhouettes or edge-maps. In order to constrain
the search in high-dimensional pose space these approaches often use multiple cali-
brated cameras (Gall et al., 2010), complex dynamic motion priors (Vondrak et al.,
2008), or detailed body models (Balan, Sigal, Black, Davis and Haussecker, 2007).
The combination of these components allows one to achieve impressive results (Gall
et al., 2010; Hasler et al., 2009), similar in performance to commercial marker-based
motion capture systems.

However, realistic street scenes, such as those considered in this thesis, do not
satisfy many of the assumptions made by these systems. For such scenes, multi-
ple synchronized video streams are difficult to obtain; the appearance of people is
significantly more complex; and robust extraction of evidence is challenged by fre-
quent full and partial occlusions, clutter, and camera motion. In order to address
these challenges, a number of methods leverage recent advances in people detection
and rely on them for prefiltering, initialization and as evidence for pose estimation
(Fossati et al., 2007; Gammeter et al., 2008; Andriluka et al., 2010).

Due to the complexity of the problem, scenarios considered in realistic uncon-
trolled environments are typically limited to walking people only. Fossati et al.
(2007) build on the bank of silhouette-based people detectors designed to detect
people appearing in the characteristic phase of the walking cycle with legs far apart.
This bank of detectors is capable of detecting people seen from various viewpoints
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and also provides viewpoint estimates. The initial detections are projected into the
world coordinates where the position of the person is tracked by combining single-
frame detections using constraints given by motion speed, viewpoint and walking
cycle. Such tracks, in turn, provide strong constraints on the possible 3D body
configurations. Initialization for poses of people can be obtained using snippets of
3D pose sequences from the training data. Homography estimates are used to re-
construct the scene background and rely on pose initializations to obtain a rough
appearance model of the person. Jointly these components allow one to define a gen-
erative model for the image sequence, which is used to refine the 3D pose estimates
using a stochastic local search.

Gammeter et al. (2008) have proposed a system for 3D pose estimation in
crowded street scenes. They rely on a stereo camera setup and structure-from-
motion in order to estimate the scene geometry and camera trajectory. These esti-
mates allow one to back-project detections of people into world coordinates, where
they are associated with tracks corresponding to individual people and are inte-
grated over time with a Kalman filter. For each of these tracks, the segmentation of
people is computed by combining top-down cues obtained from the person detector
and bottom-up cues, such as disparity and image edges. Subsequently, 3D poses
of people are estimated using a particle filtering framework in which each particle
corresponds to low-dimensional representation of the human pose obtained with lo-
cally linear embedding (LLE). The particles are propagated through time using an
auto-regressive dynamical model for the human walking motion, and are resampled
after each iteration according to their compatibility with inferred segmentation.

In our work presented in (Andriluka et al., 2010) and described in detail in Chap-
ter 5, we propose an approach to 3D pose estimation which relies on our detection
and 2D pose estimation approach (Andriluka et al., 2009). At the same time we
also build on dynamic motion priors (Urtasun et al., 2006; Lawrence and Moore,
2007) and on our approach to articulated tracking-by-detection that we introduced
in (Andriluka et al., 2008). Although estimation of 3D poses from 2D body part
positions was previously proposed in (Sigal and Black, 2006c), this approach was
evaluated only in laboratory conditions for a single subject, and it remains unclear
how well it generalizes to more complex settings with multiple people as considered
here. Compared to the approach of Gammeter et al. (2008), we are able to estimate
poses in monocular images without relying on estimates of world geometry, camera
calibration and stereo cues. At the same time we do not rely on the ability to recon-
struct the scene background and detect people in characteristic poses as is required
in (Fossati et al., 2007).

Summarizing the results obtained by Fossati et al. (2007); Gammeter et al.
(2008), and Andriluka et al. (2010), it appears that once the detections of people in
subsequent frames are associated with each other and the viewpoints of people are
known, the activity-specific dynamic models provide sufficient temporal constraints
to infer 3D poses. This fits well with the observation previously made in (Forsyth
et al., 2006): “There is a body of evidence, strongly suggestive though not abso-
lutely conclusive, that 3D reconstruction from 2D frames has few ambiguities that
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persist over any but the shortest timescales ... it suggests that the proper approach
to tracking in 3D is to track in 2D, and then report an estimate of 3D by matching
the 2D track to 3D body configuration snippets”. Furthermore, it appears that in
most cases the parameters, such as the image position of the person, overall scale,
and relative orientation to the camera, can be estimated reliably prior to the ac-
tual estimation of the 3D pose. These parameters, in turn, significantly reduce the
search space, and also allow one to obtain much better initializations during 3D pose
estimation. In (Andriluka et al., 2010) we estimate these parameters from monocu-
lar image sequences by combining the evidence obtained from multiple subsequent
frames. Similar results were obtained in (Fossati et al., 2007), where the walking
phase and viewpoint were estimated using temporal integration of a single-frame
hypothesis.

Recently, Ferrari et al. (2008) have used a similar coarse-to-fine strategy, relying
on people detection and tracking in order to determine the image position and scale
of people, and then used these estimates to restrict the search during 2D pose esti-
mation. While being effective in practice, such approaches have a major drawback
in that the consistency of people poses cannot be used as an additional constraint
in order to assist with data association. While data association is easy in scenes
with only few people, it becomes non-trivial in crowded street scenes with multi-
ple people who are frequently occluding each other. The most effective approach
would be to delay the resolution of ambiguities in data association until the pose
estimation stage, where they can be resolved using the combination of temporal,
appearance and pose consistency constraints. In (Andriluka et al., 2008), we have
implemented this idea within a tracking-by-detection framework, where we have
combined single-frame people detections into tracklets that can be seen as data as-
sociation hypotheses. This, on one hand, allows pose estimation using combined
evidence from multiple frames and, on the other hand, allow us to delay the final
data association step until the later stages of the inference.

Apart from the approaches discussed so far, there is also an extensive body of
literature on predicting 3D poses directly from image features using regression (Agar-
wal and Triggs, 2006; Ionescu et al., 2009; Urtasun and Darrell, 2008), classification
(Rogez et al., 2008), or a search over a database of exemplars (Mori and Malik,
2006; Shakhnarovich et al., 2003). The general theme underlying these approaches
is to formulate human pose estimation as an end-to-end prediction problem that
can be directly solved using generic machine learning techniques. This is in contrast
to methods previously discussed in this section, which typically consist of multiple
stages and integrate the output of various independently developed algorithms. Hy-
pothetically, end-to-end approaches have the advantage of training all components of
the model jointly, which should allow them to automatically determine the relative
importance of various image cues and dependencies between outputs. In practice,
they were shown to perform well in cases when poses and the appearance of peo-
ple in training and test images are sufficiently similar and require large databases
of training examples to achieve good performance. The application of these meth-
ods has been limited to the prediction of poses of individual people where the data
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association problem has already been solved.

2.5 Other Related Work

In addition to the work on vision-based people detection discussed above, there exists
a large body of literature on people detection using other types of sensors. Most of
this work has been done in the robotics community and is often oriented towards
tasks such as collision avoidance, person following, and search and rescue. Since
many mobile robotic systems are equipped with laser range scanners, a significant
effort has been dedicated to using them for people detection and tracking (Arras
et al., 2007, 2008; Carballo et al., 2009; Fod et al., 2002; Schulz et al., 2003). The
complementarity between visual- and laser-based detectors has been explored in
(Gate et al., 2009), where a laser range scanner is used both to extract regions of
interest in camera images and to improve the confidence of an AdaBoost-based visual
detector. Thermal images have also been extensively used for people detection using
either specifically designed methods (Davis and Sharma, 2004; Pham et al., 2007) or
by directly applying methods originally designed for detection of people in daylight
images (Suard et al., 2006). People detectors used in robotics are frequently built
using a combination of several sensing modalities (Doherty and Rudol, 2007; Kleiner
and Kuemmerle, 2007; Meyer et al., 2010), and rely on complementary measurements
from multiple sensors to improve the robustness, but also for prefiltering in order to
speed up computations.

In Chapter 6 of this thesis we develop an approach to visual people detection
from unmanned aerial vehicles. Our approach is related to the work of Doherty and
Rudol (2007), who address a similar problem, but in contrast to our approach rely
on a thermal camera to prefilter promising image locations. While in (Doherty and
Rudol, 2007) people lying on the ground are assumed to be in upright poses, our
approach addresses the significantly more complex problem of detecting arbitrarily
articulated people. Note that the results of our work can still be used in combination
with thermal camera images which, similar to (Doherty and Rudol, 2007), can be
used to restrict the search to image locations likely to contain people or to prune
false positives when they contain no thermal evidence. While combining multiple
sensors for people detection is clearly beneficial in many scenarios it comes at the
cost – in particular for unmanned aerial vehicles – of an increased payload for the
additional sensors. Our approach to people detection from UAVs, therefore, aims to
evaluate and push the state-of-the-art in visual people detection in order to minimize
sensor requirements for this task.



3
Combining People Detection,
Tracking and Pose Estimation

Tracking people in images of uncontrolled street environments, such as those shown
in Fig. 3.1, is a challenging task. Such images typically contain multiple people mov-
ing in front of complex dynamic backgrounds where the people often become fully or
partially occluded. Occlusions lead to lost tracks, which means that in such scenes
automatic re-initialization is an essential part of any successful tracking algorithm.
Due to a large number of possible poses, background clutter and large appearance
variability people detection and pose estimation in such scenes is challenging as well.

In this chapter we present a tracking-by-detection approach that simultaneously
address people detection, tracking and pose estimation. Using the output of our
people detector as evidence for tracking allows us to cope with occlusions and avoid
manual initialization. In addition, pose estimates from our part-based people detec-
tor allow us to employ more powerful dynamical model during tracking, which results
in improved data association between frames. Finally, we rely on the obtained pose
estimates in order to construct appearance models of individual persons on the fly,
and use these models in order to locate individuals after long-term occlusions.

While core ideas of this thesis are recognizable in the approach presented in
this chapter, it still contains significant limitations. In particular, we consciously
omit the problems associated with ambiguities of 2D to 3D lifting by assuming that
people appear in the images in a side view. The appearance model used by the
people detector is also both viewpoint- and activity-specific, which is also true for
the dynamical model for body articulations used for tracking. In the subsequent
parts of this thesis we work towards relaxing these assumptions by introducing more
generic part-based object detection approach in Chapter 4 and estimating poses of
people using a 3D body model in Chapter 5.

:
:
:
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Figure 3.1: Examples of detection and tracking of specific persons in image sequences
of crowded street scenes.

3.1 Introduction

Probably the most fundamental difficulty in detection and tracking of multiple peo-
ple in cluttered scenes is that many people will be partially and also fully occluded
for longer periods of time. Consequently, both the detection of people in individ-
ual frames as well as the association between people detections in different frames
are highly challenging and ambiguous. To address this, we exploit temporal co-
herency, extract people-tracklets from a small number of consecutive frames and
from those tracklets build appearance models of the individual people. As any sin-
gle person might be detectable only for a small number of frames the extraction
of people-tracklets has to be highly robust. At the same time the extracted model
of the individual has to be discriminative enough in order to enable tracking and
data-association across long periods of partial and full occlusions.

To achieve reliable extraction of people-tracklets as well as data-association
across long periods of occlusion, our approach combines recent advances in peo-
ple detection with the power of dynamical models for tracking. Rather than to
simply determine the position and scale of a person as is common for state-of-the-
art people detectors (Dalal and Triggs, 2005; Leibe et al., 2005), we also extract
the position and articulation of the limbs. This allows us to use a more powerful
dynamical model that extends people detection to the problem of reliably extracting
people-tracklets – people detections consistent over a small number of frames. In
particular, we use a hierarchical Gaussian process latent variable model (hGPLVM)
(Lawrence and Moore, 2007) to model the dynamics of the individual limbs. As we
will show in the experiments this enables us to detect people more reliably than it
would be possible from single frames alone. We combine this with a hidden Markov
model (HMM) that allows to extend the people-tracklets, which cover only a small
number of frames at a time, to possibly longer people-tracks. These people-tracks
identify individuals over longer sequences of consecutive frames when that is appro-
priate, such as between major occlusion events. Tracking people over even longer
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Figure 3.2: Graphical model structure describing the relation between articulation,
parts, and features.

periods of time is then achieved by associating people-tracks across potentially long
periods of occlusion using both the dynamical model and an extracted appearance
model, which allows identifying specific individuals throughout the sequence.

In Sec. 3.2 of this chapter we introduce a novel people detection approach based
on the Pictorial Structures (PS) framework (Felzenszwalb and Huttenlocher, 2005),
in which we represent object as flexible configuration of rigid body parts and model
pat appearance using Implicit Shape Model (ISM) (Leibe et al., 2005). We demon-
strate that this novel detector outperforms two state-of-the-art detectors on a chal-
lenging dataset of street images.

Our detector has two important properties that make it particularly suited for
the detection and tracking of multiple people in crowded scenes: First, it allows
to detect people in the presence of significant partial occlusions, and second, the
output of the detector includes the positions of individual limbs, which are used as
input for the dynamical model at the next stage. We integrate the people detection
model with a dynamical limb-model to enable reliable detection of people-tracklets
over small number of consecutive frames, which as we show further improves the
detection performance. The extracted people-tracklets are then used to generate a
detailed appearance model of each person on the fly.

Finally we link short people-tracklets to longer tracks of the various individuals
in the scene. In this, we take advantage of the tracklet detector, which allows us
to perform inference in a simple discrete state space of tracklet hypothesis. This
is in contrast to typical tracking approaches that need to perform stochastic search
in high-dimensional, continuous spaces (Deutscher and Reid, 2005), which is well
known to suffer from many problems (Demirdjian et al., 2005; Sminchisescu et al.,
2007). Note that while a precise recovery of the full articulation is not the main focus
of this work, we can still quite accurately recover the articulation even in complex
scenes. We link the people-tracks in scenes with multiple people and over periods of
long occlusions using the learned appearance model, which allows us to identify and
tracked individuals even through complex occlusions without requiring any manual
initialization or manual intervention at any stage of the process.
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Figure 3.3: Examples of images from our training set.

3.2 Pedestrian Detector

Before introducing temporal constraints into the detection process, we first propose
a novel part-based object detection model that is capable of detecting pedestrians in
single images of real-world scenes. The model is inspired by the pictorial structures
model proposed by Fischler and Elschlager (1973) and Felzenszwalb and Hutten-
locher (2005), but uses more powerful part representations and detection, and as we
will show outperforms recent pedestrian detectors (Dalal and Triggs, 2005; Seemann
and Schiele, 2006).

3.2.1 Part-based model for pedestrian detection

Following the general pictorial structures idea, an object is represented as a joint
configuration of its parts. In such a model the problem of locating an object from
a specific class in a test image is formulated as search for the modes of the poste-
rior probability distribution p(L|E) of the object configuration L given the image
evidence E and (implicit) class-dependent model parameters θ.

In our model, the configuration is described as L = {xo,x1, . . . ,xN}, where xo

is the position of the object center and its scale, and xi is the position and scale of
part i. The image evidence, which here is defined as a set of local features observed
in the test image, will be denoted as E = {eapp

k , epos
k |k = 1, . . . , K}, where eapp

k is an
appearance descriptor, and epos

k is the position and scale of the local image feature
with index k. We will denote the combination of position, scale, and appearance of
a local feature as ek = (eapp

k , epos
k ).

An important component of the pictorial structures model is a-priori distribution
of the possible object configurations, which must be expressive enough to capture
all important dependencies between parts. Part positions are mutually dependent in
general, which can make inference difficult. However, for particular object categories,
such as walking people, we can introduce auxiliary state variables that represent the
articulation state or an aspect of the object, such as different phases in the walking
cycle of a person (Lan and Huttenlocher, 2005), and make the parts conditionally
independent. If the articulation state is observed, the model becomes a star model
(or tree model in general) and efficient algorithms based on dynamic programming
can be used for inference (Felzenszwalb and Huttenlocher, 2005). If we are not
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Figure 3.4: The main components of the Implicit Shape Model (Leibe et al., 2008):
appearance codebook (a) and learned spatial occurrence distribution corresponding
to each the codebook entries (b).

interested in knowing the articulation state, but only the object and limb positions,
then articulation state a can be marginalized out:

p(L|E) =
∑
a

p(L|a,E)p(a). (3.1)

From decomposing p(L|a,E) ∝ p(E|L, a)p(L|a), assuming that the configuration
likelihood can be approximated with product of individual part likelihoods (Felzen-
szwalb and Huttenlocher, 2005) p(E|L, a) ≈

∏
i p(E|xi, a), and assuming uniform

p(xi|a), it follows that

p(L|a,E) ≈ p(xo)
∏
i

p(xi|a,E)p(xi|xo, a). (3.2)

If we assume that a particular image feature ek belongs to part i of an object instance
in the image with probability α, then it holds that

p(xi|a,E) = c0 + c1
∑
ek

p(xi|a, ek) +O(α2), (3.3)

where c0 and c1 depend only on the image features E (Williams and Allan, 2006).
If α is sufficiently small, which is true for street scenes in which a particular person
usually represents only a small portion of the image, we obtain

p(L|a,E) ≈
∏
i

p(xi|xo, a)

[
β +

∑
ek

p(xi|a, ek)

]
, (3.4)

where β can be seen as a regularizer for the evidence obtained from the individual
image features, and we have additionally assumed uniform p(xo).

In order to obtain the probability of object part given local image feature we rely
on the Implicit Shape Model (Leibe et al., 2008), which consists of the object-specific
codebook, and spatial occurrence distribution of the object center with respect to each
codebook entry (see Fig. 3.4 for illustration).
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The part posterior with respect to a single image feature is computed by marginal-
ization over the codebook entries:

p(xi|a, ek) =
∑
cj∈C

p(xi|a, cj, epos
k )p(cj|eapp

k ), (3.5)

where C = {cj|j = 1, . . . , J} denotes the codebook, p(cj|eapp
k ) is a discrete distri-

bution over codebooks based on a Gaussian similarity measure, and p(xi|a, cj, epos
k )

is occurrence distribution of part i with respect to codebook entry cj translated
according to the location of image feature epos

k . The structure of the dependencies
between the variables in the model is shown in Fig. 3.2.

Fig. 3.6 shows an example of the posterior distribution of the feet, lower leg
and head parts given positions of several local features, selected from the set of
all local features shown on Fig. 3.5. Note, how the posterior distribution reflects
the uncertainty in the interpretation of local appearance information, e.g.multiple
modes in the posterior of the feature detected on the foot of the person appear since
this feature could occur on both left and right feet. Also note, that in the case of
pedestrians local features even far from the body part position, turn out to be useful
for its localization, e.g. as in the posterior of head given features on the legs shown
on Fig. 3.6(d). Using these long-rage spatial relations makes our model more robust
to partial occlusions and also allows to localize small body parts, such as feet.

3.2.2 Model training

In all presented experiments we use shape context feature descriptors (Belongie et al.,
2000) and the Hessian-Laplace interest point operator (Mikolajczyk and Schmid,
2004) as detector. The object-specific codebook is constructed by clustering local
features extracted from the set of training images.

For each codebook cluster cj we compute its occurrence distribution, which cor-
responds to a set of jointly observed relative position and scale of the cluster with
respect to the part centers computed for each occurrence of the cluster in the training
set.

In order to compute the occurrence distributions we annotated each person along
with its parts in all training images. Fig. 3.3 shows several images from our training
set. From the same annotation we also learn a Gaussian distribution of the position
of each part relative to the object center, p(xi|xo, a). While the position compo-
nents are learned, the scale component is taken to be relatively broad and chosen
empirically. This appears to be sufficient for pedestrians, particularly since we are
not differentiating between left and right legs at the detection stage.

3.2.3 Inference and Results

In the first step of inference we accumulate p(xi|a, ek) in a 3 dimensional array of
discretized image positions and scales. After that Eq. (3.4) can be maximized ef-
ficiently using the generalized distance transform (Felzenszwalb and Huttenlocher,
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(a) (b)

Figure 3.5: (a) Test image, and (b) scale-invariant Hessian-Laplace interest points
detected on the image.

(a) (b)

(c) (d)

Figure 3.6: (a) Several detected interest points, and conditional posterior distribu-
tions p(xi|a, ek) of the foot (b), lower leg (c), and head (d) body parts given position
epos
k and local image feature eapp

k corresponding to each of the interest points. Distri-
butions corresponding to different interest points are visualized using different colors
(see text for description).
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(a) (b) (c) (d) (e)

Figure 3.7: Person hypothesis with corresponding probabilities of feet (b), lower legs
(c), torso (d), and head (e).

Figure 3.8: Example detections at equal error rate of our detector (top), 4D-ISM
(middle) and HOG (bottom) on the “TUD-Pedestrians” dataset.

2005). This is possible since part dependencies have a tree (star-) structure, appear-
ance components are computed separately for each part, and p(xi|xo, a) is Gaussian.
Fig. 3.7 visualizes

∑
ek
p(xi|a, ek) in the region of a person hypothesis for different

body parts.

In the following we evaluate the novel detector on a challenging dataset of 250
images of street scenes containing 311 side-view pedestrians with significant variation
in clothing and articulation, which we denote as “TUD-Pedestrians” 1. Fig. 3.10(a)
shows the comparison of our detector with two state of the art detectors. Using the
same training set as Seemann and Schiele (2006) our detector outperforms the 4D-
ISM approach (Seemann and Schiele, 2006) as well as the HOG-detector (Dalal and
Triggs, 2005). Increasing the size of the training set further improves performance

1Available at www.mis.informatik.tu-darmstadt.de.

www.mis.informatik.tu-darmstadt.de
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significantly.

Fig. 3.8 shows sample detections of the 3 methods on test images. The 4D-ISM
detector is specifically designed to detect people in cluttered scenes with partial
occlusions. Its drawback is that it tends to produce hypotheses even when little
image evidence is available (image 3 and 4), which results in increased number of
false positives. The HOG detector seems to have difficulties with the high variety
in articulations and appearance present in out dataset. However, we should note
that it is a multi-view detector designed to solve a more general problem than we
consider here.

In addition to the high precision of our detector, we observe an improved scale
estimation of the hypotheses as can be seen on the leftmost image of Fig. 3.8. We
attribute this to the fact that the influence of imprecise scale-estimates of the local
feature detector are reduced using local object parts.

3.3 Detection of Tracks in Image Sequences

The person detector described in Sec. 3.2 provides hypotheses for position, scale,
and body articulation in single frames based on the detection of individual body
parts or limbs. To further improve the detection performance in image sequences
several authors have proposed to incorporate temporal consistency among subse-
quent frames, typically using a simple motion model based on position and velocity
of the person. In contrast, we propose to use a more expressive kinematic limb
model thereby leveraging the articulated tracking literature, e.g., (Deutscher and
Reid, 2005; Demirdjian et al., 2005; Sigal and Black, 2006b; Urtasun et al., 2006;
Ramanan et al., 2007; Sminchisescu et al., 2007). Clearly, the expressiveness and the
robustness of the kinematic limb model are crucial as it has to be powerful enough
to reduce the number of false positives significantly, and at the same time robust
enough to enable people detection in crowded scenes.

Given the image evidence E = [E1, E2, . . . , Em]T in a sequence of m subsequent
frames, we would like to recover the positions Xo∗ = [xo∗1 ,x

o∗
2 , . . . ,x

o∗
m ]T of the person

as well as the configurations of the limbs in each frame Y∗ = [y∗1,y
∗
2, . . . ,y

∗
m]T with

y∗j denoting the recovered limb orientations in the j-th frame. Assuming indepen-
dence of the detections in each frame, the posterior factorizes as:

p(Y∗,Xo∗|E) ∝ p(Y∗)p(Xo∗)p(E|Y∗,Xo∗) (3.6)

∝ p(Y∗)p(Xo∗)
m∏
j=1

p(Ej|y∗j ,xo∗j ).

p(Ej|y∗j ,xo∗j ) is the likelihood of the image evidence Ej, and is given by the de-
tection model described in the previous section. p(Xo∗) corresponds to a prior of
human body speed, which we model as a broad Gaussian. Probably the most in-
teresting term is p(Y∗), which denotes the prior over the kinematic limb-motions,
and in general is difficult to estimate reliably due to the high dimensionality of the
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pose space. Instead of modelling the pose dynamics directly in an high-dimensional
space, several authors (Urtasun et al., 2006; Wang et al., 2005; Sminchisescu et al.,
2007) have argued and shown that a low-dimensional representation is sufficient to
approximate the dynamics. In the following we use a Gaussian process latent vari-
able model (GPLVM) to obtain such a low-dimensional representation and discuss
how it can be used to obtain reliable people detections in image sequences.

3.3.1 Gaussian process latent variable model

Let Y = [y1,y2, . . . ,ym]T be a sequence of D-dimensional observations (here de-
scribing the relative joint angles of body limbs). GPLVMs model the D-dimensional
observation space as the output of D Gaussian processes with an input space of di-
mensionality q, where q < D. Each observation yi is associated with a q-dimensional
latent point zi. The likelihood of the observation sequence Y given the latent se-
quence Z = [z1, z2, . . . , zm]T and model parameters θ is given by Lawrence (2005):

p(Y|Z, θ) =
D∏
i=1

N (Y:,i|0,Kz), (3.7)

where Y:,i is the vector of values of feature i across all observations, and Kz is
the covariance matrix with elements given by a covariance function k(zi, zj). In
this work we use a squared exponential covariance function augmented by Gaussian
white noise. For a given Y we can find the positions of the latent points Z along
with the model parameters θ by maximizing their likelihood from Eq. (3.7).

In addition to the low-dimensional latent representation of the data, GPLVMs
provide a probabilistic mapping from the latent space to the observation space. One
possibility to define a dynamic model in the latent space is to place a suitable prior
on the elements of Z. Such a prior can be given by a Gaussian process with time as
input variable (Lawrence and Moore, 2007). Given the sequence of points in time,
T = [t1, t2, . . . , tm]T at which the observations Y were made, the prior over Z is
given by

p(Z|T) =

q∏
i=1

N (Z:,i|0,KT) (3.8)

where KT is the covariance matrix of the time points. The covariance function in
the time space can again be taken as squared exponential, which ensures smoothness
of the trajectories.

We now combine this prior with the likelihood from Eq. (3.7), and maximize
w.r.t. Z and θ. Fig. 3.9 shows the 2 dimensional latent space obtained by apply-
ing this model to 11 walking sequences of different subjects, each containing one
complete walking cycle. Walking cycles in each sequence are manually aligned so
that we can interpret the frame number in each sequence as phase of the walking
cycle. This hierarchical approach to GPLVM dynamics has several advantages over
the auto-regressive prior proposed in (Wang et al., 2005). In particular, it allows
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us to evaluate the likelihood of a sequence of poses, even if the poses occurred at
unequally spaced time intervals. This arises, e.g., when the subject was occluded or
not detected for several frames. Additionally, for a given pose the model allows us
to hypothesize both successive and previous poses, which we use to produce good
initial hypotheses for the whole image sequence from a few good detections.

3.3.2 Reconstruction of poses in short sequence

Given limb likelihoods and the hGPLVM prior, we can maximize Eq. (3.6) to find
the best pose sequence. This is equivalent to jointly solving the inverse kinematics
in each frame of the sequence under soft constraints given by limb likelihoods and is
similar to (Grochow et al., 2004), except that in our case hints about limb positions
are provided by a person detector instead of being manually given by the user. If we
denote the training observations, their latent representation and model parameters
by M = [Y,T,Z,θ], the probability of the unknown pose sequence Y∗, its latent
representation Z∗, and the person positions Xo∗ is given by

p(Y∗,Xo∗,Z∗|M, E,T∗) ∝ (3.9)

p(E|Y∗,Xo∗)p(Y∗|Z∗,M)p(Z∗|T∗,M)p(Xo∗).

The first term is the detection likelihood from single-frame detections (see Eq. (3.6)).
The second term is given by

p(Y∗|Z∗,M) =
D∏
i=1

p(Y∗:,i|Z∗,Y:,i,Z), (3.10)

where p(Y∗:,i|Z∗,Y:,i,Z) is a Gaussian process prediction of the pose sequence given
a sequence of latent positions. The third term is given by the dynamics prior on the
latent space:

p(Z∗|T∗,M) =

q∏
i=1

p(Z∗:,i|T∗,Z:,i,T). (3.11)

In our formulation, detecting people in a series of m frames therefore corresponds
to finding pose sequences Y∗ and people positions Xo∗ that maximize Eq. (3.9).
We use the following strategy to efficiently obtain such maxima: Each hypothesis
obtained from the people detector from Sec. 3.2 contains an estimate of the person’s
position xo, limbs’ positions xi and articulation a. From these parameters we can
directly estimate both the limb-orientations y, and position in the walking cycle
t. Using those parameters and propagating them to neighboring frames using the
kinematic limb model has proven to yield good initializations for optimization. In
the experiments described below we use a sufficient but small number of detections
in each frame to obtain initialization values for Y∗, T∗, and Xo∗, and then use
a conjugate gradient method to find local maxima of Eq. (3.9). The gradients
of the second, third, and fourth term in Eq. (3.9) can be computed analytically,
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Figure 3.9: Representation of articulations in the latent space.

(a) (b)

Figure 3.10: Comparison of our pedestrian detector with 4D-ISM (Seemann and
Schiele, 2006) and HOG (Dalal and Triggs, 2005) on (a) the “TUD-Pedestrians” and
(b) “TUD-Campus” datasets. Numbers in parenthesis indicate number of training
images.

while we use a finite difference approximation for gradient of p(E|Y∗,Xo∗). As the
experiments show, this enables us to efficiently obtain people detections in image
sequences.

Quantitatively, Fig. 3.10(b) shows how the extracted tracklets lead to increased
precision and recall compared to the detector alone (note that the recall does not
reach 1 in either case due to the use of non-maxima suppression.)
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3.3.3 Optimal track selection based on overlapping tracklets

The optimization procedure just described is suited to reliably detect people in short
frame sequences. We found that in order to reconstruct tracks of people over longer
periods of time, it is more reliable to merge hypotheses from different short tracklets
rather than increasing the length of the tracklets itself. First, we compute over-
lapping fixed-length tracklets (m = 6) starting at every frame of the sequence. As
tracklet optimization relies on good initialization, the use of overlapping sequences
ensures that each strong detection is used multiple times for initialization.

We then exploit that every frame is overlapped by several different tracklets
(including ones with different starting frames), which provide competing hypothe-
ses that explain the same image evidence. In principle it would be possible to
choose the best sequence of hypotheses using their joint posterior (i.e., an exten-
sion of Eq. (3.9)). This is, however, computationally prohibitive since the large
state-space of all possible combinations of hypotheses cannot be searched efficiently
without making simplifying assumptions. Instead, we select hypotheses using pair-
wise relations between them by introducing a first-order Markov assumption on the
hypothesis sequence.

Let the length of the complete image sequence be equal to M . We denote the set
of all hypotheses obtained from individual tracklets in frame j by hj = [hj1, . . . , h

j
nj

].

We will call the track given by a set of hypotheses H = [h1j1 , . . . , h
M
jM

] optimal if it
maximizes the joint sequence probability according to the hidden Markov model:

p(H) = pimg(h1j1)
M∏
k=2

pimg(hkjk)ptrans(h
k
jk
, hk−1jk−1

). (3.12)

In this expression pimg(hkjk) is computed using the people detection model from
Sec. 3.2. The transition probability is ptrans is given by

ptrans(h
k
jk
, hk−1jk−1

) = pdynamic(h
k
jk
, hk−1jk−1

) ·
papp(hkjk , h

k−1
jk−1

), (3.13)

where pdynamic(·, ·) is our dynamical model consisting of Gaussian position dynamics
and the GPLVM articulation dynamics, and papp(·, ·) is computed using an appear-
ance model of the hypothesis, which can be based on color histograms of person
parts, oriented edge features, or any other appearance description. We use color
histograms extracted from the detected parts, and use the Bhattacharyya distance
to model the appearance compatibility.

The optimal sequence can be efficiently found by maximizing Eq. (3.12) using the
Viterbi algorithm. If a given image sequence contains only one person that is never
occluded, the proposed approach is able to reconstruct its track from the individual
tracklets.

For the case of more complex image sequences we have adopted the following
strategy that has proven to be quite effective (see Sec. 3.4 for results): Let i be the
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Dataset HOG 4D-ISM single-frame tracklets

TUD-Pedestrians 0.53 - 0.28 0.68 0.81 0.84 - -

TUD-Campus 0.22 - 0.6 0.71 0.7 0.75 0.82 0.85

Table 3.1: Recall of 4D-ISM, HOG, and our detectors at precision equal to 0.9 and
at equal error rate on “TUD-Pedestrians” and “TUD-Campus” datasets.

Figure 3.11: Examples of detector hypotheses (top row) and tracklet hypotheses
(bottom row) at equal error rate on the “TUD-Campus” dataset.

number of the current frame in the sequence (in the beginning i = 1). We proceed by
iteratively computing the optimal track starting with i. At the nth iteration of the
Viterbi algorithm, we compute the transition probabilities between the hypotheses
of the optimal track at frame i+n and each of the hypotheses in the frame i+n+1.
If the person either walks out of the image or becomes heavily occluded, all of the
transition probabilities will be low, which means that we can end the track. In that
case all its hypotheses are removed from the sets of hypotheses hj, j = i, . . . , i+ n.
We then repeat the procedure again starting from frame i until hi becomes empty.
In this case we set i = i + 1 and repeat the process. As a result of this iterative
computation we obtain a set of tracks with hypotheses that are consistent in both
motion and articulation. To connect such tracks across long-term occlusions we
again use the appearance of the person as well as a coarse motion model to decide
if two tracks correspond to the same person. The appearance model is the same as
used for modeling the appearance of individual hypotheses. For the motion model
we only require tracks to have consistent movement direction (i.e. left or right). In
practice, we found that even such a simplistic method is sufficient since only few
possible tracks are available after the initial detection stage.

3.4 Experiments

We evaluate our approach both quantitatively and qualitatively. In the first exper-
iment, we compare the detection performance of the single-frame person detector
proposed in Sec. 3.2 with the tracklet-based detector. Tracklet-based detections are
obtained by first detecting tracklets in the image sequence as described in Sec. 3.3.2,
grouping together hypotheses from all tracklets corresponding to a particular image
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Figure 3.12: Detection and tracking on “TUD-Campus” dataset (see supplementary
material).

of the sequence, and performing non-maxima suppression on this set of hypotheses.
In this process the score of a hypothesis is set to score of the corresponding tracklet,
which is given by Eq. 3.9.

The comparison of both detectors is done on a sequence with multiple full and
partial occlusions. Fig. 3.12 shows several example images from the sequence. Note
that in such cluttered sequences ground truth annotation is difficult as it is unclear
how to decide when a partially or fully occluded person should be included. In
order to have a fair evaluation for the single-frame person detector we decided to
annotate people when they are at least 50% visible. The quantitative comparison
of the single-frame detector and the tracklet-based detector is given in Fig. 3.10.
The tracklet-based detector improves the precision considerably. Fig. 3.11 shows
sample detections. As can be seen, the single-frame detector obtains false positives
on the background (images 1, 2, and 3), whereas the tracklet-based detector can
successfully filter those false-positives. At the same time the tracklet-based detector
is capable of detecting several partially occluded people (e.g.in image 2 and 4) that
cannot be detected in a single frame alone.

In the second experiment we evaluate the tracks produced by our system on the
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Figure 3.13: Detection and tracking on “TUD-Crossing” dataset (see supplementary
material).

sequence from the first experiment and an additional sequence with significantly
larger number of people. Example snapshots from the resulting tracks are shown in
figures 3.12 and 3.13 respectively. Clearly, in any single frame a significant number of
people is detected and their limb-configuration is correctly inferred. Interestingly, we
obtain tracks for nearly all people in these sequences, and in particular in sequence
1 we obtain tracks for all people even though some of them become fully occluded
over significant time intervals. Quite importantly, on this sequence we can also
differentiate between hypotheses of two people walking side by side, with one person
occluding the other most of the time. The complete videos of both sequences can
be found in the supplementary material.

3.5 Conclusion

In this chapter we have introduced a novel method capable of detecting and tracking
people in cluttered real-world scenes with many people and changing backgrounds.
For this we have introduced pedestrian detector based on the articulated limb-based
model, which outperforms the state-of-the-art on single frame person detection, and
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also delivers estimates for body part articulations. A dynamic model based on
a hierarchical Gaussian process latent variable model is used to further improve
people-detection by people-tracklet detection in image sequences. Those tracklets
are then used to enable people-tracking in complex scenes with many people and
long-term occlusions.

Notice that despite its good performance the model introduced in this chapter
is purely generative and does not rely on any form of discriminative learning. Such
good performance can in part be explained by a strong spatial prior on body con-
figurations and motions of people. The reliance on such a strong prior is perhaps
one of the weaknesses of the framework described in this chapter. In order to al-
leviate the strong a-priori assumptions, in the next chapter we introduce a novel
part-based people detector that relies on discriminative appearance model and is
capable of detecting and estimating pose of people in more generic settings than we
have considered so far.





4
Discriminative Appearance Model
for Pictorial Structures

In this chapter we present a new approach to people detection and articulated pose
estimation. At the core of our approach is a novel appearance model based on densely
sampled local features and discriminative classifiers. We combine this appearance
model with a loose-limbed articulated body model capable of capturing relative
positions and orientations of the main body parts. In contrast to the body model
used in Chapter 3 this model is more general and is not limited to representing
articulations of pedestrians.

Our approach builds on the pictorial structures model. Similarly to the origi-
nal pictorial structures approach of Fischler and Elschlager (1973) and Felzenszwalb
and Huttenlocher (2005) we model the appearance of each part independently and
represent object as a collection of rigid body parts coupled by pairwise spatial re-
lationships. We identify the components of the model that make it applicable to
the uncontrolled real-world scenes considered in this thesis. As a first important
ingredient of our approach, we propose a discriminative appearance model based on
densely sampled local descriptors and AdaBoost classifiers. Secondly, we interpret
the normalized margin of each classifier as a likelihood in a generative model and
compute marginal posteriors for each part using belief propagation. Thirdly, non-
Gaussian relationships between parts are represented as Gaussians in the coordinate
system of the joint between parts. Additionally, in order to cope with shortcom-
ings of the tree-structured pictorial structures model, we augment the model with
an additional repulsive factor to discourage over-counting of image evidence. We
demonstrate that the combination of these components within the pictorial struc-
tures framework results in a generic model that achieves state-of-the-art performance
for several datasets on different tasks: people detection, upper body pose estimation,
as well as of full body pose estimation.

4.1 Introduction

People detection and articulated pose estimation are two challenging and long-
standing problems in computer vision. Addressing these problems in real-world

45
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Figure 4.1: Sample results (left to right): Full body pose estimation (1st and
2nd column), upper-body pose estimation, and pedestrian detection. Bottom: Part
posteriors.

scenes is difficult because a successful approach should be both discriminative enough
in order to distinguish people from the large amount of background clutter, and rep-
resentative and flexible enough to capture the large variation in human appearance
and poses. While numerous approaches have been proposed over the years, none
of them has been demonstrated to be equally applicable for both people detection
and pose estimation. Interestingly, quite a number of them (Andriluka et al., 2008;
Ferrari et al., 2008; Ramanan, 2006; Ramanan and Sminchisescu, 2006; Zhang et al.,
2006), while specializing on one of these tasks only, build on the same basic picto-
rial structures model (Felzenszwalb and Huttenlocher, 2005; Fischler and Elschlager,
1973). In this chapter we show that given an appropriate representation for appear-
ance and spatial components, the pictorial structures model obtains equal or even
superior performance compared to many specialized approaches. This results in a
generic model equally applicable for human detection and pose estimation, which
allows to detect upright people (i.e., pedestrians (Leibe et al., 2005)), as well as
highly articulated people (e.g., in sports scenes (Ramanan, 2006)), and to estimate
their poses (see Fig. 4.1 for examples).

The pictorial structures model is a powerful and general, yet simple generative
object/body model that allows for exact and efficient inference of (body) part con-
stellations. In order to model the appearance of individual body parts we build
upon strong part detectors (Andriluka et al., 2008; Mikolajczyk et al., 2006; Viola
et al., 2003), which have shown to enable object and people detection in challenging
scenes, but have not yet proven to enable state-of-the-art articulated pose estima-
tion. While previous work has either focused on strong part detectors or on powerful
body models, our work combines the strengths of both.

We combine a discriminative appearance model with a generative pictorial struc-
tures model in a hybrid approach (c.f. Tu et al. (2005)) by interpreting the normalized
classifier margin as the likelihood of the image evidence. As a result, we obtain a
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Figure 4.2: Left: Kinematic prior learned on a multi-view and multi-articulation
dataset (Ramanan, 2006). Mean part positions (blue dots) and covariances of the
part relations in the transformed space (red ellipses) are shown. Right: Several
independent samples from the learned prior (to ease visualization visualized as-
suming a fixed torso position and orientation).

generic model for people detection and pose estimation, which not only outperforms
recent work in both areas by a large margin, but is also surprisingly simple and
allows for exact and efficient inference.

We perform a careful performance analysis of the model, and quantify changes in
model performance due to the type of local descriptor, discretization step between
evaluated part locations, the number of boosting rounds, and due to variants of
belief propagation.

While demonstrating state-of-the-art performance, our initial model has a tree
structure, which does not allow to incorporate complex dependencies between arbi-
trary body parts. The underlying assumption is that detector responses of different
body parts are independent from each other. While this often works well in prac-
tice, it can lead to overcounting of image evidence for parts with similar appearance
(such as the two lower legs). Previously proposed solutions to this problem either
assume availability of foreground segmentation masks (Jiang, 2009; Zhang et al.,
2009) or require explicit modeling of foreground, background and depth ordering of
body parts (Buehler et al., 2008; Sudderth et al., 2004; Wang and Mori, 2008), and
are not directly applicable to our discriminative appearance representation. There-
fore, in this work we pursue a different avenue and introduce an additional repulsive
factor (Ferrari et al., 2009b) into the model that discourages configurations with
overlapping parts. We quantify the improvements in body-part localization due to
this additional factor on the pedestrian and full body pose estimation tasks. We also
demonstrate that even though the repulsive factor introduces loops into the model
structure, we can still perform inference efficiently by first filtering the search space
with the original tree-structured model and then applying the full model to a subset
of most promising part configurations, which can be seen as a form of probabilistic
search space reduction.
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4.2 Generic Model for People Detection and Pose

Estimation

To facilitate reliable detection of people across a wide variety of poses, we follow
Felzenszwalb and Huttenlocher (2005) and assume that the body model is de-
composed into a set of parts. The body part configuration is denoted as L =
{l0, l1, . . . , lN}, where the state of part i is given by li = (xi, yi, θi, si). (xi, yi) de-
notes the part position in image coordinates, θi the absolute part orientation, and
si the part scale, defined to be relative to the part size in the training set.

Depending on the task, the number of body parts may vary (see Figs. 4.2 and 4.3,
and Sec. 4.4). For upper body detection and pose estimation we use six parts: head,
torso, and left/right lower/upper arms. In case of full body pose estimation, we
additionally consider four lower body parts (left/right upper/lower legs) resulting in
a 10-part model. For pedestrian detection we do not use arms, but add feet, leading
to an 8-part model.

Given the image evidence E, the posterior of the part configuration L is given
by

p(L|E) ∝ p(E|L) · p(L) (4.1)

where p(E|L) is the likelihood of the image evidence given a particular body part
configuration and p(L) corresponds to a kinematic tree prior. Here, both terms are
learned from training data, either from generic data or trained more specifically for
the application at hand. To make such a seemingly generic and simple approach
work well, and to compete with more specialized models on a variety of tasks, it is
necessary to carefully design the appropriate prior p(L) and an appropriate image
likelihood p(E|L). In Sec. 4.2.1, we will first introduce our generative kinematic
model p(L), which closely follows the approach of (Felzenszwalb and Huttenlocher,
2005). In Sec. 4.2.2, we will then introduce our discriminatively trained appearance
model p(E|L).

Given such a model, we estimate articulated poses by finding the most proba-
ble configuration for each part given the image evidence through maximizing the
marginal posterior p(li|E). In case of multiple people this generalizes to finding the
modes of the marginal posterior density.

We use our articulated body model also for people detection in order to cope
with the large variety of possible body poses. This is similar in spirit, e.g., to
(Andriluka et al., 2008; Felzenszwalb et al., 2008; Ramanan, 2006). To that end we
first compute the marginal distribution of the torso configuration and then use its
modes to deterministically predict bounding box detections.

4.2.1 Kinematic tree prior

The first important component in our pictorial structures approach is the prior
p(L), which encodes probabilistic constraints on part configurations. A common
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source of such constraints are kinematic dependencies between parts. Such kinematic
constraints can be captured probabilistically using a tree-structured graphical model.
In such a model the prior on part configurations factorizes into the product of unary
and pairwise terms:

p(L) = p(l0)
∏

(i,j)∈G

p(li|lj), (4.2)

where we let G denote the set of all directed edges in the kinematic tree and assign
l0 to be the root node (torso).

It is possible to incorporate action specific constraints into the prior and to
combine them with articulation dynamics to enable tracking (see e.g. (Lan and
Huttenlocher, 2005; Urtasun et al., 2006)). However, we omit such extensions, as
they would restrict the applicability of the model to rather specific scenarios.

Part relations. To fully specify the prior of Eq. (4.2) we have to define the various
components. The prior for the root part configuration p(l0) is assumed to be uniform
to allow for a wide range of possible configurations. The part relations are modeled
using Gaussian distributions (c.f. (Felzenszwalb and Huttenlocher, 2005; Ramanan
and Sminchisescu, 2006)), which enable efficient inference (see below). This may
seem like a significant limitation as, for example, the distribution of the forearm
configuration given the upper arm configuration follows a semi-circular rather than
a Gaussian shape. It was pointed out in (Felzenszwalb and Huttenlocher, 2005) that
such a distribution is not Gaussian in the image coordinates, but that it is possible
to transform it to a different space, in which the spatial distribution between parts
is captured well by a Gaussian distribution. More specifically, to model p(li|lj), we
transform the part configuration li = (xi, yi, θi, si) into the coordinate system of the
joint between the two parts using the transformation:

Tji(li) =


xi + sid

ji
x cos θi − sidjiy sin θi

yi + sid
ji
x sin θi + sid

ji
y cos θi

θi
si

 . (4.3)

Here, the dji = (djix , d
ji
y )T is the position of the joint between parts i and j

represented in the coordinate system associated with li. Note that dij will vary
across people and will also depend on the out-of-plane rotation of li. In order to
accommodate such variability, the value of dji is regarded as a model parameter and
estimated from training data.

The part relation is modeled as a Gaussian with respect to the transformed part
configurations:

p(li|lj) ∝ N (Tji(li)− Tij(lj)|µji,Σji), (4.4)

where Tij is the transformation that maps the configuration of the parent part lj
to the position of the joint between parts i and j, µji = (0, 0, µjiθ , 0) represents the
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Figure 4.3: Priors on the part configurations (left to right): Pedestrian detec-
tion (star vs. tree model) and upper body detection.

preferred relative orientation of the parts, and Σji is the covariance matrix determin-
ing the stiffness of the joint. The parameters dji, µjiθ and Σji can be learned directly
using maximum likelihood estimation. It is worth noting that this corresponds to
a so-called “loose limbed” model (c.f. Sigal and Black (2006c)) as the limbs do not
rigidly rotate around the joints. Instead, the parts are only loosely attached to the
joint by the Gaussian distribution from Eq. (4.4), which helps reducing brittle be-
havior. In our experiments, we found this procedure to work much better than the
non-parametric part relation model used in Ramanan (2006).

Learned prior. Fig. 4.2 shows the prior learned from the multi-view and multi-
articulation People dataset from (Ramanan, 2006). This dataset includes people
performing a large variety of activities ranging from simple walking to acrobatic exer-
cises. Samples from this model exhibit a large variety of poses (see Fig. 4.2). Fig. 4.3
shows priors learned on the TUD-Pedestrians dataset (Andriluka et al., 2008), which
contains upright pedestrians in street scenes and from the Buffy dataset (Ferrari
et al., 2008) containing upper body configurations in TV footage.

4.2.2 Discriminatively trained part models

Before introducing our formulation of the likelihood p(E|L) of image evidence given
the part configuration, we would like to discuss several considerations that moti-
vate our approach. Our principal aim is to detect people in unconstrained environ-
ments and arbitrary poses. As the search space over all possible poses is typically
high-dimensional, successful approaches often resort to techniques for search space
reduction (Ferrari et al., 2008). As has been argued before (Tu et al., 2005), discrim-
inatively learned detectors allow to reduce the search space for generative models
significantly, thereby enabling both efficient as well as effective inference in chal-
lenging real world scenes. Following this avenue, we rely on discriminatively learned
part detectors to effectively reduce the search space as much as possible. At the
same time we aim to postpone the final decision on the part configuration to the
final stage when evidence from all body parts is available, rather than to deter-
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ministically prefilter possible part configurations at the individual part detection
level. Therefore, we densely evaluate all possible part positions, orientations, and
scales, which is in contrast to bottom-up appearance models (e.g. (Andriluka et al.,
2008; Mikolajczyk et al., 2006)) based on a sparse set of interest points. We believe
and also show in the experimental section that dense sampling is better suited for
detecting body parts, especially in cases of low contrast and partial occlusion.

Assuming that each part is independently generating the portion of the image
evidence within its bounding box, it follows that the likelihood can be decomposed
into the product of individual part likelihoods:

p(E|L) =
N∏
i=0

p(E|li) =
N∏
i=0

p(ei(li))p(E\ei(li)), (4.5)

where ei(li) denotes the portion of the evidence for part i covered by the part
bounding box in configuration li. As is common in the literature (Felzenszwalb and
Huttenlocher, 2005; Sigal and Black, 2006b), we model the image evidence outside
of the part bounding box with a uniform background distribution, so that the term
p(E\ei(li)) depends only on the image size and the size of the part bounding box
in configuration li. Recall that in our model the only paramter that influences the
dimensions of the part bounding box is a part scale. During inference we assume
that the person is generating the evidence E within its bounding box only and
that the scale of the body parts is fixed relative to this bounding box. Under this
assumption the term p(E\ei(li)) is independent of the part configuration and does
not influence the position of the modes in the posterior, and we ignore it in the rest
of the presentation.

It should be noted that the naive Bayes assumption made in Eq. 4.5 disregards
potential correlations in the appearance of body parts and assumes that parts do
not occlude each other. Nonetheless, it significantly simplifies computation and
has been found to work well when augmented with a subsequent verification step
(c.f. Felzenszwalb and Huttenlocher (2005)). Importantly, this enables efficient and
exact inference and leads to very competitive experimental results as we demonstrate
in Sec. 4.4.

Using Eq. (4.5) the posterior over the configuration of parts (Eq. (4.1)) factorizes
as:

p(L|E) ∝ p(l0) ·
N∏
i=0

p(ei(li)) ·
∏

(j,k)∈G

p(lj|lk). (4.6)

Boosted part detectors. In our model we represent image evidence E by a
densely computed grid of local image descriptors (e.g., shape context (Belongie et al.,
2000) or SIFT (Lowe, 2004) – see Sec. 4.3.1 for a comparison)

Individual part likelihoods p(ei(li)) are based on discriminatively trained part
classifiers. The feature vector used for classification is obtained by concatenating
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all local descriptors at given orientation and scale whose centers fall inside the part
bounding box, so that some dimensions of the feature vector also capture the sur-
rounding context. During detection we discretize the range of positions, scales, and
orientations and exhaustively scan the discretized part configurations in a sliding
window fashion. To predict the presence of a part, we train an AdaBoost classifier
(Freund and Schapire, 1997) with simple decision stumps that consider whether one
of the dimensions of the feature vector is above or below a threshold.

Denoting the feature vector by e, the stump with index t is given by ht(e) =
sign(ξt(en(t) − ϕt)), where ϕt is a threshold, ξt ∈ {−1,+1}, and n(t) indexes the
descriptor bin chosen by the stump. Training of the AdaBoost classifier proceeds as
usual, yielding a strong classifier Hi(e) = sign (

∑
t αi,thi,t(e)) for each part i. Here,

αi,t are the learned weights of the weak classifiers.

To integrate the discriminative classifiers into the generative probabilistic frame-
work described above, it is necessary to give a probabilistic meaning to the classifier
outputs.

We denote the normalized margin of the boosted classifier as

m(ei(li)) =

∑
t αi,thi,t(ei(li))∑

t αi,t
, (4.7)

where ei(li) is the vector of concatenated local descriptors corresponding to part i
in configuration li. The likelihood function of the part configuration li is defined as

p(ei(li)) =
1

Zi
max (m(ei), ε0) , (4.8)

where ε0 is a small positive constant, which makes the model more robust to missing
and occluded parts1 and Zi is a normalization constant given by

Zi =

∫
max (m(ei(li)), ε0) dei. (4.9)

Zi is finite because in our model individual feature dimensions are bounded to the
unit interval and the expression under the integral corresponds to a piecewise contin-
uous function given by the classifier margin thresholded from below by the constant
ε0. Note, that the functional form of the likelihood in Eq. 4.8 is not directly related
to any generative probabilistic model of the image evidence. Instead, it models the
probability of a feature vector based on the confidence of the boosted part detec-
tor. We see such a definition of the likelihood as a shortcut that allows us to avoid
the complexity of properly modeling the image statistics of the body part regions
and the background. Although there has been considerable interest in generative
models for natural images (Roth and Black, 2009), such models are still subject of
active research and are often too complex to be applicable to our task. At the same
time, in Sec. 4.3.1 we experimentally demonstrate that our likelihood is superior to

1In our experiments we set ε0 = 10−4.
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Figure 4.4: Likelihood maps of the torso, head and upper arm visualized for the
neighborhood around the ground-truth part location.

the simple likelihood of Ramanan (2006), which is based on a product of pixel-wise
terms and similar to our likelihood is trained discriminatively.

Note, that in our model we do not attempt to learn the relative importance
of the likelihoods of different parts. Typically, such learning is implemented by
formulating the model in log-linear form in which the likelihood of each part has
an additional weighting parameter that makes the part likelihoods more peaky or
more flat depending on the importance of the part (Ramanan, 2006; Sapp, Jordan
and Taskar, 2010). We observe that our likelihoods appear to implicitly contain a
bias towards more salient parts and therefore explicit learning of likelihood weights
may not be essential for good performance. Consider the visualization of likelihoods
of several parts shown on Fig. 4.4. Note that more salient parts, such as head or
torso, have likelihoods with clearly distinguishable local maxima, while less salient
parts, such as the upper arm, have likelihoods that are more flat and have positive
responses at multiple locations. During inference parts with more peaky likelihoods
will have more influence on the outcome, because the cost of shifting the position of
such part away from the location of the peak in the likelihood will be high. Parts
with flat likelihoods will be easier to shift, since their likelihood has similar values
for multiple part configurations. This is similar to a behavior that is achieved by
assigning higher weights to likelihoods of parts that can be detected more reliably.
Nonetheless, we expect that the explicit learning of part likelihood weights may still
be beneficial and plan to address this in future work.

Training. For training, each annotated part is scaled and rotated to a canonical
pose prior to learning. Note that this in-plane rotation normalization significantly
simplifies the classification task. Additionally, we extend the training set by adding
small scale, rotation, and position transformations to the original images. The trans-
formation parameters are obtained by sampling from Gaussians with σscale = 0.05,
σrot = 1◦ and σpos = 2 pixels. Negative feature vectors are obtained by uniformly
sampling image regions outside of the object bounding box. After initial training,
the classifiers are re-trained with the negative training set augmented with false
positives produced by the initial classifier. This is commonly referred to as boot-
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strapping. We have found that bootstrapping is essential to obtain good performance
with our discriminative part detectors for the task of people detection. Please refer
to Fig. 4.11(a) for a comparison of results with and without bootstrapping.

4.2.3 Exact model inference

An important property of our tree-based model is that optimal inference is tractable.
Specifically, we can compute the globally optimal body configuration by MAP in-
ference using the max-product algorithm (Felzenszwalb and Huttenlocher, 2005).
We can also compute exact marginal distributions using the sum-product algorithm
(Pearl, 1988), which is used here, for example, to obtain marginals for pedestrian
detection. To that end, we interpret the underlying directed graphical model as
a factor graph and apply standard factor graph belief propagation (Kschischang
et al., 2001). Interestingly, the sum-product algorithm turns out to be more robust
w.r.t. the discretization of the part configuration space (see Sec. 4.3.3).

It has been shown that expensive summations necessary in the sum-product
algorithm can be efficiently computed using Gaussian convolutions whenever the
part dependencies are modeled using Gaussian distributions (Crandall et al., 2005;
Ramanan, 2006). However, care has to be taken when doing so, as the part relations
in our model are Gaussian not in the image space, but rather in the transformed
space of the joint. To apply the efficient algorithm nonetheless, we rely on the
approach suggested in (Felzenszwalb and Huttenlocher, 2005): we transform the
messages into the coordinate system of the joint using Eq. (4.3), then apply Gaussian
convolutions there, and finally transform the result into the coordinate system of the
target part, which is possible since the transformation from the part configuration to
the position of the joint is invertible. If the Gaussian distribution in the transformed
space is separable these computations are even more efficient.

Similarly, it is also possible to efficiently compute the maxima of p(L|E) using the
max-product algorithm. In this case the messages are computed using a generalized
distance transform in time linear in the number of possible states of the part variable
(see (Felzenszwalb and Huttenlocher, 2005) for details).

4.2.4 Incorporation of additional relationships between body
parts

While the original pictorial structures model (Fischler and Elschlager, 1973), did
not impose any restrictions on the structure of the relationships between model
parts, the exact and efficient inference with generalized distance transform or Gaus-
sian convolutions is only possible if these relationships are assumed to have a tree
structure (Felzenszwalb and Huttenlocher, 2005). This in turn requires that the
image likelihood can be factorized into a product of local part likelihoods that are
computed independently of each other.

While these assumptions often lead to competitive results, they can obviously be
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Figure 4.5: Visualization of the factors between body parts in our model. Solid lines
correspond kinematic factors and dashed lines correspond to repulsive factors.

violated in practice as, for example, in the case of body parts occluding each other.
In such cases it is desirable to extend the model with additional dependencies be-
tween parts. These, however, introduce loops in the model structure and complicate
inference. The avenue we are exploring in this work consists of a two stage proce-
dure: first we perform inference using the original model with kinematic constraints
only, then we sample from the posterior marginals of each part and perform inference
with the full model using the samples as the new state-space. As before, we apply
factor graph belief propagation for inference, however here loopy belief propagation
(LBP), for which we use the implementation of Mooij (2009). Clearly, there are no
guarantees that the true positive hypothesis will always be sampled from the poste-
rior of the tree model. In practice, our approximative two-stage inference procedure
improves over exact inference in the tree model, which suggests that true positives
are included in the reduced state-space most of the time.

One of the cases where this two stage procedure becomes necessary is the model
shown on Fig. 4.5. This model includes additional repulsive factors between the lower
extremities that compensate for correlations between responses of part detectors.
Since these correlations are not taken into account by the tree-structured model
discussed before, it might prefer to explain the same image region multiple times by
different parts when the local likelihood of this region is sufficiently strong. We take
this factor to have the form similar to the one used in Ferrari et al. (2009b):

f(li, lj) =

{
exp(−β) : IoU(li, lj) > δ

1 : otherwise,
(4.10)

where IoU(li, lj) is the ratio of intersection and union of the bounding boxes of parts
i and j, the parameter β controls how strong the parts are pushed away from each
other, and δ defines the minimal relative intersection between parts required for the
repulsive factor to take effect. In our experiments we set β = 1.25 and δ = 0.5 and
keep their values constant in all trials.

We compare tree-structured and loopy versions of our model in Sec. 4.3.2 and
demonstrate that the loopy model can significantly reduce the effect of over-counting
of image evidence and achieves better pose estimation results. In addition, we have
also performed a series of experiments with a loopy model that contains repulsive
factors between the upper arms and forearms. Such additional factors did not achieve
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any improvement of the pose estimation results, which is most likely due to the form
of the prior distribution (c.f. Fig. 4.2), which already discourages placement of upper
body limbs at the same image location.

4.3 Evaluation of the Model Components

We begin the experimental part of this chapter with the evaluation of various aspects
our model. In particular, we perform a detailed evaluation of our discriminative
appearance representation, compare the performance of tree and non-tree models
extended with a repulsive factor, and contrast inference with sum-product and max-
product algorithms. For the experiments in this section we use the full-body pose
estimation task as testbed, since this is the most complex task considered in our work
and includes other tasks as a special case. Our experimentation relies on the People
dataset of Ramanan (2006), which includes annotated humans across a variety of
views, articulations, and activities.

In our experiments we change only one aspect or parameter of the model at a
time, keeping the rest of the model parameters fixed. The appearance of body parts
is represented using a shape context descriptor with 4 angular, 3 radial bins, and 8
discretized gradient directions, ignoring the sign of the gradient vector. AdaBoost
part detectors are trained for 500 rounds. Inference is performed with sum-product
belief propagation. Bootstrapping of part detectors is performed only in the pedes-
trian detection case, since it did not help to improve performance in the other cases.
The discretization step size is 15 degrees for the part orientation, and 0.1 for the
object scale. At the training scale the part detectors are evaluated with a step size
of 8 pixels in case of full-body pose estimation and pedestrian detection, and with
step size of 12 pixels for the upper body pose estimation2.

In our experiments, we quantify the pose estimation performance of the model by
computing the average percentage of correctly localized body parts. A body part is
considered to be localized correctly if the endpoints of its segment lie within 50% of
the ground-truth segment length from its true position. This measure, often referred
to as “percentage of correct parts” (PCP), was originally introduced in Ferrari et al.
(2008), and was subsequently used in Ferrari et al. (2009b); Eichner and Ferrari
(2009); Johnson and Everingham (2009) for performance evaluation on both upper-
and full-body pose estimation tasks.

4.3.1 Evaluation of appearance model parameters

Image descriptor.

2The step size is made larger in the upper body case to keep the ratio between average size of
the body parts and step between evaluated locations comparable across all datasets.
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Image descriptor. We compare the performance of shape context descriptors as
previously used in Andriluka et al. (2009) with SIFT descriptor (Lowe, 2004), and
edge templates obtained using the code from (Ramanan, 2006) and integrated into
our pose estimation framework. For reference we also include results of Johnson
and Everingham (2009), where HOG descriptors (Dalal and Triggs, 2005) are used
for appearance representation. We use the implementation of shape context from
(Mikolajczyk and Schmid, 2005), which is similar to the original shape context de-
scriptor (Belongie et al., 2000), but captures the distribution of gradient orientations
instead of distribution of the edge pixels. We rely on mean/variance normalization
to make the descriptor invariant to illumination changes and use the Canny edge
detector to find edges in the image patch.

The results of the comparison of different descriptors are shown in Tab. 4.1.
The first interesting outcome of this experiment is that the original SIFT descriptor
did not perform well compared to the results obtained with shape context. The
performance difference is significant with 45.9% of correctly localized parts for SIFT
and 55.6% for shape context. Apart from the fact that shape context is based on
edges, the main differences between the SIFT and shape context descriptors are the
layout of spatial bins, size of the gradient discretization bins and the way image
patches are normalized prior to descriptor computation. The SIFT descriptor uses
a 4 × 4 uniform spatial grid with 8 bins for the gradient orientation, which results
in a 128 dimensional descriptor; shape context uses 4 angular bins and 3 radial
bins with 8 bins for the gradient orientation, which results in a 96 dimensional
descriptor. However, while SIFT discretizes the full gradient orientation [0, 2π], the
shape context used in Andriluka et al. (2009) neglects the sign of the gradient vector
by mapping it to [0, π] prior to discretization, thus discretizing gradients twice as
finely compared to SIFT. As the results in Tab. 4.1 show, fine gradient discretization
is important for good performance. In particular, increasing the number of gradient
orientation bins from 8 to 16 resulted in an improvement from 45.9% to 52.1%.
Similar results are obtained by ignoring the gradient orientation in the original
SIFT descriptor (performance increases to 52.3%). Interestingly, the shape context
descriptor appears to be more robust to coarse gradient discretization. Doubling the
number of gradient discretization bins in shape context improves the performance
from 50.2% to 53.4%, which is significantly less than the improvement for the SIFT
descriptor. Ignoring the sign of the gradient vector resulted in improvements for both
shape context and SIFT, which is explained by the intuition that, in the context
of human detection, we do not want to distinguish between light clothes on dark
background and vice versa. However, the improvement is rather small (less than 1%)
which suggests that invariance to gradient orientation can be successfully learned
by the classifiers during training. The HOG descriptor in Johnson and Everingham
(2009) performed very similar to the modified SIFT, which is understandable, since
both of them are gradient-based descriptors with rectangular spatial binning, and
both ignore the gradient sign.

In our comparison we observe that the purely edge-based shape context descriptor
performs on par or better than the appearance-based SIFT and HOG descriptors.
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Appearance
Descriptor

Torso U. leg L. leg U. arm Forearm Head Total

edge features
(Ramanan, 2006)

63.4 48.0 37.9 26.8 20.5 45.4 37.5

HOG (Johnson and
Everingham, 2009)

73.2 58.5 52.2 47.8 32.5 62.4 51.8

original SIFT 68.8 53.6 49.0 37.5 26.9 55.6 45.9

SIFT, 8 bins, [0, π] 78.1 58.5 54.6 44.6 31.2 66.8 52.3

SIFT, 16 bins, [0, π] 76.1 56.4 52.0 44.6 29.8 69.8 51.1

SIFT, 16 bins, [0, 2π] 77.1 59.3 53.1 46.8 30.5 64.4 52.1

SC, 8 bins, [0, π],
(Andriluka et al.,

2009)
84.9 64.2 54.4 48.3 31.0 75.6 55.6

SC, 8 bins, [0, 2π] 75.1 57.3 53.4 40.0 31.2 62.9 50.2

SC, 16 bins, [0, π] 82.4 62.5 55.4 47.5 32.5 71.2 54.9

SC, 16 bins, [0, 2π] 78.1 60.8 53.6 47.1 31.5 69.8 53.4

Table 4.1: Evaluation of model parameters: 2D pose estimation results on
the “People” dataset for different image descriptors and discretizations of gradient
orientation.

On one hand, this demonstrates that the normalization scheme employed in our
shape context implementation is sufficiently robust to capture important image edges
across a wide range of illumination conditions. On the other hand, it shows that
SIFT- and HOG-based detectors fail to benefit from a richer image description,
which is perhaps due to the fact that properties such as texture do not generalize
well across object instances.

Note that all considered descriptors significantly outperform the edge based tem-
plate features from (Ramanan, 2006), showing the importance of a strong shape/appearance
representation. The best results were achieved with the shape context descriptor
using 8 orientation bins and ignoring the sign of gradient vector. At the same time
we have shown that comparable performance can be achieved with SIFT, if the gra-
dient discretization is fine enough. The improvement obtained with shape context
is most likely due to the log-polar spatial binning, which allows the descriptor to be
more robust to small rotations of the body parts.

Number of boosting rounds. One of the parameters of the part detectors intro-
duced in Sec. 4.2.2 is the number of boosting rounds used for training the AdaBoost
classifiers. In Tab. 4.2 we show the influence of this parameter on the part localiza-
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Number of rounds Torso U. leg L. leg U. arm Forearm Head Total

8 72.2 53.0 46.1 38.0 19.8 55.6 44.2

16 74.2 58.5 47.8 41.0 23.1 60.5 47.6

32 78.1 59.2 48.8 43.6 28.3 68.3 50.6

63 82.4 63.2 54.1 44.9 30.8 71.2 54.0

125 80.5 66.1 53.6 46.3 31.5 71.2 54.7

250 81.5 64.7 54.8 47.3 33.0 73.2 55.4

500 84.9 64.2 54.4 48.3 31.0 75.6 55.6

750 84.9 63.6 54.9 48.3 32.9 72.2 55.7

Table 4.2: Evaluation of model parameters: 2D pose estimation results on the
“People” dataset for varying numbers of boosting rounds.

tion performance. Interestingly, performance of the model trained for as few as 8
rounds is already reasonable. This due to the fact that each body part has several
very characteristic features sufficient to separate it from the background. On the
other hand, performance of the model increases with the number of boosting rounds.
This means that the part detectors are able to learn more complex representations
for each part and are not prone to overfitting.

Discretization step size between evaluated part configurations. In all ex-
periments on the “People” dataset, the default value for the step between evaluated
part locations was 8 pixels in the image position and 15◦ degrees for orientation.
This discretization is rather coarse given that the average height of the human head
in this dataset is 33 pixels and the width of the forearm is around 8 pixels. Tab. 4.3
shows the improvements due to a denser evaluation of part detectors both spatially
and orientation-wise. The improvement in performance is significant: for example,
the head was localized 75% of the time at the coarse and 79% at the finest dis-
cretization level. Interestingly, fine discretization is more important if inference is
done with max-product than with sum-product belief propagation (see Sec. 4.3.3 for
comparison and discussion).

4.3.2 Extension of the model with repulsive factor

Next we report a set of experiments comparing our model with and without the re-
pulsive factors. We apply the two stage inference procedure as described in Sec. 4.2.4.
In these experiments, the reduced state space is obtained by generating 1000 samples
from the marginal posterior distribution of each part.

Results on the TUD-UprightPeople dataset Andriluka et al. (2009) are pre-
sented in Tab. 4.4 and for the “People” dataset Ramanan (2006) in Tab. 4.5. In each
case, we are extending the model with repulsive factors between the corresponding
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Discretization step Torso U. leg L. leg U. arm Forearm Head Total

8 px., 15◦ 84.9 64.2 54.4 48.3 31.0 75.6 55.6

4 px., 15◦ 83.9 64.6 56.4 49.8 32.7 76.1 56.7

2 px., 15◦ 83.9 65.7 56.5 50.2 33.7 76.1 57.2

2 px., 7.5◦ 84.9 65.2 58.5 51.7 34.1 78.5 58.2

1 px., 7.5◦ 84.9 66.3 58.5 51.0 35.4 79.0 58.6

Table 4.3: Evaluation of model parameters: 2D pose estimation results on the
“People” dataset for different step between evaluated part locations.

Figure 4.6: Example images from “People” dataset, with poses estimated by a tree
model (top) and a non-tree model with repulsive factors (bottom).

left and right upper and lower legs. On both datasets the model with repulsive
factors shows better performance than the baseline tree model (88.1% vs. 86%
on “TUD-UprightPeople” and 60.1% vs. 58.6% on the “People” dataset). This im-
provement is significant, especially considering that in both cases the kinematic tree
prior already encourages configurations with non-overlapping limbs (see Fig. 4.2 and
Fig. 4.3). Fig. 4.6(top) shows a few example images where the true part configu-
ration is either too far from the mean of the prior distribution or one of the part
hypotheses is too weak, which results in the incorrect estimate. The repulsive factors
allow to influence the trade-off between explaining strong hypotheses and staying
close to the prior distribution, and lead to better pose estimation results as shown
in Fig. 4.6(bottom).
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Method Foot L. leg U. leg Torso Head Total

tree model 82.0 85.0 88.3 93.3 84.1 86.0

non-tree model with
repulsive factor

84.8 88.7 89.8 93.8 84.4 88.1

Table 4.4: Comparison of models with and without repulsive factors on the “TUD-
UprightPeople” dataset.

Method Torso U. leg L. leg U. arm Forearm Head Total

tree model 84.9 66.3 58.5 51.0 35.4 79.0 58.6

non-tree model with
repulsive factor

84.9 69.2 63.0 50.7 35.2 79.5 60.1

Table 4.5: Comparison of models with and without repulsive factors on the“People”
dataset. Numbers indicate the percentage of the correctly detected parts. The total
number of part segments is 10 × 205 = 2050. Note that in this experiment part
detectors are evaluated at the resolution of 1 px. in image and 7.5◦ in the orientation
domain.

4.3.3 Comparison of sum-product and max-product belief
propagation

Several recently proposed 2D pose estimation approaches use sum-product belief
propagation to estimate body part configurations (Andriluka et al., 2009; Ferrari
et al., 2008; Ramanan, 2006). Note that part configurations estimated with the
sum-product algorithm might contain body parts that are inconsistent with each
other. Such behavior, however, is often not penalized and localization performance
is measured on a per-part basis. In this section we quantify the differences in per-
formance when we require that the model produces consistent part configurations.
For that purpose we switch from sum-product to max-product belief propagation,
while still measuring how often each of the parts is correctly localized.

Tab. 4.6 compares the max- and sum-product algorithms on the“People”dataset.
Interestingly, the sum-product algorithm turns out to be more robust to the step
size between evaluated part configurations and is able to find significantly more
body parts than the max-product algorithm. For example, when part detectors are
evaluated on the coarse grid the sum-product algorithm obtains 55.9% vs. 51.8% for
the max-product algorithm. When the grid is sufficiently fine both algorithms show
comparable performance (58.6% for sum-product vs. 58.7% for max-product). One
explanation for this result is that max-product is looking for a globally consistent
part configuration and in that case the whole configuration can have a low probability
even when only one body part has a weak response in the relevant area of the search
space. In the case of sum-product, such weak responses are less of a bottleneck
since the algorithm does not enforce global consistency, and might still find partially
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(a) (b)

(c) (d)

Figure 4.7: Results obtained with sum-product (b, d) and max-product (a, c) algo-
rithms for coarse 8 px. (top row) and fine 1 px. (bottom row) grid of evaluated part
locations.

Method Torso U. leg L. leg U. arm Forearm Head Total

sum-product, 8 px., 15◦ 82.0 65.4 55.9 47.8 31.2 76.1 55.9

max-product, 8 px., 15◦ 79.0 60.7 50.2 42.0 31.5 69.8 51.8

sum-product, 1 px., 7.5◦ 84.9 66.3 58.5 51.0 35.4 79.0 58.6

max-product, 1 px., 7.5◦ 83.9 67.8 59.2 52.0 35.1 75.1 58.7

Table 4.6: Comparison of sum-product and max-product belief propagation on
“People” dataset.

correct configurations.

Fig. 4.7 shows an example of part estimates obtained with the max- and sum-
product algorithms for coarse and fine discretizations. Note, how for the coarse
discretization sum-product is able to estimate a few body parts correctly (subplot
(b)), while max-product produces a consistent but incorrect configuration (subplot
(a)). For a finer discretization estimates obtained with both algorithms are similar
with max-product localizing several more parts correctly than sum-product (subplots
(c,d)).

4.3.4 Performance for varying training and test sets

So far, all of the results reported in this chapter were obtained for the standard split
of the “People” dataset into training and test sets, in which 100 images are allocated
for training and 205 for testing.

In this section we quantify the changes in performance depending on the par-
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ticular selection of the training and test data. To that end we perform a series of
experiments, in which we first independently vary the training and test sets, and
finally evaluate performance for different splits of the “People” dataset. The perfor-
mance is reported for the tree-structured version of our approach with parameters
set as described in the beginning of Sec. 4.3.

In the first experiment we use the standard test set from the “People” dataset
and generate training sets by randomly selecting 100 images from the Leeds Sports
Poses (LSP) dataset (Johnson and Everingham, 2010). The images in the “LSP”
dataset are qualitatively similar to the“People”dataset, but exhibit somewhat larger
variability in poses of people and imaging conditions. The interesting outcome from
this experiment is that the pose estimation performance varies significantly with
the particular training set. The average PCP score over 10 runs is 51.8% with the
standard deviation of 1.4%. Depending on the training set the result vary between
49.7% and 54%.

In the second experiment we fix the training set to the one that resulted in the
best performance in the first experiment and vary the test set. Each test set is
generated by randomly choosing 205 images from the “People” dataset. The average
over 10 runs is 53% with the standard deviation of 0.9%. The results vary between
51.8% and 54.1%.

In both experiments the numbers appear somewhat lower than those for the
standard split of the “People” dataset. In order to clarify that, we have randomly
generated 5 splits of the “People” dataset into training and test data. The results
varied between 50.1% and 56.1%, with the average of 52.9% and the standard devi-
ation of 2%. This result suggest that the standard split of the “People” dataset is
somewhat easier than average.

The overall conclusion from these experiments is that while being visually similar
the particular choice of test and training data can still result in significant difference
in performance (up to 5% PCP in our case). This should be kept in mind when
indirectly comparing the performance of different approaches. The variability in
performance could be due to relatively small size of the training and test sets, which
suggests that future work should focus on datasets with larger number of training
and test images.

4.3.5 Run-time performance

The run-time of our approach is mainly influenced by the discretization of the part
configuration space and the number of body parts. For a 10-part body model and
a discretization step size of 8 pixels our implementation requires approximately 0.5
seconds (Intel Xeon 2.4 GHz, C++ implementation) to compute the part likelihoods
for a single orientation on a typical image from the “People” dataset (167 × 251
pixels). When discretizing part orientations with a 15◦ step size, this translates to
about 12−20 seconds for the entire likelihood computation. Passing a single message
between two body parts during inference requires approx. 2 seconds. Overall, our
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approach takes about 50 seconds to compute the max-marginal estimate for all body
parts. Note that these times can likely be significantly improved by parallelizing the
computation of Gaussian convolution and image features, which we leave for future
work.

Approximate inference in case of repulsive factors (c.f. Sec. 4.2.4) is performed
on a reduced state-space and does not require additional likelihood computations.
Full BP inference including sampling from the marginal posteriors of the tree model
takes from 5 to 10 seconds in addition.

4.4 Comparison to State of the Art

In this section we evaluate our model on three related tasks of increasing complexity:
pedestrian detection, upper body pose estimation, and multi-view full body pose
estimation. For each task we use publicly available datasets and directly compare
to the respective methods designed to work specifically on each of the tasks. The
main goal in these experiments is to demonstrate the generic applicability of our
model and to quantify the performance gains over results previously published in
the literature.

Since in our work we do not focus on identifying the optimal model parts, we
rely on a canonical set of parts corresponding to the body limbs, torso and head.
The number of parts in each experiment is imposed by the task at hand, that is
for upper-body pose estimation where the task is to localize the upper-body, head
and upper/lower arms, we rely on a model with these six parts. For full-body pose
estimation we use a model that also includes legs. In case of pedestrian detection
the upper and lower arms were not annotated in the training set and are therefore
not included in the model.

In this section we choose model components and parameters, which we found
to perform best in the experiments in Sec. 4.3. In particular we use shape context
descriptors that are densely computed over the image and perform inference with
sum-product belief propagation. We also augment our model with repulsive factors
when applying it to the full body pose estimation task.

4.4.1 Pedestrian detection

To detect pedestrians, we compute the marginal distribution of the torso location
and use its modes to predict the pedestrians’ bounding boxes. To deal with multiple
peaks in the posterior corresponding to the same detection hypothesis, we perform
a non-maximum suppression step. For each detection we remove all detections with
smaller probability and more than 50% cover and overlap.

In this section we use three publicly available datasets to evaluate our model.

The TUD-Pedestrians3 dataset Andriluka et al. (2008) contains 250 images

3www.d2.mpi-inf.mpg.de/datasets
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(a) (b) (c) (d)

Figure 4.8: Several examples of detection at equal error rate obtained with our model
(8 parts and tree prior, top) and partISM (bottom) on the “TUD-Pedestrians’’
dataset.

(a) (b) (c) (d)

Figure 4.9: Several examples of detection and pose estimation obtained with our
model (8 parts and tree prior) on the “TUD-Campus” sequence.

with 311 pedestrians (mostly side-views) with large variability in clothing and ar-
ticulation. The corresponding training set contains 400 images. Additionally, we
created a new dataset called TUD-UprightPeople3, which contains images from
“TUD-Pedestrians” and additional images taken under various illumination condi-
tions, for which we also annotated body part configurations. This new dataset is
used to evaluate different aspects of our model including part localization perfor-
mance. The dataset contains 435 images with one person per image. The image
sequence TUD-Campus3 introduced in Andriluka et al. (2008) is used to evaluate
the performance of our method on images with multiple people. We compare our
approach to previous work on all three datasets.

In all pedestrian detection experiments we use the 400 training images provided
with “TUD-Pedestrians” to train the part detectors. We used two different priors on
the part configuration: (1) a star prior in which all parts are connected directly to
the center part; and (2) a kinematic tree prior (both are shown in Fig. 4.3).

First, we compare our approach to results from the literature on the “TUD-
Pedestrians” dataset as shown in Fig. 4.11(b). We use 8 parts either with a star
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Figure 4.10: Pedestrian detection results: Performance with varying number
of parts on (a) TUD-UprightPeople and (b) TUD-Pedestrians. (c) Compar-
ison of part detectors with varying step sizes between local descriptors on TUD-
UprightPeople.

prior or with a kinematic tree prior, whose parameters were estimated on the training
images of “TUD-Pedestrians”.

While the tree-based prior slightly outperforms the star prior, both outperform
the partISM-model (Andriluka et al., 2008) by 4% and 5% equal error rate (EER) re-
spectively, and slightly improves over recent work of Gall and Lempitsky (2009). All
three approaches significantly outperform the publicly available HOG binary (Dalal
and Triggs, 2005), which compared to our approach needs less supervision as it does
not require part annotations during training. Similarly, the same performance or-
dering can be observed in Fig. 4.11(a) for the “TUD-UprightPeople” dataset. We
attribute the improved performance over partISM to our dense part representation
and to the discriminatively learned appearance model. PartISM, in contrast, uses a
generative appearance model based on sparse interest points. Fig. 4.8 shows exam-
ple detections of our model and partISM. Our model is flexible enough to capture
diverse articulations of people as for example in Fig. 4.8(b,c,d), which typically
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Figure 4.11: Pedestrian detection results: Comparison with previously proposed
approaches partISM (Andriluka et al., 2008), HOG (Dalal and Triggs, 2005) on (a)
TUD-UprightPeople, (b) TUD-Pedestrians, and (c) TUD-Campus. On the
TUD-Pedestrians (b) we also compare with the “Hough Forests” approach of Gall
and Lempitsky (2009).

are problematic for monolithic detectors such as HOG. However, since our model
is built on top of discriminative classifiers, it can avoid false positives in cluttered
backgrounds, which plague the generative partISM model (e.g., Fig. 4.8(a) and (d)).

To gain more insight into the role of the different components, we conducted a
series of experiments on the “TUD-UprightPeople” dataset. Here, we report results
for the star prior only, as it allows to arbitrarily add and remove body parts from the
model. Fig. 4.10 shows the influence of varying numbers of parts on the detection
performance for “TUD-UprightPeople” and “TUD-Pedestrians”. As expected, using
more body parts generally improves detection performance. We also compare to a
monolithic detector that consists of a single part defined by the person’s bounding
box (as is typical, e.g., for the HOG detector (Dalal and Triggs, 2005)). This mono-
lithic detector did not perform well even compared to detectors with as few as 3
parts.
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In Fig. 4.10(c) we evaluate how the density of local feature sampling affects
performance. The distance between evaluated part configurations is kept constant,
but the distance between features included in the feature vector presented to the
AdaBoost classifier is varied from 4, 8 to 16 pixels. The denser version consistently
obtains better results and outperforms the sparser version by about 6% EER. This
confirms our intuition that an over-complete encoding of the information at different
spatial resolutions is important for classification. Note that the overall performance
difference between Fig. 4.10(a) and (c) is due to not performing bootstrapping on
the part detectors in Fig. 4.10(c). Also, note that denser sampling of local features
(Fig. 4.10(c)) and bootstrapping (Fig. 4.11(a)) result in improvements of 6% and
8% EER respectively.

Both “TUD-Pedestrians” and “TUD-UprightPeople” contain only one person per
image. However, it is also interesting to analyze the performance on images with
multiple people frequently occluding each other. For that purpose we use the pub-
licly available image sequence “TUD-Campus” (Andriluka et al., 2008). Fig. 4.11(c)
shows the comparison of our model both with the tracklet-based and the partISM
detectors from (Andriluka et al., 2008). Our detector significantly outperforms par-
tISM and even slightly improves over the tracklet based detector, while operating
on single frames only. This result is remarkable since the tracklet-based detector re-
quires associations of hypotheses across frames and assumes that people in the scene
are walking. Our model avoids these assumptions without sacrificing performance.
Fig. 4.9 shows a few detections and the estimated body poses obtained with our
approach on “TUD-Campus”. Note that since the evidence in our model is aggre-
gated locally it can still cope with partial occlusion as in Fig. 4.9(b) and is robust
to clutter and overlaps between people as in Fig. 4.9(a,c,d). At the same time, as
our model represents a person as a flexible configuration of parts, it can successfully
cope with large variations in articulation present in the dataset.

4.4.2 Upper body pose estimation

In order to evaluate our method on the task of upper-body pose estimation, we use
two recently proposed and publicly available datasets: Buffy Stickmen (Ferrari
et al., 2008)4 and ETHZ PASCAL Stickmen (Eichner and Ferrari, 2009)5. “Buffy
Stickmen” consists of frames extracted from 5 episodes of the popular TV show
“Buffy the Vampire Slayer”, with episodes 2, 5, and 6 containing 276 annotated
people used for testing. The “ETHZ PASCAL Stickmen” dataset is a subset of the
PASCAL VOC 2008 (Everingham et al., n.d.) dataset containing 549 annotated
people in front/back view. Note that we are using the latest revision of the “Buffy
Stickmen”dataset, released after the publication of Eichner and Ferrari (2009), which
includes a slightly different set of images than the previous release and also contains
the Matlab code for evaluation of localization performance.

4www.robots.ox.ac.uk/~vgg/data/stickmen
5www.vision.ee.ethz.ch/~vferrari/datasets.html

www.robots.ox.ac.uk/~vgg/data/stickmen
www.vision.ee.ethz.ch/~vferrari/datasets.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Upper body pose estimation: Examples of pose estimation results
of our method on the “Buffy Stickmen” dataset (see text for details). Note that
color information is not used for detection.

(a) (b) (c) (d)

Figure 4.13: Upper body pose estimation: Several examples of the typical failure
cases of our method on the “Buffy Stickmen” dataset.

For both datasets the objective is to estimate configurations of torso, head, left
and right forearm, and left and right upper arm. This is challenging due to the
large variability of poses, varying, and loose fitting clothing, as well as strongly
varying illumination. For the “ETHZ PASCAL Stickmen” dataset the task is further
complicated by the varying quality of images, which are originating from diverse
sources including community photo collections.

Due to the complexity of the task, the previously proposed approaches (Eichner
and Ferrari, 2009; Ferrari et al., 2008, 2009a,b) use multiple stages to reduce the
search space of admissible poses. In particular Ferrari et al. (2008, 2009a) propose
to perform an additional automatic foreground/background separation step based
on ‘GrabCut’ (Rother et al., 2004). This approach is further extend in (Eichner
and Ferrari, 2009; Ferrari et al., 2009b) by introducing additional a-priori assump-
tions and learning dependencies between color distributions of body parts. In our
approach we directly estimate the pose from images without any additional search
space pruning. As pointed out before, one may think of the discriminative part
models we use as a form of pruning.
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Method Torso U. arm Forearm Head Total

Ferrari et al. (2008) − − − − 61.4

Ferrari et al. (2009b) − − − − 74.5

Eichner and Ferrari (2009) 98.7 82.8 59.8 97.9 80.3

Our part detectors (generic) 28.1 11.1 6.2 56.2 19.8

Our part detectors (front/back) 56.2 20.9 8.6 67.7 30.4

Our model (generic) 97.5 83.8 55.8 96.2 78.8

Our model (front/back) 97.5 92.7 59.6 95.7 83.1

Table 4.7: Upper body pose estimation: Comparison of body part detection
on the “Buffy Stickmen” dataset (numbers indicate the percentage of correctly
localized body parts). Following the evaluation procedure only correctly localized
people are taken into consideration. All experiments use the detector from (Ferrari
et al., 2008), which can localize 85.1% of the annotated people.

Method Torso U. arm Forearm Head Det. Rate Total

Detector of Ferrari et al. (2008)
and our model

97.5 81.7 51.7 96.6 85.1 76.8

Our model only 99.5 79.0 48.8 99.9 78.6 75.7

Table 4.8: Upper body pose estimation: Comparison of body part detection
rates on the “Buffy Stickmen” dataset using the upper-body detector of Ferrari
et al. (2008) for localization and our model only.

Method Torso U. arm Forearm Head Total

Eichner and Ferrari (2009) 97.2 73.8 41.5 88.1 69.3

Our model (front/back) 96.4 77.8 47.0 85.0 71.8

Table 4.9: Upper body pose estimation: Comparison of body part detection on
the “ETHZ PASCAL Stickmen” dataset (Eichner and Ferrari, 2009) (numbers
indicate the percentage of correctly localized parts). According to the evaluation
procedure only correctly localized people are taken into consideration. All experi-
ments use the detector of (Ferrari et al., 2008), which can localize 65.6% of annotated
people.

The authors of (Eichner and Ferrari, 2009; Ferrari et al., 2008, 2009a,b) report
quantitative pose estimation results for the single-frame detector (no temporal co-
herency) only on a subset of people that have been correctly localized with a weak
object detector used for prefiltering. This weak object detector is a HOG based
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upper body detector whose detections are made publicly available by the authors
along with the “Buffy Stickmen” and “ETHZ PASCAL Stickmen” datasets. In or-
der to facilitate comparison with previous work, our evaluation procedure on both
datasets is to start with the provided upper-body detections and to only estimate
the upper body pose in their neighborhood. Similarly to the authors of (Eichner
and Ferrari, 2009; Ferrari et al., 2008, 2009a,b) we also assume that all people in the
dataset have an upright pose and disregard all detections of head and upper body
at other orientations.

We consider two versions of our model: the same generic model as used for full-
body pose estimation in Sec. 4.4.3 for which we simply disregard lower-body parts,
and a specialized model (front/back model) that is trained on the subset of images
from episodes 3 and 4 of the Buffy dataset, which are not used for evaluation. Note
that this front/back model only differs in terms of which training data was used; no
other modifications were made. For the reference, we also report the performance
of the part detectors of both models.

Table 4.7 shows localization results for all 6 upper body parts, along with the
overall localization performance using the PCP measure, which was computed with
the official evaluation code distributed along with the “Buffy Stickmen” dataset.
Our method significantly outperforms the approach of (Ferrari et al., 2008) (78.8
vs. 61.4 PCP) and performs slightly better than (Ferrari et al., 2009b), even when
using a fully generic model. Yet in contrast to (Ferrari et al., 2008), we do not
require separate foreground/background segmentation or use color features. The
best result is obtained with our model trained on front/back poses, which improves
the performance by 5 PCP compared to the fully generic model (83.1 vs. 78.8 PCP).

It is also noteworthy that the part detectors alone, while powerful, do not perform
well on this dataset, especially those of the arms. This is the case even if part
detectors are trained specifically on front/back views, although in this case the
performance improves significantly (19.8 PCP for generic detectors vs. 30.4 PCP for
front/back detectors). On one hand, this illustrates the difficulty of the dataset, and
on the other hand it demonstrates the importance of capturing the spatial relations
between body parts, which for some of the body parts can improve localization by
a factor of ten.

Tab. 4.8 compares part localization performance of our model with and without
using the HOG based upper body detector of (Ferrari et al., 2008). In this exper-
iment we are using our model with a generic prior and generic part detectors. In
order to handle the case of multiple people being present in the image we proceed
by first computing the marginal distribution of the torso and subsequently estimate
the part configuration for each of its modes. The number of potential torso hypothe-
ses is reduced by performing non-maximum suppression. The results show that our
model can be successfully used in standalone mode, although the combination with
the HOG detector leads to a slight improvement in part localization (76.8% for the
combined approach vs. 75.7% for our model alone). The HOG detector manages to
find the upper body in 85.1% of the frames, compared to 78.6% for our model. This
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Figure 4.14: Comparison of part localization performance on “Buffy Stickmen”
(top) and “ETHZ PASCAL Stickmen” (bottom) datasets.

is due to the fact that our model was trained on a more general training set. The
main advantage of the combination with the HOG detector is certainly efficiency.

The official criteria for measuring PCP require the correct part localization
threshold to be set to 0.5, which is rather forgiving to part localization errors. As
has been recently proposed Eichner and Ferrari (2009), a better understanding of
the performance of different methods is obtained by evaluating PCP for various lo-
calization thresholds and combining these results in a PCP-threshold plot. Fig. 4.14
shows the performance of different versions of our method, as well the PCP-threshold
plots made publicly available by the authors of (Eichner and Ferrari, 2009; Ferrari
et al., 2009b, 2008). Similarly to the numbers presented in Tab. 4.7, the curves are
obtained using the official evaluation routine supplied with the “Buffy Stickmen”
dataset. Note that while all considered methods except (Ferrari et al., 2008) per-
form comparably at the standard threshold of 0.5, our approach turns out to be
more precise at pinpointing the exact configuration of body parts, which results in
a much higher PCP for smaller thresholds.

Tab. 4.9 and Fig. 4.14 show the performance of our approach on the “ETHZ
PASCAL Stickmen” dataset. The presented results are obtained with our model in
which both prior and part detectors were trained on images from episodes 3 and
4 of “Buffy Stickmen”. The results on the “ETHZ PASCAL Stickmen” and “Buffy
Stickmen”datasets are consistent, with our model showing a slight improvement over
the best published results of Eichner and Ferrari (2009). Interestingly, compared to
this approach our model is able to better localize especially those body parts that
are also hardest to find. For example on “ETHZ PASCAL Stickmen” we are able to
localize the right forearm in 48% of the cases, which is in contrast to 41.5% for the
approach of Eichner and Ferrari (2009). Note, that the differences in PCP between
Tab. 4.9 and results published in (Eichner and Ferrari, 2009) are due to changes in
the official evaluation procedure made after the publication of (Eichner and Ferrari,
2009).

Fig. 4.12 shows examples of estimated upper-body configurations, which demon-
strate the effectiveness of our method even for difficult poses including self-occlusions
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(e.g., Fig. 4.12 (g, h)). On the Fig. 4.13 we also show some typical failure cases that
are often due to incorrect scale estimation by the HOG upper body detector pro-
vided along with the dataset (c.f. Fig. 4.12 (b)) and failures of the part detector
(Fig. 4.12 (a)). Since we assume a constant size of the object parts, our method is
limited in how much foreshortening can be tolerated (Fig. 4.12 (c, d)).

4.4.3 Full body pose estimation

Finally, we evaluate our model on a full body pose estimation task and compare to
the iterative image parsing (IIP) method of Ramanan (2006) and to the approach of
Johnson and Everingham (2009). Both methods use a spatial model similar to ours,
but approach appearance modeling somewhat differently. Note that IIP is the same
algorithm that is used at the pose estimation stage in (Eichner and Ferrari, 2009;
Ferrari et al., 2008, 2009b). In this comparison we use the publicly available multi-
view and multi-articulation People dataset from (Ramanan, 2006), which contains
people engaged in a wide variety of activities ranging from simple standing and
walking to dancing and performing acrobatic exercises. The difficulty of the task is
further increased by the limited training set of only 100 images, which only scarcely
capture the variations in appearance and poses present in the test set. We evaluate
the part localization performance using the same body part localization criteria as
proposed in (Ferrari et al., 2008) and used in Sec. 4.4.2. The iterative image parsing
results are obtained using the implementation of Ramanan (2006). Quantitative
results are shown in Tab. 4.10.

Our findings show significant performance gains: The localization results of our
full model surpass those of Ramanan (2006) by more than a factor of 2 (60.1%
vs. 27.2% accuracy). The localization performance of all body parts is significantly
improved, up to a factor of 3. Note that there is a large variability in localization
performance across body parts. The part that is localized best is the torso (84.9
PCP), the most difficult parts are the forearms (35.2 PCP). The low performance on
forearms is perhaps due to their small image extent and frequent occlusion of these
body parts, but also due to the complex spatial distribution of these parts that is
not captured well by the Gaussian part relationships.

It is interesting to note that our head detector alone (i.e., without any kinematic
model) has a better localization performance for the head than the full model of
Ramanan (2006). This clearly demonstrates the importance of powerful part detec-
tors for obtaining good overall performance. The improvements in performance of
our full model over the results published in Andriluka et al. (2009) are considerable,
in particular for the lower leg parts, where the localization performance improved
by more than 11%. On one hand, this is due to a finer discretization step for the
part configurations; on the other hand, the model benefits from repulsive factors as
described in Sec. 4.3.2.

Tab. 4.10 also shows the performance of our method when the boosted part de-
tectors are replaced with discriminatively trained edge templates used in (Ramanan,
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Method Torso U. leg L. leg U. arm Forearm Head Total

IIP (Ramanan, 2006),
1st parse (edge
features only)

39.5 20.7 20.7 12.6 11.6 21.4 19.2

IIP (Ramanan, 2006),
2nd parse (edge +

color feat.)
52.1 30.9 29.0 17.5 13.6 37.5 27.2

HOG+Segmentation
(Johnson and

Everingham, 2009)
77.6 61.5 54.9 53.2 39.2 68.8 56.4

Our part detectors
only

29.7 12.3 18.5 3.6 4.3 40.9 14.8

Our model, edge
features from

(Ramanan, 2006)
63.4 48.0 37.8 26.8 20.4 45.3 37.5

Andriluka et al.
CVPR’09 (Andriluka

et al., 2009)
81.4 63.1 55.1 47.5 31.6 75.6 55.2

Our model (1 px.,
7.5◦, repulsive fact.)

84.9 69.8 62.9 50.2 35.2 79.5 60.1

Table 4.10: Full body pose estimation: Comparison of body part detection
rates and evaluation of different components of the model on the “People” dataset.
Numbers indicate the percentage of correctly localized parts. The total number of
part segments is 10× 205 = 2050.

2006). For this experiment we extracted the responses of the part templates using
the author’s code (Ramanan, 2006) and fitted sigmoid functions to the foreground
and background responses of each part template in order to make them compa-
rable with one another. The average part localization rate in this experiment is
37.5%6, which is significantly better than the results of iterative image parsing (IIP)
(Ramanan, 2006), even though the same edge template features are used. We at-
tribute this to the different representation of the part relationships in our kinematic
model. The performance of the full model is still significantly better (60.1%), which
again shows that the boosted part detectors contribute substantially to the overall
performance.

Fig. 4.15 shows examples of estimated poses from the “People” dataset. For each
image we also show the marginal posterior distributions for each part and give the
number of correctly localized body parts. Note that the posteriors of our method
often have strong peaks at the correct part configuration, while the posteriors of IIP

6Results without sigmoid fitting are considerably worse.
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Figure 4.15: Comparison of full body pose estimation results between our approach
(top) and (Ramanan, 2006) (bottom) on the“People”dataset. The numbers on the
left of each image indicate how many of the 10 body parts were correctly localized.

appear to be flat along the limbs. It appears that the IIP method works well in rel-
atively uncluttered images (e.g., Fig. 4.15 (c, h)); nonetheless, even in those scenes,
we often localize more parts correctly. In strongly cluttered scenes (e.g., Fig. 4.15 (f,
g)), our method seems to have a clear advantage in recovering the pose. This may be
attributed to the fact that for such images the image parsing approach has difficulties
building up appropriate appearance models during the initial parse. The line tem-
plates used in the initial parse may also be misguided by strong edges (Fig. 4.15 (a)),
which our method handles more gracefully. On the Fig. 4.16 we show example of
images for which both methods failed to estimate the poses correctly (i.e., less then
7 body parts where found). These failures are often due to complex poses that are
not captured well by the Gaussian prior on part configurations (e.g., Fig. 4.16 (a, c,
d, f)) and occlusion of body parts (e.g., Fig. 4.16 (c)). Also note that even in cases
when several body parts were not correctly localized, the posterior distribution often
still has a mode at the correct part location (e.g., Fig. 4.16 (b,e)).
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Figure 4.16: Several examples of difficult images from “People” dataset, on which
neither our (top) nor the approach from (Ramanan, 2006) (bottom) was able to
estimate more then 6 body parts correctly. The numbers on the left of each image
indicate how many of the 10 body parts were correctly localized.

4.5 Conclusion

In this chapter we proposed a generic model for people detection and articulated
pose estimation. We demonstrated the generality of our approach on several recently
proposed datasets, where it consistently outperformed other approaches, which are
often designed specifically for one of these tasks only. Despite that, our model is
surprisingly simple. We attribute these excellent results to a powerful combination of
two components: A strong discriminatively trained appearance model and a flexible
kinematic tree prior on the configurations of body parts. In order to facilitate future
comparison with our model we make the source code of our implementation available
on our website7.

Future work may consider our approach in a variety of ways. Currently, we do not
make use of color information and do not model relationships between body parts
beyond kinematic and repulsive constraints. We expect that the incorporation of
additional constraints between body parts, extension of our approach with occlusion
reasoning (c.f. (Sigal and Black, 2006b)), and modelling of body part foreshortening
will further improve the performance.

The approach proposed in this chapter recovers 2D body configurations of people
in the image coordinates, without reasoning about the position and orientation of
parts in 3D, and relies on 2D body model. Such 2D estimates are often seen as
prerequisite for recovery of 3D human poses and body shape (Guan et al., 2009; Lee

7http://www.d2.mpi-inf.mpg.de/code

http://www.d2.mpi-inf.mpg.de/code
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and Chen, 1985; Taylor, 2000). These algorithms typically require very accurate
estimation of 2D body poses, which are currently possible with our approach only
for images with moderate amounts of clutter, occlusion and foreshortening. Fur-
thermore, our approach does not make distinction between left and right limbs of
the body, which are mapped to the same model parts.

Nonetheless, even such, at times ambiguous 2D estimates, contain much infor-
mation about the underlying 3D body pose. As we show in Chapter 5, we can use
them to define likelihood of 3D poses that when combined with dynamical priors on
people motions allows us to estimate poses of people in 3D.





5
Monocular 3D Pose Estimation
and Tracking by Detection

You will notice that in three dimensions the
situation can be much more complicated than in two.

Richard Feynman, from Six Not-So-Easy Pieces

In Chapter 3 we introduced an approach to detection, tracking and pose estima-
tion of people in crowded street scenes. In that approach, we relied on a part-based
people detector in order obtain initial tracking hypotheses consistent over several
subsequent frames. In the second step these hypotheses, denoted as tracklets, were
refined using the learned model of body dynamics. Finally tracking over longer du-
rations was performed by finding sequences of the refined hypotheses consistent in
motion, appearance and people poses. In our approach, individual tracklets served
as data association hypotheses linking detections in adjacent frames as potentially
belonging to the same person. For each tracklet we could rely on evidence from
multiple frames in order to to obtain more details about each hypothesis, such as
body pose and appearance of the body parts. This detailed information was used to
perform data association, which resulted in more reliable tracking despite long-term
occlusions.

However, the approach in Chapter 3 was limited to 2D pose estimation, and relied
on the assumption that people appear in the images in lateral pose. The applicability
to other viewpoints was limited by our person detector, which was tuned to detect
people in side views. In addition, our initialization and pose estimation procedure
also relied on knowledge of the viewpoint and benefited from the fact that body
poses of walking people seen from the side exhibit relatively little foreshortening of
the body parts.

In this chapter we describe our approach to 3D human pose estimation and
multi-person tracking. Here, in addition to data association, we also have to deal
with depth ambiguities, which were avoided in Chapter 3. Here, we proceed by
combining 2D evidence into tracklets, and rely on them to estimate viewpoints of
people before actually performing 3D pose inference. The viewpoint estimation

79
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Figure 5.1: Example results: 3D tracking in a challenging scene.

is robust, because it combines evidence from all frames of the tracklet. Our 3D
pose estimation procedure is different from many previous approaches in that we
do not assume conditional independence of 2D image evidence given 3D poses in
each frame. Rather, we use these dependencies to define a likelihood function for
3D poses, which has fewer local optima than a formulation in which single-frame
evidence is assumed to be independent. In this chapter we also rely on our people
detection and pose estimation techniques described in Chapter 4, which we use to
detect people and estimate their viewpoints. Jointly these algorithmic and technical
improvements allow us to extend the approach of Chapter 3 to tracking and pose
estimation of people seen from arbitrary viewpoints in complex street scenes with
multiple people, who often partially or fully occlude each other.

5.1 Introduction

In this chapter we addresses the challenging problem of 3D pose estimation and
tracking of multiple people in cluttered scenes using a monocular, potentially mov-
ing camera. This is an important problem with many applications including video
indexing, automotive safety, or surveillance. There are multiple challenges that con-
tribute to the difficulty of this problem and need to be addressed simultaneously.
Probably the most important challenge in articulated 3D tracking is the inherent
ambiguity of 3D pose from monocular image evidence. This is particularly true for
cluttered real-world scenes with multiple people that are often partially or even fully
occluded for longer periods of time. Another important challenge, even for 2D pose
recovery, is the complexity of human articulation and appearance. Additionally,
complex and dynamically changing backgrounds of realistic scenes complicate data
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Figure 5.2: Visalization of the 3D pose likelihoods for two example images from the
Human Eva II dataset. The x-axis of each plot corresponds to the viewpoint of the
person with respect to the camera, and the y-axis corresponds to the position of
the pose within the walking cycle. The top two plots correspond to the likelihood
based only on the estimated 2D projections of the body parts, whereas the two plots
along the bottom visualize the likelihood obtained by adding viewpoint estimates.
In each case, the local maxima of the likelihood are denoted by circles, and the
green circle denotes the local maxima corresponding to the correct solution. Note
that the likelihood shown at the bottom, which combines both 2D projections and
viewpoint estimates has significantly fewer strong local maxima corresponding to
incorrect combination of pose and viewpoint, creating an easier search space.

association across multiple frames.

Our goal in this chapter is to contribute a sound Bayesian formulation to address
this challenging problem. To that end we build on some of the most powerful
approaches proposed for people detection and tracking in the literature. In three
successive stages we accumulate the available 2D image evidence to enable robust
3D pose recovery.

Overview of the approach. Ultimately, our goal is to estimate the 3D pose
Qm of each person in all frames m of a sequence of length M , given the image
evidence E1:M in all frames. To that end, we define a posterior distribution over
pose parameters given the evidence:

p(Q1:M |E1:M) ∝ p(E1:M |Q1:M)p(Q1:M). (5.1)
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Here, Q1:M denotes the 3D pose parameters over the entire sequence. Clearly, a key
difficulty is that the posterior in Eq. 5.1 has many local optima as the estimation of
3D poses is highly ambiguous given monocular images.

For example, the top row of Fig. 5.2 illustrates the likelihood of 3D pose param-
eters for the full range of viewpoints and phases of the walking cycle. Notice that
for the image shown in the top-left, the 2D evidence provides sufficient constraints
on pose and viewpoint, and the likelihood has only few local maxima. However, for
the image in the top-right, a large portion of the parameter space has high likeli-
hood, and there exist multiple local maxima which do not correspond to the correct
pose. By extending 2D evidence with additional information, such as the viewpoint
of the person, we can down-weight many of the incorrect local maxima, obtaining
likelihood function shown in the bottom row of Fig. 5.2. However, reliable viewpoint
estimates are difficult to obtain directly from single frames. In order to address this
problem we propose a new three-stage approach, in which we sequentially reduce
the ambiguity in 3D pose recovery.

In our approach the evidence in each frame is represented by the estimate of
the person’s 2D viewpoint w.r.t. the camera and the posterior distribution of the
2D positions and orientations of body parts. To estimate these from single frames,
the first stage (Sec. 5.2) builds on a recently proposed people detection and pose
estimation framework based on discriminative part detectors (Andriluka et al., 2009).

To accumulate further 2D image evidence, the second stage (Sec. 5.3) extracts
people tracklets from a small number of consecutive frames using a 2D-tracking-by-
detection approach. Here, the output of the first stage is refined in the sense that
we obtain more reliable 2D detections of the people’s body parts as well as more
robust viewpoint estimates.

The third stage (Sec. 5.4) then uses the image evidence accumulated in the previ-
ous two stages to recover 3D pose. As described later, we model the temporal prior
p(Q1:M) over 3D poses as a hierarchical Gaussian process latent variable model (hG-
PLVM) (Lawrence and Moore, 2007). We combine this with a hidden Markov model
(HMM) that allows to extend the people-tracklets, which cover only a small num-
ber of frames at a time, to possibly longer 3D people-tracks. Note that our 3D
model is assumed to generate the bottom-up evidence from 2D body models and
thus constitutes a hybrid generative/discriminative approach (c.f. (Tu et al., 2005)).

The main contribution of the work described in this chapter is a novel approach
to human pose estimation, which combines 2D position, pose and viewpoint esti-
mates into an evidence model for 3D tracking with a 3D motion prior, and is able
to accurately estimate 3D poses of multiple walking people from monocular images
in realistic street environments. The second contribution, which serves as a building
block for 3D pose estimation, is a new pedestrian detection approach based on a
combination of multiple part-based models. While the power of part-based models
for people detection has already been demonstrated (e.g., Andriluka et al. (2009)),
here we show that combining multiple part-based models leads to significant perfor-
mance gains, and while improving over the state-of-the art in detection, also allows
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to estimate viewpoints of people in monocular images.

5.2 Multiview People Detection in Single Frames

2D people detection and pose estimation serves as one of our key building blocks
for 3D pose estimation and tracking. Our approach is driven by three major goals:
(1) We want to take advantage of the recent developments in 2D people detection
and pose estimation to define robust appearance models for 3D pose estimation
and tracking; (2) we aim to reduce the search space of possible 3D poses by taking
advantage of inferred 2D poses; and (3) we want to extract the viewpoint from
which people are visible to reduce the inherent 2D-to-3D ambiguity. To that end
we build on and extend our 2D people detection and pose estimation approach from
(Andriluka et al., 2009).

5.2.1 Basic pictorial structures model

Pictorial structures (Felzenszwalb and Huttenlocher, 2005) represent objects, such
as people, as a flexible configuration of N different parts Lm = {lm0, lm1, . . . , lmN}.
m denotes the current frame of the sequence. The state of part i is given by
lmi = {xmi, ymi, θmi, smi}, where xmi and ymi denote its image position, θmi the
absolute orientation, and smi the part scale. The posterior probability of the 2D
part configuration Lm given the single frame image evidence Dm is given as

p(Lm|Dm) ∝ p(Dm|Lm)p(Lm). (5.2)

The prior on body configurations p(Lm) has a tree structure and represents the
kinematic dependencies between body parts. It factorizes into a unary term for the
root part (here, the torso) and pairwise terms along the kinematic chains:

p(Lm) = p(lm0)
∏

(i,j)∈K

p(lmi|lmj), (5.3)

where K is the set of edges representing kinematic relationships between parts.
p(lm0) is assumed to be uniform, and the pairwise terms are taken to be Gaussian
in the transformed space of the joints between the adjacent parts (Andriluka et al.,
2009; Felzenszwalb and Huttenlocher, 2005). The likelihood term is assumed to
factorize into a product of individual part likelihoods

p(Dm|Lm) =
N∏
i=0

p(dmi|lmi). (5.4)

To define the part likelihood, we rely on the boosted part detectors from (Andriluka
et al., 2009), which use the truncated output of an AdaBoost classifier (Freund and
Schapire, 1997) and a dense shape context representation (Belongie et al., 2000;
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.3: Training samples shown for each viewpoint: (a) right, (b) right-back, (c)
back, (d) left-back, (e) left, (f) left-front, (g) front, (h) right-front.

Mikolajczyk and Schmid, 2005). Our model is composed of 8 body parts: left/right
lower and upper legs, torso, head and left/right upper and lower arms (later sideview
detectors also use left/right feet for better performance).

Apart from its excellent performance in complex real world scenes (Andriluka
et al., 2009; Eichner and Ferrari, 2009), the pictorial structures model also has the
advantage that inference is both optimal and efficient due to the tree structure of the
model. We perform sum-product belief propagation to compute the marginal poste-
riors of individual body parts, which can be computed efficiently using convolutions
(Felzenszwalb and Huttenlocher, 2005).

Data and evaluation. While the detector from (Andriluka et al., 2009) is in prin-
ciple capable of detecting people from arbitrary views, its detection performance has
only been evaluated on side views. To evaluate its suitability for our multiview set-
ting, we collected a dataset of 1486 images for training, 248 for validation, and
248 for testing, which we carefully selected so that sufficiently many people are
visible from all viewpoints. In addition to the persons’ bounding boxes, we also
annotated the viewpoint of all people in our dataset by assuming 8 evenly spaced
viewpoints, each 45 degrees apart from each other (front/back, left/right, and di-
agonal front/back left/right). Fig. 5.3 shows example images from our training set,
one for each viewpoint.

As expected and can be seen in Fig. 5.5(a), the detector trained on side-views as
in (Andriluka et al., 2009) shows only modest performance levels on our multiview
dataset. By retraining the model on our multiview training set we obtain a substan-
tial performance gain, but still do not achieve the performance levels of monolithic,
discriminative HOG-based detectors (Wojek et al., 2009) or HOG-based detectors
with parts (Felzenszwalb et al., 2008) (see Fig. 5.5(b)). However, since we not only
need to detect people, but also estimate their 2D pose, such monolithic or coarse
part-based detectors are not appropriate for our task.

5.2.2 Multiview Extensions

To address this shortcoming, we develop an extended multiview detector that allows
2D pose estimation as well as viewpoint estimation. We train 8 viewpoint-specific
detectors using our viewpoint-annotated multiview data. These viewpoint-specific
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Figure 5.4: Calibrated output of the 8 viewpoint classifiers.

Right Right- Back Left- Left Left- Front Right-
% Back Back Front Front Average

Max 53.7 35.5 45.7 22.6 37.9 8.6 40.0 8.3 31.1

SVM 72.6 12.7 48.6 12.3 55.7 44.5 70.4 16.2 42.2

SVM-adj 71.4 22.3 29.5 18.0 84.7 18.1 50.7 29.2 35.4

Table 5.1: Viewpoint estimation on the “MultiviewPeople” dataset. The task is to
classify one of 8 viewpoints (chance level 12.5%).

detectors not only have the advantage that their kinematic prior is specific to each
viewpoint, but also that part detectors are tuned to each view. We enrich this set
of detectors with one generic detector trained on all views, as well as two side-view
detectors as in (Andriluka et al., 2009) that additionally contain feet (which improves
performance).

We explored two strategies for combining the output of this bank of detectors: (1)
We simply add up the log-posterior of a person being at a particular image location
as determined by the different detectors; and (2) we train a linear SVM using the
11-dimensional vector of the mean/variance-normalized detector outputs as features.
The SVM detector was trained on the validation set of 248 images. Fig. 5.5(a) shows
that the simple additive combination of viewpoint-specific detectors improved over
the detection performance from each individual viewpoint-specific detector. It also
outperforms the approach from (Andriluka et al., 2009).

Interestingly, the new SVM-based detector not only substantially improves per-
formance, but also outperforms the current state-of-the-art in multiview people de-
tection (Felzenszwalb et al., 2008; Wojek et al., 2009). As is shown in Fig. 5.5(b),
the performance improves even further when we extend our bank of detectors with
the HoG-based detector from (Wojek et al., 2009). While this is not the main focus
of our work, this clearly shows the power of the first stage of our approach. Several
example detections in Fig. 5.5(c) demonstrate the benefits of combining viewpoint-
specific detectors.

Viewpoint estimation. Next we aim to estimate the person’s viewpoints, since
such viewpoint estimates allow to significantly reduce the ambiguity in 3D pose. To
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(a) (b)

(c)

Figure 5.5: Comparison between (a) viewpoint-specific models and combined model,
and (b) comparison to state-of-the-art on the “MultiviewPeople” dataset; (c) sample
detections obtained with the side-view detector of Andriluka et al. (2009) (top),
the generic detector trained on our multiview dataset (middle), and the proposed
detector combining the output of viewpoint-specific detectors with a linear SVM
(bottom).

that end, we rely on the bank of viewpoint-specific detectors from above, and train
8 viewpoint classifiers, linear SVMs, on the detector outputs of the validation set.
We consider two training and evaluation strategies: (SVM ) Only training examples
from one of the viewpoints are used as positive examples, the remainder as negative
ones; and (SVM-adj ), where we group viewpoints into triplets of adjacent ones and
train separate classifiers for each such triplet. As a baseline approach (Max ), we
estimate the viewpoint by taking the maximum over the outputs of the 8 viewpoint-
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Figure 5.6: People detection based on single frames (top) and tracklets found by our
2D tracking algorithm; Different tracklets are identified by color and the estimated
viewpoints are indicated with two letters (bottom). Note that several false positives
in the top row are filtered out and additional – often partially occluded – detections
are filled in (e.g., on the left side of the leftmost image).

specific detectors. Results are shown in Tab. 5.1. SVM improves over the baseline in
case when we require exact recognition of viewpoint by approx. 11%, but SVM-adj
also performs well. In addition, when we also consider the two adjacent viewpoints
as being correct, SVM obtains an average performance of 70.0% and SVM-adj of
76.2%. This shows that SVM-adj more gracefully degrades across viewpoints, which
is why we adopt it in the remainder.

Since the scores of the viewpoint classifiers are not directly comparable with
each other, we calibrate them by computing the posterior of the correct label given
the classifier score, which maps the scores to the unit interval. The posterior is
computed via Bayes’ rule from the distributions of classifier scores on the positive
and negative examples. We assume these distributions to be Gaussian, and estimate
their parameters from classifier scores on the validation set.

Fig. 5.4 shows calibrated outputs of all 8 classifiers computed for a sequence
of 40 frames in which the person first appears from the “right” and then from the
“right-back” viewpoint. The correct viewpoint is the most probable for most of the
sequence, and failures in estimation often correspond to adjacent viewpoints.

5.3 2D Tracking and Viewpoint Estimation

As discussed in the introduction, our goal is to accumulate all available 2D image
evidence prior to the third 3D tracking stage in order to reduce the ambiguity of 2D-
to-3D lifting as much as possible. While the person detector described in the previous
section is capable of estimating 2D positions of body parts and viewpoints of people
from single frames, the second stage (described here) aims to improve these estimates
by 2D-tracking-by-detection (Andriluka et al., 2008; Wu and Nevatia, 2007).

To exploit temporal coherency already in 2D, we extract short tracklets of people.
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This, on the one hand, improves the robustness of estimates for 2D positions, scale
and viewpoint of each person, since they are jointly estimated over an entire tracklet.
Improved body localization in turn aids 2D pose estimation. On the other hand, it
also allows to perform early data association. This is important for sequences with
multiple people, where we can associate “anonymous” single frame hypotheses with
the track of a specific person.

Tracklet extraction. From the first stage of our approach we obtain a set of Nm

potentially overlapping bounding box hypotheses Hm = [hm1, . . . ,hmNm ] for each
frame m of the sequence, where each hypothesis hmi = {hxmi, h

y
mi, h

s
mi} corresponds

to a bounding box at particular image position and scale. In order to obtain a set of
tracklets, we follow the HMM-based tracking procedure introduced in Chapter 3.3.3.
To that end we treat the person hypotheses in each frame as states and find state
subsequences that are consistent in position, scale and appearance by iteratively
applying Viterbi decoding. The emission probabilities for each state are derived
from the detection score. The transition probabilities between states hmi and hm−1,j
are modeled using first-order Gaussian dynamics and appearance compatibility:

ptrans(hmi,hm−1,j) = N (hmi|hm−1,j,Σpos) ·
N (dapp(hmi,hm−1,j)|0, σ2

app).

where Σpos = diag(σ2
x, σ

2
y, σ

2
s), and dapp(hmi,hm−1,j) is the Euclidean distance be-

tween RGB color histograms computed for the bounding rectangle of each hypoth-
esis. We set σx = σy = 5, σs = 0.1 and σapp = 0.05.

Viewpoint tracking. Finally, for each of the tracklets we estimate the viewpoint
sequence ω1:N = (ω1, . . . , ωN), again using a simple HMM and Viterbi decoding.
We consider the 8 discrete viewpoints as states, the viewpoint classifiers described
in Sec. 5.2 as unary evidence, and Gaussian transition probabilities that enforce
similar subsequent viewpoints to reflect that people tend to turn slowly.

Evaluation. Fig. 5.6 shows an example of a short subsequence in which we com-
pare the detection results of the single-frame 2D detector with the extracted track-
lets. Note how tracking helps to remove the spurious false positive detections in
the background, and corrects failures in scale estimation, which would otherwise
hinder correct 2D-to-3D lifting. In Fig. 5.4 we visualize the single frame prediction
scores for each viewpoint for the tracklet corresponding to the person with index 22
on Fig. 5.6. Note that while viewpoint estimation from single frames is reasonably
robust, it can still fail at times (the correct viewpoint is “right” for frames 4 to 30
and “right-back” for frames 31 to 40). The tracklet-based viewpoint estimation, in
contrast, yields the correct viewpoint for the entire 40 frame sequence. Finally, as
we demonstrate in Fig. 5.6, the tracklets also provide data association even in case
of realistic sequences with frequent full and partial occlusions.
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5.4 3D Pose Estimation

To estimate and track poses in 3D, we take the 2D tracklets extracted in the previous
stage and lift the 2D pose estimated for each frame into 3D (c.f. Sigal and Black
(2006c)), which is done with the help of a set of 3D exemplars (Mori and Malik, 2006;
Shakhnarovich et al., 2003). Projections of the exemplars are first evaluated under
the 2D body part posteriors, and the exemplar with the most probable projection
is chosen as an initial 3D pose. This initial pose is propagated to all frames of
the tracklet using the known temporal ordering on the exemplar set. Note that
this yields multiple initializations for 3D pose sequences, one for each frame of the
tracklet. This 2D-to-3D lifting procedure is robust, because it is based on reliable
2D pose posteriors, and detections and viewpoint estimates from the 2D tracklets.
Starting from these initial pose sequences, the actual pose estimation and tracking is
done in a Bayesian framework by maximizing the posterior defined in Eq. (5.1), for
which they serve as powerful initializations. The 3D pose is parametrized as Qm =
{qm, φm,hm}, where qm denotes the parameters of body joints, φm the rotation of
the body in world coordinates, and hm = {hxm, hym, hscalem } the position and scale of
the person projected to the image. The 3D pose is represented using a kinematic
tree with P = 10 flexible joints, in which each joint has 2 degrees of freedom. A
configuration example is shown in Fig. 5.7(a).

The evidence at frame m is given by the Em = {Dm, ωm}, and consists of the
single frame image evidence Dm and the 2D viewpoint estimate ωm obtained from
the entire tracklet.

We assume conditional independence of the evidence in each frame given the
3D pose parameters Qm. The likelihood in Eq. 5.1 thus factorizes into single-frame
likelihoods:

p(E1:M |Q1:M) =
M∏
m=1

p(Em|Qm). (5.5)

We further assume conditional independence of 2D viewpoint and image evidence
given the 3D pose, and define single frame likelihood as

p(Em|Qm) = p(ωm|Qm)p(Dm|Qm). (5.6)

Based on the estimated 2D viewpoint ωm, we model the viewpoint likelihood of
the 3D viewpoint φm as Gaussian centered at the rotation component of φm along
the y-axis:

p(ωm|Qm) = N (ωm|projy(φm), σ2
ω). (5.7)

We define the likelihood of the 3D pose p(Dm|Qm) with the help of the part posteriors
given by the 2D body model

p(Dm|Qm) =
N∏
n=1

p(projn(Qm)|Dm), (5.8)
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where projn(Qm) denotes the projection of the n-th 3D body part into the image.
While such a 3D likelihood is typically defined as the product of individual part
likelihoods similarly to Eq. 5.4, this leads to highly multimodal posteriors and dif-
ficult inference. By relying on 2D part posteriors instead, the 3D model is focused
on hypotheses for which there is sufficient 2D image evidence from previous stages.

To avoid expensive 3D likelihood computations, we represent each 2D part pos-
terior using a non-parametric representation. In particular, for each body part n
in frame m we find the J locations with the highest posterior probability Emn =
{(ljmn, wjmn), j = 1, . . . , J}, where ljmn ∈ R4 corresponds to the 2D location (image
position and orientation) and wjmn to the posterior density at this location. Given
that, we approximate the 2D part posterior as a kernel density estimate with Gaus-
sian kernel κ:

p(projn(Qm)|Dm) ≈
∑
j

wjmnκ(ljmn, projn(Qm)). (5.9)

Dynamical model. In our approach we represent the temporal prior in Eq. 5.1
as the product of two terms:

p(Q1:M) = p(q1:M)p(h1:M), (5.10)

which correspond to priors on the parameters of 3D pose as well as image position
and scale. The prior on the person’s position and scale p(h1:M) is taken to be a
broad Gaussian and models smooth changes of both the scale of the person and its
position in the image.

We model the prior over the parameters of the 3D pose q1:M with a hierarchical
Gaussian process latent variable model (hGPLVM) (Lawrence and Moore, 2007).
We denote the M dimensional vector of the values of i-th pose parameter across all
frames as q1:M,i. In the hGPLVM each dimension of the original high-dimensional
pose is modelled as an independent Gaussian process defined over a shared low
dimensional latent space Z1:M :

p(q1:M |Z1:M) =
P∏
i=1

N (q1:M,i|0,Kz), (5.11)

where P is the number of parameters in our pose representation, Kz is a covariance
matrix of the elements of the shared latent space Z1:M defined by the output of the
covariance function k(zi, zj), which in our case is taken to be squared exponential.

The values of the shared latent space Z1:M are themselves treated as the outputs
of Gaussian processes with a one dimensional input, the time T1:M . Our implemen-
tation uses a dl = 2 dimensional shared latent space. Such a hierarchy of Gaussian
processes allows to effectively model both correlations between different dimensions
of the original input space and their dynamics.

MAP estimation. The hGPLVM prior requires two sets of auxiliary variables
Z1:M and T1:M , which need to be dealt with during maximum a-posteriori estimation.
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Figure 5.7: (a): Representation of the 3D pose in our model (parametrized joints
are marked with arrows). (b): Initial pose sequence after 2D-to-3D lifting (top) and
pose sequence after optimization of the 3D pose posterior (bottom).

Our strategy is to optimize Z only and keep the values of T fixed. This is possible
since the values of T roughly correspond to the person’s state within a walking cycle,
which can be reliably estimated using the 2D tracklets. The full posterior over 3D
pose parameters being maximized is given by:

p(Q1:M ,Z1:M |E1:M , T1:M) ∝ p(E1:M |Q1:M)·
p(q1:M |Z1:M)p(Z1:M |T1:M)p(h1:M). (5.12)

We optimize the posterior using scaled conjugate gradients and initializing the op-
timization using the lifted 3D poses.

5.4.1 3D pose estimation for longer sequences

The MAP estimation approach just described is only tractable if the number of
frames M is sufficiently small. In order to estimate 3D poses in longer sequences we
apply a strategy similar to the one used in (Andriluka et al., 2008): First we esti-
mate 3D poses in short (M = 10) overlapping subsequences of the longer sequence.
Since for each subsequence we initialize and locally optimize the posterior multiple
times, this leaves us with a large pool of 3D pose hypotheses for each of the frames,
from which we find the optimal sequence using a hidden Markov model and Viterbi
decoding. To that end we treat the 3D pose hypotheses in each frame as discrete
states with emission probabilities given by Eq. 5.6 and define transition probabilities
between states using the hGPLVM.

5.5 Experiments

We evaluate our model in two diverse scenarios. First, we show that our approach
improves the state-of-the-art in monocular human pose estimation on the standard
“HumanEva II” benchmark, for which ground truth poses are available. Addition-
ally, we evaluate our approach on two cluttered and complex street sequences with
multiple people including partial and full occlusions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: 3D pose estimation on the “TUD Stadtmitte” dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: 3D pose estimation on a sequence captured with a moving camera,
previously used in (Gammeter et al., 2008).

5.5.1 Evaluation on the “HumanEva II” dataset

In order to quantitatively evaluate the performance of our 3D pose estimation
method we use the “HumanEva II” dataset (Sigal and Black, 2006a), which pro-
vides synchronized images and motion capture data and is a standard evaluation
benchmark for 2D and 3D human pose estimation. On this dataset we compare to
(Rogez et al., 2008) as they obtain the best published results in a setting compara-
ble to ours: They estimate poses in monocular image sequences without background
subtraction, but rely on both appearance and temporal information.

For this experiment we train viewpoint specific models on the images of subjects
“S1”, “S2”, “S3” from the “HumanEva” dataset. We found that adding more training
data improves the performance of part detectors, especially for the lower and upper
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Figure 5.10: 3D pose estimation examples on HumanEva II for “Subject S2/Camera
C1” (top) and “Subject S2/Camera C2” (bottom).

Subj./Cam. 2D Mean (Std) (Rogez et al., 2008) 2D Mean (Std) 3D Mean (Std)

S2/C1 12.98(3.5) 10.49 (2.70) 107(15)

S2/C2 14.18(4.38) 10.72 (2.44) 101(19)

Table 5.2: Quantitative evaluation on the HumanEva II dataset (frames 1-350). We
report mean error and standard deviation of the relative 2D and 3D joint positions.
2D results are in pixels and 3D results are in millimeters.

arm body parts. Therefore, we extended the training data with the images from
the “People” (Ramanan, 2006) and “Buffy” (Ferrari et al., 2008) datasets. The set
of exemplars for 2D-to-3D lifting and the hGPLVM used to model the temporal
dynamics on the pose sequences were obtained using training data for subject “S3”
of the “HumanEva” dataset. As we show, despite the limited training data, this
prior enables pose estimation on the “HumanEva II” dataset as well as in realistic
street scenes.

Rogez et al. (2008) report pose estimation results for the first 350 frames of the
sequence containing subject “S2”, independently estimating poses for views obtained
from cameras “C1” and “C2”. Tab. 5.2 shows the mean error in the estimation of
2D and 3D joint locations, obtained using the official online evaluation tool. For
both sequences our results improve substantially over those reported by Rogez et al.
(2008). The improvement is especially large for the sequence taken with camera“C2”,
on which we obtain an average error of 10.72 pixels, compared to 14.18 pixels. We
have also evaluated the 3D pose estimation performance of our approach, obtaining
a mean error of 107 and 101 millimeters for cameras “C1” and “C2”. Fig. 5.10 shows
several examples of estimated poses obtained by our method on both sequences,
visualizing every 100-th frame. We attribute the better localization accuracy of our
method to the continuous optimization of 3D pose given the body part positions
rather than selecting one from a discrete set of exemplars as in (Rogez et al., 2008).
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5.5.2 3D pose estimation in street scenes

To evaluate our approach for a realistic street setting, we introduce the novel “TUD
Stadtmitte”’ dataset containing 200 consecutive frames taken in a typical pedestrian
area. Over the 200 frames of this sequence our 2D tracking algorithm obtained
25 2D people-tracks, none of which contained false positive detections. Fig. 5.8
shows example images evenly spaced throughout the sequence. For every track we
estimate the viewpoint of the person using exclusively our viewpoint classification
algorithm. We could easily integrate the direction of movement of the person into
the estimate, but this would limit the applicability of our method to the setting
with static cameras. Note that we are able to estimate 3D poses correctly over
a diverse range of viewpoints including those with significant depth ambiguity and
difficult imaging conditions. Note, for example, the people on the right side of image
Fig. 5.8(a) and the people in the middle of the image in Fig. 5.8(g).

Unfortunately we cannot report quantitative results on the 3D pose recovery for
this sequence, as obtaining ground truth is very difficult for such realistic image
sequences. However, the results are qualitatively close to those demonstrated by
our method on the “HumanEva II” dataset, suggesting that the obtainable quanti-
tative results would be comparable. Although our motion prior was trained on the
“HumanEva” dataset, it generalized well to the street setting. Interestingly, we are
also able to correctly estimate the pose of the person standing still, as is shown in
Fig. 5.8(c,d,e). Looking at typical failure cases, several incorrectly estimated poses
are due to incorrect scale estimation as in Fig. 5.8(a), partial occlusion Fig. 5.8(b,d),
or failure in viewpoint estimation (e.g., the rightmost person in Fig. 5.8(g)).

We also evaluated our approach on a sequence recorded by a moving camera
previously used in (Gammeter et al., 2008). Due to the high amount of background
clutter, low frame-rate and many people in near frontal views, this sequence presents
significant challenges for 3D pose estimation. Several examples of estimated 3D poses
are shown in Fig. 5.9(right). Note that even under such challenging conditions our
approach can track and estimate poses of people over a large number of frames, e.g.,
the rightmost person in Fig. 5.8(f,h). Also note that tracking and viewpoint esti-
mation produced correct results even in the presence of strong background clutter,
e.g., for the rightmost person in Fig. 5.8(b,c,d).

5.6 Conclusions

In this chapter we have presented a novel approach to monocular 3D human pose
estimation and tracking, which is able to recover poses of people in realistic street
conditions. The approach leverages recent advances in reliable 2D pose estimation
from monocular images, tracking-by-detection, and powerful modeling of 3D dy-
namics based on hierarchical Gaussian process latent variable models. This allows
to first accumulate the available 2D image evidence from which later 3D poses can
be reliably recovered and tracked. The approach has been evaluated quantitatively
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on the “HumanEva II” benchmark and improves the state-of-the-art in this setting.
We also showed excellent results on a challenging street sequence underlining the
applicability of the approach for 3D pose estimation and tracking of multiple people
in cluttered scenes using a monocular, potentially moving camera.





6
Vision Based Victim Detection
from Unmanned Aerial Vehicles

In this chapter we consider the task of people detection in images taken from on-
board camera of an unmanned aerial vehicle (UAV). This is an important task as its
solution would allow to quickly survey a disaster site from the air and find humans
needing help. This task is also extremely challenging as the large variability in
clothing and possible poses of humans combined with possible partial occlusions
create complex appearance patterns, which are hard to represent and detect well.

We proceed by evaluating various state-of-the-art visual people detection meth-
ods in the context of vision based victim detection from an UAV. The best perfor-
mance in our comparison was shown by our approach presented in Chapter 4, and by
the approach of Felzenszwalb et al. (2008), both of which rely on flexible part-based
representations. We discuss their strengths and weaknesses, and demonstrate that
by combining multiple detectors based on these approaches we can improve reliabil-
ity of the overall system. We also demonstrate that the detection performance can
be substantially improved by integrating the height and pitch information provided
by on-board sensors. Jointly these improvements allow us to significantly boost the
detection performance over the state of the art, which provides a substantial step
towards making autonomous victim detection for UAVs practical.

6.1 Introduction

Finding human victims in post-disaster scenarios is one of the primary goals of any
search and rescue (SAR) operation. Although significant progress has been made
in developing ground robots for SAR applications, most of these robots still lack
the mobility necessary for autonomous exploration of disaster sites. However, with
the emergence of lightweight and inexpensive unmanned aerial vehicles (UAVs) it
becomes possible to quickly survey a disaster site from the air in order to identify
humans needing help (Cooper and Goodrich, 2008; Green et al., 2005; Nordberg
et al., 2002).

In this chapter, we focus on victim detection from a UAV using an on-board
daylight camera as our main sensing device. We envision that the development

97
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Figure 6.1: Several examples of people detection obtained with our approach on
images captured from a quadrotor UAV.

of powerful vision-based victim detection methods will lead to a reduction in the
number (and weight) of required on-board sensors and result in cheaper, smaller,
and more power efficient UAVs. Additionally, robust vision-based detectors have
proven to be an important building block when designing human detection systems
based on multiple sensor modalities (Gate et al., 2009; Spinello et al., 2008).

Detection of people in images is a challenging problem. While significant progress
has been made in specialized areas such as pedestrian detection (Dollár, Wojek,
Schiele and Perona, 2009b), most approaches work best when people are fully visible
and appear in a limited range of poses such as standing or walking. The best
performing methods often use a monolithic representation of people, such as a HOG
descriptor (Dalal and Triggs, 2005), and discriminative classifiers. Models of this
type have recently been extended to incorporate motion (Dalal et al., 2006; Wojek
et al., 2009) and color (Villamizar et al., 2009) features. They have also been applied
to upper body detection (Ferrari et al., 2008), and have been integrated within larger
systems to enable obstacle detection in mobile environments (Ess et al., 2009).

However, models based on monolithic representations are unlikely to general-
ize well to complex scenarios encountered in search and rescue applications (Mur-
phy, 2004). In particular they are severely challenged by partial occlusions and
high variabilities in poses of people, which frequently occur in such data. Fig. 6.1
shows several sample images acquired from the on-board camera of our UAV1, which
demonstrate the complexity of people detection in the scenario considered in this
chapter: People are partially occluded and occur in a wide range of poses in an
environment, which is typically highly cluttered. Using a monolithic person repre-
sentation to detect characteristic full-body shapes is prone to fail in such a scenario.

A second type of people detection methods – called part-based models in the

1Shown detections correspond to the confidence level with equal precision and recall.
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following – proceeds by decomposing complex appearances of humans into multiple
components or parts (Andriluka et al., 2009; Bourdev and Malik, 2009; Felzenszwalb
et al., 2008). In (Andriluka et al., 2009) we combine strong discriminatively trained
body part detectors with a flexible body model based on the pictorial structures
framework, which allows to detect highly articulated people. The approach of Felzen-
szwalb et al. (2008) also builds on the pictorial structures framework, but introduces
a training procedure based on an unsupervised discovery of model parts, which are
automatically chosen to optimize detection performance. Bourdev and Malik (2009)
proposes to address the detection of articulated and partially occluded humans using
a large number of specialized part detectors that are trained to detect body regions
with characteristic appearances, which are also informative for the underlying 3D
body configuration. In contrast to the monolithic representations mentioned above,
these part-based models seem better suited to address the challenging problem of
victim detection from a UAV.

In this chapter we make the following contributions. First, we discuss several
state-of-the-art visual people detection methods, and evaluate them on a newly
recorded dataset of images taken from a UAV. This evaluation includes both meth-
ods based on monolithic and on part-based representations. In particular we consider
2 people detectors (Dalal and Triggs, 2005; Ferrari et al., 2008) based on monolithic
representations and 3 part-based detectors (Andriluka et al., 2009; Bourdev and Ma-
lik, 2009; Felzenszwalb et al., 2008). Second, after having identified the most suitable
approaches to people detection from a UAV, we propose to augment these detectors
with a prior distribution based on the pitch and height of the UAV measured by the
on-board sensors. We demonstrate that this prior significantly improves the perfor-
mance of people detectors and analyze reasons why not all detectors equally benefit
from this. The third contribution is that we demonstrate that the considered people
detectors are complementary, and that by combining them we can further improve
the detection performance.

The rest of this chapter is organized as follows. Sec. 6.2 describes the quadrotor
UAV used for data acquisition in our experiments. In Sec. 6.3 we introduce the
approaches to people detection that we consider for comparison in this chapter,
discuss their strengths and weaknesses, and describe our extensions. We present an
experimental evaluation of these people detectors and our extensions in Sec. 6.4, and
conclude and discuss future work in Sec. 6.5.

6.2 System Overview

The platform used for our experiments is a quadrotor helicopter developed at TU
Darmstadt (Fig. 6.2). These kinds of vehicles are able to take off and land verti-
cally and can hover at a fixed position, which motivates their application to search
and rescue missions (Hoffmann et al., 2007). The propulsion system using four in-
dependently controlled motors and propellers allows the carriage of comparatively
heavy payloads. Our quadrotor can carry up to 500g of cameras and other sensors
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Figure 6.2: Quadrotor platform used for the experiments.

and weighs 1200g including the controller system and batteries for an endurance of
approximately 20 minutes. With a diameter of 80cm it can be easily deployed in
outdoor missions as well as for indoor scenarios.

Due to the instability of a quadrotor, the vehicle’s attitude and velocity has to
be controlled permanently. Therefore it is equipped with a 3-axis inertial sensor
and magnetometer, a pressure sensor, a GPS receiver, and an ultrasonic ranger
to measure the distance to the ground. The sensor information is fused using an
extended Kalman filter running at 200 Hz deriving an integrated navigation solution
using the algorithm of Titterton and Weston (2004). The outputs of the filter are fed
to a cascaded PID controller to stabilize the attitude, height, velocity, and position of
the quadrotor. As the rotational direction of two adjacent drives differ, the moments
about all three axes and the total thrust can be controlled independently by simply
varying the speed of the individual motors.

The control system is divided into two subparts: a microcontroller board inter-
facing the analog and digital sensors and motors; and a commercial embedded PC
platform based on a current Intel Atom processor (Meyer and Strobel, 2010). The
onboard computer executes the navigation, flight control, high-level mission con-
trol and communication tasks using the OROCOS Real-Time Toolkit (Bruyninckx,
2001). It interfaces the sensor board using a real-time enabled ethernet link.

For image acquisition a Logitech QuickCam Pro9000 camera is mounted to the
quadrotor, which can transmit video images to the ground stations using the wireless
network. Additionally, up to five frames per second are stored on an onboard flash
media for after-mission analysis, including references to the available navigational
data. The intrinsic camera parameters are calibrated using a publicly available cali-
bration toolkit (Bouguet, 2010) and the extrinsic parameters relative to the ground
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plane are estimated using the height and attitude estimates provided by the UAV
integrated navigation solution.

6.3 Vision-based People Detection

Detection of people in images is a challenging problem and many approaches to
people detection have been proposed over the years. Approaches are often designed
with a specific subproblem in mind, such as detection of pedestrians in street scenes
(Dalal and Triggs, 2005), upper body detection (Ferrari et al., 2008), simultaneous
detection and pose estimation (Andriluka et al., 2009), or generic people detection
(Bourdev and Malik, 2009; Felzenszwalb et al., 2009).

One of the main contributions of this chapter is therefore to evaluate the ap-
plicability of these methods to search and rescue scenario and subsequently focus
on improving performance of the best performing methods. While the evaluation
is done in the context of victim detection from a UAV we believe that its results
are applicable to people detection from mobile robots in general. In addition, we
also demonstrate that in the case of a UAV we can further improve detection per-
formance by using on-board sensor measurements in order to impose a prior on the
scale of people in the image. In this section we briefly describe each of the considered
approaches, and present an experimental comparison in Sec. 6.4.

Monolithic models. One of the most popular and effective models for people
detection proposed to date is the histograms of oriented gradients (HOG) detector
(Dalal and Triggs, 2005). In this model, histograms of image gradients are calculated
and normalized in a local and overlapping block scheme and concatenated to a single
descriptor of a detection window, which is densely scanned over all scales and loca-
tions in a test image. We consider HOG a monolithic model because the evidence of
one detection window is encoded in a single descriptor, which is cast to a discrimina-
tive classifier (e.g., SVM), making a decision about presence or absence of the object
of interest. This pairing with a powerful, discriminative classifier enables high levels
of performance for object detection in cluttered scenes, e.g., pedestrian detection in
street scenes (Dollár, Wojek, Schiele and Perona, 2009b). HOG was shown to learn
a robust outer shape, which is shared by the positive training instances and delimits
positive from negative samples. The local, overlapping normalization scheme enables
robustness to illumination changes and to small variations in viewpoint. However,
in the presence of high variability in articulation and partial occlusion HOG often
fails because the model cannot recover from distorted monolithic descriptors. In our
evaluation we consider two variants of HOG-based methods. i) The first variant is
trained on full bodies of pedestrians. We make use of the implementation of our
colleagues2 (Wojek et al., 2009). ii) The second variant is trained on upper bodies
of people3 (Ferrari et al., 2008). Such monolithic approaches are a de-facto standard

2Project page: www.mis.tu-darmstadt.de/tud-brussels/
3Source code available at: www.robots.ox.ac.uk/~vgg/software/UpperBody/

www.mis.tu-darmstadt.de/tud-brussels/
www.robots.ox.ac.uk/~vgg/software/UpperBody/
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when it comes to detection of people in settings with relatively little pose variation.
However, it remains unclear, how these models generalize to the more challenging
search and rescue scenario.

Part-based models. Part-based detection gives the flexibility necessary to deal
with highly varying body poses. We consider three recently proposed part-based peo-
ple detection methods: discriminatively trained part based models (DPM)4 (Felzen-
szwalb et al., 2008), pictorial structures with discriminant part detectors (PS)5 (An-
driluka et al., 2009), and poselet based detection (PBD)6 (Bourdev and Malik, 2009).

Our PS detector is built on the pictorial structures framework introduced in
(Felzenszwalb and Huttenlocher, 2005). Here an object is represented as a flexible
configuration of parts where one such configuration is denoted by L = {l0, . . . , lN},
with li denoting the location of part i. In this generative formulation, the pos-
terior over part configurations L given image evidence E is obtained via Bayes’
rule: p(L|E) ∝ p(L)p(E|L). In order to enable efficient inference, PS employs a
tree-structured Gaussian prior on L, and assumes that the overall likelihood can be
decomposed into the product of individual part likelihoods. Under these assump-
tions the configuration posterior factorizes as:

p(L|E) ∝ p(l0) ·
N∏
i=0

p(E|li) ·
∏

(i,j)∈G

p(li|lj). (6.1)

Sum-product belief propagation is applied in order to compute the marginal
posterior of the torso, p(l0|E), which is then used to delimit the detection bounding
box. The detection results often account for multiple overlapping boxes that are
post-processed with non-maximum suppression keeping only the hypothesis with
the highest probability from significantly overlapping hypotheses.

The PS model employs body parts corresponding to upper and lower arms and
legs, torso and head, and requires examples with labeled parts for training. Part
likelihood terms p(E|li) are represented with discriminative part classifiers trained
with AdaBoost. The pairwise terms p(li|lj) are estimated with maximum likelihood
using the provided part labels.

The DPM model also relies on pictorial structures but differs in the prior imposed
on the body parts. Here, a star shape prior is used, where all body parts are
directly connected to the root part. Another difference is the interpretation of parts:
While PS relies on manually labeled annotations, DPM automatically discovers the
body parts that correspond to visually salient reoccurring structures in the training
data. The configuration of body parts that maximizes Eq. (6.1) is found with max-
product belief propagation. The entire model is trained in a purely discriminative
fashion using the max-margin formalism. The appearance of each body part and the

4Source code available at: people.cs.uchicago.edu/~pff/latent/
5Source code available at: www.d2.mpi-inf.mpg.de/code
6Source code available at: www.eecs.berkeley.edu/~lbourdev/poselets/

people.cs.uchicago.edu/~pff/latent/
www.d2.mpi-inf.mpg.de/code
www.eecs.berkeley.edu/~lbourdev/poselets/
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root part are trained with SVMs, while a deformation cost of part constellations is
obtained with gradient descent. DPM is specifically optimized for detection. Since
no part annotations are required, it can be trained on a significantly larger training
set than PS, which requires such part annotations.

The final approach to part-based people detection considered in our experiments
is the poselet-based detector (PBD) recently proposed by Bourdev and Malik (2009).
Instead of using the pictorial structures framework with a fixed number of parts,
PBD relies on a large number of part detectors for diverse body regions denoted
as “poselets”, which have consistent appearance and correspond to similar 3D body
configurations. Detections of different poselets are integrated using a probabilis-
tic voting procedure resembling the implicit shape model (Leibe et al., 2004) with
weights learned using a max-margin framework (Maji and Malik, 2009a). Here every
poselet votes for the location of the torso part, which in turn delimits the detection
bounding box. Since the model is specifically designed to be robust to viewpoint
and articulation changes, poselets often account for body regions that do not change
significantly across articulation and viewpoint such as frontal faces, or correspond
to frequently assumed body poses, such as legs of a standing person.

6.3.1 Proposed extensions

We propose two different kinds of extensions to the described vision based models:
i) Since the different detectors focus on different aspects to be modeled, we propose
to combine the complementary outputs of different detectors. ii) We introduce an
extension that combines the vision based models with prior information obtained by
the inertial sensors of the quadrotor.

Combining multiple models. The pictorial structures framework does not ex-
plicitly take the occlusion of body parts into account even though they frequently
occur in our scenario. They happen due to complex poses in which some body parts
are not visible, due to parts being outside of the view of the on-board camera, and
due to miss-detections of some of the body parts from extreme foreshortening. In
these cases the occluded body parts are fitted to spurious detections in the back-
ground, which results in a small probability of the overall configuration. In order
to mitigate this problem we propose to combine the detection results of multiple
models, each of which focuses on a different combination of body parts.

The DPM implementation used in our experiments is composed of two compo-
nents, one upper-body and one full-body model. We extend the PS detector in a
similar way and, complementary to a standard full-body detector, train an addi-
tional upper-body model, which is composed of torso, head, as well as upper and
lower arms.

In order to fuse different models, we compute the posterior probability of each
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Figure 6.3: Original image taken by quadrotor at the height of 1.77 meters (left)
and ground plane projection (right). The shown rectangles correspond to ground
truth annotations.

hypothesis k given the detection score dk of model M as:

p(hk|dk,M)) =
p(dk|hk,M)

p(dk|hk,M) + p(dk|¬hk,M)
, (6.2)

where hk is a Boolean variable corresponding to k-th hypothesis indicating whether
it is correct or incorrect. p(hk|M) cancels as it is assumed to be uniform. The
conditional distributions p(dk|hk,M) and p(dk|¬hk,M) are assumed to be Gaussian,
and fitted on a set of positive and negative detections.

The hypotheses of all models paired with the posterior probability are then cast
forward to a joint non-maximum suppression step. Here, only the maximum scored
detection is retained if several hypotheses overlap significantly. As the experiments
demonstrate, this extension significantly improves the detection performance, espe-
cially on partially occluded people.

Scale prior based on UAV sensor measurements. The people detection
methods discussed so far operate under the assumption that the camera position
and depth for each image pixel are unknown. This implies that no prior information
about the scale of the people in the image is available, and each model has to be
exhaustively evaluated over all possible scales. However, in our scenario the quadro-
tor system is equipped with a calibrated camera and sensors capable of measuring
the height and pitch angle of the vehicle. Combining these measurements allows to
estimate the distance to the ground plane for each image pixel. Since our focus is on
detecting people lying on the ground, this in turn provides an estimate of the scale
of the person given an image position, subject to natural variation in people height
and sensor noise. Similarly, knowing the position of the camera with respect to
the ground plane we can back-project an image onto the ground plane taking both
the homography transformation and image distortion into account (Heikkila and
Silven, 1997). An example of this projection is shown in Fig. 6.3. Note that while
the scale of people differs in the original image, after back-projection it becomes
approximately the same. Additionally, the camera calibration and back-projection
enables the relation of the height of the detection bounding boxes measured in pixels
to the height of people measured in meters, which in turn allows to define a prior
distribution on the bounding box height.



6.4. Experiments 105

In the pictorial structures models, the posterior over configurations given by
Eq. (6.1) contains the factor p(l0) corresponding to the prior distribution on the
position, scale and rotation of the root part l0, which is typically assumed to be
uniform. When applying people detectors on back-projected images, we substitute
this uniform prior with a Gaussian prior

p(l0) = N (f(l0)|µh, σ2
h), (6.3)

where f(l0) is a linear transformation that converts the height of an hypothesis in
pixels into metric units, µh = 0.8 corresponds to an average upper body height of
the person in meters, and σ2

h = 0.1. Note that this scale information is propagated
to the other body parts through the body model.

As we show in the experimental section, not all models equally benefit from these
priors. The PS model appears to be more precise in estimating the scale of people in
an image, compared to DPM. While such precision is often not necessary when we
are interested in detection only, it turned out to be beneficial when prior information
about the expected scale of the person becomes available.

6.4 Experiments

6.4.1 Experimental setup

Dataset. The test set used in the experiments contains 220 images collected in
an indoor office environment under uncontrolled daylight illumination conditions.
During data collection our quadrotor was flying at a height between approximately
1.5 and 2.5 meters, capturing the images with interval of approximately 1 second.
The captured dataset contains 285 ground truth annotations of people. Several
sample images from the dataset are shown in Fig. 6.1.

When recording the test set we aimed to “simulate” difficulties typical for a
search and rescue scenario: note the large diversity in poses of people present in the
dataset; also note that many people are only partially visible, either because some
parts of the body appear outside of the image, or due to self-occlusion, or due to
occluding objects present in the scene. Obviously, in an ideal world, we would have
access to a real and representative dataset from a real search and rescue situation.
Besides the practical issues of obtaining such a dataset it is also unclear what such a
“representative” dataset would be. So in order to increase the realism and difficulty
of our evaluation, we decided not to train any of the evaluated people detection
methods specifically for this scenario, but rather relied on the training sets provided
with the respective method. Therefore, we explicitly evaluate the generalization
performance of these methods to our test set, while simulating difficulties typical for
search and rescue scenarios.

Evaluation methodology. In our dataset we annotated upper bodies of all people
visible to at least 50%. For the evaluation we use the same criterion as in (Ferrari
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Figure 6.4: Comparison of people detection methods

et al., 2008), where a detection hypothesis is considered correct if the ratio of the
intersection over the union of ground truth annotation and detection rectangles
exceeded 0.25. We have chosen to define the detection task as detecting the upper
body of the person, since all people detection methods considered in this paper are
either designed to detect upper bodies (Bourdev and Malik, 2009; Ferrari et al.,
2008) or can be easily adapted to do so. For each of the methods included in our
comparison we are using the implementations and trained models made publicly
available by the authors.

Our experiments consist of three parts: i) we compare different state-of-the-art
methods of visual people detection, ii) we evaluate the importance of adding a scale
prior to the model, and iii) we evaluate the performance of combinations of different
detectors. For all of our experiments we report the equal error rate (EER) and show
precision-recall curves.

6.4.2 Comparison of people detection methods

In our first experiment we evaluate the suitability of several recently proposed people
detection methods for detecting articulated and partially occluded victims seen from
our UAV.

The results are shown in Fig. 6.4 as recall-precision curves. Even though very
common, the HOG based global template matching methods are not competitive
in our setting. The HOG detector of Dalal and Triggs (2005) achieves 15.1% EER.
The conceptually similar upper body detector “HOG-upper” of Ferrari et al. (2008)
performs significantly better than the full body detector, but still achieves only 21.9%
EER. Both HOG detectors do not perform well due to their monolithic structure,
which does not take spatial variability in position of body parts into account. Several
example detections of the full-body HOG detector are shown in Fig. 6.5 (first row).
Note that while the HOG detector successfully copes with simple poses (e.g., bottom-
left person in image (a)), it fails when body articulations vary significantly or when
parts of the person become occluded as in images (b) and (c).
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Figure 6.5: Several examples of detections at EER obtained with a full-body HOG
detector (Dalal and Triggs, 2005) (1-st row), the poselet detector (Bourdev
and Malik, 2009) (2-nd row), the DPM detector (Felzenszwalb et al., 2009)
(3-rd row), the full-body pictorial structures detector (Andriluka et al.,
2009) (4-th row) and the combined detector augmented with scale prior proposed
in this paper (5-th row). True positive detections are plotted with yellow and false
positives with red color.

The poselet detector (Bourdev and Malik, 2009) achieves 32.0% EER. Several
example detections are shown in the second row of Fig. 6.5. Compared to the mono-
lithic HOG detectors, the poselet detector appears to be more robust to partial
occlusions. Note the correct localization of partially occluded people in images (a),
(b), and (c). However, the poselet detector appears to be challenged by poses in
which characteristic parts of the upper body are not visible, e.g., the rightmost per-
son in Fig. 6.5(c). Additionally poselets seem to lack localization precision: Upper
bodies are frequently localized with slight offsets from the correct position and scale,
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(a) (b)

Figure 6.6: Comparison of performance with and without scale prior (a), and eval-
uation of different model combinations (b).

e.g. Fig. 6.5(b).

The two best performing detectors are both built on the pictorial structures
framework. The PS detector (Andriluka et al., 2009) and the DPM detector (Felzen-
szwalb et al., 2008) achieve 42.5% and 51.5% EER respectively. Note that this corre-
sponds to a performance improvement over the monolithic model (Dalal and Triggs,
2005) by 27.4% EER and 36.4% EER. The difference in performance between the PS
and DPM detectors is most likely due to a significantly larger number of images used
to train the DPM detector and the fact that the DPM model internally combines 2
models corresponding to a full-body and an upper-body configuration, while the PS
detector uses a full-body model only. We have found that, although the DPM model
yields better detection performances, it is often less precise in localizing people com-
pared to the PS detector (see Fig. 6.5 images (b) and (c)). Such behavior might be
due to the discriminative training procedure employed in the DPM model, which is
specifically optimized for detection. This procedure does not reward improvement
in localization beyond the limit set by the bounding box matching criterion. In con-
trast, the PS model is specifically designed for localization and body part detection
and uses generative learning to estimate parameters of pairwise part relationships.

6.4.3 Integration of scale prior

Even the two best performing models (Andriluka et al., 2009; Felzenszwalb et al.,
2008) frequently suffer from false positive detections. One source of such false posi-
tives are detections at incorrect scales. An example of such false positives produced
by the PS model is shown in the fourth row of Fig. 6.5(a). Note that these false
positives frequently correspond to unreasonable sizes of the human body when back-
projected into world coordinates. For example the false positive detection in the
fourth row of Fig. 6.5(a) would correspond to a person with a height of approxi-
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(a) (b) (c)

Figure 6.7: Examples of people detection at EER obtained with the full-body
pictorial structures detector (Andriluka et al., 2009) without scale prior
(first row) and with scale prior (second row).

mately 3.5 meters. As described in Sec. 6.3.1 we can reduce the influence of this
kind of false positives by extending the detectors with a prior distribution on the
height of detected people. This is accomplished by first projecting images onto the
ground plane and subsequently introducing a Gaussian prior using known relations
between pixels and metric units.

We compare the influence of the scale prior on the detection results for the two
best performing methods in our evaluation. The results are shown in Fig. 6.6(a).
While both models benefit from the scale prior, the improvement for the PS model
is almost 16% EER, and is more significant than the improvement for the DPM
model, which improves only slightly overall without improving the EER. An insight
into these different behaviors can be gained by examining the distribution of scales
of the true and false positive detections in the images projected onto the ground
plane. These distributions are shown in Fig. 6.8 for the PS and DPM methods.
Note that the PS model distribution of true positives has a clear peak around 120
pixels, which roughly corresponds to the upper-body height of 85 cm. False positives
on the other hand occur mostly at small scales. For the DPM model the height of
true positives is distributed almost uniformly in the range between 80 and 120 pixels.
The DPM model appears to be less precise in scale estimation, which however is not
reflected in the recall precision curve in Fig. 6.4 due to the rather loose bounding
box matching criteria. However, this imprecision turns out to be a handicap when
information about the detection scale is available from other sources. Fig. 6.7 shows
several examples of detections of the original PS model, and the PS model augmented
with the scale prior. Note that in addition to removing false positives as in images
(a) and (b), the back-projection to the ground plane removes effects of perspective
distortions, which also improves detection results, as for example in image (c).
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Figure 6.8: Distribution of the height of false positive (left) and true positive (right)
detections for PS (Andriluka et al., 2009) (top row) and DPM (Felzenszwalb et al.,
2008) (bottom row) detectors.

6.4.4 Combination of multiple detectors

Although both the PS and DPM detectors are built on the same pictorial structures
framework, they differ significantly with respect to which parts are used in the model,
which relationships between parts are considered and how the model parameters are
learned from training data. The DPM model utilizes generic body parts that are
automatically learned so that they are both discriminative and easy to localize in
images. The DPM model appears to be more robust to occlusions since model parts
are not fine tuned to detect particular parts of the body. This is in contrast to the
PS model, which is designed to detect the actual body parts such as legs, torso, and
head. As we found in our experiments, the PS model is superior to the DPM model in
estimating the scale of a person, due to its more sophisticated body model enabling
it to take advantage of a larger portion of the image evidence. In order to explore
the complementarity of the PS and DPM detectors we derive a new detector based
on their combination following the procedure described in Sec. 6.3.1. In addition
to the original DPM and full-body PS detectors we also train an upper-body PS
detector. The results of this experiment are shown in Fig. 6.6(b). In isolation, the
upper-body PS detector did not perform nearly as well as the full-body PS detector,
however the combination of these two detectors improves the EER from 58% for
the full-body PS detector to 62%. A similar performance improvement is achieved
when combining the full-body PS and DPM detectors. The best results are obtained
by the detector combining full-body PS, upper-body PS and DPM detectors, which
achieves 66% EER.

Several examples of correct detections and false positives are shown in Fig. 6.5
(bottom row) and Fig. 6.9. Note that compared to previously proposed detectors,
our improved detector is able to find people occluded by the armchair in Fig. 6.5(a)
and the strongly articulated person in Fig. 6.5(c). Top row of Fig. 6.10 shows several
examples of people not detected by our system. Note, that such missing detections
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Figure 6.9: Examples of detections at EER obtained with the detector combining
upper- and full-body PS, and DPM models, and scale prior.

(a) (b) (c)

Figure 6.10: Missing recall (top row) and false positive (at ERR) detections (bottom
row) of the detector combining upper- and full-body PS, and DPM models.

correspond to people with either especially severe occlusions as in images (a) and (c)
or particularly complex articulations as in image (b). Such complex cases in which
only few body parts are visible, appear to be beyond the capabilities of state-of-the-
art detection methods. The bottom row of Fig. 6.10 also shows a couple of false
positives obtained by our system at EER. While some of them correspond to nearly
correct detections as in image (a), the detector also occasionally fires on background
structures as in images (b) and (c).
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6.5 Conclusion

In thic chapter we have evaluated the applicability of several state-of-the-art peo-
ple detectors for victim detection from a UAV in a challenging search and rescue
scenario. An important result of this comprehensive evaluation is that part-based
models are better suited for victim detection than monolithic models, because they
are able to represent variations in articulation and are robust to partial occlusions.
As an extension to previous vision-based detectors we proposed to leverage com-
plementary information of i) several detectors and ii) visual detectors and inertial
sensor data of the UAV. Experimentally, we demonstrated that our extended frame-
work substantially improved the detection performance, thus making a step towards
autonomous victim detection in real world scenarios.



7
Conclusion and Future Work

Computer systems play an important role in our daily life, and there is little doubt
that our reliance on them will only grow in the future. Increasingly often, the
tasks delegated to computers go beyond simply performing computations and data
processing and require active perception and interaction with the environment. In
this thesis, we have addressed one particular challenge related to this new role of
computers, focusing on algorithms that recognize people in static images and video.
In the following, we briefly review the contributions of this thesis and discuss possible
directions for future work.

7.1 Summary

One of the principal goals of our work was the development of algorithms for people
detection that are applicable in realistic environments such as crowded street scenes.
In Chapter 3, building on the approach of Seemann and Schiele (2006), we intro-
duced a novel pedestrian detection system that relies on pictorial structures model.
While this model has been previously used for pose estimation by Felzenszwalb and
Huttenlocher (2005), we showed that it is also effective for people detection. In the
same chapter, we also introduced a tracking-by-detection framework that combines
output of the pedestrian detector with the dynamical body model in order to track
and estimate poses of people in crowded street scenes. These results provided the
foundation for the rest of the work presented in this thesis.

In Chapter 4, we introduced a generic model for people detection and pose esti-
mation. One of the primary objectives of this work was to develop an approach with
state-of-the-art performance in pedestrian detection that would also be applicable to
other tasks, such as detection and pose estimation of actors in TV shows or victim
detection in search-and-rescue scenarios. To that end, we switched from a star- to a
tree-structured prior on part configurations and introduced a new discriminative ap-
pearance representation based on dense grids of local descriptors. We demonstrated
that our new appearance model improves over the bottom-up appearance model of
Seemann and Schiele (2006). We also showed that our approach achieves signifi-
cant improvement in 2D pose estimation over the previous approaches of Ramanan
(2006) and Ferrari et al. (2008).

113
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In Chapter 5 we revisited the problem of pedestrian detection in conjunction
with 3D pose estimation in crowded street scenes and demonstrated that we can
further push the detection performance by combining output of multiple generic
and viewpoint specific detectors . Compared to the pedestrian detector of Seemann
and Schiele (2006), our approach from Chapter 5 achieves a significant improvement
in performance and is capable of detecting pedestrians equally well for a full range of
viewpoints and walking poses. As we have shown, our approach is also competitive
with the best performing approaches to date. This is remarkable result consider-
ing a large effort undertaken in the computer vision community in the recent years
towards solving pedestrian detection task. Compared to other approaches to pedes-
trian detection, our approach also provides more detailed description of the detected
people in that it is capable of estimating their 3D body poses and orientations with
respect to the camera.

Finally, in Chapter 6, we demonstrated an application of our approach to victim
detection by unmanned aerial vehicles. We developed a solution which integrates the
on-board sensor measurements into our detector and uses them in order to define
informative prior on the scale of detections and remove the effects of perspective
distortion.

In this thesis, we addressed a number of topics that are rarely handled within the
same framework. In particular, people detection approaches often disregard explicit
pose representation and are consequently unable to deliver any information beyond
simple bounding box detections. At the same time, approaches for human pose
estimation often employ simple appearance models based on image segmentation
and require multiple cameras and clean static backgrounds, making them hard to
apply in scenes of realistic complexity. Working on the intersection of detection,
pose estimation and tracking allowed us to obtain impressive results that go beyond
prior work in each of these areas. However, it has also limited the amount of time
we could allot exclusively to each of these tasks. Consequently, some of the ideas
that emerged during our work could not be fully explored. We would like to devote
the rest of this chapter to discussing some of these ideas in the hope of coming back
to them after completion of this thesis.

7.2 Perspectives for People Detection

A large portion of this thesis has been dedicated to pedestrian detection. Recent
progress in this field suggests that we might see commercial pedestrian detection
systems within the next few years. Therefore, in the future we would like to turn to
more challenging problems such as generic people detection. In contrast to pedes-
trians, who appear in the images in walking poses and upright orientation, images
of people exhibit much more complex patterns. These patterns arise due to inter-
play between body poses, appearance of body parts and partial occlusions, and they
are very hard to represent and detect well. In order to address this challenge, we
plan to focus on structured models, which represent the complex appearance of hu-
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mans as a combination of local patterns and their spatial relationships. In order to
properly model the self-occlusions, foreshortening of body parts and complex body
articulations, we plan to rely on 3D body representations, and combine them with
appearance models of body parts that are capable of handling the multimodalities
that result from changes in pose and viewpoint. One of our goals will be the de-
velopment of local appearance models that are capable of estimating some of the
3D parameters of body parts, which could allow the system to iteratively aggregate
the local evidence from individual parts into partial part assemblies that can be
subsequently combined using 3D body representation.

7.3 Perspectives for 2D Pose Estimation

The approach to 2D human pose estimation introduced in (Andriluka et al., 2009)
provides a solid baseline for further research in this area. The two main compo-
nents of this work are the appearance representation of the body parts, and the
articulated body model that defines constraints on the part configurations. We are
certain that both of these components have a potential for future improvement. The
appearance model used in our work relies on the shape context local features and
AdaBoost training algorithm. A potential improvement to our appearance model
could come from adding new types of appearance features, such as those capturing
local self-similarity (Walk, Majer, Schindler and Schiele, 2010) or other types of
image statistics (Dollár, Tu, Perona and Belongie, 2009). The improvement in per-
formance could also be achieved by employing more elaborate learning algorithms
that are better suited for capturing multimodalities in appearance of body parts.
We would also like to explore more elaborate strategies for estimating model param-
eters. In our approach, we relied on a generative body model and interpreted the
output of discriminative part classifiers as likelihood. Consequently, the spatial pa-
rameters of the model were estimated independently of each other using a maximum
likelihood procedure. An interesting alternative would be to formulate the model
as a conditional random field and rely on maximizing the conditional likelihood to
learn the relative weighting of the unary appearance terms and the pairwise sparial
terms.

However, some of the issues with the state-of-the-art approaches to 2D pose
estimation (Andriluka et al., 2009; Eichner and Ferrari, 2009; Singh et al., 2010)
are more profound and require fundamental changes which go beyond incremental
improvements to appearance models or parameter learning algorithms. Currect ap-
proaches are limited in that that they rely on body models that do not take 3D
effects such as foreshortening and self-occlusion into account and disregard some of
the important correlations between positions of body parts (for example correlations
between positions of the shoulder and hip joints that arise due to torso rotation).
Essentially, these models did not get far from the “cardboard” people models that
were proposed more than a decade ago (Ju et al., 1996). Therefore, in the future,
we plan to focus on the approaches to 2D pose estimation that build on the more
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detailed body models and can properly represent foreshortening and self-occlusion.
We expect that such body models will require more elaborate learning and infer-
ence techniques compared to those introduced in Chapter 4. In particular, with
the increase in the number of parameters defining state of each body part it be-
comes prohibitively expensive to represent state-space using uniformly discretized
grids. Standard message-passing algorithms also become prohibitively expensive,
even when augmented with efficient message computation techniques. In the future
in order to address these difficulties we plan to explore the adaptive discretizations
(Isard et al., 2008) and other methods for approximate inference, such as Markov
Chain Monte Carlo (Lee and Cohen, 2004).

Another important aspect that is not addressed by the current approaches is
the handling of partial occlusions of body parts. Although several methods for
explicit occlusion handling were proposed in the literature (Sudderth et al., 2004;
Wang and Mori, 2008; Sigal and Black, 2006b), they typically rely on the availabil-
ity of figure/ground segmentation and are applicable only to likelihood models that
decompose into the product of pixel-wise terms. Such likelihoods are not directly
applicable to cluttered, real-world scenes. Recently, it has been shown that output
of part-based models can be used as a cue for figure/ground segmentation (Yang,
Hallman, Ramanan and Fowlkes, 2010). In the spirit of this work, we can rely on our
pose estimation approach to segment body parts of the person (see Fig. 7.1 for some
preliminary results), and use these segmentations in conjunction with previously pro-
posed occlusion handling methods (Sigal and Black, 2006b; Wang and Mori, 2008).
In the future we would also like to extend the current evaluation proceedures to in-
clude evaluation of occlusion labeling and require disambiguation between left/right
body parts. We feel that there is a clear need for such step, because the currently
available datasets and metrics either ignore visibility of body parts (Ramanan, 2006;
Ferrari et al., 2008; Eichner and Ferrari, 2009) or selectively exclude occluded parts
from the evaluation (Yao and Fei-Fei, 2010).

Finally, in the future work we would like to explore the interplay between bottom-
up and top-down approaches to appearance modelling. In this thesis, we explored
both of them, first using a bottom-up appearance model based on the local features
in Chapter 3, and then using a top-down sliding-window appearance model in Chap-
ter 4. Generative bottom-up appearance models provide continuous estimates for
the position, scale and orientation of body parts, and, in theory are able to oper-
ate accross wide range of spatial scales. However, these models are less robust to
clutter and harsh imaging conditions relative to top-down discriminative appearance
models. The latter operate by exhaustively searching over the discretized range of
image positions, scales and orientations and consequently are able to estimate these
variables only up to the discretization step. Recently, Levinshtein et al. (2009) have
shown that bottom-up grouping procedures can be effective in finding salient image
parts. In the future, we would like to explore the combination of bottom-up and
top-down appearance models. To that end, bottom-up grouping can be employed
to provide initial guesses for the locations of the body parts that is subsequently
verified and refined in a top-down fashion.
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Figure 7.1: Estimated 2D body configurations (top row), and corresponding seg-
mentations of the body parts (bottom row). The segmentations are obtained using
color-based appearance models derived from the configuration estimates.

7.4 Perspectives for Monocular 3D Pose Estima-

tion

In this thesis we introduced an approach for the monocular 3D pose estimation of
walking people in crowded street scenes. An important objective for future work
will be to generalize this approach to more complex settings with people involved in
multiple, previously unseen activities. This is a significant challenge that requires
further development of both appearance representation and dynamical body models.

Until now, low dimensional representations played an important role in 3D pose
estimation. Models such as GPLVMs, Laplacian Eigenmaps, and PCA were used
in (Urtasun et al., 2006; Fossati et al., 2007; Andriluka et al., 2008; Gammeter
et al., 2008; Andriluka et al., 2010) in order to constrain the search to the relevant
portion of the high dimensional pose space and capture the correlations between
body joints. These models are well-suited for cyclic motions, such as walking or
running, and were also shown to be applicable to other simple motions such as
waving or swinging a golf club (Schwarz et al., 2010). However, it is not clear
how well they generalize to unconstrained settings that feature multiple motions in
which individual motion components often intervene with each other (e.g., walking
and waving at the same time). Several authors have proposed to address this issue
using switching activity priors (Schwarz et al., 2010) or hierarchical body models
(Darby et al., 2009). However, the former method is limited to a few previously
observed activities and is not able to represent transitions between them, while the
latter has only been shown to work for simple activity combinations and has not
been demonstrated to scale to larger volumes of training data. Promising results
were shown by models that are designed to incorporate multiple motions within the
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same representation, such as Restricted Boltzmann Machines (Smolensky, 1986).
Recently, these models were shown to be able to extract atomic motion primitives
from motion capture data and could scale to much larger training sets containing
thousands of examples (Taylor et al., 2010). In the future work we would like
to extend our tracking-by-detection framework in order to incorporate these more
generic motion models.

Multiple sources of constraints are necessary to resolve the depth and data as-
sociation ambiguities that arise during 3D pose estimation. Clearly, some of these
constraints can be provided by more elaborate dynamical body models and improved
appearance models. Additional constraints can also be obtained by integration of
image cues, such as shading and shadows (Balan, Black, Haussecker and Sigal, 2007).
However, more substantial developments are necessary to scale from the handful of
motions supported by the current models to the hundreds of motions routinely per-
formed by humans in their daily life. We believe that one of the essential properties
missing in the current approaches is tighter integration of the estimation of people’s
poses, their activities and the overall scene context. The missing sources of informa-
tion include the interactions between multiple people present in the scene and the
interactions of people with the environment and scene objects. These interactions
might provide essential cues for pose estimation. At the same time, estimated poses
themselves can be used as evidence for scene labeling and annotation. Our hypoth-
esis is that tighter integration of models for scenes, activities, and poses of people
is essential for understanding the images acquired in complex real-world conditions,
and we will aim towards such integrated approaches in the future.
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