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Summary

Investigating correlations is the key to understanding the nature of biological systems. In gen-
eral, correlations describe the relationship between data sets or specific characteristics of data.
To investigate correlations among and within biomolecules we discussed two complementary
approaches to advance the understanding of evolution. Mutational dynamics can mainly be
seen in the space of sequences whereas the altered phenotype is selected in the biophysical
realm. By mutual information, an information-theoretical measure, we can identify potentially
coevolving nucleotide or amino acid positions from a set of sequences combined into a mul-
tiple sequence alignment. In the biophysical realm, the mechanics of a biomolecule, which
is important for its structure and function, is examined by various methods. Since molecu-
lar dynamics simulations and normal mode analysis are computationally expensive approaches,
coarse-grained protein representations such as elastic network models have been developed. We
used such protein models, particularly the Gaussian and the anisotropic network model, to jugde
the importance of single residues or amino acid contacts on the dynamics of the biomolecule or
distinct portions.

• In this thesis, we applied this analysis to distinct sets of hammerhead ribozyme sequences
of type I and III to reveal coevolutionary hot spots shared among the different sequences.
We observed a weaker coevolution of ribozymes originating from prokaryotes and eukary-
otes compared to viroid sequences. Additionally, we obtained signals between helical stems
I and II which is well-known from experiments. However, we noticed a coevolutionary
connection between stems I and III throughout all sets of sequences that have not been
reported yet.

• We applied an established protocol to a structural model of the small viral potassium chan-
nel Kcv, where we deleted single contacts and measured the resulting change in dynam-
ics using the Frobenius norm. Here, we observed a mechanical connection of N- and
C-terminal residues, whereas the selectivity filter seems almost mechanically uncoupled to
the rest of the channel. A similar study was performed for the acetylcholinesterase as well
where we additionally correlated mechanical changes with coevolutionary information. By
means of coarse-grained protein models, we proposed a protocol for the Kcv to identify the
transition from a functional to a non-functional channel upon N-terminal deletions.

• Furthermore, we utilized reduced molecular models to derive amino acid specific interac-
tion constants directly from a set of protein structures obtained from e.g. from molecular
dynamics simulations. To this end, we examined the performance of three approaches to
retrieve the input parameters from an artificially constructed system. As it turned out,
semidefinite programming is an efficient method for this task and was employed for a
realistic application as well.
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Zusammenfassung

Der Schlüssel zum Verständnis der Natur von biologischen Systemen ist die Untersuchung von
Korrelationen. Im Allgemeinen dienen Korrelationen der Beschreibung von Zusammenhängen
von Datensätzen oder gar von spezifischen Eigenschaften, die diesen Daten zugrundeliegen. Um
Korrelationen von Biomolekülen zu untersuchen, haben wir zwei komplementäre Ansätze disku-
tiert, um das Verständnis von Evolution voranzutreiben. Der Sequenzraum eines Biomoleküls
ist Mutationen unterworfen, wohingegen sich der veränderte Phänotyp im biophysikalischem
Raum bewähren muss. Mit der Mutual Information, einem der Informationstheorie entstam-
mendem Maß, ist es möglich für ein Sequenzalignment potentiell coevolvierende Nukleotid-
oder Aminosäurepositionen zu identifizieren. Im biophysikalischen Raum ist besonders die
Mechanik des Biomoleküls von Interesse, weil sie sowohl für die Struktur als auch für die Funk-
tion eine wichtige Rolle spielt. Da Moleküldynamik-Simulationen und Normalmodenanalysen
sehr rechenintensive Ansätze sind, um die Mechanik zu untersuchen, sind in den letzten Jahren
reduzierte Proteinmodelle entwickelt worden. Wir verwenden solche reduzierten Modelle, im
Besonderen Gauß und anisotropische Netzwerkmodelle, um Rückschlüsse auf die Bedeutung
einzelner Residuen oder Aminosäurekontakte für the Dynamik des Moleküls oder einzelner Re-
gionen zu ziehen.

• In dieser Arbeit haben wir eine solche Analyse für unterschiedliche Sequenzdatensätze
von Hammerhead-Ribozymen von Typ I und III durchgeführt um evolutionär wichtige
Verbindungen aufzudecken, die diesen Ribozymen gemein sind. Dabei haben wir
schwächere coevolutionäre Signale für die prokaryotische und eukaryotische Ribozyme
festgestellt im Vergleich mit viroiden Sequenzen. Weiterhin konnten wir Signale zwischen
den Helices I und II auffinden, die bereits in experimentellen Studien nachgewiesen wur-
den. Allerdings stellten wir für alle Datensätze Coevolution zwischen den Helices I und III
fest, für die es bisher keine Hinweise gab.

• Ein etabliertes Protokoll wurde auf das Strukturmodell des kleinen viralen Kaliumkanals
Kcv angewendet, wobei einzelne Verbindungen gelöscht wurden und die resultierende
Veränderung in der Mechanik mittels der Frobenius Norm gemessen wurde. Hierbei
beobachteten wir eine Verbindung zwischen N- und C-terminalen Residuen, wohinge-
gen der Selektivitätsfilter vom restlichen Kanal mechanisch entkoppelt zu sein scheint.
Eine ähnliche Studie wurde für Acetylcholinesterase durchgeführt, wobei wir die mech-
anischen Veränderungen zusätzlich noch mit Coevolutionsdaten überlagerten. Mit Hilfe
der reduzierten Proteinmodelle haben wir zusätzlich ein Protokoll vorgestellt, mit dem
es möglich ist den Übergang von einem funktionalen zu einem nicht-funktionalen Kanal
aufgrund N-terminaler Deletionen zu detektieren.

• Weiterhin wurden reduzierte Modelle verwendet, um aminosäurespezifische Interaktions-
stärken direkt aus einer Menge von Strukturen, die zum Beispiel aus Moleküldynamik-
Simulation gewonnen wurden, zu bestimmen. Aus diesem Grund haben wir für drei An-
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sätze untersucht, inwiefern sie in der Lage sind, gegebene Parameter eines artifiziellen
Systems zu rekonstruieren. Semidefinite programming hat sich als effiziente Methode für
diese Aufgabe herausgestellt und wurde anschließend angewendet, um die Parameter für
eine realistische Anwendung zu identifizieren.
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1 Molecular Biophysics

1.1 Elastic Network Models

Proteins are essential biological macromolecules that participate in virtually all processes within
a cell. During protein biosynthesis amino acids are connected along the protein backbone by
peptide bonds. The linear sequence of amino acid residues is the primary structure of the pro-
tein. The secondary structure contains information about motifs, such as α-helices or β-sheets.
A protein is stabilized in its tertiary structure by non-local bonds of proximate residues, e.g.
disulfide bonds or salt bridges. Some proteins assemble into complexes forming the quarternary
structure. Despite the fact that several thousand protein structures have been elucidated and
deposited in the Protein Data Bank (PDB) [Berman et al., 2000], the understanding of protein
folding and function is still insufficient. Proteins fold spontaneously within micro- to milli-
seconds during or after biosynthesis, which is contradictory to the time a sequential sampling
of the protein’s conformation space would take. Protein folding pathways, i.e. a funnel-shaped
energy landscape [Bryngelson et al., 1995; Dill & Chan, 1997; Leopold et al., 1992] that is bi-
ased towards the native state, are a potential conclusion from the Levinthal paradox [Levinthal,
1968].

Among the leading theoretical methods to investigate protein structure properties as well as
protein folding and stability are molecular dynamics simulations (MD) and normal mode ana-
lysis (NMA). MD simulations have been widely used to study the stability of modeled proteins
and protein complexes [Strunk et al., 2011] as well as to obtain insights into their function
[Tayefeh et al., 2007]. Proteins, ribonucleic/deoxyribonucleic acids (RNA/DNA) and respective
complexes are placed in a simulation box that also contains solvents to provide a realistic sce-
nario. Ions, ligands and other biomolecules may be included in the simulation as well. As can be
seen in Fig. 1.1 current simulation efforts are below the millisecond scale, where protein folding
takes place. Nevertheless, fast events like transport in ion channels can be observed.

Since internal motions of a protein are known to play an important role in its function, NMA
was employed in numerous studies as a tool to directly investigate vibrational motions using

Bond Length
Vibration Rotation around 

Bonds 

Water 
Relaxation

Lipid Rotation

Ion Transport

Lipid Diffusion

10-15s 10-12s 10-9s 10-6s 10-3s 1s 103s

Ribosome
Synthesis

Membrane
Protein Folding

Normal
Protein Folding

accessible in all-atom simulations

Figure 1.1.: Time scales of molecular dynamics simulations (adapted from Lindahl [2008]).
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harmonic approximation. Amongst others, hinge and shear motions necessary for catalytic re-
actions were identified [Brooks & Karplus, 1985; Levitt et al., 1985]. Although NMA is less
time-consuming than MD simulations, it requires the protein to be thoroughly energy mini-
mized. Due to computational limitations, energy minimization and NMA itself are often applied
to the protein in vacuo which may lead to undesired side effects.

As an alternative, Tirion [1996] proposed to replace the complex potentials that are used in
MD simulations and NMA approaches by a pairwise Hookean potential which is controlled
by a single parameter. Surprisingly, despite its simplicity the potential was able to reproduce
complex vibrational properties of biomolecules represented by the slow elastic modes. Theo-
retical temperature factors, also referred to as B-factors or Debye-Waller factors, showed very
good agreement with the experimentally obtained crystallographic temperature factors which
indicates no need for additional parametrization of the potential.

Based on Tirion’s seminal work, Gaussian network models (GNM) have been developed by Bahar
et al. [1997]. Here, a protein in its folded state is considered equivalent to an elastic network.
In this coarse-grained approach, Cα atoms are identified with the junctions of the respective
network and assumed to undergo Gaussian distributed fluctuations around equilibrium position.
Interactions between closely located Cα pairs are modeled as harmonic springs with a single
parameter γ of the Hookean pairwise potential. Equilibrium correlations between fluctuations
∆Ri and ∆R j of two Cα atoms i and j are defined as [Haliloglu et al., 1997]:

〈∆Ri ·∆R j〉=
kB T

γ
[Γ−1]i j (1.1)

where kB and T are the Boltzmann constant and the absolute temperature, respectively. Γ is the
symmetric Kirchhoff matrix, the subscript i j indicates the i jth element. The Kirchhoff matrix
describes the connectivity of the junctions of the elastic network, namely the Cα atoms, and is
derived as follows:

Γi j =





−1 if i 6= j and Ri j ≤ rc
0 if i 6= j and Ri j > rc

− ∑
i,i 6= j
Γi j if i = j

(1.2)

Ri j = |Ri − R j| denotes the spatial separation of the Cα atoms of residues i and j in the native
state. The range of non-bonded interactions is bounded by the cutoff distance rc, e.g. rc = 7 Å
is a reasonable choice to include nearby residue pairs within a first interaction shell. Fig. 1.2
illustrates the effect of the cutoff distance on the number of considered interactions for the
bovine pancreatic trypsin inhibitor (BPTI) [Wlodawer et al., 1987].

Since the Kirchhoff matrix is positive semidefinite, i.e. the smallest eigenvalue is equal to zero
due to a single degree of freedom, the Moore-Penrose pseudoinverse [Moore, 1920; Penrose,
1955] needs to be used in Eq. 1.1. It can be expressed as:

Γ−1 = U(Λ−1)U T (1.3)

10 1. Molecular Biophysics



Figure 1.2.: The choice of the distance cutoff rc limits the range of interactions and is illustrated for the
bovine pancreatic trypsin inhibitor [Wlodawer et al., 1987] (left). Setting rc = 6 Å and thus
including only the most closely located residue pairs within a first interaction shell leads to
a sparsely connected elastic network (middle). The network becomes more dense, if the
distance cutoff is further increased. An interaction range of 13 Å contains also residue pairs
of the second interaction shell (right). Graphics were generated using VMD [Humphrey
et al., 1996].

Λ is a diagonal matrix containing the singular values λi of Γ and U is an orthogonal matrix
containing the respective singular vectors in each column. The inverse matrix can thus be
decomposed as sum of contributions of the individual modes:

Γ−1 =
n∑

k=2

ukuT
u

λk
(1.4)

Mean square fluctuations of Cα atoms and, hence, theoretical B-factors can be derived from
the diagonal entries of Γ−1. Furthermore, the off-diagonal entries contain cross-correlations be-
tween the fluctuations of the Cα atoms. GNMs are capable to reproduce experimentally obtained
temperature factors and, as a coarse-grained model, facilitate the analysis of slow vibrational
modes of (large) macromolecules. Bahar et al. [1998] investigated the relation of slow and
fast motions to function and stability. The slowest modes corresponding to small eigenvalues λi
are primarily associated with collective dynamics of the tertiary structure of a protein, and may
thus (not exclusively) be regarded relevant for biological function. Residues active in the fastest
modes are crucial for the structure or the stability of the protein in its native state. GNMs have
been successfully employed in various studies [Bahar et al., 1998, 1997; Demirel et al., 1998;
Erman & Dill, 2000; Haliloglu et al., 1997] to elucidate dynamics of proteins and implications
for biologically relevant features [Bahar et al., 1999; Bahar & Jernigan, 1999; Erman, 2006;
Shrivastava & Bahar, 2006].

Now, in GNMs all fluctuations are implicitly assumed to be isotropic, whereas in reality we
are concerned with anisotropic motions. To this end, Atilgan et al. [2001] proposed anisotropic
networks (ANM) as extension of GNMs to assess the directions of motions, which can directly be

1.1. Elastic Network Models 11



relevant for biological mechanisms. The counterpart of the Kirchhoff matrix in GNMs as defined
in Eq. 1.2 is the Hessian matrix H, which is a symmetric matrix with dimension 3N × 3N for
N residues of a protein. The Hessian matrix is obtained as second derivative of the harmonic
potential V (see Eq. 1.7) that describes interactions within a distance rc, a reasonable choice
of the distance cutoff is rc = 13 Å [Atilgan et al., 2001; Hamacher & McCammon, 2006]. It is
composed of N × N super elements of the following form:

Hi j =



∂ 2V/∂ X i∂ X j ∂ 2V/∂ X i∂ Yj ∂ 2V/∂ X i∂ Z j

∂ 2V/∂ Yi∂ X j ∂ 2V/∂ Yi∂ Yj ∂ 2V/∂ Yi∂ X j

∂ 2V/∂ Zi∂ X j ∂ 2V/∂ Zi∂ X j ∂ 2V/∂ Zi∂ Z j


 (1.5)

where X i, Yi and Zi are the components of the displacement vector of residue i. Decompos-
ing the Hessian matrix yields 3N − 6 non-zero eigenvalues due to three rotational and three
translational degrees of freedom. Its pseudoinverse C , also referred to as covariance matrix, is
computed via singular value decomposition (SVD) [Press et al., 1992] as sum of contributions
of the individual modes similarly as the pseudoinverse of the Kirchhoff matrix (see Eq. 1.4).

C =
n∑

k=7

ukuT
u

λk
(1.6)

The covariance matrix contains information about correlated motions amongst residues and the
respective directions. The B-factor of a residue i is derived by summing up the diagonal ele-
ments of the respective super element Hii. Again, theoretical temperature factors show striking
resemblance to the crystallographic ones [Atilgan et al., 2001; Doruker et al., 2002].

Both GNM and ANM presented thus far do not invoke side chain specificity other than NMA
or MD simulations based on empirical force fields. Hamacher & McCammon [2006] proposed
a contact potential that accounts for amino acid type specific energies for interacting residue
pairs. The potential V of a biomolecule in terms of the extended ANM (eANM) is obtained as

V = αa−2


a2K

2

∑
i

(Ri,i+1− R0
i,i+1)

2+
∑
(i, j)∈C′

κi j(Ri j − R0
i j)

2


 (1.7)

with α and a being scaling constants. The potential consists of a term describing covalent
contacts between direct neighbors and another term modeling non-covalent contacts of residues
being closer than a certain distance cutoff rc, interacting residue pairs are contained in the set
C′. K assigns a uniform interaction potential to all peptide bonds, whereas κi j may include
amino acid specificity. R0

i j is the distance of the Cα atoms of amino acid i and j in the native
state of the protein. Obviously, the eANM, which includes the ANM as a special case, achieved
better correlations with the experimentally obtained B-factors than the ANM without amino acid
specific terms.
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1.2 Extensions to Network Models

Coarse-grained approaches, such as elastic network models (ENM) of which GNM and ANM
are special cases, have been developed to facilitate and accelerate the analysis of large biolo-
gical systems. Dynamics of biological complexes consisting of a multitude of subunits, e.g. the
ribosome, remained inaccessible due to limitations of computational time and resources. In
the past, diverse coarse-grained protein models have been developed [Chu & Voth, 2007; Jeong
et al., 2006; Kundu et al., 2002; Kuriyan & Weis, 1991; Lyman et al., 2008; Maragakis & Karplus,
2005] based on different assumptions on structural, chemical and physical properties to tackle
the problem of predicting protein dynamics. This requires optimization of model parameters
and assumptions by still benefitting from the advantages of reduced protein descriptions.

In the following, we will discuss potential extensions of ENMs.

1.2.1 Alternative Contact Definitions - TanH

ENMs [Atilgan et al., 2001; Haliloglu et al., 1997; Hamacher & McCammon, 2006] as described
in section 1.1 are a coarse-grained description of proteins. Residues are represented as a bead
placed on the respective Cα position, and interactions between residues are modeled as har-
monic springs between residues in contact. Contacts are defined using a distance cutoff rc, i.e.
two residues i and j are in contact if their spatial distance Ri j is not larger than rc. As result, we
obtain a binary contact map CM with

CMi j =
�

1 if Ri j ≤ rc
0 otherwise (1.8)

In ENMs such strict cutoff definitions are applied to crystal structures whose resolution is li-
mited, nearly all of the about 63,000 experimentally derived structures deposited in the Protein
Data Bank (PDB) [Berman et al., 2000] are solved by X-ray or electron microscopy methods at a
resolution of ≥ 1 Å. Hence, a potential interaction can get lost as result of a minor displacement.
Taking all interactions into account would solve this issue but neglect the benefit of a coarse-
grained model. Therefore, more realistic contact definitions need to be considered.

Weighted-interaction ENMs [Hinsen et al., 2000; Riccardi et al., 2009] based on physical argu-
ments have been introduced in past years. Hinsen et al. [2000] derived a force constant matrix
for a Cα model from an all-atom model under the assumption that for any displacement of the
Cα atoms the potential energy is minimized by the respective movement of the other atoms.
Two distance categories are proposed to compute the distance dependent force constant k to
discriminate residue pairs along the backbone (being closer than 4 Å) and all other pairs.

k =

¨
Ri j · 8.6 · 105 kJ mol−1nm−3− 2.39 · 105 kJ mol−1nm−2 for Ri j < 4 Å
R−6

i j · 128 kJ mol−1nm4 for Ri j ≥ 4 Å
(1.9)
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In spite of the absolute scale, a good approximation of diverse potential energy surfaces (PES)
was achieved by introducing a scaling factor. Hence, introducing distance dependent force
constants for residue interactions that are modeled as harmonic springs may improve accuracy
of coarse-grained protein models.

Yet another approach to investigate the flexibility and, hence, the dynamics of a protein was
introduced by Halle [2002]. The study presented a distinct correlation between atomic mean
square displacements, which are proportional to B-factors, and the number of non-covalent
neighbors within a certain distance rc. Avoiding time-consuming computations, e.g. matrix
inversion or diagonalization, the so-called local density model is directly applicable to predict
temperature factors. An extension of this model was proposed by Lin et al. [2008], the weighted
contact number (WCN) model. Here, the number of contacts is weighted by the square of the
reciprocal distance of contacting residues. Because of the fast decay of the prefactor, we are
now concerned with a more simplified model that avoids the definition of a distance cutoff and
is based on the distance of non-bonded residue pairs, only. Although no mechanical model or
associated potential function is assumed, the WCN model can produce accurate B-factor profiles.
Hence, taking interaction ranges into account may enhance the understanding of the mechanics
of a protein [Hinsen, 2009].

Those results encouraged Yang et al. [2009] to invoke distance dependence for ENMs, referred
to as parameter-free ENM (pfENM). On the assumption that all residues interact with each other
the Kirchhoff (GNM, Eq. 1.2) and the Hessian (ANM, Eq. 1.5) matrix are inversely weighted by
the respective squared distances of all residue pairs. Hence, the quite arbitrary value of a cutoff
distance, whose optimal values vary for different proteins, is no longer necessary. pfENMs
in comparison to ENMs allow a more accurate prediction of local fluctuations with respect to
experimental data. Since pfENMs incorporate stronger long-range cohesion effects, discrete
domains are not allowed to move sufficiently to capture larger conformational transitions that
may occur in the context of biological function. If the power of the inverse distance dependence
is increased up to 6 or 8, i.e. short-range interactions are strengthened, even conformational
changes can be reproduced well.

Inspired by the presented studies in the field of ENMs concerning distance-weighted contact
definitions, we investigated a further contact definition based on spatial separation of residues.
ENMs invoking distance dependent force constants lead to major improvements in the prediction
of local fluctuations in contrast to cutoff-based ENMs using a binary contact definition (see
Eg. 1.8), but revealed shortcomings in modeling larger conformational transitions. Hence, we
define a smooth contact function fc, that weights interactions within a defined interval according
to the distance of the corresponding residue, but long-range interaction may be excluded from
consideration:

fc =
1

2
(1− tanh(a · Ri j − b)) ∈ [0, 1] (1.10)

The shape of the function is controlled by two parameters a and b (see Fig. 1.3). The idea
is that interactions beyond the distance cutoff rc are not omitted, their influence is decreased
depending on the separation distance Ri j of the respective residues i and j. Thus, we define a
distance cutoff rc that describes the inflection point of the contact defining function fc. Force
constants of harmonic springs connecting residues separated by Ri j ∈ [rc − w, rc + w] with
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Figure 1.3: We use fc =
1
2
(1− tanh(a · Ri j − b)) as

contact defining function. The influence
of the parameters a and b as defined in
Eq. 1.11 on the shape of the function is
illustrated. Larger values of a lead to a
sharper transition, whereas b/a defines
the position of the inflection point.

a constant w are weighted according to fc. Hence, long-range interactions are included or
omitted depending on the parameters of fc. The parameters a and b can be derived from the
definition of the inflection point of fc as rc = a/b:

a =
1

w
b = a · rc (1.11)

To avoid numerical issues, we set all contact values smaller than 10−9 to zero.

We defined a set of 74 proteins1 that consist of a single chain each with chain length l ranging
from 31 to 639 with a mean of about 200 amino acids. For each protein, an ANM as described
in section 1.1 is computed with the following contact definitions:

• Binary contact scheme with cutoff distance rc, see Eq. 1.8 (binary)

• Inverse weighting scheme according to Yang et al. [2009] (inverse)

• Weighting according to fc with cutoff distance rc and interval w, see Eq. 1.10 (tanh)

Furthermore, we employed two weighting schemes for parametrization of interactions of con-
tacting residue pairs.

• All covalent and non-covalent residue pairs are connected by harmonic springs with a
unique force constant. Hence, weights for peptide bonds K and each non-covalent interac-
tion κi j of amino acids of type i and j are set to K = κi j = 1 RT/Å2.

• Covalent bonds are modeled as harmonic springs with a force constant of K = 82 RT/Å2

as proposed by Hamacher & McCammon [2006]. Non-covalent interactions are modeled
by the weighting scheme that was put forward by Miyazawa & Jernigan [1996] (MJ).

Hence, we are able to judge on the influence of sequence specific potentials. The quality of the
contact modeling approaches is evaluated by correlating predicted to experimentally derived
B-factors. Local fluctuations, described by B-factors, are derived from diagonal entries of the

1 Protein Set A (see Appendix A.1)
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parameter domain increment

rc [Å]
6 – 8 0.2
9 – 30 1

32 – 50 2

parameter domain increment

w [Å]

0.2 – 1 0.2
2 – 10 1

12 – 30 2
35 – 100 5

Table 1.1.: Variation of Parameters rc and w, that are used for contact definition. Note that w ≥ 0.2 Å
leads to valid results for all proteins only for a cutoff distance rc ≥ 8 Å.
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Figure 1.4.: Mean and variance of the Spearman correlation coefficient of computed and experimental
B-factors for varying parameters of the contact defining function fc (see Eq. 1.10). All
interactions are modeled with a unique force constant.

covariance matrix. For both cutoff-based approaches, the model parameters rc and w are varied
(see Tab. 1.1). Note that for small cutoff distances, i.e. rc < 8 Å, we need to define w ≥ 0.4 Å
to avoid additional singularities, i.e. increasing the size of the null space.

Pearson and Spearman correlation coefficients of theoretical and experimental B-factors are
computed for each rc-w combination. Additionally, mean and variance of the correlation coef-
ficients of the protein set are determined. The results for the Spearman coefficient, which in
contrast to the Pearson coefficient reveals non-linear relations as well, are shown in Fig. 1.4 for
rc ∈ [6 Å, 20 Å] and w ∈ [0.4 Å, 20 Å]. Higher values of rc and w lead to worse correlations
(data not shown). Clearly, we can detect a band of parameter settings showing a high average
correlation (≈ 0.64) by small variances. Interestingly, smaller cutoff distances (rc ∈ [6 Å, 10 Å])
in combination with small to medium intervals (w ∈ [6 Å, 15 Å]) are to be preferred. The results
for the Pearson correlation coefficient reveal the same trends (data not shown).

Fig. 1.5 shows the comparison of the Spearman correlations obtained for the different contact
definitions. Since we have sampled various parameter settings for cutoff-based models, we de-
termined those settings that show the highest Spearman correlations averaged over all proteins
under consideration (see Tab. 1.2). The scatter plots which compare the prediction capabilities
of the contact models have been generated using the obtained parameters. Points below the

16 1. Molecular Biophysics



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

in
ve

rs
e

binary (rc = 17)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

bi
na

ry
 (

r c
=

 1
7)

tanh (rc = 6, w = 7)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

in
ve

rs
e

tanh (rc = 6, w = 7)

Figure 1.5.: Comparison of the diverse contact definitions. For each protein in the set the Spearman
correlation coefficient of experimental and predicted B-factors has been computed. The
results for the different contact definitions are plotted against each other. Results for the
cutoff-based methods are shown for the parameter setting that performed best on average.

binary model tanh model

rc = 17 Å rc = 6 Å w = 7 Å

Table 1.2.: Parameter(s) of different contact models that show the highest Spearman correlation of
predicted and experimental B-factors.

straight line indicate a better performance of the contact model plotted on the x-axis, otherwise
the y-axis model achieved a better prediction. Both the contact weighting scheme proposed by
Yang et al. [2009] and the contact model based on fc improve the ability of ANMs to reproduce
B-factors.

The analysis was repeated for amino acid specific potentials as well. We observed worse perfor-
mance in B-factor prediction for all contact schemes, i.e. the average correlation is reduced by
0.03–0.06. Invoking amino acid specificity, the tanh contact definition yielded the highest cor-
relation on average (measured as Spearman correlation coefficient), whereas the binary contact
matrix (Eq. 1.8) performed better than the scheme proposed by Yang et al. [2009] (data not
shown).

In our study, we discussed three approaches how to define a contact between amino acids for
an ANM of a protein (see section 1.1). The quality of ANMs is usually judged by the correlation
of experimentally determined and predicted B-factors that describe local fluctuations of atoms.
If we apply a unique parametrization to all interactions, i.e. we do not distinguish between
covalent and any non-covalent contact, we found that defining contacts proportional to 1/R2

i j
and our proposed weighting according to fc yield similar correlations of predicted and experi-
mental B-factors. Both methods are an improvement of the originally proposed binary contact
scheme. Adding sequence specificity to the interaction potentials leads to decreased correla-
tion coefficients for either method, and is, hence, not recommended. The results of our model
can be improved, if we determine the best parameters for each protein other than using those
parameters that performed best for the protein set on average as we did in this study.
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1.2.2 B-Factors without a Mechanical Model

Apart from ENMs we delineated in previous sections, Shih et al. [2007] developed a simple
method to derive protein dynamics directly from the tertiary structure of the protein without
a mechanical model. Their work is grounded on the observation, that atoms which are buried
inside the protein fluctuate less around their equilibrium position than atoms at the surface of
the protein do. Obviously, there is a linear relationship between atomic fluctuations and squared
distances from the protein’s center of mass. Although the knowledge of the amino acid sequence
is not required, Shih et al. [2007] yielded results for B-factors and correlation matrices that are
in excellent agreement with experimental data (crystallography, NMA). In the following, we
investigate if adding sequence specificity will improve the B-factor prediction results of the
presented simplistic approach. For this purpose, we defined a set of 960 monomeric proteins2,
that are classified according to diverse SCOP (Structural Classification of Proteins) [Murzin
et al., 1995] categories.

According to Shih et al. [2007], the fluctuations of an atom i are proportional to its spatial
distance (r p

i ) from the center of the protein p in native state. Thus, the B-factor of atom i is
obtained as follows:

Bi ∼ bi =
3

8π2 (~r
p

i )
2 (1.12)

where Bi and bi are experimental and theoretical B-factors, respectively. Again, we are con-
cerned with a coarse-grained protein model that takes only Cα atoms representing their respec-
tive amino acids into account. The distance of residue i to the center of the protein p is defined
as

(~r p
i )

2 = (~x i −~c p
0 )

T (~x i −~c p
0 ) (1.13)

with ~c p
0 being the center of the protein. The center of the protein can be computed as center of

mass ~c p
0 = ~x

p
0 or as geometric mean ~c p

0 = ~y
p

0 . The center of mass is computed using the Cα
coordinates and the masses of the respective amino acids mi taken from JenaLib [Reichert et al.,
2000].

~x p
0 =

Np∑
i=1

mi~x i

Np∑
i=1

mi

~y p
0 =

1

Np

Np∑
i=1

~x i (1.14)

Np is the number of residues in protein p. In the following, we will refer to the model proposed
by Shih et al. [2007] as ShihB.

Below, we will present two approaches based on these definitions, that invoke sequence speci-
ficity.

2 Protein Set B (see Appendix A.2)
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Approach 1 (asShihB): Adding amino acid specificity. Here, we introduce amino acid specific
scaling factors at(i) for residue i of type t(i). Hence, B-factors are computed as:

bi =
3

8π2 at(i)(~r
p

i )
2 (1.15)

Furthermore, we define the error function e, which has to be minimized. This function is a
measure of the distance between predicted and experimental B-factors B p

i .

e =
P∑

p=1

Np∑
i=1

�
B p

i −
3

8π2 at(i)(~r
p

i )
2
�2

(1.16)

To this end, we define a protein specific function Ip(t), which yields a set containing all indices
of residues of type t.

Ip(t) : {1, . . . , 20} −→ {i|t(i) = t} (1.17)

Thus, the error function in Eq. 1.16 can be rewritten as

e = c+
P∑

p=1

20∑
t=1

∑
i∈Ip(t)

�
a2

t∗((~r
p

i )
2)2− 2at∗(~r

p
i )

2B p
i

�
(1.18)

e = c+
20∑

t=1

�
a2

t∗αt − 2at∗βt

�
(1.19)

With

at∗ =
3

8π2 at and αt =
P∑

p=1

∑
i∈Ip(t)

((~r p
i )

2)2 and βt =
P∑

p=1

∑
i∈Ip(t)

(~r p
i )

2B p
i (1.20)

the error function is minimized by

at =
8π2

3

βt

αt
∀ t = 1, . . . , 20 (1.21)

Hence, we determine at for a set of proteins that consist of a single chain, only. The scaling
factors may be correlated to amino acid specific properties.

Approach 2 (psShihB): Adding protein specific translation and rotation. Shih et al. [2007]
computated protein specific scaling and translation constants Sp and Ap to improve B-factor
prediction. Similarly to Eq. 1.16, we defined a new error function e2 as

e2 =
P∑

p=1

Np∑
i=1

(B p
i − (Spat(i)(~r

p
i )

2+ Ap))
2 (1.22)
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The protein specific scaling and translation constants are computed as follows:

Sp =

Np∑
i=1

B p
i b p

i − 1
Np

 
Np∑
i=1

B p
i

! 
Np∑
i=1

B p
i

!

Np∑
i=1

b p
i b p

i − 1
Np

 
Np∑
i=1

b p
i

! 
Np∑
i=1

b p
i

! (1.23)

Ap =
1

Np




Np∑
i=1

B p
i − Sp

Np∑
i=1

b p
i


 (1.24)

where Np is the number of amino acids in protein p. Furthermore, B p
i and b p

i are the experi-
mental and predicted B-factors of protein p, respectively. We extend asShihB by introducing a
protein specific scaling factor Sp as well as a translation constant Ap.

In total, we need to determine 2P + 20 unknown values for Ap, Sp and at that minimize the
error function e2. For this purpose, the conjugate gradient method as implemented in the GNU
Scientific Library (GSL) [Galassi, 2009] was employed. By this method, all equations are mini-
mized at once, but, however, the results strongly depend on the start values (data not shown).
Note that we did not obtained results for all proteins in our set.

With asShihB we derived amino acid specific scaling factors that minimized the deviation of
theoretical predicted and experimental B-factors of a protein set. Tab. 1.3 shows the scaling
factors that were computed using two different protein center definitions. Apart from minor
deviations, we observed the same constants, which allows us to focus on the geometric definition
for further investigations. Interestingly, the values for different amino acids do not vary much
either.

We furthermore investigated the convergence of the scaling factors at for increasing numbers
of proteins. The results are shown exemplarily for amino acids methionine (M), glutamine (Q)
and tyrosine (Y) in Fig. 1.6. We observe a similar behavior for the other amino acid types as
well. Large fluctuations occur for smaller number of proteins (up to 100), but they do not

A C D E F G H I K L

gm 0.785 1.025 0.805 0.873 0.864 0.772 0.947 0.790 0.799 0.857
mw 0.785 1.025 0.805 0.876 0.865 0.770 0.947 0.789 0.799 0.857

M N P Q R S T V W Y

gm 0.949 0.774 0.817 0.842 0.835 0.777 0.720 0.761 0.714 0.741
mw 0.953 0.774 0.817 0.844 0.837 0.777 0.719 0.759 0.718 0.746

Table 1.3.: Amino acid specific constants at that were obtained to improve the B-factor prediction re-
sults of the method proposed by Shih et al. [2007]. Results are shown for different center
definitions: mw indicates results computed for the center of mass, whereas gm indicates
results that are computed for the geometric mean.
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Figure 1.6.: Convergence plot for amino acid specific scaling factors as computed with asShihB. The
results are presented for methionine (M), glutamine (Q) and tyrosine (Y).

vanish completely. Single proteins may change the results dramatically. This indicates that the
derived amino acid specific constants strongly depend on the underlying protein set. Hence,
the approach asShihB is applicable for homogeneous sets of proteins with similar properties and
thus showing similar mechanics.

The prediction performance of ShihB, asShihB and psShihB is compared in Fig. 1.7 for the pro-
tein with PDB code 153L [Weaver et al., 1995]. Clearly, the results of ShihB resemble the
experimental B-factor the most. In a more general comparison, we compute the total deviation
from experimental B-factors as well as the Spearman correlation coefficient for each modeling
approach. We observe similar correlation coefficients for ShihB and asShihB averaged over all
proteins (≈ 0.52), in contrast to a lower mean correlation of psShihB (≈ 0.32). Fig. 1.8 depicts
the comparison of both asShihB and psShihB with ShihB. For each model, the sum of absolute
deviations/errors e of theoretical and experimental was computed. For each protein, we deter-
mined the difference of ∆e = e0 − ex with x ∈ [asShihB,psShihB]; e0 is the error obtained by
ShihB. If ∆e > 0, the method proposed by Shih et al. [2007] performs better than the respec-
tive extension by means of absolute differences. Both extensions are outperformed by the basic
model. Note that only for the basic approach the scaling and translation terms are computed
protein specific, whereas both extensions aimed to utilize general amino acid properties that
can be found in all proteins to minimize the average deviation from experimental B-factors. The
results for the proposed sequence and/or protein specific extensions may be improved for set of
similar proteins to deduce mechanical features from structures.
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Figure 1.7.: For a single protein (PDB code: 153L [Weaver et al., 1995]) the experimental B-factors
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Figure 1.8.: The difference of absolute deviations ∆e from theoretical B-factors are shown for both the
asShihB and the psShihB model with respect to the basic method ShihB computed for each
protein in our protein set. Predicted B-factors for proteins with∆e < 0 show less deviations
from the experimental temperature factors for the extended than for the original model.
∆e = 0, which is highlighted by the red line indicates no difference of both approaches in
accuracy of B-factor prediction.
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1.3 Parameter Fitting – Proof of Principle

As we already discussed in section 1.1, ENMs have been developed to facilitate the analysis of
proteins and protein complexes. Dynamics of large RNA-protein complexes like the ribosome
were hardly accessible without reduction schemes [Hamacher & McCammon, 2006; Trylska
et al., 2005]. Previous studies presented coarse-grained approaches for MD simulations and
NMA based on ENMs [Li & Cui, 2002; Moritsugu & Smith, 2007] as well. Such reduced molecu-
lar models allow fast computations of mechanical characteristics of a protein, and, furthermore,
a high-throughput screening of in silico generated mutants to evaluate the importance of single
contacts or residues for protein dynamics [Hamacher, 2010]. Alongside the benefits of ENMs
their limitations, that have been discussed inter alia by Soheilifard et al. [2008], need to be con-
sidered, as well. Numerous coarse-grained approaches have been proposed to investigate the
mechanics of proteins, e.g. GNMs and ANMs [Atilgan et al., 2001; Bahar et al., 1997] plus ex-
tensions, as well as translation library screw models [Kundu et al., 2002; Kuriyan & Weis, 1991].
Based on simplified assumptions, such reduced protein models approximate protein dynamics
omitting for instance effects of electrostatics that are included implicitly at best.

To obtain reliable results, thorough parametrization has to be applied to ENMs. For example,
with cutoff distances rc the range of interactions is determined which affects dynamical prop-
erties of residues. Short cutoff distances omit long-range interactions that have been detected
to play a prominent role for potassium channels [Gazzarrini et al., 2004]. For large rc values,
distinct signals may get lost due to self-averaging over nearly all interactions. Both GNM and
ANM (see section 1.1) do not take into account sidechain interactions since amino acids are
modeled as beads placed on the respective Cα position. The parametrization of the interaction
potentials affects the resulting mechanics of the protein. For topological studies, a homoge-
neous parametrization scheme that does not discriminate between bonded and non-bonded
contacts would be preferred to determine how structure defines dynamics. For more detailed
analysis, amino acid specific potentials can be employed to parametrize the corresponding force
constants, as was put forward by Hamacher & McCammon [2006]. Hence, derived dynamical
features depend on properties of amino acids as well. To this end, force constants of springs
connecting residues within a chain, also called intrachain contacts, can be parametrized by
knowledge-based MJ potentials [Miyazawa & Jernigan, 1996] that have been derived from con-
tact frequencies and take into accounts various effects, such as electrostatics, hydrogen bonds,
etc.. Interchain contacts, i.e. interacting residues of different subunits/chains of a protein, may
be weighted according to values suggested by Keskin et al. [1998] (KE). The rationale behind the
two-class weighting scheme is a differing statistic of contact frequencies within or among chains
due to packing density and hydrophobic effects. Hamacher & McCammon [2006] suggested
a force constant of K = 82 RT/Å2 as parameter for covalent bonds in accordance to previous
studies [Ming & Wall, 2005; Trylska et al., 2005]. Since covalent bonds are far more rigid than
non-covalent interaction, weights of non-covalent bonds are typically an order of magnitude
smaller than those of peptide bonds (average MJ≈ 3.2 RT/Å2, average KE≈ 3.5 RT/Å2).

In the following, we discuss three approaches which are based on ANMs (see section 1.1) to
extract amino acid specific interaction potentials directly from an ensemble of conformations of
a common energy minimum structure sampled by MD simulations or other methods. Result-
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ing parametrization schemes may enhance the understanding of mutual interactions of residues
within proteins with respect to structure and dynamics. Prior to an application to “real” data,
we perform a proof-of-principle analysis for the methods (presented in sections 1.3.1, 1.3.2
and 1.3.3). Therefore, we try to regain the (known) interaction potentials of artificially con-
structed data of BPTI and discuss the performance of the applied approaches. A procedure that
fails to retrieve the interaction potentials of this artificial setting can be omitted from further
consideration.

The multidimensional PES of a biomolecule comprises multiple minima that are separated by
saddle points [Stillinger & Weber, 1984]. Vibrations within such energy basins can be captured
by ENMs, but jumps among minima are beyond their scope, which presupposes thorough con-
formation sampling. In sections 1.4.1 and 1.4.2 we consider two proteins, BPTI and polyalanine
(PA), and describe the respective sampling of data that will be used in section 1.4.3 to ex-
tract amino acid specific interaction potentials by application of the presented parameter fitting
method(s).

1.3.1 Stochastic Tunneling

Stochastic algorithms are often applied if the optimization problem under consideration is not
feasible for deterministic approaches. So-called Monte Carlo (MC) algorithms [Metropolis &
Ulam, 1949] based on statistical thermodynamics have already successfully been applied to
computationally difficult problems, e.g. protein folding [Li & Scheraga, 1987] and the traveling
salesman problem [Černý, 1985]. In general, MC approaches are employed to minimize the
energy of the system under consideration by reiterated stochastic generation of new system
configurations. A transition of state x i−1 of iteration i − 1 to state x i of iteration i is accepted
if the Metropolis criterion [Metropolis et al., 1953] is satisfied: either the energy Ei is smaller
than Ei−1, i.e. ∆E = Ei − Ei−1 < 0, or a random number rnd ∈ [0,1] fulfills the condition
rnd ≤ e−β∆E. The internal parameter β regulates the convergence behavior of the algorithm; it
is physically related to the temperature T , as β = 1/kB T with kB being the Boltzmann constant.

Systematically exploring the PES of a protein is exponentially difficult in the number of residues,
as we are concerned with a huge number of low-energy conformations separated by high kinetic
barriers. The existence of many local minima is referred to as multiple-minima-problem [Li &
Scheraga, 1987]. Although, a consensus regarding the existence of a “funnel structure” for
the dynamics of protein folding has emerged in the past [Bryngelson et al., 1995; Dill & Chan,
1997; Leopold et al., 1992], the search for global minima of the PES, which are assumed to
correspond to native state configurations, can get trapped in local minima surrounded by high
kinetic barriers. To tackle the difficulty of passing from an encountered ground state to another,
stochastic tunneling (STUN) was introduced as an extension of MC algorithms with minimiza-
tion [Hamacher, 2006; Hamacher & Wenzel, 1999; Wenzel & Hamacher, 1999]. The physical
idea behind STUN is to allow tunneling of forbidden regions that have shown to be irrelevant
for the low-energy properties of the problem. Hence, kinetic barriers between different local
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STUN transformation function fs

fs(E) = 1− e−γ(E−Eb))

fs(E) = tanh(γ(E − Eb))
fs(E) = ln(γ(E − Eb) +

p
1+ γ2(E − Eb)2)

Table 1.4.: The presented functions have shown their potential of transforming the PES to allow tunnel-
ing [Hamacher, 2006]. E denotes the current energy of the system, and Eb the lowest energy
encountered thus far. γ is the “tunneling” parameter of the algorithm. Either function can
be used in the MC-STUN approach.

minima are lowered and can be overcome more easily. The following non-linear transformation
of the PES is used for STUN here:

fs(E) = sinh(γ(E − Eb)) (1.25)

with Eb being the lowest minimum encountered thus far; γ is the “tunneling” parameter of the
algorithm. Hamacher [2006] proposed additional functions to transform the PES of a protein
(see Tab. 1.4) that can be used in order to improve the convergence of the algorithm depend-
ing on the problem. Convergence behavior may further be improved by adjusting the internal
parameter β during the simulation: if a specified threshold for the short-time moving average
of fs is not exceeded, β is reduced by some fixed factor, otherwise it is increased [Wenzel &
Hamacher, 1999]. In addition, the probability to accept a transition from x i−1 to x i of the
original Metropolis criterion is modified for STUN as well. The newly generated configuration
x i is accepted if either the resulting (transformed) energy fs(Ei) is lower than fs(Ei−1) or the
condition rnd ≤ e−β( fs(Ei)− fs(Ei−1)) is fulfilled for a random number rnd ∈ [0,1].

Fitting with MC-STUN

We apply MC-STUN to parametrize underlying amino acid interaction potentials of a Hessian or
a covariance matrix which have been derived from experimental data, such as MD simulations,
NMA, etc.. We assume that all (clustered) configurations fluctuate around a central structure
S, a local minimum of the PES. We derive an ANM (see section 1.1) for this central structure
with unknown interaction potentials to parametrize amino acid contacts. The parameters that
best describe the data generating process are obtained if the “distance” of experimental and
theoretical ANM data is minimal. As distance d we define the Frobenius norm (FN) between
the respective Hessian or covariance matrices M exp and MANM:

FN(M exp, MANM) =

È∑
i j

�
M exp

i j −MANM
i j

�2
(1.26)

In terms of MC algorithm, we do not minimize the energy E for a protein system but the distance
d between experimental matrices M exp and theoretical ones MANM. For each encountered local
minimum db, that represents the smallest distance between experiment and theory thus far, we
obtain a set of local optimal interaction parameters ρk, k = 1, · · · , K with K being the number
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of interaction types. Different definitions of interaction types may invoke discrimination of
covalent and non-covalent interactions up to amino acid specificity. In each iteration step i,
each interaction parameter ρ(i)k is stochastically modified by ρ(i)k = ρ

(i−1)
k + 2ε(0.5− r), where

r is a random number drawn from a uniform distribution in [0,1] and ε describes the margin
of variability of the parameters. Transitions are accepted if the Metropolis criterion is satisfied
for the STUN-transformed distances. In summary, the pseudocode of the employed MC-STUN
algorithm is shown in algorithm 1.

Algorithm 1 Pseudocode for MC-STUN.
for i = 1→ N do

stochastic modification of all parameters ρ(i)k = ρ
(i−1)
k + 2ε(0.5− r)

compute distance di = FN(M exp, MANM,(i))
compute distance difference ∆= fs(di)− fs(di−1)
if ∆< 0 or rnd ≤ e−β∆ then

set ρ(i)k = ρ
(i)
k

else
set ρ(i)k = ρ

(i−1)
k

end if
end for

In the following proof-of-principle analysis, we examine the capability and performance of MC-
STUN to derive harmonic interaction potentials from an artificially constructed Hessian matrix
its pseudoinverse, the covariance matrix, using ANMs (see section 1.1).

MC-STUN : Proof of Principle

As input, we constructed a Hessian matrix H (see Eq. 1.5) and its respective covariance matrix C
(see Eq. 1.6) for the bovine pancreatic trypsin inhibitor (BPTI) (PDB code 6PTI [Wlodawer et al.,
1987]) based on ANM theory. Interaction potentials of peptide bonds were parametrized with
K = 82 RT/Å2 as proposed by Hamacher & McCammon [2006]. Non-bonded interactions were
modeled within a distance of 13 Å and parametrized by the knowledge-based MJ interaction
potentials [Miyazawa & Jernigan, 1996]. We employed MC-STUN to regain the interaction
parameters that have been used to construct those matrices.

To extract the interaction potentials, we again used an ANM setting the cutoff distance to rc =
13 Å. We initialized force constants for non-bonded contacts with the arbitrary value of ρ(0)k =
5 RT/Å2 for all amino acid interactions. Covalent bonds were initially parametrized with the
potential ρ(0)K = K = 82 RT/Å2. In total, we are concerned with 151 types of amino acid
interactions within BPTI at rc = 13 Å which is used both for construction and fitting. Interaction
types that are not present, are omitted from the fitting procedure. Since the convergence of
the fitting algorithm depends on its internal parameters, we varied those parameters ε, β and
γ (see Tab. 1.5). We restricted the number of iterations to 108 and 106 for the fitting of the
Hessian and the covariance matrix, respectively. With the resulting minimum distance db, we
are able to compare different fittings of the same matrix. Smaller distances are related to better
minima and, hence, the corresponding parameters are closer to those used for data generation.
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settings for Hessian fittings settings for Inverse fittings

ε 0.1, 0.2, 0.3 ε 0.1, 0.2, 0.3, 0.4
β 1, 2, 5, 10, 15, 20, 25, 50, 75, 80, 90,

100, 110, 125, 150, 175, 200, 225
β 0.05, 0.1, 0.3, 0.5, 0.7, 0.9

γ 0.001, 0.01, 0.05, 0.1, 0.2, 0.25, 0.3,
0.35, 0.4, 0.5, 0.6, 0.7, 0.9

γ 0.1, 3, 10, 50, 100, 400, 1000, 1500,
2000

Table 1.5.: MC-STUN parameter settings. We varied the internal parameters ε, β and γ of MC-STUN to
achieve convergence of the algorithm. ε describes the margins of variability for the stochastic
modification of fitted interaction potentials at the beginning of each iteration. β is a variable
of the Metropolis criterion that modulates the acceptance of “worse” results, and γ controls
the tunneling behavior of the algorithm.

As we know the underlying parametrization scheme, we can also evaluate the goodness-of-fit
on an absolute scale. To this end, we computed correlation coefficients for both matrices and
parameters as well as the deviations of parameter values.

MC-STUN : Results

For the proof of principle, we investigated the capability of the extended MC-STUN algorithm
to determine amino acid specific interaction potentials that have been used to construct both
Hessian and covariance matrix based on ANM theory. To this end, the fittings were started with
varying internal parameters ε, β and γ. In Tab. 1.6 we list the algorithm parameters that per-
formed best in terms of yielding minimum distances. In order to evaluate the quality of the fitted
interaction strengths, we used FN (see Eq. 1.26) as distance measure. It computes the deviation
of the matrix generated with fitted interaction potentials from the reference input matrix. We
notice that the absolute value of the best distance db that was encountered during simulation
is not comparable for both types of matrices. This observation can be explained by differing
domains of definition. Values of the Hessian matrix are derived directly from protein coordi-
nates and interaction potentials, whereas the covariance matrix is computed as pseudoinverse
from the Hessian (see Eq. 1.5 and 1.6). By this non-linear transformation, large values of the
Hessian matrix lead to small values of the covariance matrix and vice versa. Hence, the result-
ing distance db can be used to judge the quality of different fitting runs for the same problem
only. For this reason, we computed further qualitative measures for each fitted set of interaction
potentials: a) Pearson correlation of both resulting Hessian and covariance matrix with respect
to the input data (corh, cori), b) Pearson correlation of derived and input interaction strengths
(corρ) as well as c) absolute differences of corresponding potentials, thereby we distinguish
non-bonded (∆ρ) and bonded (∆pep) values. The results for the five best fittings of each ma-
trix are shown in Tab. 1.6. We detect an evident correspondence between small distances and
small deviations of the fitted interaction potentials leading to high correlation coefficients of the
respective matrices.

Obviously, nearly all of the best fittings invoke a small ε = 0.1, which defines the maximum
variation of the interaction parameters ρk at the beginning of each iteration step. Small varia-
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Hessian
ε β γ db corh cori ∆ρ ∆pep corρ

0.1 110 0.7 3.8002 0.9999 0.9999 11.84 0.002 0.9974
0.1 90 0.9 3.8722 0.9999 0.9999 10.76 0.039 0.9978
0.1 125 0.7 3.8976 0.9999 0.9999 12.37 0.009 0.9973
0.1 80 0.9 3.9135 0.9999 0.9999 12.84 0.015 0.9970
0.1 225 0.35 3.975 0.9999 0.9999 11.37 0.001 0.9973

Inverse
ε β γ db corh cori ∆ρ ∆pep corρ

0.1 10000 0.9 0.0148 0.9999 0.9999 36.58 1.48 0.9644
0.1 5000 0.9 0.0249 0.9998 0.9997 57.28 3.90 0.9342
0.1 5000 0.7 0.0292 0.9998 0.9996 80.85 2.13 0.8896
0.1 2000 0.9 0.0557 0.9994 0.9987 134.72 5.57 0.7558
0.2 2000 0.9 0.0577 0.9991 0.9986 144.52 3.65 0.6728

Table 1.6.: The results for MC-STUN based fittings of interaction potentials by usage of the constructed
ANM-Hessian or its pseudoinverse (Eq. 1.5 and 1.6). For each variant, we listed the five
best fittings only, i.e. those with smallest FN values db for Hessian or covariance matrix
depending on the input matrix type. Varying internal parameters ε, β and γ were used. To
evaluate the quality of the derived interaction potentials, we computed absolute deviations
for non-bonded (∆ρ) and bonded (∆pep) interaction as well as the resulting correlation of
interaction potentials (corρ), and the corresponding Hessian (corh) and covariance matrices
(cori).

tions of the fitted values are preferred. However, further initial settings of interaction potentials
should be examined for this finding as well, to exclude an artifact owing to the proximity of start
to “real” values. Note that although the initial interaction potentials were chosen to be close to
those used for the reference matrices, not all fitting routines were capable to yield appropriate
results (see Fig. 1.9). What becomes evident especially for fittings in the space of the inverse
matrix – i.e. the covariance matrix – is that the best results were obtained for high β values in
combination with high γ values. The internal parameter γ defines the tunneling behavior of the
algorithm, i.e. for larger values kinetic barriers of the PES are easier to cross. A large value for
β enforces the algorithm to accept almost no distance increases, as it controls the probability
to accept a transition in a state that is worse than the previous one. Hence, using the observed
parameter settings, large areas of the PES are sampled; the acceptance of state transitions is
strongly biased towards “better” states with a smaller energy or in our cases smaller differences
of input and fitted matrix. The choice of optimal parameters for both Hessian and inverse based
fittings is similar, but differs in the actual magnitude.

In Fig. 1.9 we show the results for all fittings with varying internal parameters. We compare the
results for fittings of the Hessian matrix and its inverse matrix. Therefore, we plotted the final
minimum distances db with the Pearson correlation coefficient for the resulting parameters and
matrices with respect to the input (artificially constructed) data. Interestingly, the correlation of
both Hessian and covariance matrix is not sensitive to the actual parametrization of the interac-
tion potentials. Even for the largest FN values, a correlation of 0.93 is obtained, for the Hessian
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for the fitted interaction parameters obtained
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Figure 1.9.: Results for MC-STUN fittings based on the Hessian (a, b) and its inverse (c, d), which
were performed to determine the underlying interaction potentials ρk. For each minimum
distance db that describes the deviation of the fitted from the original matrix, the correlation
of fitted contact potentials (a, c) and the corresponding matrices (b, d) are plotted for each
reference matrix type, respectively.

matrix we find an even higher correlation with 0.98. This results presumably from the large
difference between the interaction potentials of covalent and non-covalent contacts, that may
dominate the matrix structure. In addition, the matrix correlation results are influenced by the
type of the reference matrix. For example, we detect less scattering for the Hessian than for the
covariance correlation if we performed the fit with the Hessian as reference matrix, at least for
smaller distances db. The same holds for the fitting of the pseudoinverse as well, even though
the covariance matrix is more sensitive to misfitted interaction parameters than the Hessian. In
general, we notice that the derivation of interaction potentials is easier using the Hessian ma-
trix as reference system. Appropriate results showing high correlation with the original values
were achieved for diverse parameter settings. In contrast, for the covariance matrix only three
fitted sets of contact potentials showed a correlation larger than 0.8 with the original ones.
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This comes as no surprise, since the interaction strengths are directly contained in the Hessian
matrix, whereas the covariance matrix is obtained by a non-linear transformation. Hence, the
force constants parametrizing springs of contacting residues are only implicitly contained in this
matrix. Another aspect, that needs to be discussed in this context, is the runtime of the algo-
rithm. In theory, the number of iterations that were performed should preferably be increased
to assure better convergence and, therefore, better results. In the case of fitting covariance
matrices, limitations arise from the protein size since in each iteration the pseudoinverse of the
Hessian has to be computed, which increases the runtime dramatically. Fitting of covariance
matrices may get infeasible due to resource restrictions even though we are concerned with a
coarse-grained protein model. Furthermore, the initial search for optimal algorithm parameters
needs to be performed for each fitting setup. Therefore short runs are simulated to determine
those parameters, but their influence on long-time convergence behavior of the algorithm re-
mains unclear. Nevertheless, we were able to demonstrate the capability of MC-STUN to derive
interaction potentials of a given ANM based on both Hessian and covariance matrix.

Although we have proven that interaction potentials can be determined from a given Hessian
or covariance matrix, we omit application of this method to derive interaction potentials from
a set of experimental structures, derived from e.g. MD simulations, due to its shortcomings.
We therefore decided to turn our attention to an alternative parametrization procedure which
is described next.

1.3.2 Likelihood Based Methods

Maximum likelihood estimation (MLE) is a well-established procedure to determine the data
generating parameters of stochastic processes. The idea is to identify the parameters of the
underlying model by maximizing the probability to observe the given data set. Numerous stud-
ies have employed MLE based approaches: For example, Murshudov et al. [1997] presented
an MLE based method for macromolecular structure refinement; it was also applied to DNA
sequences to derive evolutionary trees [Felsenstein, 1981] or to estimate haplotype frequencies
[Excoffier & Slatkin, 1995]. A major advantage over MC based methods (section 1.3.1) is the
guarantee to identify the optimal parameters whenever the likelihood is maximized. In contrast,
stochastic algorithms locally sample the whole parameter space and may never converge to a
local optimum.

For a given data set ~x = (x1, x2, ..., xn) with independent, identically distributed observations x i
the likelihood is defined as the product of the respective probabilities given a process with the
underlying set of parameters ~Θ.

P(~x | ~Θ) =
∏

i

P(x i| ~Θ) (1.27)

Thus, the observations ~x have been generated by a process with the yet unknown model pa-
rameters ~Θ. The best estimate of those process parameters is found for the maximum of the
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likelihood. Similarly, maximum a posteriori estimation (MAPE) is applicable as well, whenever
prior knowledge is available. The posterior probability is derived from the Bayesian theorem:

P( ~Θ|~x) = P(~x | ~Θ) · P( ~Θ)
P(~x)

=
∏

i

P(x i| ~Θ) · P( ~Θ)
P(x i)

(1.28)

Since the probability of the observed events P(x i) does not depend on the process parameters
and can thus be considered as constant during ~Θ-optimization, it is omitted from the estimation
routine. For convenience, the log-likelihood log P(~x | ~Θ) is often used instead of the likelihood
P(~x | ~Θ). This is justified as application of the logarithm changes only the absolute value but
not the position of the maximum (or minimum). Hence, we apply MLE and MAPE by using
the log-likelihood rather than the likelihood. The estimation of model parameters is similar for
both MLE and MAPE, but the latter approach additionally invokes a priori information, and is
formulated as:

~̂Θ =arg max
~Θ

log P(~x | ~Θ) = arg max
~Θ

∑
i

log P(x i| ~Θ) (1.29)

~̂Θ =arg max
~Θ

log(P(~x | ~Θ) · P( ~Θ)) = arg max
~Θ

∑
i

log P(x i| ~Θ) + log P( ~Θ) (1.30)

Maximizing the likelihood with respect to the unknown parameters invokes computing of
derivatives of the log-likelihood, and of the prior in case of MAPE, in terms of Θ j, i.e. for
each parameter. The resulting equations are set to zero and and solved to obtain the estimates
of Θ j.

Fitting with MLE

In this study, we employ MLE/MAPE to determine amino acid specific interaction potentials
that best describe the mechanics of a protein. Again, we make use of the coarse-grained ANM
representation (see section 1.1) to derive those contact potentials. Such potentials are used to
model the spring constants of contacting residues in a protein. The larger the respective force
constant is the more rigid is the connection of the pair of amino acids. Here, we are concerned
with a set of different experimental structures, e.g. from MD simulations, of a protein describing
fluctuations around an equilibrium state. Estimating the interaction potentials of the fluctuating
protein paves the way to understand its intrinsic biomechanical properties. To this end, we
define the likelihood to observe a single protein configuration ~x as:

P(~x | ~Θ) = e−
β
2 ·~x T ·V ( ~Θ)·~x

Z( ~Θ)
(1.31)

where V (Θ) denotes the Hessian matrix of an ENM (Eq. 1.5) and Z the partition function, which
is defined as follows:

Z( ~Θ) =

∫
e−

β
2 ·~x T ·V ( ~Θ)·~x d3N x =

3N∏
i=7

r
2π

λi
(1.32)

1.3. Parameter Fitting – Proof of Principle 31



For the Hessian matrix, we find 3N−6 non-zero eigenvalues λi, N is the number of residues. In
the following, we set β = 1. The likelihood of a single configuration ~x describes its probability
given a protein model that parametrizes interactions between contacting amino acids by the
potentials ~Θ. Note that ~x is a displacement vector that contains the absolute deviations of each
amino acid from the assumed equilibrium state. Based on Eq. 1.31, we define the likelihood for
a set of S structures, that were sampled independently from the very probability distribution as:

P({~xs}| ~Θ) =
e
− 1

2

S∑
s
~x T

s ·V ( ~Θ)·~xs

Z( ~Θ)S
(1.33)

For the estimation of the underlying interaction potentials, we maximize the log-likelihood av-
eraged over the set of configurations.

log P({~xs}| ~Θ) =−
1

2S

S∑
s

~x T
s · V ( ~Θ) · ~xs − log Z( ~Θ) (1.34)

In addition, we introduce prior information, e.g. by employing knowledge-based interaction
potentials [Keskin et al., 1998; Miyazawa & Jernigan, 1996], and, hence, perform an MAPE
as well. Therefore, we assume the parameters to be drawn from a normal distribution that is
characterized by an expectation value µ and a standard deviation σ. The logarithm of the a
priori distribution is:

log P(Θi) =−
1

2
log(2πσ2

i )−
1

2

(Θi −µi)2

σ2
i

(1.35)

Combining the averaged log-likelihood (Eq. 1.34) and the logarithmic prior (Eq. 1.35), we get
the log-posterior:

log P( ~Θ|{~xs}) =−
1

2S

S∑
s

~x T
s · V ( ~Θ) · ~xs − log Z( ~Θ)− 1

2

∑
i

�
log(2πσ2

i ) +
(Θi −µi)2

σ2
i

�
(1.36)

Maximizing the log-likelihood or the log-posterior requires the derivation of those probability
functions with respect to all Θi. The derivative of the partition function Z (Eq. 1.32) cannot
be determined analytically but must be computed numerically. Therefore, we investigate the
smoothness of Z , i.e. a monotonous behavior even if interaction potentials are modified. To this
end, it is sufficient to consider an effective partition function z that is defined as:

z =
3N∑
i=7

logλi (1.37)

We determined the ANM-Hessian matrix for BPTI (PBD code 5PTI [Wlodawer et al., 1984]) and
computed the respective eigenvalues λi via SVD. Interactions of contacting amino acids were
parametrized by MJ interaction potentials [Miyazawa & Jernigan, 1996]. We varied the force
constant that describes the strength of GLY-ARG contacts in the range [0,10] with a step size
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Figure 1.10.: The smoothness of the (effective) partition function (Eq. 1.37) was investigated by varying
the interaction potential of one (a) or two (b) amino acid contact types.

of 0.1. Furthermore, we repeated the computation by varying GLY-ARG interaction strengths as
described and additionally the potential for ALA-PRO contacts in the same range. Those types
of amino acid contacts have been chosen since they can be found more than once in BPTI for a
contact distance rc = 13 Å. For both one and two modified interaction potentials, the effective
partition function z exhibits a monotonous behavior without any points of discontinuity (see
Fig. 1.10). Thus, we convinced ourselves of the numerical stability of numerical derivatives of
Z .

The derivatives of the logarithmic likelihood (Eq. 1.34) and posterior (Eq. 1.36) are computed
and set to zero:

∂

∂ Θi
log P({~xs}| ~Θ) =−

1

2S

∑
s

~x T
s · V (i)( ~Θ) · ~xs −

Z (i)( ~Θ)

Z( ~Θ)
!
= 0 (1.38)

∂

∂ Θi
log P( ~Θ|{~xs}) =−

1

2S

∑
s

~x T
s · V (i)( ~Θ) · ~xs −

Z (i)( ~Θ)

Z( ~Θ)
− (Θi −µi)

σ2
i

!
= 0 (1.39)

with V (i)( ~Θ) being the derivative of the Hessian matrix in terms of Θi. For the derivative of the
partition function Z , we use the first order difference as a numerical approximation.

Z (i)( ~Θ)≈ Z( ~Θ)− Z( ~Θ− h~ei)
h

(1.40)

where ~ei is a unit vector, i.e. a vector containing zeros for each position, except the ith entry
is one, and the constant h approaches zero. A numerically stable computation of the term
Z(i)( ~Θ)/Z( ~Θ) was obtained by using the formula and setting h= 10−7:

Z (i)

Z
=

1

h


e

3N∑
i=7

�
− log
p
λ̃i+log

p
λi

�

− 1


 (1.41)
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We presented the mathematical framework, that is required to use likelihood based methods to
estimate interaction potentials that describe the connectivity of amino acid types in a structure
ensemble of a protein. The fitting procedure utilizes ANM theory (see section 1.1) for modeling
the Hessian matrix and the corresponding eigenvalues. A set of structures described by their
respective displacement vectors is required as input, other than for MC-STUN (see section 1.3.1)
which was based on a Hessian or a covariance matrix that were derived from a multitude of
protein configurations. Note that the runtime of MLE/MAPE fitting depends on the number of
interaction types only and not on the number of snapshots. In the following, we perform a proof-
of-principle analysis for the likelihood based approaches and discuss the capability to extract
interaction potentials from a set of displacement vectors ~x drawn from a known probability
distribution (see Eq. 1.31).

MLE/MAPE : Proof of Principle

To validate the capability of the likelihood based fitting approaches to extract amino acid specific
contact potentials, we created a set of snapshots with known interaction parameters. We com-
puted an ANM-Hessian matrix parametrized with amino acid specific MJ potentials for residue
pairs closer than a cutoff distance rc = 13 Å. Peptide bonds were weighted by 82 RT/Å2. Similar
to the MC-STUN approach (section 1.3.1) that has proven the capability of regaining interac-
tion potentials from both Hessian and covariance matrix, we applied the fitting to the protein
BPTI (PDB code 6PTI [Wlodawer et al., 1987]). Snapshots or rather displacement vectors ~x are
distributed according to the probability distribution described by the Hessian matrix V (~Θ) (see
Eq. 1.31).

We applied a Cholesky decomposition with pivoting strategy to the covariance matrix C yield-
ing C = L · LT to generate snapshots that are correlated according to C . Furthermore, a vector
~y comprising 3N elements drawn from a standard normal distribution N (µ = 0,σ = 1) is
computed and multiplied with the lower triangular matrix L resulting in ~x = L · ~y . By pivotal
resorting, we obtain a displacement vector ~x which was drawn from the defined probability
distribution. To evaluate the quality of snapshot generation, we determined the number of con-
figurations that is necessary to reconstruct the initial correlation of amino acids pairs described
by C .

The actual fitting routine was implemented using a multidimensional root-finding algorithm of
the GNU Scientific Library (GSL) [Galassi, 2009]. The algorithm was not capable to find the
root for all 151 interaction types at once (data not shown). To tackle this issue, interaction
potentials were estimated successively. We, therefore, systematically grouped amino acids into
disjunct groups as was suggested by Pape et al. [2010] for amino acid alphabet reduction (see
Fig. 1.11, discussed in section 4.2). Starting with a single amino acid type and, thus, two
possible types of interactions between any two residues (covalent vs. non-covalent), interaction
potentials are retrieved from the set of displacement vectors. Note that peptide bonds are
considered separately in each step. Subsequent iterations use randomly modified results from
the previous tree level as starting point. Each value is stochastically changed within ±10%. A
schematic view of the tree-based “fit-n-split” amino acid handling is presented in Fig. 1.11. Prior
information needed for MAPE (Eq. 1.35) is obtained by averaging the MJ parameters according
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Figure 1.11.: On the left, the amino acid grouping scheme as proposed by Pape et al. [2010] is shown.
The arrow indicates the order, in which the grouping is applied to the fitting of interaction
potentials using MLE/MAPE. On the right, we illustrate how the splitting of interaction
types is performed for subsequent levels.

to the amino acid alphabet of the current tree level yielding the expectation value µ of a normal
distribution.

Primarily, we compared the performance of MLE (Eq. 1.34) and MAPE (Eq. 1.36) for a set of
10,000 snapshots that were generated as described before. For MAPE, we used a rather narrow
prior based on a normal distribution with a standard deviation of ±5% of the expectation value
which is computed from the (averaged) MJ potentials. In addition, a sensitivity analysis was
performed for MAPE to detect the influence of the number of snapshots as well as the width
of the prior, which is defined as standard deviation, on the quality of the fitted interaction
parameters (see Tab. 1.7).

MLE/MAPE : Results

Since MLE and MAPE require a set of independent snapshots drawn from the respective dis-
tribution, we used a Cholesky decomposition approach to generate those displacement vec-
tors. Here, we examine how many snapshots are necessary to approach the original correlation
among residues as described by the covariance matrix C which was used for snapshot genera-
tion. To this end, we computed the correlation of the displacement vectors, i.e. the fluctuation
of amino acids. In Fig. 1.12 we present a scatterplot comparing entries of the initial correla-
tion matrix with the entries of correlation matrices that were computed for 10, 100, 1,000 and
10,000 snapshots. Obviously, the resemblance of both data sets increases with the number of
snapshots. To quantify this observation, we computed the Pearson correlation coefficient be-
tween initial residue correlation and the resulting correlation derived for varying numbers of
snapshots. For about 500 independent displacement vectors, we detect a correlation of larger
than 0.9. Hence, a set of about 500 structures captures more than 90% of the dynamics of a
protein.

To verify the concept of likelihood based estimation of interaction potentials from a set of
displacement vectors fluctuating around a central protein configuration, we generated 10,000
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index # sns µ σ [%] index # sns µ σ [%]

1 (38) 100 MJ 10 (100) 12 10,000 MJ 5
2 (39) 250 MJ 10 (100) 13 10,000 MJ 10
3 (40) 500 MJ 10 (100) 14 10,000 MJ 15
4 (41) 750 MJ 10 (100) 15 10,000 MJ 20
5 (42) 1,000 MJ 10 (100) 16 10,000 MJ 30
6 (43) 2,500 MJ 10 (100) 17 10,000 MJ 40
7 (44) 5,000 MJ 10 (100) 18 10,000 MJ 50
8 (45) 7,500 MJ 10 (100) 19 10,000 MJ 65
9 (46) 10,000 MJ 10 (100) 20 10,000 MJ 75
10 (47) 25,000 MJ 10 (100) 21 10,000 MJ 85
11 (48) 50,000 MJ 10 (100) 22 10,000 MJ 100

49 - 56 1,000 MJ 10 23 10,000 MJ 150
57 - 64 1,000 MJ 100 24 10,000 MJ 200

32 10,000 EQ 100
33 10,000 EQ 150
34 10,000 EQ 200

Table 1.7.: Settings for the sensitivity analysis which was performed for MAPE-based fitting of inter-
action potentials. Values in parentheses give alternative settings. Fitting runs belonging to
indices not mentioned here are omitted from further analysis. MJ indicates individual prior
means for all interaction types, whereas EQ discriminates only covalent and non-covalent
bonds, for the latter the mean MJ value is used to center the normally distributed prior.

snapshots according to a covariance matrix C which was derived from an ANM parametrized
with MJ interaction potentials (see section 1.1). The snapshots served as input for the fit-
ting of amino acid specific potentials by an MLE or MAPE approach. MAPE (Eq. 1.36) utilizes
prior knowledge in contrast to MLE (Eq. 1.34), which was implemented using a normal dis-
tribution. For both approaches, the parameters were derived in subsequent iterations with an
increasing amino acid alphabet. The resulting interaction potentials of both MLE and MAPE are
compared with the input MJ values. Fig. 1.13 illustrates the quality of both employed fitting
routines. Clearly, the parameters obtained by MAPE show higher resemblance with the actual
MJ parameters, whereas the results of MLE exhibit more scatter. Thus, invoking prior know-
ledge improves the quality of the fit dramatically. To quantify this observation, we computed
the correlation of obtained and initial interaction parameters as well as their deviation (see
Fig. 1.13). MLE achieves a correlation of about 0.6 of initial and fitted force constants used to
weight non-covalent amino acid connections. In contrast, the correlation obtained for MAPE is
nearly one indicating a qualitatively higher fit, a conclusion that is further supported if we look
at the absolute deviation ∆ρ of those parameters. The differences were summed up for all 150
non-covalent interaction types present in BPTI. In total, the MLE derived interaction potentials
differ from the MJ parameters by a value of about 1 RT/Å2 per parameter, which is about one
third of the mean MJ, whereas the deviations are negligible for MAPE. Interestingly, the pep-
tide bond parametrization obtained by MLE is closer to the input value of 82 RT/Å2 than the
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Figure 1.12.: For varying numbers of snapshots the correlation of amino acids was determined and
compared with the initial correlation that was used for the generation of displacement
vectors via Cholesky decomposition. In (a) we illustrate the difference of both correlations
in a scatterplot. A quantification using the Pearson correlation coefficient is given in (b).

corresponding MAPE result. A closer inspection of the fitted interaction parameters revealed
shortcomings of MAPE to find the correct values for both minimum and maximum parameter
values. Deviations were maximal for those interaction potentials. Since we applied a stepwise
fitting, we obtained interaction potentials for grouped amino acids as well. Closer inspection
of those intermediate results reveals that in case of two parameters, i.e. only a single amino
acid type plus peptide bond, the parameter for the covalent bond is recovered correctly for both
methods. Fitting without prior knowledge performed better in terms of correlation of contact
potentials for a medium number of different interaction types (data not shown).

Since we employed a rather narrow prior for the comparison of MLE and MAPE, we performed
a sensitivity analysis for the prior as well as for the number of snapshots for MAPE. We find
that the quality of the obtained interaction potentials does not depend on the number of snap-
shots that were used for fitting. Similarly, we have also shown that the initial correlation among
residue fluctuations can be restored for about 500 Cholesky derived snapshots. On the contrary,
variation of the standard deviation σ of the normally distributed prior around (averaged) MJ
parameters has a direct influence on the quality of the fit. Fig. 1.14 depicts the average de-
viation of a single parameter ∆ρ in dependence of the standard deviation σ that was applied
in the respective fitting, σ decribes the width of the normal distribution by percentage of the
expectation value µ which is placed at the MJ value, i.e. for larger parameters we find a wider
distribution. The curves for intermediate results are shown as well. In order to validate the
results, we used the averaged MJ interaction potentials for each tree level as reference for com-
parison. Note that we averaged over all possible MJ parameters that were grouped into the
respective interaction type, which may be the cause for a reduced resemblance to fitted param-
eters since we consider only existing amino acid pairings during the fit. However, we find the
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Figure 1.13.: Comparison of the results of MLE and MAPE fitting of interaction potentials. A set of
snapshots was created based on the ANM-covariance matrix of BPTI. MJ [Miyazawa &
Jernigan, 1996] interaction potentials were used for the computation of the ANM. On the
left the parameters derived with both MLE and MAPE fitting are plotted in comparison
with the original MJ values. In the table on the right, the correlation between fitted and
original potentials is shown (corρ) as well as their absolute deviations (∆ρ), and ∆pep
denotes the absolute difference of the respective peptide bond potentials.

same tendency for all numbers of parameters to deviate more if a larger σ is chosen. An analo-
gous effect is not detectable for the deviation of peptide bond potentials, which fluctuates rather
randomly for increasing σ. This is presumably due to the respective prior definition since the
root-finding algorithm accepts larger deviations with a smaller penalty. In other words, the in-
teraction potential used for weighting covalent bonds is an order of magnitude larger than that
for non-covalent interactions. Therefore, the prior penalizes deviations from the mean value
less for peptide bonds. Thus, the algorithm preferably minimizes all non-covalent potentials.
Nonetheless, we achieve a correlation larger than 0.9 for Hessian and covariance matrices com-
puted with initial and fitted parameters. Interestingly, the fitted interaction potentials can be
improved by averaging the results of independent MAPE applications (data not shown).

In addition, we performed a fitting with a uniform prior (EQ) for all interaction parameters with
an expectation value which corresponds to the mean MJ value and relative standard deviations
σ = 100,150, 200%. A comparison with fittings that employed individual priors with equivalent
σ exhibited a reduced capability to determine the true parameters.

In this study, we applied likelihood based estimation approaches to derive interaction potentials
that weight amino acid specific contacts. Invoking prior knowledge leads to an improved per-
formance of the applied fitting methods. In the case of BPTI, we are concerned with a total of
150 different non-covalent amino acid pairs plus peptide bonds. Although MLE and MAPE yield
per definition the parameters that best describe the data generating process, the performance
largely depends both on the number of unknowns and the root-finding algorithm. Since finding
the roots of 151 equations at the same time is hardly feasible, we employed a stepwise fitting
approach based on reduced amino acid alphabets. Even then, we find approximations of the
input parameters whose quality depends massively on the prior definition. Not all fittings con-
verged appropriately, some actually yielded negative parameters. Shortcomings of the routines

38 1. Molecular Biophysics



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 100

Δ
ρ

standard deviation σ [%]

#ρ = 2
#ρ = 4
#ρ = 11
#ρ = 29
#ρ = 55
#ρ = 151

Figure 1.14.: Results of the sensitivity analysis. For each tree level (labeled by the respective numbers
of parameters #ρ of each level) we computed the average deviation ∆ρ [RT/Å2] of fitted
and initial interaction potentials for varying standard deviations σ.

were also revealed for the results of the extremum potentials, i.e. the most rigid and flexible
bond types. As measure for the goodness-of-fit, we correlated both initial and fitted parameters
and resulting matrices and computed the respective parameter deviations.

In summary, we have shown the capability to estimate interaction potentials that are implicitly
given by a set of displacement vectors and discussed the performance of both MLE and MAPE.
The fitting approach depends on the number of different interaction types only rather than on
the number of snapshots. Computational time is influenced by the protein size as well since in
each iteration eigenvalues of the Hessian matrix need to be derived by SVD (see section 1.1).
The algorithm performed best for the smallest number of parameters to be estimated from a
fully parametrized set of configurations. Due to its shortcomings, we omit the application of
MAPE to experimental data, i.e. snapshots from MD simulation.

1.3.3 Semidefinite Programming

In the previous sections 1.3.1 and 1.3.2, we discussed two complementary approaches to deter-
mine the “optimal” interaction potentials weighting amino acid contacts from a set of structures
fluctuating around an energy minimum state. As optimization criterion for MC-STUN (sec-
tion 1.3.1), we employed a minimal distance of Hessian or covariance matrix in terms of
FN (Eq. 1.26) computed between original matrices and those computed with fitted parame-
ters. Likelihood based parameter estimation approaches aim to maximize either the likelihood
(Eq. 1.34) or the posterior function (Eq. 1.36) by invoking prior knowledge. Here, we will de-
scribe the last method we examined to retrieve interaction potentials from experimental data
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which is formulated as a mathematical optimization problem. In general, an optimization prob-
lem is defined as [Boyd & Vandenberghe, 2004]:

minimize f0(~x) (1.42)

subject to fi(~x)≤ bi for i = 1, . . . , m

Here, the vector ~x = (x1, . . . , xN ) is the N -dimensional optimization variable. We call ~x∗ optimal
or a solution to the specified optimization problem, if the objective function f0 : RN → R is
minimal for all vectors that satisfy the constraint functions fi : RN → R for i = 1, . . . , m:

f0(~x
∗)≤ f0(~x) with fi(~x

∗)≤ bi i = 1, . . . , m (1.43)

The limits or boundaries for the (inequality) constraint functions fi are given by bi. Optimiza-
tion problems are classified due to particular forms of both objective and constraint functions.
An important class of optimization problems for which effective solution methods have been
developed is called linear programming. This class comprises problems whose objective and
constraint functions are linear, and, hence, satisfy the following condition for constants α,β ∈ R
and variables ~x , ~y ∈ RN :

fi(α~x + β~y) = α fi(~x) + β fi(~y) (1.44)

A more general class that also covers linear programming comprises convex optimization prob-
lems. Here, a convex form of objective and contraint functions is given, i.e. the following
condition is satisfied for α,β ∈ R+,α+ β = 1:

fi(α~x + β~y)≤ α fi(~x) + β fi(~y) (1.45)

In contrast to linear programming the condition on f is weakened, the rather strict equality
(Eq. 1.44) is replaced by an inequality (Eq. 1.45) that has to be fulfilled only for distinct values
of α and β .

Semidefinite programming (SDP) belongs to the class of convex optimization problems.
Semidefinite programs are a generalization to linear programs, but similarly hard to solve. Ap-
plications of SDP are mainly found in research to improve optimization algorithms [Alizadeh,
1995; Ben-Tal & Nemirovski, 2002; Scherer & Hol, 2006; Vandenberghe & Boyd, 1996], but
also in the field of pattern recognition [Biswas et al., 2006; Weinberger & Saul, 2006], network
theory [Bertsimas & Sim, 2003; Karger et al., 1998; Srivastav & Wolf, 1998] and life sciences
[Mazziotti, 2004]. Here, we are concerned with the minimization of a linear function which
is subject to the constraint that an affine combination of symmetric matrices F(x) is positive
semidefinite termed as linear matrix inequality F(x) ≥ 0. Hence, SDP is formulated in general
as [Vandenberghe & Boyd, 1996]:

minimize ~cT ~x (1.46)

subject to F(~x)≥ 0

where F(~x)
Í
= F0+

m∑
i=1

x i Fi
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Both the vector ~c ∈ Rm and the m+ 1 symmetric matrices F0, . . . , Fm ∈ Rn×n are problem data.

Fitting with SDP

Determining the underlying interaction potentials of a Hessian matrix, that weight the strength
of amino acid contacts in a protein, can be considered as a matrix norm minimization problem
as suggested by Vandenberghe & Boyd [1996]. Therefore, the general form of SDP (Eq. 1.46) is
reformulated and includes a slack variable t:

minimize t (1.47)

subject to
�

t I A(~ρ)
A(~ρ)T t I

�
≥ 0

SDP is employed to minimize the matrix norm ||A(~ρ)|| of a matrix A(~ρ) = A0 + ρ1A1 + · · ·+
ρkAk, A(~ρ) ∈ Rp×q with the optimization variable ~ρ ∈ Rk, i.e. amino acid specific interaction
potentials, and an additional slack variable t ∈ R. In this special case, the matrices Ai need
not to be symmetric. I represents the identity matrix. The SDP has dimensions m = k + 1
and n = p + q. When applying SDP to the Hessian-fitting problem, we are concerned with
the yet unknown interaction potentials ρi and their respective “filtered” partial Hessians Ai.
Such filtered matrices Ai are computed as a Hessian matrix according to Eq. 1.5 but restricted
on entries of amino acid contact type i. Since we intend to minimize the distance between
the externally provided Hessian matrix A0 and the Hessian based on estimated parameters, the
matrix norm subject to minimization is the following:

A(ρ) = A0−
k∑

i=1

ρiAi (1.48)

The slack variable t which is to be minimized can also be interpreted as the fitting error. The ex-
ternal Hessian matrix denoted with A0 is obtained either as the pseudoinverse of the covariance
matrix computed from a set of structures or derived from NMA. For each amino acid contact
type i a filtered Hessian matrix Ai which contains only information on spatial distances of the
involved residues is computed according to ANM theory (see section 1.1). The corresponding
interaction potentials ρi are obtained from SDP application. In the following, we perform a
proof-of-principle analysis for SDP based parameter fitting and discuss its performance.

SDP : Proof of Principle

To test whether SDP is capable to extract interaction potentials of a Hessian matrix, we ap-
plied SDP to an artificially constructed ANM-Hessian (Eq. 1.5) of BPTI (PDB code 6PTI [Wlo-
dawer et al., 1987]) as we did for the MC-STUN approach (see section 1.3.1). Analogously, we
weighted non-covalent interactions of amino acids within a distance of rc = 13 Å according to
MJ contact potentials and peptide bonds by 82 RT/Å2. The filtered Hessians necessary for SDP
were constructed using the same structure and contact definition. In a subsequent sensitivity
analysis, we investigated the influence of the cutoff distance rc on the quality of the derived in-
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teraction potentials since we intend to employ SDP fitting for data from various processes, such
as MD simulations, NMA, Gō-models [Taketomi et al., 1975], etc.. To this end, we varied both
the “construction cutoff” r(c)c which is used for the initial (experimental) Hessian matrix and
the “fitting cutoff” r( f )c which is employed for the computation of the filtered Hessian matrices
needed for SDP in the interval [7.5 Å, 20 Å] with a step size of 0.5 Å. Tackling the overfitting
issue, we repeated the analysis for varying sizes of the “construction” and “fitting” alphabet as
well. Therefore, reduced alphabets were created according to the alphabet tree that was pro-
posed by Pape et al. [2010] (see section 4.2) and employed for the stepwise likelihood based
parameter estimation routines (see section 1.3.2). Thus, we can assess the quality of applying
SDP based fitting utilizing a more abstract amino acid alphabet. We employed the described
variations combined at once.

As SDP implementation we used the stand-alone command-line SDPA software version 7.3.1
[Fujisawa et al., 2008], data preparation was performed in R [R Development Core Team, 2008].

SDP : Results

Using the same BPTI structure and contact definition, SDP was capable to perfectly retrieve the
interaction potentials that were used for construction of the Hessian matrix. No deviation of
initial and determined parameters is noticeable, the slack variable t, which can be interpreted
as the fitting error, having a negligible value of 3.718 · 10−5.

We furthermore investigated the influence both of differing cutoffs and reduced amino acid
alphabets on the outcome of SDP based fitting of contact potentials. Note that for quantifying
the impact of alphabet reductions, we may only evaluate the results obtained for fitting Hessians
that have been constructed using a larger number of symbols with a reduced alphabet since
deriving more detailed parameters by applying fitting routines is impossible.

To estimate the influence of the cutoff distance, we used a construction cutoff R(c)c to compute
the Hessian matrix based on a given amino acid alphabet that is used as input for SDP. To derive
the underlying interaction potentials, we used an alternate cutoff definition r( f )c for determining
contacts in the protein. Here, we used the same number of symbols and, thus, interaction
types for both construction and fitting. The two distinct cutoff distances were varied and we
determined the respective differences of the peptide bond parameter. The results are shown in
Fig. 1.15 for the complete amino acid alphabet, where we plotted the deviation of the fitted
from the initial contact potential as a function of the cutoff difference ∆rc = r(c)c − r( f )c . In
all cases, the fitted peptide bond parameter was larger than the original value of 82 RT/Å2.
If the cutoff definitions used for input and fitting are equal, the exact parameter is obtained.
Interestingly, deviations that become noticeable for differing cutoffs are not independent of
whether r(c)c > r( f )c or vice versa. If the construction cutoff distance r(c)c is smaller than the one
used for fitting (∆rc < 0), the contact potential of covalent amino acid contacts can be estimated
with minor deviations only. In contrast, using a smaller contact defining distance for fitting than
for construction, the dynamics of the protein cannot completely be represented by the smaller
system, leading to an overestimation of the peptide bond. Hence, the error is getting larger for
larger cutoff deviations. In addition, we examined the relationship of the slack variable t that
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Figure 1.15.: Quality of the interaction potential of the peptide bond∆pep in dependence of the utilized
cutoff definitions for construction r(c)c of the intial Hessian matrix and for fitting r( f )c . The
deviation of the parameter is shown for ∆rc = r(c)c − r( f )c . The inset depicts a scatterplot
of the results of peptide bond deviation and the corresponding slack variable t obtained
by SDP. We omitted the absolute scale to illustrate the relationship of the two values only.
Results are shown for the complete amino acid alphabet.

is to be minimized by SDP and the corresponding deviation of peptide bond parameters, which
is illustrated in the inset of Fig. 1.15. Although smaller values of t imply smaller deviations
of peptide bond parametrization, we find no direct correlation of the two variables. Hence,
the slack variable cannot necessarily be utilized to judge the quality of fitting. We yield similar
results for reduced amino acid alphabets as well (data not shown). Considering the absolute
deviations of fitted interaction potentials of non-covalent contacts, an analogous picture reveals
itself.

By fitting interaction potentials of a Hessian matrix, we obtain a description of protein dynamics
which is represented by the pseudoinverse of the Hessian, the covariance matrix (see Eq. 1.6),
which correlates the fluctuations of residues of all spatial directions. Hence, evaluating the
quality of the fit implies evaluating how well the dynamics of the protein is approximated. To
this end, we computed the correlation coefficient between original and fitted Hessian and co-
variance matrices, respectively. Fig. 1.16 shows the Pearson correlation coefficient computed for
the complete amino acid alphabet using differing cutoff distances for construction and fitting.
Again, similar results are obtained for reduced alphabets as well. Additionally, we computed
the correlation for both Hessian and covariance matrices that were derived by varied cutoff dis-
tances and the same MJ parametrization scheme to work out the effect of the contact definition
on an “ideal” fit. Applying MJ potentials for initial and “fitted” matrices yields a symmetric
decrease of correlation depending on the cutoff difference. In general, we notice that the co-
variance matrix is more sensitive to changes in the parametrization and, thus, to the underlying
contact definitions, which has already been noted in the context of MC-STUN (section 1.3.1).
The correlation computed for the Hessian matrix exhibits a similar behavior as was previously
detected for the peptide bond deviation. Using a larger cutoff distance for the fit results in a

1.3. Parameter Fitting – Proof of Principle 43



0.8

0.85

0.9

0.95

1

-10 -5 0 5 10

co
r h

Δrc = rc
(c) - rc

(f)

mj-mj

mj-fit

(a) Hessian

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

co
r i

Δrc = rc
(c) - rc

(f)

mj-mj

mj-fit

(b) Inverse

Figure 1.16.: Pearson correlation coefficient is plotted for differing cutoff distances used for the con-
structed and the fitted Hessian matrix. The correlation is plotted for (a) the Hessian and
(b) for the covariance matrices in dependence of ∆rc. The black dots show the correla-
tion of matrices computed with the same parametrization by differing contact definitions,
whereas the red dots describe the correlation of the constructed matrix and the fitted
matrix which is computed with fitted interaction potentials.

Hessian matrix with nearly perfect correlation to the original Hessian matrix. We notice a higher
correlation if we construct the “fitted” Hessian with interaction potentials obtained from SDP
instead of MJ parameters. In contrast, if the original Hessian matrix is computed with a larger
cutoff distance, hence, providing more contacting residue pairs, the correlation with the matrix
fitted with a smaller cutoff decreases with increasing ∆rc, albeit the minimum correlation that
is observed is larger than 0.8. Regarding the correlations computed for the covariance matrices,
we notice a significant decline the more the cutoff definitions deviate from each other. Whereas
we observe a steady decline of linear correlation down to about 0.6 for ∆rc < 0, we even find
negative correlations for larger ∆rc values. The same holds for Spearman correlation and fur-
ther alphabet definitions as well. Thus, the cutoff chosen to extract interaction potentials from
a given Hessian matrix should preferably be equal to or larger than the contact definition that
has been used to generate this Hessian matrix.

Examining the influence of reduced amino acid alphabets, we used the same cutoff distance
for constructing the initial Hessian and fitting but varied the number of amino acid types ac-
cording to the reduction scheme proposed by Pape et al. [2010]. The impact on the quality
of the fitted results is shown in Fig. 1.17 for the Pearson correlation of the Hessian matrices
for varying cutoff distances. Again, we computed the correlation of the original Hessian to the
Hessian computed with averaged MJ or fitted parameters. In the first scenario, we find a slight
decrease for larger cutoff distances for more reduced alphabets presumably due to the fact that
the averaged parameters include interactions that are not found in BPTI. However, the impact
is negligible since we are concerned with a correlation of more than 0.99. The same holds for
the correlation of covariance matrices as well (data not shown). Although the observed corre-
lation for fitted interaction potentials is larger than 0.97 as well, we notice a dependence of the
cutoff distance which may arise from the number of amino acid types present for the respective
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Figure 1.17.: Correlation of initial and “fitted” Hessian matrix is shown in dependence on the applied
distance cutoff rc [Å]. On the left, the interaction potentials used to construct the “fitted”
Hessian matrix are simply averaged MJ potentials, whereas on the right we used the inter-
action potentials obtained by SDP. The complete amino acid alphabet (A1) comprising 20
symbols was subsequently reduced to an alphabet containing one symbol only (A6) using
the reduction scheme proposed by Pape et al. [2010].

contact definitions. Clearly, we find that reducing the number of amino acid symbols from 20 to
1 for fitting yields a slightly reduced correlation of the Hessian matrix with respect to the initial
Hessian. Other than for the cutoff definition, the correlation of the covariance matrix as well
as the deviation of peptide bond parameters differ to a minor extent only indicating the fitting
routine to be less sensitive towards alphabet reductions than to differing cutoff definitions.

Here, we demonstrated the capability to determine the exact interaction potentials from a con-
structed Hessian matrix using the mathematical concept of SDP. Due to an efficient implemen-
tation and a small number of iterations the parameters were obtained expeditiously for the
employed BPTI. The runtime depends on both the number of interaction parameters and the
system size. In addition, the influence of differing cutoff definitions and reduced alphabets was
investigated. Reduced numbers of residue types showed only a minor contribution to the resem-
blance of initial protein dynamics whereas the cutoff definition used for determining interaction
potentials needs to be chosen carefully since fitting cutoffs smaller than the initial cutoff distance
may lead to worse fitting results.

1.3.4 Summary

In this study, we presented three approaches based on a coarse-grained protein network model
to extract interaction potentials that weight the strength of amino acid contacts. Although we
may encounter anharmonicity in realistic applications, interactions of amino acids are modeled
as harmonic springs connecting residues within a defined cutoff distance rc. Following ANM
theory [Atilgan et al., 2001], amino acids are represented as beads placed on their respective Cα
atom neglecting side chains. MC-STUN (section 1.3.1) is a stochastic algorithm that searches the
best parameters by minimizing the FN computed for the original matrix and a matrix computed
with newly derived parameters. The STUN extension provides a better convergence since un-
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interesting regions of the parameter space are tunneled. MLE/MAPE (section 1.3.2) is derived
from statistical learning theory and accurate to determine the parameters that best describe the
data generated from a given process based on maximizing the likelihood function. MAPE in-
vokes prior knowledge in contrast to MLE. Finally, SDP (section 1.3.3) is a class of mathematical
optimization problems and is applied to minimize the matrix norm of a given and fitted positive
semidefinite matrix. Notably, MC-STUN is the only method to determine amino acid specific
interaction potentials directly from protein dynamics as given by the covariance matrix C .

For all approaches, we have proven the capability to reconstruct the force constants weighting
residue interactions using an artificially generated protein system by help of ANM theory (see
section 1.1). Although MC-STUN and the likelihood based approaches were able to estimate the
contact potentials in a good approximation, exact reconstruction of the input parameters was
achieved by SDP alone. Shortcomings were detected for MLE since invoking prior information
improved the results drastically. The sensitivity analysis applied for diverse prior definitions
revealed a strong dependence of the quality of estimated parameters on a well-designed prior.
Application of both MLE and MAPE for a reduced amino acid alphabet comprising a single amino
acid type and, thus, two interaction types (covalent, non-covalent) was able to approximate the
peptide bond potentials close to the input, whereas for the complete alphabet of 20 symbols
the multidimensional root-finding algorithm exhibited worse convergence behavior. Likelihood
based approaches are preferred for extracting a reduced number of interaction potentials only.
MC-STUN was able to approximate the contact potentials with a quality similar to MAPE for
fitting based on both Hessian and covariance matrix. Parameter estimation based on MC-STUN
depends on the internal algorithm parameters that determine the convergence of the algorithm.
Since the choice of these parameters is not obvious, various settings need to be applied be-
fore the actual fitting can be initiated. Even sophisticated presampling of internal parameters
does not necessarily prevent the algorithm from getting trapped in a local minimum. Covari-
ance based fitting is limited by the protein size as each iteration requires computation of the
pseudoinverse of the Hessian matrix which is the most time-consuming step of the algorithm.
Preferentially, the number of iterations of stochastic algorithms is not bounded which increases
the runtime dramatically. Due to those shortcomings the approaches of estimating interaction
potentials using MC-STUN and MLE/MAPE are not further pursued. In contrast to those con-
ventional methods, the mathematical optimization problem SDP has shown to efficiently derive
the exact interaction potentials of an artificial protein system without the need of additional
parameters. Therefore, we restrict the estimation of amino acid specific potentials from data
stemming from MD simulations and NMA on SDP based fitting.

1.4 Parameter Fitting – Application

In the previous section 1.3 we investigated the capability of three complementary approaches
to retrieve interaction potentials from an artificially constructed ANM system. Since the opti-
mization problem SDP (section 1.3.3) yielded encouraging results, we will apply SDP to data
sampled from MD and NMA. To this end, we performed MD simulations for BPTI and PA as well
as NMA for BPTI. Both proteins are special cases, since BPTI is a rigid protein exhibiting high
stability, whereas the short polypeptide PA is extremely flexible. In the following, we discuss the
data preparation of the proteins and the application of SDP to it.
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1.4.1 Data Generation for BPTI

Due to its small size and its stability, BPTI was used as a model protein for numerous exper-
imental and theoretical approaches. Amongst others, structure determination utilizing X-ray
diffraction and neutron scattering methods was explored by Wlodawer et al. [1984], solution
nuclear magnetic resonance (NMR) techniques were employed by Wüthrich et al. [1982]. In
addition, folding pathways have first been described first for BPTI [Goldenberg & Creighton,
1984; Makhatadze et al., 1993]. Pioneering theoretical studies were published by McCammon
et al. [1977], who were able to perform MD simulations for BPTI to investigate protein dynam-
ics in silico. BPTI was also chosen as model protein of early applications of NMA to describe
internal protein motions [Brooks & Karplus, 1983]. Since the protein is extremely stable against
denaturation [Moses & Hinz, 1983], we employ the small BPTI as model system for develop-
ing and testing of routines that extract amino acid specific interaction potentials from a set of
conformations in the extreme case of high stability.

Setup of MD Simulations

To sample conformations of BPTI by MD simulations, we used the crystal structure that is de-
posited in the PDB [Berman et al., 2000] with entry code 6PTI [Wlodawer et al., 1987]. We
deleted all hetero atoms and alternative atom positions of residues. The protein structure was
preprocessed by the psfgen plugin of VMD [Humphrey et al., 1996], missing atoms were added.
A total of 3,259 water molecules as well as ions in physiological concentration (5 Na+ and 5 Cl−)
were added into a simulation box with box vectors of about 4.5 nm. Coulomb and Lennard-
Jones interactions were defined up to a distance of 1.2 nm, but their strengths were decreased
starting from 1.0 nm. After setting up the system, we ran a short minimization of 20 ps to
ensure correct structure, i.e. no clashes due to misplaced atoms or improper bonds. During the
equilibration run (50 ps), constraints for the amino acid positions were added to freeze the pro-
tein while water molecules adapt to the simulation temperature. From the equilibration step,
we obtained two structures that are used for further simulations: the final structure (MD1) and
an intermediate structure (MD2) that has been subject to a short minimization (about 100 fs).
After both structures have been simulated for 600 ps, we started a total of 29 independent pro-
duction runs of 1.8 ns each (14 based on MD1, 15 based on MD2) to generate a set of BPTI
conformations. Due to water relaxation insufficiencies, not all simulations finished correctly
resulting in shorter trajectories (see Tab. 1.8). MD simulations, minimization and equilibration
runs were performed using NAMD [Phillips et al., 2005] and an all-atom additive CHARMM
force field [MacKerell et al., 1998, 2004]. We simulated the protein at a temperature of 310 K,
temperature and pressure were rescaled during the simulation.

Setup of NMA

As discussed in section 1.1, NMA is a well-established tool that has often been employed to
explore internal protein motions [Brooks & Karplus, 1983, 1985; Brooks et al., 1995; Cui &
Bahar, 2006; Janezic & Brooks, 1995; Janezic et al., 1995; Kidera & Gō, 1992; Levitt et al., 1985;
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no. # frames no. # frames no. # frames no. # frames no. # frames

MD1 1 6,626 MD1 7 18,000 MD1 13 17,316 MD2 5 9,822 MD2 11 5,733
MD1 2 16,260 MD1 8 18,000 MD1 14 18,000 MD2 6 18,000 MD2 12 18,000
MD1 3 9,708 MD1 9 13,924 MD2 1 5,446 MD2 7 18,000 MD2 13 18,000
MD1 4 6,445 MD1 10 18,000 MD2 2 13,234 MD2 8 14,719 MD2 14 9,277
MD1 5 16,678 MD1 11 18,000 MD2 3 17,294 MD2 9 4,158 MD2 15 18,000
MD1 6 10,992 MD1 12 18,000 MD2 4 4,635 MD2 10 8,313

Table 1.8.: Overview of the MD simulations that were performed for BPTI. For each trajectory, which is
enumerated according to its start structure (MD1, MD2), the number of generated confor-
mations is given. In total, we obtain 388,580 BPTI conformations, i.e. 205,949 structures
for MD1 and 182,631 for MD2 based simulations, respectively.

step integrator tolerance step integrator tolerance

1 steep 1000 4 l-bfgs 10−5

2 cg 0.1 5 l-bfgs 10−7

3 l-bfgs 10−3 6 l-bfgs 10−9

Table 1.9.: Protocol for the energy minimization of BPTI plus water and ions (NM2). The tolerance of
the maximum force is given in [kJ mol−1nm−1].

Nojima et al., 2002; Tama & Sanejouand, 2001; van Vlijmen & Karplus, 1999]. In the following,
we present two NMA settings: in the first approach (NM1) we determine normal modes for
the protein in vacuo starting from its crystal structure (6PTI), whereas the second approach
(NM2) includes water molecules and ions as well. Prior to any computation of the normal
modes, a thorough minimization protocol has to be applied to the protein in order to eliminate
any forces acting on it. For the minimization and calculation of the normal modes, routines
from the GROMACS software suite [van der Spoel et al., 2005] were used. For minimization,
GROMACS provides three minimizers: steepest descent (steep), conjugate gradient (cg) and
low-memory Broyden-Fletcher-Goldfarb-Shannon (l-bfgs). With steep, improper bonds and
clashes leading to high forces that act on single atoms are eliminated efficiently. In contrast, the
cg minimizer performs best whenever the biomolecular system is close to an energy minimum.
By successively creating better approximations and, thus, moving the system towards the closest
minimum, the l-bfgs minimizer which is based on inverse Hessian approximations converges
faster than cg. Hence, its use is required in the last steps of minimization prior to NMA. We
define a tolerance of 10−9 kJ mol−1nm−1 for the maximum force to act on a single atom.

For NM1, we reduced the maximum force to the defined tolerance within a single run using
the l-bfgs integrator. Due to the number of water molecules, it was hardly feasible to reduce
the maximum force for NM2 to the required value. To circumvent this problem, we increased
the cutoff distance for van der Waals and Coulomb interactions. By employing the developed
minimization protocol (see Tab. 1.9), the system energy was properly minimized.

From NMA we obtained a mass-weighted Hessian matrix of dimension 3M × 3M with M being
the number of atoms of the biomolecular system. To derive interaction potentials by use of ANM
based parameter fitting methods, this matrix has to be transformed into a Cα-based Hessian.
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This can be achieved either by extracting the respective elements from the pseudoinverse or by
reducing the Hessian matrix. Initially, all atom weights have to be removed for either method.
Extraction of components from the covariance matrix is feasible for small matrices only. Thus,
we will discuss the reduction of the all-atom Hessian matrix in the following. In a previous study,
Eom et al. [2007] described a reduction scheme for Hessian matrices. Thereby, the potential
energy E is expressed in terms of:

E =
γ

2
uT Hu=

γ

2

�
uT

1 uT
2

��H11 H12
H21 H22

��
u1
u2

�
(1.49)

We discriminate between the so-called “master”- and “slave”-residues. It is assumed that fluc-
tuations of slave residues u2 are not significant, thus, these residues are in an equilibrium state
of effectively vanishing force. The total fluctuation is represented by the fluctuation of master
residues u1 only. Thus, the Hessian matrix is divided into four parts. H11 and H22 represent
pairwise interactions within the individual groups, whereas H12 and H21 contain values for in-
teractions between master and slave residues. A minimization of the potential energy in terms
of slave residues u2 leads to:

∂

∂ u2
E

!
= 0 (1.50)

After algebraic transformations, we obtain the following formula, which can be applied to con-
vert the all-atom Hessian H to a Cα-only matrix H̃ that implicitly describes the mechanics of the
full protein in case of NM1 and, furthermore, of water and ions in case of NM2.

H̃ = H11−H12H−1
22 H21 (1.51)

Due to memory restrictions for large matrices, the reduction formula was successively applied
to the Hessian after identification of master and slave residues and a corresponding reordering
of the matrix. In each iteration step, blocks of size ≤ 501 of slave residues were eliminated
from the full matrix Γ. Since the effect of the removal order is not obvious, we compared three
different scenarios to reduce the all-atom to a Cα-only Hessian matrix:

R1. Water is eliminated from the end of the matrix, block by block, and, as a last step, we
remove the ions.

R2. We remove ion entries first. Afterwards, the water is eliminated blockwise starting from
the end of the matrix.

R3. We first eliminate the water per components (z, y, x in this order), the ions are removed
afterwards.

To proof the correctness of the suggested procedures, we first applied the whole protocol to a
smaller system. We used a small peptide comprising 7 residues that was extracted from the
PDB with code 3HYD [Ivanova et al., 2009]. We added 248 water molecules and a single Na+

ion. The system was energy minimized in three steps by subsequently employing the integra-
tors steep, cg and l-bfgs. Afterwards, NMA was performed and the all-atom Hessian matrix
was computed. For the computation of the Cα-Hessian, we considered the reduction scenarios

1.4. Parameter Fitting – Application 49



0

0.005

0.01

0.015

0.02

0.025

0.03

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

fr
ac

tio
n 

[%
]

RMSD [nm]

Cα atoms
heavy atoms

protein

(a) RMSD (b)

Figure 1.18.: Root mean square deviation (RMSD) is computed for all structures of the MD simulations
with respect to the crystal structure after a superpositioning of both structures. The result-
ing RMSD histograms are shown for Cα atoms, heavy atoms and the whole protein (a).
Furthermore, two structures obtained from the left and the right end of the histogram are
depicted to reveal structural differences (b). Graphics of BPTI structures were generated
using VMD [Humphrey et al., 1996].

R1 and R3 to evaluate the effect of different water removal schemes only. We compared the
resulting Cα-Hessians as well as the corresponding covariance matrices.

Results

Each conformation of BPTI in the MD trajectories was extracted from the respective trajectory
and minimized. Hereafter, we computed the root mean square deviation (RMSD) of each result-
ing structure with respect to the crystal structure. RMSD measures the average deviation of two
structures after a least-squares fit, which is performed to minimize the differences between both
structures by superimposing them. We determined the RMSD for Cα and heavy atoms as well as
for the whole protein, superpositioning was performed for the respective group. In the resulting
histograms (see Fig. 1.18) we observe a single peak for each considered group indicating that
many structures share a similar deviation to the reference structure. Thus, it seems that all
sampled configurations of BPTI fluctuate around a common energy minimum state. However,
we also notice a slight buckling on the right end of the histograms indicating that the sampled
structures may belong to two equilibrium states. To ensure that all structures are sampled for
a single state only, we picked two distinct snapshots with a small and a high RMSD relative to
the reference structure. From the superpostion that is shown in Fig. 1.18, we notice structural
deviations particularly for loop regions, whereas the secondary structure elements are nearly
identical. Since we detect most of the deviations in the sidechains of the amino acids, we con-
clude, that all sampled structures of BPTI describe a single ground state, which is in perfect
agreement with previous studies that proposed a high stability for BPTI [Moses & Hinz, 1983].
For further analysis, we omitted the first 400 ps of each trajectory to exclude structures of the
initial relaxation phase (see Fig. 1.19).
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Figure 1.19.: RMSD over time plotted for selected trajectories based on MD1 and MD2. Structures of
the initial simulation phase (<400 ps) omitted from analysis are marked by the gray box.
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Figure 1.20.: Pairwise RMSDs [nm] of average structures from the truncated trajectories. We high-
lighted simulations based on MD1 (orange) and MD2 (green). Furthermore, we show
results for combined trajectories: A1 contains all truncated trajectories based on MD1, A2
those based on MD2, and A contains both A1 and A2. Black points mark larger RMSD
values indicating less similarity of the respective structures than for smaller RMSDs.

Comparing Covariance Matrices from MD simulations

Since the quality of experimental data has a major impact on the quality of obtained
parametrizations, we examined the different trajectories and the derived covariance matrices
in more detail. For each simulation, the average structure was computed. We have shown
above that all snapshots are fluctuations around this central configuration. Note that an aver-
age structure is not necessarily a consistent protein structure. We show the pairwise RMSD of
all average structures computed after a least-squares fit in Fig. 1.20. We notice that trajectories
based on MD1 are more similar than those based on MD2 that exhibit larger RMSD of the re-
spective average structures. Nevertheless, the differences are negligible by a maximum RMSD
of 1.8 Å for any two structures.
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Covariance matrices that contain information on correlated motions of residues were computed
with the GROMACS simulation package [van der Spoel et al., 2005]. To this end, all snapshots
were fitted to a reference structure to derive their respective fluctuations. In the following,
we will discuss potential types of reference structures that can be used for the computation of
covariance matrices. Since the fluctuations of the protein should be modeled for a configura-
tion that corresponds to at least a local minimum of the PES, the crystal structure as well as a
thoroughly minimized structure, e.g., the structure that was used as input for NMA, are alterna-
tives. Both structures represent minimum configurations that need not be representative for the
MD simulations, although only a single minimum configuration is assumed based on the results
above. In addition, we determined the snapshot with a minimum potential energy from all sim-
ulations as a possible reference structure. Again, this configuration may not be representative
for all simulations, since it was sampled from a single trajectory. We computed the covariance
matrix for each trajectory based on this minimum structure as well as on the respective average
structure. From the covariance matrices, we derived B-factors and correlated them to experi-
mental B-factors. Atomic fluctuations based on the respective average structure showed a higher
resemblance to experimental data than those obtained for the sampled minimum configuration
(data not shown). In Fig. 1.21 we show a comparison of experimental and theoretical B-factors
for selected trajectories. B-factors computed for MD trajectories exhibit a similar picture, i.e.
the same residues are labeled flexible but on a differing scale. If we compare those theoretical
results with the experimentally derived B-factors we notice larger deviations. Notably, a general
dynamical behavior is observed. For the computation of a covariance matrix for a trajectory,
we used the respective average structure. Similar to the pairwise RMSD computation for the
average structures obtained from the MD runs, we compute the pairwise correlations of the
resulting covariance matrices (see Fig. 1.22). Again, the ensemble generated on basis of MD1
shows a higher intrinsic similarity than the covariance matrices obtained for simulations based
on MD2. Those effects are visible for the concatenated trajectories as well. Hence, the dynamics
of the protein is not fixated throughout diverse sets of MD runs but rather subject to alterations.

Comparison of NMA Setups and Reductions

To reduce all-atom Hessian matrices obtained by NMA to Cα-only matrices, we proposed three
reduction schemes. To avoid numerical issues, we performed the reduction on a small system
first. The resulting Cα Hessians of the small peptide 3HYD for reduction schemes R1 and R3 are
indistinguishable, and, consistently, show high correlations, i.e. a Pearson correlation coefficient
of approximately one. In contrast to ANM constructed Hessian matrices, we do not find six
eigenvalues equal to zero due to rotation and translation presumably due to numerical issues,
but their values were considerably smaller than other eigenvalues (data not shown). Since a
high correlation in the space of Hessian matrices implies high correlation for the respective
covariance matrices, we compute the pseudoinverses by either using all or leaving out the first
six eigenvalues and the resulting correlation of the covariance matrices. Note that correlation
in the space of covariance matrices is achieved only when leaving out the first six eigenvalues
that correspond to the six degrees of freedom although being larger than zero. In summary, the
order how elements are removed from the all-atom Hessian has only a minor or no influence on
the outcome. Minor deviations of resulting coarse-grained matrices are due to numerical issues.
For BPTI (NM1, NM2), the reduction of NMA-Hessian again yields the same Cα matrix for either
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Figure 1.23.: Scatterplot of reduced Hessian (a) and covariance (b) matrices obtained after reduction for
both settings NM1 and NM2. The correlation indicated by Pearson correlation coefficients
is significant with a p-value of 2.2 · 10−16.
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Figure 1.24.: Experimental B-factors [Å2] from 6PTI [Wlodawer et al., 1987] are plotted in comparison
to B-factors that were obtained from the pseudoinverse of Hessian matrices NM1 and
NM2. Values marked with an asterisk are scaled to allow a better comparison of fluctuation
patterns.

reduction scenario. The block size used for either reduction scheme has no influence on the
result as well (data not shown). Note that extraction of Cα elements of the pseudoinverse leads
to a matrix whose eigenvalues are all greater than zero.

We are concerned with two NMA approaches differing in the respective protein environment.
By reducing the all-atom Hessian obtained for NM2, the influence of fluctuations of water and
ions is implicitly included in the fluctuations of the Cα atoms, whereas for NM1 no dynamical
features of the environment are retained. To compare both approaches, we correlated Hes-
sian and covariance matrices. The data shown in Fig. 1.23 are representative for all reduction
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schemes. Obviously, we notice a high correlation for the derived Hessian matrices revealing only
minor differences. However, for the covariance matrices the correlation is drastically reduced
indicating a higher sensitivity of this matrix type to the environment of the protein. Hence, the
correlated dynamics of protein residues is altered due to external effects. In addition, we com-
pute B-factors from both covariance matrices and compare those with experimental B-factors as
can be found in the PDB with code 6PTI [Wlodawer et al., 1987] (see Fig. 1.24). On an absolute
scale, NM2 exhibits a more rigid behavior than NM1 indicated by smaller B-factors. Due to
water-ion environment in NM2 the protein fluctuations are limited in contrast to NM1 that was
set up in vacuo, where the protein is thus allowed to move more freely. Apart from the abso-
lute fluctuations, we notice a similar pattern of dynamics for both NM1 and NM2 resembling
experimental B-factors as well but to a minor extent.

1.4.2 Data Generation for PA

In proteins, α-helices and β-sheets represent stable secondary structure elements. Since short
polypeptides comprising alanines only were shown to form stable α-helices [Marqusee et al.,
1989], these PAs were subject to experimental and theoretical studies concerning protein sta-
bility and folding, particularly focused on helix-coil transitions [Daggett & Levitt, 1992; Soman
et al., 1991; Vila et al., 2000; Weber et al., 2000]. According to the theory formulated by
Zimm & Bragg [1959], random, unbonded structures are the dominant conformations of short
polypeptides. Only for larger chains helical structures dominate the conformation space. Sim-
ilar observations were made by Levy et al. [2001] who observed dramatically different energy
landscapes of PA in vacuum and water for MD simulations. In contrast to organic solutions, wa-
ter destabilizes α-helices by interacting with polar groups of the peptide, which may even lead
to an unwinding of the helices. Complementary to the highly stable and denaturation-resistent
BPTI (see section 1.4.1), we use a small, flexible polypeptide comprising 12 alanine residues
to derive interaction potentials of alanine contacts for different conformations that represent
energy minima of the PA potential energy surface.

Setup for MD Simulations

To sample wide partitions of the PA conformation space, we performed MD simulations start-
ing from two complementary structures (similarly to Levy et al. [2001]): an ideal α-helix and
an ideal β-sheet. To this end, we extracted the corresponding structure elements from PDB
files with PDB codes 3A5A (helix, residues 105–116) [Kuwada et al., 2010] and 2WSJ (sheet,
residues 67–78) [Rodríguez et al., 2010] and mutated all amino acids to alanine using the
psfgen plugin for VMD [Humphrey et al., 1996].

Starting from an α-helical and a β-sheet structure, we set up a cubic simulation box, and filled
it with water and ions (see Tab. 1.10), respectively. We applied a two-step minimization sub-
sequently using the minimizers steep and l-bfgs to reduce the maximum force which acts on
a single atom below 10 kJ mol−1nm−1. Afterwards, two equilibration runs were performed to
adjust the biomolecular system to temperature (500 ps) and pressure (100 ps) separately. Both
resulting structures served as input for two independent MD simulation runs each. PA was sim-
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Figure 1.25.: Two complementary structures of polyalanine are shown. The ideal α-helix (left) was
generated on basis of PDB file 3A5A [Kuwada et al., 2010], and the ideal β-sheet (right)
was based on the structural elements of PDB file 2WSJ [Rodríguez et al., 2010]. Graphics
were generated using VMD [Humphrey et al., 1996].

simulation details PA α-helix PA β-sheet

box type cubic cubic
box vectors [nm] 6.022 6.062
no. solvents 7,196 7,416
ions 5 Na+, 5 Cl− 5 Na+, 5 Cl−

Table 1.10.: Initial setup of MD simulations of polyalanine. With respect to the different enlargement
of α-helical and β-sheet structure, box vectors [nm] and number of water molecules differ
in both systems. The box vectors span the cubic simulation box.

ulated for 4 ns at a temperature of 400 K that was chosen to ensure a better sampling of the
configuration space of PA, since energy barriers between distinct minima can be overcome more
easily for higher temperatures. Thereby, we used an integration step of 2 fs, snapshots were
written every 1000 steps. Coulomb interactions were modeled using the particle mesh ewald
(PME) method and a cutoff distance of 1.5 nm, van der Waals interactions were switched off
between 1.0 nm and 1.4 nm. The resulting trajectories were clustered using the g_cluster rou-
tine, that is implemented in GROMACS, with the linkage method. Clusters were defined based
on pairwise RMSDs of the structures. Hence, a least-squares fit, that eliminates translational
and rotational degrees of freedom, was applied prior to the assignment of a structure to one of
the clusters.

We yielded 78 different clusters by performing the least-squares fit on the protein backbone
and applying an arbitrary cutoff of 0.145 nm to discriminate between structures of neighboring
clusters. The central structure of each cluster, i.e. the structure with the smallest RMSD to all
other cluster members, served as input for the final production runs. For a better comparison
of the final trajectories and resulting PA configurations, we placed all 78 structures in cubic
simulation boxes with equal sizes and numbers of water molecules. Since we require a minimum
distance of 1.2 nm between protein and box, we examined different settings (see Tab. 1.11).
We defined a simulation box spanned by a box vector of length 6.2 nm that was filled with
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box vectors
distances [nm] 1.2 1.5 1.8 2.0

min 4.101 4.701 5.301 5.701
max 5.812 6.412 7.012 7.412
avg 4.928 5.528 6.128 6.528

no. solvents
distances [nm] 1.2 1.5 1.8 2.0

min 2,238 3,399 4,909 5,784
max 6,559 8,732 11,471 13,553
avg 3,995.1 5,579.7 7,657.1 9,297.5

Table 1.11.: Results for different protein-box distances. We observed various dimensions of PA struc-
tures that we would like to place in a box with equal size and number of water molecules.
Since we require the distance between the protein and the boundaries of the simulation
box to be at least 1.2 nm, we monitored those values for varying protein-box distances.

7,861 water molecules and ions. This specific box size was chosen because each PA structure
can be placed in the box with a distance of at least 1.2 nm from the boundaries of the simulation
box. The number of solvent molecules was the respective minimum number determined for all
simulation boxes. For each structure, a short minimization run was performed followed by two
equilibration runs (50 ps). Finally, all PA configurations were simulated independently for 10 ns
at a temperature of 300 K.

All MD simulation and analysis steps were performed with the GROMACS software suite
[van der Spoel et al., 2005] by employing the implemented OPLS-AA force field [Jorgensen
et al., 1996; Kaminski et al., 2001].

In addition, we performed an extensive MD simulation using NAMD [Phillips et al., 2005] with
the all-atom additive CHARMM force field [MacKerell et al., 1998, 2004] for about 62.5 ns on
the HHLR (Hessischer Hochleistungsrechner). As start configuration we used one of the start
structures of the 78 independent MD runs.

Since a clustering of approximately 1.4 million structures is not feasible, we restricted the sam-
pling of minimum configurations by extracting every 1,000th frame from the trajectories. For
the resulting 1,403 structures, a short minimization was performed, but did not converge for
about 12% of the structures (170 of 1,403). Thereafter, we derived a set Sbest of 20 PA struc-
tures as representatives. To ensure high diversity of the chosen structures, they are selected by a
geometric approach based on the pairwise RMSDs. Initially, the structures S1 and S2 exhibiting
the maximum RMSD are selected: Sbest = {S1, S2}. For any structure Si /∈ Sbest, i = 1, · · · , n,
which has not been chosen thus far, we computed the RMSD with respect to any other structure
S j /∈ Sbest, i 6= j. We extend set Sbest by structure Si∗ with the maximum geometric mean RMSD:

Si∗ = argmax
Si

1

n− 1

n∏
i 6= j

RMSD(Si, S j) (1.52)
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Figure 1.26.: For four independent MD simulations, the RMSD over time is computed for the Cα atoms
after a least-squares fit with respect to the initial PA structure(s).

where n is the number of configurations that have not been selected as representatives. All
remaining structures are assigned to the “closest” (in terms of RMSD) representative structure
of set Sbest.

Results

For further analysis, we try to partition the configuration space of PA and find a set of energy
minimum structures. At first, we computed the RMSD over time for each simulation with re-
spect to the start configuration. In Fig. 1.26 we show the resulting data for four exemplary
trajectories. We observe drastic structural changes indicated by an abrupt increase or decrease
of the RMSD value. For two of the depicted trajectories (run 3, run 4), an RMSD plateau is no-
ticeable, i.e. only minor RMSD fluctuations occur, indicating that the respective frames fluctuate
around a consensus structure. In addition, we computed pairwise RMSDs for all combinations
of minimized configurations as well as the RMSD of each structure before and after minimiza-
tion. The resulting histograms are shown in Fig. 1.27. We notice a structural difference caused
by the minimization algorithm of less than 0.1 nm, whereas on average the RMSD of any two
minimized configurations is about 0.4 nm. Hence, minimized structures show a higher diversity
than we can explain by simply moving the structures closer to a minimum configuration.

Since we want to extract amino acid specific interaction potentials that describe harmonic fluc-
tuations around a central, energy minimum structure, we defined 20 clusters of PA structures
that were identified as the minimized structures with maximum RMSD with respect to the other
1,383 extracted PA configurations. All non-minimized snapshots were assigned to the most “sim-
ilar” cluster, i.e. the RMSD to the respective cluster structure is smallest amongst all clusters.
In Fig. 1.28(a) we show histograms of pairwise RMSDs of cluster structures, regarding original
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Figure 1.28.: Results for PA clustering according to the proposed sampling based on the geometric mean
to derive structures that differ the most from all other configurations on average.
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ref no. ref no. ref no. ref no.

31 110,146 197 104,895 415 118,925 658 299,017
55 93,385 204 77,043 521 27,570 734 56,382
78 57,431 323 15,793 524 98,721 780 43,392

124 13,825 356 36,806 564 41,777 818 51,732
180 4,510 413 8,398 609 27,396 1275 78,663

Table 1.12.: For each minimized reference structure (ref) that is used as central structure of a PA cluster
the number of assigned snapshots (no.) based on minimal RMSD values is given.

central and minimized structures as well as the computed average structure for all assigned
snapshots. In general, the pairwise RMSD of minimized structures and configurations directly
extracted from an MD simulation is similar. Notably, the pairwise RMSD computed for average
structures indicates an even higher resemblance which may originate from the fixed number of
cluster (see Fig. 1.28(b)). Since we restricted the number of clusters, it occurs that we assign
similar structures (in the example denoted as S50 and S51) to different clusters according to
their RMSDs with respect to the central cluster configurations. Hence, the average structures
of their assigned clusters include a contribution of S50 and S51 respectively and, thus, tend
to be more similar than the corresponding minimized structures that were used to divide the
configuration space. The number of snapshots that were assigned to each central structure is
shown in Tab. 1.12. Interestingly, some PA configurations are populated with a much higher
probability than others as the number of structures per cluster ranges from about 4,500 up to
300,000 indicating a varying size of the basins of attraction.

1.4.3 Estimation of Interaction Potentials for BPTI and PA

In the preceding parts we provided evidence for the correctness of fitting interaction potentials
by formulating an SDP (see section 1.3.3). Here, we apply the optimization problem to “real”
data originating from MD simulations and/or NMA as described for BPTI (section 1.4.1) and
PA (section 1.4.2). To this end, we gathered snapshots from MD trajectories for both BPTI and
PA; NMA was performed for BPTI only. The Hessians required for SDP fitting are obtained from
MD covariance matrices via SVD, similarly to Eq. 1.6. All BPTI configurations were assigned
to a single central structure sparing a clustering of the structures prior to the application of
SDP as the RMSD for the MD trajectories suggests the resilence of just one basin of attraction
(see section 1.4.1, Fig. 1.18). In contrast, we divided the conformation space of the highly
flexible PA into 20 structure clusters (see Tab. 1.12) according to their pairwise RMSD values.
As reference structure for MD snapshots, we used the average structure of each trajectory since
we assume that single snapshots represent fluctuations around a central structure. Note that
all PA structures that have been assigned to the same cluster were merged into so-called cluster
trajectories. In addition to MD data, we determined amino acid specific interaction potentials of
NMA Hessian matrices which have been computed for BPTI in vacuo as well as with solvent and
ions. For these matrices, the energy minimized structure was used as reference. In Tab. 1.13 we
provide an overview of BPTI data SDP has been applied to.
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no. source details no. source details

1 MD MD1 4 7 MD MD1
2 MD MD1 7 8 MD MD2
3 MD MD1 8 9 MD MD1+MD2
4 MD MD2 6 10 NMA solvent/ions (H)
5 MD MD2 7 11 NMA in vacuo (H)
6 MD MD2 8 12 NMA in vacuo (I)

Table 1.13.: Overview of BPTI data that served as input for SDP. We considered covariance matrices (or
rather the corresponding Hessians) of single (no. 1-6) and combined (no. 7-9) trajectories.
The combined trajectories were created by concatenating all simulations based on MD1,
MD2 or both. Note that we omitted the first 400 ps of each MD run. NMA Hessians have
been computed for the protein in vacuo as well as in solution. The all-atom Hessian was
reduced to a Cα-Hessian matrix by applying the described reduction formula in the Hessian
space (H) or by extracting the respective matrix entries of its covariance matrix (I).

The interaction potentials that describe the strength of covalent and non-covalent amino acid
interactions were determined with SDP based on an ANM generated for distinct reference struc-
tures employing varying cutoff distances rc for the range of interaction: 12, 13, 20 and 50 Å for
BPTI and 9, 10, 11, 12, 13 and 20 Å for PA. Thus, we can estimate the influence of rc on the
SDP-fitted parameters. The cutoff definitions were chosen to account for differing protein sizes.
In addition, we determine amino acid specific interaction parameters of BPTI data for reduced
amino acid alphabets that were proposed by Pape et al. [2010].

Results

At first, we will discuss results obtained for BPTI data with the simplest amino acid alphabet
which contains a single amino acid type only and, thus, just one parameter for non-covalent
contacts. Thus, we distinguish covalent and non-covalent force constants of harmonic springs
connecting residues within the protein. The results for varying cutoff distances are shown in
Fig. 1.29. For the two types of interactions, we notice a general trend: for higher cutoffs the
strength of peptide bonds is overestimated in comparison to previously published results of
K = 82 RT/Å2 [Hamacher & McCammon, 2006] whereas the non-covalent bonds are assigned
smaller values. Especially for a cutoff distance rc = 50 Å, the interaction potentials of non-
covalent bonds derived for MD data are all negative which is not a reasonable physical value.
This behavior may originate from a compensatory effect. Interestingly, the results are in contra-
diction with the sensitivity analysis we performed where cutoff distances larger than the initial
cutoffs yielded more reliable results. Both for single MD1 based simulations (no. 1-3) and for
NMA (no. 10-12), the peptide bond potentials are similar for all employed cutoff distances,
whereas for MD2 based (no. 4-6) and combined (no. 7-9) trajectories the yielded covalent po-
tentials deviate to a higher extent. In analogy, we already discussed the higher resemblance of
MD1 based covariance matrices in comparison to MD2 based matrices in a section 1.4.1 adding
more evidence to the consistency of the applied parameter fitting method. Furthermore, we note
that the non-covalent interaction potentials we determined for single MD1 simulations resemble
the knowledge-based MJ potentials [Miyazawa & Jernigan, 1996] on average (≈ 3.2 RT/Å2).
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Figure 1.29.: Interaction potentials of covalent and non-covalent amino acid interactions that were de-
termined by applying SDP to BPTI data (see Tab. 1.13) for varying cutoffs. We present the
results for the simplest amino acid alphabet containing a single amino acid type only.

Those contact potentials feature a rather stiff peptide bond which is characterized by a force
constant of about 250 RT/Å2, in contrast, Hamacher & McCammon [2006] suggested 82 RT/Å2

as parametrization of covalent bonds. Similar values are obtained for combined trajectories
(≈ 90 RT/Å2) as well as for NMA Hessians (≈ 70 RT/Å2) with a cutoff distance of 12 or 13 Å
in combination with increased strength of non-covalent interactions (≈ 15− 20 RT/Å2). The
observed values of peptide bond potentials were also obtained for larger amino acid alphabets,
although the non-covalent parameters show only minor correlation (data not shown).

Comparing the interaction parameters we derived for NMA Hessians, we notice a higher resem-
blance than for individual MD results, particularly for non-covalent interactions. The peptide
bonds are parametrized with lower values for the protein solved in water and ions (no. 10) than
for the in vacuo setup (no. 11-12) as can be seen in Fig. 1.29. Protein backbone flexibility is
increased if we include solvent effects. Different reduction schemes that were applied to yield a
Cα- from an all-atom Hessian matrix exhibit a negligible influence on the interaction potentials.
This is also the case for larger amino acid alphabets as well (data not shown). If we increase
the number of amino acid symbols, we detect a larger portion of interaction values smaller than
zero (even more for increased cutoffs) indicating compensatory contributions due to the matrix
structure. To this end, a more homogeneous parametrization is to be preferred to capture the
dynamical parameters of a protein based on ANM.

The results for PA based fittings are about an order of magnitude smaller than for BPTI due to
an increased flexibility of the PA polypeptide. The cutoff distance rc that is used to derive the
interaction potentials has a similar effect on the interaction strengths as we observed for BPTI.
We compare the results for the 20 PA clusters as defined in Tab. 1.12 by correlating the obtained
values of covalent and non-covalent interaction weights with the end-to-end distance of the Cα
atoms of the cluster average which was used as reference structure for SDP (see Fig. 1.30).
Notably, for structures with higher end-to-end distances, i.e. stretched molecules, the harmonic
springs are parametrized with smaller force constants. Hence, stretched PAs feature less non-
covalent interactions which leads to an increased flexibility. In contrast, compact molecules
with a larger number of interactions among residues fluctuate less around a central structure.
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Figure 1.30.: Plot of SDP-fitted potentials for parametrizing covalent and non-covalent amino acid in-
teractions of with respect to the end-to-end distance for each PA cluster.

Surprisingly, we find contradictory signals for four clusters with an end-to-end distance larger
than 25 Å (see Fig. 1.30) exhibiting a more rigid behavior for extended molecules. According
to Tab. 1.12, these clusters are the smallest with less than 20,000 structures each.

1.5 Discussion

In this chapter, we examined potential extensions of ANM approaches to enhance the capa-
bility of predicting temperature factors. Indeed, introducing an alternative contact definition
(Eq. 1.10) lead to a higher correlation with experimental B-factors in comparison with pfENM
applying sequence specific interaction potentials. Nevertheless, the correlation achieved by an
inhomogeneous parametrization was even higher (see section 1.2.1). However, B-factor pre-
diction without a mechanical model as proposed by Shih et al. [2007] could not be improved
by adding sequence specific scaling constants (see section 1.2.2). In an additional study, we
investigated how to derive interaction potentials from MD or NMA data using ANMs. Remem-
ber, those potentials are used to weight interaction of residues within a certain cutoff distance
(see section 1.1 for details on ANMs). To this end, we performed a proof-of-principle analysis
for MC-STUN (section 1.3.1), MLE/MAPE (section 1.3.2) and SDP (section 1.3.3) using an ar-
tificially constructed ANM with known input parameters. Obviously, all methods were able to
(at least approximately) retrieve the potentials that have been used for construction. Due to
shortcomings (discussed in sections 1.3.1 and 1.3.2), MC-STUN and MLE approaches were not
pursued further. SDP has proven itself as an efficient method for this purpose and was applied to
data sampled for the proteins BPTI (see section 1.4.1) and PA (see section 1.4.2). As worked out
in this context, a thorough data sampling is required to obtain reliable fitting results. The inter-
action potentials derived for BPTI and PA showed large deviations in the absolute scale both for
covalent and non-covalent interactions (considering only one type of amino acids). Notably, the
results obtained for a BPTI trajectory that was created as concatenation of smaller trajectories
and NMA exhibited a high resemblance under the assumption that all non-covalent interactions
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are weighted by the same force constant. Additionally, the obtained peptide bond potential
is similar to the potential of 82 RT/Å2 proposed by Hamacher & McCammon [2006] and the
absolute value of non-covalent potentials resembles the average of MJ parameters [Miyazawa
& Jernigan, 1996]. Correlations of non-covalent interaction potentials fitted for different in-
put data are considerably reduced when considering a more detailed amino acid alphabet. For
the highly flexible polypeptide PA, we obtained drastically reduced force constants from cluster
structures compared to BPTI that were additionally correlated to the form of the molecules,
i.e. compact molecules revealed higher interaction potentials. Summarizing, we have shown
SDP to be a highly efficient method to derive interaction parameters of thoroughly prepared
MD or NMA data yielding physically meaningful results. Furthermore, it is to be preferred to
distinguish covalent and non-covalent interactions only.
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2 Mechanics of Ion Channels

Ion channels are transmembrane proteins that allow an ion flux across the cell membrane.
The resulting bioelectrical signals are, amongst others, the driving force of locomotion, sensory
signals and cognition [Hille, 2001]. Ion channels are assemblies of several subunits forming
homo or hetero oligomers. Larger channels are classified according to either their respective
selectivity to conduct particular ions, such as K+, Na+, and Ca2+ channels, or the ligand that
induces channel function, e.g glycine for glycine receptors. Usually, such ion channels conduct
at least one type of physiologically relevant ions (K+, Na+, Ca2+, Cl−, H+) [Fischer & Sansom,
2002].

All known potassium channels are related to a single protein family, and can be found in bacte-
rial, archeal and eukaryotic cells. The diversity of K+ channels is mainly related to the various
gating types. Gating or the opening of the water-filled pore is induced either by binding a ligand,
such as ions, small organic molecules or even proteins, or by voltage changes within the elec-
trical field of the membrane [MacKinnon, 2003]. Although potassium channels are involved in
many physiological reactions, their general structure is conserved throughout prokaryotes and
eukaryotes [Thiel et al., 2011]. Usually, they consist of four subunits that are arranged symmet-
rically to form the water-filled channel pore that is responsible for the ion flux. Each subunit of
the assembled tetramer contains between two and eight transmembrane domains (TM). Com-
mon to all K+ channels is the so-called pore module, which consists of two TMs connected by a
pore helix. The highly conserved signature sequence TxxTxGF/YG [Heginbotham et al., 1994]
mediates channel selectivity at the narrow part of the pore, referred to as selectivity filter [Doyle
et al., 1998] (see Fig. 2.1). Potassium channels are highly selective for K+ ions, and allow flux of
larger alkali metal cations Rb+ and Cs+, as well, but to a smaller extent. Usually, more than one
ion can be found in the filter. The intrinsic affinity of a K+ ion for the binding site is overcome by
help of repulsatory effects of nearby ions resulting in high conduction rates [MacKinnon, 2003].
Smaller ions, such as Na+ and Li+, are excluded [Doyle et al., 1998; Pagliuca et al., 2007] and
may block channel currents similar to toxine peptides [Rodríguez de la Vega & Possani, 2004].

Ion channel activity has also been reported for viruses [Pinto et al., 1992]. Typically, such viral
channel proteins are comprised of 50 to 120 amino acids [Wang et al., 2011]. When sequencing
the genome of the large, double-stranded Paramecium bursaria chlorella virus (PBCV-1) that
replicates in unicellular, eukaryotic chlorella-like green algae [van Etten, 2003], a motif resem-
bling the signature sequence of the pore module known for potassium channels was detected
[Plugge et al., 2000]. Despite its small size of 94 amino acids per subunit, the miniature, viral
potassium channel Kcv contains all structural elements that are shared by pore modules of other
K+ channels. Mehmel et al. [2003] provided evidence that the miniature potassium channel is
required for viral replication of PBCV-1. Host cell depolarization during infection has been sug-
gested as a result of channel activity [Frohns et al., 2006]. Previous studies have shown, that
Kcv, which is comprised of four identical subunits, forms a functional channel in heterologous
expression systems [Plugge et al., 2000]. Selectivity for K+ ions and sensitivity to channel block-
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Figure 2.1.: Structure of Kcv [Tayefeh et al., 2009]. In (a) structurally and functionally important re-
gions are marked and labeled for a single subunit. The N-terminus is placed between cell
membrane and the cytoplasma, the turret region represents an extracellular loop. The Kcv,
which resembles the pore module of more complex potassium channels is anchored within
the membrane by the outer transmembrane (TM) helix TM1. In (b) two facing subunits
of the homotetrameric channels are shown. Blue beads indicate potassium ions that have
entered the selectivity filter.

ers (Na+, Cs+, Ba2+) resemble those of structurally more complex K+ channels [Pagliuca et al.,
2007] making Kcv an ideal model system to study structure-related channel functions. Note
that functional properties of Kcv depend on the expression system, which is caused by small
changes in its fold due to the different membrane environment [Thiel et al., 2011]. As a con-
sequence, drugs targeting ion channels often have “secondary effects”, mediated by modified
physical properties of the bilayer membrane [Lundbæk, 2008].

Based on the crystal structure of KirBac1.1 [Kuo et al., 2003], a homology model of Kcv was
derived [Tayefeh et al., 2009] by aligning channel parts according to their function. Extensive
MD simulations have been performed showing the model’s capability of continous ion transport.
The structure of Kcv (see Fig. 2.1) features two TM helices, but in contrast to more complex
potassium channels the inner TM is too short for the helix-bundle crossing, which has been
proposed as common gating motif for the inward rectifying potassium (Kir) channel superfamily
[Rapedius et al., 2007]. Furthermore, the C-terminus is virtually at the end of the inner TM,
hence, the channel is almost completely embedded in the membrane. Placed at the interface
between membrane and cytoplasma, the short N-terminus was shown to be essential for channel
function [Moroni et al., 2002]. Hertel et al. [2010] provided evidence for a minimal length of
the N-terminus by studying N-terminally truncated Kcv mutants. Truncation of up to seven
amino acids did not affect the Kcv conductance capabilities, whereas deletion of more than
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seven residues rendered the channel inactive, presumably due to missing salt bridges that have
shown to be essential for stability and function of the channel. Recent studies [Tan et al.,
2010] concerning subunit composition revealed a concerted, “all-or-none” mechanism of the
selectivity filter which can be correlated to gating regulation. Hence, introducing mutations in
the signature sequence that inactivate a single subunit only lead to a complete loss of channel
function. Furthermore, the studies revealed that inter-subunit cooperation is not necessarily
required for permeability, as effects of mutated L70 are additive for the tetramer. Therefore,
each subunit contributes equally and independently to the modulation of permeability.

Much research has been done in the field of potassium channels and Kcv, in particular. However,
there are still unanswered questions concerning structure/function correlates. The miniature,
viral potassium channel Kcv which resembles the pore module of more complex potassium chan-
nels is used a model system for the studies presented in this thesis.

2.1 Analysis of Functional and Stabilizing Modes

Numerous studies employed ENMs to investigate the mechanics of biomolecules, e.g. the HIV-1
protease was thoroughly investigated by Hamacher [2008]. The simplest model to describe
thermal fluctuations of a protein is the GNM [Bahar et al., 1997]. We already discussed in
section 1.1, that the directionality of fluctuations is not assessed in GNMs other than for the
ANM [Atilgan et al., 2001]. In a previous study, Bahar et al. [1998] related slow and fast motions
to function and stability. Slow motions are often associated with global dynamics of the tertiary
structure that involve groups or subunits of biomolecules, since biological function requires
concerted, collective motions. Residues that are active in high-frequency modes may also be
involved in protein function, e.g. electron transport, but those amino acids are rather assumed
to play an important role in maintaining the structure. So-called hot residues are identified
by means of GNMs [Demirel et al., 1998]. Previously, Shrivastava & Bahar [2006] described
a common mechanism of pore opening for potassium channels that have been crystallized for
prokaryotes and eukaryotes. Here, we employ GNMs to analyze the mechanics of the viral
potassium channel Kcv.

2.1.1 Methods

We used the modeled Kcv structure [Tayefeh et al., 2009] and performed a GNM based analysis.
Residue specificity as well as different contact types were not invoked. Dynamical characteristics
of a GNM are fully described by the Kirchhoff matrix Γ as defined in Eq. 1.2. Two residues i
and j are in contact, if their spatial distance Ri j in the ground state structure is within a cutoff
distance rc. Hence, diagonal entries Γii are the number of amino acids interacting with residue i.
We defined two cutoff distances rc = 7 Å and rc = 13 Å, that include contacts within the first and
second interaction shell, respectively. Using SVD, we derive eigenvalues and the corresponding
eigenvectors in analogy to ANMs (see section 1.1). The protein represented as Kirchhoff matrix
has one symmetry. Therefore, we obtain one eigenvalue equal to zero which is omitted from
further considerations. The mechanics of Kcv or rather its subunits was assessed by analyzing
the motions that are encoded in the computed modes. Structural and functional parts of the
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code residues channel region

N 1 10 N-terminus
TM1 13 30 outer TM domain
T 31 50 turret loop
P 51 62 pore helix
F 63 68 selectivity filter
TM2 75 89 inner TM domain
C 90 94 C-terminus

Table 2.1.: Functionally and structurally important regions of Kcv monomers have been derived from
literature [Tayefeh et al., 2009].

No. Name Characteristics

1 Kcv functional (also referred to as Kcv-HOM-K29deprot)
2 Kcv-HOM-K29prot non-functional
3 Kcv-NMR-K29deprot non-functional
4 Kcv-NMR-K29prot non-functional
5 KirBac crystal structure of KirBac1.1 [Kuo et al., 2003]

Table 2.2.: List of structures that have been investigated in this study. Model 1–4 are obtained by
homology modeling [Tayefeh et al., 2009]. For the N-terminus two different approaches
were pursued: homology modeling (HOM) and modeling based on NMR data (NMR). For
residue K29 both protonation states (protonated, deprotonated) were considered.

channel were defined according to Tayefeh et al. [2009] (see Tab. 2.1). We used a shorter filter
definition TxGFG in the following.

Tayefeh et al. [2009] derived a total of four Kcv structures by a template-based modeling ap-
proach that included all available experimental data. As template the crystal structure of Kir-
Bac1.1 [Kuo et al., 2003] was used. Three of four structural models were labeled inactive
channels since only a single structure exhibited features of a functional potassium channel.
Note that we used the latter model as reference structure for Kcv. We included both the non-
functional variants as well as the template structure into our analysis to compare the dynamics
of those channels with the Kcv reference model (see Tab. 2.2).

2.1.2 Results

To determine the effect of the distance cutoff rc for both the slowest and the fastest mode, that
are described by the eigenvector belonging to the smallest and largest eigenvalue, respectively,
we performed the analysis for rc = 7 Å and rc = 13 Å. Both distances have already been dis-
cussed for ENMs [Atilgan et al., 2001; Bahar et al., 1997] to include contacts of the first and
second interaction shell, respectively. Slow modes are characterized by collective motions and,
thus, involve groups of amino acids. Considering interactions of nearest neighbors only, i.e. a
cutoff distance of rc = 7 Å, captures an incomplete picture of global dynamics (see Fig. 2.2).

68 2. Mechanics of Ion Channels



0

0.02

0.04

0.06

0.08

0.1

0.12

10 20 30 40 50 60 70 80 90

E
nt

ry
 in

 E
ig

en
ve

ct
or

Residue

rc = 7 Å rc = 13 Å

Figure 2.2.: Absolute entries of the eigenvector belonging to the smallest eigenvalue, which describes
the slowest motions, are plotted for each residue. Results for both cutoff defintions rc = 7 Å
and rc = 13 Å are compared for a single chain of the homotetrameric Kcv structure.

Larger distances reveal a more detailed behavior of flexible and rigid subunits as well as of
the involved residues. For the fastest modes, that describe the dynamics of individual or small
groups of residues, long-range interactions may obscure local dynamics by embedding amino
acids in more rigid environment (data not shown). Thus, we propose that smaller cutoff dis-
tances should be preferred to describe fast fluctuations of residues labeled as kinetic “hot spots”
[Demirel et al., 1998] that are crucial for protein structure and integrity. To identify subunits
that are involved in collective motions, which are responsible for protein function, larger cutoffs
are recommended.

The selectivity filter, which contains the signature sequence of K+ channels (TxGFGD), mediates
the transport of potassium ions through the channel due to electrostatic interactions between
carbonyl oxygens of filter residues and the ion(s) [Doyle et al., 1998]. Mode analysis revealed
for the filter region localized, high-frequency motions only (see Fig. 2.3). Mutual reactions
between filter residues and potassium ions may cause such peak fluctuations. Analysis of the
slowest mode allows us to identify the group of amino acids that are part of the signature
sequence as the most rigid part of the Kcv. In contrast to more flexible regions, the selectivity
filter is not incorporated in collective reorderings, presumably due to gating. In a previous
study, Shrivastava & Bahar [2006] detected a similar behavior for eukaryotic and prokaryotic
potassium channels as well. From the fastest modes, we detected residues crucial for structural
integrity. Those amino acids are part of TM2, pore helix and the junction of TM1 and turret
region (see Fig. 2.3). Interestingly, data for the monomer resemble the results for tetrameric
chains. Hence, local dynamics is independent of tetramer assembly of the chains. On the
contrary, for collective motions we observe dramatic differences between the monomer and
the tetramer subunits. For the monomer, we find the termini as well as the turret loop to
move concertedly. But in contrast to the tetramer, TM1 is rather rigid, whereas the filter shows
more flexibility. Hence, an effect of tetramerization is the burial of the selectivity filter at the
narrowest, inner part of the channel to provide rigidity.
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Figure 2.3.: Absolute entries of the eigenvector belonging to the smallest (a) and the largest (b)
eigenvalue are shown for each residue. The smallest eigenvalue represents the slowest
mode, whereas a large eigenvalue describes high-frequency motions. The data for the Kcv
monomer (black) are compared to the four chains of the homotetramer. Important regions
were labeled according to Tab. 2.1.

Remarkably, we observe a dimer-of-dimers behavior for collective motions: TM2 of opposite
subunits reveal a similar pattern of dynamics that differs from that of neighboring subunits.
Contact of opposite subunits is mediated by the filter region. Analogous findings were not
observed for the investigation with the smaller cutoff rc = 7 Å. This suggests that inter-subunit
contacts apart from the filter-filter interactions are responsible for such differences. We repeated
the analysis for non-functional structures (see Tab. 2.2) as well, but we did not observe a dimer-
of-dimers like dynamics for the inner TM helix for either structure. Hence, we propose that this
specific characteristics is a feature of a functional, viral potassium channel. To exclude modeling
artifacts, we searched for similar dynamical patterns in the KirBac1.1 structure [Kuo et al., 2003]
which was used as template for the Kcv structure. The dimer-of-dimers behavior of the KirBac
postassium channel that was also proposed by Kuo et al. [2003] could not be confirmed by our
results.

In this section, we discussed the influence of the cutoff choice on results of the investigation
of local and global dynamics. Taking into account contacts of next-nearest neighbors is rec-
ommended to examine collective motions since those interactions provide additional boundary
conditions for global dynamics. Additionally, we found the filter region to be completely decou-
pled from collective motions, that were found to be responsible for protein function. Instead,
the filter residues show highly localized dynamics which can be referred to ion conductance as
well as to structure maintenance. Functionally relevant motions are performed preferentially
by N- and C-terminus, and may be related to gating. We propose a dimer-of-dimers behavior to
be an important feature of Kcv to ensure channel conductance. A similar pattern of collective
dynamics was not found for non-functional Kcv structures.
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2.2 Tectonics of a K+ channel

The miniature potassium channel Kcv exhibits many features of more complex channels [Thiel
et al., 2011], such as ion selectivity, gating, and sensitivity to channel blockers [Gazzarrini et al.,
2003; Syeda et al., 2008]. In recent years, extensive investigations of structure/function cor-
relates revealed that long-range interactions of residues are important for channel function. In
particular, Gazzarrini et al. [2004] reported a communication between the outer TM domain
and the selectivity filter which involves the pore helix, but the mechanism remained unsolved.
Further studies concerning the short, cytosolic N-terminus revealed that mutations and/or dele-
tions of this N-terminal helix affects the voltage-dependent gating and may even cause a loss of
conductivity [Hertel et al., 2010; Moroni et al., 2002]. The structural Kcv model [Tayefeh et al.,
2009], which has been developed since no crystal structure was available for the small potas-
sium channel as it is the case for the majority of membrane proteins, has proven itself adequate
to predict structure/function relations [Gebhardt et al., 2011; Hertel et al., 2010]. We employ
a biophysical approach based on the Kcv homology model to uncover long-range interactions
within the miniature channel to eventually extract a map of relevant mechanical connections
within different domains. A full understanding of such interactions within the pore module of
K+ channels will provide insights into the mechanism how conformational changes of domains
are coupled to regulate channel function.

To this end, we have chosen reduced molecular models, in particular ANMs (see section 1.1)
that were proposed by Bahar et al. [1997], to assess structural and functional modes of the
Kcv channel. The rationale behind this approach is two-fold: a) the mathematical simplicity of
such models allows investigation of a large number of thought-experiments and varying setups,
thus an orthogonal approach to a detailed account (loss of accuracy is mediated by a gain in
an overall picture on scenarios); and b) we want to solely focus on the ground state dynamics
of the protein here, thus we want to avoid any confusion with other selective pressures such as
folding properties or more involved effects.

2.2.1 Methods

To investigate the mechanics of the Kcv potassium channel, we derived a coarse-grained repre-
sentation of the protein utilizing ANM theory [Bahar et al., 1997]. As we already worked out in
section 1.1, the underlying principle is to view a protein as a mechanical network of amino acid.
The complexity of proteins is reduced to a graph, whose nodes are the residues of the folded
protein, each represented by a bead located at the position of its respective Cα atom. The edges
in the network represent physical interactions, which in turn are reduced to harmonic interac-
tions for all residues being closer than a certain cutoff distance rc. As discovered in previous
studies [Atilgan et al., 2001; Doruker et al., 2002; Micheletti et al., 2004; Yang et al., 2008], a
physically sound choice is rc = 13 Å as distance cutoff. To weight the strength of amino acid
interactions, we employed two differing parametrization schemes for the interaction potentials:
For the homogeneous parametrization, we employed a universal force constant κ that is used
to describe the interaction of any contacting residue pair (i, j) as put forward by Tirion [1996],
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whereas for the inhomogeneous parametrization we distinguished between bonded (K) and
non-bonded contacts (κi j).

The pseudoinverse of the Hessian (Eq. 1.5) constitutes the mechanical covariance matrix C
(Eq. 1.6) and resembles the correlated motions, split into x-, y-, z-directions, of any pair of
residues in the thermodynamical ensemble. This matrix is computed via SVD (see section 1.1).
Experimental B-factors can be reproduced from C , as well [Atilgan et al., 2001; Doruker et al.,
2002]. Introducing mutations by setting contacts artificially to zero or by changing interaction
potentials leads to altered covariance matrices Cmut. To quantify the magnitude of change in
the protein dynamics introduced by mutations, we used FN (see Eq. 1.26) between C and a
“mutated” covariance matrix Cmut:

FN=

È∑
i j

�
Ci j − Cmut

i j

�2
(2.1)

Computing the FN solely for the whole matrix may disguise relevant changes that occur only
in functional subregions. To cope with such obscuration effects, we computed the FN for sev-
eral well defined parts of the protein and therefore its covariance matrix as well (see also sec-
tion 4.4). We defined structurally and functionally interesting channel regions [Gazzarrini et al.,
2004, 2003; Kang et al., 2004; Tayefeh et al., 2009] (see Tab. 2.1). From the mechanical co-
variances one can additionally compute the correlation matrices by dividing each matrix entry
by the square root of its corresponding diagonal elements. To investigate the normalized corre-
lation of motions, we performed this step and again restricted the subsequent FN computations
to the functional portions of the channel.

Switch-Off Procedure

In this part of the study we mimicked the effect of mutations by artificially switching off contacts
in an ANM for the Kcv structure giving rise to a mutated mechanical covariance matrix Cmut.
This is equivalent to setting the interaction strength locally to a vanishing value. Since we
are working on a homotetramer, we simultaneously switched off corresponding contacts in all
chains. We considered the following scenarios:

1. Complete Switch-Off: for each residue we reduced the interaction strength to all other
residues dramatically (peptide bonds were excluded and left unchanged). As we dis-
criminate between the homogeneous case, where all interactions are set to a force con-
stant of 1 RT/Å2, and the inhomogeneous case, where we distinguish covalent bonds
(parametrized by 82 RT/Å2) and non-covalent bonds (weighted by 3.166 RT/Å2), we
used different reductions here as well. In the homogeneous case, switched-off interac-
tion strengths were set to 0.05 RT/Å2 and in the inhomogeneous case to 1 RT/Å2. We
considered these smaller values to be almost vanishing ones. The rationale behind this is
two-fold: first, an alanine scan reduces biochemically all local interactions, but does not
destroy interactions completely, effectively leaving a basal interaction; second, a value of
exactly zero for “switched-off” contact might lead to additional singularities in the Hes-
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sian matrix, effectively increasing the size of the null space, which might prohibit direct
comparison of the singular vectors for real dynamical features.

2. Single Switch-Off: each non-covalent contact within a chain was switched off separately,
thus its force constant was set to zero in all chains of the homotetramer at a time. Note
that the problem of additional singularities does not occur due to the high connectivity of
each residue. Therefore, the maintenance of at least two contacts (one covalent, one non-
covalent) for each residue is guaranteed which is required to avoid additional singularities.
The protocol is implemented in the R package BioPhysConnectoR [Hoffgaard et al., 2010]
that has also been successfully applied to acetylcholinesterase (see section 4.4).

∆N-Mutants

Removing corresponding residues in each chain at the N-terminus generates ∆N-mutants. We
focused on the ∆7, ∆8 and ∆9 mutants, which lack the first 7, 8 and 9 N-terminal amino acids,
respectively. We constructed an ANM model for each mutant and computed the difference
matrix of the covariance matrices of ∆7 and ∆9, which was restricted to entries of residues
present in both mutants. We then proceeded to find a correlate in the ANM mechanics of the
mutants with the loss of conductivity as measured in experiments. Additionally, we gained
insight into the changes of the movements themselves, rather than the correlation among them
as in the previous subsection. To this end, we decided to analyze the eigenvalues and respective
eigenvectors for the wild type and mutant systems as well as for different mutants in more
detail. Note that the eigenvectors were restricted to entries which are shared by the ∆N-mutant
pair under comparison. A comprehensive analysis of the 2×3N eigenvectors constitutes a high-
dimensional analysis problem, whose complexity needs to be reduced to make a comprehensive
analysis possible. We propose the following protocol: To compare mutant or wild-type system I
with a mutant I I , a distance matrix A was constructed computing the overlap distance of each
eigenvector ~uI and each eigenvector ~uI I for all pairings (i, j) of eigenvectors (leaving out those
belonging to the six vanishing singular values that occur due to rotational and translational
degrees of freedom). This constitutes the overlap distance matrix:

Ai j = 1− ~uI ,i · ~uI I , j

|~uI ,i| · |~uI I , j|
= 1− cosαi j (2.2)

with αi j being the angle spanned by the eigenvectors i and j. By this definition, which has
also been applied to investigate the mechanical impact of the π-π stacking interaction of F30
and H83 [Gebhardt et al., 2011], we provided for entries of A close to zero to indicate a high
similarity of the respective eigenvector pairing (i, j). The matrix A was then used to assign
corresponding eigenvectors/eigenmovements between the respective proteins. Although there
are several efficient optimization schemes available [Hamacher, 2006, 2007a,b], for practical
purposes we restricted this step to a greedy approach of local optimization.

For these assignments, we computed histograms of the distribution of the similarity values con-
tained in the A matrices. These histograms are then the sought-for, reduced representation of
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the similarity of the accessible space of eigenmovements of the various mutants in comparison
to the functional wild-type structure or among each other.

As a potential falsification experiment, we repeated this for∆1,∆2 and∆3 mutants. This allows
the comparisons of the absolute changes in the various ∆N-mutants, but also investigating the
difference between two ∆N-mutants, which differ by the same number of deleted residues.
For example, we can test by this setup whether there is a fundamental distinction between the
differences between the ∆1-∆2 mutants in comparison to the differences between the ∆8-∆9
mutants – therefore, accounting for any effect, which is caused by relative differences in the
number of deleted residues. We can also check whether any significant change in the mechanics
is due to the absolute number of deleted residues.

Moreover, we quantified the similarity between the histograms by computing the Kullback-
Leibler divergences Dkl [Kullback & Leibler, 1951] between each histogram pair h∆∆i and
h∆∆ j. The Dkl was already discussed in the realm of MD and chemoinformatics as a mea-
sure to quantify dynamical differences [Hamacher, 2007c]:

Dkl(h∆∆i
||h∆∆ j

) =
∑

x

h∆∆i
(x) log2

h∆∆i
(x)

h∆∆ j
(x)

(2.3)

In addition, we performed a clustering based on Dkl as distance measure [Hamacher, 2007c].
This procedure was applied to both the Kcv homology model and the truncated KirBac1.1 model.

Computations were performed using the package BioPhysConnectoR [Hoffgaard et al., 2010],
an extension of the statistical software R [R Development Core Team, 2008] for biophysical and
evolutionary biology purposes.

2.2.2 Results

We modeled the channel dynamics by ANMs (see section 1.1) for the structure of the minia-
ture potassium channel Kcv. We used the following two different weighting schemes for the
parametrization of the interaction potentials, which describe the harmonic spring connections
between each of two residues that are in contact in the native Kcv structure:

• homogeneous parametrization, that does not discriminate between covalent and non-
covalent bonds; this effectively focuses exclusively on structural aspects and

• inhomogeneous parametrization, ensuring that covalent bonds are more rigid in compari-
son to non-covalent contacts within the protein structure.

First, we found that both the homogeneous and the inhomogeneous parametrization yield the
same qualitative results. This insensitivity towards fine-tuning of parameters prompted us to
focus on the results for the homogeneous and thus purely structural case alone.
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The full dynamical information, which can be derived using ANMs, is contained within the me-
chanical covariance matrix C (see Eq. 1.6). It describes if and to what extent the fluctuations of
the residues of a protein or a protein complex are related. The covariance matrix in addition also
denotes the amplitudes of these motions. In fact, normalization of the covariance matrix results
in the (mechanical) correlation matrix. Since we are interested here in both the correlation and
the amplitude of the motions themselves, we used both matrix types in our study.

Results : Complete Switch-off

Conceptually, to mimic the effect of alanine scanning mutagenesis in the Kcv channel [Geb-
hardt et al., 2011], we developed a thought experiment: we artificially “switched-off” all non-
covalent interactions of an amino acid to its interaction partners within the Kcv channel. This
was achieved by reducing the respective strengths to a very small, but finite value. Since the
functional channel is a homotetramer, the reduction on corresponding amino acids was per-
formed in all four monomers simultaneously. To quantify the effect of such reduced mutual
amino acid interactions on the biomechanics of specified protein regions, we computed a matrix
norm, namely the FN (see Eq. 1.26), of the covariance and correlation matrices. A large norm
indicates a major influence of the “mutated” amino acid on the dynamics of the whole protein
or a particular region (see Tab. 2.1). The regions of interest correspond to structurally and/or
functionally defined regions of the Kcv channel [Tayefeh et al., 2009]. Worth noting is that the
focus on such sub-regions also increases the accuracy as the subtle differences are not masked
by global effects of the full protein. Similar to previous studies we defined two regions for the
filter using TxxTxGFGD or TxGFGD as signature sequence for ion specificity.

In general, the results for covariance and correlation matrices are qualitatively the same differ-
ing only in the signal strength as can be seen in Fig. 2.4 that shows the influence of a residue
mutation on the monomer dynamics. The data provide such a high resolution that even the pe-
riodicity of α-helices is apparent from the oscillations in the signals (insets Fig. 2.5 and Fig. 2.6).
These findings on both the equivalence of the two parametrizations, as well as the equivalence
of the analysis foci, allowed us to restrict ourselves to only one analysis scenario: homogeneous
parametrization and covariance matrices.

In Fig. 2.5 we present in more detail a subset of these data, namely the effect of mutagenesis
of the entire channel on the N-terminus. In this example, each residue of the Kcv channel is
mutated one at a time: all non-covalent interactions of the amino acid under consideration
to other amino acids are modeled by weak harmonic springs with a negligible strength. The
effect of each mutation on the dynamics of the N-terminus was quantified by the accompanied
FN. Clearly, the largest effects on the N-terminus are generated by mutations in the N-terminus
itself. The inset shows the same results, but restricted to mutations outside of the N-terminus.
Notably, perturbations on the C-terminal residues convey information on the N-terminus. This
suggests that the physicochemical and structural properties of the C-terminus reflect back on
the mechanics/dynamics of the N-terminus. To a smaller extent we observe this influence to be
reciprocal, i.e. a mechanical communication from the C- to the N-terminus. These results are
in perfect agreement with experiments that have shown a functional connection between both
termini [Hertel et al., 2010; Tayefeh et al., 2009]. Furthermore the data in Fig. 2.5 also show a
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Figure 2.4.: Importance of amino acids derived in the complete switch-off scenario mimicking an alanine
mutagenesis study: interactions of each residue to all its contacting residues are weakened
in all chains individually. Changes in dynamics are quantified by computing the FN of the
respective difference matrices for covariance (Cov) and correlation (Cor) matrices. Both in-
teraction strength parametrizations (homogeneous (hom), inhomogeneous (inhom)) have
been applied to resemble interaction potentials. The results are compared for each matrix
type. The asterisk indicates scaled values.

large effect of mutations in the first part of TM1 on the N-terminal mechanics, whereas residues
of the second part of the helix seemed to have no effect. This result corresponds well with the
distribution of the thermal B-factors of TM1 obtained from the MD model of Kcv. It occurs that
the high FN coincides with the dynamic parts of TM1.

Another key finding of our analysis is that the filter region seems to be kept in a Gimbal-like
anchoring in the structure of the Kcv channel. The data show that substantial effects on the filter
were generated only by mutated residues within the filter region itself (see Fig. 2.6). Otherwise
the filter dynamics is inert against any mutation in the rest of the protein. Our results for the
filter region were independent of the particulars of the definition which residues constitute the
filter. The finding that the filter region is mechanically so much uncoupled from the rest of
the protein is very interesting with respect to the function of a K+ channel. The structural
mechanism, which is underlying ion selectivity in the filter, does not tolerate a great deal of
flexibility of this part of the protein. Our data show that the protein is indeed constructed in
such a way that the filter is more or less mechanically uncoupled from the rest of the channel;
this probably guarantees a maximum conservation of the pore in an otherwise dynamic protein.
Negligible effects in the FN signal stem from helical residues of TM1 and TM2 as well as from
the entrance of the filter region. Worth noting, however, is that mutating residues of the filter
region lead to slight changes in the mechanics of TM2, but not vice versa.
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Figure 2.5.: The influence on the dynamics of the N-terminus quantified by the Frobenius norm of
the respective parts of the covariance matrix. For each residue, whose interactions to all
its contacting neighboring amino acids have been reduced – effectively quantifying the
impact of those residues on the mechanics of the N-terminus. The results are shown for the
homogeneous and thus purely structural case. The inset shows the influence of residues
that are not part of the N-terminus itself (indicated as a gray bar).
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Figure 2.6.: Impact of residues on the sensitivity filter. The Frobenius norm for the covariance matrix of
the selectivity filter alone sheds a light on how switching off residues affects the dynamics
of the filter. The gray bar indicates residues belonging to the sensitivity filter. The inset
presents the results for residues outside the filter region. For brevity, we show results for
the shorter filter definition (TxGFGD) and homogeneous parametrization, only.
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Figure 2.7.: Single switch-off results for the C-terminus. Each interaction of contacting residues (i,j)
that are not classified as C-terminal residues (indicated by the gray bar) is switched off one
at a time in all chains simultaneously. The Frobenius norm is computed for C-terminal parts
of the covariance matrices. Blue colors indicate interactions having a high influence on the
dynamics of the C-terminus, whereas yellow interactions are negligible.

Results : Single Switch-off

The aforementioned full switch-off experiment mimics alanine scanning mutagenesis. To gain
more detailed insight into the tectonics, e.g. on the functional connectivity, in the miniature
potassium channel Kcv, we also applied another protocol to the structure. This protocol was
already successfully applied by [Hamacher, 2008] to the HIV protease to identify important
contacts (in contrast to whole residues) in the biomechanics of a protein. For this purpose single,
corresponding non-covalent contacts were artificially deleted in all monomers simultaneously;
all other interactions of the corresponding residues were left untouched. Connections between
subunits were retained and the effect was quantified by the FN (see Eq. 1.26) of the covariance
matrices C and Cmut.

As a case example, we illustrate in Fig. 2.7 the results for the C-terminus. For each existing
contact, excluding those with at least one residue belonging to the C-terminal region, the FN is
shown. We notice large effects of contacts within the N-terminus as well as between both trans-
membrane domains TM1 and TM2 on the C-terminus. The most significant residue contacts
are between the pairs: F19-V87, A22-T86 and A22-V87 (see Tab. 2.3). Above all, deleting in-
teractions of amino acid M1 leads to major changes in the mechanics of the C-terminus. Those
findings underscore again the functional significance for amino acid interactions between N-
and C-terminus. Tab. 2.3 shows the top 5 contacts ranked according to their influence on the
respective regions measured on the basis of their FNs. The data show that a deletion of con-
tact E12-L94 has drastic effects on the dynamics of most of the functional regions. It occurs
that interactions of residues A22 and L94 have large effects on the mechanics of the pore he-
lix. Furthermore contacts T9-A22, F19-L94 and E12-L94 affected the dynamics of TM2 upon
deletion.
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N TM1 T P F TM2 C

E12-L94 E12-L94 D52-D68 A22-L94 F19-S62 E12-L94 M1-F4
T11-L94 L92-L94 D68-K72 T9-A22 F19-H61 A22-L94 A22-T86
L18-L94 T9-T93 F24-I51 E12-L94 M1-I90 S5-I90 M1-L8
A22-L94 T11-L94 D68-P71 L18-F24 I69-I81 T11-L94 M1-T9
L18-T20 S5-L92 P32-D52 M1-I90 M1-V91 T9-A22 A22-V87

Table 2.3.: Contacts with major influence on the dynamics of specified channel regions. Results for
single switch-off. For each region (as defined in Tab. 2.1) the contacts with the highest
influence (quantified by the Frobenius norm of respective covariance matrix portions) on
the dynamics of the respective region are listed.

A key finding of the complete switch-off approach is that none of the amino acids was severely
affecting the dynamics of the selectivity filter. To obtain a better insight into this phenomenon we
investigated the influence of single contacts on the dynamics of this region. We found individual
contacts between F19 in TM1 and the entrance of the filter region (H61, S62) to be distinctly
relevant for the mechanics of the filter. The apparent prominent role of F19 and its functional
connection to the filter domain favorably confirms and further details previous experimental
results. Different natural mutants of Kcv exhibited an exchange of F19V in this position [Kang
et al., 2004]. A functional analysis exhibited that the F19V mutation has severe effects on
the sensitivity of the channel to Cs+ block, Rb+ permeability and on gating [Gazzarrini et al.,
2004]. These altered functions, which are most likely caused by an effect of the filter, were
causally related to a long-range interaction of the amino acid in position 19 via amino acids
54 and 66 [Gazzarrini et al., 2004]. The present analysis draws a similar picture in that the
amino acid in position 19 is mechanically linked to the filter albeit the more directly connected
amino acids might be H61 and S62. Interactions of residue L94 were found to be crucial for the
dynamics of several regions. This is in line with earlier findings about the role of L94 as a salt
bridge partner for positive residues in the slide helix which turned out to be essential for ion
transport [Hertel et al., 2010; Tayefeh et al., 2009].

Results : ∆N-Mutants

Hertel et al. [2010] have shown that deletion of up to 7 N-terminal amino acids (L2 - L8,
referred to as ∆7 mutant) maintains activity of Kcv. However, the channel becomes inactive
if two more residues, T9 and R10, are removed as well; the intermediate ∆8 mutant (only
T9 removed) shows only a reduced conductivity. The reason for the abrupt loss in channel
function in response to the truncation of a single amino acid can be causally related to an
interruption of the salt bridge pattern between the two TM domains [Hertel et al., 2010]. In
order to investigate whether the abrupt loss in function is also influenced by the dynamical
modes of such ∆N-mutants, we developed an additional protocol for the truncated structures.
The goal was to search for signals that go hand in hand with the complete loss of channel
conductance when truncating 9 instead of 7 N-terminal residues, possibly only showing small
signals for the∆8 mutant. Since we did not incorporate any amino acid specificity in our model,
we simply removed the first 7, 8 or 9 residues from the N-terminus, respectively. Although M1
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is kept in the experimental setups, we deleted it, too. This is justified because M1 is known to
be relevant for protein biosynthesis only. It does not influence the protein dynamics itself (see
also section 2.2.2 for the N-terminus dynamics in the complete switch-off experiments).

Because the matrices of different mutants have different dimensions we restricted the analysis
only to those entries, which correspond to the same residues in the different ∆N-mutants. To
quantify which residues are most affected by shortening the N-terminus, we aggregated all
squared differences belonging to each amino acid. The largest influence could be observed in
the N- and C-terminal regions. This comes as no surprise, because both termini communicate
mechanically with each other (see section 2.2.2). Interestingly, half of TM1 was affected as well,
whereas the remaining part showed only small deviations from the wild type behavior (data not
shown). Furthermore, we also identified motions of the wild-type channel with those in the
∆N-mutants. By this procedure, we obtain an aggregate picture of how the individual motions
differ. We extended the set of mutants by∆1,∆2, and∆3 mutants. This allows us to investigate
whether substantial mechanical changes occur at an absolute number of truncated residues, or
whether the effect is a relative one.

Bahar et al. [1998] introduced the notion of functional and stabilizing mechanical motions,
which can be classified by their respective frequencies. As aforementioned (see section 2.1),
modes with a low frequency represent global motions, which occur mainly due to functional
movements e.g. conformational changes. High-frequency modes, on the other hand, are related
to localized kinetics crucial for maintenance of structural stability. A pairwise comparison of
the modes of both wild-type/mutant and mutant/mutant revealed high similarity mainly for
stabilizing modes; the majority of the functional modes, however, differed substantially. To
analyze potential mechanical aberrations between different mutants we defined the intra-∆ and
the inter-∆ group. The first group contains all comparisons between mutants, whose truncation
lengths differ at most by two residues per monomer, e.g. mutants∆1-∆2 or∆7-∆9. The inter-∆
group is comprised of mutant pairs in which the truncation lengths differ substantially such as
∆3-∆8 or ∆1-∆9.

Fig. 2.8 suggests two regimes for the mutant-mutant comparisons: the intra-∆ and inter-∆
group share common, distinct features among each other: mean, shape, location of the maxi-
mum in the histograms. The only deviation from this pattern is observed for the comparison of
the ∆7-∆9 mutants. In spite of belonging to the intra-∆ group, the ∆7-∆9 overlap distances
resemble the curvature of inter-∆ pairings. In other words, deleting two N-terminal residues
from the ∆7-mutant introduced changes in mechanics as drastic as deleting eight amino acids
from the ∆1-mutant. This observation relates very well to the experimental results, which have
shown that removing nine instead of seven residues of the N-terminus, rendered the channel
inactive.

To analyze the histograms in Fig. 2.8 further we computed a distance measure between the
respective histograms, the Kullback-Leibler divergence Dkl , which is capable to discriminate
between the intra-∆ and the inter-∆ group (Fig. 2.9). We found, that the truncation of the
channel by a similar number of amino acids leads to similar changes in dynamics in general;
this result is almost independent of the location of the truncation. The only exception from this
common pattern is observed in comparison of the ∆7-∆9 mutants. For this particular pair of
mutants we see a remarkable difference: the changes induced by going from the ∆7-mutant to
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Figure 2.9.: Kullback-Leibler divergence of the overlap distance distributions. For each mutant pair,
such as ∆7-∆8 the overlap distance of the corresponding eigenvectors is computed as
a measure for mechano-dynamical similarity. We compare those overlap distance distri-
butions amongst all mutant-mutant pairs by the Kullback-Leibler divergence Dkl of the
respective histograms (left). Small Dkl values (white to yellow) indicate a high similar-
ity of the underlying distributions. Note how the ∆7-∆9 mutant comparison is much closer
to the group of mutants, which differ substantially, like ∆1-∆7 or ∆3-∆8, eventually show-
ing signatures of the fundamental physiological changes found in vivo. Additionally, we
applied a clustering to the Dkl values; the resulting tree is shown at the right. Results are
independent of the binning scheme for the frequencies used in Dkl .
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R10

L94

(a) Salt bridge R10 - L94 (b) Scheme of sensitivity analysis

Figure 2.10.: The salt bridge close to the truncation site where a loss of channel function is observed is
shown embedded in the structural context (left). To this particular interaction, we applied
a sensitivity analysis to judge its influence. Therefore, we either moved the Cα atoms
farther apart along their connection vector or we artificially deleted the respective contact
by setting its interaction strength to zero. A sketch to illustrate the described sensitivity
analysis is given at the right.

the ∆9-mutant is more severe than the modification of any other ∆L-mutant to its respective
∆(L+1) or ∆(L+2)-mutants; eventually the relative change is as severe as going for example
from ∆1 to ∆8-mutant. This can also be seen in Fig. 2.9 which presents the clustering of the
mutant pairs in accordance with their Kullback-Leibler distance. Again, we observe that only
the ∆7-∆9 pair from the intra-∆ group is assigned to the inter-∆ group.

We further addressed the question whether the assignment of ∆7-∆9 to the inter-∆ group
rather than to the intra-∆ group results from specific, important interactions within the Kcv
structure. Hence, we tested the sensitivity of our approach towards local changes. We identified
the salt bridge, which is constituted of residues R10 and L94 in Kcv as a crucial interaction that
is close to the truncation site (see Fig. 2.10(a)). To test whether this precise mutual interaction
between the two amino acids is relevant for the mechanical coupling in the channel we repeated
our protocol, but for all mutants this specific interaction was relaxed by a) pushing the residues
farther apart or by b) weakening/deleting its interaction (see Fig. 2.10(b)). Notably, with this
procedure we obtain the same results as before. This implies that our protocol is insensitive
towards local rearrangements and hence mutual interactions between amino acids; the results
of these experiments underscore the exceptional character of the ∆7-∆9 step, which is inherent
in the global structure rather than in the local interactions. Altogether, the analysis revealed that
truncating more than 7 to 8 residues has a devastating effect on the dynamics of the channel.
This altered dynamics in Kcv is correlated with the experimentally observed loss of channel
activity; like in the computational analysis we found a sharp transition between active and
inactive channels for a truncation of more than 7 to 8 amino acids [Hertel et al., 2010].

To investigate whether these findings are singular for the Kcv alone, we repeated the whole
protocol for the KirBac channel, which was truncated to the size of Kcv [Tayefeh et al., 2007].
Analogous results were achieved: again, also in this channel, which shares on the amino acid
level in the respective region only moderate homology, the transition from a ∆7 to a ∆9 mutant
causes the aforementioned drastic effect. Also in the case of the KirBac channel we detect for
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∆7-∆8 and ∆8-∆9 larger deviations to the intra-∆ group than before, which may be due to the
absolute number of deleted residues.

Collectively, the results of these experiments imply that the detailed amino acid sequence is not
so important for the dynamical behavior of the protein. Apparently, the global structure itself is
the main determinant of the dynamics in the pore module of potassium channels.

The present data show that ANMs are capable to generate a global map for the mechanical
connections in small K+ channels. This map provides detailed information on long distance
interactions in this small channel, which cannot be directly explained by mutual interactions
of amino acids. A particular finding is that the selectivity filter is apparently isolated in a me-
chanical manner from the rest of the channel protein. This architectural arrangement ensures
that the delicate geometry of the selectivity filter, which is essential for ion selectivity, is main-
tained in an otherwise dynamic protein. Some of the main mechanical interactions in the Kcv
channel, which were identified from the network model, are in agreement with experimental
studies, which have already in the past speculated on long-range interactions between the outer
TM domain and the pore in this channel [Gazzarrini et al., 2004]. The ANM also shows that
a truncation of the N-terminus of Kcv beyond a critical length has a devastating effect on the
channel structure and that this truncation is correlated with a loss of experimentally detectable
channel function [Hertel et al., 2010].

In the particular case of the N-terminus, the data demonstrate that, despite substantial local
differences, important mechanical properties are governed predominantly by topology. In other
words, two sequences such as Kcv and KirBac, which are only moderately similar with a se-
quence identity of about 23% [Tayefeh et al., 2009], but which generate a K+ channel pore
module with an overall similar architecture, generate common functional modes. This is in-
teresting on the background of the finding, that different K+ channels have the same overall
topology of the pore module but still exhibit different biophysical features such as different uni-
tary channel conductances, differences in gating and sensitivity to blockers. Hence it is plausible
that the functional modes, which are governed by the topology and which may be a genuine
feature of all K+ channels, determine generic mechanical interactions in a K+ channel. Any
precise and channel specific feature, which is characteristic for a certain type of K+ channel, is
then modulated on top of these genuine modes by specific amino acid interactions.

2.3 Investigation of a π-π Stacking Interaction in Kcv

Relationships between structure and function have been elucidated for diverse regions of potas-
sium channels and the viral Kcv in particular, e.g. for the N-terminus [Hertel et al., 2010] and
the selectivity filter [Chatelain et al., 2009; Cordero-Morales et al., 2006; Gazzarrini et al., 2004;
Heginbotham et al., 1994; Tan et al., 2010]. In this study, we investigate the structural signifi-
cance of the two TM domains for the channel properties. Unbiased information can be obtained
by an alanine scanning mutagenesis [Cunningham & Wells, 1989]. To this end, all residues are
mutated to alanine, except alanines that are replaced by glycines, one at a time. Hence, all
side chain interactions (except for the Cβ atoms) are eliminated and the contribution of single
residues to fold and stability can be determined. Alanine scanning mutagenesis of both TMs
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F30

Figure 2.11.: π-stacking is observed between the transmembrane domains TM1 and TM2. A single
subunit is shown, the corresponding interaction F30-H83 is highlighted.

revealed that a large number of amino acid positions of the Kcv tolerate the substitution by ala-
nine [Gebhardt et al., 2011]. In general, the inner transmembrane helix TM2 is more tolerant
against alanine substitutions than TM1, a total loss of conductance was observed for H83, only.
Whereas for TM1, drastic effects are noticed for H17, I20, Y28, and nearly all phenylalanines
(F14, F24, F30, F31) leading to a near or complete loss of channel function. Most of those sensi-
tive residues are conserved within the sequences of viral potassium channels (data not shown).
Notably, the side chains of the corresponding residues point to the membrane in the structural
model of Kcv. Together with the aromatic character of those amino acids these findings suggest
a membrane anchoring is provided by these residues. Notably, substituting aromatic residues
with other aromatic amino acids is able to rescue the channel function with varying degrees.

As pointed out, the alanine mutagenesis study revealed a complete loss of conductance when
replacing residue H83 from TM2. This amino acid is interacting via π-stack with F30 from
TM1 over a distance of about 3.5 Å (see Fig. 2.11); the helical stacking is apparent from the
modeled Kcv structure [Tayefeh et al., 2009]. Such π-π stacking interactions occur if two closely
located, aromatic molecules are positioned in parallel [McGaughey et al., 1998]. Providing links
between helices, they are important for correct fold and stability. π-π interactions have also
been discussed for proton gating of acid sensing ion channels [Li et al., 2009]. In the light of the
alanine mutagenesis results [Gebhardt et al., 2011], where for F30 mutants appropriate channel
function was only rescued by aromatic substitutions, the helical π-stacking forms important
subunit contacts.

We apply an ANM (see section 1.1), a coarse-grained protein representation, to further support
the structural importance of this respective interaction. The results of this section have been
published in:

Gebhardt, M; Hoffgaard, F; Hamacher,K; Kast, SM; Moroni, A; Thiel, G (2011) Membrane an-
choring and interaction between transmembrane domains is crucial for K+ channel function. J
Biol Chem 286:11299.
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2.3.1 Methods

To further elucidate experimental findings of the applied alanine mutagenesis study, we exam-
ined the homology model of the Kcv [Tayefeh et al., 2009] using ANMs (see section 1.1). In
these coarse-grained protein models, residues are represented as beads placed at their Cα atom.
Connections between interacting residues are modeled as harmonic springs. From the Hessian
matrix (see Eq. 1.5), eigenmodes and eigenfrequencies are derived by SVD. To estimate the
importance of the π-π stacking interaction of residues F30 and H83, we artificially delete the
respective contact. The impact of the mutation, is quantified by the overlap of corresponding
eigenvectors belonging to eigenvalues greater than zero. This measure has been introduced in
section 2.2 to compare different ∆N-mutants. In general, let αi j be the angle between any two
vectors ~ui and ~v j, the overlap distance di j of those vectors is computed as defined in the context
of the overlap distance matrix A (see section 2.2, Eq. 2.2):

di j = 1− cosαi j (2.4)

2.3.2 Results

For the application of the ANM to the Kcv model, we used a homogeneous parametrization,
i.e. we did not distinguish different types of interactions (covalent vs. non-covalent). Thus, we
performed a purely structural analysis focusing on topological issues. To examine the influence
of the specific contact F30-H83, we artificially deleted this single interaction from the contact
definition. Note that there is no experimental analog to this in silico analyis, thus, this analysis
can be performed in silico, only. The local mechanics of a protein is encoded in the covariance
matrix, that can be computed for an ANM (see Eq. 1.6). Wild-type and mutant Kcv are compared
with each other by computing the differences of their respective covariance matrices. The impact
of the introduced mutation is quantified by FN (see Eq. 1.26). We observed, that both TMs as
well as the turret region were affected by deletion of this specific contact. Furthermore, we
defined the overlap distance as a measure to compare modes of wild-type and mutant models.
Modes, mathematically described as eigenvectors, describe specific fluctuations of the molecule
at a specific frequency, given by their respective eigenvalues. Superposition of all but the first
six modes, whose eigenvalues are equal to zero due to rotational and translational degrees of
freedom, leads to the covariance matrix. As discussed in the context of GNMs (see section 2.1),
low frequency modes are often referred to as global modes, that are responsible for collective
motions of subunits. Those motions have impact especially on protein function. Fast modes
are often localized fluctuations with impact on stability issues [Bahar et al., 1998]. The overlap
distance measures the deviation of two corresponding modes i and j of both systems under
consideration, di j ∈ [0, 1] (see Eq. 2.4). If the modes are identical, the mutation did not change
the respective motion, the distance is zero. Deleting the π-stacking interaction F30-H83 has no
effect on the functional modes (see Fig. 2.12). Global, collective motions responsible for gating,
etc. are not altered. On the contrary, for stabilizing modes we observe dramatic effects. Hence,
this particular amino acid interaction is important to maintain the correct fold and to provide
stability.
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Figure 2.12: Overlap distance di is plot-
ted for all modes (eigenvec-
tor) indexed by i. The over-
lap distance is derived as angle
between corresponding wild-
type and mutant eigenvectors
~ui and ~v i. Small indices repre-
sent global motions determin-
ing protein function, whereas
high-frequency modes (high
indices) describe local dynam-
ics affecting protein stability.
In the mutant channel, the
contact F30-H83 is artificially
deleted. Picture is adapted
from Gebhardt et al. [2011].

Our data show that π-stacking interactions attaching the inner TM2 to the outer TM1, which
leads to its immobilization, provide optimal channel function. Experimental data presented by
Gebhardt et al. [2011] are further supported by results obtained from a theoretical, coarse-
grained approach, that revealed modified protein stability for a disruption of the π-stacking
contact F30-H83.

2.3.3 Contributions

The theoretical network based analysis (ANM, see section 1.1) of the π-π stacking interaction
of F30-H83 was performed in the framework of this PhD thesis.

2.4 Discussion

Due to its small size, Kcv has been adapted as model system for potassium channels since its
structure corresponds to the conserved pore module shared by K+ channels [Thiel et al., 2011].
Furthermore, Kcv exhibits many features of a functional ion channel [Gazzarrini et al., 2003].
Based on the crystal structure of KirBac1.1 [Kuo et al., 2003], Tayefeh et al. [2009] derived a
homology model of the Kcv structure. In the presented studies, we utilized this Kcv model to
perform theoretical analyses of its structure. We employed network-based approaches (GNM,
ANM) that assume a coarse-grained protein representation by placing beads at the Cα positions
of amino acids and connecting beads within a given cutoff distance with harmonic springs.
GNMs model fluctuations of residues/atoms isotropically, and, thus, provide insights into the
general dynamics of a protein. Focusing on the slowest modes, we are able to identify func-
tional regions that undergo concerted collective motion, whereas fast modes reveal hot spots of
localized dynamics that are crucial for protein stability [Bahar et al., 1998; Demirel et al., 1998].
In contrast, in ANMs fluctuations are described anisotropically for x-, y- and z-direction. Addi-
tionally, the springs that connect contacting residues can be assigned different force constants to
invoke amino acid specificity or to stiffen covalent bonds compared to non-bonded interactions.
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We applied switch-off scenarios to the Kcv model, i.e. we artificially deleted single interactions
or decreased the connection strength of a residue to any other amino acid. We estimated the
impact of the “mutations” by the FN of the covariance matrices. Notably, we detected simi-
lar signals for both homogeneous and inhomogeneous parameterization mainly differing in the
magnitude. From the in silico mutation experiments we identfied amino acid contacts that have
a major impact on particular functional channel portions upon deletion. In particular, alter-
ations within the C-terminus reflect back on the dynamics of the N-terminus. In contrast, the
selectivity filter is rather mechanically uncoupled from the other channel parts; its dynamics is
affected by deletion of long-range interactions that involve residue 19 and the entrance of the
filter which is in accordance to experimental data [Gazzarrini et al., 2003]. In addition to the
identification of mechanically relevant sites, we observed a dimer-of-dimers behavior for Kcv
since the inner TM2 of neighboring subunits exhibits differing dynamics which has not been
detected for the KirBac1.1 structure and the inactive Kcv structures. Furthermore, we proposed
the overlap distance as measure to evaluate the effect of mutations as disturbance of functional
or stabilizing modes according to the notion introduced by Bahar et al. [1998]. We used the
proposed measure to judge on the effect of an artificial deletion of a π-π stacking interaction
of residues F30 and H83 yielding drastically modified stabilizing modes whereas the functional
modes that mediate collective motion were not affected. In a similar approach, we investigated
the effect deletion of N-terminal residues has on the dynamics of the channel and quantified
the altered dynamics of different ∆N-mutants by overlap distance histograms. Hertel et al.
[2010] have reported a complete loss of conductivity of Kcv for deletions comprising more than
8 N-terminal residues. Indeed, ∆7- and ∆9-mutant, which were experimentally shown to be
functional and non-functional, respectively exhibit as drastically modified dynamics as the com-
parison of ∆3- and ∆8-mutants. Altogether, the presented data further support the structural
model proposed by Tayefeh et al. [2009].
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3 Coevolution in Hammerhead Ribozymes

Ribonucleic acid (RNA) is a versatile, ubiquitous biomolecule which plays a prominent role in
diverse cellular processes. The negatively charged polynucleotide chain is composed of nu-
cleotides consisting of ribose sugar and a phosphate group. The nucleotides are connected by
phosphodiester bonds in 5’-3’ direction of their sugar and distinguished according to their at-
tached bases. In general, we are concerned with the purines adenine (A) and guanine (G)
as well as with the pyrimidines cytosine (C) and uracil (U). RNAs can fold into diverse three-
dimensional structures featuring both intramolecular interactions between secondary structure
elements, such as kissing loops and pseudoknots [Batey et al., 1999], and intermolecular inter-
actions with ligands including metals [Chow & Bogdan, 1997] and other macromolecules as can
be found in large assemblies like the ribosome. Predicting the three-dimensional structure of
RNA that mediates its function is difficult. Due to their regulatory or catalytic role in a variety
of biological processes such as protein biosynthesis, RNAs are classified in different RNA types,
e.g. transfer-RNA, messenger-RNA, ribosomal-RNA, etc.. Other than coding messenger-RNAs
that are central to protein synthesis [Crick, 1970], the highly diverse non-coding RNAs seem to
be abundant in roles that require high recognition capabilities for specific nucleic acids [Eddy,
2001].

Among non-coding RNAs, we find RNAs with catalytic properties: so-called ribozymes catalyze
reactions on themselves or other molecules [Wilson & Lilley, 2009] which was first observed
by Cech et al. [1981] and Guerrier-Takada et al. [1983]. According to their size, ribozymes are
classified as large and small ribozymes. The most prominent example of a large catalytic RNA
is the ribosome [Cech, 2000], a large complex comprising rRNAs and several proteins that is
central to protein biosynthesis and has been found in all domains of life. Further members of
this class are group I and group II introns which catalyze their own splicing from primary RNA
transcripts by different mechanisms [Saldanha et al., 1993]. Prominent, representative, small
ribozymes are the hairpin, hammerhead, and hepatitis delta virus (HDV) ribozymes comprising
about 40 to 160 nucleotides [Doudna & Cech, 2002].

Hammerhead ribozymes are the smallest naturally occuring RNA endonucleases that catalyze
the site-specific cleavage of their own phosphodiester backbone [Doudna & Cech, 2002; Przy-
bilski & Hammann, 2006]. First discovered as catalytically active element in the rolling-circle
replication of certain viroids [Forster & Symons, 1987; Prody et al., 1986] the presence of ham-
merhead ribozyme motifs was detected amongst others in plant [Gräf et al., 2005; Przybilski
et al., 2005], amphibian [Epstein & Gall, 1987] and mammalian genomes [de la Peña & García-
Robles, 2010a; Jimenez et al., 2011]. The first three-dimensional structure of a ribozyme was
put forward by Pley et al. [1994]: a minimal hammerhead ribozyme that consisted of a catalytic
core comprising 11 highly conserved nucleotides flanked by three helices arranged in a Y-shaped
conformation (see Fig. 3.1). Khvorova et al. [2003] and de la Peña et al. [2003] made the obser-
vation that peripheral elements such as loops and bulges at the end of the flanking helices are
required for full activity and may stabilize the ribozyme in a catalytically active form via tertiary
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Figure 3.1: Secondary structure of a minimal-
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Figure 3.2: Secondary structure of a hammer-
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ing the core nucleotides. For ex-
ample, if the stem helix I is open-
ended, we are concerned with type
I. Hence, the existence of loops is
optional and depends on the ham-
merhead ribozyme type. In addi-
tion, the stems are of variable size.
The cleavage site is marked.

interactions. Loops may interact via non-canonical base pairings and stacking of individual,
non-adjacent bases [Przybilski & Hammann, 2006]. These findings were further supported by
the first crystal structure of a full-length hammerhead ribozyme that was proposed by Martick &
Scott [2006]. Hammerhead ribozymes are classified based on the presence or rather absence of
loops and/or bulges at the end of the helices. Fig. 3.2 presents a schematic view of a secondary
structure of the hammerhead ribozyme to illustrate the classification. Hammerhead ribozymes
of type I feature an open end stem helix I, whereas for type II and type III stems II and III are
open-ended, respectively. The cleavage site is located between stems I and III behind the motif
UH; cleavage depends on a physiological Mg2+ concentration [de la Peña et al., 2003; Khvorova
et al., 2003; Martick & Scott, 2006]. Although hammerhead ribozymes have been detected
among all domains of life [de la Peña & García-Robles, 2010b], the first natural hammerhead
ribozyme of type II was not found until recently [Perreault et al., 2011] along with sequence
variations of the hammerhead consensus. In this study, we will focus on hammerhead ribozymes
of type I and III only. As ribozymes need to maintain their structure, we hypothesize that there
needs to exist substantial coevolution within the molecule.

To this end, we employ mutual information (MI) originating from information theory [Shan-
non, 1948] to detect coevolutionary signals within hammerhead ribozymes. MI quantifies the
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coevolutionary analysis are shown. We
highlighted the helices flanking the con-
served core as well as the cleavage site
which is indicated by the red arrow.

amount of information a position i contains about another position j. First introduced by Korber
et al. [1993] to study the highly variable V3 loop of the HIV-1 envelope protein based on se-
quence information, the non-parametric method has been widely used to examine coevolution
among and within proteins [Boba et al., 2010; Caporaso et al., 2008; Fatakia et al., 2009; Gloor
et al., 2005; Hamacher, 2008].

3.1 Methods

Data Preparation

Based on a sophisticated genome search encompassing numerous databases, amongst others
Ensembl [Flicek et al., 2010], the Subviral RNA Database [Rocheleau & Pelchat, 2006] as well
as NCBI sources, Seehafer et al. [2011] identified 160 new motifs of hammerhead ribozymes
type III originating from various eukaryotes and bacteria as well as two motifs that have already
been found in Arabidopsis thaliana [Przybilski et al., 2005]. In addition, the pipeline proposed by
Seehafer et al. [2011] which comprises filtering steps in both sequence space and physical realm
requiring the capability to exhibit a hammerhead-like fold proved itself correct since 122 viroid
motifs deposited in the Subviral RNA Database [Rocheleau & Pelchat, 2006] have been detected
as well. In the following, we will refer to these data sets as A1 (prokaryotes and eukaryotes)
and A2 (viroids), respectively. For a coevolutionary meta analysis, we extracted interesting
regions of the hammerhead motif applying constraints that have been used for identification of
the respective motifs. Besides the core motifs UH, GAAA and CUGANGA with H = {A,C,U} and
N = {A,C,G,U}, we applied size restrictions on the flanking helices: stem I consists of 4-6 base
pairs, stems II and III comprise 4-7 and 3-6 base pairs, respectively. Note that additionally to
standard Watson-Crick base pairs the wobble pair U-G is accepted as well. Since the loop sizes
of loop I and II may vary between 4 and 99/100 nucleotides, we expanded stems I and II by up
to 5 loop nucleotides each yielding a maximum number of ten loop nucleotides (see Fig. 3.3).

In a complementary approach, a consensus sequence of hammerhead ribozymes type I has been
constructed based on all available motifs deposited in various databases. Thus, genomes have
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Figure 3.4.: Histogram of the lengths of the identified hammerhead motifs type I computed with bins
encompassing 10 nucleotides. For further analysis, only sequences with a length between
50 and 60 nucleotides are used (highlighted in gray).

been analyzed using the derived descriptor and a subsequent application of the filter steps
described by Seehafer et al. [2011] yielding 4,719 hammerhead motifs type I (for descriptor
see Fig. 3.3). Note that except for loop II which comprises between 3 and 110 nucleotides,
only small variations (up to 4 nucleotides) are allowed for different parts of the motif. A closer
inspection of the resulting sequences revealed a distribution of motif lengths biased towards
sequences comprising 50 to 60 nucleotides in total (see Fig. 3.4). Based on these results, we
focused on the subset of 1,769 sequences of hammerhead ribozymes type I whose lengths are in
the respective range assuming the other sequences to be more unlikely variations of the “true”
hammerhead motif type I. For this subset of ribozyme sequences, we considered the complete
sequences of loop II for further analysis. In the following, we will refer to these sequences as
set B. Parts of the motif were defined by help of the structural descriptor that has been used for
identification of the ribozyme.

After extracting the described portions of helical and loop sequences for the motif sequences
of each set using the R [R Development Core Team, 2008] package Biostrings from the
BioConductor software repository [Gentleman et al., 2004], we arranged the substrings in
constrained multiple sequence alignments (MSAs) each. Since we aim to maintain a proper
ribozyme structure, base pairings and size restrictions need to be retained. Hence, for helical
parts, shorter substrings were arranged according to those of maximum length simultaneously
for both sequences composing the respective stem helix. By this procedure, we obtained ham-
merhead ribozymes with maximum lengths of the core helices. Loop regions were aligned using
clustalw2 [Larkin et al., 2007] with standard parameters and subsequent refinement of the
yielded alignment by manual optimization utilizing Jalview [Waterhouse et al., 2009]. After-
wards, the distinct substrings were recombined for each sequence, i.e. we concatenated the
sequence parts while maintaining the correct order of the original sequence. Thus, we yielded
a truncated hammerhead motif alignment lacking sequence parts that were not investigated in
this study (for sequence lengths see Tab. 3.1).
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Set A1 Set A2 Set B
78 nt 55 nt 77 nt

Table 3.1.: Recombining the constrained multiple sequence alignments that were obtained for each
structural part of the hammerhead motifs yielded an alignment for each set of sequences.
The obtained sequence lengths are shown in this table. Differences are mainly due to the
arrangement of loops.

Mutual Information

To detect potentially coevolving ribozyme positions, the information theoretical measure MI is
utilized. Derived from the Kullback-Leibler divergence [Kullback & Leibler, 1951] MI quantifies
the deviation of the joint probability distribution of two sites i and j to the null model of inde-
pendent evolution of the two sites sites. Hence, MI of two sites, i.e. columns of the MSA, i and
j is defined as:

MIi j =
∑
σi

∑
σ j

P(σi,σ j) · log2

P(σi,σ j)

P(σi) · P(σ j)
(3.1)

where P(σi,σ j) denotes the joint probability to find the symbols σi and σ j at alignment posi-
tions i and j respectively. P(σi) and P(σ j) are the corresponding marginal probabilities. We
obtain the probabilities as relative frequencies of the symbols σ that are drawn from a set
comprising the four standard nucleotides as well as a gap character S = {A, C , G, U ,−}. To ac-
count for finite-size effects due to the number of sampled sequences, we employ the shuffle null
model that was thoroughly investigated by Weil et al. [2009]. Here, in each iteration all align-
ment columns are shuffled independently and the MI of the obtained alignment is recomputed.
The rationale behind this procedure is to maintain the variability of each site by destroying
of possible interdependencies between different sites at the same time. We averaged MI val-
ues over 10,000 iterations and computed Z-scores from the resulting mean MIi j and standard
deviation S(MIi j) of each column pair (i, j).

Zi j =
M Ii j −MIi j

S(MIi j)
(3.2)

Z-scores measure the significance of a derived MI signal in terms of standard deviations from an
average value. Hence, coevolutionary signals and noise can be separated. To ensure reasonable
Z-scores, we set all Z-scores to zero that satisfy one of the following conditions:

• Zi j = NaN, Zi j =± Inf (resulting from a division by zero)

• |Zi j|> 1, 000 (resulting from a division by a value, that is numerically zero)

In addition, we computed both gap content and entropy for each alignment position to fur-
ther evaluate the obtained MI results. All computations were performed using the R package
BioPhysConnectoR [Hoffgaard et al., 2010].
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3.2 Results

MI and corresponding Z-scores obtained by the shuffle null model are computed for the trun-
cated sequences of sets A1, A2 and B. MI measures the amount of information between any two
positions of an MSA, whereas the Z-score quantifies the significance of the derived signals in
term of standard deviations from the expectation value of a stochastic null model. Hence, large
Z-scores indicate significant results for two coevolving sites. In the following, we will restrict the
analysis to Z-scores since the null model eliminates coevolutionary noise. Note that both highly
conserved sites and sites with a large number of gaps exhibit only weak MI and, thus, weak
Z-score signals. Since we are interested especially in the coevolution of the hammerhead core,
we discuss the results for the nucleotides comprising the helices I, II and III that are presumably
comparable for all ribozyme sets under consideration.

The core of hammerhead ribozymes type III obtained from eukaryotic and prokaryotic genomes
(set A1) is overall rather independently evolved as the Z-scores suggest (see Fig. 3.5(a)). Note
that non-normalized MI values exhibit a similar coevolutionary pattern. Clearly, we detect co-
evolution between nucleotides of any two strands that form a stem helix due to base pairings.
We omitted the graphical representation of these apparent coevolutionary effects since they
dominate the color scale. In the following, we will discuss signals apart from base pairing only.
Notably, we detect significant coevolutionary signals within strands that form stem III. This
observation becomes even more evident in comparison with the other stems, where we find
coevolution among nucleotides within the same strand as well. However, coevolution is not
detectable for all nucleotides and the signal strength is reduced compared to stem III. Besides
these signals, we also detect coevolution between sequences that form different helices: both
strands of stem I are connected with strands of stem III sharing intermediate coevolution. This
observation is rather surprising although it does not imply a direct interaction of stems I and III.
Experimental studies have shown that interactions of loops and bulges at the ends of helices I
and II are required for function and stability of the ribozyme [de la Peña et al., 2003; Khvorova
et al., 2003] which is in perfect agreement to the detected coevolutionary signals. Hence, we
may assume to detect coevolutionary signals for the respective stem helix strands as well. How-
ever, the “crosstalk” between stems I and II is limited to the coevolution of single nucleotides:
nucleotide 3 of strand H I exhibits strong coevolution with nucleotides 3 and 5 of H II and H II’
respectively, and consequently nucleotide 4 of H I’ is strongly connected to the very nucleotides
of stem II.

For set A2 that contains viroid sequences only, the coevolutionary pattern differs from that
observed for set A1 (see Fig. 3.5(b)). Similarly as for set A1, the strongest coevolutionary signals
were observed between each two strands forming a stem helix. However, significantly more
coevolution among sites is detectable for viroid hammerhead ribozymes suggesting a higher
preservation of the core motif than for pro- and eukaryotes. As verification for this hypothesis,
we computed histograms of pairwise Hamming distances for the sequences within the truncated
alignments of sets A1, A2 and B. The Hamming distance of two sequences is defined as number
of differing positions; insertions/deletions denoted as gap in one of the sequences are considered
as difference as well. The results are shown in Fig. 3.6 and exhibit a higher average sequence
identity and, thus, less variation for viroid ribozyme sequences than for sets A1 and B. We find
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Figure 3.5.: The Z-scores have been computed for core nucleotides that form the helices flanking the
conserved hammerhead motif as normalized mutual information values with respect to an
evolutionary null model. The location (color coded) of the stem helix strands is illustrated
by the sketch of the ribozyme structure. The red arrow indicates the cleavage site. Number-
ing of nucleotides and strands starts at the 5’ end. Z-scores between any two strands that
form a stem helix (blank squares) are left out since those values dominate the color scale
and, thus, mask nucleotides that coevolve not by direct base-pairing selection.

pronounced coevolution within the strands that form stem I, and to a smaller extent also for
helices II and III, whereas for set A1 we observed distinct signals of intra-strand coevolution
for stem III. Again, we notice a connection between stems I and III, however, more pronounced
than for set A1, where only few nucleotides were involved. The data suggest coevolution of
the outer parts of stem I with the complete stem III. Interestingly, we also observe strong signals
pointing towards a connection between the outer helical parts of stem I and II which is in perfect
agreement with experimental results [de la Peña et al., 2003; Khvorova et al., 2003].

The analysis was performed for set B comprising more than 1,500 sequences of hammerhead
type I with a sequence length ranging from 50 to 60 nucleotides. The sequences were extracted
from various genomes by help of a descriptor based on a structural consensus sequence ob-
tained from all known hammerhead motifs type I. In a subsequent step, a size restriction filter
was applied. We again computed both MI and Z-scores for the core residues and addition-
ally for nucleotides of the CUGANGA motif which has been defined less strict as NUGANNA in
accordance to Perreault et al. [2011] who identified variations of nucleotides that have been
considered conserved before. The pairwise Hamming distances computed for the resulting
alignments revealed an intermediate level of sequence identity being less conserved than vi-
roid sequences of set A2 but with a more conserved sequence than hammerhead motifs of set
A1 (see Fig. 3.6). Apart from high Z-scores due to paired bases within helical regions, we notice
a much higher scale for coevolutionary signals than for sets A1 and A2 (see Fig. 3.7) which is
presumably an artifact of the sequence numbers included for the analysis: whereas for sets A1
and A2 we are concerned with about 150 sequences, we compute Z-scores of hammerhead ri-
bozymes type I for more than 1,500 sequences. In analogy to the results obtained for set A2, we
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Figure 3.6.: Histogram of the pairwise Hamming distance of the truncated alignments that have been
reduced to stem helices and loop nucleotides. We obtained the relative distances by nor-
malizing with respect to the sequence length of the alignment. The results are shown for
all three sets of ribozymes.

detect coevolution within strands forming stem I. In addition, we notice signals of coevolution
among sites connecting inner nucleotides of stems I and II, whereas for set A1 we noticed nearly
no coevolution, and for set A2 the signals were detectable especially for the outer parts of those
helices. These findings indicate differing selective pressure for different types of hammerhead
motifs and organisms. Furthermore, we observe coevolution between the outer part of stem III,
which comprises a single nucleotide in the actual consensus structure, and the inner parts of
stems I and II. This suggested the identification of coevolutionary signals between strands of he-
lices I and III for each set of ribozyme sequences. An experimental verification of this hypothesis
has yet to be confirmed.

For set B, we investigated potential coevolving sites with respect to the NUGANNA motif, which
has been examined in its more conserved version CUGANGA for sets A1 and A2 as well. For
position 5 of both motifs (emphasized in bold: CUGANGA, NUGANNA) we detect signals of
coevolution for sets A1 and B, but not for set A2. Additionally, the pattern of coevolution differs
slightly for sets A1 and B since for set B nucleotides of all flanking helices are involved; positions
of stem I exhibit negligible signals for set A1 only. We assume the viroid sequences to be more
conserved at this position which comes as a natural consequence of both Z-score and Hamming
distance results. To verify this assumption, we computed nucleotide probabilities and the re-
sulting entropies for the respective position of the alignments of each set. The results, as shown
in Tab. 3.2, actually indicate a higher level of conservation of position 5 of CUGANGA within
viroid sequences. Since we still find an intermediate entropy value, the lack of coevolutionary
signals cannot completely be explained by computational means alone.

For hammerhead ribozymes type III (sets A1 and A2), we additionally performed the analysis
for up to 10 nucleotides of loops I and II. The loop nucleotides were extracted starting simul-
taneously from the stem nucleotides. The resulting loop sequences were aligned separately
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A C G U Entropy [bit]

set A1 0.247 0.130 0.117 0.506 1.740
set A2 0.008 0.229 0.000 0.762 0.843
set B 0.126 0.114 0.474 0.287 1.760

Table 3.2.: For each set of sequences (A1, A2, B) the probability of each nucleotide type of position 5 of
the conserved CUGANGA, NUGANNA (emphasized in bold) as well as the resulting entropy
of the respective position is computed.

afterwards. As loop sizes vary within a range of 4 to 99/100, it is not quite clear how these
sequences can properly be arranged in the sequence ensemble. Therefore, we had to exclude
these portions from further analysis. For set B, we already applied a size restriction to the sam-
ple of sequences, and, hence, restricted the size of the loop located at the end of stem helix II.
Before we determine the coevolution between loop II and other sites as well as within itself,
we examined the distribution of loop sizes which is shown in Fig. 3.8. Interestingly, small, odd
numbers of nucleotides (5, 7, 9) are dominant in the depicted histogram, which are shown to
be energetically favored loop sizes where kissing complexes yield the maximum number of base
pairs [Tinoco & Bustamante, 1999]. The loop sequences have been aligned, and we examined
whether we could find signals of coevolution of loop nucleotides within the loop or with other
ribozyme sites. Actually, we observe coevolution of loop positions with nucleotides of the core

3.2. Results 97



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 6 8 10 12 14 16 18 20

re
l. 

fr
eq

ue
nc

y

Loop II size [nt]

Figure 3.8.: Relative frequencies of loop sizes occuring in the set of hammerhead sequences type I with
a size ranging from 50 to 60 nucleotide (nt).

helices. Due to the diverse loop lengths, many positions of the loop alignment exhibit no signals,
which is an effect originating from the high gap content at those positions (data not shown).

In this study, we examined coevolutionary connection of nucleotides within different sets of
ribozyme sequences. We focused on the helices flanking the conserved hammerhead motifs.
Structural elements of each sequence have been extracted from the full sequences and recom-
bined into a truncated alignment that contained only parts of interest. Since we are concerned
with excerpts of complete hammerhead motifs, duplicates of truncated sequences are not re-
moved from the analysis, since the corresponding complete sequences represent full variability
of the motif. The effect reveals itself in the histogram of pairwise Hamming distances (see
Fig. 3.6). Here, we find Hamming distances equal zero which corresponds to identical se-
quences. Nevertheless, removal of duplicate sequences does not change the overall pattern of
coevolution, but decreases the signal strength only (data not shown).

Although a direct comparison of explicit helical nucleotide positions is not possible due to dif-
fering stem sizes in sets A1, A2 and B, we were able to give evidence for coevolving tendencies
that are both different for or rather common to all sequence sets from different kingdoms of life.
In general, we notice a higher conservation of viroid hammerhead motifs, which may be respon-
sible for the fact that we find no signal of coevolution of the variable position in the CUGANGA
motif which is common to all hammerhead ribozymes. Both for sets A1 and B, we detected sig-
nals for this respective position with nucleotides in helices. Additionally, the coevolution within
sequences of set A2 is more pronounced than for the other sets. Whereas previous studies re-
vealed tertiary loop interactions to be crucial for fold and function of ribozymes [de la Peña
et al., 2003], we detected corresponding coevolution signals for parts of the respective helices
for sets A2 and B, and for single nucleotides only in set A1. Interestingly, we identified a con-
nection of helical stems I and III for all sequence sets under consideration which had not been
reported yet. To explain this outstanding finding, we examined if those helices are enhanced
sites for base pairing with respect to a null model as well. However, this hypothesis could not
be verified by computational means alone (data not shown). The results imply an alternate
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mechanism of coevolution for these sites, whose verification is called for by experimental means
we strongly suggest.

3.3 Contributions

The search for hammerhead motifs and the resulting sequence sets have been kindly provided
by C. Seehafer and C. Hammann [Seehafer et al., 2011] who discovered the unusual distribution
of sequence lengths of hammerhead ribozymes type I as well which is shown in Fig. 3.4. All
other analysis and modeling was done in the framework of this PhD thesis.
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4 Additional Contributions

This chapter gives an overview of contributions to additional projects that have not been dis-
cussed thus far, corresponding publications will be referenced. For each section, we will give a
short summary of published methods and results, the contributions are declared at the end of
each section.

4.1 BioPhysConnectoR: Connecting sequence information and biophysical models

We designed an add-on package for the statistical software R [R Development Core Team, 2008],
combining both sequence based and biophysical approaches, that have been presented in pre-
vious sections of this thesis, to gain insights into a protein’s coevolution and dynamics. Further
details are presented in the subsequent parts, that have been published in:

Hoffgaard, F; Weil, P; Hamacher, K (2010) BioPhysConnectoR: Connecting sequence informa-
tion and biophysical models. BMC Bioinformatics 11:199.

4.1.1 Background

Proteins are ubiquitious in all cells and organisms, and important for essential functions. Yet, a
holistic picture annotating functional and evolutionary features is still missing. Huge databases
like GenBank [Benson et al., 2011] and PDB [Berman et al., 2000] contain myriads of gene and
protein sequences gathered from a wide variety of organisms. Chen et al. [2004] collected more
than 40,000 sequences of HIV protease and reverse transcriptase, that are crucial proteins within
the viral life cycle to reveal both conserved domains and evolutionary hot spots. Furthermore,
comparisons of gene or protein sequences among diverse organisms from all branches of the tree
of life, may facilitate the understanding about phylogenetic relationships. The sequence space
is subject to the mutational operator. Modifications of the underlying sequences can result
in differing phenotypes that are subject to selection processes in the biophysical realm. Thus,
point mutations may require further compensatory mutations to restore protein structure and/or
function. Such coevolutionary relationships within proteins can be identified for example by
examination of MSAs using MI [Shannon, 1948] an information-theoretical measure that was
discussed in section 3 in the context of ribozymes. Such sequence-based methods allow high-
throughput analyses but fail to explain biophysical implications of sequence changes.

Physical properties of biomolecules are investigated by sophisticated methods, such as MD sim-
ulations or NMA. By physical methods, we can evaluate implications of mutations in sequence
space on protein structure and stability which mediate protein function. In contrast to sequence-
based approaches, biophysical methods are computationally expensive and, thus, allow the in-
vestigation of a few mutants only. In the past, ENMs [Atilgan et al., 2001; Bahar et al., 1997]
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have emerged as coarse-grained protein models that are capable to reflect protein dynamics
(see section 1.1). Utilizing these reduced molecular models, large numbers of mutants can be
screened for their mechanical aberration caused by sequence changes. Hamacher [2008] devel-
oped a protocol to combine both sequence-based and biophysical methods to annotate protein
function in terms of structure and coevolution.

4.1.2 Methods

As a sequence-based measure to identify coevolving protein positions, we employ MI defined as
in section 3.1. To account for finite-size effects, a shuffle null model is included to determine
the significance of observed MI results [Weil et al., 2009].

To quantify biophysical implications of introduced sequence changes, we employ ANMs as pro-
posed by Atilgan et al. [2001] (see section 1.1). The mechanics of a protein structure can be
examined by computing the Hessian matrix H (see Eq. 1.5) and via SVD the corresponding co-
variance matrix C (see Eq. 1.6). Mutations are introduced by either changing the underlying
sequence or by altering amino acid contacts. Sequence changes can be investigated whenever
amino acid specific interaction potentials are employed. Structural modifications by altering
contacts can be performed by in- or decreasing the rigidity of the respective connection as well
as by deleting it. Resulting changes in protein dynamics are directly contained in the resulting
covariance matrix Cmut of the mutated system and can be quantified by help of the FN (see
Eq. 1.26).

The R package BioPhysConnectoR includes source code of bio3d [Grant et al., 2006] and uti-
lizes routines from the packages matrixcalc [Novomestky, 2008] and snow [Tierney et al.,
2009]. We integrated native C/C++ code to adress runtime issues for computationally ex-
pensive routines. Both low-level functions and protocols that have been included in the
software package can be customized by various arguments. Furthermore, we added aux-
iliary methods to read, write and convert data from PDB and alignment files in fasta for-
mat. For ANM computation, both interaction potential matrices MJ and KE are available.
BioPhysConnectoR can be obtained from CRAN at http://cran.r-project.org/ or directly
from http://bioserver.bio.tu-darmstadt.de/software/BioPhysConnectoR.

For further details see: Hoffgaard et al. [2010].

4.1.3 Results

The R package BioPhysConnectoR contains utilities to perform an integrated protein analy-
sis combining data from sequence-based (as in section 3) and biophysical approaches (as in
section 2). We implemented two mutation scenarios to investigate biophysical implications of
sequence changes. Although its application is limited, the routine sims computes the changes
of mechanical properties of the protein by exchanging the whole sequence information based
on an MSA. Limitations of this method arise from the usage of the MSA since gaps have no
correspondence in the biophysical realm. Furthermore, effects of altered sequences can only be
measured if amino acid specific interaction potentials are employed.
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Figure 4.1: The flowchart demonstrates the
combination of both sequence-
based and biophysical approach.
From a multiple sequence align-
ment the MI (Eq. 3.1) is computed
for any pair of residues i and j.
In the biophysical realm, we artifi-
cially delete the connection of the
same (contacting) residues i and
j, and compute the FN (Eq. 1.26)
that quantifies the changes in pro-
tein dynamics for the deleted con-
tact. From the combination of MI
and FN, we can identify interac-
tions crucial for stability and func-
tion.

An alternative scenario mimics the effect of point mutations: by use of the function simc all
non-bonded amino acid contacts are deleted (“switched off”) one at a time to compute indi-
vidual FN values. In experiment, by introducing point mutations, e.g., alanine mutagenesis
studies, important connections of residues are weakened or destroyed, albeit in experimental
studies all interactions of the mutated amino acid are affected. The alteration of protein dy-
namics is measured by FN of the difference covariance matrices. A similar study was discussed
in section 2.2. In the integrated approach which was applied to acetylcholinesterase (see sec-
tion 4.4), we overlay FN results from the switch-off procedure with corresponding MI obtained
for the MSA, a schematic picture is given in Fig. 4.1. As example application, we applied the pre-
sented protocol to HIV-1 protease (PDB code 1KZK [Reiling et al., 2002]). Since the data base
provided by Chen et al. [2004] comprises more than 40,000 sequences, we need not consider
finite-size effects for the computation of MI.

The superposition of resulting MI and FN values is illustrated in Fig. 4.2. Note, only MI values
are shown that correspond to a deleted contact yielding an FN value. The scatterplot is parti-
tioned into four segments (I, II, III and IV). Residue pairs in quadrant II that feature both low
MI and FN values do neither coevolve nor are their contacts crucial for protein dynamics. Ad-
ditionally, we identify coevolving residues in I whose contact has no implications on structural
properties of the protein. We hypothesize that a coevolution of those residues accounts for other
than mechanical protein features necessary for functionality, such as electrostatic or size effects.
Contacts of segment III feature low MI but we find them being important for the dynamics,
i.e. the corresponding amino acids take part in concerted molecular motions to mediate protein
function. Residue pairs assigned in IV show high coevolution as well as important connections
in the biophysical realm, which is often caused by spatial proximity of the participating amino
acids.
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Figure 4.2: The switch-off scenario is applied to the
HIV-1 protease (PDB code 1KZK). Each
amino acid contact is deleted one at a
time, the resulting change in protein dy-
namics is quantified by computing FN
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values of all contacting residue pairs.
The figure is adapted from Hoffgaard
et al. [2010].
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Figure 4.3: Performance of the parallelized routine
simc that simulates the switch-off sce-
nario, i.e. each contact is deleted one at
a time and the resulting change in pro-
tein dynamics is quantified by help of
the Frobenius norm. To this end, we
used one up to eight cores and com-
pared the parallelization obtained with
the R packages multicore [Urbanek,
2009] and snow [Tierney et al., 2009].
We fitted the elapsed time to a scaling
law of the form t ≈ a+ b/nc with con-
stants a and b. The figure is adapted
from Hoffgaard et al. [2010].

Depending on the definition of the cutoff distance which specifies contacts between amino acids,
we are concerned with large numbers of residue pairs. To this end, we parallelized the switch-
off routine to account for runtime issues. We tested the efficiency of parallelized code for two
different implementations using the R packages multicore [Urbanek, 2009] and snow [Tierney
et al., 2009] for up to eight processors on yielding an efficient parallelization in accordance to
Amdahl’s law [Amdahl, 1967].

We implemented the package BioPhysConnectoR for statistical software environment R that is
open to a wide community of scientists offering lots of additional package, e.g. from the Bio-
conductor software project [Gentleman et al., 2004]. BioPhysConnectoR contains routines to
compare the dynamics of a native protein with systematically mutated proteins with alterations
in sequence or single contacts. Mutations are scored by the information-theoretical MI that
evaluates the extent of coevolution of residues and FN assessing the importance of amino acid
contacts on the dynamics of the protein. Routines of presented package have been utilized for
projects of this thesis. Further work is in progress to develop and implement more efficient
algorithms for fast network-based protein analysis [Hamacher, 2010].
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4.1.4 Contributions

KH supplied protocols for connecting sequence information and biophysical properties and for
computing the self-consistent pair contact probability, a method proposed by Micheletti et al.
[2001] to account for non-harmonic effects as well. The R implementation (including the C/C++
code) was carried out by FH and in parts by PW. The parallelization was exclusively done by FH.
All authors participated in writing the manuscript.

4.2 Distance-dependent classification of amino acids by information theory

We applied an information theoretical approach to derive distance-dependent amino acid al-
phabets. Reduction schemes resulting from the alphabets were employed in sections 1.3.2 and
1.3.1. Here, we present a summary of the proposed method. The results of this study have been
published in:

Pape, S; Hoffgaard, F; Hamacher, K (2010) Distance-dependent classification of amino acids by
information theory. Proteins 78:2322.

4.2.1 Background

A protein sequence, also called primary structure, is represented by the amino acid alphabet,
which consists of 20 standard as well as modified or unusual amino acids. An issue of protein
folding studies is the reduction of the amino acid alphabet by grouping amino acids by similar
chemical or physical properties. Shepherd [1981] was able to detect degenerated DNA patterns
on basis of a reduced alphabet, that would hardly be detectable using standard DNA codes.
Similar patterns at the protein level may be identified as well based on simplified amino acid
sequences. The simplest among the reduction schemes is based on hydrophobicity as only driv-
ing force and discriminates hydrophobic and polar amino acids. Wolynes [1997] pointed out
that more heterogeneity is necessary to reflect the full complexity of a protein. In experimental
studies, it was shown that functional proteins with native fold can be encoded by using a subset
of up to five amino acids only [Brown & Sauer, 1999; Munson et al., 1994; Riddle et al., 1997;
Rojas et al., 1997]. In addition, the question of minimal amino acid alphabets was tackled by
diverse theoretical approaches [Cannata et al., 2002; Cieplak et al., 2001; Cline et al., 2002;
Shepherd et al., 2007; Wang & Wang, 1999]. The resulting simplified amino acid alphabets
clearly distinguish between hydrophobic and polar amino acids (see Tab. 4.1). Most, if not
all, of the studies share a rather strict contact or interaction distance, taking into account only
nearest neighbors. Considering long-range interaction of amino acids, we may derive different
reduction schemes. In this study, we deduce distance-dependent amino acid alphabets from
empirical distance distributions of amino acid pairs using an information theoretical metric.
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alphabet hydrophobic polar

1 [Wang & Wang, 1999] (IVLMWCFY) (HAT)(GP)(DE)(NQRKS)
2 [Cieplak et al., 2001] (FLI)(WMVCY) (HA)K(NPSTDEGQR)
3a [Shepherd et al., 2007] (FLI)(WMVCY) (HATGP)(DENQRKS)
3b [Shepherd et al., 2007] (FL)I(WMV)(CY) (HAT)(GP)(DES)(NQRK)

Table 4.1.: Reduced amino acid alphabets obtained by various computational studies. Groups of amino
acids are indicated by parentheses.

4.2.2 Methods

Using the SCOP [Murzin et al., 1995] database, we defined a set of 2,830 proteins1. Each
protein consists of a single chain and is a representative of a distinct SCOP class. Statistics on
contact type distributions are extracted by computing distance-dependent (r) and amino acid
type-specific (i, j) histograms n(emp)p

i j (r) for each protein p. We observed that distances beyond

50 Å are subject to statistical fluctuations (see Fig. 4.4), and, thus, we restricted the analysis
to distances below maximum distance Rmax = 50 Å. To account for a systematic bias due to
different protein sizes, we applied a normalization procedure. For a protein p of size Rp the
non-biased number of contacts ni j(r) is related to the empirically measured number of contacts

n(emp)p
i j (r) at a distance cutoff r:

n(emp)p
i j (r) = ni j(r) ·Θ(Rp − r) (4.1)

Θ denotes the Heaviside step function. The number of measured contacts averaged over N
proteins is computed as follows:

n(emp)
i j (r) =

1

N

∑
p

n(emp)p
i j (r) (4.2)

=
1

N

∑
p

ni j(r) ·Θ(Rp − r) (4.3)

Thus, the unbiased number of contacts ni j(r) for amino acid types i and j can be derived as:

ni j(r) =
n(emp)

i j (r)

h(r)
with h(r) =

1

N

∑
p

Θ(Rp − r) (4.4)

Due to our normalization procedure, only contacts of proteins p with size Rp ≥ r are considered
in the corrected histograms ni j(r).

1 For PDB codes see Supporting Information of Pape et al. [2010].
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Figure 4.4.: The normalized histograms ni j(r) are shown for two types of amino acid pairs (i, j), namely
CYS–CYS and VAL–GLY. Normalization was applied due to size effects by h(r) and the spher-
ical volume element 4πr2 ·∆r. Picture is adapted from Pape et al. [2010].

To determine the information distance of two histograms ni j(r) and nuv (r), we defined a dis-
tance matrix M =

p
H, where H denotes the Jensen-Shannon matrix which is computed as

follows:

H(ni j, nuv ) =
1

2
Dkl(ni j||n) +

1

2
Dkl(nuv ||n) with n=

1

2
(ni j + nuv ) (4.5)

The Kullback-Leibler divergence Dkl(P||Q) is an information theoretical measure of how much
probability distribution P(x) deviates from the distribution Q(x):

Dkl(P||Q) =
∫

P(x) log2
P(x)
Q(x)

d x (4.6)

The contribution of any amino acid to the respective amino acid pairing and, hence, to the
overall distance matrix M is derived by application of spectral decompositions of M (for more
details see Pape et al. [2010]). Analyzing the correlation of entries of the resulting eigenvectors
quantifies the similarity of the respective amino acids. To this end, we computed the correlation
matrix C . Since we want to merge similar amino acids into groups of a reduced alphabet, we
defined a distance matrix D based on the correlations of the amino acids:

D :=
max(C) · I − C

max(C)−min(C)
(4.7)

where I is the identity matrix. High correlation coefficients Ci j ≈ 1 that describe a high similarity
of amino acids yield small distances Di j ≈ 0 between the respective amino acids, whereas the
distance of anti-correlated amino acids (Ci j ≈ −1) is approximately one. Reduced alphabets,
i.e. groupings of similar amino acids, were derived by application of clustering algorithms, e.g.
hclust [Murtagh, 1985].
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R= 8 Å R= 50 Å

20 ND H ST GP C W FY IV LM RK A QE 20 LM W FY C IV NP H ST AG DE Q RK
12 (ND) H(ST) (GP)C W(FY) (IV)(LM) (RK) A(QE) 12 (LM) W(FY) C(IV) (NP) H(ST) (AG) (DE) Q (RK)
7 (ND)(HST) (GPC) (WFY) (IVLM) (RK)(AQE) 8 (LM)(WFY) (CIV) (NP)(HST) (AG) (DE)(QRK)
4 (NDHST) (GPCWFY) (IVLM)(RKAQE) 5 (LMWFY)(CIV) (NPHST)(AG) (DEQRK)
2 (NDHSTGPCWFY)(IVLMRKAQE) 3 (LMWFYCIV) (NPHSTAG)(DEQRK)
1 (NDHSTGPCWFYIVLMRKAQE) 2 (LMWFYCIV)(NPHSTAGDEQRK)

1 (LMWFYCIVNPHSTAGDEQRK)

Table 4.2.: Amino acid grouping schemes for different maximum distances. For each simplified alphabet
the number of different symbols is given. Groups are indicated by parentheses. Table was
taken from Pape et al. [2010].

For further details see: Pape et al. [2010].

4.2.3 Results

We defined two different maximum interaction ranges Rmax =8 Å and Rmax =50 Å for the com-
putation of the amino acid pair histograms. The resulting amino acid grouping schemes are
presented in Tab. 4.2. Obviously, the first clustering, i.e. going from 20 to 12 amino acid
symbols, runs in parallel for both schemes. Further alphabet reduction yields different results.
Grouping based on histograms that include only short-range interactions (Rmax = 8 Å) are pri-
marily due to amino acid sizes. For Rmax = 50 Å we observe reduction along the lines of charges
and aromaticity with a clear separation of hydrophobic and polar amino residues, similar to
results from previous studies (see Tab. 4.1). Hence, the assumption to take into account ranges
of interactions is supported.

Additionally, we varied Rmax to compare all possible ranges of interactions and derived a clus-
tering in form of a tree. Groupings of amino acids are denoted along the branches, the leafs
represent amino acid symbols. The nodal distance as measure for dissimilarity of trees is com-
puted using TOPD [Puigbò et al., 2007]. Clearly, we detect potential “structural” breaks, i.e.
the classification of amino acids changes dramatically, at R ≈17, 27, 41, 46 Å. We also no-
tice recurring patterns of resemblance, for example the clusterings derived at R = 17 Å and
R = 30 Å represent compatible reductions. The underlying biophysical mechanism is not clear,
yet. Hence, to derive simplified amino acid alphabets not only amino acid properties need to be
considered, but also interaction ranges. The interaction of immediate contacts differs substan-
tially to long-range interactions. The simplified amino acid alphabets were utilized in sections
1.3.2 and 1.3.3 for the fitting of amino acid specific interaction potentials.

4.2.4 Contributions

FH and SP prepared the protein data set. SP performed the analysis. KH and FH devised the
study. All authors prepared the manuscript.
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Figure 4.5.: Nodal distances between amino acid trees representing simplified amino acid alphabets.
The trees were derived as clustering of amino acid correlation distances for varying maxi-
mum interaction ranges R. The nodal distance, which is a measure of dissimilarity of trees
with identical leaf symbols, was computed using the TOPD package [Puigbò et al., 2007].
Picture is adapted from Pape et al. [2010].

4.3 Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in
vivo

A structural model of the gas vesicle envelope protein GvpA has been derived in silico by de novo
modeling. We performed MD simulations to verify the stability of the structure. Results of this
study have been published under:

Strunk, T; Hamacher, K; Hoffgaard, F; Engelhardt, H; Zillig, MD; Faist, K; Wenzel, W; Pfeifer, F
(2011) Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo.
Mol Microbiol 81:56.

4.3.1 Background

Gas vesicles are protein structures that are found in a wide range of microorganisms in aquatic
habitats [Walsby, 1994]. They provide the cells with buoyancy which allows them to adjust
their vertical position in aquatic environment in response to light or aeration. In Haloarchaea
these structures are spindle- or cylinder-shaped and stretch up to 1 µm in length and 200 nm
in diameter. Fourteen genes are involved in the formation of gas vesicles in Halobacterium sali-
narum, but only eight genes have proven to be essential [Offner et al., 2000]. The envelope of
the gas vesicle is mainly constituted by the 8-kDa protein GvpA. The wall formed by GvpA has
a hydrophobic inner surface to prevent water molecules, that may have entered the structure,
from condensation. On the hydrophilic outer surface the protein GvpC is attached, presumably
stabilizing the structure. The primary structure of GvpA, which is responsible for many prop-
erties of the gas vesicle, is highly conserved. Since GvpA (monomers) can hardly be dissolved
without being denaturated, no crystal structure has been determined, yet. In a recent solid-state
NMR study, Sivertsen et al. [2010] suggested a coil–α–β-β–α–coil fold of GvpA.
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Figure 4.6.: Structure of GvpA presented as dimer. We show secondary structure elements and surface
representation in the upper and lower graphics, respectively. Hydrophobic residues are
colored gray, non-hydrophobic residue are indicated by blue color. The concave surface,
i.e. β-sheets, presumably forms the inner surface of the gas vesicle wall. Pictures were
generated using VMD [Humphrey et al., 1996] and in part taken from Strunk et al. [2011].

The amino acid sequence of mcGvpA of Haloferax mediterranei was used to predict a tertiary
structure model in silico. Template-based modeling approaches using 3D-Jury [Ginalski et al.,
2003], FUGUE [Shi et al., 2001], I-TASSER [Roy et al., 2010; Zhang, 2008] and SAM-T08
[Karplus et al., 2003] failed to detect homology to known proteins, and, thus, yielded no re-
sults of promising quality. Therefore, a de novo model using ROSETTA [Bonneau et al., 2002]
was computed setting the predicted secondary structure elements as constraints. The obtained
models were ranked according to scores derived from the all-atom free energy force field PFF02
[Verma & Wenzel, 2009].

In accordance to the solid-state NMR results of Sivertsen et al. [2010], the structural model of
the major gas vesicle protein GvpA as shown in Fig. 4.6 contains two α-helices separated by
two antiparallel β-sheets. Infrared spectroscopy supports the presence of a significant amount
of α-helical structure other than discussed by Walsby [1994], who assumed GvpA to consist of
β-sheets only. It is supposed that β-sheets form the surface of the inner gas vesicle wall. Almost
all β-strand residues pointing towards the suggested interior of the gas vesicle are hydrophobic,
those with side chains pointing to the gas vesicle wall are rather hydrophilic or charged (see
Fig. 4.6). The proposed dimer structure connects two antiparallel GvpA monomers by contacts
of their β-sheet. Hence, the inner, concave surface of the gas vesicle wall is characterized by
large hydrophobic patches.

In addition, a dimer structure has been proposed and the importance of single contacts was
jugded by application of ANMs [Strunk et al., 2011]. The sensitivity analysis performed for
an ANM model of GvpA to judge on the relevance of single contacts uncovered that the most
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important interactions are contacts connecting loop regions with stable secondary structure
elements. Stabilizing of secondary structures stems from multiple interactions with loops, as
the largest changes in dynamics were determined if intrinsically flexible loops were “released”
by deleting contacts to α-helices or β-sheets.

Small C-terminal deletions and point mutations were introduced for identified crucial residues
in vivo to add further evidence on the proposed structure [Strunk et al., 2011]. The in vivo
studies of ∆-mutants revealed that the last 7 residues at the C-terminus are not required to
form the gas vesicle wall, as gas vesicle of size and shape similar to the wild-type could be
isolated. Colonies of the ∆11-variant, however, were unable to float in liquid media indicating
a lack of gas vesicles. Here, two of the deleted residues belong to the C-terminal helix, which
suggests that an intact helix is necessary to form long and stable gas vesicles, whereas the rather
unstructured part of the C-terminus is dispensable. Strunk et al. [2011] showed in site-directed
mutagenesis studies that mutations I34M, E35A, and K60L affect the shape and size of gas
vesicles. Interestingly, mutants R15A and R15K lacked any gas vesicles, as residue R15 and
other charged amino acids are considered as potential binding site for a second GvpA monomer.
In summary, amino acids whose contacts have been marked important for the dynamics of the
gas vesicle protein GvpA by the ANM were shown to play an important role for in vivo forming
and assembling of gas vesicles. Hence, structural features of the GvpA model were further
supported.

4.3.2 Methods

To judge the stability of the predicted GvpA structure (see Fig. 4.6), we simulated its dynamics
for 30 ns using NAMD [Phillips et al., 2005] and an all-atom additive CHARMM force field
[MacKerell et al., 1998, 2004]. To this end, we generated two different salt concentrations in
reference to habitats of halophilic organisms: 1 M KCl and 1 M NaCl + 5 M KCl.

For details see: Strunk et al. [2011].

4.3.3 Results

MD simulations of the GvpA monomer in two different salt concentrations were performed to
prove stability of the predicted structure. We computed the RMSD, i.e. the average deviation of
corresponding atoms of two structures, of the Cα atoms over time. As reference structure, we
used the structural model of GvpA that was obtained by in silico modeling. As can be seen in
Fig. 4.7, for each of the four independent simulations, the RMSD is small (<6 Å), and, thus, sim-
ulating the dynamics of the predicted model maintains structural features. Hence, evidence for
validity of the modeled GvpA structure is given. Furthermore, only minor differences between
both salt concentrations are observed, indicating only a small susceptibility of the structure to
ion concentrations. Derived root mean square fluctuations correlate well with results from the
ANM (Spearman correlation coefficient 0.68), again revealing only minor differences between
both salt concentrations.
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Figure 4.7.: Root mean square deviation (RMSD) is plotted versus simulation time. For each salt con-
centration (1 M KCl and 5 M KCl + 1 M NaCl) the results for four independent simulations
are shown. Pictures are adapted from Strunk et al. [2011].

4.3.4 Contributions

TS, WW predicted the stuctural model of the monomer, KH the structural model of the dimer. FH
performed MD simulations and KH the ENM computations. HE realized infrared spectroscopy
experiments. FP, KH developed experimental design of GvpA mutants. MDZ, KF, FP carried out
mutations in GvpA and microscopic analyses of mutants and isolated gas vesicles. WW, HE, KH,
FP wrote the paper.

4.4 Structure-based, biophysical annotation of molecular coevolution of
acetylcholinesterase

We use an approach that combines results obtained from coevolutionary analysis with mechan-
ical properties to annotate crucial residues in achetylcholinesterase (AChE) that was imple-
mented in the R package BioPhysConnectoR [Hoffgaard et al., 2010] (see section 4.1). Coevo-
lutionary analysis as a sequence based method is accomplished using information theory. To
investigate the mechanics, we perform in silico experiments for a coarse-grained network model
of AChE. Methods and results are described in:

Weißgraeber, S; Hoffgaard, F; Hamacher, K : Structure-based, biophysical annotation of molec-
ular coevolution of acetylcholinesterase. Proteins, accepted.

4.4.1 Background

Acetylcholinesterase (AChE) is a ubiquitous enzyme that has been found for a range of evo-
lutionary diverse vertebrates and invertebrates [Soreq & Seidman, 2001]. Being one of the
fastest known enzymes [Lawler, 1961], it hydrolyses and inactivates the neurotransmitter acte-
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lycholine. Hence, the concentration of acetylcholine in the synaptic cleft of cholinergic synapses
is controlled by AChE. Acetylcholin is fundamental for mediating neurotransmission in the ner-
vous system. Its abrupt blockade is lethal, whereas gradual loss is associated with progressive
deterioration of cognitive and neuromuscular function, such as Alzheimer’s disease [Wright
et al., 1993]. Since neurotransmission depends on the dissociation of acetylcholine from the
receptor followed by its diffusion and hydrolysis, AChE has been an attractive target for the ra-
tional design of inhibitors, so-called anticholinesterase agents. The core of its active site located
at the bottom of a deep, narrow gorge is a catalytic triad composed of serine, glutamate and his-
tidine. The extremely toxic “nerve gas” sarin, for example, phosphorylates the serine residue of
the active site and, thus, renders the enzyme inactive [Quinn, 1987; Taylor, 2001]. Additionally,
a peripheral binding site of AChE, also referred to as peripheral anionic site (PAS), was iden-
tified as target for inhibitors. For example, the snake venom fasciculin reversibly binds to this
site and prevents the acetylcholine from entering the channel [Fossier et al., 1986]. Thus, the
signal transduction cannot be terminated. Moreover, binding of inhibitors to PAS may induce
allosteric effects [Shi et al., 2002]. Owing to its variety of molecular forms (different splicing
variants, monomeric vs. multimeric forms) and diverse and unexpected localizations, such as in
non-cholinergic neurons, osteogenic, hematopoietic and various neoplastic cells [Soreq & Sei-
dman, 2001], prompted the idea AChE could have non-classical functions [Appleyard, 1992],
amongst others an intrinsic proteolytic activity [Small, 1990].

We provide a combined approach based on biophysical and sequence-based information to an-
notate features of AChE refining the understanding of its enzymatic and non-enzymatic function
as well as the modes of actions of anticholinesterase agents and potential resistance mechanisms
to such inhibitors. This is implemented in the R package BioPhysConnectoR [Hoffgaard et al.,
2010] (see section 4.1). The rationale behind this study is to relate the sequence space, which
is subject to the mutational operator, to the biophysical realm, which is subject to selective pres-
sure acting on phenotypes. Point mutations on single amino acids impose selective pressure
on their interaction partners leading to compensatory mutations that may be beneficial to re-
store previous conditions. Such coevolutionary behavior of amino acids is investigated using
the well-established information theoretical MI as discussed in section 3. Biophysical ramifi-
cations of mutations accomplished using ANMs [Atilgan et al., 2001] that are used to analyze
structural-dynamical aspects of proteins (see section 1.1).

4.4.2 Methods

Our study is based on the crystal structure which is deposited in the PDB [Berman et al., 2000]
with code 1EA5 [Dvir et al., 2002]. The amino acid sequence was used as query string for
BLAST (Basic Local Alignment Search Tool) [Altschul et al., 1990] to search for further AChE
sequences. After applying different filter criteria, we computed an MSA using clustalw2 [Larkin
et al., 2007]. Alignment parameters are partly modified to improve the quality of the resulting
alignment. For our analysis, we considered alignment positions with less than 40% gaps (arbi-
trary threshold) only. Hence, we are concerned with more than 200 sequences, which has been
shown to be sufficient to yield reasonable results [Weil et al., 2009]. The information-theoretical
measure MI is computed as defined in Eq. 3.1. To account for a base level of correlation within
the alignment, we applied a null model by reiterated, independent shuffling of each column
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Figure 4.8.: Crystal structure of Acetylcholinesterase, deposited in the Protein Data Bank [Berman et al.,
2000] with code 3EA5. Parts of the protein that have been identified to be important for
structural or functional properties [Shi et al., 2002; Sussman et al., 1991; Zhang et al.,
2002] are highlighted. Picture is adapted from Weißgraeber et al. [accepted].

[Weil et al., 2009] and recomputating of the respective MI matrix as implemented in the R pack-
age BioPhysConnectoR [Hoffgaard et al., 2010] (see section 4.1). Based on these values, we
determined the Z-score (see Eq. 3.2) that measures the significance of the obtained MI value
with respect to the null model. We consider Zi j > 4 significant [Gloor et al., 2005].

Furthermore, we used the crystal structure of AChE to derive an ANM (see section 1.1) and
computed the respective correlation matrix C , which is obtained by normalizing the covariance
matrix. Residues whose Cα atoms are closer than rc = 13 Å were defined to be in contact. Each
non-covalent contact of the ANM was artificially deleted, one at a time, i.e. the strength of the
corresponding interaction is set to zero (see section 4.1). For the mutated protein, we computed
the correlation matrix C ′. The impact of the contact deletion was quantified by determining the
FN of C and C ′ as defined in Eq. 1.26.

As we already discussed in section 2.2, effects on local dynamics may get lost by summing
up the complete correlation matrix. To this end, we computed the FN for submatrices that
correspond to defined protein regions according to literature [Shi et al., 2002; Sussman et al.,
1991; Zhang et al., 2002] (see Fig. 4.8): active site, Ω-loop, peripheral anionic site (PAS),
oxyanion hole (OxyH), acyl pocket, choline binding site (CbS) as well as N- and C-terminus.
The oxyanion hole, that is located adjacent to the catalytic triad and both acyl and choline
binding site, stabilizes the negatively charged carbonly oxygen during catalysis [Warshel et al.,
1989]. The Ω-loop at the rim of the channel plays an important role in inhibitor binding [Shi
et al., 2002], and PAS establishes contact with the substrate [Bourne et al., 2003].

We combined the results from both approaches to relate potential coevolutionary dependencies
to mechanical properties of the AChE.
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For further details see: Weißgraeber et al [accepted].

4.4.3 Results

For each protein region, we determined the top ten contacts whose artificial deletion had major
influence on its dynamics, that is yielding the largest FN values. We correlated these con-
tacts with corresponding MI values to assess the amount of coevolution between the respective
residues. Annotating residue pairs by both biophysical and sequence-based means results in
four distinct classes:

1. Positions with both high MI and FN values are subject to the same coevolutionary pressure
and important for structural integrity.

2. Non-interacting residues showing low MI values are regarded independent of each other.

3. Biophysically relevant contact with only little coevolution may be due to a high level of
conservation of at least one of the respective residues, that is only little to no variation
at that site. Another possible explanation is the independence from side chains, such
as electrostatic backbone interactions on the basis of the dipole character of the double
bonded resonance form of peptide bonds. Such residue pairs are no subject to coevolution
even though they may be crucial for mechanical properties.

4. Amino acid pairs featuring high MI values, but without any mechanical dependence may
arise from the underlying physical model, as other than harmonic interactions are not
taken into account. The considered interaction may also be crucial for structural elements,
which are not subject to our analysis. Furthermore, spatial proximity causes coevolution of
two residues, but covalent contacts are not “released” in our analysis. Hence, the impact
of artificial deletion of covalent bonds is not correlated with coevolution of the respective
residues.

By investigating the top ten FN values for each defined protein region, we were able to identify
the loop forming the acyl pocket which holds the acyl group during catalysis as coevolutionary
hot spot. Its structural integrity is mainly sustained by contact within the loops itself. All top
ten contacts feature considerably high MI values ranging from 0.80 to 1.35 bit, as comparison
the average MI is about 0.61 bit and the maximum is found at a value of 2.17 bit. Similarly,
coevolution ensures the preservation of the structure of the choline binding pocket, which is
necessary to bind the choline group during catalysis. It is stabilized by contacts to the oxyanion
hole and surrounding residues. The respective residue pairs show MI values above average.
Furthermore, we observe that residue D72 is by far the most important residue maintaining the
dynamics of the peripheral anionic site, supported by contacts to the active site, the oxyanion
hole and the choline binding site (see Fig. 4.9(a)). The contact between Y334 of PAS and H440
of the catalytic triad yields high FN values which is in agreement with Epstein et al. [1979].
According to this study, the catalysis is inhibited by binding of the snake venom fasciculin not
only by sterical occlusion of the gorge entrance but also by induction of allosteric changes in the
active site conformation. For this contact, we were not able to detect coevolution, as H440 is
highly conserved.
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(a) Using ANMs, we determined the top ten interac-
tions to maintain structure and function of the
peripheral anionic site (PAS). Those interactions
are indicated by black cylinders in the structure
of AChE. The Ω-loop, ranging from F78 to C94 is
highlighted as orientation.
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N280
F284

V360

G355
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S345

G335
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F289

F288

(b) A group of coevolving residues next to the rim of
the gorge that was determined by the sequence-
based MI approach is shown. The Ω-loop, ranging
from F78 to C94 is highlighted as orientation.

Figure 4.9.: Sites identified both from the biophysical (a) and sequence-based (b) approach are labeled
in the structure of AChE. Pictures are adapted from Weißgraeber et al. [accepted].

Since coevolution of residues that do not share crucial physical contacts is an interesting issue
on its own, we identified residue pairs with high MI values. We performed our analysis on a
monomer of AChE, but AChE is capable to form homotetramers, as well. Hence, sites with con-
tacts between subunits may not appear in the ANM approach, if the corresponding residues are
not in contact within a single subunit. We determined contacting sites using a tetrameric crystal
structure (PDB code 1C2O [Bourne et al., 1999]). Indeed, we found inter-subunit contacts, that
are not in contact within the subunit, with high MI values, indicating coevolutionary connec-
tions due to tetramerization. In a recent study, Gloor et al. [2005] made the observation that
they could distinguish two classes of coevolving residues: Positions that coevolve with one or
two other positions, and, furthermore, clusters of coevolving residues that are presumably part
of common functional units. We identified three residues (Y70, Y121, W279) that exhibit MI
values above average with Y334, although their spatial distance is beyond the cutoff range. The
respective amino acids are a part of PAS, which is crucial for substrate binding. Hence, we sug-
gest the existence of coevolution due to the belonging of the amino acids to the same functional
unit. Additionally, we identified a region of AChE that has not been annotated, yet. Five of the
top ten highest MI values were detected for pairs including Y70. A detailed analysis of Y70 and
coevolving residues revealed a site (see Fig. 4.9(b)) located closely to the opening of the chan-
nel, implying potential involvements of this region with binding partners or in non-hydrolytic
functions of AChE that were discussed previously [Soreq & Seidman, 2001].

We provided a detailed annotation of structurally and functionally crucial residues of AChE by
the application of a combined biophysical and sequence-based protocol. Moreover, we identified
functional units within the protein that have not been described, yet. More biophysical charac-
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teristics, such as charge, hydrophobicity, need to be included to further enhance the proposed
protocol.

4.4.4 Contributions

SW performed the analysis. KH, FH and SW devised the study and wrote the manuscript.
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Taketomi, H; Ueda, Y; Gō, N (1975) Studies on protein folding, unfolding and fluctuations by
computer simulation. I. The effect of specific amino acid sequence represented by specific
inter-unit interactions. Int J Pept Protein Res 7:445.

Tama, F; Sanejouand, YH (2001) Conformational change of proteins arising from normal mode
calculations. Protein Eng 14:1.

Tan, Q; Shim, JW; Gu, LQ (2010) Separation of heteromeric potassium channel Kcv towards
probing subunit composition-regulated ion permeation and gating. FEBS Lett 584:1602.

Tayefeh, S; Kloss, T; Kreim, M; Gebhardt, M; Baumeister, D; Hertel, B; Richter, C; Schwalbe, H;
Moroni, A; Thiel, G; et al. (2009) Model development for the viral Kcv potassium channel.
Biophys J 96:485.

Tayefeh, S; Kloss, T; Thiel, G; Hertel, B; Moroni, A; Kast, SM (2007) Molecular dynamics simu-
lation of the cytosolic mouth in Kcv-type potassium channels. Biochemistry 46:4826.

Taylor, P (2001) The Pharmacological Basis of Therapeutics chap. Anticholinesterase agents
(McGraw-Hill) (239).

Thiel, G; Baumeister, D; Schroeder, I; Kast, SM; van Etten, JL; Moroni, A (2011) Minimal art:
or why small viral K+ channels are good tools for understanding basic structure and function
relations. Biochim Biophys Acta 1808:580.

130 Bibliography



Tierney, L; Rossini, AJ; Li, N (2009) Snow: A parallel computing framework for the R system.
Int J of Parallel Computing 37:78.

Tinoco, I, Jr; Bustamante, C (1999) How RNA folds. J Mol Biol 293:271.

Tirion, MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic
analysis. Phys Rev Lett 77:1905.

Trylska, J; Tozzini, V; McCammon, JA (2005) Exploring global motions and correlations in the
ribosome. Biophys J 89:1455.

Urbanek, S (2009) multicore.

van der Spoel, D; Lindahl, E; Hess, B; Groenhof, G; Mark, AE; Berendsen, HJC (2005) GRO-
MACS: fast, flexible, and free. J Comput Chem 26:1701.

van Etten, JL (2003) Unusual life style of giant chlorella viruses. Annu Rev Genet 37:153.

van Vlijmen, HWT; Karplus, M (1999) Analysis of calculated normal modes of a set of native
and partially unfolded proteins. J Phys Chem B 103:3009.

Vandenberghe, L; Boyd, S (1996) Semidefinite programming. SIAM Rev 38:49.

Verma, A; Wenzel, W (2009) A free-energy approach for all-atom protein simulation. Biophys J
96:3483.

Vila, JA; Ripoll, DR; Scheraga, HA (2000) Physical reasons for the unusual α–helix stabilization
afforded by charged or neutral polar residues in alanine-rich peptides. Proc Natl Acad Sci
97:13075.

Walsby, AE (1994) Gas vesicles. Microbiol Rev 58:94.

Wang, J; Wang, W (1999) A computational approach to simplifying the protein folding alphabet.
Nat Struct Biol 6:1033.

Wang, K; Xie, S; Sun, B (2011) Viral proteins function as ion channels. Biochim Biophys Acta
1808:510.

Warshel, A; Naray-Szabo, G; Sussman, F; Hwang, JK (1989) How do serine proteases really
work? Biochemistry 28:3629.

Waterhouse, AM; Procter, JB; Martin, DMA; Clamp, M; Barton, GJ (2009) Jalview version 2–a
multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189.

Weaver, LH; Grütter, MG; Matthews, BW (1995) The refined structures of goose lysozyme and
its complex with a bound trisaccharide show that the "goose-type" lysozymes lack a catalytic
aspartate residue. J Mol Biol 245:54.

Weber, W; Hünenberger, PH; McCammon, JA (2000) Molecular dynamics simulations of a
polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodic-
ity on peptide conformation. J Phys Chem 104:3668.

Weil, P; Hoffgaard, F; Hamacher, K (2009) Estimating sufficient statistics in co-evolutionary
analysis by mutual information. Comp Biol Chem 33:440.

Bibliography 131



Weinberger, KQ; Saul, LK (2006) Unsupervised learning of image manifolds by semidefinite
programming. Int J Comp Vision 70:77.

Wenzel, W; Hamacher, K (1999) Stochastic tunneling approach for global minimization of com-
plex potential energy landscapes. Phys Rev Letters 82:3003.

Wilson, TJ; Lilley, DMJ (2009) Biochemistry. The evolution of ribozyme chemistry. Science
323:1436.

Wlodawer, A; Nachman, J; Gilliland, GL; Gallagher, W; Woodward, C (1987) Structure of form
III crystals of bovine pancreatic trypsin inhibitor. J Mol Biol 198:469.

Wlodawer, A; Walter, J; Huber, R; Sjölin, L (1984) Structure of bovine pancreatic trypsin in-
hibitor. J Mol Biol 180:301.

Wolynes, PG (1997) As simple as can be? Nat Struct Biol 4:871.

Wright, CI; Geula, C; Mesulam, MM (1993) Neuroglial cholinesterases in the normal brain and
in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability.
Ann Neurol 34:373.

Wüthrich, K; Wider, G; Wagner, G; Braun, W (1982) Sequential resonance assignments as a basis
for determination of spatial protein structures by high resolution proton nuclear magnetic
resonance. J Mol Biol 155:311.

Yang, L; Song, G; Carriquiry, A; Jernigan, RL (2008) Close correspondence between the motions
from principal component analysis of multiple HIV-1 protease structures and elastic network
modes. Structure 16:321.

Yang, L; Song, G; Jernigan, RL (2009) Protein elastic network models and the ranges of coop-
erativity. Proc Natl Acad Sci U S A 106:12347.

Zhang, Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40.

Zhang, Y; Kua, J; McCammon, JA (2002) Role of the catalytic triad and oxyanion hole in acetyl-
cholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 124:10572.

Zimm, BH; Bragg, JK (1959) Theory of the phase transition between helix and random coil in
polypeptide chains. J of Chem Phys 31:526.

132 Bibliography



Appendices

133





A Data sets

This section lists data sets that have been used in projects of this thesis. For protein sets A and B
the PDB codes [Berman et al., 2000] are specified. For PA simulations the structures that were
used as references are given.

A.1 Protein Set A

1A55 1A7G 1ABA 1ABE 1AMP 1AQB 1ARU 1BYB 1C53 1CD2 1CHD 1CNV 1COO 1COT 1CTF 1CTT 1D3Z 1DHR

1ECA 1EDE 1ENH 1ES6 1ESC 1EZM 1FKJ 1FLP 1FXD 1GCA 1GOF 1HFC 1HYP 1IAE 1LID 1MBA 1MJC 1MML

1NPK 1NXB 1OYC 1PAZ 1PEA 1PHP 1PHT 1PIQ 1POA 1PTQ 1R69 1RCB 1RIS 1SBP 1TCA 1TDE 1TEN 1TIG 1UBQ

1XNB 2CMD 2CPL 2CTC 2EBN 2END 2I1B 2LIV 2MCM 2MNR 2RN2 2SAS 2SN3 3DFR 3IL8 3LZM 451C 4FGF

5P21

A.2 Protein Set B

153L 16VP 1A0I 1A17 1A1I 1A1V 1A1Z 1A26 1A32 1A62 1A6F 1A6Q 1A7J 1A8D 1A8Y 1ABV 1ACC 1AD2 1ADT

1AEP 1AF7 1AFP 1AH7 1AIE 1AIL 1AIN 1AJ2 1AK0 1AKO 1ALG 1ALY 1AMM 1AMX 1AOL 1AOY 1AQT 1ARB 1ASS

1AT0 1ATA 1AUA 1AZO 1B0U 1B0X 1B63 1B74 1B9P 1B9W 1BAM 1BBY 1BCO 1BDO 1BF4 1BF5 1BFG 1BG6

1BGF 1BHU 1BIA 1BIF 1BJT 1BKF 1BL0 1BLE 1BM8 1BOL 1BOO 1BQG 1BRT 1BT3 1BUO 1BUP 1BUU 1BX7

1BY2 1BYR 1C0A 1C1K 1C25 1C3D 1C3G 1C3P 1C4K 1C4X 1C7K 1CA1 1CB8 1CBF 1CBH 1CBY 1CDW 1CDZ

1CEX 1CFE 1CFR 1CHD 1CHU 1CII 1CIS 1CKQ 1CKT 1CQQ 1CSH 1CT5 1CTF 1CTQ 1CUK 1CYO 1CYX 1CZS

1D2S 1D2T 1D5T 1D8B 1D8C 1DAB 1DBH 1DCF 1DCQ 1DD5 1DD9 1DF4 1DFU 1DHN 1DHS 1DI6 1DIV 1DKC

1DL2 1DLC 1DLJ 1DLW 1DMG 1DMU 1DNV 1DOV 1DP7 1DPQ 1DQ3 1DQG 1DS1 1DT4 1DT9 1DU1 1DUR 1DUS

1DVO 1DVP 1DZF 1E0M 1E2S 1E3H 1E3O 1E43 1E4C 1E4M 1E5K 1E7U 1EB7 1ECR 1EDQ 1EFD 1EGS 1EH3 1EI5

1EJ0 1EJE 1EKG 1EKR 1EM2 1EOV 1ES5 1ES9 1ESD 1ETL 1EU1 1EW0 1EWN 1EYB 1EYH 1F00 1F0N 1F2V 1F32

1F3L 1F44 1F53 1F5N 1F7S 1F7U 1FC6 1FCQ 1FEH 1FI4 1FID 1FJJ 1FNC 1FP1 1FRB 1FSF 1FUS 1FVG 1FYE

1FYV 1G12 1G3W 1G5M 1G7S 1G8F 1G8S 1GA8 1GBG 1GK7 1GKU 1GKY 1GM5 1GNT 1GNY 1GOF 1GPR 1GQE

1GRJ 1GS5 1GSA 1GTR 1GU3 1GV9 1GVP 1GYV 1GZ8 1H05 1H2C 1H5P 1H6H 1H6I 1H6L 1H6O 1H70 1H8L

1H99 1HB6 1HCB 1HCR 1HCZ 1HF8 1HFC 1HH2 1HK8 1HLL 1HLV 1HMS 1HN0 1HO8 1HP1 1HP9 1HQ0 1HQ1

1HQV 1HS6 1HUF 1HUS 1HW7 1HXN 1HXX 1HY9 1HYP 1HZT 1I1I 1I27 1I3J 1I52 1I60 1I8A 1I9G 1IAE 1IB8

1IDK 1IFR 1IG8 1IGR 1IIR 1IJ5 1IKO 1IMJ 1IO1 1IOW 1IPA 1IR6 1ISP 1IUQ 1IWL 1IXK 1IZM 1J09 1J1L 1J1T

1J23 1J3A 1J3E 1J5X 1J5Y 1J6O 1J6U 1J77 1J8R 1J98 1J9B 1JB3 1JDW 1JEO 1JFX 1JGS 1JHG 1JHJ 1JHN 1JHS

1JID 1JL1 1JMM 1JNI 1JPC 1JPU 1JQN 1JR7 1JRL 1JSG 1JSX 1JU3 1JU8 1JWQ 1JYH 1K04 1K12 1K24 1K4N

1K4T 1K6K 1K7C 1K8T 1KBL 1KCL 1KFT 1KHC 1KID 1KKH 1KL9 1KLO 1KLX 1KNB 1KON 1KP6 1KR7 1KS9 1KT7

1KWG 1KWI 1KYH 1KZF 1L2H 1L2L 1L2P 1L3K 1L5O 1L6P 1L7Y 1L8Q 1L9V 1LC0 1LCI 1LG7 1LI4 1LJ8 1LL2

1LLA 1LLP 1LMI 1LML 1LN4 1LNS 1LO7 1LOU 1LOX 1LRI 1LRV 1LRZ 1LSL 1LV3 1LVA 1LWB 1M1H 1M2K 1M5I

1M65 1M66 1M6E 1M73 1M8Z 1M9S 1MA4 1MAI 1MG4 1MGP 1MHN 1MHU 1MJC 1MJN 1MK0 1MKY 1ML8

1ML9 1MLA 1MML 1MN3 1MNN 1MRK 1MSC 1MSK 1MSW 1MUG 1MUS 1MVL 1MWP 1MXA 1MZB 1N1T 1N4K

i



1N5U 1N67 1N81 1N93 1N9P 1N9U 1NC5 1NEP 1NFN 1NFP 1NG6 1NH1 1NH8 1NI3 1NI5 1NI9 1NIF 1NIJ 1NKD

1NKG 1NNX 1NOS 1NOX 1NQK 1NTH 1NW3 1NZA 1NZE 1O1Z 1O22 1O3U 1O4W 1O59 1O88 1O9G 1OBR 1OCY

1ODH 1OFC 1OFL 1OGL 1OGQ 1OH4 1OHL 1OI1 1OKC 1OKG 1OKS 1OPC 1OUO 1OXE 1OXJ 1OY8 1OYG 1OYW

1OYZ 1OZ9 1P1M 1P2Z 1P90 1P97 1P9I 1PB5 1PBE 1PDA 1PDO 1PDR 1PEF 1PEN 1PFO 1PFV 1PG1 1PG6 1PGS

1PHR 1PHZ 1PI1 1PIE 1PIN 1PJ5 1PKM 1PKP 1PMI 1PNE 1POA 1POC 1PP7 1PSF 1PSW 1PTQ 1PUC 1PW4 1PXE

1PZT 1PZW 1Q0H 1Q0R 1Q1H 1Q2B 1Q4R 1Q5Z 1Q7H 1Q8B 1Q8C 1Q8D 1Q92 1QAZ 1QBA 1QCS 1QCZ 1QDD

1QFM 1QG8 1QGO 1QGV 1QHD 1QHX 1QJ4 1QJP 1QLM 1QME 1QOY 1QPG 1QR0 1QRE 1QSA 1QTO 1QTW

1QW2 1QWG 1QWY 1QYI 1QYS 1R0U 1R1H 1R3D 1R4V 1R4X 1R6F 1R75 1R7J 1R89 1R8E 1R8I 1R9F 1RA0

1RA6 1RA9 1RC9 1RE9 1REP 1RH4 1RHS 1RI5 1RI6 1RIE 1RKD 1RL6 1RLH 1RLJ 1RLR 1RMG 1RO2 1ROC 1RP4

1RQB 1RR7 1RRO 1RRQ 1RRZ 1RTQ 1RU4 1RW2 1RW6 1RWR 1RWU 1RYQ 1RZ4 1RZY 1S21 1S2W 1S2X 1S68

1S7C 1S7I 1S7Z 1S9Z 1SAY 1SDO 1SFE 1SFP 1SG7 1SIG 1SJW 1SKN 1SQG 1SQH 1SQW 1SR8 1SRA 1SSK 1SU8

1SUM 1SUR 1SUU 1SVB 1SWX 1SZI 1T1D 1T27 1T2S 1T3J 1T3T 1T5J 1T6A 1T6C 1T95 1TA0 1TCA 1TCH 1TD6

1TDJ 1TF5 1TFF 1TFR 1TG7 1TGJ 1THQ 1TIF 1TIG 1TJ1 1TJN 1TJX 1TKE 1TL2 1TOH 1TOL 1TOP 1TOV 1TP6

1TQH 1TS9 1TT8 1TTU 1TUH 1TUL 1TUW 1TWU 1TXL 1TYX 1U02 1U04 1U14 1U2C 1U4G 1U7G 1U7L 1U84

1U94 1UAE 1UBY 1UDB 1UDS 1UDX 1UEK 1UFA 1UG9 1UJ8 1UKF 1ULY 1UMG 1UMH 1UOY 1URU 1UTG 1UW1

1UWF 1UWV 1UX6 1UXO 1UXX 1UXY 1UYN 1V04 1V0A 1V0D 1V2X 1V2Z 1V4A 1V77 1V9M 1VBV 1VCC 1VFY

1VHE 1VHH 1VHU 1VI7 1VJW 1VK1 1VK5 1VK6 1VK9 1VKB 1VKW 1VLI 1VMG 1VMH 1VNS 1VPQ 1VPR 1VPT

1VRM 1VSR 1W0P 1W1O 1W5D 1W66 1W8M 1WBA 1WC9 1WCD 1WD3 1WER 1WFX 1WHI 1WHO 1WHZ 1WJ9

1WNA 1WPA 1WUB 1WV3 1WV8 1WVK 1WY6 1WZU 1X38 1X82 1X9N 1XAB 1XAK 1XCL 1XD7 1XEO 1XER 1XFI

1XG8 1XHB 1XKS 1XM9 1XMX 1XNB 1XO8 1XOV 1XQ8 1XTO 1XTP 1XW8 1Y08 1Y0N 1Y6I 1Y8C 1Y9Q 1YB3

1YDL 1YDX 1YFQ 1YFU 1YGE 1YGS 1YI9 1YLN 1YQG 1YQY 1YS5 1YT3 1YU0 1YU5 1YUB 1YVR 1YWF 1Z0P 1Z21

1Z67 1ZAR 1ZAT 1ZBP 1ZD0 1ZDY 1ZFO 1ZHV 1ZHX 1ZIN 1ZOD 1ZPW 1ZRN 1ZTN 1ZX3 2A0B 2A4H 2A8E

2AAK 2ABK 2ACT 2ACY 2AE9 2AP3 2APL 2AQA 2ASR 2ATZ 2AXO 2B0J 2B4W 2B5H 2BAI 2BDE 2BDT 2BIB 2BL7

2BNH 2BOP 2BSC 2BV3 2BYO 2BZ1 2C1I 2C5S 2C6J 2C9A 2CC6 2CFQ 2CN1 2CUL 2CW9 2CX1 2CXA 2CXF 2D2S

2D5B 2D5U 2DAP 2DDH 2DP9 2DPK 2DPM 2DRI 2EIF 2END 2ENG 2ERL 2ES9 2ET1 2ETD 2EWH 2F09 2FB7 2FDI

2FFM 2FFT 2FGC 2FGG 2FI0 2FM9 2FPN 2FQ3 2FRN 2FSJ 2FYG 2G7O 2G9D 2GC6 2GHR 2GKE 2GQV 2GS5 2GTI

2GTV 2H85 2HBB 2HBJ 2HGS 2HK6 2HKJ 2HQV 2HUJ 2HVM 2HXM 2IBA 2ICS 2IGD 2ILK 2JAK 2JEK 2JF2 2JQA

2JV3 2JW6 2KFZ 2LIS 2MCM 2NLY 2NML 2NR9 2NXC 2O0Q 2OGQ 2PIA 2PII 2PIL 2PK8 2PTD 2PTH 2PUB 2Q4M

2SAK 2SLI 2TPT 2TS1 3BTA 3CGW 3CLA 3COX 3GRS 3IL8 3VUB 4AIG 4BCL 5CSM 5EAU 6XIA 7ACN 7FD1

ii A. Data sets



B Abbreviations
Amino acid codes

A ALA Alanine M MET Methionine
C CYS Cysteine N ASN Asparagine
D ASP Aspartic Acid P PRO Proline
E GLU Glutamic Acid Q GLN Glutamine
F PHE Phenylalanine R ARG Arginine
G GLY Glycine S SER Serine
H HIS Histidine T THR Threonine
I ILE Isoleucine V VAL Valine
K LYS Lysine W TRP Tryptophan
L LEU Leucine Y TYR Tyrosine

Nucleotide codes

A Adenine T Thymine (DNA)
C Cytosine U Uracil (RNA)
G Guanine

Further Abbreviations

AChE Acetylcholinesterase
ANM Anisotropic Network Model
asShihB amino acid specific ShihB
BLAST Basic Local Alignment Search Tool
BPTI Bovine Pancreatic Trypsin Inhibitor
CbS Choline Binding Site
DNA Deoxyribonucleic acid
eANM extended ANM
ENM Elastic Network Model
FN Frobenius Norm
GNM Gaussian Network Model
GSL Gnu Scientific Library
HIV Human Immunodeficiency Virus
KE Keskin et al. (interaction parameters)
MAPE Maximum a posteriori Estimation
MC Monte Carlo (algorithm)
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Further Abbreviations ... continued

MD Molecular Dynamics
MI Mutual Information
MJ Miyazawa-Jernigan (interaction parameters)
MLE Maximum Likelihood Estimation
NMA Normal Mode Analysis
NMR Nuclear Magnetic Resonance (spectroscopy)
OxyH Oxyanion Hole
PA Polyalanine
PAS Peripheral Anionic Site
PES Potential Energy Surface
PDB Protein Data Bank
pfENM parameter-free ENM
psShihB protein specific ShihB
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
RNA Ribonucleic acid
SCOP Structural Classification of Proteins
SCPCP Self-Consistent Pair Contact Probability
SDP Semidefinite Programming
ShihB B factor model according to Shih et al. [2007]
STUN Stochastic Tunneling
SVD Singular Value Decomposition
TM Transmembrane Domain
WCN Weighted Contact Number (model)
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