
Lattice-based Signature Schemes with
Additional Features

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doktor rerum naturalium (Dr. rer. nat.)

von

Dipl.-Inform. Markus Rückert

geboren in Darmstadt.

Referenten: Prof. Dr. Johannes Buchmann
Prof. Dr. Daniele Micciancio

Tag der Einreichung: 03. November 2010
Tag der mündlichen Prüfung: 20. Dezember 2010
Hochschulkennziffer: D 17

Darmstadt 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/11680938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my family.

Wissenschaftlicher Werdegang

Oktober 2008 – heute

Wissenschaftlicher Mitarbeiter am Lehrstuhl von Prof. Dr. Johannes Buchmann,
Fachbereich Informatik, Fachgebiet Theoretische Informatik — Kryptographie und
Computeralgebra, Technische Universität Darmstadt.

Juli 2008 – heute

Wissenschaftlicher Mitarbeiter im Projekt
”
Kryptographische Primitive“ des Ar-

beitsbereichs
”
Sichere Daten“ im Center for Advanced Security Research Darmstadt

(CASED).

November 2007 – September 2008

Wissenschaftlicher Mitarbeiter am Darmstädter Zentrum für IT-Sicherheit (DZI).

Oktober 2002 – April 2007

Studium der Informatik mit Schwerpunkt Theoretische Informatik und Nebenfach
Betriebswirtschaftslehre an der Technischen Universität Darmstadt.

v

List of Publications

[PUB1] Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard
instances of the shortest vector problem. In Johannes Buchmann and
Jintai Ding, editors, PQCrypto, volume 5299 of Lecture Notes in Computer
Science, pages 79–94. Springer, 2008.

[PUB2] Johannes Buchmann, Richard Lindner, Markus Rückert, and Michael
Schneider. Explicit hard instances of the shortest vector problem (ex-
tended version). Cryptology ePrint Archive, Report 2008/333, 2008.
http://eprint.iacr.org/.

[PUB3] Johannes Buchmann, Richard Lindner, Markus Rückert, and Michael
Schneider. Post-quantum cryptography: lattice signatures. Computing,
85(1-2):105–125, 2009.

[PUB4] Markus Rückert and Dominique Schröder. Aggregate and verifiably en-
crypted signatures from multilinear maps without random oracles. In
Jong Hyuk Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon
Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, ISA, volume 5576 of Lec-
ture Notes in Computer Science, pages 750–759. Springer, 2009.

[PUB5] Markus Rückert and Dominique Schröder. Security of verifiably encrypted
signatures and a construction without random oracles. In Hovav Shacham
and Brent Waters, editors, Pairing, volume 5671 of Lecture Notes in Com-
puter Science, pages 17–34. Springer, 2009.

[PUB6] Markus Rückert. Verifiably encrypted signatures from RSA without
NIZKs. In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT, vol-
ume 5922 of Lecture Notes in Computer Science, pages 363–377. Springer,
2009.

[PUB7] Markus Rückert and Dominique Schröder. Fair partially blind signatures.
In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT, volume
6055 of Lecture Notes in Computer Science, pages 34–51. Springer, 2010.

vii

List of Publications

[PUB8] Markus Rückert. Strongly unforgeable signatures and hierarchical identity-
based signatures from lattices without random oracles. In Nicolas Sendrier,
editor, PQCrypto, volume 6061 of Lecture Notes in Computer Science,
pages 182–200. Springer, 2010.

[PUB9] Markus Rückert, Michael Schneider, and Dominique Schröder. Generic
constructions for verifiably encrypted signatures without random oracles
or nizks. In Jianying Zhou and Moti Yung, editors, ACNS, volume 6123
of Lecture Notes in Computer Science, pages 69–86, 2010.

[PUB10] Markus Rückert. Adaptively secure identity-based identification from lat-
tices without random oracles. In Juan A. Garay and Roberto De Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages
345–362. Springer, 2010.

[PUB11] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg
Silva. A lattice-based threshold ring signature scheme. In Michel Ab-
dalla and Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of
Lecture Notes in Computer Science, pages 255–272. Springer, 2010.

[PUB12] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg
Silva. Improved zero-knowledge identification with lattices. In Swee-Huay
Henc and Kaoru Kurosawa, editors, ProvSec, volume 6402 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2010.

[PUB13] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor,
ASIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages
413–430. Springer, 2010.

[PUB14] Markus Rückert and Michael Schneider. Estimating the security of lattice-
based cryptosystems. Cryptology ePrint Archive, Report 2010/137, 2010.
http://eprint.iacr.org/.

[PUB15] Jan Camenisch, Gregory Neven, and Markus Rückert. Lattice-based group
signatures from anonymous attribute tokens. Manuscript, 2010.

viii

Acknowledgments

First and foremost, I thank my supervisor Johannes Buchmann for supporting and
challenging me throughout the last three years. He kindly let me pursue my interest
in lattices, which was first stirred by Alexander May. Furthermore, I am grateful for
having Daniele Micciancio as well as Sorin Huss, Marc Fischlin, and Mark Manulis
on my PhD committee.

My research topic has put me in a fascinating environment with a very supportive
community and I am particularly thankful to Jan Camenisch, Marc Fischlin, Benôıt
Libert, Vadim Lyubashevsky, Daniele Micciancio, “Gemeindepräsident” Gregory
Neven, Chris Peikert, Oded Regev, Nigel Smart, and Bogdan Warinschi for countless
insightful and informative discussions — I appreciate your patience with a rookie!
Also, I thank ECRYPT II and CASED for their financial support.

I thank my co-authors for their help, encouragement, and cooperation: Johannes
Buchmann [PUB1, PUB2, PUB3], Jan Camenisch [PUB15], Pierre-Louis Cayrel
[PUB11, PUB12], Richard Lindner [PUB1, PUB2, PUB3, PUB11, PUB12], Gre-
gory Neven [PUB15], Michael Schneider [PUB2, PUB3, PUB9], Dominique Schröder
[PUB4, PUB5, PUB7, PUB9], and Rosemberg Silva [PUB11, PUB12].

Special thanks go to my dear CDC, Minicrypt, and CASED colleagues. You have
made me enjoy work (and leasure) and many of you have helped me to improve
this document. I indebted to Dominique Schröder for being a spark that made me
start my own research. I appreciate the many hours we’ve spent in front of the
whiteboard. If it was not for Michael Kreutzer, I would not have had a position
in 2007. Without Marita and Cornelia, things would certainly not run as smoothly
and efficiently as they (often unnoticed) do.

Moreover, I appreciate the great support of my family and in-laws. Having loyal
friends has always been very important to me. Thank you, Bluck, Chris, Domi,
Flo, Heike, Markus, Michi, Sandra, Simon, Tobi for all these little, compensatory
distractions. Finally, I am indebted to my beautiful wife for her patience, love, and
inspiration.

Darmstadt, November 2010 Markus Rückert

ix

Zusammenfassung

Nahezu die gesamte kryptographische Landschaft basiert heute auf der Unlösbarkeit
zweier Probleme — dem Faktorisierungsproblem und dem Problem diskrete Loga-
rithmen zu berechnen. Diese Duokultur könnte im Falle neuartiger Angriffe rasch
zum Kollaps ganzer Teilbereiche der modernen Kryptographie führen. Die konkrete
Bedrohung durch Quantencomputer, beispielsweise mit Shor’s Faktorisierungsalgo-
rithmus (Shor 1997), ist hierbei nur ein Grund nach Alternativen zu suchen.

Mit Gitterproblemen, wie dem Problem sehr kurze Gittervektoren zu finden, steht
bereits eine gut erforschte Alternative zur Verfügung. Diese Probleme zeigen sich re-
sistent gegenüber Quantencomputern und sie widerstehen, im Gegensatz zum Fak-
torisierungsproblem, subexponentiellen Algorithmen.

In der Gitterkryptographie kann man auf sehr milde Annahmen zurückgreifen und
damit außergewöhnlich starke Sicherheitsgarantien erzielen. Ajtais Entdeckung der
unterliegenden komplexitätstheoretischen

”
worst-case to average-case“ Reduktion

(Ajtai 1996) besagt, dass eine zufällige Instanz bestimmter Gitterprobleme mindes-
tens so schwer ist wie die schwierigste Instanz eines verwandten Problems.

Mit den Arbeiten (Gentry, Peikert, Vaikuntanathan 2008), (Lyubashevsky, Mic-
ciancio 2008), (Lyubashevsky 2009) und (Cash, Hofheinz, Kiltz, Peikert 2009) zu
Signaturverfahren stehen solide Grundbausteine zur Verfügung. Möchte man diese
in Geschäftsprozessen nutzen, greifen sie jedoch häufig zu kurz. Oft sind hier Zusatz-
eigenschaften notwendig, um auf Signaturen Berechnungen ausführen zu können.

Die vorliegende Dissertation zeigt die Vielseitigkeit von Gittern in der Kryptogra-
phie anhand ausgewählter Anwendungsszenarien auf. Mit den vorgestellten Verfah-
ren unterstützt sie elektronische Wahlverfahren, Vertragsunterzeichnung über das In-
ternet sowie die Signaturkompression. Des Weiteren werden Techniken zur Erfüllung
des stärksten Sicherheitsmodells für Signaturverfahren ohne vereinfachende Annah-
men, wie Random Oracles, vorgestellt und diskutiert, wie sich identitätsbasierte Pri-
mitive verwirklichen lassen. Es ist zu erwarten, dass sich die vorgestellten Techniken
verallgemeinern und auf andere Anwendungsbereiche übertragen lassen.

Unabhängig davon wird die praktische Schwierigkeit der relevanten Gitterproble-
me untersucht. Dies ermöglicht die Bewertung und Auswahl sicherer Parametersätze
für die gesamte moderne Gitterkryptographie.

xi

Abstract

Building cryptographic schemes upon as many fundamentally different hard prob-
lems as possible, seems to be the best way to hedge against future threats such as
quantum computers. Being mainly based on the hardness of factoring and comput-
ing discrete logarithms, the present security landscape is at risk.

In contrast, problems in lattices, such as finding short non-zero vectors, seem
to withstand quantum computer attacks and the best known algorithms run in
exponential time. In sharp contrast to other fields of cryptography, lattices admit
a worst-case to average-case reduction (Ajtai 1996). Instead of assuming that a
problem is hard for randomly chosen instances, lattice-based cryptosystems merely
require the existence of a single hard instance, i.e., hardness in the worst case. With
such an additional “trust anchor”, the resulting security guarantees are much more
plausible.

Quite recently, we have seen an increased interest in lattice-based cryptography
with many striking results. In this thesis, we are particularly interested in signature
schemes, which provide a supporting pillar for today’s economy. While we have
seen basic signature schemes from lattices, e.g., (Gentry, Peikert, Vaikuntanathan
2008), (Lyubashevsky, Micciancio 2008), (Lyubashevsky 2009), or (Cash, Hofheinz,
Kiltz, Peikert 2009), there are hardly any results dealing with the specific needs of
applications, where ordinary signatures often fall too short.

In this thesis, we build upon the above results and equip them with additional
features, motivated by an exemplary selection of application scenarios. Hence, we
demonstrate the great versatility of lattices in cryptography.

In particular, we facilitate privacy-friendly electronic elections, fair online contract
signing, signature compression, secure signatures in the strongest sense, as well as
identity-based primitives. As far as possible, we avoid simplifying assumptions, such
as the random oracle model. We believe that our techniques can be transferred to
other application scenarios as well.

Independently of the these results, we discuss the practical hardness of lattice
problems and provide a framework for estimating the security of essentially all mod-
ern lattice-based cryptography.

xiii

Contents

1 Introduction 1
1.1 Related Work . 3
1.2 Summary of Results . 4
1.3 Relation to Post-Quantum Cryptography 8
1.4 Conclusion and Open Research Questions 8

2 Notation, Definitions & Basic Tools 11
2.1 General Notation . 12
2.2 Algorithms . 12
2.3 Cryptographic Primitives . 13
2.4 The Random Oracle Model . 18
2.5 Witness-indistinguishable Proofs of Knowledge 19
2.6 Cryptographic Lattices . 20
2.7 Cryptographic Tools from Lattices 23

3 The Hardness of SIS and LWE in Practice 27
3.1 Methodology . 31
3.2 Analysis . 34
3.3 Applying the Framework . 40
3.4 Conclusion and Open Problems . 44

4 Blind Signatures 47
4.1 Definitions . 51
4.2 Our Construction . 54
4.3 Practical Parameters . 66
4.4 Supporting Lemmas . 71
4.5 Conclusion and Open Problems . 74

5 Verifiably Encrypted Signatures 77
5.1 Definition . 81
5.2 A New Security Model . 82

xv

Contents

5.3 Generic Constructions . 88
5.4 An Instantiation with Lattices . 98
5.5 Conclusion and Open Problems . 101

6 Single-signer Aggregate Signatures 103
6.1 Specification and Security . 106
6.2 Our Construction . 108
6.3 Conclusion and Open Problems . 110

7 Strongly Unforgeable Signatures in the Standard Model 113
7.1 From Static to Chosen Message Security 116
7.2 An Instantiation with Lattices . 119
7.3 Conclusion and Open Problems . 124

8 Identity-based Identification 125
8.1 From Static to Adaptive Identity Security 128
8.2 An Instantiation with Lattices . 132
8.3 Conclusion and Open Problems . 140

Bibliography 143

xvi

courtesy of xkcd.com

Chapter 1

Introduction

1

Chapter 1 Introduction

Digital signature schemes are the cornerstone of e-business, e-government, soft-
ware security, and many more applications. Meeting just the requirement of re-
placing a hand-written signature to ensure authenticity is often not enough. Spe-
cific applications, such as electronic voting, electronic cash, identity management,
archiving, or contract signing, call for additional features that, abstractly speak-
ing, allow us to perform interesting computations on signatures. For that reason,
we have seen a plethora of special-purpose signature schemes in the past, with
[Cha82, CL01, BGLS03, BMW03, BN06, BKM09] only being a brief selection.

Their importance and economic value are expected to grow in the future as more
and more everyday tasks and processes are computerized. As for the near future,
we are convinced that currently deployed factoring and discrete logarithm based
instantiations are efficient and secure — but for how long?

Today, when designing cryptographic schemes, one also has to anticipate emerging
technologies that may lead to new attacks. Using quantum computers to apply
Shor’s polynomial-time factoring algorithm [Sho97] is only one such example and it
has become a metaphor for unexpected, threatening developments.

In general, cryptographers are encouraged to use the mildest possible assumptions
in complexity theoretic security reductions to try and hedge against such unforeseen
attacks. One way of doing so, is to provably base cryptography on so-called worst-
case problems, rather than on average-case problems. To see the difference, let us
consider the discrete logarithm problem (DLP) in a group 〈g〉 = G of order n and
let DS be a signature scheme that is provably as hard to break as solving DLP.
More precisely, a forger for DS can also find a, when challenged with A = ga ∈ G.
To trust in the security proof, we need to directly assume the hardness of DLP in
this specific, typically randomly chosen, group G. Unfortunately, there is no sound
way to choose a provably hard group from the family of all groups of order n. One
may argue that the well-known random self-reducibility of DLP allows us to choose
a random instance that is as hard to solve as any other instance. While such self-
reduction is an asset, it is not the solution to our problem because it keeps the group
fixed and merely randomizes the challenge A.

Using lattices, we can use the even stronger tool of a worst-case to average-case
reduction, which was discovered by Ajtai [Ajt96]. Informally, it states that finding
non-zero short vectors in a random lattice of dimension n log(n) is at least as hard as
finding short non-zero vectors in all, even the hardest possible, lattices of dimension
n. If it existed, a DLP analogy would be to prove that a random DLP instance A
in a random group G of order n log(n) is at least as hard to solve as the worst-case
instance B in the worst-case group H of order n. However, it seems that only lattice
problems have such a remarkable trait.

2

1.1 Related Work

Apart from this major theoretical distinction, lattice problems seem to be much
harder to solve than, say, the factoring problem. While factoring is possible in
sub-exponential time in the bit-length n of the input, solving cryptographically
relevant lattice problems in dimension n requires at least single-exponential time in
n [MV10a]. This can be of great practical value when selecting secure parameters
for the derived cryptosystems because we will inevitably have to increase n over
time and a slower increase preserves efficiency.

When using the subclass of ideal lattices, we can find very compact representations
of a lattice, while having almost the same strong security arguments [Mic07, LM06,
PR06, LPR10]. In this setting, lattice-based schemes are asymptotically efficient,
often requiring an essentially linear amount of space and time in the main parameter
n. For the same security level, the classical alternatives are much worse. In practice,
however, the current situation is different and classical number theoretic schemes
typically outperform their lattice-based counterparts. On the positive side, using
cryptographic lattices mainly involves simple linear algebra operations over rather
small fields that allow word-size arithmetic. Hence, there is not need for special
co-processors or long integer arithmetic.

1.1 Related Work

To specify the scope of this work, we define a a cryptographic scheme to be lattice-
based if its security can be entirely based on the worst-case hardness of lattice
problems via Ajtai’s reduction [Ajt96] or its descendants [GPV08, LM06, PR06,
Reg09, LPR10]. In particular, this rules out related ad-hoc constructions, such as
NTRU [HPS98].

Driven by the above prospects, lattice-based cryptography has flourished in the
recent years. Since Ajtai’s work and its early applications [GGH96, AD97, AD07],
the field has been diverging in agreement with two of Impagliazzo’s famous “worlds”
[Imp95] — Minicrypt and Cryptomania.

Lattice-based Minicrypt, i.e., cryptography that can be built upon one-way func-
tions, uses the following short integer solution (SIS) problem as the main assump-
tion: On input a random matrix A ∈ Zn×mq , find a non-zero vector x ∈ Zm such
that Ax ≡ 0 (mod q) and ‖x‖ ≤ ν for some norm bound ν [Ajt96]. In particular,
we have seen one-way functions [Mic07], hash functions [LMPR08], identification
schemes [Lyu08a, KTX08], and signature schemes [LM08, GPV08, SSTX09, Lyu09,
CHKP10, Boy10]. See also [MR08, BLRS09] for an overview. While ordinary sig-
nature schemes are in Minicrypt, this classification does not necessarily hold for our

3

Chapter 1 Introduction

subject. Occasionally, the desired additional features require techniques, such as
trapdoor functions, from Cryptomania.

For lattice-based Cryptomania, where public-key encryption exists, the main as-
sumption is different. Here, we work with the learning with errors (LWE) prob-
lem [Reg09]. Given a random A ∈ Zn×mq and a vector of noisy inner products
b = Ats + e mod q for random s ∈ Znq and short e ∈ Zm, the task is to recover s. It
admits a search-decision equivalence. Hence, an equivalent problem is to distinguish
such b from uniformly random vectors. The main contributions in this area are
encryption schemes [Reg09, KTX07, Pei09, LPR10]. Refer to [MR08, Reg10] for
an overview. In addition, there are more advanced constructions, such as identity-
based encryption [GPV08, CHKP10, ABB10a, ABB10b] or homomorphic encryption
[GHV10].

We build upon the above works and take the next step of adding application-
specific features to signature schemes.

1.2 Summary of Results

After introducing the notation, basic definitions, and tools for this thesis in Chap-
ter 2, we spend a chapter on discussing the practical hardness of the two main
average-case problems, SIS and LWE. The remaining chapters 4–8 are essentially
devoted to constructing lattice-based signature schemes with additional features,
while some also contain results of independent interest.

In the following, we summarize the main results in this thesis and defer the dis-
cussion of open problems and future research directions to the individual chapters
where they appear. We use the “soft-O” notation, where writing Õ(n) means less
than c1n logc2(n) for certain constants c1, c2, n0 and n ≥ n0.

Chapter 3: Estimating the Hardness of lattices problems Although there have
been many important results and breakthroughs in lattice cryptography, the ques-
tions of how to systematically evaluate their security in practice and how to choose
secure parameters are still open. This is mainly due to the fact that most security
proofs are essentially asymptotic statements. In addition, the hardness of the un-
derlying complexity assumption is controlled by several interdependent parameters
rather than just a simple bit length as in many classic schemes.

With our work, we close this gap by providing a framework that (1) distills a
hardness estimate out of a given parameter set and (2) relates the complexity of
practical lattice-based attacks to symmetric “bit security” for the first time. Our

4

1.2 Summary of Results

approach takes various security levels, or attacker types, into account. Moreover,
we use it to predict long-term security in a similar fashion as the results that are
collected on www.keylength.com.

Our framework can be applied in two ways: Firstly, to assess the hardness of
proposed parameter sets and secondly, to propose secure parameters in the first
place. Our methodology is applicable to essentially all lattice-based schemes that
are based on SIS and LWE and it allows us to compare efficiency and security across
different schemes and even across different types of cryptographic primitives.

Chapter 4: Blind Signatures Blind signatures, introduced by Chaum [Cha82],
have become an important tool in privacy-oriented cryptography.

Generally speaking, such schemes allow a signer to sign a message without see-
ing it, while retaining a certain amount of control over the process. In particular,
the signer can control the number of issued signatures (unforgeability). For the re-
ceiver of the signature, this process provides perfect anonymity (blindness), e.g., his
spendings remain anonymous when using blind signatures for electronic money.

We propose the first construction from lattices, building upon Lyubashevsky’s
identification scheme [Lyu08a]. Our scheme offers quasi-linear complexity, statistical
blindness, and its unforgeability is based on the hardness of solving SIS for vectors
of length Õ(n4). Using Chapter 3, we propose parameter sets for various security
levels to demonstrate that our scheme is quite competitive.

Moreover, it is the first blind signature scheme that supports leakage-resilience,
tolerating leakage of a (1−o(1)) fraction of the secret key in a model that is inspired
by Katz and Vaikuntanathan [KV09].

Chapter 5: Verifiably Encrypted Signatures In a verifiably encrypted signature
scheme, signers encrypt their signature under the public key of a trusted third party
and prove that they did so correctly. They are a cost-effective tool for fair online
contract signing — an important ingredient for today’s business processes. The
security requirements, due to Boneh et al. [BGLS03], are unforgeability and opacity.
Unforgeability prevents malicious users to create verifiably encrypted signatures on
behalf of another party and opacity prevents the extraction of ordinary signatures
from verifiably encrypted signatures.

We show that the original security model in [BGLS03] is insufficient and pro-
pose two novel requirements, which we call extractability and non-frameability. Ex-
tractability ensures that the trusted third party is always able to extract a valid
signature from a valid verifiably encrypted signature and non-frameability guaran-

5

Chapter 1 Introduction

tees that a malicious signer, who cooperates with the trusted party, is not able to
forge verifiably encrypted signatures.

The second part of the chapter is devoted to a framework for modular instantia-
tions without inefficient non-interactive zero knowledge proofs to achieve verifiability.
We propose two generic constructions based on Merkle authentication trees [Mer89]
in the standard model. Furthermore, we extend the specification for verifiably en-
crypted signatures, bringing them closer to real-world needs. We also argue that the
limited capacity of Merkle trees can be a feature in certain business scenarios.

For instance, our framework can be entirely instantiated with lattice-based prim-
itives in the standard model. Not only do we acquire the first verifiably encrypted
signature scheme from lattices but also the first efficient pairing-free instantiation in
the standard model. The said instantiation is secure based on the hardness of SIS
with norm bound Õ(n2).

Chapter 6: Single-signer Aggregate Signatures Aggregate signatures [BGLS03]
mainly serve the purpose of “compressing” signatures and, therefore, saving band-
width. This is desirable when transmitting multiple signatures in a network with
high communication cost (e.g. sensor networks). Since lattice-based signatures are
typically large, there is an intrinsic desire to compress them, even regardless of other
non-functional constraints.

We put forward the notion of a single-signer aggregate signature as a restricted
form of [BGLS03]. Given a list of signatures under the same public key, our scheme
allows anyone to compress them into a single one. We introduce a security model
and discuss potential applications. Afterwards, we propose a lattice-based construc-
tion in the random oracle model. When aggregating ` signatures, the compression
factor of roughly `/ log(`) is quite remarkable. Our scheme also supports an inter-
esting extension, namely hierarchical aggregation, which allows the aggregation of
aggregates.

Let `max be the maximum number of signatures in an aggregate. We prove
aggregate-unforgeability under the assumption that SIS for vectors of length `maxÕ(n)
is hard. Obviously, we need increasingly stronger assumptions with increasing `max.
To compensate for this, we apply Chapter 3 to generate parameter sets for vari-
ous `max with a steady security level and still find the resulting net savings to be
intriguing.

Chapter 7: Strongly-unforgeable Signatures We propose a variant of the existen-
tially unforgeable “bonsai tree” signature scheme [CHKP10]. Our construction offers

6

1.2 Summary of Results

the same efficiency as the “bonsai tree” scheme but supports the stronger notion of
strong unforgeability.

Existential unforgeability merely requires that it is hard to forge a signature for a
message that has not been queried to a signature oracle before. In contrast, strong
unforgeability also demands that it is hard to re-randomize a given signature, making
message-signature pairs somewhat unique.

With our work, we close a gap in the range of available lattice-based signature
schemes and provide the first stateless (treeless) signature scheme that supports
strong unforgeability in the standard model. Let λ be the output length of a collision-
resistant hash function. Then, our scheme is unforgeable if solving SIS for vectors
of length Õ(n

√
λ) is hard.

Chapter 8: Identity-based Identification In the final chapter of this thesis, we
make a brief digression into the field of identity-based identification because signa-
ture and identification schemes bear a strong similarity. Identity-based constructions
were proposed by Shamir [Sha84] in an attempt to obliterate public-key infrastruc-
tures. Instead, such schemes require a key extraction authority that generates the
secrets keys for all users under a master public key.

We propose an adaptive-identity secure identity-based identification scheme from
lattices, which is secure against malicious verifiers and allows the adaptive corruption
of provers. It is secure as long as SIS with norm bounds Õ(λn2√n) is secure, with
λ being the output length of a collision-resistant hash function.

Our scheme uses an ideal-lattice interpretation of the “bonsai tree” concept de-
vised in [CHKP10], which we call convoluted. It allows us to build an identity-based
identification scheme in a new “static identity” model that is weaker than the stan-
dard “adaptive identity” model. The static identity model forces the adversary to
output a list of to-be-corrupted prover identities before seeing the master public
key. Using a re-interpretation of the “hash-sign-switch” paradigm [KR00], we use
chameleon hash functions convert these weaker schemes into strong ones.

While there are alternative construction principles, such as the “certification ap-
proach” [BNN09], we obtain the first direct construction from lattices and our tech-
niques are transferable to Chapter 4 and Chapter 7. When combined, we achieve
identity-based blind signature as well as identity-based strongly-unforgeable signa-
tures in the standard model.

7

Chapter 1 Introduction

1.3 Relation to Post-Quantum Cryptography

In short, the main goal of “post-quantum cryptography”, as opposed to quantum
cryptography, is defeating quantum computers without quantum computers.

Lattice problems, such as the SIS problem, are conjectured to be immune to
quantum computer attacks, which threaten the current security landscape due to
Shor’s algorithm [Sho97]. Other alternatives for the post-quantum era can be found
in the theory of error correcting codes or that of solving non-linear multivariate
equation systems. Refer to [BBD08] for an overview.

When confronted with quantum adversaries, however, the common idea of simply
exchanging, say, the factoring problem for the SIS problem may fall far too short.
Typically, a cryptographic scheme entails much more than just an assumption. For
instance, it is accompanied by a proof that may not hold in the modified quantum
setting. The most prominent collapsing proof technique would certainly be the Fiat-
Shamir paradigm [FS86], which refutes the no-cloning theorem [WZ82]. See, e.g.,
[FP96, Wat09, DFLS10], for further examples.

In consequence, we do not claim all of the following results to be post-quantum.
They are certainly lattice-based with the corresponding benefits attached, and we
hope they will pave the way for full-blown post-quantum constructions.

1.4 Conclusion and Open Research Questions

We have demonstrated the great versatility of lattices in cryptographic constructions
that do much more than providing ordinary signature or encryption functionality.
In essentially all of them, we have seen that former construction principles from the
areas of factoring or discrete logarithms cannot be applied directly. In particular,
the concept of having objects equipped with a norm causes major complications.
We have shown how to overcome some of them.

Judging from past developments, we believe that our constructions will, as build-
ing blocks, lead to even more complex schemes in an effort to provide a comprehen-
sive cryptographic landscape from lattices.

While it is unlikely for these constructions to become as strikingly simple and
elegant as many designs from, say, pairings, we believe that the potential of ideal
lattices has not been fully exploited yet. There are hardly any constructions that
use the richer structure in ideal lattices for more than plain efficiency reasons.

In the individual chapters, we have discussed further research directions in the
respective area of research. When speaking about lattice cryptography in general,

8

1.4 Conclusion and Open Research Questions

one of the most pressing issues is the reduction of the size of trapdoor bases. An
improvement in this area will immediately affect a large number of derived schemes.

Moreover, a large number of construction principles rely on the existence of trap-
door permutations and not all of them can be generalized to use non-bijective trap-
door functions, such as the preimage sampleable functions of [GPV08]. Hence, an
efficient construction of such a permutation would be an asset.

9

Chapter 2

Notation, Definitions & Basic Tools

11

Chapter 2 Notation, Definitions & Basic Tools

In this preliminary chapter, we define the shared notation for all subsequent chapters.
In addition, we repeat a number of standard security notions and basic tools for self-
containment and the reader’s convenience.

2.1 General Notation

With n, we always denote the main security parameter. The statement x←$X
means that x is chosen uniformly at random from the finite set X. When selecting
x from a certain distribution Ψ over X, we write x ←Ψ X instead. Unless speci-
fied otherwise, log(·) = log2(·). We denote {1, . . . , k} by [k] and the (ordered) set
{x1, . . . , xk} ((x1, . . . , xk)) by {xi}ki=1 ((xi)

k
i=1). Furthermore, we identify Zq with

{− dq/2e+ i}qi=1 and [a, b]Z := [a, b] ∩ Z. For the disambiguation of assignment and
comparison, we use “←” for assignment and “=” as well as “≡” for comparison.
When using “≡”, we mean equality modulo an equivalence relation, e.g., a ≡ b
(mod q). Occasionally, we omit the relation and write a ≡ b when the meaning is
clear from the context. When we write “‖”, we mean the concatenation of strings,
vector entries, or matrix columns, depending on the context. Consequently, we de-
fine the prefix relation @ for these objects: we write a @ b if there is a c such that
b = a‖c; the negation is a 6@ b. For a string s ∈ {0, 1}∗, we denote its bit length with
|s|. Occasionally, we use “iff” as shorthand for “if and only if”.

2.2 Algorithms

Algorithms are denoted in sans-serif font, e.g., DoIt. When the algorithm is treated
as a black box, e.g., an adversary in a reduction proof, we use calligraphy as in
A. The joint execution of two algorithms A and B in an interactive protocol with
private inputs x to A and y to B is written as (a, b) ← 〈A(x),B(y)〉. The private
outputs are a for A and b for B. When writing 〈A(x),B(y)〉k, we stress that the
interaction can take place up to k ∈ N ∪ {∞} times.

Algorithms are efficient if they run in probabilistic polynomial time (PPT) poly(n)
:= nk, for any positive real constant k. To stress that they run in polynomial time
in a certain parameter p, we use the encoding 1p instead. Algorithms are sub-
exponential (SUBEXP) if they require at most 2o(n) computational steps. If an
algorithm A(x) is probabilistic, it has access to a perfect random bit generator
while processing the input x. Alternatively, we write A(x; ρ) to provide A with a
random tape ρ to make it deterministic.

12

2.3 Cryptographic Primitives

Let X,Y be two computational problems. The relation X ≤ Y means that the
problem Y is at least as hard to solve as X and that there is a reduction algorithm
R that reduces X to Y. Typically, R is a PPT algorithm and occasionally, we only
require R to be in SUBEXP.

To estimate running time and object sizes, we use the following standard Landau
notation for asymptotic growth.

Growth Condition

f(n) = O(g(n)) lim supn→∞

∣∣∣f(n)
g(n)

∣∣∣ <∞

f(n) = o(g(n)) limn→∞

∣∣∣f(n)
g(n)

∣∣∣ = 0

f(n) = Ω(g(n)) 0 < lim infn→∞

∣∣∣f(n)
g(n)

∣∣∣
f(n) = ω(g(n)) limn→∞

∣∣∣f(n)
g(n)

∣∣∣ =∞

f(n) = Θ(g(n)) 0 < lim infn→∞

∣∣∣f(n)
g(n)

∣∣∣
≤ lim supn→∞

∣∣∣f(n)
g(n)

∣∣∣ <∞

In addition, we use the “soft-O”-notation, e.g., Õ or Ω̃, that neglect and hide
poly-logarithmic factors polylog(n) := poly(log(n)).

2.3 Cryptographic Primitives

Since they are needed in various parts of this theses, we recap the definitions and
security models for trapdoor one-way functions, collision-resistant hash functions,
chameleon hash functions, as well as digital signature and encryption schemes.

Notational Convention Whenever a primitive has a public key pk and a private
key sk , we assume that the secret key contains the public key and omit pk from the
list of arguments for the algorithms in the primitive.

A function f(n) is negligible if it vanishes faster than 1/g(n) for any polynomial
g. If f is not negligible, we use the terms non-negligible or noticeable. Based on this
definition, a probability p = p(n) can be (non-)negligible and it is overwhelming if
1− p(n) is negligible.

13

Chapter 2 Notation, Definitions & Basic Tools

When talking about the success probability of an algorithms A, we mean that the
probability is taken over the coin tosses in the environment of A as well as over A’s
internal randomness.

2.3.1 Collision-resistant Hash Functions

A family H of hash functions H : {0, 1}∗ → {0, 1}λ, λ = λ(n), is collision-resistant
if there is no efficient adversary A that wins in the experiment ExpCRA,H with non-
negligible probability. On input a description H of a randomly chosen function from
H, the task is to find distinct strings x and x′ such that they collide under H.

Experiment ExpCRA,H(n)

H←$H(n)
(x, x′)← A(H)
Return 1 iff H(x) = H(x′) and x 6= x′.

Occasionally, for ease of presentation, we refer to a collision-resistant hash function
instead of to the corresponding family.

2.3.2 Trapdoor One-way Functions

Trapdoor one-way functions are one-way functions that admit a secret key to selec-
tively lift one-wayness for the secret-key holder.

A family TFF = (Kg,Eval, Inv) of trapdoor one-way functions can be specified as
follows.

Key Generation: Kg(1n) outputs a private key sk and a public key pk .

Evaluation: Eval(pk , x) outputs an image y ∈ R in the range R under pk , for an
input x ∈ D from the domain D.

Inversion: Inv(sk , y) outputs x′ ∈ D such that Eval(pk , x′) = y if y ∈ {Eval(pk , x) :
x ∈ D}; and ⊥ otherwise.

As for correctness, we require that for all honestly generated keys and all honestly
generated y, the above specification yields x = x′ (with overwhelming probability).

Security, i.e., trapdoor one-wayness, is defined in the experiment ExpTRAP-OW
A,TFF ,

where the adversary A receives a public key and the image y for a random element

14

2.3 Cryptographic Primitives

x of the domain. A wins the game if it can recover x with noticeable probability.

Experiment ExpTRAP-OW
A,TFF (n)

(sk , pk)← Kg(1n)
x←$D
y ← Eval(pk , x)
x′ ← A(pk , y)
Return 1 iff x = x′.

2.3.3 Chameleon Hash Functions

Krawczyk and Rabin [KR00] put forward the notion of chameleon hash functions,
i.e., collision-resistant hash functions with a trapdoor. We use a slight generalization
of their definition. A family C = (Kg,Ψ) of chameleon hash functions has the
following specification.

Key Generation: Kg(1n) outputs a pair (C,C−1), with C being the public function
for evaluation and C−1 being the private algorithm for inversion.

Randomness: The randomness ρ ∈ R is chosen from the efficiently sampleable
distribution Ψ over R, i.e., ρ←Ψ R.

Evaluation: C(msg , ρ), on input a message msg ∈M from the message spaceM and
a random value ρ ∈ R, outputs an image µ ∈ I. The pair (C, µ) is distributed
statistically close to uniform.

Inversion: C−1(µ,msg), on input a target image µ ∈ I and a source message msg ∈
M, samples and outputs ρ ∈ R such that C(msg , ρ) = µ.

Collision resistance of C is defined as for ordinary hash functions, namely no
efficient algorithm can find (msg , ρ) 6= (msg ′, ρ) with C(msg , ρ) = C(msg ′, ρ) with
noticeable probability. The interesting property of chameleon hash functions is that
the following two processes yield statistically indistinguishable distributions for any
(C,C−1)← Kg(1n) and for any given document msg ∈M.

Forward: Pick ρ←Ψ R and set µ← C(msg , ρ). The output is X ← (msg , ρ, µ).

Backward: Pick a µ←$I and set ρ← C−1(µ,msg). The output is Y ← (msg , ρ, µ).

15

Chapter 2 Notation, Definitions & Basic Tools

Recall that the statistical distance of two random variables X,Y over a discrete
domain D is defined as ∆(X,Y) = 1/2

∑
a∈D |Prob[X = a]−Prob[Y = a] |. Hence,

we require that

∆(X,Y) = 1/2
∑

(a,b,c)∈(M,R,I)

|Prob[X = (a, b, c)]− Prob[Y = (a, b, c)] |

is negligible.
Chameleon hash functions C : M×R → I can be composed with regular hash

functions H : {0, 1}∗ →M, with the result being another chameleon hash function.

2.3.4 Signature Schemes

Digital signature schemes DS = (Kg,Sign,Vf) are specified as follows.

Key Generation: Kg(1n) outputs a private signing key sk and a public verification
key pk .

Signing: Sign(sk ,msg) outputs a signature σ under sk for a message msg from the
message space M.

Verification: Vf(pk , σ,msg) outputs 1 if and only if σ is a valid signature for msg
under pk .

Correctness is defined in a straightforward way, namely that every honestly gen-
erated signature under honestly generated keys should be valid (with overwhelming
probability).

Typically, signature schemes are proven to be existentially unforgeable under cho-
sen message attacks (EU-CMA) [GMR88], but we will also consider the stronger no-
tion of strong unforgeability under chosen message attacks (SU-CMA). Both notions
are defined through a game, or experiment, with an adversary A. For, EU-CMA,
the following experiment ExpEU-CMA

A,DS gives A access to the public key pk and to a
signature oracle OSign, which A can query adaptively. The adversary wins the game
if it outputs a valid message signature pair (msg∗, σ∗) such that msg∗ has not been
queried to OSign before.

Experiment ExpEU-CMA
A,DS (n)

(sk , pk)← Kg(1n)

(msg∗, σ∗)← AOSign(sk ,·)(pk)

Let ((msg i, σi))
QOSign

i=1 be the query-answer pairs of OSign(sk , ·).
Return 1 iff Vf(pk , σ∗,msg∗) = 1 and msg∗ 6∈ (msg i)

QOSign

i=1 .

16

2.3 Cryptographic Primitives

Strong unforgeability is defined in a similar game ExpSU-CMA
A,DS , without artificially

restricting the space of valid forgeries as in the last line of ExpEU-CMA
A,DS . Now, the

adversary already wins if it outputs a signature σ∗ that has never been returned by
OSign.

Experiment ExpSU-CMA
A,DS (n)

(sk , pk)← Kg(1n)

(msg∗, σ∗)← AOSign(sk ,·)(pk)

Let ((msg i, σi))
QOSign

i=1 be the query-answer pairs of OSign(sk , ·).
Return 1 iff Vf(pk , σ∗,msg∗) = 1 and (msg∗, σ∗) 6∈ ((msg i, σi))

QOSign

i=1 .

A scheme DS is existentially (strongly) unforgeable if no efficient adversary has a
non-negligible success probability in the respective experiment. We can also make
this statement more precise by saying that DS is (t, QOSign, ε)-existentially (strongly)
unforgeable if there is no adversary, running in time t, which succeeds with prob-
ability more than ε after making at most QOSign signature oracle queries. Similar
definitions apply to one-time signature schemes OTS = (Kg, Sign,Vf), where A is
only allowed to query a single message to the signature oracle.

2.3.5 Encryption Schemes

A public key encryption scheme PKE = (Kg,Enc,Dec) has the following specifica-
tion.

Key Generation: Kg(1n) outputs a private decryption key sk and a public encryp-
tion key pk .

Encryption: Enc(pk ,msg) outputs a ciphertext ct under pk , for a message msg from
the message space M.

Decryption: Dec(sk , ct) outputs msg ′ ∈ M if ct is a valid ciphertext and ⊥ other-
wise.

For correctness, we require that for all honestly generated keys and all honest
generated ciphertexts, the above specification yields msg = msg ′ (with overwhelming
probability).

PKE is indistinguishable under chosen plaintext attacks (IND-CPA) if no efficient
algorithm A can determine which one of two chosen plaintexts has been encrypted in
a given ciphertext [GM84]. The corresponding experiment ExpCPAA,PKE gives A access

17

Chapter 2 Notation, Definitions & Basic Tools

to an encryption oracle OEnc(pk , b, ·, ·), where b ∈ {0, 1} is kept outside the view of
A. OEnc(pk , b, ·, ·) takes as input two messages msg0 and msg1 with |msg0| = |msg1|
and returns Enc(pk ,msgb). The adversary wins if it is able to guess b with probability
noticeably greater than 1/2. The stronger notion of a chosen ciphertext attack
(CCA) is only of marginal interest in this thesis; refer to [BDPR98] for an overview.

Experiment ExpCPAA,PKE(n)

(sk , pk)← Kg(1n)
b←${0, 1}
d← AOEnc(pk ,b,·,·)(pk)
Return 1 if and only if d = b.

We say that PKE is CPA secure if there is no efficient adversary A that has a
non-negligible distinguishing advantage AdvCPAA,PKE, where

AdvCPAA,PKE :=
∣∣∣Prob

[
ExpCPAA,PKE(n) = 1

]
− 1/2

∣∣∣ .
2.4 The Random Oracle Model

In the random oracle model [BR93], as opposed to the standard or plain model, a
family of hash functions H : {0, 1}∗ → {0, 1}λ(n) can be modeled as a family of truly
random functions. It is assumed that all algorithms have black-box access to H, i.e.,
they do not know how it is implemented. Upon a new query x, the random oracle
is supposed to answer with a uniformly random sample y←${0, 1}λ(n). From this
point on, it has to respond consistently, i.e., H(x) always returns y.

When used in reduction proofs, the random oracle allows the reduction algorithm
to adaptively program the input-output behavior outside of the view of the remaining
algorithms. This technique allows security proofs for schemes that are otherwise hard
or impossible to prove secure under standard assumptions. A popular example is
the (full-domain hash) RSA signature scheme [BR96]. On the negative side, random
oracles do not exist in the “real” world and they are, rigorously speaking, a false
assumption. In the real world, one has to rely on actual hash functions that have
a polynomial-size program. Furthermore, there are (artificial) counter-examples
that become insecure whenever the random oracle is replaced with a real function
[CGH04]. Hence, the entire concept is viewed as controversial and eliminating the
need for random oracles is a goal in its own right. Nevertheless, we will use the
random oracle model whenever it seems unavoidable and accept that the resulting
proofs are heuristic.

18

2.5 Witness-indistinguishable Proofs of Knowledge

Relation to Post-quantum Cryptography In addition to the dispute in the classical
setting, the presence of quantum adversaries causes further complications. First,
the security of hash functions in general degrades due to improved collision-search
algorithms [Gro96, BHT98]. Second, whenever the random oracle is used to extract
knowledge from the adversary, e.g., in the Fiat-Shamir paradigm [FS86], the random
oracle is adaptively and lazily re-programmed and the adversary is often rewound to
an earlier (quantum) state. The former may be impossible if the adversary is allowed
to query superpositions to the random oracle and the latter is forbidden by the no-
cloning theorem [WZ82]. Furthermore, the reduction may, through its actions cause
slight, yet noticeable disturbances in the quantum environment [FP96]. Potential
solutions are discussed in [Wat09] and we refer the interested reader to [DFLS10]
for a cryptographers’ view of these issues.

2.5 Witness-indistinguishable Proofs of Knowledge

Let R be an NP relation {(x,w)} ⊆ {0, 1}l(n)×{0, 1}l(n) for l(n) = poly(n). Then,
there is an efficient algorithm that, given (x,w) decides membership in R. The
associated language is LR = {x ∈ {0, 1}l(n) : ∃w ∈ {0, 1}l(n) such that (x,w) ∈ R}.
If (x,w) ∈ R, we call w a witness for x being in LR. With W (x), we denote the
witness-set {y ∈ {0, 1}l(n) : (x, y) ∈ R}.

In a proof of knowledge, a two-party proof system with a PPT prover P and a
PPT verifier V, P(x,w) convinces V(x, a) that it knows a witness w ∈ W (x). We
write b ← 〈P,V〉 ((x,w), (x, a)), where b ∈ {0, 1} indicates whether V accepts the
proof or not. The string a is auxiliary information or a prefix of the conversation.

Let p(n) be the probability for b = 1 (accept) and let e(n) be the “knowledge
error”, i.e., the probability that V falsely accepts. We demand that p(n) is positive
for honest provers and that cheating provers cannot efficiently convince honest ver-
ifiers without knowing a witness, but with probability negligibly close to e(n). The
proof systems admits a knowledge extractor, which can extract w ∈ W (x) from a
(cheating) prover P for x ∈ LR in expected time proportional to 1/(p(n)) − e(n))
via black-box access.

Let W (x) > 1 for all x. The proof system is statistically witness indistinguishable
if V cannot efficiently distinguish between any two witnesses w1, w2 ∈W (x). Hence,
we require for all V that the statistical distance

∆(〈P,V〉 ((x,w1), (x, a)), 〈P,V〉 ((x,w2), (x, a)))

is negligible.

19

Chapter 2 Notation, Definitions & Basic Tools

We refer the reader to, e.g., [FS90, BG92], for a comprehensive discussion. In this
work, we require the fact the witness-indistinguishable proofs hide the witness from
the verifier and that they can be securely composed in parallel.

2.6 Cryptographic Lattices

In this work, our main concern is with full-dimension, or full-rank, lattices of a special
form. A (full-dimensional) lattice in Rd is a discrete subgroup Λ = {

∑d
i=1 xi bi : xi ∈

Z}, typically represented by a basis matrix B = [b1, . . . ,bd] ∈ Zd×d of R-linearly
independent vectors. We write Λ = Λ(B) when Λ is generated by B. The number d
of linearly independent vectors in any such basis is the dimension dim(Λ) of a lattice.
For a lattice Λ = Λ(B), its dual lattice Λ∗ is the set of all x ∈ Rd with 〈x,y〉 ∈ Z
for all y ∈ Λ. In dimension d > 1, a given lattice Λ has infinitely many bases.
A quality metric for bases is the basis length ‖B‖ := maxi∈[d]{‖bi‖2}. Given any

basis B of the lattice Λ, the determinant det(Λ) of the lattice is
√

det(BtB). Both,
dimension and determinant are invariants of the lattice. Another set of invariants
are the successive minima. The i-th successive minimum λi(Λ) is the smallest radius
of a sphere that contains i linearly independent vectors in Λ.

In cryptography, we use lattices of a special form, which we call q-ary. Let n ∈ N,
q ∈ N, m ∈ N, and A ∈ Zn×mq , then the associated q-ary lattice is Λ⊥q (A) := {v ∈
Zm : A v ≡ 0 (mod q)}. Its, up to scaling, dual lattice is Λq(A) := {w ∈ Zm : ∃e ∈
Znq s.t. Ate ≡ w (mod q)}, i.e., we have 1/q · Λ⊥q (A) = (Λq(A))∗. For A←$Zn×mq ,

prime q, and m > n, the determinant of the corresponding q-ary lattice Λ⊥q (A) is
qn with high probability and typically, we have m = Ω(n log(n)). The matrices A
bear similarities with parity check matrices for error correcting codes.

2.6.1 Lattice Problems

One of the main computational problems in general lattices is the approximate
shortest vector problem (SVP). Given a basis B of Λ and an approximation factor
γ ≥ 1, the task is to find a vector v ∈ Λ with 0 < ‖v‖ ≤ γλ1(Λ). A related problem
is the approximate shortest independent vector problem (SIVP), where given a basis
B of Λ and an approximation factor γ, the task is to find a set {v1, . . . ,vd} of linearly
independent vectors in Λ such that maxi∈[d]{‖vi‖} ≤ γλd. We say that an algorithm
solves one of the above problems in dimension d if it can solve every instance, i.e.,
in the worst case. The best known algorithms for solving them with γ ≤ poly(d)
require exponential time [Kan83], or time and space [MV10a, MV10b].

20

2.6 Cryptographic Lattices

In lattice-based cryptography, however, we build upon specific average-case prob-
lems. The main computational problem in a q-ary lattice Λ⊥q (A) is the following
short integer solution problem (SIS). Given an instance A←$Zn×mq for parameters

(n,m, q, ν), the task is to find v ∈ Λ⊥q (A) with 0 < ‖v‖ ≤ ν for a given polynomial
norm bound ν > 0. Basically, the SIS problems was introduced and analyzed in
Ajtai’s seminal work [Ajt96] but there are numerous improvements of the analysis,
e.g., [MR07, GPV08].

For Λq(A), the dual lattice, we consider the learning with errors problem (LWE)
as the main computational problem. Its parameters are (n,m, q) as before and a
(truncated) probability distribution Ψ over Zm with finite support. An instance
of the search version consists of A←$Zn×mq as well as m “noisy” inner products
b ← Ats + e mod q with s←$Znq and e ←Ψ Zm. The task is to recover s. The
decision version of LWE is defined as follows. Flip a coin c←${0, 1}; if c = 0,
let b←$Zmq ; otherwise compute b ← Ats + e mod q for s←$Znq and e ←Ψ Zm.
Given (A,b), the task is to determine c with success probability more than 1/2.
Both versions are defined and analyzed in Regev’s groundbreaking work [Reg09].
There, he also shows that search and decision LWE are essentially equivalent for
appropriate parameters. The “standard” noise distribution Ψm

α is a component-wise
m-dimensional discretized Gaussian distribution over Zm with parameter α = α(n).
It is spherical with standard deviation qα/

√
2π.

Notice that we have not specified the norm for any of the above lattice problems.
This is because they can be defined for arbitrary norms. If not explicitly stated,
e.g., SIVP∞ for the infinity (`∞) norm, we work in the Euclidean (`2) norm.

2.6.2 Worst-case to Average-case Connection

In [Ajt96], Ajtai describes a reduction that connects the average-case problems SIS
with the worst-case problem SIVP. Basically, it states that any instance of SIVP
in dimension n can be phrased as a random instance of SIS. Hence, solving a non-
negligible portion of instances of SIS in PPT (SUBEXP) yields a PPT (SUBEXP)
algorithm that can solve all instances of SIVP. This worst-case to average-case
reduction has been improved in, e.g., [MR07], and the latest version is due to Gentry,
Peikert, and Vaikuntanathan [GPV08].

Proposition 2.1. For any ν ≤ poly(n), prime q ≥ νg(n) for g(n) = ω(
√
n log(n)),

and m ≥ 2n log(q) = Ω(n log(n)), the average-case problem SIS(n,m, q, ν) is at least
as hard as γ-SIVP in dimension n in the worst case with γ = ν Õ(

√
n).

When introducing LWE, Regev also proves a worst-case to average-case reduc-

21

Chapter 2 Notation, Definitions & Basic Tools

tion in [Reg09]. For the “standard” noise distribution Ψm
α , the associated quantum

reduction can be formulated as follows and a similar non-quantum version can be
found in [Pei09] at the expense of stronger assumptions or exponential moduli.

Proposition 2.2. Let α = α(n) with 0 < α < 1, and prime q > 2
√
n/α, and

m = m(n) ≤ poly(n). The average-case search problem LWE(n,m, q) with the
standard noise distribution Ψ = Ψm

α is at least as hard as quantumly solving γ-SIVP
in dimension n in the worst case with γ = Õ(n/α).

2.6.3 Ideal Lattices

Representing a q-ary lattice requires mn log(q) = Ω(n2 log2(n)) bits of storage, which
can be a serious disadvantage in practice. In part, this caveat can be lifted by
restricting the underlying lattice problems to the subclass of ideal lattices.

Let R be a ring, then I ⊆ R is an ideal in R if it is an additive subgroup of R that
is closed under multiplication with R. When we say that a lattice corresponds to an
ideal, we mean that its vectors can be interpreted, via an embedding, as elements
in I and vice versa. Since I is closed under addition and multiplication, we obtain
lattices with a richer structure.

We build cryptography upon a particular ring, namely the ring of integer polyno-
mials Z[X] modulo the ideal 〈f〉 ⊂ Z[X] generated by a monic, irreducible polyno-
mial f of degree n. For simplicity and efficiency, we typically fix f = Xn + 1. While
this choice simplifies notation and also the analysis of the resulting cryptosystems,
essentially all results can be generalized.

Let R0 = Z[X]/ 〈Xn + 1〉 and R = Zq[X]/ 〈Xn + 1〉. Via a coefficient embedding,
we have R0

∼= Zn and R ∼= Znq . Furthermore, we have the modules Rm
0
∼= Zmn and

Rm ∼= Zmnq . Note that, typically, m = O(log(n)) in ideal lattices as opposed to
m = Ω(n log(n)) in the q-ary case.

Elements of the modules are denoted with â = (a1, . . . ,am), which defines the
ideal lattice Λ⊥R(â) := {x̂ ∈ Rm

0 : â ~ x̂ ≡ 0 ∈ R}. The product “~” is a scalar

product, i.e., â ~ x̂ :=
∑m

i=1 aixi. For all â, b̂ ∈ R0 and for all r ∈ R0, we have

â~ b̂ = b̂~ â and r(â~ b̂) = (râ)~ b̂ = â~ (rb̂). When mixing operands from R0

and R, equality holds modulo q.

Using the definition of an ideal, it is easy to interpret an ideal lattice as a q-ary
lattices of special structure. Given Λ⊥R(â), we define the corresponding q-ary lattice
Λ⊥q (A) via the matrix A = A1‖ · · · ‖Am. For all i ∈ [n] and j ∈ [m], we let the
i-th column of Aj be the embedding of ajX

i. Both lattices are identical, but â
is the more compact representation with only O(n log2(n)) bits, while A requires

22

2.7 Cryptographic Tools from Lattices

Ω(n2 log2(n)) bits.

Since ideal lattices are a subclass of q-ary lattices, the above problem definitions
carry over, where the norm of an element in R0 (Rm

0) is defined as the norm of the
respective coefficient embedding into Zn (Zmn).

For a more formal treatment, refer to, e.g., [Mic07, LM06], and for the a different
(canonical) embedding to [PR07, LPR10].

2.7 Cryptographic Tools from Lattices

Throughout the recent years, a number of tools, based on the worst-case hardness
of lattice problems, have been developed. In this theses, we build upon three main
tools: collision-resistant compression functions, trapdoors for q-ary lattices, and
preimage-sampleable trapdoor functions. They are outlined in the following and we
discuss their relation to the standard definitions for cryptographic primitives from
Section 2.3.

2.7.1 Collision-resistant Compression Functions

Lattice-based compression functions can be built upon q-ary and ideal lattices. The
initial construction in q-ary lattices is due to Ajtai [Ajt96]; see also Goldreich, Gold-
wasser, and Halevi [GGH96]. The corresponding family of compression functions is
keyed with a random matrix A←$Zn×mq and it maps Zm → Znq via x 7→ Ax mod q.

Finding x 6= x′ such that max(‖x‖ , ‖x‖′) ≤ d and Ax ≡ Ax′ immediately yields a
solution x− x′ to SIS(n,m, q, 2d).

Inspired by Ajtai’s construction and Micciancio’s one-way function [Mic07], Lyuba-
shevsky and Micciancio introduce the family H(R,m) of collision-resistant compres-
sion functions in ideal lattices [LM06]. The functions h ∈ H map Rm

0 → R. When
the input is restricted to a set Dm ⊆ Rm

0 of small-norm polynomials, the function
family is collision-resistant according to Section 2.3.1. The domain can be extended
to {0, 1}∗ via standard techniques as described in [LMPR08].

A random element of the family is indexed with â←$R
m and the associated func-

tion h = hâ maps x̂ ∈ Dm to â ~ x̂ mod q. Obviously, h is linear in the sense that
h(r(x̂ + ŷ)) ≡ r(h(x̂) + h(ŷ)) (mod q) for all r ∈ R0 and x̂, ŷ ∈ Rm

0 .

In most of our constructions, we use the following collision problem COL(H(R,m),
D). It picks h←$H(R,m) and asks the adversary to find a distinct pair (x̂, x̂′) ∈
Dm × Dm such that h(x̂) = h(x̂′). Solving COL(H(R,m), D) with non-negligible
probability in PPT (SUBEXP) implies a PPT (SUBEXP) algorithm that solves

23

Chapter 2 Notation, Definitions & Basic Tools

SIVP in the worst-case in lattices that correspond to an ideal in R0 via the following
proposition.

Proposition 2.3 (Theorem 2 in [LM06]). Let D = {f ∈ R0 : ‖f‖∞ ≤ d}, m >
log(q)/ log(2d), and q ≥ 4dmn

√
n log(n). An adversary A that solves the average-

case problem COL(H(R,m),D) can be used to solve SIVP∞ with approximation
factors γ = d Õ(mn) in the worst case in lattices that correspond to ideals in R0.

2.7.2 Trapdoors for q-ary Lattices

As mentioned in Section 2.6, a lattice Λ⊥q (A) has many bases. But, only those bases
T with a small norm ‖T‖ qualify as trapdoors, which can be used to solve SIS as
well as LWE. This concept is one of the cornerstones in lattice-based cryptography
as it is used in many signature and encryption schemes.

Improving Ajtai’s work [Ajt99], Alwen and Peikert show how to generate a random
matrix A together with a short trapdoor basis T in [AP09]. In addition, they bound
the length of the Gram-Schmidt orthogonalization (GSO) of T. Let T = [t1, . . . , tm].
Its GSO T̃ = [t̃1, . . . , t̃m] is defined recursively as t̃1 ← t1 and t̃i ← πi(ti) for
i ∈ [2,m]Z, where πi is the projection from Zm onto span(t̃1, . . . , t̃i−1)⊥. In most

applications, the length
∥∥∥T̃∥∥∥ is more important than ‖T‖. See, e.g., [Bab86, Kle00,

GPV08, CHKP10, Pei10].

The following proposition summarizes the second construction in [AP09] in its
improved form [AP08].

Proposition 2.4 (Trapdoor Generation). Let C > 0 and δ > 0 be constants and let
q ≥ 3 be odd. Let m1 ≥ d = (1+δ)n log(q), m2 ≥ (4+2δ)n log(q), and m← m1+m2.
There is a PPT algorithm that outputs (A,T) ∈ Zn×mq × Zm×m with the following
properties.

• A is distributed within m2q
−δn/2 distance from uniform over Zn×mq ;

• T is a basis of Λ⊥q (A);

• ‖T‖ ≤ L = Cn log(q) = O(n log(q)) with overwhelming probability;

•
∥∥∥T̃∥∥∥ ≤ L̃ = 1 + C

√
d = O(

√
n log(q)) with overwhelming probability.

24

2.7 Cryptographic Tools from Lattices

2.7.3 Preimage-sampleable Trapdoor Functions

Recall the definition of trapdoor one-way functions TFF = (Kg,Eval, Inv) as defined
in Section 2.3.2. Now, consider the algorithm Eval(pk , ·) to be non-injective in the
second argument for all public keys pk . Then, Inv does not invert Eval, but rather
samples from the set of valid preimages.

In this setting, we need to modify the security notion in ExpTRAP-OW
A,TFF as fol-

lows. When A is challenged with y ← Eval(pk , x), it is supposed to output x in
ExpTRAP-OW

A,TFF . Here, we merely ask A to output any x′ from the correct domain,
satisfying y = Eval(pk , x′).

Gentry, Peikert, and Vaikuntanathan construct such a family PSTF = (Kg,
Eval, SampleDom, SamplePre) of preimage-sampleable trapdoor functions in [GPV08].
There is also an ideal-lattice interpretation due to Stehlé, Steinfeld, Tanaka, and Xa-
gawa [SSTX09], which we will use in Chapter 8. We defer the details.

Parameters: Let q, m, L̃ be as per Proposition 2.4 and let η = η(n) = θ(n)L̃ for
θ(n) = ω(

√
log(n)) be the parameter of the distribution on the domain.1

Key Generation [Proposition 2.4]: Kg(1n) outputs a public key A ∈ Zn×mq and a

secret trapdoor matrix T ∈ Zm×m that is a basis of Λ⊥q (A) with
∥∥∥T̃∥∥∥ ≤ L̃.

Evaluation: Eval(A,x), on input x ∈ Zm, returns y← Ax mod q.

Domain Sampling: SampleDom(m, η) returns x ∈ Zm with 0 < ‖x‖∞ ≤ ηθ(m) and
0 < ‖x‖2 ≤ η

√
m; both with overwhelming probability.

Preimage Sampling: SamplePre(T, η,y) outputs x ∈ Zm \ {0} subject to Ax ≡ y
and ‖x‖2 ≤ η

√
m (alternatively, ‖x‖∞ ≤ ηθ(m)) with overwhelming probabil-

ity.

The sampling algorithms SampleDom and SamplePre are related to a modified ver-
sion of Babai’s nearest plane algorithm [Bab86] due to Klein [Kle00]. The sampling
procedure is one of the bottlenecks in lattice-based schemes that require a trapdoor
basis. Thus, efficiency improvements, such as Peikert’s pre-computation approach
in [Pei10], are very important.

The functions in PSTF compress the domain D = {x ∈ Zm : ‖x‖2 ≤ η
√
m}

(or, {x ∈ Zm : ‖x‖∞ ≤ ηθ(m)}), making them lose information about the input.

1The relevant distribution is a discrete Gaussian distribution on Zm that can be sampled efficiently.
The parameter η is akin to the standard deviation. For details, refer to [GPV08] as they are
inconsequential for our work.

25

Chapter 2 Notation, Definitions & Basic Tools

In particular, the preimages x ← SamplePre(T, η,y) of every y←$Znq carry a high
conditional minimum entropy ω(log(n)).

Interestingly, they are also one-way, collision-resistant, and claw-free under the
assumption that SIS is hard for norm bounds ν ≤ poly(n) [GPV08]. In addition,
for (A,T) ← Kg(1n), the matrix A is within negligible statistical distance from
uniform and the following two processes yield statistically indistinguishable random
variables X and Y , i.e, ∆(X,Y) is negligible.

Forward: Sample x ← SampleDom(m, η) and set y ← Eval(A,x). The output is
X ← (x,y).

Backward: Pick y←$Znq and sample x ← SamplePre(T, η,y). The output is Y ←
(x,y).

In particular, the output of Eval(A,SampleDom(m, η)) is distributed statistically
close to the uniform distribution over Znq .

Chameleon Hash Functions Observe the similarity with chameleon hash functions
from Section 2.3.3. There, it was also crucial that forward and backward sampling
yield indistinguishable distributions. As already mentioned in [CHKP10], PSTF
gives rise to a family of chameleon hash functions C = (Kg,Ψ). We make the idea
explicit.

Key Generation: Kg(1n) selects B←$Zn×mq and computes (A,T)← PSTF.Kg(1n).
It outputs the public description (A,B) for C and the trapdoor T for C−1.

Randomness: Let Ψ = Ψη be the output distribution of SampleDom. The random-
ness ρ is generated via SampleDom(m, η).

Evaluation: C(msg , ρ), on input msg ∈ {0, 1}m and ρ ∈ Zm, outputs µ ← Aρ +
Bmsg mod q. If ‖ρ‖2 > η

√
m, the output is ⊥.

Inversion: C−1(µ,msg), on µ ∈ Znq and msg ∈ {0, 1}m, samples and outputs ρ ←
SamplePre(T, η, µ−Bmsg).

All requirements for chameleon hash functions are satisfied and a collision (msg , ρ)
6= (msg ′, ρ′) under C, with C(msg , ρ) 6= ⊥, yields a short non-zero lattice vector v←
(ρ‖msg)− (ρ′‖msg ′) in Λ⊥q (A‖B) because (A‖B)v ≡ 0 and ‖v‖2 ≤ 2η

√
m+ 2

√
m.

26

Chapter 3

The Hardness of SIS and LWE in Practice

27

Chapter 3 The Hardness of SIS and LWE in Practice

Essentially all modern lattice-based cryptography is based on the hardness of two
average-case problems: SIS and LWE. These problems are conjectured to withstand
quantum-computer and sub-exponential attacks. Furthermore, via worst-case to
average-case reductions, they allow us to base security on the worst-case hardness
of computational problems.

However, the above advantages come at a price. Usually, the bit lengths of the
involved keys are Ω(n2 log2(n)). Fortunately, we can use ideal lattices, introduced by
Micciancio [Mic07] as well as by Peikert and Rosen [PR06], that reduce the key size
to O(n log2(n)) bits. Still, in practice, choosing n as small as possible is crucial. To
the best of our knowledge, there is no work that systematically deals with selecting
secure parameters or analyzing the hardness of the employed assumptions. Indeed,
the task is more involved than in the case of, say, RSA. Lattice cryptosystems have
numerous parameters that affect security and dealing with n alone is not sufficient.

So far, only Micciancio and Regev [MR08], Lyubashevsky [Lyu09], as well as
Lyubashevsky and Micciancio [LM08] have discussed practical parameters for their
schemes. In [MR08, Lyu09], this choice is based on an interesting observation by
Gama and Nguyen [GN08b]. They consider the Hermite Short Vector Problem
HSVP with parameter δ > 0 in lattices Λ of dimension d. There, the task is to find
a vector v with 0 < ‖v‖2 ≤ δd det(Λ)1/d. In [GN08b], the authors analyze “random
lattices” according to the Goldstein-Mayer distribution [GM03] that are considered
to provide hard instances of HSVP. Their observation is that δ is the dominating
parameter and that d only plays a minor role. They conjecture that HSVP seems
feasible for δ ≈ 1.01 and “totally out of reach” for δ < 1.005 in dimensions d ≥ 500
if the lattice does not have a special structure. We build upon their work and
refine their analysis using precisely the distribution of lattices that is relevant in
cryptography.

The good news is the “hardness estimate” δ can be determined from the security
proof for the cryptosystem. The bad news is that cryptographic q-ary lattices have a
particular structure that can be exploited in attacks. Micciancio and Regev describe
such an attack in [MR08]. The bottom line is that solving δ-HSVP in q-ary lattices
of dimension m is only as hard as solving δ′-HSVP in dimension d < m and δ′ > δ.
Thus, HSVP becomes strictly easier in q-ary lattices because there is a certain
“slack” in the required attack dimension.

With this knowledge, two unsatisfying options remain. The first involves the
worst-case to average-case reduction. One could interpret the results of Gama and
Nguyen as observations about worst-case SIVP in dimension n, while the best attack
against the cryptosystem needs to work in dimension Ω(

√
n log(n)) [MR08]. Hence,

this approach would work but it is overly conservative and the resulting parameters

28

would be impractical.

The second option is using the results of Gama and Nguyen in dimension d, while
demanding that δ < 1.01 for security against current means. Basically, this is the
methodology in [MR08, Lyu09] but it only offers a yes/no certificate, i.e., a given
parameter set is either secure or insecure. In particular, it does not offer security
levels, such as 100 bits, meaning that the attack effort should be close to 2100 storage
times computation units.

With our work, we intend to provide a third option, with a focus on lattice-
based encryption [Reg09, GPV08, Pei09, SSTX09, LPR10] and signature schemes
[GPV08, SSTX09, Lyu09, LM08, CHKP10, Boy10] because they are the main build-
ing blocks of public-key cryptography. Nevertheless, our results can be easily applied
to more advanced schemes, such as identity-based encryption [GPV08], oblivious
transfer [PW08, PVW08], collision resistant hashing [LM06], secret key delegation
[CHKP10], and others. This versatility is also demonstrated in Chapter 4 and Chap-
ter 6.

We do not consider ad-hoc constructions, such as NTRU [HPS98], that fall outside
the category of schemes motivated by Ajtai’s work. The lattices that correspond to
attacks on NTRU have a particular structure and contain essentially one unusually
short “trapdoor” vector. Random q-ary lattices do not admit such a structure.

Apart from choosing secure parameters, we often wish to compare schemes with
regard to their security level. Say, we have scheme X and a new scheme Y , which is
more efficient than X in the sense that its public key is smaller, but at the expense
of a stronger assumption. For a fair comparison, we first need a methodology to
generate parameter sets that yield comparable security levels. Now, two things
could happen: (1) the improvements in Y are still noticeable or (2) due to the
stronger assumption, Y requires, say, a larger dimension that effectively nullifies the
proposed improvement.

Our Contribution Inspired by the works of Lenstra and Verheul [LV01] and the sub-
sequent update by Lenstra [Len05], we propose a unified methodology for estimating
security and selecting secure parameters for all modern lattice-based cryptography.
To this end, we adopt the notion of dollar-days, i.e., equipment cost in dollar times
attack time in days, as introduced in [Len05]. Our methodology in Section 3.1 also
includes different attacker types, ranging from a resource-constrained “Hacker” to
an all-powerful “Intelligence agency”.

We follow a modular three-tier approach: core analysis, experiments, and appli-
cation.

29

Chapter 3 The Hardness of SIS and LWE in Practice

Tier 1: At the core, there are our conjectures and observations about how the vari-
ous parameters for LWE and SIS influence the hardness of these problems in Section
3.2. In addition, via the duality of LWE and SIS, we translate LWE instances into
the language of SIS. For both, we manage to distill the hardness into one single
parameter.
Tier 2: Then, we establish a relation between the attack effort in practice and this
single hardness parameter by running a large number of experiments. In particular,
this relation offers a way to determine the equivalent symmetric bit-security. This is
done by running practical attacks on feasible instances of SIS, followed by a conserva-
tive extrapolation in Section 3.2. Like Gama and Nguyen [GN08b] did in a different
context, we observe that the complexity of lattice-based attacks is mainly governed
by δ. Therefore, we propose a function T (δ) that estimates the attack complexity in
dollar-days for δ ∈ (1, 1.02] in Section 3.2. There, we also demonstrate that current
records in practical lattice basis reduction support our findings. The underlying ex-
periments can be easily replaced as soon as there are more powerful algorithms. The
other two tiers stay unchanged. Notice that new experiments are not required if the
algorithmic improvements are already covered by our double-Moore Law, i.e., we
already anticipate new attacks and more powerful computing devices. Interestingly,
our estimation shows that, today, δ = 1.009 is potentially reachable with an effort
of 40 million dollar-days. However, even a powerful intelligence agency with over
100 billion dollar-days of resources should not be able to reach δ = 1.005 before the
year 2050. We draw the following main conjecture.

Conjecture (Main conjecture). Let n ≥ 128, q = q(n), m = m(n), and ν = ν(n).
Let T (δ) = 10−1521/(log2(δ)1.001) dollar-days be a cost function for δ > 1.

Solving SIS(n,m, q, ν) involves a q-ary lattice of dimension d = min{x ∈ N :
q2n/x ≤ ν} and an attack effort of at least T (δ) with δ = d

√
ν/qn/d.

As for LWE, let Ψ = Ψm
α be a component-wise m-dimensional Gaussian dis-

tribution with standard deviation qα/
√

2π. Let ν∗ = 1.5
√

2π/α. Then, solving
LWE(n,m, q,Ψ) involves a q-ary lattice of dimension d = min{x ∈ N : q2n/x ≤ ν∗}
and an attack effort of at least T (δ) with δ = d

√
ν∗/qn/d.

Tier 3: The third part is the application of our framework to cryptographic
schemes in Section 3.3. We evaluate the security of proposed parameter sets in the
literature and find that most do not provide sufficient security. Similarly, we use our
formulas in the reverse direction to output parameter sets for a given security level.

Thus, we can make absolute statements about individual cryptosystems, saying
that schemes X with parameter set P (X) is secure against a certain type of attacker
A until the year 2030. In addition, since we propose a unified framework for both

30

3.1 Methodology

Signature Scheme DS

SIS(n,m, q, ν)
?

Reduction SIS ≤ DS

Encryption Scheme PKE

LWE(n,m, q, α)
?

Reduction LWE ≤ PKE

� Proposition 3.1

?
Conjecture 3.3

Hardness estimate δ

?
Conjecture 3.4

Attack complexity T (δ)

?

Table 3.1: Attacker type A
Table 3.2: Map (δ,A) 7→ bit security

Bit security against given attacker

Figure 3.1: User’s guide to estimating the bit security of lattice-based signature and
encryption schemes.

SIS and LWE, we can also make relative statements across different SIS- and LWE-
based schemes. For example, saying that SIS scheme X with parameters P (X) is
more, less, or as as secure as LWE scheme Y with parameters P (Y). Figure 3.1
summarizes our analysis and provides a user’s guide to estimating the security of a
given parameter set.

This chapter is a reprint of the essential parts of [RS10a]. The dissertation author
was the primary investigator and author of this paper. The full report is constantly
updated and covers essentially all published signature and encryption schemes.

3.1 Methodology

In order to grasp lattice reduction algorithmically, the notion of Hermite-SVP (HSVP)
approximation seems more adequate than that of approximate SVP. A simple rea-
son, in practice, is that we do not know the first successive minimum λ1 when
confronted with an arbitrary lattice basis. Therefore, it is impossible to verify the
SVP-condition ‖v‖2 ≤ γλ1(Λ) directly. In contrast, HSVP asks for a non-zero vec-
tor that satisfies ‖v‖2 ≤ δdim(Λ) det(Λ)1/dim(Λ) for a given δ > 0, which can be easily

31

Chapter 3 The Hardness of SIS and LWE in Practice

verified because all quantities are known. In fact, the condition is further simplified
in q-ary lattices and it becomes: find v ∈ Λ⊥q (A) such that 0 < ‖v‖2 ≤ δmqn/m.

Concerning the hardness of this problem, the lattice dimension certainly plays a
role but Nguyen and Gama demonstrate in [GN08b] that δ is the dominating param-
eter. Although their analysis is based on Goldstein-Mayer (GM) lattices [GM03],
which fundamentally differ from q-ary lattices, this basic observation holds in q-ary
lattices as well. Hence, we build upon their work and extend it with a fine-grained
hardness estimate in the sense of having a cost function T .

To this end, we interpret instances of SIS and LWE as instances of HSVP. Then,
we conduct a series of experiments with lattice basis reduction algorithms to deter-
mine how the various parameters in SIS and LWE influence their hardness. Based
on these experiments, we extrapolate the attack complexity. The extrapolation
takes future algorithmic and technological progress into account and we arrive at an
arguably conservative cost function T .

From SIS to HSVP Each instance of SIS can be interpreted as an instance of the
Hermite-SVP. Given an instance A of SIS(n,m, q, ν), we compute δ = m

√
ν/qn/m

and ask the Hermite-SVP solver to find v with 0 < ‖v‖2 ≤ δmqn/m. However,
this direct translation is not the best possible attack. In [MR08], Micciancio and
Regev point out that one can solve the same problem in a significantly lower lattice
dimension. They assume the existence of a δ-HSVP solver for a fixed δ. Then, they
argue that the optimum dimension for solving SIS with (n,m, q) with this solver is
d = min{

√
n log(q)/ log(δ),m}. Now, one removes m − d random columns from A

to obtain A′, reduces the d-dimensional lattice bases of Λ⊥q (A′), and pads a short

vector therein with zeros. The result is a rather sparse vector of norm ≤ δdqn/d in
Λ⊥q (A).

Unfortunately, this approach does not model the most likely attacker, which will
take ν into account and employ stronger and stronger HSVP solvers until a suf-
ficiently short vector is found. Therefore, we need a re-interpretation of the ap-
proach taken in [MR08] that involves ν instead of a fixed “capability” δ. This
re-interpretation allows us to normalize SIS(n,m, q, ν) by removing the slack in the
dimension parameter m. The resulting distribution of lattices is what we will analyze
by directly applying lattice basis reduction. We defer the details to Section 3.2.

From LWE to HSVP While solving the search LWE problem also immediately
solves the corresponding decision problem, the reverse direction only holds via a
polynomial-time reduction that is not “sample-preserving”. Thus, we choose to

32

3.1 Methodology

attack the decision problem as it presents the easier problem and yields a lower
bound for search LWE.

The most natural approach to distinguish an LWE sample (A,b) from uniform
seems to be solving an instance of the SIS problem. Evidence for this connection can
be found in [MR08] and [SSTX09]. Let Ψ = Ψm

α be the standard noise distribution
for LWE as per [Reg09], i.e., a component-wise discretized Gaussian distribution
with standard deviation qα/

√
2π. Then, [MR08] essentially yields the following

proposition.

Proposition 3.1 (From LWE to SIS). LWE(n,m, q, α), interpreted as an instance
of SIS(n,m, q, ν) requires an SIS-solver for ν � 1.5

√
2π/α to be successful.

Given an LWE instance (A,b) in the lattice Λq(A), the idea is to find a short
vector v/q in its dual lattice 1/qΛ⊥q (A). By the definition of duality, 〈b,v/q〉 is an
integer if b is in Λq(A). Similarly, if it is close to Λq(A), 〈b,v〉 will be close to
an integer. Indeed, if b is an LWE sample, we have 〈b/q,v〉 ≡

〈
Ats/q + e/q,v

〉
≡〈

Ats/q,v
〉

+ 〈e/q,v〉 ≡ 〈e/q,v〉 (mod 1) because Av ≡ 0 (mod q).

To verify that e is short, we require v to be short. If it is at least 1.5
√

2π/α, the
above residual scalar product is distributed like a normal distribution with mean
zero and standard deviation 1.5. The observed fractional part thereof is very close
to uniform.

As a conservative measure, we will assume in the following that an SIS-solver with
ν = 1.5

√
2π/α is already a successful distinguisher for LWE. This makes it even

more conservative than using the approach recently taken in [LP10].

Lenstra’s Heuristic The authors of [ECR10] describe an attacker model with at-
tacker classes according to [BDR+96]; a subset of these classes is shown in Table
3.1. We add an attacker called “Lenstra”, with an amount of 40M dollar-days, which
was the value for a suitable attacker proposed by Lenstra in [Len05]. Let n be the
security parameter and assume the best attack against a given cryptosystem takes
t(n) seconds on a machine that costs d dollars. Then, the total ”cost“ of the attack
is T (n) = d · t(n)/(3600 · 24) dollar-days (DD). This notion is particularly interest-
ing when estimating attack cost against lattice cryptography, where attacks may be
parallelized with a time-money tradeoff.

Assuming we have an estimate for the function T (n) for attacks against lattice-
based cryptosystems. Then, we can find the optimum n∗ such that T (n∗) ≥ T2009,
where T2009 is chosen according to the last column of Table 3.1. We choose 2009 as
a reference date here because the employed hardware was bought in that year.

33

Chapter 3 The Hardness of SIS and LWE in Practice

Attacker class Budget Time Dollar-days

Hacker $400 1 d 400 DD

Lenstra 40M DD

Intelligence agency $300M 360 d 108B DD

Notation: “d” stands for days, “M” for million, “B” for billion, and “DD” for dollar-days. For

“Lenstra”, there is not budget-time separation in [Len05].

Table 3.1: Attacker classes and corresponding budget for each attacker.

Estimating Future Developments First of all, we consider Moore’s Law, which
states that computing power doubles every 18 months. Secondly, we want to take
cryptanalytic developments into account. Thus, we apply a combined degradation
function 2−12/9 that Lenstra calls ”double Moore Law“. This is motivated by the
observed algorithmic progress in the area of integer factorization. As for lattice basis
reduction, the algorithmic progress for practical strong algorithms, such as BKZ, is
hard to judge. While, there are recent results [GHGKN06, GN08a, GNR10] showing
that progress is indeed possible, there are no public implementations that beat BKZ
in practice.

The above condition T (n∗) ≥ T2009 only yields secure parameters for the year
2009. For the year y, n∗ needs to satisfy the inequality T (n∗) ≥ T2009 · 2(y−2009)·12/9.

Asymmetric primitives are often combined with symmetric ones. Hash functions
are necessary to sign long documents and block ciphers allow efficient hybrid encryp-
tion. We assume that these primitives are available at any given time in the future
and that they are only affected by Moore’s Law. Unlike public-key primitives, block
ciphers and hash functions can easily be replaced if there is a new attack.

3.2 Analysis

Given that we can phrase the LWE problem in the language of SIS, we restrict our
analysis to the SIS problem. An attacks against SIS with a matrix A involves a
q-ary lattice Λ = Λ⊥q (A) of dimension m = Ω(n log(n)) and a scheme-specific norm
bound ν, which can be obtained by studying the security proof.

The main goal of this section is to determine the effort T (in dollar-days) that is
required today for mounting such an attack. From there, we can apply Lenstra’s
Heuristic to predict future developments. In Section 3.2.3, we show how to use

34

3.2 Analysis

our findings in combination with symmetric primitives. There, we also relate the
hardness of SIS with symmetric bit security. We conclude this section by showing
that current records in lattice basis reduction support our analysis (cf. Section 3.2.4).

We have conducted experiments on up to 100 random q-ary lattices per dimension
m ∈ {100, 125, 150, 175, 200, 225, 250, 275, 300} and prime q with nc ≤ q ≤ 2nc for
c ∈ {2, 3, 4, 5, 6, 7, 8}. These parameters alone also determine n if we demand that
m > n log2(q). This setting covers even the hardest instances of SIS, where we
demand ν =

√
m. The existence of such vectors can be verified with a pigeon-

hole argument because the function fA(v) = Av mod q admits collisions (v,v′) ∈
({0, 1}m)2 if qn/2m < 1. Such a collision yields v − v′ ∈ Λ⊥q (A) with ‖v − v′‖2 ≤√
m.

As mentioned earlier, we do not attack the “full” lattice, but rather work in a sub-
dimension d. Instead of assuming a fixed-capability attacker that solves δ-HSVP in
dimension d =

√
n log(q)/ log(δ), we propose the following approach and let d be

determined only by n, q, and ν.

Proposition 3.2 (Normalization of q-ary Lattices). Let n ≥ 128, q ≥ n2, and
ν < q. Let S be a δ-HSVP solver for variable δ > 1. The optimal dimension for
solving SIS(n,m, q, ν) with S is d = min{x ∈ N : q2n/x ≤ ν}.

The restrictions n ≥ 128 and ν < q rule out easy cases and we demand q ≥ n2

because the worst-case to average-case reduction typically demands q = ω(n).

Proof. Notice that when removing m− d random columns from A to form a matrix
A′ ∈ Zn×dq , the resulting q-ary lattice Λ⊥q (A′) still has determinant qn because A′

generates Znq with high probability. Observe that d > 2n as otherwise q2n/d ≥ q > ν,
which means that we cannot expect to find useful (short enough) vectors.

The solver S finds lattice vectors of norm at most 22
√
n log(q) log(δ) (cf. [MR08]),

which must not exceed ν. Hence, log(δ) ≤ log2(ν)/(4n log(q)). The solver S is most
efficient for the largest permissible δ. Then, the optimal dimension for running the
solver is d =

√
n log(q)/ log(δ) = 2n log(q)/ log(δ), which is the minimum d such

that q2n/d ≤ ν.

Note that, as mentioned in the above, the minimum attack dimension is d > 2n ≥
256. Hence, special algorithms that efficiently reach smaller δ in “easy” dimensions
< 256, do not contradict our analysis. To sum up, our analysis is based on the
following conjecture.

35

Chapter 3 The Hardness of SIS and LWE in Practice

Conjecture 3.3. For every n ≥ 128, prime q ≥ n2, m = poly(n), and ν < q,
the best known approach to solve SIS with parameters (n, q,m, ν) involves solving
δ-HSVP in dimension d = min{x ∈ N : q2n/x ≤ ν} with δ = d

√
ν/qn/d.

3.2.1 Experimental Data

In our experiments, we have analyzed the running time of BKZ [SE94] with double
floating-point precision, the best publicly available scalable HSVP-solver, as imple-
mented in Shoup’s NTL [Sho] on a $1,000 machine (AMD Opteron CPU, running at
2.4 GHz, bought in 2009). We apply BKZ in the sub-dimension d with an increasing
block-size parameter, i.e., with decreasing δ, until a vector of the desired length is
found. Note that our experiments only involve block-size parameters ≤ 30 in order
to avoid a known erratic behavior of BKZ in practice. If an attack was not possible
with an admissible block size, we have not taken the data sample into account. Also,
performing the experiments in rather small dimensions, we give quite a conservative
hardness estimate. Our first observation is that q plays a minor role. To see this,
compare figures 3.2(a) (q ≈ n2) and 3.2(c) (q ≈ n8). The graphs show the same
shape. This also holds for n2 ≤ q ≤ n8. However, increasing q makes the problem
slightly harder. The impact of the dimension is noticeable because n increases with
it. As a result, we see shifted copies of essentially the same graph. The interesting
part of the figures is where δ is smaller than 1.015, i.e., the right-hand side of the
graphs. Here, the impact of the parameter δ is compelling, and much more notice-
able than the impact of the other parameters. Thus, we can consider δ to be the
dominating and main security parameter.

We have chosen m = 175 and q ≈ n3 (cf. Figure 3.2(b)) as our reference for
extrapolation. In order to compensate for these rather small dimensions, we have
chosen q ≈ n3 and not n2. Still, based on our experiments in small dimensions, we
arrive at fairly conservative estimates. The extrapolation in Figure 3.2(d) was used
to determine the hardness of attacks against SIS. For the interesting area where
δ < 1.015, the “extrapolated attack complexity” function T (δ) nicely approximates
the data samples.

More precisely, the cost function in dollar-days is of the form T (δ) = a21/(log2(δ)b),
for real constants a, b. Using a least-squares approximation, we draw the following
conjecture.

Conjecture 3.4. Let all other parameters and relations as in Conjecture 3.3. For
any δ ∈ (1, 1.015], solving δ-HSVP (in normalized q-ary lattices) involves an effort
of at least T (δ) = 10−1521/(log2(δ)1.001) dollar-days.

36

3.2 Analysis

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1.01 1.015 1.02 1.03 1.04

ti
m

e
 [

s
]

δ

m=100
m=125
m=150
m=175
m=200
m=225
m=250
m=275
m=300

(a) Logarithmic running time in seconds for
prime q ≈ n2 and selected 100 ≤ m ≤ 300
and 1.01 < δ ≤ 1.04.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1.01 1.015 1.02 1.03 1.04

ti
m

e
 [

s
]

δ

m=100
m=125
m=150
m=175
m=200
m=225
m=250
m=275
m=300

(b) Logarithmic running time in seconds for
prime q ≈ n3 and selected 100 ≤ m ≤ 300
and 1.01 < δ ≤ 1.04.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1.01 1.015 1.02 1.03 1.04

ti
m

e
 [

s
]

δ

m=100
m=125
m=150
m=175
m=200
m=225
m=250
m=275
m=300

(c) Logarithmic running time in seconds for
prime q ≈ n8 and selected 100 ≤ m ≤ 300
and 1.01 < δ ≤ 1.04.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1.01 1.015 1.02 1.025 1.03 1.035 1.04

D
o

lla
r-

d
a

y
s

δ

m = 175
Extrapolated Attack Complexity

(d) Logarithmic effort in dollar-days (data &
extrapolation) for prime q ≈ n3, m = 175,
and 1.01 < δ ≤ 1.04.

Figure 3.2: Logarithmic time complexity for solving δ-HSVP in different dimen-
sions and for different moduli q. The x-axis corresponds to the hardness
estimate δ.

37

Chapter 3 The Hardness of SIS and LWE in Practice

 1e-10

 1

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.018 1.02

D
o

lla
r-

d
a
y
s

δ

HSVP-Complexity
Intelligence agency

Lenstra
Hacker

Figure 3.3: Estimated time complexity of δ-HSVP for δ ∈ [1.003, 1.02]. The plots
include horizontal lines, illustrating today’s power of different attacker
types.

Extrapolating T for smaller δ yields Figure 3.3. The horizontal bars correspond
to today’s capabilities of the attacker types in Table 3.1.

3.2.2 Applying Lenstra’s Heuristic

Fix an attacker type A and let δA be infeasible for A today. Assuming the Lentra
Heuristic in conjunction with the “double Moore Law”, we demand T (δ) ≥ T2009 ·
212(y−2009)/9 for T2009 = T (δA) for δ to be secure until the year y. Obviously, the
inequality can also be used to compute a year y until which a given parameter δ can
be considered secure against a given attacker.

Note that the inverse function is T−1(t) = 2(1/(log2(t)·1015))1/1.001 , where t is the
amount of dollar days available. For example, let A = “Int. agency”. Compared
with the year 2009, it can afford t = 108 · 2124/3 billion dollar-days in 2040. Thus,
we require δ ≤ T−1(t) = 1.00548 for infeasibility until the end of 2040. Vice versa,
if an attack requires δ ≤ 1.00548, the corresponding lattice problem is at least
intractable until the end of 2040. Table 3.2 provides an overview of hard values for δ
for the different attacker types until 2100. This table also allows a mapping between
symmetric security and security parameters for lattice cryptography. In addition, we
include a column “standard” for a standard hash function (SHA-1) and a standard
block cipher (AES-128). The resulting parameter sets can be considered secure
against non-quantum adversaries until 2018.

38

3.2 Analysis

year Standard (2018) 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

bit security SHA/AES 75 82 88 95 102 108 115 122 128 135

λ 160 225 246 264 285 306 324 345 366 384 405

κ 128 150 164 176 190 204 216 230 244 256 270

Hacker 1.00993 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389

Lenstra 1.00803 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356

Int. agency 1.00710 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

The upper rows present recommended post-quantum secure symmetric key size κ and hash function

length λ. Each of the lower cells contains an upper bound for the HSVP-parameter δ, such that this

problem is computationally hard for the given attacker (row) until the end of a given year (column).

According to Proposition 3.2 solving δ-HSVP needs to be infeasible in dimensions d ≥ 256.

Table 3.2: Infeasible parameters δ for HSVP.

3.2.3 Post-quantum Secure Hash Functions and Symmetric Ciphers

Encryption schemes and hash functions are rarely used without block ciphers and
collision-resistant hash functions, respectively. Since we want to propose parameters
for the post-quantum era, we also want the symmetric ciphers and hash functions to
be secure in this setting. In consequence, we need to take Grover’s search algorithm
for quantum computers into account [Gro96]. Basically, its effect is that we have
to double the key length of block ciphers that would be classically secure. The
output length of such hash functions has to be multiplied with 3/2. Note that is a
pessimistic view on security as pointed out by Bernstein [Ber09].

As a simplification, we choose the symmetric parameters independently of the
attacker type. A natural extension of our work would be to let λ and κ be functions
of the attacker’s resources. Here, we use the simple Moore Law and the assumption
that DES was secure in the year 1982, even against the strongest attacker. Then,
κ ≥ 2 d56 + 12(y − 1982)/18e is the proposed symmetric key length and λ ≥ 3κ/2
is the proposed output length for hash functions. Using these formulas, we obtain
the recommendations in Table 3.2.

This concludes the analysis. Table 3.2 and Conjecture 3.4 provide all the necessary
tools for estimating the security of all SIS and LWE-based cryptosystems. It also
shows the equivalent level of symmetric security.

39

Chapter 3 The Hardness of SIS and LWE in Practice

3.2.4 Comparison with Known Records in Lattice Reduction

There are two public challenges for hard lattice problems available online. The first
— the “SVP challenge”1 — is used to test exact, non-approximative SVP solvers.
The second — the “Ajtai challenge”2 — is used to evaluate the hardness of SIS. We
briefly summarize the current state of both challenges at the time of writing this
thesis.

SVP Challenge The challenge involves Goldstein-Mayer lattices in small dimen-
sions of, say, < 200. The best contestants have found vectors of Euclidean length
2781 in dimension 112, which corresponds to δ = 1.009. However, a success in this
challenge does not have any immediate implication in our context, as it applies to a
different type of lattice and the dimensions involved are small.

Ajtai Challenge The setup in this challenge is very similar to our setup here. It
contains various simplifications, though. The details are described in [BLR08] and
updated in [BLRS08]. The dissertation author was the principal investigator and
author of these papers.

In the challenge itself, we use the simplified setup: n ∈ N, q = n, andm ≈ n log(n).
The corresponding matrix A is generated from the digits of π to prevent it from
containing a trapdoor. The initial task is to solve SIS(n,m, q, ν) for ν = n in Λ⊥q (A).
Then, the participants are asked to find increasingly shorter solutions.

Notice that the instances in the challenge are easier than the instances used in
this chapter. Hence, it yields lower bounds for the expected attack complexity T (δ).

The best participants have found vectors of length ≈ 107 in dimension m =
750. This corresponds to δ = 1.0103 and an optimal attack dimension of d = 229
(cf. Proposition 3.2). Even though this result is still outside the relevant range for
our analysis (d ≥ 256), it confirms our estimates, saying that today, a “Hacker”
should be able to solve the problem for δ ≈ 1.011 and the adversary “Lenstra”
might even solve it for δ ≈ 1.009 in 2010 (cf. Table 3.2).

3.3 Applying the Framework

After having established a basic framework for estimating future developments in
lattice basis reduction as well as the projected attack complexity against SIS and

1http://www.latticechallenge.org/svp-challenge
2http://www.latticechallenge.org

40

3.3 Applying the Framework

LWE, we will demonstrate how to use our framework as a tool.

There are essentially two “directions”. In the “forward” direction, we can take a
cryptographic parameter set and an attacker type as input and output an equivalent
security level or even a prediction of how long this parameter set can be considered
secure.

When working in the “reverse” direction, we analyze a given scheme’s parameters
and their relations as well as the corresponding worst-case to average-case reduction
and, on input a year and an attacker type, output a set of feasible, concrete param-
eters that can be considered secure against the given attacker type until the given
year.

As mentioned before, we can also make relative statements as follows: Given an
SIS scheme X with parameters (n, q,m, ν) and an LWE scheme Y with parameters
(n, q,m, α), we can compute their hardness parameters δX and δY . If δX < (>)δY ,
the instance of X is more (less) secure than the instance of Y .

3.3.1 Analysis of Proposed Parameter Sets

In this section, we will only apply our framework in the first sense, i.e., to analyze the
(few) parameter sets that have been proposed in literature so far, regarding their
exact security level. More concretely, we estimate the security of the parameters
presented for LWE encryption in [MR08], to Lyubashevsky’s Fiat-Shamir signature
scheme in [Lyu09] (cf. Table 3.3), and to the one-time signature scheme due to
Lyubashevsky and Micciancio [LM08]. Observe that neither of these authors make
claims about the exact security of their proposals.

For SIS-based schemes [LM08, Lyu09], we analyze the corresponding security
proofs to determine the relevant SIS parameters. For LWE [MR08], we compute
the corresponding SIS parameters as outlined in Section 3.1.

Since the parameter sets given in [MR08] (see Table 3.3) were specifically chosen
to be secure against attackers that can solve HSVP for δ ≥ 1.01, they do not provide
sufficient security against the medium adversary “Lenstra” and even the “Hacker”
should be able to break them by 2020.

For the Fiat-Shamir type signature scheme in [Lyu09], we compute the SIS norm
parameter ν = 2nmdsdc

√
mn in the Euclidean norm, where ds is the infinity norm

of signature keys and dc controls the hashed message length.

The parameters in [Lyu09] are based on an assumed hash length of 160 bit, there-
fore the underlying hash function would only be secure until year 2018 (without
taking quantum adversaries into account). However, the lattice parameters are
quite reasonable as shown in Table 3.3. All but the first parameter set provide some

41

Chapter 3 The Hardness of SIS and LWE in Practice

n 136 166 192 214 233 233

q 2003 4093 8191 16381 32749 32749

α 0.0065 0.0024 0.0009959 0.00045 0.000217 0.000217

ν 5.8e2 1.6e3 3.8e3 8.4e3 1.7e4 1.7e4

d 326 376 421 460 497 497

δ 1.0098 1.0098 1.0099 1.0099 1.0099 1.0099

year 2006 2006 2005 2005 2005 2005

bit 72 72 72 72 72 72

n 512 512 512 1024

q 231.727 259.748 295.747 295.872

m 4 5 8 8

ν 5.6e8 1.3e10 2.6e10 6.4e10

d 1118 1823 2835 5471

δ 1.0091 1.0064 1.0042 1.0023

year 2010 2035 2077 2180

bit 75 92 120 188

d is the attack dimension and δ is the corresponding hardness estimate. “year” denotes the expi-

ration year of the parameter set w.r.t. the attacker “Lenstra” and “bit” denotes the corresponding

“bit security”. ν is given in scientific notation, where “XeY” means X · 10Y .

Table 3.3: Security estimate for the parameters given in [MR08] (left) and [Lyu09]
(right).

security margin and with our framework, we can actually estimate how large it is.

The authors of [LM08] propose an exemplary parameter set for their one-time
signature scheme. They let n = 512, q = 227, m = 9, and argue that the parameter
set is likely to be insecure. Now, we can analyze it explicitly as an SIS instance with
ν = 20q1/mn log2(n)

√
mn ≈ 2.2 · 108 in the Euclidean norm. The attack dimension

would be d = 999 and the hardness estimate is δ = 1.0097. Hence, it would be
insecure against the attacker “Lenstra” and the “Hacker” is expected to break it by
the year 2020. On the positive side, our framework yields a similar parameter set
with n = 1024 that is conjectured to be secure until 2050 against “Lenstra”.

3.3.2 Secure Parameter Sets

To demonstrate the constructive power of our framework, we propose an exemplary
parameter set for Regev’s LWE encryption scheme [Reg09]. Two further applications
are in Chapter 4, where we apply our framework to estimate secure parameter sets for
our lattice-based blind signature scheme, and Chapter 6, where we estimate the net
advantage of our aggregate signature scheme. Moreover, in the full report [RS10a],
we propose parameter sets for essentially all published signature and encryption
schemes.

42

3.3 Applying the Framework

Multi-bit LWE

The κ-bit version of Regev’s LWE cryptosystem with standard noise distribution
Ψ = Ψm×κ

α works as follows.

Secret Key: S←$Zn×κq , i.e, nκ log2(q) bits.

Public Key: A←$Zn×mq , P ← AtS + E ∈ Zm×κq for E ←Ψ Zm×κq . The matrix A
can be the same for all users, e.g., generated from the random bits of π. Using
the HNF technique of [Mic01], the key is reduced to (m− n)κ log2(q) bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: u ← Aa ∈ Znq , c ← Pta + k q−1
2 , where a←${− br/2c , . . . , dr/2e}m,

r ≥ 1. The ciphertext has (n+ κ) log2(q) bits.

Decryption: c− Stu ≈ k q−1
2 .

Ciphertexts are unconditionally uniform due to the leftover-hash lemma [HILL99]
and the public key is computationally indistinguishable from uniform under the de-
cision LWE assumption. We set α← 1/(30

√
m dr/2e) to eliminate decryption errors

because then, the accumulated error in c is distributed as a Gaussian with parameter
1/30, which limits it to at most 1/6 per component with high probability by a Gaus-
sian tail bound. See, e.g., [Pei09], for the details. For simplicity, we choose r = 2.
Notice that other trade offs, e.g., choosing a different (non-binary) message alphabet
or choosing a larger r, are possible and easy to implement. Furthermore, one could
choose a larger α and employ an error correcting code to eliminate decryption errors
(cf. [MR08]).

We let q = q(n) be the smallest prime between 2n2 and 4n2, Then, we set m =
m(n) = d((n+ κ) log2(q) + 2κ)/ log2(r + 1)e to tie the probability of being able
to distinguish ciphertexts from uniform to the symmetric security level, i.e., the
probability is at most

√
qn+κ/(r + 1)m ≤

√
qn+κ/(qn+κ22κ) = 2−κ. After taking all

this into account, we propose various parameter sets in Table 3.4. There, we also
include the resulting object sizes in kilobytes.

43

Chapter 3 The Hardness of SIS and LWE in Practice

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk |
|pk |
|C|

214
91621
5.47e-04
3719
55.1
54.8
0.7

191
72973
5.51e-04
3665
56.5
63.6
0.7

221
97687
5.12e-04
4234
73.3
80.3
0.8

253
128021
4.80e-04
4815
92.2
98
0.9

283
160183
4.54e-04
5400
113.5
118.7
1

314
197203
4.30e-04
6006
137.5
141.7
1.1

346
239441
4.10e-04
6609
163
165.1
1.2

376
282767
3.92e-04
7215
191.2
192
1.3

405
328051
3.77e-04
7811
221
220.6
1.5

438
383693
3.63e-04
8446
253.9
250.3
1.6

The columns correspond to security until a given year. pk is the public key, sk is the secret key,

and C is the ciphertext. All sizes are in kilobytes (kB).

Table 3.4: Recommended parameters for multi-bit LWE.

3.4 Conclusion and Open Problems

With our framework to analyze the SIS and LWE problems, we have established a
connection between lattice problems and symmetric “bit security” for the first time.
While our analysis reveals certain weaknesses in the way parameters for lattice-based
cryptosystems are currently proposed, it also provides the tools to systematically do
so for a sliding scale of security.

We propose that the presented methodology should be used whenever a new cryp-
tographic primitive is presented to ensure that, concerning efficiency and security, it
actually presents an improvement over known work. Furthermore, our work can be
used to compare the security levels of parameter sets for entirely different crypto-
graphic primitives, e.g., encryption and signature schemes. This is important when
both are used in a more complex protocol, where all components should provide
approximately the same level of security.

An additional application of our work is the proposal of parameters for lattice-
based signature and encryption schemes for which there were no previously known
concrete parameter sets. Doing so reveals that all schemes that require trapdoor
matrices (cf. Section 2.7.2) are far from practical and seem to require an enormous
effort to become so. On the other hand, such an analysis reveals that there are
quite competitive signature and CPA encryption schemes already, especially those
working in ideal lattices [Lyu09, LPR10].

To conclude, with our work we would like to draw renewed interest to the devel-
opment of practical, strong lattice basis reduction algorithms for large dimensions
as well as to further optimizing the parameter constraints for known lattice-based
cryptosystems, which have mainly been of theoretic interest so far. An interesting
extensions of our framework would be to also model and include the expected run-

44

3.4 Conclusion and Open Problems

ning time of security reductions from SIS and LWE, i.e., to take the tightness of
the reductions into account. Another challenging direction would be to estimate
the exact cost of combinatorial attacks, especially against lattice problems in the
infinity norm.

45

Chapter 4

Blind Signatures

47

Chapter 4 Blind Signatures

Since Chaum proposed his idea of blind signatures [Cha82], it has become an impor-
tant primitive for anonymous Internet banking [Cha82, BBC+94, AB09], e-voting
[OMA+99, IKSA03, RHOAGZ07], as well as for anonymous credential systems
[Bra99, CG08, BP10].

The security model, mainly influenced by Juels, Luby, and Ostrovsky [JLO97]
as well as Pointcheval and Stern [PS00], requires blind signature schemes to satisfy
blindness and one-more unforgeability. Blindness states that the signer must not
obtain any information on the signed messages and one-more unforgeability means
that an adversary cannot obtain more signatures than there were interactions with
the signer.

There are instantiations from general assumptions, e.g., by Juels et al. [JLO97],
Fischlin [Fis06], Hazay, Katz, Koo, and Lindell [HKKL07], or Abe and Ohkubo
[AO09]. The resulting instantiations are typically very inefficient, which is why we
are interested in direct constructions.

All previous direct constructions, such as [Cha82, PS97, PS00, Abe01, BNPS03,
CKW04, Oka06], have one thing in common: they are built upon classic number
theoretic assumptions, like the hardness of factoring large integers or computing
discrete logarithms. The more recent approaches, e.g., by Boldyreva [Bol03] or
Okamoto [Oka06], tend to use pairings that yield very elegant constructions. They,
however, are again based on the discrete logarithm problem in this specific setting.

Our Contribution We construct the first lattice-based blind signature scheme. It is
inspired by Lyubashevsky’s identification scheme [Lyu08a, Lyu08b] in combination
with the Fiat-Shamir paradigm [FS86]. It is unconditionally blind, selective-failure
blind [CNS07], and one-more unforgeable in the random oracle model under an SIS
hardness assumption. We summarize the main results for our scheme BS.

Theorem (Blindness). BS is blind in a statistical sense.

Theorem (One-more unforgeability). Let D ⊆ R0 such that f ∈ D if ‖f‖∞ =

Õ(n4). BS is one-more unforgeable in the random oracle model if COL(H(R,m),D)
is hard against sub-exponential attacks.

With its four moves it is round-efficient. All operations have quasi-linear complex-
ity and all keys and signatures require a quasi-linear amount of storage bits with
respect to the main parameter n. Moreover, it is the first leakage resilient blind
signature scheme. Our model of leakage resilience is inspired by Katz and Vaikun-
tanathan [KV09]. Let L be the bit-length of the secret key. Our scheme remains
secure, even if the adversary obtains L(1− o(1)) bits of the secret key via arbitrary

48

side channels. This brings the security model closer to reality, where the adversary
may obtain information about the secret key, e.g, via (remote) timing attacks or
by having physical access to the signing device. Such a resilience also improves the
trust that we are willing to grant these schemes.

Table 4.1 compares RSA and Okamoto-Schnorr (OS) [PS00] blind signatures with
our construction in terms of computational cost. For all schemes, we propose param-
eter sets for current, medium, and future security levels. We believe that RSA is a
good basis for comparison because it is easy to understand and very efficient as blind
signing only involves two modular exponentiations and verification can be done in
a single one. We do not count multiplications. As observed in [BNPS03], the secu-
rity of the RSA blind signature scheme is based on a specially tailored interactive
assumption that is stronger than the original RSA assumption [BMV08]. Taking all
this into account, the timings observed for RSA provide an optimistic lower bound
for current practical and secure schemes. The timings for OS are expected timings
based on the number of modular exponentiations, not counting multiplications. We
include OS because it follows the typical 3-move structure and is based on stan-
dard assumptions. It is therefore closer to our protocol. The timings were obtained
on an AMD Opteron CPU, running at 2.3 GHz. For RSA and OS, we have used
OpenSSL 0.9.8g, which is supposed to be very efficient. For our blind signature
schemes, we did a straightforward implementation, which certainly leaves room for
improvements. Here, the timings reflect the full scheme.

From Table 4.1, we clearly see that our scheme benefits from its quasi-linear
complexity, especially in higher levels of security. In addition, for our scheme, we
can have various trade-offs between signature size and speed. For more details, refer
to Section 4.3. There, we also show how to optimize the key and signature sizes.

Main Obstacles For every blind signature scheme, one has to overcome three basic
obstacles. The scheme needs to be blind, one-more unforgeable, and at the same time
complete. Blindness and unforgeability are already somewhat orthogonal because
granting the user too much power to ensure blindness harms unforgeability and vice-
versa. Since working with lattices, we do not have access to a cyclic group structure
as in schemes that are based on the DDH or DL assumptions. There, blindness is
typically easier to achieve by multiplying the message with a random group element.

In lattices, we need to emulate this over an infinite structure via a filtering tech-
nique that is inspired by [Lyu08a]. However, this technique introduces a complete-
ness defect that even affects the interaction of an honest user with an honest signer.
Thus, the protocol may need to be restarted. We show how this technique can be

49

Chapter 4 Blind Signatures

Scheme Secure until Security (bits) Moves KeyGen Sign Verify

RSA-1229 2012 Current (76) 2 95 ms 16 ms 5 ms

RSA-3313 2050 Medium (102) 2 1250 ms 46 ms 6 ms

RSA-15424 2282 Future (256) 2 251849 ms 2134 ms 20 ms

OS-1229 2012 Current (76) 3 16 ms 64 ms 24 ms

OS-3313 2050 Medium (102) 3 46 ms 184 ms 69 ms

OS-15424 2282 Future (256) 3 2134 ms 8536 ms 3201 ms

Section 4.2 (n = 1024) 2012 Current (76) 4 37 ms 220 ms 33 ms

Section 4.2 (n = 2048) 2050 Medium (102) 4 52 ms 283 ms 57 ms

Section 4.2 (n = 8192) 2282 Future (256) 4 305 ms 1175 ms 320 ms

The table compares our scheme with RSA and Okamoto-Schnorr for various moduli according
to [Len05] (Current, Medium) and [ECR10] (Future). The bitlengths can be computed on www.

keylength.com. For our blind signature scheme, we propose three optimized parameter sets for
the same security levels based on Chapter 3. Note that the parameters for RSA and OS do not
take potential quantum-computer attacks into account. All timings are averaged over 1000 random
instances.

Table 4.1: Comparison of RSA, Okamoto-Schnorr, and our blind signature scheme.

refined to allow a time-memory trade-off, reducing the number of expected restarts
at the expense of only slightly larger signatures. When addressing this defect, we
need additional means to ensure blindness over repetitions of the protocol. Our
solution involves a statistically hiding commitment.

Similarly, the completeness defect has implications with respect to unforgeability
as the user may claim that the protocol has failed, whereas it was indeed successful.
Here, we extend the typical three-move structure to a four-move structure where the
user needs to demonstrate that he or she could not obtain a valid signature. Such
a last move, from user to signer, is highly unusual for blind signature schemes. We
solve this issue by designing a special proof of failure and by employing a computa-
tionally binding commitment scheme.

RSA-style Blind Signatures One might think that RSA-style (hash → blind →
invert → unblind) lattice-based blind signatures can be implemented using the
preimage sampleable trapdoor function family PSTF. Let f : Zm → Znq be such
a function. The user would hash the message msg using a full-domain hash random
oracle h ← H(msg) and blind using msg∗ ← h + f(β) for β ← SampleDom(m, η).
The signer would sample from f−1(msg∗) and return a short vector σ∗. Using β and

50

4.1 Definitions

the fact that f is linear, the user can compute σ ← σ∗−β, which is short and passes
verification, f(σ) ≡ f(σ∗) − f(β) ≡ H(msg∗). For the proof, one would rely on an
interactive “one-more“ trapdoor inversion assumption akin to [BNPS03]. However,
the adversary must never obtain a short non-zero x such that f(x) = 0 because this
would imply learning a piece of a short basis. Unfortunately, such an attack is easy:
take u ← SampleDom(m, η) and send msg∗ = f(u) to the signer, who returns σ∗.
Now, x← u− σ∗ is short and f(x) = 0. Also, x 6= 0 with high probability.

Organization After a brief discussion of the security model and potential extensions
in Section 4.1. we propose our blind signature scheme in Section 4.2 and prove its
security. Section 4.3 is devoted to selecting secure parameters based on Chapter 3
that yield an efficient blind signature scheme. Before we conclude the chapter in
Section 4.5, we prove several supporting lemmas in Section 4.4.

This chapter is a reprint of [Rüc10b]. The dissertation author was the primary
investigator and author of this paper.

4.1 Definitions

A blind signature scheme BS consists of three algorithms (Kg,Sign,Vf), where Sign
is an interactive protocol between a signer S and a user U . The specification is as
follows.

Key Generation: Kg(1n) outputs a private signing key sk and a public verification
key pk .

Signature Protocol: Sign(sk ,msg) describes the joint execution of S and U . The
private output of S is a view V and the private output of U is a signature σ
on the message msg ∈ M with message space M under sk . Thus, we write
(V , σ)← 〈S,U〉 (sk , (pk ,msg)).

Signature Verification: Vf(pk , σ,msg) outputs 1 if σ is a valid signature for msg
under pk ; otherwise 0.

Completeness is defined as in digital signature schemes, i.e., every honestly created
signature for honestly created keys and for any message msg ∈ M has to be valid
under this key. Views are interpreted as random variables, whose output is generated
by subsequent executions of the respective protocol. Two views V1 and V2 are
considered equal if they cannot be distinguished in a statistical sense.

As for security, blind signatures have to satisfy two properties: blindness and
one-more unforgeability [JLO97, PS00]. The notion of blindness is defined in the
experiment ExpblindS,BS in Figure 4.1, where the adversarial signer S works in three

51

Chapter 4 Blind Signatures

Experiment ExpblindS,BS(n)
b←${0, 1}
(pk , sk)← BS.Kg(1n)
(msg0,msg1, s find)← S(m find , sk , pk)

s issue ← S〈·,U(pk,msgb)〉
1,〈·,U(pk,msg1−b)〉1(m issue, s find)

Let σb and σ1−b be the outputs of U(pk ,msgb)
and U(pk ,msg1−b), respectively.
If σ0 6= fail and σ1 6= fail

d← S(m guess, s issue, σ0, σ1)
Else

d← S(m guess, s issue, fail , fail)
Return 1 iff d = b

Experiment Expomf
U∗,BS(n)

(pk , sk)←$BS.Kg(1n)

{(msg1, σ1), . . . , (msg, σ)} ← U∗
〈S(sk),·〉∞(pk)

Let ` be the number of successful interaction
between U∗ and the signer.
Return 1 iff

1. msg i 6= msgj for all 1 ≤ i < j ≤ ;
2. BS.Vf(pk , σi,msg i) = 1 for all i = 1, . . . , ;
3. `+ 1 = .

Figure 4.1: Security experiments for blindness and one-more unforgeability of blind
signatures.

modes.

In mode find, it chooses two messages msg0,msg1 and interacts with two users
in mode issue. Depending on a coin flip b, the first (second) user obtains a blind
signature for msgb (msg1−b). After seeing the unblinded signatures in the original
order, with respect to msg0,msg1, the signer has to guess the bit b in mode guess.
If either of the user algorithms fails in outputting a valid signature, the signer is
merely notified of the failure and does not get any signature. Below, we deal with
aborts as an extension. Also note that we allow the adversary to keep a state that
is fed back in subsequent calls.

A scheme BS is (t, δ)-blind, if there is no adversary S, running in time at most t,
that wins the above experiment with advantage more than δ, where the advantage
is defined as AdvblindS,BS =

∣∣Prob
[
ExpblindS,BS(n) = 1

]
− 1

2

∣∣. A scheme is statistically blind
if it is (∞, δ)-blind for a negligible δ. The second security property, one-more un-
forgeability, ensures that each completed interaction between signer and user yields
at most one signature. It is formalized in the experiment Expomf

U∗,BS, where an adver-
sarial user tries to output valid signatures after ` < completed interactions with
an honest signer. H is a family of random oracles.

A signature scheme BS is (t, QOSign, δ)-one-more unforgeable if there is no adver-
sary A, running in time at most t, making at most QOSign signature queries, that
wins the above game with probability more than δ.

4.1.1 Extensions

We consider three extensions to the above security model for blind signatures: one
deals with user aborts, the second with dishonestly chosen keys, and the third with

52

4.1 Definitions

leakage resilience.

Security Under Aborts Blindness in the previous subsection does not cover the
case where the protocol is aborted prematurely. There is the strengthened notion
of selective failure blindness [CNS07], where the malicious signer may choose either
msg0 or msg1 according to some secret distribution that makes the protocol fail.
Preventing this generically is easy as was shown by Fischlin and Schröder in [FS09].
In the course of the discussion of our construction, we argue that it already is blind
in this sense.

Adversely-chosen Keys Consider the blindness experiment in [ANN06]. Instead
of having the experiment select pk , sk , we can let the signer output pk . Blindness
may be harder to achieve in this setting. However, our construction remains blind
in this stronger model as the proof does not exploit specifics about the key.

Leakage Resilience Resilience to key leakage is a way to ensure security against
side-channel attacks.

In [KV09], Katz and Vaikuntanathan give a nice overview of past developments
and the evolution of leakage resilience for authenticity [ADW09, KV09] and secrecy,
e.g., [DP08, AGV09, NS09]. Obviously, we are interested in authenticity in the
special case of blind signatures. We model key leakage in the new unforgeability
experiment Expomf,λ-OLeak

U∗,BS by adding a leakage oracle OLeak(·) to Expomf
U∗,BS. The

adversary can adaptively query OLeak with a series of functions fi, i ∈ {1, . . . , κ},
and receives fi(sk). The only restriction is that

∑κ
i=1 |fi(sk)| ≤ λ(|sk |), where the

function λ determines the amount of leakage that we are willing to tolerate. Notice
that the signer’s key does not have to evolve over time and its secret state consists
of the secret key only. Furthermore, observe that this extension is only sensible as
long as λ(|sk |) < min{|sk |, |σ|}. Otherwise, the adversary could easily obtain the
entire secret key or a signature of its choice. The scheme BS is leakage-resilient
with λ if there is no efficient adversary U∗ for which the experiment outputs 1. To
demonstrate leakage resilience, one has to show that the conditional min-entropy
H∞(sk |OLeak(sk)) := minsk ′{− log(Prob

[
sk = sk ′|OLeak(sk)

]
)} of the secret key

is still sufficiently large to prove security. In our case, we need to ensure witness-
indistinguishability of the underlying proof of knowledge, even under leakage, and
we need to be able to answer the adversary’s queries to the leakage oracle.

53

Chapter 4 Blind Signatures

Experiment Expomf,λ-OLeak
U∗,BS (n)

(pk , sk)← BS.Kg(1n)

{(msg1, σ1), . . . , (msg , σ)} ← U∗〈S(sk),·〉∞,OLeak(sk ,·)(pk)

Let ` be the number of successful interaction between U∗ and the signer.
Let f1, . . . , fκ be the leakage queries of U∗, each with output length λi.
Return 1 iff

1. msg i 6= msgj for all 1 ≤ i < j ≤ ;
2. BS.Vf(pk , σi,msg i) = 1 for all i = 1, . . . , ;
3. `+ 1 = ;
4.
∑κ

i=1 λi ≤ λ(|sk |).

4.1.2 Commitments

Commitments typically work in two phases. First, one party publishes a commit-
ment C = com(msg ; r) ∈ {0, 1}n, r←${0, 1}n, to a message msg ∈ {0, 1}∗ without
revealing any information about it. This is the “hiding” property of the commitment
scheme. In the second phase, the party can prove that C actually corresponds to
msg by revealing r. It is important that no efficient algorithm can find a second
message msg ′ and randomness r′ such that C = com(msg ′; r′), i.e., break the “bind-
ing” property. As usual, these properties are defined for families of such commitment
functions. A scheme is (t, δ)-hiding (-binding) if there is no algorithm running in time
at most t that can break the hiding (binding) property with probability more than
δ. Both properties can be satisfied computationally or unconditionally but there is
no scheme that is unconditionally hiding and unconditionally binding [Gol04].

As we are interested in fully lattice-based schemes, we would like to point out
that such commitment schemes can be built upon hard lattice problems [KTX08].
In practice, one rather uses cryptographic hash functions, such as [ADL+08], in a
special mode.

In particular, for our scheme, we will require a statistically δ
(h)
com-hiding and com-

putationally (tcom, δ
(b)
com)-binding commitment scheme.

4.2 Our Construction

We construct a lattice-based blind signature scheme. It is secure in the random
oracle model under a worst-case assumption in ideal lattices and its time and space
complexity is quasi-optimal, Õ(n).

54

4.2 Our Construction

Parameter Value Asymptotics Usage

ds positive integer constant < q/(8n) O(1) secret key size, unforgeability
Ds {f ∈ R0 : ‖f‖∞ ≤ ds} set of secret keys

cm > 1/ log(2ds) Õ(1) witness indistinguishability, leakage resilience

m bcm log(q)c+ 1 Ω(log(n)) worst-case to average-case reduction

Dε {f ∈ R0 : ‖f‖∞ ≤ 1 =: dε} O(1) hash output size

φ, ψ positive integer constant ≥ 1 O(1) completeness, speed

Dα {f ∈ R0 : ‖f‖∞ ≤ ψndε =: dα} O(n) blindness

Dε∗ {f ∈ R0 : ‖f‖∞ ≤ dα − dε =: dε∗} O(n) blindness

Dy {f ∈ R0 : ‖f‖∞ ≤ φmn
2dsdε∗ =: dy} Õ(n3) witness indistinguishability

G∗ {f ∈ R0 : ‖f‖∞ ≤ dy − ndsdε∗ =: dG∗} Õ(n3) witness indistinguishability, completeness defect

Dβ {f ∈ R0 : ‖f‖∞ ≤ φmndG∗ =: dβ} Õ(n4) blindness

G {f ∈ R0 : ‖f‖∞ ≤ dβ − dG∗ =: dG} Õ(n4) blindness, completeness defect

D {f ∈ R0 : ‖f‖∞ ≤ dG∗ + dβ + ndsdε =: dD} Õ(n4) collisions under h

q ≥ 4mn
√
n log(n)dD, prime Θ̃(n5√n) worst-case to average-case reduction

The table defines all parameters and sets for our scheme. The sets are defined via a norm bound,
for which we also state the asymptotic growth with respect to n. The last column states the main
usage for the individual parameter or set. All sets are subsets of the ring R0 = Z[X]/(Xn + 1).

Table 4.2: Parameters for the security parameter n.

The road map for this section is as follows: We describe the 4-move blind signature
scheme BS. Then, we prove completeness, blindness, and one-more unforgeability.
Proving completeness is non-trivial as we need to address an inevitable completeness
defect. In the course of the discussion we show that it neither harms security nor
efficiency. Afterwards, we prove that the scheme is statistically blind, one-more
unforgeable, and leakage-resilient.

The scheme requires a large number of parameters that need to be carefully worked
out. Their definition in Table 4.2 will be justified later in the analysis. We chose not
to “unwind” the parameters ds, dε, etc., because we need their relative size in the
various lemmas below, making the proofs easier to understand. The asymptotics in
the third column should help estimating their magnitude. The parameter dε is a
constant 1 here but it can be increased if it is necessary to sign hash values of bit
length > n log2(3). The “usage” hint in the table points at the section, where they
are most influential.

As for selecting practical parameters, we refer the reader to Section 4.3. There,
we propose secure parameter sets based on the analysis in Chapter 3.

55

Chapter 4 Blind Signatures

Signer S(ŝ) User U(S,msg)

1 ŷ←$Dm
y

Y−−−−−−−−−−−→ r←${0, 1}n
Y ← h(ŷ) C ← com(msg ; r)

α←$Dα

β̂←$Dm
β

2 ε← H(Y − Sα− h(β̂), C)
ε∗ ← ε− α
If ε∗ 6∈ Dε∗

Start over with a fresh α

3 ẑ∗ ← ŝε∗ + ŷ
ε∗←−−−−−−−−−−−

If ẑ∗ 6∈ Gm∗
Trigger restart

4
ẑ∗−−−−−−−−−−−→ ẑ← ẑ∗ − β̂

If ẑ 6∈ Gm

result← (C,α, β̂, ε)
Else

result← ok

5 If result 6= ok
result←−−−−−−−−−−−

Parse result = (C,α, β̂, ε)

If (ε∗ + α = ε = H(Y − Sα− h(β̂), C)

and H(h(ẑ∗ − β̂)− Sε, C) = ε

and ẑ∗ − β̂ 6∈ Gm)
Trigger restart

Output V ← (ŷ,Y, ε∗, ẑ∗) Output (msg , (r, ẑ, ε)) or ⊥ when result 6= ok

All parameters and sets are defined in Table 4.2. Note that the signer implicitly verifies that the
user’s protocol messages come from the correct domains.

Figure 4.2: Issue protocol of the blind signature scheme BS.

4.2.1 Informal Description

We give a detailed, slightly informal description of the protocol Steps 1-5 in Figure
4.2 and of the influence of the parameter relations in Table 4.2.

Basically, the protocol follows the structure of a (canonical) 3-move identification
scheme, which provides a witness-indistinguishable proof of knowledge (cf. Section
2.5). The signer proves knowledge of ŝ ∈ Dm

s such that h(ŝ) = S with S being the
public key. The function h is chosen from the family H(R,m).

We stick to this basic structure and let the signer transmit a “commitment”
Y = h(ŷ) for a random value ŷ ∈ Dm

y . The user computes the blinded message ε∗

as a function (involving H) of Y and the to-be-signed message msg and sends it to
the signer, which returns ẑ∗ = ŝε∗ + ŷ. Via the linearity of h, the user can verify
that h(ẑ∗) = Sε∗+ Y using only public knowledge. Afterwards, the user transforms

56

4.2 Our Construction

the blinded signature (ẑ∗, ε∗) into the regular signature (ẑ, ε) for msg .

However, to obtain a blind signature scheme from this strategy, we need to over-
come three main obstacles. First, the scheme needs to be unforgeable, i.e., neither Y
nor ẑ∗ may leak too much information about the secret key. Second, ε∗ and ẑ need
to be distributed independently of the message msg to ensure blindness. Third, we
need to ensure completeness despite the following, imperfect filtering technique.

Roughly speaking, we add two numbers a ∈ [−A,A] and b←$[−3A, 3A] and filter
the output in the sense that we only reveal c = a + b if c ∈ [−2A, 2A]. Otherwise,
we choose a fresh b and try again. This ensures that c is distributed independently
of a. However, the filtering technique in this example only works with probability
≈ 2/3 and we expect c ∈ [−2A, 2A] after ≈ 3/2 trials.

It is applied to (̂sε∗) + ŷ to hide the secret key ŝ by randomly choosing the coef-
ficients of ŷ from a relatively large set, compared to ‖ŝε∗‖∞, and then filtering the
output until it is in Gm∗ . Whenever filtering fails in Step 3, the signer has to restart
the entire protocol. After a small number of restarts, the signer can safely send ẑ∗

without revealing the secret key ŝ. Actually, the filtering technique is more involved
and we need to deal with sums of vectors. We will show the details and a refinement
in the next section.

Interestingly, the filtering technique can also be applied to achieve blindness. For
the protocol message ε∗ = ε − α after Step 2, we use α←$Dm

α to hide ε. This is
necessary, as ε will be a part of the output signature. The completeness defect in
this filtering step can be eliminated because the user can repeat this step locally. In
Step 4, the user attempts to unblind the signature by computing ẑ← ẑ∗− β̂, where
β̂ is prepared in Step 1 and randomly chosen from a relatively large set to hide ẑ∗.
This is the third application of the filtering technique. If it fails, the protocol needs
to be restarted.

This last defect is the reason for having the last move and Step 5. Even if both
parties are honest, the user might not be able to obtain a valid signature with non-
negligible probability in Step 4. This is highly unusual for a blind signature scheme,
in fact we are not aware of any other schemes with this kind of behavior.1 In such
a case, the user needs to prove that no valid signature could be obtained (Step 5)
and the protocol needs to be restarted. Therefore, the user submits (C,α, β̂, ε) to
the signer, where C is a commitment to the message msg . The signer can verify
that the user was unable to obtain a valid signature relative to the commitment C.

1However, existing schemes may benefit from introducing such a defect. For example, [Lyu09]
improves the efficiency of a (regular) signature scheme based on the factoring problem by intro-
ducing a similar defect.

57

Chapter 4 Blind Signatures

For unforgeability, we require that the commitment is binding and for blindness it
is crucial that it is hiding. The hiding property of the commitment also prevents
the signer from learning information about msg across restarts.

Since restarts do not harm security, we can repeat the protocol until it is complete.
The expected number of repetitions is constant and it can be brought close to 1 by
choosing the parameters appropriately.

The above may sound like a generic transformation to achieve perfect completeness
for any blind signature scheme with a defect. In fact, it requires a computational
assumption that is specifically tailored to the scheme. Still, we believe that the
general technique can be easily transferred to other schemes.

4.2.2 Our Construction

We construct our blind signature scheme BS = (Kg, Sign,Vf) as follows.

Key Generation: Kg(1n) selects a secret key ŝ←$Dm
s , and a compression function

h←$H(R,m). Let H : R× {0, 1}n → Dε be a random oracle and let C(1n) be
a commitment scheme, mapping {0, 1}∗ × {0, 1}n → {0, 1}n. The algorithm
chooses a function com←$C(1n).

Then, it computes the public key S← h(ŝ) and outputs (ŝ,S). For simplicity,
we treat h, com, and the parameters in Table 4.2 as globally known and implicit
inputs to all algorithms. However, each signer may choose them individually
and include them in the public key.

Signature Protocol: The signature issue protocol for messages msg ∈ {0, 1}∗ is
depicted in Figure 4.2. Eventually, the user outputs a message msg and a
signature (r, ẑ, ε).
Notes: Upon a restart after Step 2, the user only selects a fresh α←$Dα and
repeats the operations that involve α. Whenever the signer triggers a restart,
the user chooses a fresh r in order to make the protocol execution independent
of the previous ones. Therefore, we omit values from previous runs in the
signer’s view. During Step 5, the signer can detect a cheating user that tries
to trigger a restart, despite having received a valid signature. In this case, the
signer can stop the protocol and assume that the user has obtained a valid
signature.

Verification: Vf(S, (r, ẑ, ε),msg) outputs 1 if ẑ ∈ Gm as well as H(h(ẑ) − Sε,
com(msg ; r)) = ε; otherwise 0.

58

4.2 Our Construction

4.2.3 Analysis and Security

In this section, we analyze our blind signature scheme with regard to completeness,
blindness, one-more unforgeability, and leakage resilience. For each aspect, we prove
a main theorem. Supporting lemmas are stated before the theorems and they are
proven in Section 4.4.

Completeness

Completeness of BS is a non-trivial issue due to the eventual restarts and the many
parameters involved. The next lemma ensures that the number of restarts is small,
effectively constant.

Lemma 4.1. Let k = Ω(n), A,B ∈ N>0, a,b ∈ Zk with arbitrary a ∈ {v ∈ Zk :
‖v‖∞ ≤ A} and random b←${v ∈ Zk : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0,
we have Prob

b
[‖a− b‖∞ ≤ B −A] > e−1/φ − o(1).

The multiplication of two polynomials modulo Xn + 1 plays a major role in the
analysis. Therefore, we need the following lemma, which is a special case of [Lyu08b,
Lemma 2.8].

Lemma 4.2. For any two a,b ∈ Z[X] of degree n, we have ‖ab mod (Xn + 1)‖∞ ≤
n ‖a‖∞ ‖b‖∞.

Theorem 4.3 (Completeness). Let g(n) = ω(log2(n)). The scheme BS is complete
after at most g(n) (or, an expected number of e2/φ) repetitions.

Proof. Let us assume that the protocol does not have to be restarted after Steps 2, 3,
and 4. Then, for all honestly generated key pairs (ŝ,S), all messages msg ∈ {0, 1}∗,
and all signatures (r, ẑ, ε) we have ẑ ∈ Gm and h(ẑ) − Sε = h(ẑ∗ − β̂) − Sε =
h(ŝ(ε − α) + ŷ − β̂) − Sε = Y − Sα − h(β̂) and com(msg ; r) = C. Therefore
H(h(ẑ)− Sε, com(msg ; r)) = ε and BS.Vf(S, (r, ẑ, ε),msg) = 1.

Now, we analyze the probability of a restart. Observe that the restarts after Step
2 do not affect completeness, as the user does them locally. The number of trials here
is at most g(n) for any g(n) = ω(log(n)) due to Lemma 4.1 (k = n,A = ds, B = dα)
for ε−α ∈ Dε∗ . However, the expected number of trials is constant (e1/ψ). It is safe
to set ψ = 1 here but one might want less trials, e.g., less than 1.5 for ψ ≥ 3 and
n > 1.

After Steps 3 and 4, aborts affect the protocol and trigger a full restart. In
Step 3, we need to ensure that ŝε∗ + ŷ ∈ Gm∗ . By Lemma 4.2, we know that

59

Chapter 4 Blind Signatures

‖ŝε∗ mod (Xn + 1)‖∞ ≤ ndsdε∗ and applying Lemma 4.1 (k = mn,A = ndsdε∗ , B =
dy) yields the constant success probability e−1/φ and a maximum number g(n) of
trials for any g(n) = ω(log(n)). In practice, this can be optimized by increasing φ.
After an expected number e1/φ of restarts, the protocol proceeds to Step 4.

In Step 4, the user attempts to unblind the signature and requires that ẑ∗ − β̂ ∈
Gm. Otherwise, the user convinces the signer that a restart is necessary. We apply
Lemma 4.1 on (k = mn,A = dG∗ , B = dβ) and obtain the same behavior as in
Step 3.

In total, after at most g(n), for any g(n) = ω(log2(n)), or an expected number
e2/φ of trials, the protocol is complete.

In Section 4.3, we will see that φ = 4 is good choice to make the protocol more
efficient in practice. Observe that in any case, all operations (including eventual
restarts) in BS have Õ(n) complexity and that private keys, public keys, and signa-
tures have size Õ(n).

Blindness

We prove that BS is statistically blind based on the observation that the signer only
sees values that are independent of the message being signed. More precisely, the
views generated by two different messages are indistinguishable. For this argument
to work, we require a statistically hiding commitment scheme and appropriate sets
Dα, Dβ, Dε∗ , and G. The following probabilistic lemma is crucial as it guarantees
that the user’s message after Step 2 and the final output are independent of the
message.

Lemma 4.4. Let k ∈ N>0, A,B ∈ N>0, a,a′,b ∈ Zk with arbitrary a,a′ ∈ {v ∈
Zk : ‖v‖∞ ≤ A}, a random b←${v ∈ Zk : ‖v‖∞ ≤ B} for B > A. We define the
random variables c← a−b and c′ ← a′−b if max{‖a− b‖∞ , ‖a′ − b‖∞} ≤ B−A,
otherwise, we resample b. Then, ∆(c, c′) = 0.

The role of com is to ensure that the signer can only obtain negligible information
from restarts. Notice that BS is perfectly blind ((∞, 0)-blind) if the commitment
scheme is perfect (0-hiding).

Theorem 4.5 (Blindness). BS is (∞, δ(h)
com)-blind if com is δ

(h)
com-hiding.

Proof. As per experiment ExpblindS,BS, the adversarial signer outputs two messages
msg0,msg1 and interacts with two users U(S,msgb), U(S,msg1−b) after a secret

60

4.2 Our Construction

coin flip b ← {0, 1}. We show that these users do not leak any information about
their respective message.

Technically, we establish that all protocol messages and the output, when in-
terpreted as random variables, are distributed independently of the message being
signed. This involves an analysis of ε∗, ẑ, and eventual restarts. As for ε and r, we
already know that they are chosen uniformly at random.

Distribution of ε∗: Let ε∗b , ε
∗
1−b be the first protocol messages of U(pk ,msgb) and

U(pk ,msg1−b), respectively. They are in Dε∗ and they are both of the form
ε − α with ε ∈ Dε and α←$Dα. The statistical distance ∆(ε∗b , ε

∗
1−b) is 0 by

Lemma 4.4 (k = n,A = ds, B = dα) because they are filtered to be in Dε∗ , i.e.,
their coefficients are bounded by B −A = dα − ds.

Distribution of ẑ: Let ẑ0, ẑ1 be part of the final output of U(pk ,msg0) resp. U(pk ,
msg1). Both are of the form ẑ∗− β̂ for ẑ∗ ∈ Gm∗ and β̂←$Dm

β . Furthermore, ẑ0

and ẑ1 are filtered to be in Gm, having coefficients bounded by dβ−dG∗ . Hence,
the statistical distance ∆(ẑ0, ẑ1) is 0 because of Lemma 4.4 (k = mn,A =
dG∗ , B = dβ).

Restarts: Observe that each protocol run is statistically independent of the previ-
ous runs by the statistical hiding property of the commitment com and because
the user selects fresh r, α, β̂ after every restart. This is the reason why we in-

herit the statistical δ
(h)
com-hiding property to obtain (∞, δ(h)

com)-blindness instead
of perfect blindness. Finally, we need to argue about the restart after Step
4. The user sends (C,α, β̂, ε) to the signer. These information allow the ver-
ification of the signature with respect to C. The message is still statistically
hidden by the hiding property of com because the user never reveals the de-
commitment r.

Hence, the protocol hides the to-be-signed message and subsequent runs of the pro-
tocol for the same message are statistically independent.

Furthermore, our scheme already supports selective failure blindness as shown in
[FS09] because we are signing commitments instead of the adversely chosen messages
and even the fourth, additional, move does not reveal any information about the
message due to the hiding property of the commitment. The commitment can be
safely omitted whenever the messages are just random values without any meaningful
content, such as in an e-cash scheme. The user simply starts over with a fresh
message.

61

Chapter 4 Blind Signatures

One-more Unforgeability

In this section, we show that BS is one-more unforgeable, provided that the collision
problem COL(H(R,m), D) is hard and the commitment scheme is binding. The
main tool in the reduction is the Forking Lemma [PS00, BN06]. It is repeated at
the end of this chapter as Lemma 4.12 in Section 4.4.4 for the reader’s convenience.
To simulate the environment, especially blind signature queries, for the attacker A in
the unforgeability experiment, we require that there are at least two possible secret
keys for each public key S (Lemma 4.6). Moreover, we need the signature protocol
to be witness indistinguishable to prevent the attacker from learning the secret key
(Lemma 4.7). The binding property of com is necessary to prevent an attacker from
obtaining one signature that works for two messages by changing the message under
the commitment. All other attackers necessarily output at least one signature that
does not correspond to a completed interaction. Here, we apply the Forking Lemma
to extract knowledge about the secret key that was used to compute the forgery.
Using this knowledge, the reduction can solve the collision problem. Finally, we
need to deal with Step 5 in the protocol. The adversary proves that it was unable
to obtain a valid signature. We show that this is sufficient if COL is hard.

Since the function family H(R,m) compresses the domain Dm
s , it is easy to show

that all secret keys collide with at least one other secret key.

Lemma 4.6. Let h ∈ H(R,m). For every secret key ŝ←$Dm
s , there is a second

ŝ′ ∈ Dm
s \ {ŝ} with h(ŝ) = h(ŝ′) (with overwhelming probability).

The next lemma establishes witness indistinguishability of the protocol. Witness
indistinguishability ensures that the malicious user cannot distinguish whether the
signer uses one of two possible secret keys ŝ, ŝ′ ∈ h−1(S) ∩ Dm

s . Basically, it can
be interpreted as an application of Lemma 4.4 to ẑ∗ = (ŝε∗) + ŷ ∈ Gm∗ with some
further observations. The choice of ŷ←$Dy and the restriction “∈ Gm∗ ” hide the
first summand.

Lemma 4.7. Let h ∈ H(R,m) and S ∈ R. For any message msg and any two
secret keys ŝ, ŝ′ ∈ Dm

s with h(ŝ) = S = h(ŝ′), the resulting protocol views (Y, ε∗, ẑ∗)
and (Y′, ε∗′, ẑ∗′) are indistinguishable.

Using lemmas 4.6 and 4.7, we can exploit witness indistinguishability to simulate
all blind signature oracle queries with a secret key ŝ and at the same time expect
the adversary to output a forgery that corresponds to a different secret key ŝ′ with
non-negligible probability or break the binding property of the commitment scheme.

62

4.2 Our Construction

Theorem 4.8 (One-more unforgeability). Let OSign be the signature oracle. Let
TOSign and TH be the cost functions for simulating the oracles OSign and H, and
let c < 1 be the probability for a restart in the protocol. Let QH be the number of
queries to H. BS is (t, QSign, δ)-one-more unforgeable if com is (t′, δ/2)-binding and

COL(H(R,m),D) is (t′, δ′/2)-hard with t′ = t+Q
QOSign

H (QOSignTOSign +QHTH) and
non-negligible δ′ if δ is non-negligible.

The probability δ′ depends on the number of issued signatures. It can be found
at the end of the proof.

Proof. Towards contradiction, we assume that there exists a successful forger A
against one-more unforgeability of BS with non-negligible probability δ. Using A,
we construct an algorithm B, such that it either solves the collision problem or
breaks the binding property of com.

Setup: B flips a coin b←${0, 1}. For b = 0, it selects h←$H(R,m). For b = 1, it
gets the description of h as input. B initializes a list LH ← ∅ of query-hash
pairs (R×{0, 1}n,Dε). It chooses ŝ←$Dm

s and sets S← h(ŝ). Furthermore, it
randomly pre-selects random oracle answers h1, . . . ,hQH

←$Dε and a random
tape ρ. It runs A(S; ρ) in a black-box simulation.

Random Oracle Queries: On input (u, C), B looks up (u, C) in LH. If it finds
corresponding hash value ε then it returns ε. Otherwise, B selects the first
unused ε from the list h1, . . . ,hQH

, stores ((u, C), ε) in LH, and returns ε.

Blind Signature Queries: B acts according to the protocol in Figure 4.2.

Output: Eventually, A stops and outputs (msg1, (r1, ẑ1, ε1)), . . . , (msg , (r, ẑ, ε)),
QOSign + 1 = , for distinct messages. If b = 0, the reduction looks for two
pairs (msg∗1, (r

∗
1, ẑ
∗, ε∗)) and (msg∗2 6= msg∗1, (r

∗
2, ẑ
∗, ε∗)) and outputs (msg∗1, r

∗
1),

(msg∗2, r
∗
2) to break the binding property of com. If there is no such collision,

B aborts. If b = 1, the simulator B looks for a distinct pair of signatures with
the same ε. Such a pair directly solves the collision problem. Otherwise, all εi,
i ∈ [] are distinct and B guesses an index k←$[] such that hı = εk for some
ı ∈ [QH]. Then, B starts over, running A(S; ρ) with random oracle answers
h1, . . . ,hı−1,h

′
ı, . . . ,h

′
QH

for a fresh set h′ı, . . . ,hQH
←$Dε. Both A and B are

run with the same random tape as in the first run. Among other values, A
outputs (msg ′k, (r

′
k, ẑ
′
k, ε
′
k)) and B returns (ẑk−ŝεk, ẑ

′
k−ŝε′k) if ẑk−ŝεk 6= ẑ′k−ŝε′k

in an attempt to solve COL(H(R,m),D). The reduction retries at most QH
times with a different random oracle.

63

Chapter 4 Blind Signatures

Analysis. A’s environment is perfectly simulated. Especially, restarts happen with
the same probability as in the original protocol. For b = 0, B (t′, δ/2)-breaks the
binding property of com if A breaks the binding property of com to break one-more
unforgeability.

For b = 1, we assume that A breaks one-more unforgeability without attacking
com. So, at least one of the output signatures is not obtained via an interaction.
The probability that B guesses the index k of this signature correctly is at least
1/(QOSign + 1). Observe that εk is a random oracle answer but with probability
1/|Dε|. In total, there are QH index maps {(ı, k) : hı = εk}. Hence, one of the
re-runs of A yields the same map as in the first run of A and we can consider the
indices in both “interesting” replays to be constant.

Applying the Forking Lemma, we know that with probability δfrk ≥ (1 − c)(δ −
1/|Dε|)((δ−1/|Dε|)/QH−1/|Dε|), A is again successful in the one-more unforgeability
experiment and outputs (msg ′k, (r

′
k, ẑ
′
k, ε
′
k)) using the same random oracle query as

in the first run. The additional (1 − c) factor takes a potential abort during the
second run into account, which happen with probability at most c. Therefore, we
know that (h(ẑk)− Sεk, com(msgk; rk)) = (h(ẑ′k)− Sε′k, com(msg ′k; r

′
k)).

Now, we turn to solving the collision problem. We have to show that ẑk − ŝεk 6=
ẑ′k − ŝε′k and h(ẑk − ŝεk) = h(ẑ′k − ŝε′k). The second requirement follows directly
from the previous paragraph. The first is more involved. Here, it is important
that the protocol is witness indistinguishable (Lemma 4.7), i.e., the adversary does
not recognize whether we have used one of at least two possible ŝ, ŝ′ (Lemma 4.6
with probability greater than 1/2. Thus, with probability at least 1/2 its output
corresponds to ŝ′. More precisely, we need that, for at least one t̂ ∈ {ŝ, ŝ′}, the
random variables χk = ẑk − t̂εk and χ′k = ẑ′k − t̂ε′k are sensitive to the modified
random oracle answers for indices ≥ ı. Hence, χk 6= χ′k with probability at least 1/2
and we obtain the desired collision with norm at most dG +ndsdε < dD . Otherwise,
we would have ẑk − ŝεk = ẑ′k − ŝε′k and ẑk − ŝ′εk = ẑ′k − ŝ′ε′k. We subtract the
equations and obtain (εk − ε′k)(ŝ

′ − ŝ) = 0. We know that εk − ε′k 6= 0. Now,
‖(εk − ε′k)(ŝ′ − ŝ)‖∞ ≤ 4dsn < q/2 because ‖εk − ε′k‖∞ ≤ 2 and ‖ŝ′ − ŝ‖∞ ≤ 2ds.
Thus, (εk − ε′k)(ŝ′ − ŝ) = 0 over Z[X]/〈Xn + 1〉, which is an integral domain. So,
we have the contradiction ŝ′ = ŝ and a collision (ẑk − ŝεk, ẑ

′
k − ŝε′k) ∈ D × D . The

success probability is at least δcol ≥ 1/2 δfrk/(QOSign + 1), which is non-negligible if
δ is non-negligible.

Concerning restarts, we argue that the user cannot obtain a valid signature out
of an aborted interaction without solving the collision problem. In order to trigger
an abort after Step 4, it outputs result = (C,α, β̂, ε) which, together with ẑ∗, ŷ, ε∗,

64

4.2 Our Construction

satisfies all abort criteria:

ε∗ + α = ε = H(Y − Sα− h(β̂), C) (4.1)

ε = H(h(ẑ∗ − β̂)− Sε, C) (4.2)

ẑ∗ − β̂ 6∈ Gm (4.3)

Assume that it also obtains a valid signature (r′, ẑ′, ε′) from this interaction. If
ε = ε′, then h(ẑ∗− β̂− ŝε) = h(ẑ′− ŝε) by (4.2). If the arguments under h are equal,
we have ẑ∗ − β̂ ∈ Gm — a contradiction with (4.3). If the arguments are distinct,

we have a collision in D because ‖ẑ′ − ŝε‖∞ ≤ dG < dD and
∥∥∥ẑ∗ − β̂∗ − ŝε

∥∥∥
∞
≤

dG∗ + dβ + ndsdε = dD.

The adversary may succeed by hiding ε′ 6= ε in ε∗. But then, we necessarily have
ε∗ = ε − α = ε′ − α′ by (4.1) for an α 6= α′ and we know that α = ε − ε′ + α′. So,
the adversary had to be able to predict the output of H to compute α.

To conclude, the probability that we can extract a collision from a cheating
user during an abort is at least δabort ≥ δ (1− 1/|Dε|), which is non-negligible
if δ is non-negligible. Thus, the overall success probability of the reduction is
δ′ ≥ min(δcol, δabort) if the guess b = 1 was correct.

Hence, we require that QOSign = o(n) to be able to rely on the subexponen-
tial hardness of lattice problems. This constraint is an artifact of the proof tech-
nique as discussed in [PS00] and it is not at all unusual for efficient blind signature
schemes. There, it was even required that QOSign ≤ (log(n))O(1) because they needed
a polynomial-time reduction. In consequence, in our reduction, we greatly benefit
from the subexponential hardness of the underlying lattice problem. Alternatively,
we believe that the running time of the reduction can be significantly reduced to
being polynomial in qOSign by using techniques due to Pointcheval [Poi98]. We leave
this as an open research question.

Via Proposition 2.3, we get the following strong worst-case security guarantees.

Corollary 4.9. BS is one-more unforgeable if solving SIVP∞ is hard in the worst
case for approximation factors γ = Õ(n5) in lattices that correspond to ideals in R0.

Leakage Resilience

Using an additional restriction for one of the parameters, we can safely leak a (1−
o(1)) fraction of the secret key in the unforgeability experiment according to the
definition in Section 4.1.1. The following results also carry over to Lyubashevsky’s

65

Chapter 4 Blind Signatures

identification and signature schemes [Lyu09]. Recall that m = bcm log(q)c + 1 for
some cm = Õ(1). Thus, it is possible to choose cm, say log(n), without loosing the
scheme’s quasi-optimal efficiency. The following theorem states that such a choice
is sufficient to provide strong leakage resilience.

To prove the theorem, we use a technical lemma from [KV09] in its alternative
interpretation.

Lemma 4.10 ([KV09, Lemma 1]). Let X be a random variable with H := H∞(X),
and fix H ′ ∈ [0, H]. Let f be a function whose range has size 2λ, and set Y := {y ∈
{0, 1}λ|H∞(X|y = f(X)) ≥ H ′}. Then Prob[f(X) ∈ Y] ≥ 1− 2λ−H+H′.

In our context, it states that the conditional min-entropy of the secret key after λ
bits of leakage is at least H ′ but with probability 2λ−H+H′ . We will use the lemma
with H ′ = 1 because one bit of uncertainty is sufficient to apply Lemma 4.7 (witness
indistinguishability) in Theorem 4.8.

Theorem 4.11 (Leakage Resilience). Let cm = ω(1) and let L := log(|Dm
s |) = mn

log(2ds + 1) be the length of the secret key. The conditional min-entropy H∞ of ŝ,
conditioned on S = h(ŝ) and a total secret-key leakage f(ŝ) of λ = δL = (1− o(1))L
bits, is positive with overwhelming probability.

Proof. We prove a conservative lower bound on the amount of tolerated leakage
because we treat the public key S as additional leakage. Therefore, we define a
new total leakage function f ′(ŝ) = f(ŝ)‖h(ŝ) with a total leakage of at most λ′ =
λ + n log(q) bits. Now, we apply Lemma 4.10 to f ′, λ′, and H ′ with ŝ being the
random variable. Observe that H = L = mn log(2ds + 1). It yields

Prob
[
f ′(ŝ) ∈ Y

]
≥ 1− 2λ+n log(q)−L+1 , (4.4)

which we want to be overwhelming ≥ 1 − 2−p(n). We take any function p(n),

ω(log(n)) ≤ p(n) ≤ O(n log(n)) and bound the relative leakage δ ≤ 1− p(n)+n log(q)+1
L

= 1− Θ(n log(n))
cmΘ(n log(n)) = 1− 1

ω(1) = 1− o(1).

In consequence, (4.4) becomes ≥ 1 − 2

(
1− p(n)+n log(q)+1

L

)
L+n log(q)−L+1

= 1 − 2p(n).
Thus, δL = (1 − o(1))L leakage bits yield a non-zero conditional min-entropy with
probability 1− 2−p(n) ≥ 1− 2−ω(log(n)).

4.3 Practical Parameters

Although worst-case guarantees are a good argument for lattice-based cryptography
in general, we need to analyze the underlying average-case problem, the collision

66

4.3 Practical Parameters

problem, directly before proposing concrete parameters. To this end, we use our
results from Chapter 3.

All we need to apply the framework, is to feed it with valid parameter relations
(cf. Table 4.2) and run the main reduction (one-more unforgeability). As a result, we
end up with an instance of the collision problem COL(H(R,m),D), or alternatively
with the SIS (short integer solution) problem. Since Chapter 3 only deals with
`2-norm we relax the adversaries task and assume it only needs to find a vector of
Euclidean norm ≤ dD

√
mn. The resulting instance of SIS then yields a hardness

estimate δ, which can be related to “bit security”.

4.3.1 Optimization

Before we propose actual parameters, we optimize the choice of parameters based
on the constraints in Table 4.2. We discuss the parameters q, ψ, φ, and ds.

Choosing q From Table 4.2 and Proposition 2.3, we know that the worst-case
to average-case reduction relies on having q ≥ 4mn

√
n log(n)dD = Θ̃(n5√n). For

practical parameters, we typically arrive at q ≈ n8 because of the hidden constants.

Choosing ψ As noted before, we can safely set ψ = 1 and let the user handle
an expected number of e restarts after Step 2 in the protocol. These restarts are
performed locally and experiments show that they do not significantly affect the
overall efficiency of the protocol.

Choosing φ Here, the situation is different because it controls the probability of
a restart after Steps 3 and 4. Restarts at this point cannot be done locally and
involve an increase in communication and computation costs. The influence becomes
obvious when looking at Figure 4.3. It shows the number of required repetitions of
the blind signature protocol for n ∈ {1024, 2048, 4096} and 1 ≤ φ ≤ 15, averaged
over 1000 random instances. As a comparison, it also shows the estimated number of
repetitions e2/φ from Section 4.2. As expected, the behavior is almost independent
of n. Our experiments show that one should choose φ ≥ 4 and by closely looking at
the numbers it even makes sense to choose φ = 10 in some cases.

This observation is backed up by Figure 4.4, which shows the actual combined
running time in milliseconds of signing and verification, averaged over 1000 random
instances for each pair (n, φ). Since our implementation is pretty straightforward
without many optimizations, we believe that there is a lot of room for improvements.

67

Chapter 4 Blind Signatures

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
u
n
s

φ

4096
2048
1024

exp(2/φ)

Figure 4.3: Average number of runs needed to complete in the signature protocol of
BS for 1 ≤ φ ≤ 15 and n ∈ {1024, 2048, 4096}.

When increasing φ, one has to keep in mind that a larger φ also increases dD and
requires a slightly stronger hardness assumption.

Choosing ds When looking at the constraint for m, basically m > log(q)/ log(2ds),
it is clear that a larger ds allows us to choose a smaller m. This can dramatically
decrease the required bandwidth and computational cost at the expense of a slightly
larger secret key. We show the effect of a larger ds in Figure 4.5 for n = 2048 and
φ = 4. Notice that we take the logarithm of ds and round m to the next integer.
So, in order to decrease m by a factor k, we need to choose ds around 2k. When
removing the outliers, this leads to a perfect stair-stepped graph, where the steps
become wider with increasing ds. Also, this increase comes at the price of having a
larger dD and requires stronger hardness assumption.

68

4.3 Practical Parameters

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[
m
s
]

φ

4096

2048

1024

Figure 4.4: Average running time of signature protocol and the verification algo-
rithm of BS for 1 ≤ φ ≤ 15 and n ∈ {1024, 2048, 4096} in milliseconds,
including eventual restarts.

69

Chapter 4 Blind Signatures

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

[
m
s
]

d
s

2048

Figure 4.5: Average running time of signature protocol and the verification algorithm
of BS for 1 ≤ ds ≤ 10,000 and n = 2048 and φ = 4. The range is
truncated to [0, 1000].

70

4.4 Supporting Lemmas

Parameter Current I Current II Current III Medium I Medium II Medium III

n 1024 1024 1024 2048 2048 2048
q ≈ 278 ≈ 285 ≈ 281 ≈ 285 ≈ 291 ≈ 294

φ 1 8 4 1 10 4
ds 1 1 283 1 1 241080
m 79 86 9 85 92 5

Repetitions 7.13 1 .32 1.55 7.67 1 .16 1.23
Secret key 15.7 kB 17 kB 10.3 kB 33.7 kB 36.5 kB 23.6 kB
Public key 9.8 kB 10.6 kB 10,2 kB 21.2 kB 22.9 kB 23.6 kB
Signature 529.4 kB 643.4 kB 66.9 kB 1228.6 kB 1487.9 kB 89.4 kB
Communication 2706.4 kB 589.5 kB 95.2 kB 6771.5 kB 1199.8 kB 119.1 kB

KeyGen 296 ms 369 ms 37 ms 674 ms 843 ms 52 ms
Signing 7629 ms 1819 ms 220 ms 19000 ms 3656 ms 283 ms
Verification 226 ms 293 ms 33 ms 532 ms 679 ms 57 ms

Table 4.3: Exemplary parameters for the blind signature scheme in Section 4.2.

4.3.2 Secure Parameters

Table 4.3 shows a few exemplary parameter sets for current (76 bit) and medium (102
bit) security levels. According to www.keylength.com, they correspond to security
until the years 2012 and, 2050, respectively. We leave out the detailed parameters
for future (256 bit / year 2282) security.

For both security levels, we propose three parameter sets. The first requires the
mildest hardness assumption and uses the smallest modulus. The second minimizes
the number of repetitions and the third is simultaneously optimized for computa-
tional cost and bandwidth including restarts. The optimization goal is denoted in
italics. Depending on the application scenario, other trade-offs are possible.

4.4 Supporting Lemmas

In the following, we prove a number of supporting lemmas for our main theorem in
Section 4.2.

4.4.1 Completeness

Proving Lemmas 4.1 and 4.2 concludes the discussion of completeness in Theorem
4.3. Lemma 4.1 shows that the number of aborts/restarts in the protocol is small.
Lemma 4.2 ensures that multiplying two “short” polynomials only slightly increases

71

Chapter 4 Blind Signatures

the norm of the resulting coefficient vector.

Lemma 4.1 Let k = Ω(n), A,B ∈ N>0, a,b ∈ Zk with arbitrary a ∈ {v ∈ Zk :
‖v‖∞ ≤ A} and random b←${v ∈ Zk : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0,
we have Prob

b
[‖a− b‖∞ ≤ B −A] > e−1/φ − o(1).

Proof. Observe that Prob[‖a− b‖∞ ≤ B −A] = Prob[|ai − bi| ≤ B −A]k and that
the bi need to be in the range [−(B−A)+ai, B−A+ai] ⊆ [−B,B] for that. Therefore,
the probability is

(
2(B −A) + 1

2B + 1

)k
>

(
1− A

B

)k
≥
(

1− 1/φ

k

)k
.

By the series expansion at infinity, this is at least 1
e1/φ
− o(1) for an o(1) term that

vanishes like 1/k.

Lemma 4.2 For any two a,b ∈ Z[X] of degree n, we have ‖ab mod (Xn + 1)‖∞ ≤
n ‖a‖∞ ‖b‖∞.

Proof. Note that c = ab mod (Xn + 1) =
∑n−1

i=0 aibX
i mod (Xn + 1). Hence, we

have ‖c‖∞ ≤ n ‖a‖∞maxi=0,...,n−1{
∥∥bXi mod (Xn + 1)

∥∥
∞}. For our particular re-

lation Xn = −1, this is easy to evaluate because bX = b0X+b1X
2+· · ·+bn−2X

n−1+
bn−1X

n mod (Xn + 1) = −bn−1 + b0X+ b1X
2 + · · ·+ bn−2X

n−1. Therefore, we have∥∥bXi mod (Xn + 1)
∥∥
∞ = ‖b‖∞ and ‖c‖∞ ≤ n ‖a‖∞ ‖b‖∞.

4.4.2 Blindness

Lemma 4.4 establishes blindness in Theorem 4.5. It guarantees that the every output
by the user is distributed independently of the signed message.

Lemma 4.4 Let k ∈ N>0, A,B ∈ N>0, a,a′,b ∈ Zk with arbitrary a,a′ ∈ {v ∈
Zk : ‖v‖∞ ≤ A}, a random b←${v ∈ Zk : ‖v‖∞ ≤ B} for B > A. We define the
random variables c← a−b and c′ ← a′−b if max{‖a− b‖∞ , ‖a′ − b‖∞} ≤ B−A,
otherwise, we resample b. Then, ∆(c, c′) = 0.

72

4.4 Supporting Lemmas

Proof. By definition, the statistical distance is

1

2

∑
c:‖c‖∞≤B−A

∣∣∣∣Prob
b

[a− b = c]− Prob
b

[
a′ − b = c

]∣∣∣∣
=

1

2

∑
c

∣∣∣∣Prob
b

[b = a− c]− Prob
b

[
b = a′ − c

]∣∣∣∣ .
Observe that max{‖a− c‖∞ , ‖a′ − c‖∞} ≤ A+(B−A) = B and ‖b‖∞ ≤ B. Hence,
the probability in either case is 1/(2B + 1)k and the statistical distance is 0.

4.4.3 One-more Unforgeability

Lemma 4.6 ensures that all secret keys collide with at least one alternative secret key
under h. In combination with Lemma 4.7, which proves witness indistinguishability
of the signature issue protocol, this allows us to build a reduction algorithm in
Theorem 4.8 that correctly simulates the signer and breaks COL(H(R,m),D) with
the help of a forger.

Lemma 4.6 Let h ∈ H(R,m). For every secret key ŝ←$Dm
s , there is a second

ŝ′ ∈ Dm
s \ {ŝ} with h(ŝ) = h(ŝ′) (with overwhelming probability).

Proof. All functions in the family H(R,m) are compressing when applied to the
domain Dm

s for our choice of parameters because |Dm
s | = (2ds + 1)mn > 3mn >

(2ds)
n log(q)/ log(2ds) > 2n log(q) = qn = |R|. Therefore, all but at most qn elements

in Dm
s do not collide. The probability of selecting such an element is at most

(q/(2ds + 1)m)n < 2−n log(q) log(2ds+1)/ log(2ds) < 2−n log(q) = 2−Ω(n log(n)).

Lemma 4.7 Let h ∈ H(R,m) and S ∈ R. For any message msg and any two secret
keys ŝ, ŝ′ ∈ Dm

s with h(ŝ) = S = h(ŝ′), the resulting protocol views (Y, ε∗, ẑ∗) and
(Y′, ε∗′, ẑ∗′) are indistinguishable.

Proof. The argument is an adaptation of [Lyu08b, Theorem 5.5]. We interpret the
components of the view as random variables. Firstly, observe that Y and Y′ are
chosen independently of the secret key. Secondly, ε∗ and ε∗′ are independent of a
particular ŷ ∈ h−1(Y) ∩ Dm

y because Y statistically hides ŷ. Finally, we need to
argue about the indistinguishability of ẑ∗ and ẑ∗′. Let ε∗ be any challenge and let
ẑ∗ = ŝε∗ + ŷ ∈ Gm∗ . Then, we can set ŷ′ ← ŷ + ŝε∗ − ŝ′ε∗ for which ẑ∗ = ŝ′ε∗ + ŷ′.
We need to show that ŷ′ ∈ h−1(Y) ∩ Dm

y . This implies that for every ŷ (for ŝ),

73

Chapter 4 Blind Signatures

there is a ŷ′ (for ŝ′) that yields the same output. Thus, the probability of a restart
would also be equal. Clearly, ŷ′ ∈ h−1(Y) because h(ŷ′) = Y + Sε∗ − Sε∗ = Y.
Furthermore, ‖ŷ′‖∞ ≤ ‖ẑ∗‖∞+ ‖ŝ′ε∗‖∞ ≤ dy − ndsdε∗ + ndsdε∗ = dy by Lemma 4.2
and we can conclude ŷ′ ∈ Dm

y .

4.4.4 Forking Lemma

The generalized Forking Lemma of Bellare and Neven [BN06] is a tool for proving
security in the random oracle model. It provides a lower bound for the probability
that a randomized algorithm outputs two related values when run twice with the
same random tape but with a different random oracle.

Lemma 4.12 (Lemma 1 in [BN06]). Fix an integer Q ≥ 1 and a set H of size h ≥ 2.
Let A be a randomized algorithm that on input x, h1, . . . , hQ returns a pair, the first
element of which is an integer in the range 0, . . . , Q and the second element of which
we refer to as a side output. Let IG be a randomized algorithm that we call the input
generator. The accepting probability of A, denoted acc, is defined as the probability
that J ≥ 1 in the experiment x←$IG;h1, . . . , hQ←$H; (J, σ)←$A(x, h1, . . . , hQ). The
forking algorithm FA associated to A is the randomized algorithm that takes input x
proceeds as follows:

Algorithm FA(x)
Pick coins ρ for A at random
h1, . . . , hQ←$H

Q

(I, σ)← A(x, h1, . . . , hQ; ρ)
If I = 0 then return (0, ε, ε)
h′I , . . . , h

′
Q←$H

(I ′, σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
Q; ρ)

If I = I ′ and hI 6= h′I′ then return (1, σ, σ′)
Else return (0, ε, ε).

Let frk = Prob[b = 1 : x←$IG; (b, σ, σ′)← FA(x)]. Then frk ≥ acc
(
acc
Q −

1
h

)
.

4.5 Conclusion and Open Problems

We have shown how to construct an efficient and provably secure blind signature
scheme based on the hardness of worst-case lattice problems. Our scheme has four
moves, offers quasi-optimal performance, and it is leakage resilient in an almost
optimal sense.

74

4.5 Conclusion and Open Problems

Further research directions include the elimination of the random oracle, further
efficiency improvements, and similar constructions of fair blind [SPC95] and partially
blind [AF96] signature schemes. A standard model blind signature scheme from
lattices is likely to involve fundamentally new techniques. Modifications to fair or
partially blind signatures seem within reach. Here, it would be interesting to try
and instantiate our unified model in [RS10b] for fair partially blind signatures. The
dissertation author was the primary investigator and author of this paper. In this
model, the signer can control parts of the signed message, e.g., an expiry date for
a blindly issued voucher. At the same time, if a user misbehaves or even commits
a crime with a blind signature, a trusted authority can trace the corresponding
interaction back to the fraudulent user.

75

Chapter 5

Verifiably Encrypted Signatures

77

Chapter 5 Verifiably Encrypted Signatures

Boneh et al. introduce the concept of verifiably encrypted signatures (VES) as
a means of covertly exchanging signatures, while maintaining their verifiability
[BGLS03]. They include a passive, trusted third party, the adjudicator, which
makes VES schemes fall into the category of optimistic fair exchange protocols
[ASW00, BDM98].

Signer, receiver, and adjudicator, interact as follows. The signer encrypts his or
her signature σ for a document msg as a verifiably encrypted signature $. Given
$, the receiver can verify that it contains a valid signature for msg , but is other-
wise unable to extract σ. A commercially important application is online contract
signing under the supervision of an escrow. As opposed to the classic (offline) sce-
nario, where the escrow needs to be involved in every step of the process, verifiably
encrypted signatures make signing contracts more cost-efficient due to the passive-
ness of the escrow and simultaneously allow the parties to negotiate online rather
than meet in person. They simply exchange verifiably encrypted signatures on the
negotiated contract, verify them, and finally exchange the corresponding regular sig-
natures. Assume Alice acts honestly, while Bob tries to misuse (e.g., for negotiating
a better deal elsewhere or simply for blackmail) the partially signed document with-
out providing a signature himself. The adjudicator can step in and disclose Bob’s
signature. The contract becomes binding despite Bob’s attempt to back out.

Boneh et al. also propose the first construction, which is provably secure in the
random oracle model, followed by a slightly more efficient construction by Zhang et
al. [ZSNS03]. Both use pairings. Lu et al. present the first scheme in the standard
model in [LOS+06]. Furthermore, they sketch a generic construction based on non-
interactive zero-knowledge (NIZK) proofs. Another NIZK construction has been
proposed by Dodis et al. in [DLY07]. Using NIZKs, however, is generally very
inefficient with respect to computational cost and signature size.

In [BGLS03], security of is defined via unforgeability and opacity. Roughly speak-
ing, unforgeability assures that a malicious user cannot produce signatures on behalf
of another party. Opacity guarantees that only the adjudicator and the signer can
disclose a signature from a verifiably encrypted signature.

Surprisingly, the original security model does not guarantee that the adjudicator
is always able to extract a valid signature from a valid verifiably encrypted signature.
In fact, we show that every VES can easily be turned into a scheme which remains
secure in this model, but where a malicious signer can output a verifiably encrypted
signature such that the ordinary signature is hidden irrecoverably — a disaster for
optimistic fair exchange.

78

Our Contribution The results in this chapter are essentially bifold. We improve the
initial, flawed security model for VES schemes and we propose a generic, modular
framework for constructing VES schemes. In particular, we show that there is a
lattice-based instantiation in the standard model.

New Security Model As our first result, we extend the model of [BGLS03] to en-
sure the aforementioned extractability. In addition, we propose non-frameability as
a stronger form of unforgeability. Basically, a non-frameable VES scheme guaran-
tees that an adversary who cooperates with the adjudicator is not able to derive
a verifiably encrypted signature on behalf of an honest signer. We show that non-
frameability is indeed stronger than unforgeability and that for a “natural” class
of extractable VES schemes, non-frameability is already implied. Since the instan-
tiation of [BGLS03] and [LOS+06] fall into this class, our results also give more
confidence about the security of their schemes.

The second part of the chapter is devoted to generic constructions. A common
approach would be: take a message, sign it, encrypt the signature, and append
a NIZK, proving that decryption yields a valid signature for the given message.
However, we are interested in a standard model construction and, hence, need to
avoid NIZK proofs. This entails the following model extension.

VES with a Setup Phase We extend our specification and security model in the
sense that the signer’s key may depend on the adjudicator’s public key and to limit
the number of issuable verifiably encrypted signatures. More precisely, we allow
signer and adjudicator to interact once during signing key generation. We believe
that this is a good model of real-world business scenarios. To illustrate this, let
us consider a notary, the adjudicator, that oversees fair online contract signing.
In general, the notary wants to remain passive but he or she still wants to bill
his or her services on a per signature-exchange basis. With our extension and the
instantiations therein, we show how the (offline) notary may actually control the
number of verifiably encrypted signature that his or her customers can securely
exchange. The customer pays for a certain number of signatures in advance and the
notary completes the customer’s key pair accordingly. Interestingly, the underlying
signature scheme can still be used in a black-box way. Thus, smart cards or other
signing devices can be used and the secret signing key is not revealed. This is
important for contract signing as laws and ordinances often require this for the
signed contract to be legally binding.

79

Chapter 5 Verifiably Encrypted Signatures

Generic Construction So far, there have been two construction principles for VES
schemes: use pairings for efficiency or NIZKs for generic constructions from minimal
cryptographic assumptions. Our construction fills the gap between those extremes
as it can be considered both efficient (compared to NIZKs) and generic.

In detail, we show that generic constructions for VES schemes need not involve
inefficient non-interactive zero-knowledge proofs. We propose two generic construc-
tions in the standard model. Both are based on “random plaintext secure” (RPA)
encryption, “maskable” existentially unforgeable signatures, and a collision-resistant
hash function in a Merkle authentication tree [Mer89]. The latter implies a polyno-
mial bound on the number of issuable signatures. On the positive side, it allows us
to scale the resulting scheme according to the individual needs of specific application
scenarios.

We introduce RPA security as a weaker form of CPA security (cf. Section 2.3.5),
i.e., every CPA scheme is also RPA but not vice-versa.

Maskability is a property of a signature scheme, which states that one can choose
a random masking value α and mask a given signature σ for a message msg by
calling (τ, β) ← Mask(σ, α). The resulting masked signature τ is still valid for the
same message under a modified verification procedure that uses the auxiliary advice
β. Given (τ, β), it is hard to recover σ. However, with the secret masking value α,
one can call σ′ ← Unmask(τ, β, α) and recover a valid (ordinary) signature for msg .

Our first construction uses regular (many-time) signature schemes, while the sec-
ond only requires the existence of a suitable one-time signature scheme. We sum-
marize our result in the following theorem.

Theorem (Generic Construction). Opaque, extractable, and non-frameable VES
schemes with a setup exist if maskable (one-time) signature schemes, RPA secure
encryption schemes, and collision-resistant hash functions exist.

Both constructions are stateful and the key generation step depends, as always
with tree-based constructions [Mer89], on the desired signature capacity ` of the
resulting scheme. Using Merkle trees for VES was first considered in [Rüc09] for
the special case of RSA signatures. By formalizing this approach, we develop the
technique to its full potential.

A potential instantiation of our generic framework is entirely built upon lattice-
based primitives, as stated in the following summarizing theorem.

Theorem (Instantiation). Let D ⊆ R0 such that f ∈ D if ‖f‖∞ = Õ(n2). Our
generic construction can be instantiated with ideal lattices in the standard model,
provided that:

80

5.1 Definition

• COL(H(R,m),D) is hard;

• RPA encryption exists in ideal lattices (e.g., [LPR10]);

• Collision-resistant hash functions exist in ideal lattices (e.g., [ADL+08]).

Organization After discussing our extended specification in Section 5.1, we propose
a new, strengthened security model in Section 5.2. Here, we also formally justify the
need for the new requirements, extractability and non-frameability, by separating
our model from the Boneh et al. model. We conclude the discussion of the security
model with two implications within the security model, which simplify the proofs
later on. Section 5.3 contains our generic constructions and a discussion of the
required ingredients. Then, we propose an exemplary instantiation in Section 5.4
and conclude the chapter in Section 5.5.

This chapter is a partial reprint of [RS09], [Rüc09], and [RSS10]. The disserta-
tion author was the primary investigator and author of these papers. The chapter
also contains various improvements to [RSS10], making the proofs more modular.
Especially the security properties of maskable signatures are more precise now.

5.1 Definition

Following the original definition due to Boneh et al. [BGLS03] and our extensions
[RS09, RSS10], we define a VES as a tuple of algorithms (AdjKg,AdjSetup,Kg, Sign,
Vf,Create,VesVf,Adj). Furthermore, a VES scheme builds upon a signature scheme
DS = (Kg,Sign,Vf).

We generalize the original model [BGLS03] slightly by allowing the key generation
algorithm Kg of the signer to depend on the keys of the adjudicator. This optional
dependency is modeled via an interaction AdjSetup between signer and adjudicator
during Kg. It can be viewed as a one-time registration of a signing party with its
notary. The specification is as follows.

Adjudicator Key Generation: AdjKg(1n) outputs a key pair (ask , apk), where ask
is the private key and apk the corresponding public key.

Adjudication Setup (optional): AdjSetup(ask , pk), on input is the private key of

the adjudicator ask and a (partial) public key p̃k of the signer, returns a key
pk ′.

81

Chapter 5 Verifiably Encrypted Signatures

Key Generation: KgAdjSetup(ask ,·)(1n) may interact with the adjudicator via the op-
tional oracle AdjSetup(ask , ·) to produce the key pair (sk , pk).

Signing and Verification: Same as in DS.

VES Creation: Create(sk , apk,msg) takes as input a secret key sk , the adjudicator’s
public key apk, and a message msg ∈M from the message spaceM. It returns
a verifiably encrypted signature $.

VES Verification: VesVf(apk, pk , $,msg) takes as input the adjudicator’s public key
apk, a public key pk , a verifiably encrypted signature $, and a message msg .
It returns a bit.

Adjudication: Adj(ask , pk , $,msg) takes as input the key pair (ask , apk) of the ad-
judicator, the public key of the signer pk , a verifiably encrypted signature $,
and a message msg . It extracts an ordinary signature σ for msg .

A VES scheme is complete if for all adjudication key pairs (ask , apk)← AdjKg(1n)
and for all signature key pairs (sk , pk) ← KgAdjSetup(ask ,·)(1n) the following holds:
VesVf(apk, pk ,Create(sk , apk,msg),msg) = 1 and Vf(pk ,Adj(ask , apk, pk ,Create(sk ,
apk,msg)),msg) = 1 for all msg ∈M.

Discussion Note that the regitration algorithm AdjSetup only takes as input the
signer’s public key and not the private key. Thus, this phase cannot be compared
with other key-registration models that require the signer to prove knowledge of the
secret key. Moreover, this phase only takes place once, during key generation and
not during each signature creation process. The adjudicator remains offline, i.e., our
modification is suitable for fair exchange protocols with a passive adjudicator. Via
AdjSetup, the adjudicator may define parts of signer keys. Giving the adjudicator
too much control over, however, is discouraged as it affects non-frameability.

5.2 A New Security Model

The security requirements for verifiably encrypted signatures have undergone a series
of changes since their introduction in [BGLS03]. In their original model, a VES
scheme needs to satisfy unforgeability and opacity. Unforgeability requires that it is
hard to forge a verifiably encrypted signature and opacity implies that it is difficult
to extract an ordinary signature from a verifiably encrypted signature.

82

5.2 A New Security Model

Experiment ExpVesForgeA,VES (n)

(ask , apk)← AdjKg(1n)

(sk , pk)← KgAdjSetup(ask ,·)(1n)

(msg∗, $∗)← AOCreate(sk ,apk,·),OAdj(ask ,apk,pk ,·,·),OSetup(ask ,·)(pk , apk)
Return 1 iff VesVf(apk, pk , $∗,msg∗) = 1 and
A has never queried msg∗ to OCreate(sk , apk, ·)
or OAdj(ask , apk, pk , ·, ·).

Experiment ExpVesOpac
A,VES (n)

(ask , apk)← AdjKg(1n)

(sk , pk)← KgAdjSetup(ask ,·)(1n)

(msg∗, σ∗)← AOCreate(sk ,apk,·),OAdj(ask ,apk,pk ,·,·),OSetup(ask ,·)(pk , apk)
Return 1 iff Vf(pk , σ∗,msg∗) = 1 and
A has never queried msg∗ to OAdj(ask , apk, pk , ·, ·).

Experiment ExpVesExtractA,VES (n)

(ask , apk)← AdjKg(1n)

(msg∗, $∗, pk∗)← AOAdj(ask ,apk,·,·,·),OSetup(ask ,·)(apk)
Let σ∗ ← Adj(ask , apk, pk∗, $∗,msg∗)
Return 1 iff VesVf(apk, pk∗, $∗,msg∗) = 1

and Vf(pk∗, σ∗,msg∗) = 0.

Experiment ExpVesFrame
A,VES (n)

(apk, ask)← AdjKg(1n)

(sk , pk)← KgAdjSetup(ask ,·)(1n)
s adj ← (apk, ask , pk)

(msg∗, $∗)← AOCreate(sk ,apk,·)(s adj)
Return 1 iff VesVf(apk, pk , $∗,msg∗) = 1 and
A has never queried OCreate(pk , apk, ·) about msg∗.

Figure 5.1: Overview over the different security experiments for VES.

In [RS09], we discover a flaw in the original security model and propose to extend
it with extractability and non-frameability1. Extractability guarantees that the ad-
judicator can always extract a regular signature from a valid verifiably encrypted
signature. This property should even hold for adversely generated signing keys.
Non-frameability prevents signer and adjudicator from successfully colluding in or-
der to produce a verifiably encrypted signature on behalf of another party, provided
that the collusion happens in the online phase and not during key registration. The
security requirement can be interpreted as a stronger form of unforgeability, which
we will prove in Section 5.2.3. The two additional requirement are justified in Section
5.2.1 and Section 5.2.2, respectively.

Unforgeability and opacity are formalized in experiments ExpVesForgeA,VES and ExpVesOpac
A,VES ,

where the adversary is given the public keys of the signer and of the adjudicator.
Moreover, the adversary has access to two oracles: OCreate returns verifiably en-
crypted signatures for a given message and OAdj extracts a regular signature from
a verifiably encrypted signature. In the extractability experiment ExpVesExtractA,VES , the
adversarial signer is given access to an adjudication oracle and wins if he or she can
output an encrypted signature that is hidden irrecoverably. Here, the adversary is
also allowed to pick its own signing key. Finally, the non-frameability experiment
ExpVesFrame

A,VES gives the adversary direct access to the adjudicator’s private key. The
goal is to forge a signature for another party. When using the optional registration
algorithm AdjSetup in Kg, we also give the adversary access to the corresponding
oracle in all experiments. All experiments are defined in Figure 5.1.

Definition 5.1 (Security of VES). VES is secure if it is unforgeable, opaque, ex-
tactable, and non-frameable according to the following definitions, where A is an

1Previously referred to as “collusion-resistance” or “abuse-freeness” in [RS09, RSS10].

83

Chapter 5 Verifiably Encrypted Signatures

efficient adversary.

Unforgeability: VES is unforgeable if ExpVesForgeA,VES (n) outputs 1 with negligible prob-
ability.

Opacity: VES is opaque if ExpVesOpac
A,VES (n) outputs 1 with negligible probability.

Extractability: VES is extractable if ExpVesExtractA,VES (n) outputs 1 with negligible prob-
ability.

Non-frameability: VES is non-frameable if ExpVesFrame
A,VES (n) outputs 1 with negligible

probability.

Notice that AdjSetup and the setup oracle OSetup are always controlled by the
experiments in Figure 5.1 to make the setup procedure trusted. A straightforward
extension of our security model would be to remove this trusted setup procedure.

5.2.1 The Need for Extractability

We have proposed “extractability” as a new security requirement. Basically, it states
that if $ is valid under VesVf, the adjudicator must always be able to extract an
ordinary signature that is valid under Vf for an adversely chosen verification key.

Here, we motivate the need for this new property, showing that every verifiably
encrypted signature scheme, secure in the model of [BGLS03], can simply be turned
into one which is not extractable.

Proposition 5.2. Let VES = (AdjKg,AdjSetup,Kg, Sign,Vf,Create,VesVf,Adj) be
unforgeable and opaque. Then, there exists an unforgeable and opaque scheme VES ′

that is not extractable.

The basic idea is that the verifiably encrypted signature may consist of two in-
dependent parts. One part is the encrypted signature and the other part forms a
“proof” of its validity. As both parts are independent, a malicious signer can easily
set the encrypted signature to an empty string while computing the proof honestly.

Proof. Let |$| denote the bit length of a verifiably encrypted signature in VES. Our
modified scheme VES′ is defined as follows.

Key Generation, Adjudication Setup (optional), Signing, Verification: Same as in
VES.

84

5.2 A New Security Model

VES Creation: Given a message msg , a signing key sk , and the public key of the
adjudicator apk. Create′ computes $′ ← Create(sk , apk,msg) and outputs
($1‖$2)← ($′‖$′) ∈ {0, 1}2|$|.

VES Verification: Given a verifiably encrypted signature $1‖$2 on msg , VesVf ′

outputs 1 if and only if VesVf(apk, pk , $1,msg) = 1.

Adjudication: Adj′(ask , pk , $1‖$2,msg) outputs σ ← Adj(ask , pk , $2,msg).

Obviously, if VES is complete, unforgeable, and opaque, so is VES′. Although,
now, the following adversary A contradicts extractability with probability 1.

Setup: A receives the adjudicator’s public key apk and honestly generates its sig-
nature key pair (sk , pk)← KgAdjSetup(ask ,·)(1n).

VES Creation: When A signs a message msg , it calls $1‖$2 ← Create′(sk , apk,
msg) and outputs (msg∗, $∗, pk∗)← (msg , $1‖0|$|, pk).

Since $1 remains unchanged in Create′, VesVf ′ always returns 1. The algorithm
Adj′, however, cannot extract a valid (ordinary) signature from $2 because it is the
0-string.

5.2.2 The Need for Non-frameability

In order to justify the need for non-frameability, we prove the following separation
from the model due to Boneh et al.

Proposition 5.3. Let VES = (AdjKg,AdjSetup,Kg,Sign,Vf,Create,VesVf,Adj) be
unforgeable and opaque, let D be the space of secret signer keys in VES and let
TFF = (Kg,Eval, Inv) be a family of trapdoor functions with domain D. Then, there
exists an unforgeable and opaque scheme VES ′ that is not non-frameable.

The idea of the proof is as follows. We build a verifiably encrypted signature
scheme VES′ out of VES such that VES′ remains unforgeable and opaque but such
a malicious adjudicator is able to reveal the private signing key. Hence, if A colludes
with the adjudicator in ExpVesFrame

A,VES , it can learn the secret signing key.

Proof. The algorithms in VES′ are the same as in VES with the following changes.

Adjudication Key Generation: AdjKg′(1n) generates (ask , apk) ← AdjKg(1n) and
selects a key-pair for the trapdoor function (s, t) ← TFF.Kg(1n). It outputs
(ask ′, apk′)← ((ask , t), (apk, s)).

85

Chapter 5 Verifiably Encrypted Signatures

VES Creation: Create′(sk , (apk, s),msg) executes the underlying creation algorithm
$′ ← Create(sk , apk,msg) and then computes a← TFF.Eval(s, sk). It outputs
the verifiably encrypted signature $′ ← ($, a).

VES Verification: VesVf ′((apk, s), pk , ($, a),msg) outputs the result of the under-
lying verification algorithm VesVf(apk, pk , $,msg).

Adjudication: Adj′((ask , t), pk , ($, a),msg) outputs the result of the underlying ad-
judication algorithm Adj(ask , pk , $,msg).

Obviously, the resulting scheme is still unforgeable and opaque if TFF is hard
to invert without t (cf. ExpTRAP-OW

A,TFF in Section 2.3.2). However, the adversary in

ExpVesFrame
A,VES can easily frame any signer with probability 1 because it has access to

the trapdoor t. More precisely, it can query the target signer via OCreate, obtain a
verifiably encrypted signature ($, a), and recover sk from a. Then, given sk , it can
sign any message on behalf of the target signer.

5.2.3 Implications

The purpose of this section is to provide two propositions that simplify the security
proofs for VES schemes. The first shows that non-frameability implies unforgeability.

Proposition 5.4. If VES is non-frameable, it is also unforgeable.

To see this, observe that giving ask to A in ExpVesFrame
A,VES enables the adversary to

simulate the oracles OSetup and OAdj itself. Thus, if A is successful in ExpVesForgeA,VES ,
with only oracle access to OSetup and OAdj, it can also break non-frameability.

The second simplification, showing that extractability implies non-frameability,
applies whenever the VES scheme in question follows a common construction prin-
ciple. An obvious design choice for VES schemes is to employ a signature scheme
DS in a black-box fashion to sign messages, then apply an encryption scheme to hide
the ordinary signature, and append some form of proof for verifiability. All previous
constructions, e.g., [BGLS03, LOS+06], adhere to this concept, which we formalize
in the following definition.

Definition 5.5 (Key-independence). Let DS = (Kg,Sign,Vf) be a digital signature
scheme. In VES, let the signer’s private key sk consist of two independent elements
(kisk , ssk) and let pk = (kipk , spk) be the corresponding public key. VES is key-
independent if there is an efficient “encryption” algorithm KI-Enc such that Create
works in three steps:

86

5.2 A New Security Model

1. σ ← DS.Sign(ssk ,msg);

2. $ ← KI-Enc(apk, kipk , kisk , σ,msg);

3. Output $.

Observe that the algorithm KI-Enc does not have access to the signing key ssk in
DS. Hence, in reduction proofs, we can easily replace step 1 with an external signa-
ture oracle. In this setting, we show that extractability implies non-frameability and,
therefore, also unforgeability. In consequence, proving security of key-independent
VES schemes only involves proving extractability and opacity.

Proposition 5.6. Let VES be extractable and key-independent with an EU-CMA
secure signature scheme DS. Then, VES is non-frameable.

Here, the intuition is to replace the signature algorithm with a signature oracle
from the ExpEU-CMA

A,DS experiment for DS and to honestly simulate the adjudicator.
Since extractability guarantees that every valid verifiably encrypted signature yields
a valid ordinary signature, a forgery in the sense of ExpVesFrame

A,VES can be converted
into a forgery against DS.

Let us now briefly prove the above propositions.

Proof of Proposition 5.4. Towards contradiction, let A be a successful, efficient ad-
versary against unforgeability of VES = (AdjKg,AdjSetup,Kg,Sign,Vf,Create,VesVf,
Adj). Given black-box access to A, we construct an efficient algorithm B that refutes
the assumed non-frameability.
B takes as input s adj = (apk, ask , pk) and runs A(pk , apk). Whenever A queries

OCreate, the query if forwarded to B’s own oracle. Whenever A queries OSetup
or OAdj, B honestly simulates these oracles with ask . Eventually, A stops and
outputs a forgery (msg∗, $∗) such that VesVf(apk, pk , $∗,msg∗) and such that it
has never queried msg∗ to OCreate. Hence, B can forward this forgery and wins in
ExpVesFrame

A,VES .

Proof of Proposition 5.6. Let VES = (AdjKg,AdjSetup,Kg,Sign,Vf,Create,VesVf,
Adj) be extractable and let DS = (Kg, Sign,Vf) be the underlying EU-CMA secure
signature scheme. Suppose that there is an efficient adversary A that successfully
breaks non-frameability.

We construct an algorithm BA, that breaks unforgeability of DS. B receives
a public verification key spk and has access to a signing oracle OSign(ssk , ·). It
generates an adjudication key pair (ask , apk) ← AdjKg(1n) and runs the remain-
ing part of VES.Kg, including AdjSetup, to obtain a VES key pair (sk , pk) =

87

Chapter 5 Verifiably Encrypted Signatures

((kisk , ∅), (kipk , spk)). This is possible because VES is key-independent. Afterwards,
B sets s adj ← (ask , apk, pk) and runs A(s adj) as a black-box. Whenever A queries
a message msg to OCreate, B calls its external signing oracle σ ← OSign(ssk ,msg)
and computes $ ← KI-Enc(apk, kipk , kisk , σ,msg). Eventually, A stops and outputs
(msg∗, $∗). B extracts the corresponding signature σ∗ ← Adj(ask , pk , $∗,msg∗)
and returns (msg∗, σ∗).

Observe that the environment of A is perfectly simulated and all oracle queries
are answered efficiently because VES is key-independent. By definition, A has not
queried msg∗ to OCreate. Thus, B has not queried msg∗ to its signature oracle. More-
over, the resulting (msg∗, $∗) yields an ordinary message-signature pair (msg∗, σ∗)
because VES is extractable. As a consequence, B’s attack is legitimate and it suc-
ceeds in ExpEU-CMA

A,DS .

5.3 Generic Constructions

We propose two generic constructions based on passively-secure encryption, digital
signature schemes, and collision-resistant hash functions. Both constructions are
key-independent and they use what we define as “maskable” signatures in conjunc-
tion with a weaker form of CPA encryption to hide an ordinary signature. The
employed encryption scheme is completely independent of the underlying signature
scheme. In particular, they need not operate on the same objects. Verifiability
is ensured by the maskability of the signature scheme and in order to ensure ex-
tractability, we build a Merkle authentication tree from a collision-resistant hash
function. It will provide a link between the maskable signature scheme and the
encryption scheme. While our first construction uses regular signature schemes,
our second construction reduces the assumptions even further by merely relying on
one-time signatures.

5.3.1 Building Blocks

In the following, we define and discuss the ingredients for our constructions.

Random Plaintext Secure Encryption Let PKE = (Kg,Enc,Dec) be a public key
encryption scheme. We define a new notion of security for encryption schemes that
we call security under random plaintext attacks (RPA). It is weaker than CPA. The
idea is that the adversary obtains a randomly chosen message msg and a ciphertext
ct . The task is to determine whether ct encrypts msg or the constant 0-string.

88

5.3 Generic Constructions

Definition 5.7 (RPA Encryption). PKE is indistinguishable under random plain-
text attacks (RPA) if no efficient algorithm A can associate a randomly gener-
ated plaintext with its ciphertext. This is formalized in the following experiment
ExpRPAA,PKE.

Experiment ExpRPAA,PKE(n)

(esk , epk)← Kg(1n)
b←${0, 1}
msg0←$M
msg1←$0|msg0|

ct∗ ← Enc(epk ,msgb)
d← A(epk , ct∗)
Return 1 if and only if d = b.

We claim that RPA is strictly weaker than CPA, in the sense that any CPA scheme
is also RPA, but not vice-versa.

Proposition 5.8. A CPA secure scheme is also RPA secure. If an RPA secure
scheme, encrypting ω(log(n)) bits, exists then there is also an RPA secure scheme
that is not CPA secure.

Proof (Sketch). The first part is obvious because an adversary against CPA has full
control over the messages. As for the second part, let PKE = (Kg,Enc,Dec) be an
RPA secure encryption scheme with message length κ = ω(log(n)). The basic idea
is to modify the scheme and let Enc output a fixed, publicly known ciphertext ct∗

when queried with 1‖0κ−1 and actually encrypt otherwise. The scheme is still RPA
secure because msg0 6= 1‖0κ−1 but with negligible probability. However, it is clearly
not CPA secure because an adversary in ExpCPAA,PKE can specifically submit 1‖0κ−1 as
one of its messages and look for ct∗ in the output.

Maskable Signature Schemes For our generic construction, we need a signature
scheme that is “maskable”. Generally speaking, it means that a signature can be
hidden using a masking value, such that we can still verify it. At the same time,
it must be hard to recover the signature without knowing the masking value. We
formalize this in the following definition.

Definition 5.9 (Maskability). Let DS = (Kg,Sign,Vf) be a signature scheme with
public-key space K, signature space Σ, and message spaceM. It is maskable if there

89

Chapter 5 Verifiably Encrypted Signatures

is a corresponding masking scheme MSDS = (Advice,Mask,Unmask,Vf,Ψ) with the
following specification.

Sets: Let S be a set of masking values and let Ψ be a distribution over S. We
write x ←Ψ S when x is chosen from Ψ over S. Furthermore, let V be the
set of advice strings for verifying masked signatures from the space T of such
signatures.

Advice: Advice(spk , α), on input spk ∈ K and α ∈ S, outputs an advice string
β ∈ V.

Mask: Mask(spk , σ, α,msg), on input spk ∈ K, σ ∈ Σ, α ∈ S, and msg ∈ M,
outputs a masked signature τ ∈ T . Notice that we do not require a perfect
masking scheme but allow the scheme to output the special symbol ⊥ if masking
fails.

Unmask: Unmask(τ, β, α,msg), on input τ ∈ T , β ∈ V, α ∈ S, and msg ∈ M,
outputs a signature σ ∈ Σ.

Verification: MSDS.Vf(spk , τ, β,msg), on input spk ∈ K, τ ∈ T , β ∈ V, and msg ∈
M, outputs a bit, indicating the validity of the masked signature. If τ = ⊥, it
returns 0.

It is complete if an honestly masked signature can be successfully verified under
MSDS.Vf with a probability bounded away from zero. Regarding its security, we
require that MSDS is binding and hiding.

Binding: We require that it is hard for an adversary to produce a masked signature
that cannot be unmasked to obtain a regular (DS) signature, even if the verifi-
cation key of DS is chosen by the adversary. We call this requirement binding
and it is formalized in the following experiment ExpMaskBind

A,MS , where the adver-
sary A works in two modes (“find” and “forge”). In mode “find”, A outputs
a signature verification key for DS. Then, the experiment chooses a masking
value and runs A in mode “forge”. Furthermore, A is allowed to keep a state
across modes. The adversary wins if it outputs a masked signature τ∗ for a
message msg∗ that is correct according to MSDS.Vf but for which Unmask fails
to produce a valid DS signature.

90

5.3 Generic Constructions

Experiment ExpMaskBind
A,MS (n)

(spk∗, s find)← A(m find)
α←Ψ S
β ← Advice(spk∗, α)
(msg∗, τ∗)← A(m forge, s find , α)
σ∗ ← Unmask(τ∗, β, α,msg∗)
Return 1 DS.Vf(spk , σ∗,msg∗) = 0 and MSDS.Vf(spk∗, τ∗, β,msg∗) = 1

Hiding: In addition, a masked signature should be hard to unmask without knowl-
edge of the masking value. This must even hold if the adversary can query
an oracle OMask once that returns a masked signature for an adversely cho-
sen message and a randomly chosen α: OMask(ssk , spk , α,msg) = [σ ←
DS.Sign(ssk ,msg); τ ← Mask(spk , σ, α,msg); Return τ ;]. Furthermore, the ad-
versary can make arbitrary queries to an ordinary signature oracle. This is
formalized in the experiment ExpUnMask

A,MS . The adversary wins, if it is able to
output a signature for the message that has been queried to OMask and not to
the signature oracle.

Experiment ExpUnMask
A,MS (n)

(ssk , spk)← DS.Kg(1n)
α←Ψ S
β ← Advice(spk , α)

σ∗ ← AOMask(ssk ,spk ,α,·),OSign(ssk ,·)(spk , β)

Let (msg i)
`
i=1 be the queries to DS.Sign.

Let msg∗ be the query to OMask.

Return 1 iff msg∗ 6∈ (msg i)
`
i=1 and DS.Vf(spk , σ∗,msg∗) = 1.

Notice that the above definition can be satisfied via straightforward encryption
in combination with letting Advice output a NIZK proof proof. We propose that
somewhat homomorphic signature schemes can provide the same functionality as
illustrated in the following example.

Example 5.10. Consider the RSA signature scheme with full-domain hash function
H and public key (N, v) [BR96]. The verification algorithm for a signature σ on a
message msg checks whether 0 < σ < N and σv ≡ H(msg) (mod N). We let Σ =
V = ZN and S = Z∗N . Ψ is the uniform distribution. Mask((N, v), σ, α,msg) outputs

91

Chapter 5 Verifiably Encrypted Signatures

�
��

H
HH

�� @@ �� @@

G
(
G(n1‖n2)

∥∥G(n3‖n4)
)

G(n1‖n2) G(n3‖n4)

n1 n2 n3 n4

Figure 5.2: Merkle tree with leaf val-
ues n1, n2, n3, n4.

Auth2

ϕ 5 5 Auth0

Auth1

Figure 5.3: The authentication path
of leaf ϕ.

σα mod N and Advice((N, v), α) returns αv mod N . Thus, Unmask(τ, β, α,msg) has
to compute σ ← τα−1 mod N . The modified verification algorithm MS.Vf(spk , τ, β,
msg) checks whether 0 < τ < N and τv ≡ H(msg)β. Observe that the scheme
is binding and hiding in the random oracle model. For the full description of an
entirely RSA-based construction, refer to [Rüc09].

Given the above example, it is easy to see that one can forge a masked signature
(τ, β) that passes MS.Vf, unless α and β = Advice(pk , α) are well-formed. One could
simply compute β ← τv/H(msg) for arbitrary msg and τ . The result (τ, β,msg)
would be valid because τv ≡ H(msg)β. However, in our constructions, the attacker
will not be able to choose β freely. It is chosen during key registration and then
authenticated with a hash tree. This authentication mechanism yields an implicit
rejection of adversely chosen β.

Merkle Authentication Trees In [Mer89], Merkle proposes a tree-based authen-
tication mechanism for large amounts of data using only a single hash value. His
idea has led to, e.g., the construction of digital signature schemes out of one-time
signature schemes and hash functions. With our constructions, we add verifiable
encryption to the list of potential applications.

A Merkle tree is a complete binary tree of height h that is built from the bottom
up to the root such that the set of leaves defines the entire tree. The leaves are
numbered consecutively from left to right. Inner nodes are constructed using the
following rule: a node’s value is the hash value of the concatenation of its children
left and right : node = G(left‖right), where G : {0, 1}∗ → {0, 1}n is a collision-
resistant hash function. See Figure 5.2 for an example. The root ρ of the tree is
used to authenticate the leaf values. For the authentication process, additional tree
nodes are required. These nodes form the authentication path of a leaf. Consider the
path from the leaf with index ϕ ∈ [2h] to the root. The siblings of the nodes on this
path form the authentication path πϕ of this leaf (cf. Figure 5.3 for an example).

92

5.3 Generic Constructions

Given a leaf node ηϕ, its authentication path πϕ, and the root ρ, one can rebuild the
entire tree with the construction rule G(left‖right). If the calculated root matches
ρ, the leaf ηϕ is correctly authenticated.

An adversary that is able to replace a leaf value, such that the replaced leaf is still
correctly authenticated in the tree, is also able to find collisions in the underlying
hash function G. For an overview of techniques, potential efficiency improvements,
and references, we refer the reader to [BDS08].

5.3.2 Construction 1

The general idea is to use a maskable signature scheme with one-time masking
values and encrypt these masking values under the adjudicator’s public key. The
binding property of the masking scheme ensures completeness and opacity will be
guaranteed by the hiding property. We take an ordinary signature σ and hide it
by applying Mask, using one of ` predefined one-time masking values α. If, for
any reason, the masking scheme returns an invalid masked signature, the process is
repeated with the next α. This allows for a broader range of (imperfect) masking
schemes. The corresponding advice β for verification is also precomputed. Then, β
and an encryption γ of α are used to build a Merkle authentication tree that allows
a verifier to efficiently check whether β and γ correspond. The adjudicator forms
the tree during the initial registration phase in AdjSetup and signs its root under a
certification key pair (csk , cpk) in order to prevent malicious signers from cheating
in the extractability experiment.

Let DS be a maskable signature scheme with masking scheme MSDS, PKE be
a public key encryption scheme and G : {0, 1}∗ 7→ {0, 1}n be a collision-resistant
hash function. Choose an adequate h ∈ N, such that the resulting scheme admits
` = 2h = poly(n) signatures. VES1 = (AdjKg,AdjSetup,Kg,Sign,Vf,Create,VesVf,
Adj) is defined as follows.

Adjudicator Key Generation: AdjKg(1n) calls (esk , epk)← PKE.Kg(1n), (csk , cpk)
← DS.Kg(1n), and outputs (ask , apk)← ((esk , csk), (epk , cpk)).

Adjudication Setup: AdjSetup((esk , csk), spk) performs the following steps:

1. Choose αi ←Ψ S and set βi ← Advice(spk , αi), γi ← Enc(epk , αi) for
i = 1, . . . , `;

2. Construct a Merkle tree T using G, i.e., with leaves G
(
G(βi)‖G(γi)

)
that

fully define the root ρ;

3. Compute the signature σρ ← DS.Sign(csk , ρ);

93

Chapter 5 Verifiably Encrypted Signatures

4. Output ((αi)
`
i=1 , (γi)

`
i=1 , ρ, σρ).

Key Generation: KgAdjSetup(ask ,·)(1n) performs the following steps:

1. Call (ssk , spk)← DS.Kg(1n);

2. Call ((αi)
`
i=1 , (γi)

`
i=1 , ρ, σρ)← AdjSetup(ask , spk);

3. Initialize a signature counter c← 0;

4. Output pk = (spk , ρ, σρ) and sk = (ssk , c, (αi)
`
i=1 , (γi)

`
i=1).

Sign, Verify: As defined in the underlying signature scheme DS.

VES Creation: Create((ssk , c, (αi)
`
i=1 , (γi)

`
i=1), apk,msg) works in three steps:

1. Increment the counter c: c← c+ 1;

2. Sign msg using the underlying signature scheme: σ ← DS.Sign(ssk ,msg);

3. Mask σ with the secret value αc: τ ← Mask(spk , σ, αc,msg);

4. If MSDS.Vf(spk , τ, βc,msg) = 0 increase c and go to 3.

The output is $ = (τ, βc, γc, πc), where βc ← Advice(spk , αc) and πc is the
authentication path for leaf c.

VES Verification: VesVf((epk , cpk), (spk , ρ, σρ), (τ, β, γ, π),msg) outputs 1 iff

1. DS.Vf(cpk , σρ, ρ) = 1;

2. π is correct for β and γ with respect to ρ;

3. MSDS.Vf(spk , τ, β,msg) = 1.

Adjudication: Adj((esk , csk), pk , (τ, β, γ, π),msg) verifies the input using VesVf. If
it is correct, it decrypts α′ ← Dec(esk , γ), calls σ′ ← Unmask(τ, β, α′,msg),
and outputs σ′.

5.3.3 Construction 2

Since we already need a Merkle authentication tree for our first construction, we
can as well use a suitable one-time signature instead of a regular one. One-time
signature schemes are potentially easier to achieve, i.e., they may be secure under
milder assumptions. The following construction demonstrates that the second tree,
which would be required to turn a one-time signature scheme into a “many-time”
signature scheme, can be easily merged with the first one.

94

5.3 Generic Constructions

With OTS we denote a maskable one-time signature scheme with masking scheme
MSOTS. We define VES2 = (AdjKg,AdjSetup,Kg,Sign,Vf,Create,VesVf,Adj) as fol-
lows.

Adjudicator Key Generation: AdjKg(1n) calls (esk , epk)← PKE.Kg(1n), (csk , cpk)
← DS.Kg(1n), and outputs (ask , apk)← ((esk , csk), (epk , cpk)).

Adjudication Setup: AdjSetup(ask , (spk i)
`
i=1) performs the following steps:

1. Choose αi ←Ψ S and set βi ← Advice(spk , αi), γi ← Enc(epk , αi) for
i ∈ [`];

2. Construct a Merkle authentication tree T using the hash function G,

where the leaves are of the form G
(
G(βi)‖G(γi)‖G(spk i)

)
. Denote the

root node with ρ;

3. Compute the signature σρ ← DS.Sign(csk , ρ);

4. Output ((αi)
`
i=1 , (γi)

`
i=1 , ρ, σρ).

Key Generation: KgAdjSetup(ask ,·)(1n) performs the following steps:

1. Call (ssk i, spk i)← OTS.Kg(1n) for i = 1, . . . `;

2. Call ((αi)
`
i=1 , (γi)

`
i=1 , ρ, σρ)← AdjSetup(ask , (spk i)

`
i=1);

3. Initialize a signature counter c← 0;

4. Output pk = (ρ, σρ) and sk = ((ssk i)
`
i=1 , (spk i)

`
i=1 , c, (αi)

`
i=1 , (γi)

`
i=1).

Sign, Verify: As defined in OTS.

VES Creation: Create((ssk i)
`
i=1 , (spk i)

`
i=1 , c, (αi)

`
i=1 , (γi)

`
i=1 , apk,msg) works in four

steps:

1. Increment c: c← c+ 1;

2. Sign msg : σ ← OTS.Sign(ssk c,msg);

3. Mask σ: τ ← Mask(spk c, σ, αc,msg);

4. If MSDS.Vf(spk c, τ, βc,msg) = 0 go to 1.

The output is $ = (τ, βc, γc, πc, spk c), where βc ← Advice(spk , αc) and πc is
the authentication path for leaf c.

VES Verification: VesVf((epk , cpk), (ρ, σρ), (τ, β, γ, π, spk),msg) outputs 1 iff

1. DS.Vf(cpk , σρ, ρ) = 1;

95

Chapter 5 Verifiably Encrypted Signatures

2. ρ can be reconstructed using π, β, γ, and spk ;

3. MSDS.Vf(spk , τ, β,msg) = 1.

Adjudication: Adj(ask , pk , (τ, β, γ, π, spk),msg), Adj verifies the input using VesVf.
If it is correct, it decrypts α′ ← Dec(ask , γ), calls σ′ ← Unmask(τ, β, α′,msg),
and outputs σ′.

5.3.4 Security Proofs

We show that VES1 satisfies the desired security requirements. Security of VES2 is
proven analogously. We prove extractability and opacity; unforgeability and non-
frameability follow from Section 5.2.3.

Theorem 5.11 (Extractability). VES1 (VES2) is extractable if DS is unforgeable,
MSDS is binding, and G is a collision-resistant hash function.

Proof. The main reduction plays against unforgeability of DS and uses the binding
property of MSDS and the collision resistance of G and in the analysis. The un-
forgeability ensures that the adversary has to call AdjSetup to create the public key
and binding guarantees that an extracted signature is valid if computed from an
honestly masked signature. Most importantly, the collision resistance of G prevents
the adversary from altering the leaves of the authentication tree, i.e., from being
able to dishonestly mask a signature.

The reduction chooses the adjudication key honestly during the simulation and
has access to a signature oracle for DS and to the signature verification keys spk and
cpk . Thus, the adversary’s environment can be perfectly, and efficiently, simulated.
The adversary A outputs a public key (pk∗, ρ∗, σ∗ρ) and a pair (msg∗, (τ∗, α∗, γ∗, π∗))
for which VesVf outputs 1. Furthermore, we let σ′ be the result of the adjudication
algorithm for (τ∗, β∗, γ∗, π∗).

Towards contradiction, let us assume that extraction fails, i.e., DS.Vf(spk , σ′,
msg∗) = 0. From VesVf, we know that ρ∗ was previously created by the simulator
together with a signature σ∗ρ, using the external signature oracle. Otherwise, we
would have an existential forgery that refutes unforgeability of DS. Assume that ρ∗

was formed using (αi)
`
i=1 , (βi)

`
i=1 , (γi)

`
i=1.

VesVf guarantees that π∗ is an authentication path for the leaf G(G(β∗)‖G(γ∗))
w.r.t. ρ. Thus, there is an index i ∈ {1, . . . , `} such that β∗ = βi = Advice(spk , αi)
and γ∗ = γi. Otherwise, we would have at least one collision in the hash tree, which
refutes collision resistance of G.

96

5.3 Generic Constructions

Finally, VesVf ensures that MSDS.Vf(spk , τ∗, β∗,msg∗) = 1, which implies the
contradiction DS.Vf(spk , σ′,msg∗) = 1 because MSDS is binding.

Theorem 5.12 (Opacity). VES1 (VES2) is opaque if DS is unforgeable, PKE is
RPA secure, MSDS is hiding, and G is collision-resistant.

Proof. An adversary breaking opacity can succeed in two different ways. First, by
forging the underlying signature scheme, and second, by decrypting a given verifiably
encrypted signature. We say that an algorithm A is a

1. type-1 adversary (A1), if it outputs a message-signature pair (msg∗, σ∗) such
that it has never queried msg∗ to OCreate, or if it invokes OAdj on msg ′

without having queried msg ′ to OCreate before.

2. type-2 adversary (A2), if it outputs a message-signature pair (msg∗, σ∗) such
that it has queried msg∗ to OCreate and it has never invoked OAdj on msg ′

without having queried msg ′ to OCreate before.

A1 can be directly used to forge signatures in DS. The reduction has control
over the adjudicator’s private key and can therefore extract ordinary signatures
(forgeries) from A1’s output or query to OAdj. We omit the proof because it is
straightforward.

Type-2 Attacker Here, the goal is to use A2 to break the hiding property of MSDS.
We change the simulation of A2’s environment and argue that each does not change
A2’s success probability but for a negligible amount. Let QOCreate ≤ ` be the number
of A2’s queries to OCreate. First, we change the algorithm AdjSetup.

Adjudication Setup: The algorithm AdjSetup′ selects the elements αi, βi as before
and chooses a random index c∗←$[QOCreate]. It computes all γi 6=c∗ as before
but γc∗ ← Enc(apk, 0|α|), where |α| is the bit length of an element in S. It
outputs the corresponding leaves, root ρ, and signature σρ as before.

Due to the RPA security of the encryption scheme, this only changes A2’s success
probability by a negligible amount. The next change to AdjSetup allows the reduction
to use A2 to refute the hiding property of MSDS.

Adjudication Setup: The algorithm AdjSetup′′ works like AdjSetup′, but receives βc∗

from the UnMask experiment and embeds it into the leaf at index c∗.

97

Chapter 5 Verifiably Encrypted Signatures

The success probability of A2 does not change because βc∗ is distributed as before.
Also, knowledge of αc∗ is not necessary to build the modified public key.

The remaining oracles, OCreate and OAdj, are perfectly simulated for all indices
6= c∗ because the reduction has access to all masking values (except αc∗) and can
therefore answer all adjudication queries. In particular, this is the reason why we
do not require some form of chosen-ciphertext secure encryption: all plaintexts are
known and authenticated. Also, using these masking values together with the OSign
and OMask oracles in the UnMask experiment, enables the reduction to answer all
queries to OCreate.

Eventually, A2 outputs a message-signature pair (msg∗, σ∗). If it is valid for the
index c∗, the reduction outputs σ∗ to refute the hiding property. Otherwise, it
aborts. The reduction’s success probability is noticeable if A2’s success probability
is noticeable and the computational overhead is negligible.

Since VES1 and VES2 are extractable and key-independent, unforgeability follows
from Proposition 5.4 and Proposition 5.6 guarantees non-frameability.

5.4 An Instantiation with Lattices

Basically, we have already seen in Example 5.10 that our first generic construction
can be instantiated from the RSA assumption in the random oracle model. A second
instantiation in the random oracle model is in [RSS10]. It is based on the PSTF-
based GPV signature scheme [GPV08].

In the following, we demonstrate the feasibility of our second construction. In
particular, we show that it can be realized entirely based on the worst-case hardness
of lattice problems in the standard model.

Building Blocks For our second construction, we require a collision-resistant hash
function G, a public-key encryption scheme PKE, a one-time signature scheme OTS,
and a corresponding masking scheme MSOTS.

The first two ingredients already exist in lattice cryptography: we instantiate
G with SWIFFTX [ADL+08], PKE with any CPA secure scheme based on LWE
[Reg09, GPV08, LPR10]. This is sufficient as CPA implies RPA. Using ring-LWE
[LPR10] bears the advantage of using efficiency-improving ideal lattices in all build-
ing blocks. As a result, all algorithms (except KgAdjSetup) can be implemented to
run in quasi-linear time Õ(n).

98

5.4 An Instantiation with Lattices

What is left to show is that there is a maskable one-time signature scheme from
(ideal) lattices. To this end, we recall the LM-OTS one-time signature scheme
[LM08].

Let LM-OTS = (Kg,Sign,Vf) with parameters q = poly(n), m = Ω(log(n)), and
d = Õ(n). It is based on ideal lattices and uses a compression function h = hâ for
â←$R

m, which maps Rm
0 → R, i.e., x̂ 7→

∑m
i=1 aixi mod q (cf. Section 2.7.1). Its

specification is as follows.

Key Generation: Kg(1n) outputs a secret key (k̂, l̂) ∈ Rm
0 ×Rm

0 (with small norm)
and a public key (h,K,L)← (h, h(k̂), h(̂l)) ∈ Rm ×R×R.

Signing: Sign((k̂, l̂),msg), on input a message msg ∈ R0 with ‖msg‖∞ ≤ 1, outputs

σ ← k̂msg + l̂ ∈ Rm
0 .

Verification: Vf((h,K,L), σ,msg) returns 1 if and only if ‖σ‖∞ ≤ d and h(σ) =
Kmsg + L.

Let Rb ⊆ R0 denote the set of polynomials p ∈ R0 with ‖p‖∞ ≤ b. If there is a
successful adversary against unforgeability of LM-OTS, this adversary can be used
to solve the collision problem COL(H(R,m),Rd).

For our masking scheme, we require a slightly looser version LM-OTS′ of LM-OTS,
which allows for larger signatures in Vf. Key generation and signing remain un-
changed and honestly created signatures are still in Rm

d . The modified verification
algorithm is defined as follows, where φ ∈ N is a constant.

Verification: Vf((h,K,L), σ,msg) returns 1 if and only if ‖σ‖∞ ≤ 2φmnd − d and
h(σ) = Kmsg + L.

Of course, we require a stronger assumption now. A successful adversary against
LM-OTS′ can be used to solve COL(H(R,m),R2φmnd−d).

A Masking Scheme for LM-OTS MSLM-OTS′ works as follows.

Sets: The masking values are chosen from S = Rm
φmnd with the component-wise

uniform distribution Ψ. The space of signatures is Σ = Rm
2φmnd−d, the advice

strings are in V = R, and masked signatures need to be in T = Rm
φmnd−d.

Advice: Advice((h,K,L), α) outputs β ← h(α).

Mask: Mask((h,K,L), σ, α,msg), on input σ ∈ Rm
d ⊂ Σ, computes τ ← σ + α. If

τ ∈ T , it returns τ and ⊥ otherwise.

99

Chapter 5 Verifiably Encrypted Signatures

Unmask: Unmask(τ, β, α,msg) returns σ ← τ − α.

Verification: MSDS.Vf((h,K,L), τ, β,msg) outputs 1 if and only if τ ∈ T and h(τ) =
Kmsg + L + β.

The above masking scheme yields correct masked signatures τ with constant prob-
ability e−1/φ (cf. Lemma 4.1) if Mask is applied to honestly created signatures from
Rm
d . Notice that we explicitly allow such completeness defects in our construction;

the algorithm Create simply starts over with a new α. Refer to Section 4.3 for a
discussion of the parameter φ, which can be used to control the completeness defect.
In total, we expect Mask to output a valid masked signature after e1/φ trials, or
asymptotically g(n) for any g(n) = ω(log(n)).

The following propositions show that MSLM-OTS′ is indeed applicable, namely it
is binding and hiding.

Proposition 5.13 (Binding). MSLM-OTS′ is binding.

Proof. Let (h,K,L) be any public key for LM-OTS′. Let τ be a masked signature for
msg with advice β = h(α). If τ is valid under Mask.Vf, then h(τ) = Kmsg + L + β.
Let σ ← τ − α be the extracted signature. Then, obviously, h(σ) = h(τ) − h(α) =
Kmsg + L. Furthermore, we always have ‖σ‖∞ ≤ ‖τ‖∞ + ‖α‖∞ ≤ 2φmnd − d.
Thus, the extracted signature is always valid if τ is valid.

Proposition 5.14 (Hiding). MSLM-OTS′ is hiding if COL(H(R,m),R2φmnd−d) is
hard in the presence of an LM-OTS ′ signature oracle.

Proof. Let A be an efficient, successful adversary in ExpUnMask
A,MS . We build a reduction

B against the collision problem that has access to an LM-OTS′ signature oracle OSign
for a public key spk = (h,K,L). Since LM-OTS′ is one-time, the adversary may
either query Mask or OSign, but only once. Hence, in order to win the game, A has
to query a message msg∗ to Mask. The oracle is simulated honestly as follows. B
queries msg∗ to OSign and obtains σ. Then, it chooses α←$S and sets β ← h(α).
Finally, it computes τ ← σ+α and returns τ if τ ∈ T and ⊥ otherwise. Eventually,
A stops and outputs σ∗, such that LM-OTS′.Vf(spk , σ∗,msg∗) = 1. We argue that
σ∗ 6= σ, which yields a solution to COL with norm bound 2φmnd− d.

Notice that h admits collisions in Σ, i.e., for every σ1 ∈ Σ there is a second
σ2 ∈ Σ \ {σ1} with h(σ1) = h(σ2). Obviously, A cannot learn anything about σ if
τ = ⊥. Hence, with probability at least 1/2, we have σ∗ 6= σ and obtain the required
collision.

100

5.5 Conclusion and Open Problems

In the case that τ 6= ⊥, we apply a adaptation of Lemma 4.7 for views of the form
(β, 1, τ) for 1 ∈ R0. It establishes witness indistinguishability w.r.t. two colliding
signatures (σ1, σ2). So, also with probability at least 1/2, A outputs σ∗ 6= σ.

Using Proposition 2.3 we can base the hiding property on the worst-case hardness
of SIVP. The condition that the underlying problem needs to be hard in the presence
of an LM-OTS′ signature oracle can be lifted by essentially reproving the security
of LM-OTS′ in analogy to [LM08].

Corollary 5.15. MSLM-OTS′ is hiding if, in the presence of an LM-OTS′ signature
oracle, solving SIVP∞ is hard in the worst case for approximation factors γ = Õ(n3)
in lattices that correspond to ideals in R0.

5.5 Conclusion and Open Problems

With our work, we have removed a loophole in the model of Boneh et al. by introduc-
ing extractability and non-frameability as novel security requirements for verifiably
encrypted signature schemes.

Furthermore, we have extended the specification for such schemes with an op-
tional setup phase, which we believe is common in real-world scenarios. Also we
have proposed to allow for a limited signature capacity to support the following,
interesting business model. The adjudicator charges its clients on a per signature-
exchange basis. Hence, they need to acquire exchange tokens and spend them one
at a time. Once all of them have been spent, the user simply request a fresh set of
tokens. There is no need to generate a new signature key.

Moreover, our proposed constructions support signature laws that allow for legally
binding contracts via digital signatures. In particular, we have shown the first
pairing-free VES scheme in the standard model. Instead, it can be based entirely
on hard lattice problems.

An interesting further research question is to combine previous efficiency improve-
ments for Merkle-type signature schemes with our approach to increase the signature
capacity. Also, the computational bottleneck for our scheme seems to be the em-
ployed encryption scheme, which has to have a large throughput for the setup phase
to be efficient. It would be interesting to see more research on high-performance
encryption schemes from lattices.

Finally, an obvious way to strengthen our security model is to remove the trusted
setup phase, where we assume the adjudicator to be honest. Ensuring extractability
and non-frameability under dishonest adjudicators seems to be very hard to achieve.

101

Chapter 6

Single-signer Aggregate Signatures

103

Chapter 6 Single-signer Aggregate Signatures

When compared to classical signature schemes based on, e.g., the discrete logarithm
problem, lattice-based signature are still rather large. Especially when transmitting
vast amounts of signatures over a network or storing them in a long-term archive,
large signature sizes may be prohibitive.

We put forward the notion of single-signer aggregate signature (SSA) schemes
along with a formal security model. Our definition extends the specification of or-
dinary signature schemes with a public aggregation algorithm. The algorithm takes
as input a list of signatures under the same public key and outputs an aggregate
signature. Given the aggregate and the list of corresponding messages, the verifi-
cation procedure validates the aggregate. An interesting extension of our model is
hierarchical aggregation, i.e., the aggregation of aggregates.

Note that the aggregation algorithm does not have access to any secret key. Oth-
erwise, a trivial aggregation strategy would use the secret key to sign the entire list of
messages again to output a single one. Another trivial aggregate would be to simply
append all signatures as bit strings but obviously, we are interested in compressing
the input as much as possible. In our opinion, an SSA scheme is feasible as soon
as the size of the aggregate grows sub-linearly with the number of aggregated sig-
natures. However, we do not make this a strict requirement as even smaller savings
may be worthwhile.

Our proposal can be interpreted as a restricted form of aggregate signature scheme
[BGLS03]. There, the goal is to also aggregate signatures of different signers, whereas
we demand the signatures to be valid under the same public key. Multi signatures
[BN06] provide another restricted form of aggregation, where multiple signers are
allowed but the signed messages need to be equal. Hence, multi signatures and
single-signer aggregates are dual primitives. Another related line of work is batch
verification [BGR98a, BGR98b, CHP07], with the purpose of improving the effi-
ciency of multi-signature verification. Data compression is not a requirement here.
When compressing signatures, however, the verification cost is likely to decrease as
well.

To date, full-blown aggregate signature schemes can only be built upon pairings.
In addition, we believe that they are often not required and discussing restricted
forms thereof may be more suitable for real-world applications. Two immediate
applications of SSA spring to mind, one for the receiver and one for the sender of
signatures.

CRL Compression Signed certificate revocation lists (CRLs) are issued in public-
key infrastructures (PKI) to manage the premature revocation of signatures. Let us

104

consider the case of frequently updated “delta” CRLs [CSF+08]. A client downloads
a full CRL and daily updates in the form of delta CRLs until a new “full” CRL is
available. The signed data in a delta CRL is typically small, basically consisting of
a small number of certificate identifiers. Now to protect against local malware, the
client stores the list of revoked keys and the signature. When following Microsoft’s
recommendation for CRL refresh intervals [Mic10], we are faced with storing around
90 to 180 signatures before receiving a new full CRL, which may be a problem on
resource-constrained devices. Using our primitive, the amount of signatures to be
kept is constant and verification is potentially more efficient as well.

Delayed Signature Transmission On the sender’s end, using SSA may also be
beneficial. A topical example is the emerging use of cryptography for medical data.
Take your family doctor for example. He or she digitally signs dozens of prescriptions
per day. For archiving and accounting reasons, the signatures are kept in his or her
practice and they are to be sent to a health insurance proxy for accounting. To save
both bandwidth and storage, the doctor’s receptionist may aggregate the signatures
on a regular basis and transmit the aggregate to the accounting proxy. Thinking one
step further, the receptionist may even apply our idea of hierarchical aggregation
and aggregate, e.g., all daily aggregates on a weekly basis.

Our Contribution We introduce single-signer aggregate signatures as a new prim-
itive and equip it with two security notions akin to existential and strong unforge-
ability. Then, we propose a construction SSA, based on the lattice-based PSTF in
Section 2.7.3 and prove the following theorem.

Theorem (Aggregate Unforgeability). SSA, aggregating up to `max signatures, is
unforgeable if SIS is hard for norm bounds ν = `maxÕ(n).

Hence, our scheme can aggregate up to polynomially many signatures. Verifying
an aggregate only requires one matrix-vector product, regardless of the number of
aggregated signatures. More importantly, the aggregate only grows logarithmically
with the number of aggregated signatures. Since the assumption depends on the
maximum number of aggregated signatures, the main security parameter needs to
grow with it as well. To compensate for that, we analyze the net advantage of our
scheme based on the hardness estimates in Chapter 3 and find that the saving are
still considerable.

105

Chapter 6 Single-signer Aggregate Signatures

Organization We provide a formal specification and two security models (existen-
tial and strong) in Section 6.1. Then, we propose a simple lattice-based instantiation
in Section 6.2, propose secure parameters, and conclude the chapter in Section 6.3.

This chapter contains an excerpt from [CNR10], of which the dissertation author
is the primary investigator and author. There, SSA schemes are used to imple-
ment anonymous attribute tokens — a form of anonymous credentials with multiple
attributes and selective attribute revealing [Bra99, CL01].

6.1 Specification and Security

The specification of SSA = (Kg, Sign,Agg,Vf) extends the one for signature schemes
DS = (Kg,Sign,Vf) with an algorithm Agg. On input a list of signatures under the
same public key, the algorithm outputs an aggregate signature Σ. The verification
algorithm takes as input the public key, a list of messages, and the aggregate. It
outputs 1 if and only if the aggregate is valid w.r.t. the message list. More formally:

Key Generation: Kg(1n) outputs a secret key sk and a public key pk .

Signing: Sign(sk ,msg), on input a message msg ∈ M from the message space M,
outputs a signature σ for msg .

Aggregation: Agg((σi)
`
i=1), on input a list of signatures, outputs an aggregate sig-

nature Σ. For ` = 1, it returns Σ← σ1.

Verification: Vf(pk ,Σ, (msg i)
`
i=1) outputs 1 if and only if Σ is a valid aggregate

signature for the list (msg i)
`
i=1, ` ≤ `max, under pk and regardless of the order

of messages.

Correctness is straightforward, i.e., for all honestly generated keys, signatures,
and aggregates, Vf outputs 1 with overwhelming probability. Notice that Vf can
also be queried with ` = 1 to verify ordinary signatures of the same type.

We model security in the existential and in the strong sense. In both models,

the adversary A has adaptive access to a signature oracle. Let ((msg i, σi))
QOSign

i=1

be the corresponding message-signature signature pairs. In order for a scheme to
satisfy existential aggregate-unforgeability (SSA-EU-CMA), A in the experiment
ExpSSA-EU-CMA

A,SSA must not be able to produce a valid aggregate Σ∗ for distinct messages

(msg∗i)
`∗

i=1, `∗ ≤ `max, such that {msg∗i }
`∗

i=1 contains a message that has not been
queried to OSign before. Demanding distinct messages makes sense in practice and
simplifies the following formal security requirements.

106

6.1 Specification and Security

Experiment ExpSSA-EU-CMA
A,SSA (n)

(sk , pk)← Kg(1n)

((msg∗i)
`∗

i=1 ,Σ
∗)← AOSign(sk ,·)(pk)

Let ((msg i, σi))
QOSign

i=1 be the query-answer pairs of OSign(sk , ·).
Return 1 iff `∗ ≤ `max

and Vf(pk ,Σ∗, (msg∗i)
`∗

i=1) = 1

and {msg∗i }
`∗

i=1 \ {msg i}
QOSign

i=1 6= ∅.

The scheme satisfies strong aggregate-unforgeability (SSA-SU-CMA), if no A is
able to output a non-trivial, valid aggregate Σ∗, i.e., it does not output a straight-
forward aggregate of any subset of the received signatures. Whether or not A uses
a new message in its forgery is irrelevant. We formalize this as follows.

Experiment ExpSSA-SU-CMA
A,SSA (n)

(sk , pk)← Kg(1n)

((msg∗i)
`∗

i=1 ,Σ
∗)← AOSign(sk ,·)(pk)

Let ((msg i, σi))
QOSign

i=1 be the query-answer pairs of OSign(sk , ·).
Return 1 iff `∗ ≤ `max

and Vf(pk ,Σ∗, (msg∗i)
`∗

i=1) = 1
and ∀R ⊆ [QOSign] : Σ∗ 6= Agg((σi)i∈R).

As usual, an adversary is successful in either model if it is efficient and the respec-
tive experiment outputs 1 with non-negligible probability. Notice that SSA-SU-CMA
requires Agg to be deterministic.

Hierarchical Aggregation A potentially interesting extension of our model is to
support hierarchical aggregation, i.e., the aggregation of aggregate signatures. Here,
we let Agg operate on a list of aggregates (Σ)`i=1 instead of on signatures, with
signatures Σ = (σi)

1
i=1 being a special case. The output would be another aggregate

Σ and the upper bound `max is already implicitly enforced in Vf.

Hard Aggregate Extraction Another extension would be to demand the hardness
of inverting the Agg procedure, i.e., to extract or remove individual signatures from
a (non-trivial) aggregate.

107

Chapter 6 Single-signer Aggregate Signatures

6.2 Our Construction

Our scheme SSA = (Kg,Sign,Agg,Vf) builds upon the GPV scheme [GPV08].
Hence, it uses the family PSTF = (Kg,Eval,SampleDom,SamplePre) from Section
2.7.3 and a full-domain hash random oracle H : {0, 1}∗ → Znq . It can aggregate up
to `max ≤ poly(n) signatures.

Key Generation: Kg(1n) runs (A,T) ← PSTF.Kg(1n) and outputs (sk , pk) ←
(T,A).

Signing: Sign(T,msg), on input a message msg ∈ {0, 1}∗, computes h ← H(msg),
samples σ ← SamplePre(T, η,h), and returns σ. The algorithm is stateful, i.e.,
repeated queries with msg are answered with the same σ. 1

Aggregation: Agg((σi)
`
i=1) outputs Σ←

∑`
i=1 σi.

Verification: Vf(A,Σ, (msg i)
`
i=1) verifies that 0 < ‖Σ‖2 ≤ `η

√
m, all messages are

distinct, and AΣ ≡
∑`

i=1 H(msg i). It outputs 1 if and only if all conditions
are satisfied.

Due to the linearity of the A, the scheme is correct. Let d∞ := ηθ(m) be the upper
bound for the infinity norm of a single signature. Then, an `-aggregate requires only
m log2(`d∞) bits of storage, instead of m` log2(d∞) for a trivial aggregate. See
Figure 6.1 for a comparison of our aggregate signature scheme against storing GPV
signatures individually. The underlying parameters have been chosen according to
Chapter 3 so that they are secure against the attacker “Lenstra” until 2018. The
main parameter is n = 330 and a single signature occupies about 154 kilobytes (kB).
Moreover, note that instead of ` matrix-vector products over Zq, our verification
algorithm only requires a single one. This constitutes a significant improvement,
also in the sense of a batch verification scheme. Also, the overall efficiency can be
improved via ideal lattices.

The potential savings are intriguing, but they come at the price of an assumption
that depends on `max.

Theorem 6.1. SSA is SSA-SU-CMA secure in the random oracle model if SIS(n,
m, q, 2`maxη

√
m) is hard.

1It is easy to make the scheme stateless by including a random string r in the hash, so that msg‖r
is unique with overwhelming probability. The random strings r are not aggregated but the size
of σ dominates the signature size. We omit this modification.

108

6.2 Our Construction

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

S
i
z
e

i
n

k
B

Number of signatures

GPV
SSA (approx)

Figure 6.1: Comparison of the storage requirements for SSA signatures against indi-
vidual storage of GPV [GPV08] signatures. The y-axis is in logarithmic
scale.

Proof. Let us assume an efficient, successful adversaryA that breaks strong aggregate-
unforgeability of SSA. We build a reduction BA to solve SIS as follows.

Setup: The reduction receives A from the SIS problem and forwards it to A.

Simulation: B maintains a list ListSIG of message-hash-signature triples to answer
all queries to Sign and H consistently. Upon a new hash query msg i, B chooses
σi ← SampleDom(m, η) and programs H(msg i) := Aσi mod q.

Output: Eventually, A outputs a forgery Σ∗ for (msg∗i)
`∗

i=1. The reduction looks up
signatures σ∗i for msg∗i in ListSIG. If there is not such entry, it is generated

in-place by calling H(msg∗i). The final output is x← Σ∗ −
∑`∗

i=1 σ
∗
i .

Analysis Observe that the hash and signature oracles are simulated correctly and
efficiently due to the properties of PSTF (cf. Section 2.7.3).

109

Chapter 6 Single-signer Aggregate Signatures

Since we use the random oracle to simulate all queries, we can safely assume that
A has made a query H(msg∗i) for all i ∈ [`∗] and, therefore, the reduction has a
signature σ∗i such that Aσ∗i ≡ H(msg∗i) in ListSIG. A’s forgery is legitimate if

1. 0 < ‖Σ∗‖2 ≤ `∗η
√
m;

2. For all subsets R ⊆ [QOSign] we have Σ∗ 6=
∑

i∈R σ
∗
i ;

3. AΣ∗ ≡
∑`∗

i=1 H(msg∗i).

Via (1), the reduction’s output x has length ‖x‖2 ≤
∥∥∥Σ∗ −

∑`∗

i=1 σ
∗
i

∥∥∥
2
≤ 2`∗η

√
m.

Condition (2) and the high conditional min-entropy of signatures imply Σ∗ 6=
∑`∗

i=1 σ
∗
i

and therefore x 6= 0. Finally, (3) establishes x ∈ Λ⊥q (A).

It is possible to prove a slightly tighter theorem for existential unforgeability that
requires SIS to be hard for ν = (2`max − 1)η

√
m instead. Via Proposition 2.1, we

arrive at a reduction from worst-case lattices problems.

Corollary 6.2. SSA is SSA-SU-CMA secure if SIVP is hard in the worst case for
approximation factors γ = Õ(`maxn

√
n).

Secure Parameters In the above discussion and in Figure 6.1, we have seen the
approximate advantage of our aggregate signature scheme over storing individual
signatures. We have also seen that security degrades with increasing `max, which
renders the observed advantage unfair. In the following, we use our framework in
Chapter 3, fix a security level — security until 2018 against the attacker “Lenstra”
— and compute parameter sets for 1 ≤ `max ≤ 10000 with the same security level.
Let q be as required for single signatures (`max = 1) according to Proposition 2.1.
Then, for a given `max, we take the modulus q′ ← `maxq, update the dependent
parameter relations, and increase n until the desired security level is attained.

The result is depicted in Figure 6.2, which shows the net advantage of our scheme
with a steady security level.

6.3 Conclusion and Open Problems

We have introduced a new aggregate signature primitive for the special case of
a single signer, where the aggregation algorithm can be run by anyone without
knowing the secret key. Furthermore, we have demonstrated that such a scheme can

110

6.3 Conclusion and Open Problems

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2500 5000 7500 10000

S
i
z
e

i
n

k
B

Number of signatures

GPV
SSA

SSA (approx)

Figure 6.2: Net signature size in SSA, after establishing conjectured security until
2018 against the attacker “Lenstra”.

be easily built from standard tools in lattice cryptography and that the resulting
computational as well as bandwidth savings are striking.

Achieving a full-fledged aggregate or multi signature scheme from lattices remains
a challenging open research problem,

111

Chapter 7

Strongly Unforgeable Signatures in the
Standard Model

113

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

Basically, there are two classes of signature schemes, tree-based and treeless. Tree-
based Merkle signature schemes [Mer89] can be built upon hash functions and one-
time signature schemes. They have a limited signature capacity and their efficiency
depends on this capacity. See [BDS08] for an overview. Treeless constructions are
typically more efficient, allow for an unlimited number of signatures, and are easier
to handle in practice. Therefore, in practice, we almost exclusively use schemes that
fall into the second category.

Based on lattices, we have seen numerous signature schemes appear recently. In
the random oracle model there are schemes due to Gentry, Peikert, and Vaikun-
tanathan [GPV08]; Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09]; and Lyuba-
shevsky [Lyu09]. As for the standard model, there are the works of Lyubashevsky
and Micciancio [LM08] (one-time); Cash, Hofheinz, Kiltz, and Peikert [CHKP10];
and Boyen [Boy10].

However, there is a gap in this range because none of the above schemes is treeless,
provably secure in the standard model, and strongly unforgeable. Recall that, in
EU-CMA, the adversary is forced to output a signature for a fresh message msg∗

after seeing signatures for messages msg i 6= msg∗ of his or her choice. The SU-CMA
adversary is also allowed to output a fresh signature for one of the previously queried
msg i (cf. Section 2.3.4).

Strong unforgeability is interesting in both, theory and practice. Consider sign-
cryption [ADR02] or generic transformations from CPA to chosen ciphertext (CCA)
security in the standard model, e.g., Dolev, Dwork, and Naor [DDN00] or Boneh,
Canetti, Halevi, and Katz [BCHK07]. They typically involve a strongly unforgeable
signature scheme to make the ciphertext authentic and non-malleable.

As a simple practical example, let us consider an access control protocol where
you may delegate certain rights to another party by signing a description for these
rights with a signature σ. You want to be able to revoke them at any time in
the future via an online revocation system. The rights are revoked as soon as the
online system has σ in its database. If the signature scheme is only EU-CMA
secure, the delegate can construct another signature σ∗ for the same set of rights
and present this token instead of σ — the revocation mechanism breaks down. This
naive example demonstrates that great care must be taken when designing protocols
based on EU-CMA.

There is a generic transformations from EU-CMA to SU-CMA due to Boneh,
Shen, and Waters [BSW06]. It only works for a certain subclass of signature schemes,
which does not contain any known lattice-based construction. More generic trans-
formations, such as Bellare and Shoup’s work [BS07], require an additional signature
scheme and harm efficiency.

114

Our Contribution We build upon the EU-CMA signature scheme in [CHKP10]
and construct an SU-CMA scheme. Both constructions share the same “hash-
sign-switch” approach of constructing a signature scheme in an even weaker static
message attack (SMA) model before applying a generic transformation [KR00] to
obtain chosen message attack (CMA) security. Our scheme also yields a strongly-
unforgeable online/offline signature scheme [EGM96, ST01].

In the SMA model, the adversary is forced to submit all signature oracle queries
before seeing the public key. In a proof, this relaxation often helps the reduction to
prepare for the simulation of the oracle by “rigging” the public key accordingly. It is
well-known that existential unforgeability under static message attacks (EU-SMA)
implies EU-CMA security if chameleon hash functions exist. We extend this result
to a conversion from SU-SMA to SU-CMA with the following theorem.

Theorem (Generic Conversion). SU-SMA implies SU-CMA if chameleon hash func-
tions exist.

Then, we construct a lattice-based signature scheme DS that is SU-SMA secure
in the standard model and apply the above theorem. Our construction is essentially
as efficient as [CHKP10]. In our case, signing involves a simple additional linear
algebra step that can be pre-computed during key generation. Hence, we achieve a
stronger security notion without additional cost and prove the following theorem.

Theorem (Main Construction). DS is SU-CMA secure in the standard model if
chameleon hash functions with range {0, 1}λ exist and SIS is hard with norm bounds
ν = Õ(n

√
λ).

Our Modifications to [CHKP10] For those familiar with [CHKP10], we give a
brief overview of the changes that are necessary to achieve SU-CMA security. A
similar trick works for Boyen’s more recent scheme [Boy10] as well.

In [CHKP10], signatures are short vectors σ that satisfy Amsgσ ≡ 0 (mod q),
i.e., they are in the q-ary lattice Λ⊥q (Amsg) with a public Amsg depending on the
message. An adversary may succeed in breaking SU-CMA security of this scheme
by simply asking for a signature σ for a message msg and then return (msg ,−σ) as
its forgery. Such an answer is useless in the reduction because the simulator had to
know a trapdoor for Λ⊥q (Amsg) beforehand to generate σ.

Instead, we let the signature algorithm sample short vectors from a random coset
{x : Amsgx ≡ y (mod q)} of Λ⊥q (Amsg). The approach is similar to [GPV08] but
with a fixed y that is part of the public key and without random oracles. In the
simulation, we can prepare y such that we know a corresponding signature σ that is

115

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

used to simulate the signature oracle for msg . There is no need for the reduction to
know a trapdoor for Λ⊥q (Amsg). Now, the adversary against SU-CMA security needs
to output a different short vector σ∗ from the same coset. This, however enables
the simulation to find a short vector σ − σ∗ in Λ⊥q (Amsg) and solve the underlying
problem.

Organization We discuss the relaxed security notion SU-SMA in Section 7.1 and
explain how the transformation to SU-CMA works. Then, we instantiate the SU-
SMA model from lattices in Section 7.2 as described above. Finally, we conclude
the chapter in Section 7.3.

This chapter repeats the essential results in [Rüc10c]. The dissertation author was
the primary investigator and author of this paper. The second result in the paper,
an identity-based signature scheme, is effectively superseded by the construction
principle in Chapter 8.

7.1 From Static to Chosen Message Security

Our main construction relies on a generic conversion from the weaker notion of strong
unforgeability under static message attacks to the standard notion (under chosen
message attacks) as defined in ExpSU-CMA

A,DS in Section 2.3.4. After a brief definition
of the security model, we describe our conversion with chameleon hash functions.

7.1.1 Security Model

We recap an analogous notion for existential unforgeability, namely EU-SMA, as
introduced in [KR00]. The main difference to EU-CMA is that the adversary submits
all messages msg1, . . . ,msgQOSign

before seeing the public key and the corresponding

signatures. It is defined in ExpEU-SMA
A,DS for a signature scheme DS = (Kg, Sign,Vf),

where A works in two modes and is allowed to keep a state.

Experiment ExpEU-SMA
A,DS (n)

((msg i)
QOSign

i=1 , s find)← A(m find , 1n)
(sk , pk)← Kg(1n)
σi ← Sign(sk ,msg i) for i ∈ [QOSign]

(msg∗, σ∗)← A(m forge, s find , pk , (σi)
QOSign

i=1)

Return 1 iff Vf(pk , σ∗,msg∗) = 1 and msg∗ 6∈ (msg i)
QOSign

i=1 .

116

7.1 From Static to Chosen Message Security

Since we are interested in strong unforgeability, we modify ExpEU-SMA
A,DS to allow for

strong forgeries as in ExpSU-CMA
A,DS as follows. The only difference is in the definition

of a legitimate forgery.

Experiment ExpSU-SMA
A,DS (n)

((msg i)
QOSign

i=1 , s find)← A(m find , 1n)
(sk , pk)← Kg(1n)
σi ← Sign(sk ,msg i) for i ∈ [QOSign]

(msg∗, σ∗)← A(m forge, s find , pk , (σi)
QOSign

i=1)

Return 1 iff Vf(pk , σ∗,msg∗) = 1 and (msg∗, σ∗) 6∈ ((msg i, σi))
QOSign

i=1 .

Security in either model is defined as with EU-CMA and SU-CMA, respectively.

7.1.2 Transformation

A helpful fact about chameleon hash functions is that if they exist, then there is
a generic transformation from EU-SMA to EU-CMA signatures. This was known
since [KR00] and it is proven in [HW09]. We show that the same transformation
also transforms SU -SMA into SU -CMA.

Theorem 7.1. SU-SMA implies SU-CMA if chameleon hash functions exist.

Proof. Let C = (Kg,Ψ) be a chameleon hash function family (cf. Section 2.3.3) that
maps intoM and take any SU-SMA secure signature scheme DSSU-SMA = (Kg, Sign,
Vf) with message space M. Then, we can construct an SU-CMA secure scheme
DSSU-CMA = (Kg′, Sign′,Vf ′) as follows.

Key Generation: Kg′(1n) runs (sk , pk)← DSSU-SMA.Kg(1n) and (C,C−1)← C.Kg(1n).
It outputs the secret key sk and the public key (pk ,C).

Signing: Sign′(sk ,msg) picks a random ρ ←Ψ R, computes µ ← C(msg , ρ), and
σ ← DSSU-SMA.Sign(sk , µ). The resulting signature is (σ, ρ).

Verification: Vf ′((pk ,C), (σ, ρ),msg) computes µ← C(msg , ρ) and returns the result
of DSSU-SMA.Vf(pk , σ, µ).

Towards contradiction, assume that there is an efficient and successful adversary
A against SU-CMA security of DSSU-CMA. Assume that the adversary queries the

messages (msg i)
QOSign

i=1 to its signature oracle and receives ((σi, ρi))
QOSign

i=1 . Now, a
successful adversary can be classified into one of three types, depending on its output
(msg∗, σ∗, ρ∗).

117

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

1. ∃i ∈ [QOSign] : C(msg∗, ρ∗) = C(msg i, ρi)

a) ρ∗ 6= ρi or msg∗ 6= msg i: we have a collision under C.

b) ρ∗ = ρi and msg∗ = msg i: we have σ∗ 6= σi, an SU-SMA forgery.

2. ∀i ∈ [QOSign] : C(msg∗, ρ∗) 6= C(msg i, ρi): we have an SU-SMA (even EU-
SMA) forgery.

Type-1a adversaries find collisions under C, therefore the reduction has to play
against collision resistance of the family C. Type-1b adversaries find a forgery in the
strong sense, i.e., the reduction plays against SU-SMA security of DSSU-SMA. Type-2
adversaries A always output an existential forgery that refutes SU-SMA, and even
EU-SMA, security of DSSU-SMA. Whenever we expect the adversary to be of type 1a,
we simulate the environment with the secret signing key sk . Otherwise, we receive
the public verification key from the SU-SMA experiment and simulate the signature
oracle with the trapdoor C−1 for the chameleon hash. However, the adversary’s view
in both reductions is indistinguishable. We describe both reductions.

Type-1a We describe a reduction that refutes collision resistance of the chameleon
hash function family C. The reduction receives a random function from the family
C.

Setup: Receive C and run (sk , pk) ← DSSU-SMA.Kg(1n). Then, run A on input
(pk ,C).

Signature Queries: On input msg , choose a random ρ←${0, 1}n. Then, compute
µ← C(msg , ρ) and return the result of DSSU-SMA.Sign(sk , µ) and ρ.

Output: WhenA outputs (msg∗, σ∗, ρ∗), the reduction outputs the collision (msg , µ),
(msg∗, µ∗).

Analysis Observe that the environment of A is perfectly simulated. By defini-
tion, a type-1a forger outputs a signature (σ∗, ρ∗) and a message msg∗ such that
C(msg∗, ρ∗) = C(msg i, ρi) for some i but with msg∗ 6= msg i or ρ∗ 6= ρi. Therefore,
the output is a valid collision under C and the reduction is successful whenever A
is. The overhead of the reduction is negligible.

Type-1b/2 We describe a reduction that refutes SU-SMA security of DSSU-SMA.
The reduction has access to an external signature oracle in the setup phase.

118

7.2 An Instantiation with Lattices

Setup: Choose QOSign uniformly random messages (µi)
QOSign

i=1 and send them to the

signature oracle. Receive (σi)
QOSign

i=1 and pk . Choose (C,C−1) ← C.Kg(1n) and
execute A on input (pk ,C). Set up a counter ı← 0.

Signature Queries: On input msg , increment ı and compute ρi ← C−1(µi,msg).
The oracle returns (µi, σi).

Output: Eventually, the adversary A outputs (msg∗, σ∗, ρ∗). Then, the reduction
returns (C(msg∗, ρ∗), σ∗).

Analysis Observe that the environment of A is perfectly simulated. By defini-
tion, a type-1b forger outputs a signature (σ∗, ρ∗) and a message msg∗ such that
C(msg∗, ρ∗) = µi for some i ∈ [QOSign] and msg∗ = msg i as well as ρ∗ = ρi. Since
it is a forgery, we have that σ∗ 6= σi. Therefore, σ∗ is a forgery for µi in the strong
sense.

A type-2 forger outputs a pair (msg∗, ρ∗) such that C(msg∗, ρ∗) 6= µi for all i ∈
[QOSign]. Thus, the reduction outputs a forgery in the existential sense because
C(msg∗, ρ∗) has never been queried to the SU-SMA signature oracle. In either case,
the reduction is successful whenever A is. The overhead is dominated by the calls
to C−1.

7.2 An Instantiation with Lattices

In the following, we propose our main construction, an SU-SMA secure signature
scheme in the standard model based on the SIS problem. When combined with
Theorem 7.1, we obtain an SIS-based SU-CMA secure scheme in the standard model.
Before presenting our construction, we need to recap the underlying bonsai tree
concept from [CHKP10].

7.2.1 Bonsai Trees

The notion of “bonsai trees” on lattices is introduced in [CHKP10] in analogy to
arboriculture. An arborist always starts with a certain amount of undirected, i.e.,
random, natural growth that he cannot control. Then, he applies his tools and starts
cultivating individual branches to achieve the desired looks via directed growth.
The arborist is successful if the resulting tree still looks sufficiently natural to the
observer. Once cultivated, a branch can easily be extended to form more directed
growth without too much additional care. Instead of extending directed growth, the

119

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

arborist can also generate a randomized offsprings, which can be given to another
arborist who can easily cultivate them by extending growth. The offsprings hide the
first arborist’s work and the employed techniques. We formalize these concepts in the
context of lattices. A (binary) bonsai tree is generated out of a root A and branches

B
(b)
i ∈ Zn×miq , b ∈ {0, 1}, mi ≤ poly(n), i ≤ k ≤ poly(n), that are statistically close

to uniform. The entire tree is the set {A‖B(x1)
1 ‖ · · · ‖B(xk)

k : x ∈ {0, 1}k}.

Proposition 7.2 (Directed Growth). Let C > 0 and δ > 0 be constants and let
q ≥ 3 be odd. There is a PPT algorithm ExtLattice(A1,m2) that, given uniformly
random A1 ∈ Zn×m1

q for any m1 ≥ (1 + δ)n log2(q) and poly(n)-bounded m2 ≥
(4 + 2δ)n log2(q), outputs (A2 ∈ Zn×m2

q ,S ∈ Zm×m), where m = m1 +m2, such that

A = A1‖A2 is within statistical distance m2q
−δn/2 from uniform; S is a basis of

Λ⊥q (A1‖A2); ‖S‖ ≤ L = Cn log2(q) with overwhelming probability; and
∥∥∥S̃∥∥∥ ≤ L̃ =

1 + C
√

(1 + δ)n log2(n) ≤ 1 + C
√
m1 with overwhelming probability.

The proposition reflects the most recent result on trapdoors for q-ary lattices
(cf. Proposition 2.4). An interpretation in terms of arboriculture is generating “di-
rected growth” out of “undirected growth” because one starts with some random
growth A1 and cultivates a branch A1‖A2 along with a trapdoor S, which is the
arborist’s journal or a trace of his work. However, the observer cannot distinguish
undirected growth from directed growth.

A central observation is that knowing a trapdoor for A ∈ Zn×mq implies knowing

a trapdoor for all A′ ∈ Zn×m′q , m′ ≥ m, when the columns of A form a prefix for
the sequence of columns in A′.1 We write A @ A′. This is because one can apply
the trapdoor in dimension m and then pad the resulting vector with zeros to solve
SIS in dimension m′. Another option is to derive an actual trapdoor for the such a
superlattice as follow.

Proposition 7.3 (Extending Control). There is deterministic polynomial time al-
gorithm ExtBasis(S1,A = A1‖A2) that takes a basis S of Λ⊥q (A1) and a matrix A

with Zn×m1
q 3 A1 @ A ∈ Zn×(m1+m2)

q as input. If m1 ≥ 2n log2(q), it outputs a basis

S for Λ⊥q (A) with
∥∥∥S̃∥∥∥ =

∥∥∥S̃1

∥∥∥.

Although the following concept of trapdoor delegation is not used here, we include
it for the sake of completeness. It is important when extending our construction to
the hierarchical identity-based setting as described in [Rüc10c]. Whenever trapdoor

1Actually, any subset of columns works when a suitable permutation is applied.

120

7.2 An Instantiation with Lattices

delegation is required, one cannot simply use “extending control” and hand over
the resulting basis as it leaks information about the original trapdoor. We need to
re-randomize the source trapdoor first.

Proposition 7.4 (Randomizing Control). On input a basis S of the lattice Λ⊥q (A)

of dimension m and a Gaussian parameter η ≥
∥∥∥S̃∥∥∥ θ(n) for θ(n) = ω(

√
log(n)),

the polynomial time algorithm RandBasis(S, η) outputs a basis S′ of Λ⊥q (A) with∥∥∥S̃′∥∥∥ ≤ η
√
m. The basis is independent of S in the sense that for any two bases

S0,S1 of Λ⊥q (A) and η ≥ max{
∥∥∥S̃0

∥∥∥ , ∥∥∥S̃1

∥∥∥}θ(n), RandBasis(S0, η) is within negligi-

ble statistical distance of RandBasis(S1, η).

7.2.2 Our Construction

In the following, we let H ∈ H(1λ) be a collision-resistant hash function that maps
into the message space {0, 1}λ. For simplicity, let us assume that finding collisions
in polynomial time is possible with probability at most εH. Given the tools from
the previous section and PSTF from Section 2.7.3, our scheme DS = (Kg,Sign,Vf)
works as follows.

Parameters: Let q, L̃,m1,m2 be chosen according to Proposition 7.2 and let η =
L̃θ(n) for any θ(n) = ω(

√
log(n)) and d ← η

√
m1 + (λ+ 1)m2. These pa-

rameters may be excluded from the public key as they are the same for all
users.

Key Generation: Kg(1n) samples A1←$Zn×m1
q and uses ExtLattice(A1,m2) to gen-

erate a description A ∈ Zn×(m1+m2)
q of the master lattice Λ⊥q (A) together

with a trapdoor S such that
∥∥∥S̃∥∥∥ ≤ L̃. Furthermore, it picks a set 〈B〉 :=(

(B
(0)
i ,B

(1)
i)
)λ
i=1

of random matrices in Zn×m2
q as well as y←$Znq . The output

is a secret key S and a public key (A, 〈B〉,y).

Signing: Sign(S,msg ∈ {0, 1}∗) selects r←${0, 1}n, computes h← H(msg , r) as well
as the signature σ ← SamplePre(Sh, η,y). The trapdoor Sh is formed via

ExtBasis(S,Ah), where Ah := A‖B(h1)
1 ‖ · · · ‖B(hλ)

λ . The output is (σ, r).

Verification: Vf((A, 〈B〉,y), (σ, r),msg) outputs 1 if and only if ‖σ‖2 ≤ d and
Ahσ ≡ y for h← H(msg , r).

121

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

The scheme is complete because all signatures are generated using a basis of
length L̃ and with the Gaussian parameter η = ω(

√
log(n))L̃. The total dimension

is m = m1 + (λ + 1)m2. Thus, SamplePre outputs signatures of length at most
η
√
m1 + (λ+ 1)m2 = d that are accepted by Vf. In order to get the full (SU-CMA)

scheme, we wrap the hash value h with a chameleon hash function.
For improved storage efficiency, the construction can be instantiated with ideal

lattices as well. Refer to the next chapter for a discussion of the required tools to
do so.

Security We prove that DS is SU-SMA secure. Let Tfunc = Tfunc(n) be the cost
function for the function func and let TList = TList(n) be the cost function for list
processing, which is explained in the analysis below.

Theorem 7.5. Let θ(n) = ω(
√

log(n)). DS is (t, QOSign, ε) strongly unforgeable un-
der static message attacks (SU-SMA) if SIS(n,m, q, ν) with norm bound ν = 2L̃θ(n)√
m1 + (λ+ 1)m2 is (t+λQOSignTList+TExtLattice+QOSign(TSamplePre+TExtBasis), 1/2(1−

n−ω(1))(ε−Q2
OSign/2

n − εH)/(λ ·QOSign))-hard.

The idea is to separate the adversaries into two classes. One works in the EU-
SMA sense and the other exploits the additional freedom of the SU-SMA setting.
The reduction guesses the type of adversary before handing over the public key. If
it expects an EU-SMA forger, the reduction knows x with Ax ≡ y and forces the
forger to solve an inhomogeneous SIS, for which the reduction does not know the
trapdoor. Together with x, it can solve the corresponding SIS with overwhelming
probability. For the SU-SMA forger, the reduction has to guess the index i∗ of
the signature query that will be recycled in the forgery. This can be done with
probability at least 1/QOSign. There, it plants an x with AH(msgi∗ ,ri∗)x ≡ y. Again,
with the adversary’s help, the reduction solves SIS with overwhelming probability,
while being able to answer a single signature query for msg i∗ with x.

Proof. We assume that there is a successful adversary A against SU-SMA unforge-
ability of DS and we construct a reduction BA that solves SIS. The reduction
receives a list of messages and returns a list of signatures along with the public key.
Then, the adversary either outputs a weak forgery (EU-SMA) or a strong forgery
(SU-SMA). The reduction guesses the type of adversary beforehand and solves SIS
is both cases.

Setup: On input A? = A‖U(0)
1 ‖U

(1)
1 ‖ · · · ‖U

(0)
λ ‖U

(1)
λ ∈ Zm1+(2λ+1)m2

q from the SIS

problem, the reduction invokes A and receives a list (msg i)
QOSign

i=1 of messages.
It flips a coin c←${0, 1} (0=EU, 1=SU) and picks i∗←$[QOSign].

122

7.2 An Instantiation with Lattices

Then, it chooses ri←${0, 1}n and computes h(i) ← H(msg i, ri) for all i ∈
[QOSign]. If there is a collision under H, the reduction starts over. Let 〈π〉 :=(
π(i)
)p
i=1

be the set of all strings π ∈ {0, 1}≤λ such that π 6@ h(j) for j ∈
[QOSign] \ {c · i∗}, and π(i) 6@ π(j) for all distinct pairs (π(i), π(j)) in 〈π〉. The
set 〈π〉 contains p ≤ λ · QOSign elements. Now, randomly select an element
π←$ 〈π〉, which will represent the challenge subtree, i.e., the subtree of the
bonsai tree, where we inject the input from the SIS problem. Let lπ ← |π| be
the bit length of π.

To embed the challenge, B sets up matrices B
(πi)
i ← U

(0)
i for i ∈ [lπ] and

matrices B
(b)
i ← U

(b)
i for b ∈ {0, 1} and i = lπ + 1, . . . , λ. Then, B “rigs” the

public key so that it is able to answer signature queries for all subtrees but π:

compute B1−πi
i and Si via ExtLattice(A‖B(π1)

1 ‖ · · · ‖B(πi−1)
i−1 ,m2) for i ∈ [lπ].

If c = 0, use SampleDom with parameter η to sample a vector x ∈ Zm1+m2

and compute y ← Ax mod q. For c = 1, sample x ∈ Zm1+(λ+1)m2 , and set
y← Ah(i

∗)x mod q.

Signing: For all i 6= c · i∗, let j be the smallest index with h
(i)
j 6= πj . The reduction

computes the signature σi ← SamplePre(ExtBasis(Sj ,Ah(i)), η,y). For i = c·i∗,
the reduction sets σi ← x.

The public key comprises A, y, and 〈B〉 :=
(

(B
(0)
i ,B

(1)
i)
)λ
i=1

and the reduction

returns the public key and the list ((σi, ri))
QOSign

i=1 of signatures to A.

Output: Eventually, A outputs its forgery (msg∗, σ∗, r∗). If c = 0, the reduction
pads x with zeros to form x′ ∈ Zm1+(λ+1)m2 and outputs x′−σ∗. In case c = 1,
the reduction outputs x− σ∗. In either case, the output needs to be suitably
padded and rearranged to solve SIS for A?.

Analysis First of all, the setup phase is efficient. As in [CHKP10], the set 〈π〉
is of polynomial size in n. Finding each of the strings π in the set costs TList. If
A runs in time t, then the reduction runs in time t + λ · QOSignTList + TExtLattice +
QOSign(TSamplePre + TExtBasis) plus some minor overhead. Next, notice that the setup
phase outputs valid signatures and a public key that is indistinguishable from uni-
form. The only deviation from the real scenario is that there might be a collision
under H, which happens with probability ≤ εH in ExpCRA,H (cf. 2.3.1). It is also pos-
sible that the signer chooses the same r when queried with a message msg twice.
This happens with probability at most q2

OSign/2
n.

123

Chapter 7 Strongly Unforgeable Signatures in the Standard Model

As for the output (msg∗, σ∗, r∗) of A, one of two things happens with probability
1/2: There is an index i with h∗ = H(msg∗, r∗) = h(i). Then, the reduction must
have guessed i∗ = i correctly (probability ≥ 1/QOSign) and A outputs a signature
σ∗ 6= x. If there is no such i, the reduction works if π @ h∗ (probability 1/(λ·QOSign))
and the padded x′ 6= σ∗ (probability 1 − n−ω(1)). Therefore, the total success
probability ε′ is at least 1/2(ε− q2

OSign/2
n − εH)(1− n−ω(1))/(λ ·QOSign).

Via Proposition 2.1, we arrive at a reduction from worst-case lattices problems
and obtain similar results for SU-CMA via Theorem 7.1.

Corollary 7.6. DS is strongly unforgeable under static message attacks (SU-SMA)
if if SIVP is hard in the worst case for approximation factors γ = Õ(

√
λn
√
n).

7.3 Conclusion and Open Problems

We have constructed the first treeless, standard model signature scheme from lat-
tices that is secure in the strong unforgeability model. With our modification to
[CHKP10], we have shown once more that working over cosets instead of over lat-
tices themselves is very useful in security proofs.

Unfortunately, all known lattice-based signature schemes in the standard model
are rather impractical because their use of trapdoors and sampling. Constructing
such a scheme without trapdoors remains a major open research problem. Even if,
one day, sampling becomes more efficient and trapdoors become smaller, a trapdoor-
less scheme would still have its benefits because all users could share the same lattice.

124

Chapter 8

Identity-based Identification

125

Chapter 8 Identity-based Identification

Identification schemes are one of the most important primitives in modern cryp-
tography because typical e-business or e-government applications essentially rely
on secure online access control. With identity-based identification schemes (IBI),
motivated by Shamir [Sha84], one can get rid of public-key infrastructures, which
are unfavorable in today’s widespread decentralized networks. The public key is
replaced with a unique identifier string, such as an e-mail address, and the secret
key is “extracted” by a trusted party for this identifier.

In the strongest security model ADAPT-ID-IMP-CA [KH05, BNN09], the adver-
sary has access to provers for arbitrary identities in a training phase. The provers
may be accessed concurrently. In addition, the adversary may query a secret-key
extraction oracle to corrupt identities of its choice. Then, it outputs a non-corrupted
challenge identity and wins if it is able to impersonate it. Weaker attacks include
impersonation under active (non-concurrent) attacks (-AA), or passive attacks (-PA)
without any direct prover access.

It is well-known that identity-based identification schemes can be realized in the
standard model with a so-called certification approach due to Bellare, Neven, and
Namprempre [BNN09] but these generic, black-box constructions require a certain
computational and bandwidth overhead. The only known direct construction from
lattices is sketched in [SSTX09] and requires random oracles.

Our Contribution We propose a new, modular approach for designing identity-
based identification schemes. It is yet another application of the “hash-sign-switch”
trick using chameleon hash functions [KR00]. Therefore, we introduce a weaker secu-
rity model STAT-ID-IMP-CA related to the static message attack model (cf. Section
7.1) for signature schemes. Thus, the ADAPT-ID-IMP-CA model is weakened by
forcing the adversary to output the list of identities to corrupt before seeing the mas-
ter public key of the key extraction authority. Such constructions are potentially
easier to achieve and simpler to design.

Using chameleon hash functions, we prove the following theorem for identification
schemes, but it also holds for other identity-based constructions. Namely, whenever a
message is sent from the secret-key holder to the receiver, which is why it gives rise to
a strongly unforgeable identity-based signature scheme in the standard model using
Chapter 7 and additional techniques from [Rüc10c]. The sender simply appends the
randomness for the chameleon hash to his or her transmission. Then, the receiver
can compute the quasi-public-key using identity and randomness.

Theorem (Generic Conversion). STAT-ID-IMP-CA (-PA / -AA) implies ADAPT-
ID-IMP-CA (-PA / -AA) if chameleon hash functions exist.

126

Using lattices, we propose an exemplary instantiation IBI of our STAT-ID-IMP-
CA model. We present it using ideal lattices because its presentation bears a con-
siderable similarity with our blind signature scheme in Chapter 4 as both are based
on Lyubashevsky’s witness-indistinguishable proof of knowledge [Lyu08a, Lyu08b].

Theorem (Main Construction). Assuming the existence of chameleon hash func-
tions with range {0, 1}λ, let D ⊆ R0 such that f ∈ D if ‖f‖∞ = Õ(λn2√n). IBI

is secure in the STAT-ID-IMP-CA model if the collision problem COL(H(R, Õ(λ)),
D) is hard.

The Simulation Trick An essential part of our construction, and a contribution of
independent interest, is a universal simulation technique for hierarchies of lattices,
such as bonsai trees [CHKP10].

Consider an m1-dimensional lattice Λ⊥q (A), a vector S←$Znq , and a list of m2-

dimensional super lattices Λ⊥q (B1), . . . ,Λ⊥q (Bk) with A @ Bi for all i ∈ [k]. The
task is to prove knowledge of a short vector si such that Bisi ≡ S for a particular i
with a witness indistinguishable proof.

Furthermore, consider a simulation of the above provers. The simulator can sam-
ple s?0 ← SampleDom(m1, η) and set S ← As?0 mod q. Then, the proofs for all i
can be simulated efficiently without applying SampleDom or SamplePre again. For
identity-based identification, this means that the simulator does not need to run
the key extraction algorithm and it does not have to know a trapdoor. Instead, it
can use the 0-padded universal pseudo-secret s? ← s?0‖0 ∈ Zm2 in all proofs and
witness-indistinguishability hides this deviation.

Organization After introducing the new, weaker model for identity-based identifi-
cation in Section 8.1 that is akin to static message attacks for signatures, we discuss
its relation to the standard security notion. In Section 8.1.2, we essentially apply
the “hash-sign-switch” paradigm of [KR00] to prove that our weak security notion
is equivalent to the standard notion. Then, we use an ideal-lattice interpretation of
bonsai trees [CHKP10] to instantiate our model in Section 8.2 before we conclude
the chapter in Section 8.3.

In this chapter, we reprint the main construction in [Rüc10a], of which the dis-
sertation author was the main investigator and author.

127

Chapter 8 Identity-based Identification

8.1 From Static to Adaptive Identity Security

One of the contributions in this work is a method to simplify the construction of
identity-based identification schemes in the strongest security model. We discuss
this model in the following and propose a slightly weaker version. Then, we prove
that they are equivalent if chameleon hash functions exist. The transformation is
tightly related to the conversion described in Section 7.1.

8.1.1 Security Model

Identity-based identification schemes IBI = (Kg,Extract,Protocol) are specified as
follows.

Master-key Generation: Kg(1n) outputs a master secret key msk and a master
public key mpk .

Key Extraction: Extract(msk , ID) extracts a secret key sk ID for the given identifier
ID.

Identification Protocol: Protocol is an interactive protocol between a prover algo-
rithm PID(mpk , sk ID) and a verifier V(mpk , ID), where PID convinces V of its
identity. The joint execution 〈PID,V〉 yields a bit b. If b = 1, V accepts and if
b = 0, the verifier rejects.

The security model for identity-based identification [Sha84] was formalized by
Kurosawa and Heng [KH05] and it is also discussed in the recent work of Bellare,
Neven, and Namprempre [BNN09]. Security is proven against impersonation under
adaptive identity attacks as described in the ADAPT-ID-IMP-CA experiment. The
adversary (impersonator) A works in two modes: m verify and m impersonate. In
mode m verify , it has access to mpk , to a secret key extraction oracle OExtract,
and to provers PID for arbitrary identities ID. The adversary may query the provers
concurrently, i.e., run multiple, arbitrarily interleaved sessions with provers that
have individual random tapes. At some point, it selects a target identity ID∗, which
it tries to impersonate in the second phase. In mode m impersonate, A has access
to provers and secret keys for all identities 6= ID∗ and it is supposed to convince an
honest verifier that it knows the secret key for ID∗. Obviously, the secret key for ID∗

must not have been among the queries to the extraction oracle in the first phase.
Also, note that A is allowed to keep a state s verify across modes.

128

8.1 From Static to Adaptive Identity Security

Experiment ExpADAPT-ID-IMP-CA
A,IBI (n)

(msk ,mpk)← IBI.Kg(1n)

(ID∗, s verify)← A〈PID,·〉∞,OExtract(msk ,·)(m verify ,mpk)

Let (IDi)
Q
i=1 be the ID’s queried to OExtract.

b←
〈
A〈P 6=ID∗ ,·〉∞,Extract6=ID∗ (msk ,·),V

〉
((m impersonate, s verify), ID∗)

Return 1 iff b = 1 ∧ ID∗ 6∈ (IDi)
Q
i=1

In the following, we propose a relaxed security model, called security against
concurrent identity-based impersonation under static identity attacks (STAT-ID-
IMP-CA). The model gives A significantly less power as the adversary, in mode
m find , has to submit a list of distinct identities to the oracle OExtract before seeing
the master public key. It then receives the extracted secret keys together with mpk
and does not have access to OExtract anymore. Again, the adversary is allowed to
keep a state across modes.

Experiment ExpSTAT-ID-IMP-CA
A,IBI (n)

(ID1, . . . , IDQ, s find)← A(m find) for distinct IDi
(msk ,mpk)← IBI.Kg(1n)
sk i ← OExtract(msk , IDi) for i ∈ [Q]

(ID∗, s verify)← A〈PID,·〉∞(m verify , s find ,mpk , (sk i)
Q
i=1)

b←
〈
A〈P 6=ID∗ ,·〉∞ ,V

〉
((m impersonate, s verify), ID∗)

Return 1 iff b = 1 ∧ ID∗ 6∈ (IDi)
Q
i=1

We have revisited a similar weak notion for signatures in Chapter 7. There, we
have also seen that chameleon hash functions can be used to amplify the security of
a given, weakly secure scheme. In the following, we show that essentially the same
transformation can be used to strengthen the security of identification schemes.
More precisely, we provide a black-box transformation from STAT-ID-IMP-CA to
ADAPT-ID-IMP-CA security in the standard model. This makes the construction
of such scheme more modular and potentially more efficient. In any case, the proofs
are greatly simplified because one can prepare for all key extraction queries before
handing over the master public key.

Note that the weaker security notions for identification schemes, passive (PA)
and active (AA), apply as well and the experiments in this section can be easily
changed to cover these attacks. All definitions carry over to the hierarchical setting
[GS02], where identities can be concatenated to describe a subordinate identity and

129

Chapter 8 Identity-based Identification

Prover PID(mpk , (sk , ρ)) Verifier V(mpk , ID)

µ← C(ID, ρ)
ρ−−−−−−−−−−−→ µ← C(ID, ρ)

IBIstat.Pµ(mpk , sk)
IBIstat.Protocol←−−−−−−−−−→ IBIstat.V(mpk , µ)

Figure 8.1: Identity-based identification protocol for IBIadapt.

its relation in an organizational structure. Here, every entity can act as a key
extraction authority for its subordinates.

8.1.2 From STAT-ID-IMP-CA to ADAPT-ID-IMP-CA

We propose a generic, black-box transformation from static-identity security to
adaptive-identity security. Notice that the transformation is property-preserving
with regard to the identification scheme, i.e., security under passive, active, and
concurrent attacks carries over.

Theorem 8.1 (Transformation). STAT-ID-IMP-CA (-PA / -AA) implies ADAPT-
ID-IMP-CA (-PA / -AA) if chameleon hash functions exist.

Proof. Suppose we have a scheme IBIstat = (Kg,Extract,Protocol) that is secure
against static identity attacks, we show how to construct a scheme IBIadapt = (Kg′,
Extract′,Protocol′) that is secure against adaptive identity attacks using a family
C = (Kg,Ψ) of chameleon hash functions.

Master-key Generation: Kg′(1n) runs (msk ,mpk) ← IBIstat.Kg(1n) and select a
chameleon hash function (C, ·)← C.Kg(1n). It returns the secret key msk and
the public key mpk ′ ← (mpk ,C).

Key Extraction: Extract′(msk , ID) picks ρ←Ψ R and computes µ← C(ID, ρ). Then,
it computes the secret key for the pseudo identity µ via sk ← IBI.Extract(msk ,
µ). The algorithm returns the pair (sk , ρ).

Identification Protocol: Protocol′ uses IBIstat.Protocol as a sub-protocol after re-
computing the randomized pseudo identity µ← C(ID, ρ). See Figure 8.1.

First of all notice that the chameleon hash function prevents the adversary from
reusing a given secret key sk for a particular identity ID to impersonate a different
identity ID∗ 6= ID. Such an adversary would refute the collision resistance of the

130

8.1 From Static to Adaptive Identity Security

family C. The reduction is straightforward. Therefore, we focus on the reduction
BA in the presence of an impersonator A that does not exploit any weakness in
the chameleon hash function. Suppose that the adversary makes at most Q queries
to the extraction oracle. The reduction plays in the STAT-ID-IMP-CA experiment
and simulates A’s environment as in the ADAPT-ID-IMP-CA environment. B has
access to an extraction oracle before seeing the master public key from IBIstat and
to arbitrary provers for IBIstat.

Setup: B chooses a chameleon hash function (C,C−1)← C.Kg(1n). It picks a set of
randomized identities µ1, . . . , µQ←$I. Afterwards, B calls its extraction oracle
for IBIstat.Extract to obtain the corresponding secret keys sk1, . . . , skQ and sets
up a counter ı← 0. It runs A on input (mpk ,C).

Extraction Queries: Whenever A queries an identity ID to its extraction oracle, the
internal counter ı is incremented and the reduction calls ρ ← C−1(µı, ID). It
returns (sk ı, ρ).

Prover Queries: The simulator runs the protocol in Figure 8.1, using its access to
external provers for IBIstat.

Impersonation Attempt: At some point, A outputs a challenge identity ID∗, which
has not been queried to the extraction oracle before. From this point on,
the extraction oracle answers ⊥ when queried with ID∗. When the adversary
instantiates a verifier to prove its identity ID∗ with randomness ρ∗, B forwards
all messages to and from its external challenge verifier in the STAT-ID-IMP-
CA experiment for target identity µ∗ = C(ID∗, ρ∗).

The environment of A is perfectly simulated if the input-output relation of C can
be sampled perfectly. The extraction oracle in the simulation has not been queried
with ID∗, so B has never called its extraction oracle with identity µ∗ = C(ID∗, ρ∗)
(but with negligible probability). If A is successful in the impersonation attempt,
so is B.

In principle, our transform works for all authentication-type ID-based cryptog-
raphy, e.g., ID-based identification or signatures. In particular, it can be used to
construction a strongly-unforgeable identity-based signature scheme in the standard
model from our construction in Chapter 7.

For identity-based encryption, this does not work because there is no message-flow
from the secret-key holder to the public-key holder. In other words, the encrypting

131

Chapter 8 Identity-based Identification

party cannot derive the recipients full public key as it does not know the randomness
for the chameleon hash.

8.2 An Instantiation with Lattices

Using the transformation from the previous section, we construct an adaptively
secure identity-based identification scheme in the standard model. Our construction
reuses large parts of the machinery from Chapter 4 as well as from Chapter 7. It
uses the following ideal-lattice interpretation of bonsai trees.

8.2.1 Convoluted Bonsai Trees

In Section 7.2.1, we have seen the bonsai tree principle from [CHKP10] in the setting
of q-ary lattices. There, the authors also point out that bonsai trees from ideal lat-
tices seem possible. We confirm this observation by making it explicit, based on the
following family PSTF = (Kg,Eval,SampleDom,SamplePre) of preimage sampleable
trapdoor functions in ideal lattices.

Parameters: The following parameters are functions in n. q = poly(n), m =
Ω(log(n)), L̃ = Õ(

√
n), and η = θ(n)L̃ for θ(n) = ω(

√
log(n)).

Key Generation [SSTX09]: Kg(1n) outputs a public key â ∈ Rm and a secret trap-
door matrix T ∈ Zmn×mn that is a basis of Λ⊥R(â). Furthermore, we have∥∥∥T̃∥∥∥ ≤ L̃.

Evaluation: Eval(â, x̂), on input x̂ ∈ Rm
0 returns â~ x̂ mod q. Recall that â~ x̂ :=∑m

i=1 aixi.

Domain Sampling: SampleDom(m, η) returns x̂ ∈ Rm
0 with 0 < ‖x̂‖∞ ≤ ηθ(m)

with overwhelming probability.

Preimage Sampling: SamplePre(T, η,Y) outputs x̂ ∈ Rm
0 subject to â~ x̂ ≡ Y and

‖x‖∞ ≤ ηθ(m) with overwhelming probability.

Essentially, the above family is the same as the one described in Section 2.7.3.
The key generation differs and yields a public key â that is smaller by a factor n.

As described earlier in Section 7.2.1, we need to implement ExtLattice (directed
growth), ExtBasis (extending control), and RandBasis (randomizing control) for a

bonsai tree. Its root is â and its branches are generated by uniformly random b̂
(b)
i ∈

132

8.2 An Instantiation with Lattices

Rmi , b ∈ {0, 1}, i ≤ k ≤ poly(n). The entire tree is the set {â‖b̂(x1)
1 ‖ · · · ‖b̂(xk)

k : x ∈
{0, 1}k}. The core of the bonsai tree technique is the observation that we can append
two vectors of polynomials â ∈ Rm1 and b̂ ∈ Rm2 to form ĉ = â‖b̂ ∈ Rm1+m2 . Now,
knowing a solution x̂ ∈ Rm1

0 to the equation â ~ x̂ ≡ 0, we immediately obtain a
solution ŷ ∈ Rm1+m2

0 to the equation ĉ ~ ŷ ≡ 0 by setting ŷ = x̂‖0̂ ∈ Rm1+m2

with ‖x̂‖ = ‖ŷ‖ for any norm. To see this, we directly apply the definition of ~ and
obtain ĉ ~ ŷ = â ~ x̂ + b̂ ~ 0̂ = 0.

Proposition 8.2 (Directed Growth). Let r = Ω(log(n)) and 3 ≤ q = poly(n) be
a prime such that q ≡ 3 (mod 8). There is a PPT algorithm ExtLattice(â,m) that,
given a uniformly random â ∈ Rm1, with m = m1 +m2 ≥ (dlog(q)e+ 1)(1 + r) and
m1 ≥ 1, generates b̂ ∈ Rm2 with m2 = m−m1 together with a matrix T ∈ Zmn×mn.

The algorithm succeeds with overwhelming probability and its outputs satisfies the
following properties.

1. â‖b̂ is within negligible statistical distance from uniform;

2. ‖T‖ ≤ L = O(
√
n log(n)).

The proposition is an immediate consequence of [SSTX09, Theorem 3.1]. It does

not guarantee a bound for
∥∥∥T̃∥∥∥ but we always have

∥∥∥T̃∥∥∥ ≤ ‖T‖.
Remember that we write â @ ĉ if there is a b̂ such that ĉ = â‖b̂. Then, the

following proposition allows us to extend a trapdoor for a lattice Λ⊥R(â) to a trapdoor
for any lattice Λ⊥R(ĉ) with â @ ĉ.

Proposition 8.3 (Extending Control). There is a deterministic polynomial time
algorithm ExtBasis(T, ĉ = â‖b̂) that takes a basis T of Λ⊥R(â) and an extension ĉ
with Rm1 3 â @ ĉ ∈ Rm1+m2 as input. If â generates R, the algorithm outputs a

basis T′ for Λ⊥R(ĉ) with
∥∥∥T̃′∥∥∥ =

∥∥∥T̃∥∥∥.

The proposition is an adaptation of the respective proposition for q-ary lattices.
The resulting trapdoor is

T′ =

(
T V

0 Inm2

)
∈ Zn(m1+m2)×n(m1+m2) .

Let [v1, . . . ,vnm2] be the columns of V with vi ∈ Znm1
q . Now, for every i ∈ [nm2],

interpret vi as an element v̂i ∈ Rm1
0 . They are chosen subject to â ~ v̂i ≡ −bi

133

Chapter 8 Identity-based Identification

but they need not be short. In consequence, T′ is a basis of Λ⊥R(â‖b̂). The Gram-

Schmidt orthogonalization T̃′ of T′ has length
∥∥∥T̃′∥∥∥ =

∥∥∥T̃∥∥∥ as T generates Znm1×nm1

and, therefore,

T̃′ =

(
T̃ 0

0 Inm2

)
.

In this setting, RandBasis can be implemented exactly as in [CHKP10]; see Propo-
sition 7.4.

8.2.2 Our Construction

We propose an identification scheme that is inspired by Lyubashevsky’s construction
in [Lyu08a, Lyu08b]. There, the prover has an associated public key S ∈ R and
a secret key ŝ ∈ Rm

0 such that h(ŝ) = S and ‖ŝ‖∞ ≤ 1. The function h is chosen
uniformly at random from H(R,m) and it is the same for all users. Apart from the
fact that it is identity-based, our 3-move identification scheme IBI scheme differs in
three main aspects.

1. The user secrets ŝ have a larger norm and they are chosen from a different
distribution;

2. All users share the same public value S;

3. Each user proves knowledge under a different compression function h.

Informal Description We give a detailed, slightly informal description of the proto-
col Steps 1–4 in Figure 8.2 with the parameters in Table 8.1. Basically, the protocol
provides a 3-move witness-indistinguishable proof of knowledge (cf. Section 2.5).

In the first step, the prover P picks random coins ŷ←$Dm
y for this protocol run.

Then, P commits to ŷ by sending Y = hâID
(ŷ) to the verifier V. The key âID to

h is unique for each identity ID ∈ {0, 1}λ and it can be computed from the master

public key (â,
〈
b̂
〉
,S).

In the second step, V challenges P with a random c from the set Dc.

The third step entails the computation of the response ẑ and checking whether it
falls into a “safe” set Gm. If so, it is sent to V. Otherwise, the protocol is restarted
to ensure witness-indistinguishability. The abort (ẑ← ⊥) happens with probability
at most 1− e−1/φ for our choice of Dy.

134

8.2 An Instantiation with Lattices

Parameter Value Asymptotics

m m1 + (λ+ 1)m2 Õ(λ)

Ds {f ∈ R0 : ‖f‖∞ ≤ L̃θ(nm1 + nm2) =: ds} Õ(
√
n)

Dc {f ∈ R0 : ‖f‖∞ ≤ 1 =: dc} O(1)

φ positive integer constant ≥ 1 O(1)

Dy {f ∈ R0 : ‖f‖∞ ≤ φmn2ds =: dy} Õ(n2√nλ)

G {f ∈ R0 : ‖f‖∞ ≤ dy − ndsdc =: dG} Õ(n2√nλ)

D {f ∈ R0 : ‖f‖∞ ≤ dG + ndsdc =: dD} Õ(n2√nλ)

q (prime) ≥ 4mn
√
n log(n)dD Θ̃(λn4)

The table defines all parameters for our scheme IBI. The parameters m1, m2, and
θ are as per Proposition 8.2. The constant φ governs the completeness error and λ
is the bit length of an identity. The third column contains the asymptotic growth
for the respective norm bound or parameter with respect to λ and n.

Table 8.1: Parameters for the identity-based identification scheme IBI.

Finally, the verifier performs the actual verification in the fourth step. It involves
testing that the coefficients of ẑ are within the correct interval and that the prover
has used a correct secret key ŝID, such that hâID

(ŝID) = S, when computing ẑ. This
last check is possible due to the linearity of h.

Now, we explain how the secret key ŝID is extracted for a given identity ID. Let â

be the root of a bonsai tree and let
〈
b̂
〉

=
(

(b̂
(0)
i , b̂

(1)
i)
)λ
i=1

be the set of branches.

Each identity ID = ID1‖ . . . ‖IDλ defines a unique path âID := â‖b̂(ID1)
1 ‖ . . . ‖b̂(IDλ)

λ in
the tree. Given a trapdoor T for the master lattice Λ⊥R(â), we can find short vectors
in the cosets {x̂ : hâID

(x̂) ≡ S} of any super lattice Λ⊥R(âID). The short elements in
the cosets correspond to the per-identity secret keys ŝID.

In the proof, we have to set up the tree such that it comprises both controlled and
uncontrolled paths. To do that, it is important to know all queries to the extraction
oracle before handing over the master public key; hence, the weak security model.
Since the attacker will impersonate an identity that it has not queried to OExtract,
the attacked identity is likely to overlap only with branches of uncontrolled growth.

135

Chapter 8 Identity-based Identification

Prover PID(ŝID) Verifier V(â,
〈
b̂
〉
,S, ID)

1 ŷ←$Dm
y

Y ← hâID
(ŷ)

Y−−−−−−−−−−−→
2

c←−−−−−−−−−−− c←$Dc

3 ẑ← ŝIDc + ŷ
If ẑ 6∈ Gm

ẑ← ⊥ (abort)

4
ẑ−−−−−−−−−−−→ If ẑ 6∈ Gm ∨ hâID

(ẑ) 6≡ Sc + Y
return 0

Else return 1

Figure 8.2: Identity-based identification protocol.

There, the simulator embeds the challenge from the collision problem.

Maybe the most interesting part of the construction is the simulation technique
for arbitrary provers. It uses a single, universal secret key ŝ? ∈ Rm1+m2

0 , such that
hâ(ŝ?) = S, for all provers. This allows a very efficient simulation. In particular, it
is not necessary to use the, rather inefficient, Extract algorithm to set up a prover.
The witness indistinguishability hides this deviation from the real protocol. Now,
let us define the scheme formally.

Master-key Generation: Kg performs the following steps.

• â0←$R
m1 ;

• (â,T)← ExtLattice(â0,m1 +m2);

• 〈b̂〉 :=
(

(b̂
(0)
i , b̂

(1)
i)
)λ

1
with b̂

(b)
i ←$R

m2 for all i ∈ [λ] and b ∈ {0, 1};

• S←$R.

Finally, it outputs the master secret key T and the master public key (â,
〈b̂〉,S).

Key Extraction: Extract(T, ID) parses ID = ID1‖ · · · ‖IDλ and sets âID := â‖b̂(ID1)
1 ‖

· · · ‖b̂(IDλ)
λ ∈ Rm. Then, it samples ŝ1, . . . , ŝλ via SampleDom(m2, η) and calls

ŝ0 ← SamplePre(T, η,S−
∑λ

i=1 b̂
(IDi)
i ~ ŝi mod q).

136

8.2 An Instantiation with Lattices

The output is ŝID ← ŝ0‖ · · · ‖ŝλ ∈ Dm
s . In the event that ŝID 6∈ Dm

s , the
algorithm starts over.

Identification Protocol: See Figure 8.2. When the protocol aborts, the prover starts
over with a fresh ŷ.

Notice that our scheme can be also be adapted to support a hierarchy of identities,
each acting as the key extraction authority for its subordinates. Thus, each user
receives a secret key, a trapdoor for a super lattice, that can be used to generate
the secret key for the identification scheme. This adaptation involves adding more
layers to the bonsai tree and applying RandBasis during basis delegation to prevent
leaking information about the master trapdoor.

The analysis of the scheme heavily relies on the results for our blind signature
scheme in Chapter 4. Both schemes share a common structure and a common set
of techniques. We have presented the lemmas in Section 4.2 in a generic way so as
to also cover the setting here.

Theorem 8.4 (Completeness). Let g(n) = ω(log(n)). The scheme IBI is complete
after at most g(n) (or, an expected number of e1/φ) restarts.

Proof. For all honestly generated master-key pairs (T, (â,
〈
b̂
〉
,S)), and all iden-

tities ID = ID1‖ · · · ‖IDλ, the key extraction algorithm outputs a secret key ŝID =
ŝ0‖ . . . ‖ŝλ ∈ Dm

s with hâID
(ŝID) ≡ hâ(ŝ0) +

∑λ
i=1 hb̂(IDi)

i

(ŝi) ≡ S −
∑λ

i=1 hb̂(IDi)
i

(ŝi)

+
∑λ

i=1 hb̂(IDi)
i

(ŝi) ≡ S and ‖ŝID‖∞ ≤ ds.
For all challenges c ∈ Dc and all random coins ŷ ∈ Dm

y , we have ‖ẑ‖∞ =

‖ŝIDc + ŷ‖∞ ≤ dy − n ‖ŝID‖∞ ‖c‖∞ = dy − n = dG with probability at least e−1/φ −
o(1) because of Lemma 4.2 and Lemma 4.1 (with k = mn,A = ndsdc, B = dy).
Hence, the verifier accepts because hâID

(ẑ) ≡ hâID
(ŝID)c + hâID

(ŷ) ≡ Sc + Y.

Repeating the protocol ω(log(n)) times in parallel establishes completeness. In
practice, a small and constant number e1/φ of retries is sufficient.

Observe that in any case, all operations (including eventual restarts) in IBI.Protocol
have Õ(nλ) complexity and that private keys, public keys, protocol messages, as well
as the master public key have size Õ(nλ). The only exceptions are the master secret
key size, which has Õ(n2λ) bits, and the key extraction algorithm Extract. Fortu-
nately, the online phase merely requires quasi-linear operations and a quasi-linear
bandwidth in n. However, when applying Theorem 8.1, we require a large identity
space, e.g., λ = n.

137

Chapter 8 Identity-based Identification

8.2.3 Security

Since the function family H(R, k) compresses the domain Dk
s for k ≥ m1 +m2, it is

easy to show that all secret keys collide with at least one other secret key (cf. Lemma
4.6). We prove soundness of the protocol in the following theorem. Furthermore,
the protocol can be shown to be witness indistinguishable with respect to the secret
per-identity keys (cf. Lemma 4.7). Thus, we can securely use parallel composition.

Theorem 8.5 (Soundness). IBI is secure in the STAT-ID-IMP-CA model if the
collision problem COL(H(R,m+ λm2),D) is hard.

The main idea is to exploit witness indistinguishability and simulate all provers
with a single secret key ŝ? = ŝ?0‖0̂‖ . . . ‖0̂ ∈ Rm

0 , where ŝ?0 ∈ Rm1+m2
0 , ‖ŝ?0‖∞ ≤

ηθ(m1 +m2), and â ~ ŝ?0 ≡ S, which is prepared during setup of the simulation.

Moreover, we prepare the set
〈
b̂
〉

so that we know a trapdoor for certain branches

of the tree, while others are embedded with the external challenge from the collision
problem. With good probability, the adversary will impersonate an identity that
corresponds to such uncontrolled branches.

During this phase of the attack, we run the knowledge extractor of the underlying
proof of knowledge to obtain a secret key ŝ′ 6= ŝ? and solve the collision problem.
This step involves the Reset Lemma [BP02], which is repeated as Lemma 8.7 at the
end of this chapter in Section 8.2.4.

Proof. The following reduction algorithm BA attempts to solve the collision problem
and has access to an efficient, successful adversary A against IBI in the STAT-ID-
IMP-CA experiment.

Setup: B receives ĉ = â‖û(0)
1 ‖û

(1)
1 ‖ · · · ‖û

(0)
λ ‖û

(1)
λ ∈ Rm1+m2‖R2λm2 . It invokes

A(m find) to obtain distinct ID1, . . . , IDQ ∈ {0, 1}λ. Let 〈π〉 := (πi)
p
1 be the

set of all strings π ∈ {0, 1}λ such that π 6@ IDj for j ∈ [Q] and πi 6@ πj for
all distinct pairs (i, j) in 〈π〉. The set 〈π〉 contains at most λ ·Q elements. B
randomly selects π←$ 〈π〉, which represents the challenge subtree. Let |π| = lπ.
The public key is set up as follows.

• b̂
(πi)
i ← û

(0)
i for i = 1, . . . , lπ;

• b̂
(b)
i ← û

(b)
i for b ∈ {0, 1} and i = lπ + 1, . . . , λ;

• b̂1−πi
i and Ti via ExtLattice(â?‖b̂(π1)

1 ‖ · · · ‖b̂(πi−1)
i−1 ,m2) for i = 1, . . . , lπ.

Then, B uses SampleDom to sample an element ŝ?0 ∈ Rm1+m2
0 and computes

S← hâ(ŝ?0). The universal simulation key will be ŝ? ← ŝ?0‖0̂‖ · · · ‖0̂ ∈ Rm
0 . For

138

8.2 An Instantiation with Lattices

each identity IDi = I
(i)
1 ‖ · · · ‖I

(i)
λ , let j be the smallest index with I

(i)
j 6= πj . B

computes the secret key ŝIDi ← SamplePre(ExtBasis(Tj , âIDi), η,S). The public

key comprises â, S, and
〈
b̂
〉

:=
(

(b̂
(0)
i , b̂

(1)
i)
)λ
i=1

and the reduction returns

the public key and the list of secret keys to A.

Prover Queries: A may challenge B with any identity ID. The simulator acts as per
the protocol in Figure 8.2 but uses the same secret ŝ? for all identities.

Impersonation Attempt: At some point, A outputs a challenge identity ID∗, which
has not been queried to the extraction oracle before. B challenges A to prove
knowledge of a secret key for ID∗. After receiving the commitment Y, B sends
c1←$Dc, and receives ẑ1. Then, the reduction rewinds A to the end of Step
1 and challenges the adversary with c2←$Dc to obtain the answer ẑ2. The
reduction suitably rearranges and pads (with 0̂) the pair (ẑ1 − ŝc1, ẑ1 − ŝc2)
and outputs the result as its solution to the problem COL under ĉ.

Analysis First of all, observe that mpk in the simulation is statistically indistin-
guishable from mpk in the real scheme (cf. Proposition 8.2). Furthermore, note that
the simulator can answer all extraction queries correctly because it knows a trapdoor
for a prefix of all requested identities. The prover queries are answered correctly as
ŝ? satisfies the relation hID(ŝ?) = S for any ID.

Let us assume that the reset during A’s impersonation attempt immediately yields
another valid response. Then, we certainly have hâID∗ (ẑ1 − ŝ?c1) = Y = hâID∗ (ẑ2 −
ŝ?c2) with max{‖ẑ1 − ŝ?c1‖∞ , ‖ẑ2 − ŝ?c2‖∞} ≤ dG + ndsdc = dD. What is left to
show is that ẑ1 − ŝ?c1 6= ẑ2 − ŝ?c2. Lemma 4.6 guarantees the existence of at least
two distinct valid secret keys ŝ? and ŝ′. Now, for one of them, we obtain a valid
collision. Assuming the contrary, ẑ1 − ŝ?c1 = ẑ2 − ŝ?c2 and ẑ1 − ŝ′c1 = ẑ2 − ŝ′c2
yields c1(ŝ′− ŝ?) = c2(ŝ′− ŝ?) and therefore (c1− c2)(ŝ′− ŝ?) = 0̂. This only holds
if ŝ′ = ŝ? because max{‖ŝ?‖∞ , ‖ŝ′‖∞} ≤ q/2 and R0 is an integral domain. Thus,
with probability ≥ 1/2, the simulator can use A’s output to solve COL.

Concerning the success probability of the reset, assume that A is successful with
non-negligible probability ε. Then, A is successful with non-negligible probability
≥ (ε− 1/ |Dc|)2 due to the Reset Lemma.

All in all, the success probability of the simulator against the collision problems
stays non-negligible if ε is non-negligible.

Proposition 2.1 yields the following corollary and Theorem 8.1 yields an identity-
based identification scheme that is secure in the ADAPT-ID-IMP-CA model.

139

Chapter 8 Identity-based Identification

Corollary 8.6. IBI is secure in the STAT-ID-IMP-CA model if SIVP∞ is hard in
the worst case for approximation factors γ = Õ(λn3√n) in lattices that correspond
to ideals in R0.

8.2.4 Reset Lemma

For the readers convenience, we formulate it in terms of our identification scheme
directly. In fact, it is more general.

Lemma 8.7 (Reset Lemma [BP02]). Let P be prover in IBI and let V be the verifier.
The prover is split into two algorithms P1 and P3, corresponding to Step 1 and Step
3 in the protocol. The verifier consists of the challenge set Dc and a verification
algorithm Vf (Step 4). With s prover, we denote the state of P. Let mpk be a
master public key, generated by Kg and let ID be the identity of P. The probability
that V accepts when interacting with P is

acc = Prob

d = 1

∣∣∣∣∣∣∣∣
(Y, s prover)←$P1(mpk , ID);
c←$Dc;
ẑ←$P3(c, s prover);
d← Vf(mpk , ID,Y, c, ẑ);

 .
Then, the following probability, where the Pgets two challenges c for the same com-
mitment Y, is

res = Prob

d1 = d2 = 1 ∧ c1 6= c2 :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Y, s prover)←$P1(mpk , ID);
c1←$Dc;
ẑ←$P3(c1, s prover);
d1 ← Vf(mpk , ID,Y, c1, ẑ);
c2←$Dc;
ẑ←$P3(c2, s prover);
d2 ← Vf(mpk , ID,Y, c2, ẑ);

with res ≥ (acc− 1/ |Dc|)2.

8.3 Conclusion and Open Problems

Using a new, weaker security model for identity-based identification and a generic
transformation toward full security, we have shown how to construct an identity-
based identification scheme from lattices that is secure against concurrent imperson-
ation and adaptive-identity attacks in the standard model. Our scheme is asymptot-
ically efficient and at its core, we use a new efficient simulation technique for bonsai

140

8.3 Conclusion and Open Problems

tree constructions. In practice, the most efficient alternative would be using the
certification approach [BNN09] with [CLRS10], for which the dissertation author
has contributed the security proofs.

One of the main open problems is to improve the efficiency of such direct con-
structions and, if possible, avoid trapdoor bases entirely.

141

Bibliography

[AB09] Elli Androulaki and Steven M. Bellovin. An anonymous credit card
system. In Simone Fischer-Hübner, Costas Lambrinoudakis, and
Günther Pernul, editors, TrustBus, volume 5695 of Lecture Notes in
Computer Science, pages 42–51. Springer, 2009.

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice
(h)ibe in the standard model. In Henri Gilbert, editor, EURO-
CRYPT, volume 6110 of Lecture Notes in Computer Science, pages
553–572. Springer, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delega-
tion in fixed dimension and shorter-ciphertext hierarchical ibe. In Tal
Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 98–115. Springer, 2010.

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for
polynomially many signatures. In Birgit Pfitzmann, editor, EURO-
CRYPT, volume 2045 of Lecture Notes in Computer Science, pages
136–151. Springer, 2001.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with
worst-case/average-case equivalence. In STOC, pages 284–293, 1997.

[AD07] Miklós Ajtai and Cynthia Dwork. The first and fourth public-key
cryptosystems with worst-case/average-case equivalence. Electronic
Colloquium on Computational Complexity (ECCC), 14(097), 2007.

[ADL+08] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peikert,
and A. Rosen. SWIFFTX: A proposal for the SHA-3 standard, 2008.
In the First SHA-3 Candidate Conference.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint
signature and encryption. In Lars R. Knudsen, editor, EUROCRYPT,

143

Bibliography

volume 2332 of Lecture Notes in Computer Science, pages 83–107.
Springer, 2002.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient
public-key cryptography in the bounded-retrieval model. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer
Science, pages 36–54. Springer, 2009.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures.
In Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT,
volume 1163 of Lecture Notes in Computer Science, pages 244–251.
Springer, 1996.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simulta-
neous hardcore bits and cryptography against memory attacks. In
Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Com-
puter Science, pages 474–495. Springer, 2009.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In STOC, pages 99–108. ACM, 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In
Jiŕı Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,
ICALP, volume 1644 of Lecture Notes in Computer Science, pages 1–
9. Springer, 1999.

[ANN06] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On
the (im)possibility of blind message authentication codes. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Com-
puter Science, pages 262–279. Springer, 2006.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally com-
posable non-committing blind signatures. In Mitsuru Matsui, editor,
ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 435–450. Springer, 2009.

[AP08] Joel Alwen and Chris Peikert. Generating shorter bases for hard
random lattices. Cryptology ePrint Archive, Report 2008/521, 2008.
http://eprint.iacr.org/.

144

Bibliography

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard
random lattices. In Susanne Albers and Jean-Yves Marion, editors,
STACS, volume 09001 of Dagstuhl Seminar Proceedings, pages 75–
86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2009.

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-
change of digital signatures. IEEE Journal on Selected Areas in Com-
munications, 18(4):593–610, 2000.

[Bab86] László Babai. On lovász’ lattice reduction and the nearest lattice
point problem. Combinatorica, 6(1):1–13, 1986.

[BBC+94] Jean-Paul Boly, Antoon Bosselaers, Ronald Cramer, Rolf Michelsen,
Stig Fr. Mjølsnes, Frank Muller, Torben P. Pedersen, Birgit Pfitz-
mann, Peter de Rooij, Berry Schoenmakers, Matthias Schunter, Luc
Vallée, and Michael Waidner. The esprit project cafe - high secu-
rity digital payment systems. In Dieter Gollmann, editor, ESORICS,
volume 875 of Lecture Notes in Computer Science, pages 217–230.
Springer, 1994.

[BBD08] Daniel J. Bernstein, Johannes A. Buchmann, and Erik Dahmen, edi-
tors. Post-Quantum Cryptography. Springer, 2008.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. SIAM J. Com-
put., 36(5):1301–1328, 2007.

[BDM98] Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and practical
fair exchange protocols with off-line ttp. In IEEE Symposium on
Security and Privacy, pages 77–85. IEEE Computer Society, 1998.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rog-
away. Relations among notions of security for public-key encryption
schemes. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lec-
ture Notes in Computer Science, pages 26–45. Springer, 1998.

[BDR+96] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsu-
tomu Shimomura, Eric Thompson, and Michael Wiener. Minimal key

145

Bibliography

lengths for symmetric ciphers to provide adequate commercial secu-
rity. A Report by an Ad Hoc Group of Cryptographers and Computer
Scientists, 1996.

[BDS08] Johannes Buchmann, Erik Dahmen, and Michael Szydlo. Hash-based
cryptography. In Bernstein et al. [BBD08], pages 35–93.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum
computers make sharcs obsolete? Workshop Record of SHARCS’09:
Special-purpose Hardware for Attacking Cryptographic Systems,
2009.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.
In Ernest F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes
in Computer Science, pages 390–420. Springer, 1992.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer
Science, pages 416–432. Springer, 2003.

[BGR98a] Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch verification with
applications to cryptography and checking. In Claudio L. Lucchesi
and Arnaldo V. Moura, editors, LATIN, volume 1380 of Lecture Notes
in Computer Science, pages 170–191. Springer, 1998.

[BGR98b] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification
for modular exponentiation and digital signatures. In EUROCRYPT,
pages 236–250, 1998.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanal-
ysis of hash and claw-free functions. In Claudio L. Lucchesi and
Arnaldo V. Moura, editors, LATIN, volume 1380 of Lecture Notes in
Computer Science, pages 163–169. Springer, 1998.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signa-
tures: Stronger definitions, and constructions without random ora-
cles. J. Cryptology, 22(1):114–138, 2009.

[BLR08] Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit
hard instances of the shortest vector problem. In Johannes Buchmann

146

Bibliography

and Jintai Ding, editors, PQCrypto, volume 5299 of Lecture Notes in
Computer Science, pages 79–94. Springer, 2008.

[BLRS08] Johannes Buchmann, Richard Lindner, Markus Rückert, and Michael
Schneider. Explicit hard instances of the shortest vector problem
(extended version). Cryptology ePrint Archive, Report 2008/333,
2008. http://eprint.iacr.org/.

[BLRS09] Johannes Buchmann, Richard Lindner, Markus Rückert, and Michael
Schneider. Post-quantum cryptography: lattice signatures. Comput-
ing, 85(1-2):105–125, 2009.

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Sep-
aration results on the ”one-more” computational problems. In Tal
Malkin, editor, CT-RSA, volume 4964 of Lecture Notes in Computer
Science, pages 71–87. Springer, 2008.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Founda-
tions of group signatures: Formal definitions, simplified requirements,
and a construction based on general assumptions. In Eli Biham, ed-
itor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 614–629. Springer, 2003.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM Conference on Computer and Communications Security, pages
390–399. ACM, 2006.

[BNN09] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Secu-
rity proofs for identity-based identification and signature schemes. J.
Cryptology, 22(1):1–61, 2009.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and
Michael Semanko. The one-more-rsa-inversion problems and the secu-
rity of chaum’s blind signature scheme. J. Cryptology, 16(3):185–215,
2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and
blind signatures based on the gap-diffie-hellman-group signature
scheme. In Yvo Desmedt, editor, Public Key Cryptography, volume

147

Bibliography

2567 of Lecture Notes in Computer Science, pages 31–46. Springer,
2003.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework
for fully secure short signatures and more. In Phong Q. Nguyen and
David Pointcheval, editors, Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 499–517. Springer, 2010.

[BP02] Mihir Bellare and Adriana Palacio. Gq and schnorr identification
schemes: Proofs of security against impersonation under active and
concurrent attacks. In Moti Yung, editor, CRYPTO, volume 2442 of
Lecture Notes in Computer Science, pages 162–177. Springer, 2002.

[BP10] Stefan Brands and Christian Paquin. U-prove cryptographic specifi-
cation v1.0. http://connect.microsoft.com/site642/Downloads/
DownloadDetails.aspx?DownloadID=26953, March 2010.

[BR93] Mihir Bellare and Pil Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS. ACM, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures - how to sign with rsa and rabin. In Ueli M. Maurer,
editor, EUROCRYPT, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer, 1996.

[Bra99] Stefan Brands. Rethinking Public Key Infrastructure and Digital
Certificates— Building in Privacy. PhD thesis, Eindhoven Institute
of Technology, 1999.

[BS07] Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly un-
forgeable signatures, and fiat-shamir without random oracles. In Tat-
suaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography,
volume 4450 of Lecture Notes in Computer Science, pages 201–216.
Springer, 2007.

[BSW06] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable sig-
natures based on computational diffie-hellman. In Moti Yung, Yev-
geniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 229–240. Springer, 2006.

148

Bibliography

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous
credentials. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM Conference on Computer and Communications Security, pages
345–356. ACM, 2008.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004.

[Cha82] David Chaum. Blind signatures for untraceable payments. In
CRYPTO, pages 199–203, 1982.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai
trees, or how to delegate a lattice basis. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 523–552. Springer, 2010.

[CHP07] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Peder-
sen. Batch verification of short signatures. In Moni Naor, editor,
EUROCRYPT, volume 4515 of Lecture Notes in Computer Science,
pages 246–263. Springer, 2007.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient
blind signatures without random oracles. In Security in Communi-
cation Networks, volume 3352 of Lecture Notes in Computer Science,
pages 134–148. Springer, 2004.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 93–118. Springer, 2001.

[CLRS10] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosem-
berg Silva. Improved zero-knowledge identification with lattices. In
Swee-Huay Henc and Kaoru Kurosawa, editors, ProvSec, volume 6402
of Lecture Notes in Computer Science, pages 1–17. Springer, 2010.

[CNR10] Jan Camenisch, Gregory Neven, and Markus Rückert. Lattice-based
group signatures from anonymous attribute tokens. Manuscript, 2010.

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adap-
tive oblivious transfer. In Moni Naor, editor, EUROCRYPT, volume

149

Bibliography

4515 of Lecture Notes in Computer Science, pages 573–590. Springer,
2007.

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed Stan-
dard), May 2008.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryp-
tography. SIAM J. Comput., 30(2):391–437, 2000.

[DFLS10] Özgür Dagdelen, Marc Fischlin, Anja Lehmann, and Christian
Schaffner. Random oracles in a quantum world. Cryptology ePrint
Archive, Report 2010/428, 2010. http://eprint.iacr.org/.

[DLY07] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic
fair exchange in a multi-user setting. In Tatsuaki Okamoto and Xi-
aoyun Wang, editors, Public Key Cryptography, volume 4450 of Lec-
ture Notes in Computer Science, pages 118–133. Springer, 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryp-
tography. In FOCS, pages 293–302. IEEE Computer Society, 2008.

[ECR10] ECRYPT2. Yearly report on algorithms and keysizes — re-
port D.SPA.13, 2010. available at http://www.ecrypt.eu.org/

documents/D.SPA.13.pdf.

[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line
digital signatures. J. Cryptology, 9(1):35–67, 1996.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the
common reference string model. In Cynthia Dwork, editor, CRYPTO,
volume 4117 of Lecture Notes in Computer Science, pages 60–77.
Springer, 2006.

[FP96] Christopher A. Fuchs and Asher Peres. Quantum-state disturbance
versus information gain: Uncertainty relations for quantum informa-
tion. Phys. Rev. A, 53(4):2038–2045, Apr 1996.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko,

150

Bibliography

editor, CRYPTO, volume 263 of Lecture Notes in Computer Science,
pages 186–194. Springer, 1986.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness
hiding protocols. In STOC, pages 416–426. ACM, 1990.

[FS09] Marc Fischlin and Dominique Schröder. Security of blind signatures
under aborts. In Stanislaw Jarecki and Gene Tsudik, editors, Public
Key Cryptography, volume 5443 of Lecture Notes in Computer Sci-
ence, pages 297–316. Springer, 2009.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free
hashing from lattice problems. Electronic Colloquium on Computa-
tional Complexity (ECCC), 3(42), 1996.

[GHGKN06] Nicolas Gama, Nick Howgrave-Graham, Henrik Koy, and Phong Q.
Nguyen. Rankin’s constant and blockwise lattice reduction. In
CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages
112–130. Springer, 2006.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-
type cryptosystem from lwe. In Henri Gilbert, editor, EUROCRYPT,
volume 6110 of Lecture Notes in Computer Science, pages 506–522.
Springer, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Com-
put. Syst. Sci., 28(2):270–299, 1984.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of
Hecke points. Forum Mathematicum 2003, 15:2, pages 165–189, 2003.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. SIAM
J. Comput., 17(2):281–308, 1988.

[GN08a] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors
within Mordell’s inequality. In STOC, pages 207–216. ACM, 2008.

[GN08b] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In
Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes
in Computer Science, pages 31–51. Springer, 2008.

151

Bibliography

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumera-
tion using extreme pruning. In Henri Gilbert, editor, EUROCRYPT,
volume 6110 of Lecture Notes in Computer Science, pages 257–278.
Springer, 2010.

[Gol04] Oded Goldreich. The Foundations of Cryptography, volume 1. Cam-
bridge University Press, 2004.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, STOC, pages 197–206. ACM,
2008.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In STOC, pages 212–219. ACM, 1996.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptogra-
phy. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture
Notes in Computer Science, pages 548–566. Springer, 2002.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
J. Comput., 28(4):1364–1396, 1999.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell.
Concurrently-secure blind signatures without random oracles or setup
assumptions. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 323–341. Springer, 2007.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-
based public key cryptosystem. In Joe Buhler, editor, ANTS, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer,
1998.

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures
from the rsa assumption. In Shai Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pages 654–670. Springer,
2009.

[IKSA03] S. Ibrahim, M. Kamat, M. Salleh, and S.R.A. Aziz. Secure e-voting
with blind signature. In Telecommunication Technology, 2003. NCTT

152

Bibliography

2003 Proceedings. 4th National Conference on, pages 193 – 197, Jan-
uary 2003.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In
Structure in Complexity Theory Conference, pages 134–147, 1995.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind
digital signatures (extended abstract). In Burton S. Jr. Kaliski, editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages
150–164. Springer, 1997.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and
related lattice problems. In STOC, pages 193–206. ACM, 1983.

[KH05] Kaoru Kurosawa and Swee-Huay Heng. Identity-based identification
without random oracles. In Osvaldo Gervasi, Marina L. Gavrilova,
Vipin Kumar, Antonio Laganà, Heow Pueh Lee, Youngsong Mun,
David Taniar, and Chih Jeng Kenneth Tan, editors, ICCSA (2),
volume 3481 of Lecture Notes in Computer Science, pages 603–613.
Springer, 2005.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually
close. In SODA, pages 937–941, 2000.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS.
The Internet Society, 2000.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryp-
tosystems based on lattice problems. In Tatsuaki Okamoto and Xi-
aoyun Wang, editors, Public Key Cryptography, volume 4450 of Lec-
ture Notes in Computer Science, pages 315–329. Springer, 2007.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently
secure identification schemes based on the worst-case hardness of lat-
tice problems. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350
of Lecture Notes in Computer Science, pages 372–389. Springer, 2008.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with
bounded leakage resilience. In Mitsuru Matsui, editor, ASIACRYPT,
volume 5912 of Lecture Notes in Computer Science, pages 703–720.
Springer, 2009.

153

Bibliography

[Len05] Arjen Lenstra. The Handbook of Information Security, chapter 114 —
Key Lengths. Wiley, 2005. available at http://www.keylength.com/
biblio/Handbook_of_Information_Security_-_Keylength.pdf.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact
knapsacks are collision resistant. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume
4052 of Lecture Notes in Computer Science, pages 144–155. Springer,
2006.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically effi-
cient lattice-based digital signatures. In Ran Canetti, editor, TCC,
volume 4948 of Lecture Notes in Computer Science, pages 37–54.
Springer, 2008.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon
Rosen. Swifft: A modest proposal for fft hashing. In Kaisa Ny-
berg, editor, FSE, volume 5086 of Lecture Notes in Computer Science,
pages 54–72. Springer, 2008.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent
Waters. Sequential aggregate signatures and multisignatures without
random oracles. In Serge Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 465–485. Springer,
2006.

[LP10] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
lwe-based encryption. Cryptology ePrint Archive, Report 2010/613,
2010. http://eprint.iacr.org/.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lat-
tices and learning with errors over rings. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010.

[LV01] Arjen Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
J. Cryptology, 14(4):255–293, 2001.

[Lyu08a] Vadim Lyubashevsky. Lattice-based identification schemes secure un-
der active attacks. In Ronald Cramer, editor, Public Key Cryptogra-

154

Bibliography

phy, volume 4939 of Lecture Notes in Computer Science, pages 162–
179. Springer, 2008.

[Lyu08b] Vadim Lyubashevsky. Towards Practical Lattice-Based Cryptography.
PhD thesis, University of California, San Diego, 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lat-
tice and factoring-based signatures. In Mitsuru Matsui, editor, ASI-
ACRYPT, volume 5912 of Lecture Notes in Computer Science, pages
598–616. Springer, 2009.

[Mer89] Ralph C. Merkle. A certified digital signature. In Gilles Brassard,
editor, CRYPTO, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer, 1989.

[Mic01] Daniele Micciancio. Improving lattice based cryptosystems using the
hermite normal form. In Joseph H. Silverman, editor, CaLC, volume
2146 of Lecture Notes in Computer Science, pages 126–145. Springer,
2001.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lat-
tices, and efficient one-way functions. Computational Complexity,
16(4):365–411, 2007.

[Mic10] Microsoft Corporation. Creating certificate policies and certifi-
cate practice statements. http://technet.microsoft.com/en-us/

library/cc780454(WS.10).aspx, February 2010.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on gaussian measures. SIAM J. Comput., 37(1):267–
302, 2007.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Bernstein et al. [BBD08], pages 147–191.

[MV10a] Daniele Micciancio and Panagiotis Voulgaris. A deterministic sin-
gle exponential time algorithm for most lattice problems based on
voronoi cell computations. In Michael Mitzenmacher and Leonard J.
Schulman, editors, STOC, pages 351–358. ACM, 2010.

155

Bibliography

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time
algorithms for the shortest vector problem. In Moses Charikar, editor,
SODA, pages 1468–1480. SIAM, 2010.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key
leakage. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2009.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures with-
out random oracles. In Shai Halevi and Tal Rabin, editors, TCC,
volume 3876 of Lecture Notes in Computer Science, pages 80–99.
Springer, 2006.

[OMA+99] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka,
and Tatsuaki Okamoto. An improvement on a practical secret vot-
ing scheme. In Masahiro Mambo and Yuliang Zheng, editors, ISW,
volume 1729 of Lecture Notes in Computer Science, pages 225–234.
Springer, 1999.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract. In Michael Mitzenmacher, editor,
STOC, pages 333–342. ACM, 2009.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices.
In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 80–97. Springer, 2010.

[Poi98] David Pointcheval. Strengthened security for blind signatures. In
Kaisa Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes
in Computer Science, pages 391–405. Springer, 1998.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing
from worst-case assumptions on cyclic lattices. In Shai Halevi and
Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer
Science, pages 145–166. Springer, 2006.

[PR07] Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-
case to average-case connection factors. In David S. Johnson and Uriel
Feige, editors, STOC, pages 478–487. ACM, 2007.

156

Bibliography

[PS97] David Pointcheval and Jacques Stern. New blind signatures equiv-
alent to factorization (extended abstract). In ACM Conference on
Computer and Communications Security, pages 92–99, 1997.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. J. Cryptology, 13(3):361–396, 2000.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In David Wag-
ner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer
Science, pages 554–571. Springer, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In Richard E. Ladner and Cynthia Dwork, editors,
STOC, pages 187–196. ACM, 2008.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. J. ACM, 56(6), 2009.

[Reg10] Oded Regev. The learning with errors problem (invited survey).
In IEEE Conference on Computational Complexity, pages 191–204.
IEEE Computer Society, 2010.

[RHOAGZ07] Francisco Rodŕıguez-Henŕıquez, Daniel Ortiz-Arroyo, and Claudia
Garćıa-Zamora. Yet another improvement over the mu-varadharajan
e-voting protocol. Comput. Stand. Interfaces, 29(4):471–480, 2007.

[RS09] Markus Rückert and Dominique Schröder. Security of verifiably en-
crypted signatures and a construction without random oracles. In
Hovav Shacham and Brent Waters, editors, Pairing, volume 5671 of
Lecture Notes in Computer Science, pages 17–34. Springer, 2009.

[RS10a] Markus Rückert and Michael Schneider. Estimating the security
of lattice-based cryptosystems. Cryptology ePrint Archive, Report
2010/137, 2010. http://eprint.iacr.org/.

[RS10b] Markus Rückert and Dominique Schröder. Fair partially blind
signatures. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of Lecture Notes in Computer Sci-
ence, pages 34–51. Springer, 2010.

157

Bibliography

[RSS10] Markus Rückert, Michael Schneider, and Dominique Schröder.
Generic constructions for verifiably encrypted signatures without ran-
dom oracles or nizks. In Jianying Zhou and Moti Yung, editors,
ACNS, volume 6123 of Lecture Notes in Computer Science, pages
69–86, 2010.

[Rüc09] Markus Rückert. Verifiably encrypted signatures from RSA without
NIZKs. In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT,
volume 5922 of Lecture Notes in Computer Science, pages 363–377.
Springer, 2009.

[Rüc10a] Markus Rückert. Adaptively secure identity-based identification from
lattices without random oracles. In Juan A. Garay and Roberto De
Prisco, editors, SCN, volume 6280 of Lecture Notes in Computer Sci-
ence, pages 345–362. Springer, 2010.

[Rüc10b] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe,
editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 413–430. Springer, 2010.

[Rüc10c] Markus Rückert. Strongly unforgeable signatures and hierarchical
identity-based signatures from lattices without random oracles. In
Nicolas Sendrier, editor, PQCrypto, volume 6061 of Lecture Notes in
Computer Science, pages 182–200. Springer, 2010.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Math-
ematical Programming, 66:181–199, 1994.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, pages 47–53, 1984.

[Sho] Victor Shoup. Number theory library (NTL) for C++. http://www.
shoup.net/ntl/.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, 1997.

[SPC95] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind
signatures. In Louis C. Guillou and Jean-Jacques Quisquater, editors,

158

Bibliography

EUROCRYPT, volume 921 of Lecture Notes in Computer Science,
pages 209–219. Springer, 1995.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
Efficient public key encryption based on ideal lattices. In Mitsuru
Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Com-
puter Science, pages 617–635. Springer, 2009.

[ST01] Adi Shamir and Yael Tauman. Improved online/offline signature
schemes. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture
Notes in Computer Science, pages 355–367. Springer, 2001.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J.
Comput., 39(1):25–58, 2009.

[WZ82] Wootters, W. K. and Zurek, W. H. A single quantum cannot be
cloned. Nature, 299(5886):802–803, October 1982.

[ZSNS03] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient
verifiably encrypted signature and partially blind signature from bi-
linear pairings. In Thomas Johansson and Subhamoy Maitra, editors,
INDOCRYPT, volume 2904 of Lecture Notes in Computer Science,
pages 191–204. Springer, 2003.

159

