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2. Chapter 1 - General Introduction 
 

2.1. Ion Channels 
 

Ion channels are transmembrane proteins, which form water filled pores through the 

biological lipid bilayer and allow in this way the passage of ions down the electrochemical 

gradient. The presence of ion channels can decrease the energy barrier for the transport of 

ions across the membrane from about 50 kcal* mol-1 (Parsegian 1969) down to just about 2 to 

3 kcal* mol-1 (Berneche and Roux 2001). Ion channels are classified by means of their ion 

selectivity and gating mechanisms. Due to this classification, the family of ion channels can 

further be distinguished by their gating properties into: ligand-gated ion channels (LGICs), 

cyclic nucleotide gated channels (CNG channels), transient receptor potential channels (TRP 

channels), mechanosensitive ion channels (MS channels), light-gated channels, Chloride 

channels (ClCs), Voltage-gated sodium channels (Nav channels), Voltage-gated calcium 

channels (VGCCs), Voltage-gated proton channels (Hv channels), Voltage-gated potassium 

channels (Kv channels) and other potassium channels (e.g. inwardly rectifying – Kir channels).  

Ion channels can be found in all forms of life and have an outstanding importance for a wide 

range of biological functions like the extreme acid resistance response of Escherichia coli (E. 

coli) (Iyer et al. 2002), for the communication in and between animal cells (Neher 1992), the 

cell turgor in plants (MacRobbie 2005) and others. Dysfunction of ion channels, so-called 

channelopathies, are usually linked with more or less fatal diseases like cystic fibrosis and 

epilepsy (ClCs), diabetes type 2 (probable Kir channels) or deafness (Kv channels) to name 

just a few (For a good overview see, for example, 

http://neuromuscular.wustl.edu/mother/chan.html). Therefore, a comprehensive 

understanding of the structure and function of ion channels is essentially required.  

 

2.1.1. Potassium Channels 

 

Potassium channels, as the name implies, are ion channels, which are highly selective for 

potassium ions (K+); they conduct K+ 10 to 1000 times better than sodium ions (Na+) (Hille 

2001). As already alluded, they are common in all kinds of life forms from bacteria up to 

humans. Common to all potassium channels is a homologue structural unit composed of two 

transmembrane domains (TMD) connected by a pore loop (P loop) with a highly conserved 
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signature sequence TxxTxG(Y/F)G; the latter is responsible for the high selectivity of the 

channels (Miller 1992, Jan and Jan 1992). 

Usually potassium channels are tetrameric proteins (MacKinnon 1991) meaning that four 

subunits group together to form the pore region. A top view on an exemplary channel 

tetramer from the bacterial potassium channel KcsA is shown in Figure 1A and the structure of 

KcsA in side view is shown in Figure 1B. The four subunits generate a central pore for K+ 

transport.  
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Figure 1: Structure of the bacterial potassium channel KcsA. Shown is (A) a cartoon of the bacterial potassium channel KcsA 

as a tetramer in top view (PDB-Code: 3EFF). Each of the four subunits is coloured in a different colour. In (B) are two out of 

four subunits shown as a cartoon in side view with truncated cytoplasmatic C-termini and with the two transmembrane helices 

(M1 and M2), the pore loop (P) and the three main functional areas: filter region (F), cavity (C) and gate (G). 

 

Exceptions of this tetrameric architecture are the so-called tandem pore domain potassium 

channels, which are functional as dimers as noted below.  

All K+ channels can be classified into different families according to the number of helices in 

each subunit or the number of subunits. The architecture of tetrameric channels comprises the 

2TMD and the 6TMD motif channels. In 2TMD motif channels one subunit consist of two 

transmembrane domains connected by the P loop (TMD1 – P – TMD2). In 6TMD motif 

channels one subunit consists of six transmembrane helices, where the P loop is located 

between TMD5 and TMD6 (TMD1-5 – P – TMD6). Both channel types are functional as 

tetramers. The tandem pore domain potassium channels exhibit two pore domains, which are 
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arranged in tandem. The functional channels are built of a combination of the aforementioned 

motifs; one subunit either consists of two connected 2TMD motifs or of one 2TMD motif 

combined with a 6TMD motif. Therefore, each subunit contains already two pore domains; 

hence, the channels are functional as dimers.  
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Table 1: Overview over the different structure types and families of potassium channels (according to Hertel 2005). 
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The aforementioned signature sequence with the consensus sequence TxxTxG(Y/F)G is 

responsible for the selectivity of the potassium channels. This is due to electrostatic 

interactions between the oxygen atoms of the amino acid carboxyl groups with the K+ ions 

(Doyle et al. 1998). The oxygen atoms allocate the necessary interaction partners between 

protein and ion, so that the hydration shell of the ions can be removed without spending 

energy. From this it follows, that transition of ions occurs only if the ions have the right size to 

fit into the pore (Morais-Cabral et al. 2001). The sketch in Figure 2 shows that ions, which do 

not perfectly fit into this ensemble, cannot be stabilised in the pore. This disability of the 

carboxyl groups to mimic the hydration shell of ions, other than K+ and Rb+, yields in a 

meticulous selectivity of the channel. 

 

      A                 B 

         
 

Figure 2: Top and side view of the pore from a potassium channel. (A) Shown are a cartoon of a potassium ion (upper left 

side) and a sodium ion (upper right side) with hydration shell. The pore of a potassium channel is able to stabilise the K+ 

(lower left side, top view) but not the Na+ (lower right side, top view) (according to http://www.bio.miami.edu). (B) Side view 

of the pore from two subunits of KcsA as ball-stick-model with the four potassium ion binding sites (numbered from 1 to 4 

with two bound potassium ions) in the pore with partially highlighted signature sequence.  

 

In addition to the selective transport of ions, the so-called permeation, a second process, 

namely gating, is of vital importance for a proper channel function. The molecular basis of 

gating is that channels have at least two functional conformations: an open and a closed state 

(Neher and Sakmann 1976). The exact function and position of the gates, i.e. the structures, 

which open and close a channel, are still ambiguous.  
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Currently there are two hypotheses discussed for the gating of K+ channels: 

 

1. Figure 3 illustrates the first hypothesis. It focuses on a bundle crossing of the second TMDs 

of each channel subunit on the site of the cytosol, which form a gate. This hypothesis is 

supported by the crystal structure of two bacterial ion channels namely KcsA in the closed 

(Perozo et al. 1999) and MthK in the open conformation (Jiang et al. 2002a). 

 

 

 

Figure 3: Model of the opening and closing of KcsA. Shown is a model of the open-to-closed transition of the four subunits of 

the bacterial channel KcsA as a cartoon in side (upper part) and top view (lower part) (according to Thompson et al. 2008). 

 

2. The second hypothesis proposes a double function of the selectivity filter (Cordero-Morales 

et al. 2006 and 2007). According to this view, the selectivity filter is responsible for both 

permeation and gating. Mutational studies in the selectivity filter from the shaker potassium 

channel for example support this hypothesis. These mutations influence not only the 

selectivity of the channel but also the open probability and, hence, the gating processes 

(Zheng and Sigworth 1997, Lu et al. 2001).  

 

Recent studies revealed that both hypotheses are not mutually exclusive and can occur 

simultaneously in ion channels. For example, KcsA, the model system for both processes of the 

bundle crossing (Perozo et al. 1999) and gating, exhibits in addition to the cytosolic gate a 

second gate in the selectivity filter (Blunck et al. 2006, Cuello et al. 2010).  

  6 



 

2.1.2. Viral Potassium Channel Kcv 

 

Kcv (K+ channel Chlorella Virus) is the potassium channel from the chlorella virus PBCV-1 

(Paramecium bursaria Chlorella Virus Type 1). As implied by the name the virus infects 

Chlorella of the strain NC64A, a worldwide common unicellular alga from fresh water, which 

lives endosymbionticaly in Paramecium bursaria. This endosymbiontic lifestyle protects the 

algae against a viral infection but as soon as the algae are unprotected, PBCV-1 will infect and 

kill them immediately.  

PBCV-1 belongs to the genus Chloroviruses a member of the family of Phycodnaviridae. It has a 

linear 330 kilobase (kb) long, double-stranded DNA genome (Van Etten et al. 2002), which 

encodes for approximately 375 proteins. 

Kcv was the first known viral potassium channel and for a long time with a size of only 94 

amino acids also the smallest known potassium channel (Plugge et al. 2000). Since then over 

40 homologues of Kcv were isolated from different strains of Chlorella viruses (Kang et al. 

2004) and also shorter potassium channels were found, like the 82 amino acid short 

potassium channel of ATCV-1 (Acanthocystis turfacea Chlorella Virus Type 1) (Gazzarrini et al. 

2009). 

As mentioned in the previous chapter one of the basic channel structure types are the 2TMD 

motif channels with the overall structure of TMD1 – P – TMD2. Like all members of this 

subtype Kcv is functional as a tetramer (Figure 4A) (Shim et al. 2007, Pagliuca et al. 2007, 

Chatelain et al. 2009).  

Kcv exhibits an only 12 amino acids long N-terminus; a cytoplasmic C-terminus is missing 

completely (Figure 4B). Complex potassium channels, in contrast, exhibit often large and 

complex cytoplasmic domains. For example, the bacterial channel KcsA belongs to the smallest 

potassium channels but exhibits already a 40 amino acid long cytoplasmatic C-terminus, 

which is important for gating (Cortes et al. 2001). The human potassium channel HERG 

(human eag-related gene), an even more complex channel of the 6TMD motif type, contains 

for comparison a 398 amino acid long cytoplasmatic N-terminus (Schönherr and Heinemann 

1996).  

Despite the small size of Kcv, the viral channel exhibits nonetheless many of the structural and 

functional hallmarks of the much more complex potassium channels listed in Table 1. One of 

these functional hallmarks is the pore region with the selectivity filter; it exhibits also the 

characteristic signature sequence TxxTxGFG. Hence, Kcv shows selectivity for monovalent 
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cations in the characteristic manner: Rb+ � K+ > Cs+ >> Na+ >> Li+. It is blocked by typical 

potassium channel blockers and in spite of its small size, it is still gated (Gazzarrini et al. 

2003, Moroni et al. 2002, Abenavoli et al. 2009; Pagliuca et al. 2007). 

Therefore, Kcv with the overall structure of TMD1 – P – TMD2 turns out to be to be the pore 

module of all potassium channels. For this reason Kcv is a perfect model system to study 

structure/function relationships with the goal to understand functional principles in potassium 

channels per se. This may help in the future to cure channelopathies.  
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Figure 4: Structure of the viral potassium channel Kcv. Shown is (A) a cartoon of the viral potassium channel Kcv as a 

tetramer in top view. Each subunit is coloured in a different colour. In (B) are two out of four subunits from Kcv shown as a 

cartoon in side view with the two transmembrane domains (TMD1 and TMD2), the pore loop (P) and the two main functional 

areas: the filter region (F) and the cavity (C) (according to Tayefeh et al. 2009). 
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2.2. Interactions 
 

As mentioned before, ion channels exhibit two distinct conformations, namely an open 

(conducting) state and a closed (non-conducting) state (Neher and Sakmann 1976). The 

switching between both conditions is called gating and controls the passage of ions through 

the channel.  

Several processes can contribute to the regulation of gating like the binding of ligands or 

changes in membrane voltage. In any case, conformational changes within a protein are basic 

requirements to switch the protein from one to another functional state. These conformational 

changes lead to a partial channel movement within the lipid bilayer. For example, the 

bacterial potassium channel KcsA undergoes a global twisting motion during gating, and this 

twisting starts in the middle of the second transmembrane domain (Shimizu et al. 2008).  

Other examples are the voltage-dependent delayed rectifier K+ channels, which were first 

postulated by Hodgkin and Huxley (1952). These channels belong to the 6TMD motif 

channels where the fourth TMD (S4) contains several positive charged amino acids. These 

charged amino acids sense changes in membrane voltages and respond to changes in the 

electrical field with a movement of the voltage sensor (S4) within the membrane (Hille 2001). 

There are several hypotheses about the stabilisation and movement of this highly charged 

transmembrane segment in the hydrophobic membrane, which are summarised in Figure 5.  

 

                

Figure 5: Different models of the voltage sensor 

movement of voltage-dependent ion channels. 

Pictured are three different models for the 

movement of the voltage sensor namely (A) the 

helical-screw model, (B) the paddle model and (C) 

the transporter-like model (according to Blaustein 

and Miller 2004). 

 

A 

B 
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Figure 5A depicts the helical-screw model, which suggests that the positive charges in S4 

make electrostatic contacts with negative charges in the S2 (second TMD) and S3 (third TMD) 

domain. These interactions lead to a rotation and sliding of the S4 segment along the rest of 

the channel protein (Catterall 1986, Grabe et al. 2007, Guy and Seetharamulu 1986, Keynes 

and Elinder 1999, Lecar et al. 2003, Tombola et al. 2007). The paddle model in Figure 5B in 

contrast suggests that the S4 segment and the extracellular part of the S3 segment are a 

functional unit, which moves together across the interface between the lipid bilayer and the 

core of the channel protein (Jiang et al. 2003a, Jiang et al. 2003b, Long et al. 2005a, Long et 

al. 2005b, Long et al. 2007). Starace and Benzilla (2004) proposed an alternative transporter-

like model, which is shown in Figure 5C. In this model, the S4 voltage sensor separates the 

internal and external solutions with a narrow gate, which produces a highly focused electric 

field due to several charges (Starace and Benzilla 2004). 

Irrespective of the model, all conformational changes are linked to two important kinds of 

interactions namely the protein-protein-interactions between different subunits or proteins 

and protein-lipid-interactions between the protein and the surrounding lipid environment. 

These two key interactions will be explained in more detail below.  
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2.2.1. Protein-Protein-Interactions 

 

Protein-protein-interactions are defined as the interactions between proteins or protein 

subunits. They are mediated via non-covalent interactions between the main-chain atoms (Pal 

and Chakrabarti 1998) or side chain atoms (Singh and Thornton 1993) of amino acid 

residues. These interactions are: van der Waals forces, hydrogen bonds, salt bridges and 

hydrophobic effects. Even though they are individually weak, they are nonetheless numerous 

in a protein and can, therefore, contribute substantially to the overall stabilisation of the 

proteins (Burley and Petsko 1988). For the same reason, they can also modify the behaviour 

and function of proteins by triggering conformational changes. This kind of changes in 

proteins, which are due to a modification of non-covalent interactions, has already been 

shown in numerous cases to be of vital importance in signal transduction cascades in cells 

(Pawson and Nash 2000).  

For these signal transduction cascades and for many other processes, like cell cycle regulation, 

mitochondrial enzymes or cytoskeleton interactions, modular protein domains are critical 

elements, which mediate the protein-protein interactions, as for example 14-3-3 (Ferl 1996), 

ANK repeats (repeat of an 33 amino acids long motif, named after ankyrin proteins) 

(Sedgwick and Smerdon 1999) and dozen of others. These protein-protein-interaction 

domains, so-called binding interfaces, are normally around 600 – 1300 Å2 in size (Clackson 

and Wells 1995) and are characterised by a specific orientation of the involved amino acids 

with defined interplanar angles (Bhattacharyya et al. 2002). However, there are still 

uncertainties if the geometric arrangement of amino acid residues is only determined by the 

tertiary structure of the protein itself or also by the location of the amino acid residue in a 

given secondary structure (Bhattacharyya et al. 2002).  

 

2.2.2. Protein-Lipid-Interaction 

 

Depending on the characteristics of the proteins, they are resident and functional either in a 

hydrophilic environment or in the hydrophobic environment of membranes. In the case of 

transmembrane proteins, the interactions with the lipid environment are of great importance. 

Indeed, for several membrane proteins, including ion channels, it was already shown, that the 

lipid composition can modulate the stability and functionality of these proteins (Yau et al. 

1998, Killian and von Heijne 2000, Killian 2003, Domene et al. 2003). The factors, which 
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dominate lipid-protein-interactions, are the different charged lipid headgroups, the saturation 

grades of the lipids and the variable lengths of the hydrophobic domains of the lipids relative 

to the length of the transmembrane domains.  

It has been shown, that the charge of the phospholipid headgroups can influence the stability 

of proteins in the membrane. The stability of the bacterial potassium channel KcsA for 

example strongly depends on the charge of the phospholipids (Raja et al. 2007). Also the open 

probability depends on the lipids. As shown for KcsA, the open probability is relatively low in 

zwitterionic phosphatidylcholin (PC), but increases significantly with an increasing content of 

anionic lipids like, for example, phosphatidylserin (PS) (Marius et al. 2008). Other examples 

for the strong influence of lipids are: the inwardly rectifying potassium channel KATP (ATP-

sensitive potassium channel), whose function is modulated by phosphatidylinositol (PI) (Fan 

and Makielski 1997); the connexin channels, which are inactive in pure PC membranes but 

active in the presence of about 60 % of anionic lipids like PS (Locke and Harris 2009) or the 

MscL channel (mechanosensitive channel of large conductance), where the presence of 

anionic lipids increases the transport rate of small molecules (Powl et al. 2008). The 

interactions of lipids with proteins can be very strong and specific, because these interactions 

often correspond with clusters of charged amino acid residues. This can be seen, for example, 

in MscL, where the binding of anionic lipids occurs in a cluster of three positively charged 

amino acid side chains (Powl et al. 2008). Therefore, lipids can even be co-purifyed with the 

protein and the lipids can be seen in the crystals in distinct pockets (Bertero et al. 2003). Such 

non-annular lipids have been recently found in KcsA where the binding of the lipids at specific 

protein binding sites between the subunits (Figure 6) greatly increases the stability of the 

channel in the tetrameric form (Triano et al. 2010). 
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Figure 6: Molecular models of the non-annular lipids between the subunits of KcsA. Shown are (A) a cartoon of KcsA (PDB-

Code: 1K4D) in top view with four DOPG molecules (synthetic lipid, dioleoylphosphatidylglycerol), which are bound to the 

non-annular protein sites between the four subunits. The scaffolds of the drawn DOPG molecules were the partial lipid 

structure, which appeared in the protein crystal. The close-up of the intersubunit non-annular sites in (B) top and (C) side view 

of two subunits includes the bound DOPG and the main amino acid residues, which are involved in the interaction with the 

phospholipids with hydrogen bounds marked as blue dashed lines (according to Triano et al. 2010). 

 

Generally, the lipids are not buried within the structure of the proteins, but surround the 

surface of the TMDs, as shown in Figure 7, to solvate the proteins in the same way, as water 

molecules would surround water-soluble proteins (Lee 2009). Thereby, only the first “shell” of 

lipids, which surrounds the protein, is highly distorted to match the protein surface (Figure 7). 

All further lipids are arranged normally, e.g. nondistorted. 
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Figure 7: Structure of lens Aquaporin-0 (AQP0). Shown are (A) a top view of a biological assembly image of the electron 

crystallographic structure of lens Aquaporin-0 (AQP0) in a closed pore state (PDB-Code: 2B6O, resolution 1.9Å). The (B) top 

view of the cartoon of one asymmetric unit shows the existence of annular lipids. The (C) side view of the surface plot 

(positive amino acids in blue, negative amino acids in red) shows the bound annular lipids (gray, space-filling format, not all 

lipids are shown), which are highly distorted to match the protein surface (image A+B according to Gonen et al. 2005). 

 

Depending on the lipid composition of the membrane, different physical properties of the lipid 

bilayer can change, such as: i. the pressure profile across the membrane, ii. the properties of 

spontaneous curvature, which are important for the vertical movement of proteins in the 

membrane, iii. the fluidity and iv. the hydrophobic thickness (Lee 2006).  

The hydrophobic thickness of the membrane influences also the amino acid composition of the 

TMDs. Figure 8 shows how the amino acid composition of transmembrane segments is 

adapted to the special requirements of the lipid bilayer. This means that amino acids in the 

centre of transmembrane segments, which are exposed to the lipids, are mostly hydrophobic 

to fit the hydrophobic core of the membranes. Hydrophilic and charged amino acids are more 

common at the ends of the segments, where they can interact with the phospholipids 

headgroups (Killian and von Heijne 2000, Planque and Killian 2003). Aromatic residues, 

depending on their chemical properties, can often be found within the transmembrane 

segments as well as in the interfacial regions (Killian and von Heijne 2000). Tryptophan 

(Trp), for example, contains a large hydrophobic aromatic ring system together with an amide 
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group, which gives the side chain a polarity. Therefore, Trp can interact very well with the 

polar-apolar interface. A contrast to this is the ring system of phenylalanine (Phe), which is 

completely hydrophobic; hence, it is mostly found in the transmembrane regions of the 

proteins (Wallin et al. 1997). 

 

 

C B A 

 

Figure 8: Distribution of charged and aromatic amino acids in the transmembrane segments of the bacterial potassium 

channel KcsA. Shown is the structure of KcsA as a cartoon with highlighted (A) arginine or (B) tryptophan residues of the 

transmembrane segments as stick model. The distribution of the amino acids shows a good agreement compared with (C) the 

general model for the distribution of amino acids in transmembrane segments of transmembrane proteins (according to 

Planque and Killian 2003). 

 

The length of the hydrophobic core of the lipids influences not only the amino acid flavour but 

also the length of the transmembrane segments, since the TMD has to span through the 

membrane. Because of this feature, it has been shown that the length of TMDs can, indeed, 

function as an intracellular sorting signal for the correct insertion of proteins into the 

respective cell compartments (Rayner and Pelham 1997, Ronchi et al. 2008, Balss et al. 2008).   

A deviation of the hydrophobic length of the transmembrane domain from the thickness of the 

bilayer, results in a so-called hydrophobic mismatch. Because this mismatch is energetically 

unfavourable, different avoiding strategies are available (Planque and Killian 2003). Figure 9 

sketches one of these avoiding mechanisms, the so-called snorkeling effect, which will be 

relevant for this work (Chamberlain et al. 2004). This effect is specific to some amino acids, 

namely lysine (Lys), arginine (Arg), tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr). 

The side chains of these amino acids prefer either the polar headgroups (snorkeling of Lys, 

Arg, Trp and Tyr) or the hydrophobic core (anti-snorkeling of Phe, Trp and Tyr) and can, 
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therefore, increase (Strandberg and Killian 2003) or decrease (Liang et al. 2005) the 

hydrophobic length of the protein if the residues are positioned near the water-lipid-interface. 

For an increase of the hydrophobic length of a transmembrane segment, the amino acids (Lys, 

Arg, Trp and Tyr) extend their side chains perpendicular to the membrane and with this 

towards the polar lipid headgroups. With this snorkeling, they avoid the hydrophobic 

membrane core and as a result stretchs the TMD. For a decrease of the hydrophobic length, 

the aromatic amino acids (Phe, Trp and Tyr) behave in the opposite way (anti-snorkling); 

these amino acids extend their side chains perpendicular to the lipid bilayer towards the 

hydrophobic core in order to avoid the polar interface regions (Liang et al. 2005). The ability 

of the amino acids to snorkel or anti-snorkel depends on the properties of their side chains. A 

summary of the snorkeling or anti-snorkeling behaviour is given in Table 2. 

 

 

A B 

Figure 9: Snorkeling and anti-snorkeling effects in membrane proteins. Shown are examples of snorkeling and anti-

snorkeling effects of amino acids in (A) the subunit SdhC of succinate dehydrogenase and in (B) the cytochrome b6 and PetL 

subunits of the cytochrome b6f complex. The transmembrane segment spans the region of ± 15 Å (according to Liang et al. 

2005).  

 

The snorkeling of amino acids is an energy consuming process and costs between 0.07 and 

0.7 kcal*mol-1. Therefore, not every amino acid that is able to snorkel shows this behaviour. 

Nevertheless, it is a common process to overcome hydrophobic mismatches (Strandberg and 

Killian 2003).  
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Table 2: Summary of the snorkeling and anti-snorkeling behaviours of different amino acid residues in the transmembrane 

and interface region of a membrane (from Liang et al. 2005). 

 

Region Polar Hydrophobic Amphipathic 

Transmembrane Region Snorkel Anti-snorkel Snorkel 

Interface Region Snorkel Anti-snorkel Anti-snorkel 

 

In summary, protein-lipid interactions have a strong influence on different protein properties 

like: the specific functionality of proteins depending on different lipids (e.g. Raja et al. 2007), 

the primary structure of transmembrane segments to span the hydrophobic membrane core 

(e.g. Planque and Killian 2003) or the proper folding and sorting of the proteins depending on 

the length of their transmembrane segments (e.g. Rayner and Pelham 1997). Finally, the 

pleiotropic effects of the direct protein–lipid interactions seem to be crucial for the translocon-

mediated membrane insertion (Liang et al. 2005). 
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3. Chapter 2 - Computational Studies and Site Directed Mutagenesis reveals that 
Snorkeling Effects in the Viral Potassium Channel Kcv are nonessential for a proper 
Channel Function. 

 

3.1. Abstract 
 

Potassium channels are crucial for many biological functions like cell-cell-communication 

(Neher 1992) or osmoregulation (Schroeder et al. 1989). They are common in all life forms 

form bacteria to humans. Also some viruses contain channel proteins, which are generally very 

small but still functional. One example of these miniature channel proteins is the viral 

potassium channel Kcv from the Chlorella virus PBCV-1; with only 94 amino acids, it is one of 

the smallest known potassium channels. In spite of the small size, it contains essential 

structural and functional hallmarks of more complex potassium channels. Structurally Kcv is 

not more than the pore module of potassium channels. Because of its structural simplicity, this 

protein offers a good model system for the analysis of basic structure/function correlates in K+ 

channel proteins. 

One interesting feature in the structure of Kcv is a lysine at position 29 (Lys29) in the C-

terminal end of the first transmembrane domain (TMD1). This is a highly conserved amino 

acid in viral K+ channels and is present in nearly all other K+ channels isolated from viral 

origin. This amino acid is located close to the water/lipid interface. Lysines in the interface of 

TMDs frequently stretch their charged side chains away from the hydrophobic membrane core 

towards the polar phospholipid headgroups. This so-called snorkeling can increase the 

hydrophobic length of TM segments. 

Computational studies of the Kcv protein in a lipid bilayer by molecular modelling and 

molecular dynamics (MD) simulations, however, revealed other than expected that the protein 

structure is very unstable with a protonated lysine. The protein model is only stable and able 

to conduct K+ ions when Lys29 is deprotonated i.e. not charged. This may indicate that the 

pKa of Lys29 is strongly shifted to lower pH values in the context of the lipid environment 

compared to its pKa in water. Hence, the lysine may in reality be deprotonated. To examine 

this possibility and to investigate the structural contribution of this amino acid on function, we 

mutated Lys29 into all possible amino acids. The functional analysis of these mutants supports 

the view that position 29 in Kcv can be occupied by a non-charged amino acid without a 

consequence for function. However, the same mutation in the corresponding position in other 
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viral ion channels revealed that Kcv seems to be an exception because other viral ion channels 

require a protonated amino acid in this specific position 

 

3.2. Introduction 
 

Potassium channels are a family of membrane proteins, which catalyse the selective diffusion 

of K+ ions across membranes (Hille et al. 2001). With this function, K+ channels are involved 

in many physiological processes (Ashcroft 2000). The simplest K+ channels, the two 

transmembrane domain (2TMD) channels, are tetramers in which the monomers are made of 

two transmembrane domains (Ho et al. 1993). These are connected via the pore helix, which 

comprises the selectivity filter (Miller 1992, Jan and Jan 1992, Heginbotham et al.1994). 

Cytoplasmic domains on the C- and N-terminus often harbor binding domains for regulatory 

ligands (Haider et al. 2005, Wollmuth and Sobolevsky 2004). A combination of structural 

information, computer simulations and functional studies has uncovered in the last decade 

many key structure/function correlations, which are able to explain details on the operation of 

these proteins on the atomic level. It was found that the architecture of the selectivity filter 

determines the ability of the protein to discriminate between different cations and still 

transports K+ with a high velocity (Hille 2001). Further structural details have provided 

evidence for structural changes, which underlay the gating of the channels (Doyle 2004). In 

addition, the importance of the inner transmembrane domain was highlighted because 

conformational changes of this domain seem to be important for the gating of the channel 

(Perozo et al. 1999, Kuo et al. 2003). Recently it became evident that also the outer 

transmembrane domain could be relevant in the function of these channels (Gazzarrini et al. 

2004). 

 

An interesting system to uncover more structure/function correlates in K+ channels is present 

in the form of the viral K+ channel Kcv. This channel has structural and functional hallmarks 

of all complex K+ channels (Plugge et al. 2000, Tayefeh et al. 2007). It is made as a tetramer 

and is able to selectively transport K+ (Pagliuca et al. 2007, Shim et al. 2007); it is sensitive to 

typical K+ channel blockers and it is gated (Moroni et al. 2002, Abenavoli et al. 2009, Pagliuca 

et al. 2007). What makes KcvPBCV-1 so interesting is its small size; a channel monomer is 

composed of only 94 amino acids (Plugge et al. 2000). A recently discovered K+ channel from 

another virus, KcvATCV-1, is, with only 82 amino acids, even smaller (Gazzarrini et al. 2009). 
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With these few amino acids, the viral channel represents not more than the pore module of all 

K+ channels namely two transmembrane domains, which are connected via the pore helix and 

the selectivity filter.  

Previous studies have already revealed the importance of the outer transmembrane domain on 

Kcv function. In natural occurring orthologs of KcvPBCV-1 it was found that a single amino acid 

exchange of valine at position 19 to phenylalanine (Kcv-V19F) in the first transmembrane 

domain (TMD1) made the channel more susceptible for a block by Cs+ and it altered the 

voltage dependency of the channel (Gazzarrini et al. 2004, Kang et al. 2004). The impact of 

the amino acid in position 19 was synergistically coupled to other amino acid positions, 

implying long distance relations between sites in TMD1 and other parts of the protein 

including the pore. More support for the functional importance of TMD1 was obtained from 

experiments in which this domain was extended at the upstream part of TMD1. This 

manipulation resulted in a gain of time dependent channel activation at negative voltages 

(Hertel et al. 2006). Finally examinations of the salt bridge patterns in the Kcv protein 

revealed functionally essential dynamic making and breaking of salt bridges between the inner 

and outer transmembrane domain at the cytoplasmic entry to the channel cavity (Hertel et al. 

2009). Altogether, the results of these experiments suggest that the structure of the outer 

transmembrane domain has implications for the function of these channel proteins.  

 

Scrutiny of the structure of TMD1 of Kcv shows that this domain has at the down stream end, 

towards the outer aqueous face, the basic amino acid lysine (Tayefeh et al. 2007 and 2009). 

This is typical for many transmembrane proteins, which reveal with a high frequency, charged 

residues at the outer flanks of TM helices (Ulmschneider and Sansom 2001). In particular, Lys 

and arginine (Arg), the amino acids with long, positively charged side chains, often occur in 

the interfacial region between membrane and aqueous solution. From this position deep in the 

hydrophobic part of the bilayer, they can perform what is known as “snorkeling”. This allows a 

high degree of flexibility in the positioning of side chains at the interface and, hence, more 

freedom in the localisation and dynamics of the helices in the bilayer (Strandberg and Killian 

2003).  

 

Recent computational and experimental studies on the role of the lysine in KcvPBCV-1 revealed a 

surprising result. In molecular dynamics simulations it was found that a protonated Lys 

resulted in very vivid snorkeling activity with the result that the protein structure became very 
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unstable and that the protein failed to transport ions (Tayefeh et al. 2009). Only modeling of 

the protein with a deprotonated Lys gave a stable channel protein, which transported ions. 

The data prompted the view that the lysine at position 29 (K29) in KcvPBCV-1 may not be 

charged in the functional channel. This hypothesis was supported by an analysis of site 

directed mutants, which showed that K29 can be replaced by Ala, serine (Ser) or tryptophan 

(Trp) without impairing channel function in HEK293 cells (Tayefeh et al. 2009).  

 

In the present study, we continue to examine the functional role of this amino acid in the 

structure/function context of viral K+ channels. We find that in KcvPBCV-1 K29 can be replaced 

by all possible amino acids with the exception of proline (Pro) without loosing channel 

function. This implies that the function of the channel is insensitive to the nature of the amino 

acid in this position. On the other hand, a comparison of KcvPBCV-1 with other viral K+ channels 

shows that this position is very conserved. Functional studies using two other viral K+ 

channels showed that Lys in this position is indeed essential for making a functional channel. 

Collectively the data show that the contribution of a single amino acid to the 

structure/function correlation of a channel protein can only be understood in the context of 

the entire channel protein.  

 

3.3. Material and Methods 
 

3.3.1. Heterologous Expression Systems 

 

HEK293 cells (human embryonic kidney 293 cell) were used for the electrophysiological 

measurements (Graham et al. 1977). The yeast strain SGY1528 with the genotype Mat a ade 

2–1 can 1–100 his 3–11,15 leu 2–3,112 trp 1–1 ura 3–1 trk 1::HIS3 trk 2::TRP1 (Tang et al. 

1995) was used for the complementation assay. Dr. Minor (UCSF, USA) kindly provided the 

yeast strain. 

 

3.3.2. Constructs and Mutagenesis 

 

The genes from KcvPBCV-1 and its orthologs KcvATCV-1 and KcvMT325 were cloned either in the 

pEGFP-N2 vector (Clontech-Takara Bio Europe, Saint-Germain-en-Laye, France) for 

electrophysiological measurements in HEK293 cells or in a modified pYES2 vector (Invitrogen 
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GmbH, Karlsruhe, Germany) for the yeast complementation assay (Minor et al. 1999). In the 

pEGFP-N2 vector, the genes were cloned in the BglII and EcoRI site without their stop codons 

in frame with the downstream enhanced green fluorescent protein (EGFP) to get the fusion 

proteins. For the yeast experiments, the genes were cloned with their stop codons into the 

EcoRI and XhoI site of the pYES2 vector. 

For the insertion of the site-directed mutations, the QuikChange Site-directed Mutagenesis 

method (Stratagen) was used, and the resulting constructs were checked by DNA sequencing. 

 

3.3.3. Electrophysiological Measurements 

 

HEK293 cells were grown in 35 mm culture dishes at 37 °C in 5 % CO2 for 1 – 2 days until 

they were 70 % confluent. Thereafter the cells were transiently transfected with the different 

constructs from KcvPBCV-1 and its orthologs KcvATCV-1 and KcvMT325 in pEGFP-N2 with the help 

of the liposomal transfection reagent TurboFectTM (Fermentas, St. Leon Rot). After 1 day of 

growth, the cells were washed with phosphate buffered saline, dispersed with Accutase® 

(SIGMA-ALDRICH, Schnelldorf, Germany), sowed in lower density in new 35 mm culture 

dishes and allowed to settle down over night. 

For the single cell patch-clamp measurements, the culture medium was replaced by the 

different solutions for research. The measurements were performed in the whole-cell 

configuration according to standard methods (Hamill et al. 1981) using an EPC-9 patch-clamp 

amplifier (HEKA, Lambrecht, Germany). The holding voltage was 0 mV and the testing 

voltages were between +60 and -160 mV. The data were gathered and analysed with the 

Pulse software (HEKA, Lambrecht, Germany). 

The measurements were performed at room temperature in the following bath solutions: 1.8 

mM CaCl2, 1 mM MgCl2 and 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES, pH 7.4) and either 100 mM KCl or 100 mM NaCl or 100 mM KCl together with 10 

mM BaCl2. The osmolarity of all solutions was adjusted with mannitol to 330 mOsmol. The 

used pipette solution contained 130 mM D-potassium-gluconic acid, 10 mM NaCl, 5 mM 

HEPES, 0.1 mM guanosine triphosphate (Na salt), 0.1 μM CaCl2, 2 mM, MgCl2, 5 mM 

phosphocreatine and 2 mM adenosine triphosphate (Na salt, pH 7.4). 

The fast exchange of the different bath solutions in the chamber in approximately one minute 

was guaranteed by using a perfusion pipette, which was placed near to the cell of interest. 
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3.3.4. Saccharomyces cerevisiae Complementation Assay 

 

The yeast complementation assays were done as described in Minor et al. 1999. The used 

yeast strain SGY1528 lacks an endogenous K+ uptake system. Therefore, the yeasts are not 

able to grow on media with potassium concentrations lower than 10 mM K+. For the yeast 

complementation assay on plates, non-selective media (100 mM K+ agar plates) and selective 

media (1 mM and 0.5 mM K+ agar plates) were used. The plates were incubated for about 

three days at 30 °C. For the experiments with liquid cultures 0.5 mM K+ selective media was 

used and the optical density was measured at 600 nm (OD600). Therefore, 0.5 mM K+ selective 

media was inoculated with a yeast suspension (prepared and washed in the same manner as 

for the plates) to a final OD600 of 0.1 and incubated directly in 2 ml cuvettes sealed with 

laboratory film at 30 °C and 230 rpm. After 0 h and 24 h the OD600 was measured using a 

spectrophotometer. 

 

3.3.5. Homology Model Structure Analysis 

 

The homology model of Kcv is based on the tetrameric form of the KirBac1.1 (PDB-Code: 

1P7B) x-ray template structure (Tayefeh et al. 2009). The structure calculations, the 3D 

modelling, the MD simulations and the structural, thermodynamic and dynamical evaluations 

were done as described in Tayefeh et al. (2009). 
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3.4. Results 
 

Previous studies have shown that KcvPBCV-1 has a lysine at position 29 (K29) in the outer 

transmembrane domain (TMD1) at the interface between the membrane and the outer 

aqueous solution. Experimental and computational studies show that the channel is functional 

when this Lys is neutralised in the mutant KcvPBCV-1-K29A; in model simulations (Figure 10) it 

occurred that the channel was only functional when K29 was deprotonated (Tayefeh et al. 

2009).  

 

 

K+ trajectory of Kcv-wt - K29deprot

K29 K29 

Kcv-wt - K29deprot

K+ trajectory of Kcv-wt - K29prot

K29 K29 

Kcv-wt - K29prot  

Figure 10: Simulation model and corresponding K+ trajectory of KcvPBCV-1-wt with protonated and deprotonated lysine at 

position 29. On the left side are the HOLE analysis and the backbone atomic b-factors (blue: <10 Å°2; red: >20 Å°2) of the two 

models of KcvPBCV-1-wt with deprotonated (upper structure) or protonated (lower structure) lysine at position 29 (K29) shown. 

On the right site are the corresponding K+ trajectories shown, which display the z coordinates of K+ ions over 6 ns simulation 

time. The simulations of KcvPBCV-1-wt reveal the spontaneous ion transitions through the entire pore. This event was observed 

only when the lysine was deprotonated (upper part). The black arrow in the upper graph highlights a spontaneous ion 

transition. Protonation of K29 (lower part) completely prevents ion transition, which is distinguishable by the motionlessness 

of the K+ ions (see arrow in the lower graph). Average structures of the homology model derived from a symmetrising 

annealing protocol (according to Tayefeh et al. 2009). 
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A closer analysis of the spatial arrangement of both structures of the simulation models 

revealed that the protonation of the lysine leads to the entering of water into the membrane 

and, therefore, to a breakdown of the TM helix as shown in Figure 11. 
 

A 

                

B 

Figure 11: Snapshot of the computer simulations of the homology model from KcvPBCV-1-wt with protonated and 

deprotonated lysines at position 29. The snapshots at t = 39 ns (i.e., 9 ns after filter constraints were removed) of KcvPBCV-1-wt 

with (A) deprotonated or (B) protonated lysines, where water enters the membrane (black arrow). The α-helices are depicted 

as tubescylinders. Color code: magenta = lipids (only P atoms are shown), cyan = Lys29, grey = water and yellow = regions with 

the largest helix loss) (according to Tayefeh et al. 2009). 

 

To examine the contribution of this position for channel function further, we used a yeast 

complementation system. The yeast mutant SGY1528 is deprived of its endogenous K+ uptake 

systems and hence, only able to survive in medium with high K+ supply. In a medium with 

low K+ concentration yeast growth can be rescued when the cells are supplied with a 

functional K+ channel (Tang et al. 1995), which is properly sorted to the plasma membrane 

(Balss et al. 2008).  
  

  

Figure 12: The Yeast Complementation Assay. Shown is a yeast 

strain, which lacks a functional K+ uptake system. Only yeasts, 

which express a functional K+ uptake system (TRK, Kir2.1 or Kcv) 

are able to survive on selective media. The empty vector pYES2 

or functional channels, which are not sorted to the plasma 

membrane (Kesv), are not able to rescue the yeast growth. The 

100 mM KCl media serve as a control if the heterologous 

expressed proteins are toxic for the yeasts, hence, all yeast have 

to growth under this conditions.  
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To test, which type of amino acids is tolerated in KcvPBCV-1 for giving a functional channel, K29 

was mutated into all possible amino acids. The results in Figure 13 show that all mutants were 

able to grow on a medium with 100 mM K+; none of the mutations was deleterious for yeast 

growth. Surprisingly also on a selective medium with 1 or 0.5 mM K+ all the mutants with the 

exception of one, the exchange of lysine to proline (KcvPBCV-1-K29P), were growing. The result 

of this experiment means that KcvPBCV-1 tolerates quasi any amino acid in this position without 

loosing function; only proline is not tolerated. Since proline is the amino acid with the 

strongest propensity for terminating α-helices, we can assume here, that the only real function 

of this position is to guarantee a proper α-helix (Hertel 2005) 

 

            

Figure 13: Yeast complementation assay of the scanning 

of the lysine at position 29 in the first TMD of Kcv. Shown 

is the yeast complementation assay for the Lys29 in the 

first TMD where the Lys29 was substituted to all possible 

amino acids. The assay was done with three different 

potassium concentrations in the media: 100 mM KCl as 

control and 1 mM as well as 0.5 mM KCl as selective 

conditions. The yeast mutants as well as Kcv-wt and the 

empty vector as controls were spotted in different 

dilutions: 1 (undiluted), 1:10, 1:100 and 1:1000. The test 

results are partly shown in the figure. 
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While the data in Figure 13 imply that all amino acids, with exception of Pro, are able to 

substitute for K29 in KcvPBCV-1, they nonetheless reveal differences in the efficiency to rescue 

growth. In order to quantify this difference in rescue efficiency we performed growth 

experiments of the different mutants; the rescue efficiency was estimated from the optical 

density, which the growth medium achieved after 24 h. The data in Figure 14 provide the 

same general picture that was seen on the agar plates. All the constructs with exception of 

K29P were able to rescue growth; some amino acids were more effective in stimulating 

growth than others. In an attempt to extract structural information from these data we 

examined the correlation between the yeast growth data and different properties of amino 

acids such as hydrophobicity, volume etc. A complete list of the tested properties is given in 

the Appendix in Table 8; the correlation coefficients show that there is no apparent correlation 

between the assay data and any of the amino acid properties tested. This means that a single 

structural feature of the amino acid in this position of the KcvPBCV-1 channels is not sufficient to 

explain the data.  

 

 

Figure 14: Comparison of the ability of the different Lys29 mutants to rescue yeast growth. Shown are the different optical 

densities at 600 nm (OD600) of the empty vector pYES2 as a control and the different Kcv-K29 mutants (black bars) and of Kcv 

wildtype (Kcv-wt, grey bar) after 24 h of growth in liquid 0.5 mM selective media. With exception of K29P are all mutants able 

to rescue yeast growth. The OD600 values are normalised to the density at the start of the experiment (with standard 

deviation). 

 

When we align all the viral Kcv type channels (Figure 15), we realise that they all have in this 

position a Lys or an Arg. In the context of the experimental results, it is indeed remarkable to 

find that natural occurring orthologs of KcvPBCV-1 have either a Lys or an Arg in this very 

  34 



 

position. This high degree of conservation implies that the charge at this site is more 

important than anticipated from the aforementioned experiments.  
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Figure 15: Alignment of viral potassium channels of 

different viruses of the family of Phycodnaviridae. 

Highlighted in black are the positions, which are 

corresponding to the lysine at position 29 in KcvPBCV-1. The 

vertical-bar above the alignment sketches the secondary 

structure of KcvPBCV-1. 
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Next, we tested therefore if the equivalent position in KcvATCV-1 and KcvMT325 is in the same 

way tolerant to mutations as KcvPBCV-1. KcvATCV-1 and KcvMT325 are two functional viral 

potassium channels (Gazzarrini et al. 2007 and 2009). Figure 16 shows yeast rescue 

experiments with the respective mutants. Yeast mutants expressing the mutant KcvATCV-1-K19A 

and KcvMT325-K19A are both growing on medium with high K+ concentration meaning that the 

channel is not deleterious for the cells. A growth test on selective medium on the other hand 

shows that neither of the two mutants is able to rescue the K+ uptake deficient yeast mutants. 

This implies that a neutralisation of the charge renders these channels inactive. 

 

 

Figure 16: Yeast complementation assay of KcvPBCV-1-

K29A and the equivalent position of KcvPBCV-1-K29 in 

KcvATCV-1 and KcvMT325. Shown is a yeast complementation 

assay of the mutants KcvPBCV-1-K29A, KcvMT325-K19A, 

KcvATCV-1-K19A and the positive (KcvPBCV-1-wt) and 

negative (empty vector) control. These mutations equal 

the mutation KcvPBCV-1-K29A as shown in Figure 15. The 

yeast complementation assay was down as described in 

Figure 13. 

  

The results of these experiments suggest that KcvPBCV-1 tolerates a neutralisation of the 

charged amino acid in TMD1 while the other two Kcv channels do not (Figure 16). To test this 

further we measured the activity of a chimera of GFP with KcvATCV-1 or its mutants in HEK293 

cells. The data in Figure 17 show a representative recording of mock-transfected HEK293 cells 

and a cell transfected with KcvATCV-1-GFP. The mock-transfected, like un-transfected cells, 

shows the typical low conductance over a wide voltage range. Cells transfected with KcvATCV-1-

wt exhibit a clearly different current response to the standard voltage protocol. These cells 

have an elevated quasi-linear conductance at voltages between ca. +60 and -60 mV. At more 

hyperpolarised voltages the current/voltage (I/V) relation shows a pronounced negative 

conductance. In this respect the I/V relation of KcvATCV-1 is similar to that measured in Xenopus 

oocytes and the negative slope can be attributed to a fast gating of the channel at negative 

voltages. The typical KcvATCV-1 type I/V relation has been recorded in 6 out of 13 cells (= 

46.15 %) revealing positive expression of the channel. In comparison, 65 % of the HEK293 
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cells transfected with KcvPBCV-1::GFP showed a characteristic Kcv channel activity (Hertel et al. 

2009). 

 

 
A 

 

D B 

C 

 

Figure 17: Electrophysiological measurements of HEK293 cells transfected with GFP or with KcvATCV-1::GFP. Shown are (B/C) 

the current responses to a (A) standard pulse protocol and the corresponding (D) current-voltage relationships (I/V-curves) of 

HEK293 cells transfected with (B) GFP in 100 mM KCl bath solution and with (C) KcvATCV-1-wt in 100 mM KCl bath solution. 

Currents were measured in whole cell configuration to standard voltage protocol from holding voltage (0 mV) to test voltages 

between +60 and -160 mV. The symbols of the I/V-relationships cross-reference with the symbols at the current traces.  

 

To test the relevance of the charged amino acid, we also expressed KcvATCV-1-K19A in HEK293 

cells. In 14 cells, which, judged by the GFP fluorescence, expressed the mutant channel, we 

were not able to detect any cell in which the conductance was different from that of mock-

transfected cells (Figure 18 and Figure 19). The results of these experiments confirm the data 

from the yeast rescue experiments (Figure 16) in that the amino acid in the position of the 

lysine cannot be neutralised. This is consistent with the finding that transfection of HEK293 
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cells with the mutant KcvATCV-1-K19R exhibited currents, which were similar to those of the 

wild type (Figure 18) but with a lower amplitude (Figure 19). 

 

 

A D 

B 

C 

 

Figure 18: Electrophysiological measurements of HEK293 cells transfected with different KcvATCV-1::GFP constructs. Shown 

are (A-C) the current responses to a standard pulse protocol (see Figure 17) and the corresponding (D) current-voltage 

relationships (I/V-curves) of HEK293 cells transfected with (A) KcvATCV-1-wt, (B) KcvATCV-1-K19A or (C) KcvATCV-1-K19R in 100 mM 

KCl bath solution. Currents were measured in whole cell configuration to standard voltage protocols from holding voltages (0 

mV) to test voltages between +60 and -160 mV. The symbols of the I/V-relationships cross-reference with the symbols at the 

current traces. 

 

 

Figure 19: Comparison of the currents at    -140 mV of 

HEK293 cells transfected with different KcvATCV-1::GFP 

constructs. Shown are the amplitudes of the mean currents 

with their standard deviation of HEK293 cells, which were 

transfected with KcvATCV-1-wt (Wt, n = 4), KcvATCV-1-K19R 

(K19R, n = 3) or  KcvATCV-1-K19A (K19A, n = 14) at a test 

voltage of -140 mV in 100 mM KCl bath solution. 
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3.5. Discussion 
 

The main finding of the present study is that all Kcv type channels have in the outer 

transmembrane domain a conserved Lys or Arg at the interface between lipid and water. A 

positive amino acid in this position is very common in many transmembrane domains and it is 

thought that their long positive charged side chain is able to “snorkel”. In this way, TM helices 

gain flexibility for the orientation in the membrane. The present data show that the interfacial 

position of the charged amino acid in a TM helix alone is not sufficient for understanding their 

impact on structure and function. While two of the tested Kcv type channels have a strict 

requirement for a positively charged amino acid in this position, the third one does not. This 

means that at least in KcvPBCV-1 snorkeling is not essential for channel function.  

 

While the pKa values of Lys and Arg in water are well known, there is an uncertainty about 

their protonation state in non–aqueous microenvironments. Indeed in the case of membrane 

proteins, it has been shown that the pKa of the basic amino acids can be reduced by as much 

as seven units in a protein environment (Pace et al. 2009). The group of Lee et al. showed that 

also a lipid environment can cause a significant decrease of � 4.5 units in the pKa value of 

these amino acids if they are in the core of the lipid bilayer (see Figure 8B of Li et al. 2008a, 

MacCallum et al. 2007, Yoo and Cui 2008).  

 

A finding of this study is that K29 in KcvPBCV-1 can be exchanged with nearly any amino acid 

without loosing channel activity. This implies that the channel has a very high structural 

tolerance in this domain with no requirement for a charge. The fact that Lys can be replaced 

in this channel by the neutral amino acid Ala and that a molecular model of the channel is 

most stable and active with a deprotonated Lys (Figure 11) suggests that this amino acid may 

even be deprotonated. Under these circumstances, lysine is not able to snorkel as also seen in 

simulations of Kcv wildtype from Tayefeh (Tayefeh et al. 2009) with protonated or 

deprotonated lysine at position 29 (Figure 20). 
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Figure 20: Cartoon of the TMD1 of one subunit of Kcv 

wildtype. Shown is the first TMD of Kcv wildtype with 

highlighted lysine at position 29 (Kcv-K29) in its 

protonated (magenta) or deprotonated (green) form. 

Only in the protonated state is the lysine able to 

snorkel.  

 

Such behaviour is strikingly different from KcvATCV-1 and KcvMT325 for which protonation of the 

pivotal basic residues is apparently essential. A possible explanation for this phenomenon can 

be deduced from our earlier modeling studies. It was consistently shown (Tayefeh et al. 2009) 

that protonation of K29 leads to a widening of the intracellular mouth region of KcvPBCV-1. The 

computational results furthermore suggest that the mouth diameter has to be restrained 

within a certain range (Tayefeh et al. 2007, 2009). Both too wide and too narrow distances 

between the C-terminal amino acids, which form the mouth, lead to an inactive channel. The 

reason for this is the inhibition of a crucial "turnstile" mechanism at the entry to the cavity 

(the C-termini switch between K+-coordinated and salt bridge-bound states), which is 

necessary for ion translocation. On the other hand, the structural homology model for KcvATCV-

1 (Gazzarini et al. 2009) based on the deprotonated KcvPBCV-1 structure suggests that the 

longer (in comparison with KcvPBCV-1) TMD2s form a C-terminal mouth, which is too narrow 

for ion translocation. Taking these results together, it is very likely that protonation of Lys is 

necessary for sufficiently widening the shorter channel, which explains the apparent 

functional difference.  

 

3.6. Conclusion 
 

All in all the results reveal once more the complexity of protein-lipid-interactions. It is of vital 

importance to understand these interactions not only in the context of the spatial orientation 

and the surrounding lipid environment, but also in the context of the secondary structure of a 

given protein. The same amino acid can have, in a different protein context, a very different 
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influence on the functional properties and on the stability of a protein. The structural 

relevance of an individual protein can only be appreciated if all of its interactions are carefully 

observed. 
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4. Chapter 3 – Alanine-Scanning Mutagenesis of the Minimal Viral Ion Channel Kcv reveals 
crucial sides in both Transmembrane Domains for Channel Function 

 

4.1. Abstract 
 

Ion channels are common in all life forms and play a decisive role for a multitude of biological 

functions; a dysfunction of ion channels leads in many cases to diseases. In the present study, 

we analyse the potassium channel Kcv from PBCV-1. Kcv is with only 94 amino acids one of 

the smallest known potassium channels. Nonetheless, it contains many structural and 

functional hallmarks of more complex potassium channels; it essentially represents the pore 

module of them. The combination of small size and robust function makes Kcv a good tool to 

study structure/function relationships and to achieve an overall better understanding of the 

structural complexity and functionality of potassium channels. For this reasons, an alanine-

scanning mutagenesis of the two transmembrane domains of Kcv was used to identify crucial 

sites for a proper channel function. The mutants were tested with the help of a yeast 

complementation assay and in selected cases also with electrophysiological methods. Two 

structural features, which are essential for channel function, were detected with the help of 

the scanning. One feature is the anchoring of the first transmembrane domain in the lipid 

membrane with the help of aromatic residues; the second is an interhelical �-�-interaction 

between the two transmembrane domains of Kcv. The functional experiments imply that both 

features are important for the stabilisation of the protein structure and for the correct 

positioning of the protein in the lipid membrane. The deletion of one of these features leads to 

a total loss of channel function, which is probably the result of enhanced protein flexibility 

and a lack of coordination between the transmembrane domains.  

 

4.2. Introduction 
 

Potassium channels are tetrameric proteins, which mediate K+ fluxes across membranes. They 

are common in all life forms from bacteria to higher plants and humans and essential for 

many biological functions such as the cell-cell-communication, osmoregulatory processes or 

for the action potential (Hille 2001). Mutations in potassium channels are often linked to 

diseases like diabetes or epilepsy to name just a few of these so-called channelopathies 

(George 1995). The existence of potassium channels decreases the energy barrier for the 

transport of potassium ions across lipid membranes dramatically from 50 kcal*mol-1 

  47 



 

(Parsegian 1969) to less than 3 kcal*mol-1 (Berneche and Roux 2001). Furthermore, ion 

channels are profoundly selective, and this selectivity is provided by a specific structure in the 

channel, the selectivity filter. The latter has the sequence TxxTxGY/FG, which is highly 

conserved through all different types of potassium channels (Heginbotham et al. 1994). In 

addition to the filter domain, also other regions in the modular protein, which are responsible 

for distinct channel properties, such as ion conductance, gating and subunit assembly, have 

been revealed by extensive electrophysiological, biochemical and structural studies 

(Heginbotham et al. 1994, Koster et al. 1998, Schulteis et al. 1998). 

 

Kcv is a viral potassium channel and one of the smallest known potassium channels; a Kcv 

monomer is with only 94 amino acids minimal indeed, but it reveals, nevertheless, many 

essential structural and functional hallmarks of more complex K+ channels (Figure 21). 

Because of the structural simplicity of this functional channel, the Kcv protein offers a good 

model system (Kang et al. 2004) for analysing basic structure/function correlates in K+ 

channel proteins per se. This is supported by the accessibility of Kcv function by 

electrophysiological methods; the protein generates currents in different heterologous 

expression systems like Xenopus oocytes, Human Embryonic Kidney cells (HEK293) and 

Saccharomyces cerevesiae. 

 

outside 
P 
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C 

TMD1 TMD2 

C 
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Figure 21: Homology Model of Kcv based on the structure of synthetic KirBac1.1. Shown are two of four subunits as ribbons 

in the lipid bilayer (gray cartoons) with the transmembrane domains 1 and 2 (TMD1, TMD2) with marked C- and N-terminus, 

the pore helix (P) and the two main functional areas: the filter region (F) and the cavity (C) (Based on the model of Tayefeh et 
al. 2009) 
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In spite of its small size, also the Kcv channel is gated and currently at least two different 

gates are discussed for this channel (Gazzarrini et al. 2002 and 2004 Abenavoli et al. 2009). 

Single channel experiments show that extreme negative and positive voltages evoke a fast 

closing of the channel. This fast gating is explained by a gating feature of the selectivity filter. 

Furthermore, single channel recordings showed that negative voltages evoke a slow activation 

of channel activity, suggesting at least one additional gate. There is experimental evidence 

that the latter gate of Kcv also involves the transmembrane domains (TMD). It was found that 

mutations in the outer transmembrane domain affected via some unknown long distance 

interactions the gating of the channel (Baumeister 2010).  

 

Unbiased information on the structural significance of the TMDs and on molecular 

interactions within the protein, which are important for channel function, can be obtained by 

an alanine-scan of the relevant domains. In this approach, each amino acid in a primary 

sequence is individually replaced by the amino acid alanine and the effect of this mutation is 

tested in a functional assay. In this way, it is possible to eliminate all side chain interactions, 

except for the Cβ atom, without altering the main chain conformation or the insertion of steric 

effects (Cunningham et al. 1989, Holst et al. 1998, DiCera 1998). Alanine is a common natural 

amino acid in all kinds of secondary structures including TMDs (Cunningham et al. 1989). For 

these reasons, alanine is the amino acid of choice in the mutagenesis scan. Hence, the 

replacement of a residue by alanine should reveal the contribution of the replaced residue to 

the overall stability and fold of the protein (Clackson and Wells 1995).  

 

In the present study, we use alanine-scanning mutagenesis of the two transmembrane 

domains of Kcv to uncover structure/function correlates in the miniature potassium channel. A 

crystal structure of Kcv is not yet available but a homology model of the viral K+ channel 

supports the interpretation of the results from the alanine scanning. The latter was elaborated 

based on the crystal structure of KirBac1.1, a channel, which shares some similarities with Kcv 

in critical positions (Tayefeh et al. 2007, 2009). Extensive MD simulations with the homology 

model showed that it behaves in a way that is expected for a K+ channel. This underscores 

that the homology model of Kcv is a good representation of the real channel structure.  
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4.3. Material and Methods 
 
4.3.1. Constructs and Mutagenesis 

 

For electrophysiological measurements in HEK293 cells, the Kcv gene without its stop codon 

was cloned into the BglII and EcoRI site of the pEGFP-N2 vector (Clontech-Takara Bio Europe, 

Saint-Germain-en-Laye, France) in frame with the downstream enhanced green fluorescent 

protein (EGFP). For the yeast complementation assay the Kcv gene was cloned into pYES2 

(Invitrogen GmbH, Karlsruhe, Germany) into the EcoRI and XhoI site or as a chimera with 

EGFP into the BamHI and XhoI site of the plasmid (Minor et al. 1999). The QuikChange Site-

directed Mutagenesis method (Stratagen) was used to insert the point mutations. The inserted 

mutations were specificly chosen on the primer level or randomised on the primer level by 

using the wobble base codon NNK (N = AGCT, K = GT), which codes for all possible amino 

acids The resulting construct sequences were confirmed by DNA sequencing. 

 

4.3.2. Saccharomyces cerevisiae Complementation Assay 

 

All selection experiments were done as described in Minor (1999). The yeast strain SGY1528 

(Mat a ade 2–1 can 1–100 his 3–11,15 leu 2–3,112 trp 1–1 ura 3–1 trk 1::HIS3 trk 2::TRP1) 

was used for all complementation assays (Tang et al. 1995) and was kindly provided by Dr. 

Minor (UCSF, USA). The strain lacks an endogenous potassium uptake system and is, 

therefore, not able to grow on media that contains less than 10 mM potassium. For the 

complementation assay, yeast cells were grown in parallel under selective (1mM and 0.5 mM 

KCl agar plates) and non-selective (100 mM KCl agar plates) conditions for three days at 30 

°C. 

For the experiments with liquid cultures, 0.5 mM K+ selective media was used and the optical 

density was measured at 600 nm (OD600). Therefore, 0.5 mM K+ selective media was 

inoculated with a yeast suspension (prepared and washed in the same manner as for the 

plates) to a final OD600 of 0.1 and incubated directly in sterilised 2 ml cuvettes sealed with 

laboratory film at 30 °C and 230 rpm. After 0 h and 24 h the OD600 was measured using a 

spectrophotometer. 

For the disk diffusion assay 20 μl of the 1:100 yeast culture dilution, which was also used for 

the complementation assay, was plated on 1 mM KCl selective agar plates. In the middle of 
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the plates was a filter disk placed soaked with 30 μl 10 mM BaCl2 or CsCl. The plates were 

incubated for three days at 30 °C. 

 

4.3.3. Electrophysiological Measurements 

 

For the electrophysiological measurements, HEK293 cells were transfected with different Kcv 

constructs cloned in the pEGFP vector. After one day of growth at 37 °C in 5 % CO2 the 

transfected cells were dispersed with Accutase® (SIGMA-ALDRICH, Schnelldorf, Germany), 

disseminated at low density on new 35 mm culture dishes and allowed to settle over night. 

With the help of an inverted microscope, the patch-clamp measurements were performed on 

single cells in the whole-cell configuration according to standard protocols (Hamill et al. 

1981). Currents were recorded with an EPC-9 Patch Clamp amplifier (HEKA, Lambrecht, 

Germany) and stored on a computer. Data acquisition and analysis was performed with the 

Pulse software (HEKA, Lambrecht, Germany). The currents were measured at room 

temperature in different bath solutions containing as a standard 100 mM KCl, 1.8 mM CaCl2, 

1 mM MgCl2 and 5 mM HEPES (pH 7.4). In some cases, KCl was replaced by an equimolar 

concentration of NaCl. For block experiments, barium chloride was added to the 100 mM KCl 

bath solution to give a final concentration of 10 mM BaCl2. To adjust the osmolarity of the 

solutions to 300 mOsmol an addition of mannitol was preferred over that of choline chloride 

(Hertel et al. 2009) since the latter inhibits the conductance (Baumeister 2010). For a fast 

exchange of the solution, the bath chamber was perfused from a perfusion pipette, which was 

positioned near to the cell analysed; this allowed a fast exchange of the solution in 

approximately 1 minute. The patch pipettes contained 130 mM D-potassium-gluconic acid, 10 

mM NaCl, 5 mM HEPES, 0.1 mM GTP (Na salt), 0.1 μM CaCl2, 2 mM, MgCl2, 5 mM 

Phosphocreatine, 2 mM ATP (Na salt) (pH 7.4). For the measurements in whole-cell 

configuration, the holding voltage was 0 mV and the testing voltages were between +60 and -

160 mV.  

 

4.3.4. Homology Model Structure Analysis 

 

For analysing the spatial distribution of amino acids in the channel protein, the homology 

model of Kcv based on the tetrameric form of the KirBac1.1 (PDB-Code: 1P7B) x-ray template 

structure was used (Tayefeh et al. 2009). The open source program PyMOL 
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(http://www.pymol.org/) was used for studying the 3D structure and the spatial relationship 

of the amino acid residues and the the ConSurf server (http://consurftest.tau.ac.il/) was used 

to identification the functionally important regions of Kcv based on the phylogenetic relations 

between its close sequence homologues (Ashkenazy et al. 2010, Landau et al. 2005, Glaser et 

al. 2003). 

 

4.4. Results and Discussion 
 
4.4.1. Alanine-scanning Mutagenesis of the two Transmembrane Domains of Kcv 

 

In order to detect functionally important side chains in the amino acid composition of the 

transmembrane domains of Kcv, the respective amino acids were one by one replaced by the 

amino acid alanine; the two alanines, which are already present in the wildtype (wt) channel 

TMDs, were replaced by glycine. All channel mutants were expressed individually in a yeast 

strain, which lacks a functional K+ uptake system. These yeasts are only able to survive in 

medium with a high K+ concentration. They do not grow on a selective low K+ medium unless 

they are expressing a heterologous K+ uptake system. Figure 22 shows a typical example in 

which the yeasts were transfected with the empty vector; they only grow on medium with 

high K+ but not low K+ concentration. In contrast yeasts, which express a functional system 

for K+ uptake, such as the endogenous K+ transporter TRK1 (Transport of potassium 1) or the 

human Kir2.1 channel (Inward rectifier potassium channel 2.1), are able to survive on low K+ 

medium (Figure 22). In addition, yeasts, which express the viral K+ channel Kcv, survive in 

the selection medium (Figure 22). This means that this yeast rescue system is a suitable test 

system for evaluating the function of the Kcv channel and its mutants. 
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Figure 22: Yeast Complementation Assay of different 

constructs. Shown is a yeast strain, which lacks a functional 

K+ uptake system, which is transformed with different 

potassium channel constructs or with the empty vector as 

control. Only yeasts, which express a functional system for 

K+ uptake (TRK, Kir2.1 or Kcv) are able to survive on the 

selective media. Functional channels, which are not sorted 

to the plasma membrane (Kesv), are not able to rescue the 

yeast growth. The 100 mM KCl media serve as a control to 

test if the heterologous expressed proteins are toxic for the 

yeasts. Hence, all yeasts should grow under this condition. 

 

Figure 23 shows a similar experiment to that of Figure 22. In this case, all the mutants from 

the scanning mutagenesis of both transmembrane domains are examined for function. Again, 

all the mutants are able to grow on high K+ medium meaning that the expression of none of 

the mutations is deleterious for the cells. Many mutants also grow under the selection 

conditions. This implies that a large number of amino acid positions in the TMDs tolerate a 

mutation into alanine without loss of function. The data also highlight several important 

amino acids, which are crucial for channel function in yeast. The substitutions of nearly all 

phenylalanines (Phe14, Phe24, Phe30 and Phe31), histidine (His17), isoleucine (Ile20), 

tyrosine (Tyr28) and proline (Pro32) in the first transmembrane domain show the most 

dramatic effects; in these cases, the substitution results in a near complete loss of channel 

function. 

 

The picture is different in the second transmembrane domain. In this domain the scanning 

reveals that nearly all of the amino acids are not crucial for channel function; yeast growth is 

mostly unaffected by the replacement with alanine. Only the substitution of histidine (His83) 

causes a total loss of function while substitution of leucine (Leu94) leads only to a 

significantly reduced function of growth (for a closer analysis see chapter 4). 
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Figure 23: Alanine-scanning mutagenesis of the two transmembrane domains of Kcv. Shown is the yeast complementation 

assay of the alanine scan of the two TMDs of Kcv, where every position was replaced by alanine or glycine respectively. The 

assay was done with three different potassium concentrations in the media: 100 mM KCl as control and 1 mM as well as 0.5 

mM KCl as selective conditions. The yeast mutants, as well as Kcv-wt and the empty vector as controls, were spotted in 

different dilutions: 1 (undiluted), 1:10, 1:100 and 1:1000. The test results are partly shown in the figure. 
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All in all the alanine-scanning mutagenesis allowed us to discover several crucial amino acid 

side chains in both transmembrane domains, which are essential for channel function. It 

occurs that the first TMD is more sensitive to mutations while the second TMD is more 

tolerant to changes. 

 

4.4.2. The First TMD is Essential for Correct Positioning of the Channel 

 

To understand the spatial organisation of the sensitive amino acids in the context of the three-

dimensional structure of the channel, we localised their position in the homology model of 

Kcv (Tayefeh et al. 2009). Figure 24 shows the Kcv structure with the respective amino acids 

highlighted.  

 

     

A B 

 

Figure 24: Position of selected amino acid residues of the first transmembrane domain of Kcv. Shown are the four subunits 

of Kcv as ribbons in (A) top view and (B) side view with highlighted amino acids of the TMD 1, which were detected by the 

alanine-scanning mutagenesis, namely Phe31, Tyr28, Phe24, Ile20 and His17. Both views demonstrate that all these residues 

are positioned on one side of the helix and pointing towards the lipid bilayer (by courtesy of Prof. Stefan M. Kast, TU 

Dortmund). 

 

With this analysis, it occurs that the relevant amino acids of the first transmembrane domain 

(TMD1) are nearly all directed with their side chains in the direction of the membrane. Figure 

25 illustrates that nearly all of these sensitive amino acids shown in Figure 24 except from 

Phe31 are also highly conserved within the sequences of all viral potassium channels. 
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Variable        Average          Conserved  

Figure 25: Homology model and sequence of Kcv coloured according to the conservation pattern of the amino acid 

residues. Shown are two out of four subunits of Kcv as a cartoon in side view and beneath the sequence of Kcv in the same 

colour code. The different colours indicate the grades of conservation and range from blue = variable residue to purple = 

highly conserved residues. Four from the five amino acid residues (black arrows), which were detected by the alanine-scanning 

mutagenesis (see Figure 24) are highly conserved within the viral potassium channels (drawn with 

http://consurftest.tau.ac.il/). 

 

The conservation and orientation together with the aromatic side chain character of the 

relevant amino acids suggests that these amino acids are involved in the anchoring of the 

transmembrane domain in the lipid. The loss of function of these mutants could be explained 

through the reduced hydrophobicity of the alanine compared to the amino acids in the wt 

channel. To test the hypothesis two mutants were constructed for position Phe24 and Val25 in 

which the substituted alanine was replaced by the hydrophobic amino acid leucine. A test of 

these mutants in the yeast system revealed that the substitution to leucine could not recover 

channel function (Figure 26); hence, the hydrophobic nature of the amino acid in this position 

is not the only requirement. 
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Figure 26: Yeast Complementation Assay of the 

two positions Phe24 and Val25. Shown is the yeast 

complementation assay of Kcv wt (positive control), 

pYES2 (negative control) and of the substitutions of 

phenylalanine at position 24 (F24) and valine at 

position 25 (V25) in the first TMD of Kcv against 

alanine (A) or leucine (L). The complementation 

assay was done as described in Figure 23. The visible 

colonies of Kcv-F24A at 0.5 mM KCl are papillae 

through spontaneous appearing mutations. 

 

 

Another reason for the loss of function in the mutants could be the absence of aromatic side 

chains, which might be required for anchoring the TMD1 in the membrane. To test this idea, 

the amino acids Phe24 and Tyr28 were changed to tryptophan or tyrosine for position 24 or to 

tryptophan, histidine or phenylalanine for position 28. The results of the yeast 

complementation assay (Figure 27) imply that an aromatic side chain in these positions is 

sufficient to assure channel function. All aromatic substitutions were able to rescue more or 

less channel function in contrast to the exchange to alanine, which totally abolished channel 

function for both positions (small colonies, so-called papillae, are only due to spontaneous 

mutations and, therefore, ignorable). The results are not unexpected as, for example, Phe and 

Tyr are in terms of their structure closely related. The only difference is the presence of a 

para-OH on Tyr (McGaughey et al. 1998) and, hence, Tyr is able to takes over the function of 

Phe and anchor the TMD1 in the membran. Therefore, aromatic amino acids, which are 

pointing towards the lipid membrane, are a crucial factor for the anchoring of the TMD1 in 

the membrane and, hence, for a proper channel function. 
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Figure 27: Yeast complementation assay of the two 

positions Phe24 and Tyr28. Shown is the yeast 

complementation of the phenylalanine at position 24 (Kcv-

F24) and of the tyrosine at position 28 (Kcv-Y28) in the 

TMD1, which were substituted against alanine (A), histidine 

(H), phenylalanine (F), tryptophan (W) or tyrosine (Y). The 

complementation assay was done as described in Figure 23. 

Small visible colonies as seen for example for pYES2 at 1 mM 

or 0.5 mM KCl are only papillae through spontaneous 

appearing mutations. Therefore, the growth of all mutants 

has to been seen in the context of the background growth of 

the negative control pYES2.  

 

In addition, another aromatic position, namely the histidine at position 17 (His17), was 

studied by a randomised mutagenesis study. 12 of the 60 tested yeast colonies transformed 

with the randomised plasmids showed also growth on 0.5 mM KCl selective plates. Table 3 

shows the sequencing results of the growing colonies. 

 

Table 3: Overview of the sequencing results of the randomised mutagenesis study of the histidine at position 17 from Kcv. 

Listed are the different sequencing results for the position 17 and the number of their occurrence. Tested were the 12 colonies 

out of 60, which showed growth on selective 0.5 mM KCl media. 

 

Mutation at position His17 Frequency 

None or silent mutation  4 

Asparagine 4 

Tryptophan 3 

Serine 1 

 

The obtained mutations were rechecked by a yeast complementation assay and in liquid 

culture (data not shown). These control experiments revealed that the mutations with 

asparagine (Kcv-H17N) or with serine (Kcv-H17S) were false positive, i.e. not growing under 

selective conditions. Only the substitution of histidine to tryptophan was able to rescue 
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channel function. Therefore, it seems that tryptophan is the only amino acid exchange, which 

can rescue channel function.  

The results of these experiments fit perfectly with the aforementioned results of Figure 27 and 

underscore the importance of the aromatice side chains for the anchoring of the protein. The 

results of the experiment show that the exposure and geometric orientation of the side chains 

towards the lipid bilayer is essential for a proper positioning of the channel in the membrane. 

 

It occurs that nearly all amino acids in the first TMD, which cannot be substituted by alanine 

have aromatic residues. The only exception is the isoleucine at position 20 in TMD1. Previous 

studies have already revealed that this position influences the gating of the channel via long 

distance interactions with the pore (Gazzarrini et al. 2004). It was found that the replacement 

of the isoleucine with valine altered the behaviour of the channel. For example, this mutant is 

more sensitive against caesium than the wildtype channel in voltage clamp measurements in 

Xenopus laevis oocytes (Gazzarrini et al. 2004). In the present study the substitution of Ile20 to 

alanine leads to a channel, which can only barely rescue yeast growth on selection media. 

Because of this presumably critical role of Ile20, further mutations were made to test the 

influence of the position on channel function and behaviour. The following substitutions were 

chosen: leucine, tryptophan, glycine and valine to test if these mutants have altered properties 

in the yeast system compared to the measurements in the oocytes.  

Figure 28A shows the complementation assay of the different mutants in yeast. The data show 

that the Kcv-I20V mutant is, as expected from previous experiments, also in yeast functional; 

it is able to rescue yeast growth on selection media as efficient as the wildtype channel. 

However, the exchange to Trp or Gly modifies channel function. The substitution of Ile to Trp 

leads to a mutant, which can still support yeast growth on 1 mM K+ selective media but not 

on 0.5 mM KCl. The second mutant Kcv-I20G completely fails to rescue yeast growth under 

selective conditions. 
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Figure 28: Scanning mutagenesis of the isoleucine at position 20 in the first transmembrane domain of Kcv and testing of 

ion selectivity of the different mutants. Shown is (A) the yeast complementation assay of the different mutants of Kcv, where 

the isoleucine at position 20 in the TMD1 was replaced by alanine, glycine, leucine, valine or tryptophan. The 

complementation assay was done as described in Figure 23. The dilution 1:10 was also plated on two 1 mM KCl selective 

media plates for (B) a disk diffusion assay to test the ability of 30 µl of 100 mM barium chlorid (up) or 30 µl of 100 mM 

caesium chloride (down), which was dropped on a filter disk, to inhibit yeast growth on minimal media. The inner circle on the 

selective plate with barium chloride indicates the size of the growth inhibition of the yeast whereas no inhibition of growth 

was recognised with caesium chloride. 

 

In additional experiments, we tested the sensitivity of the channel against barium chloride and 

caesium chloride with the help of a disk diffusion assay in yeast (Chatelain et al. 2009). Figure 

28B shows that the functional mutants are sensitive to barium chloride and insensitive to 

caesium chloride in the same manner as the wt channel. Therefore, the mutation of the 

isoleucine at position 20 alone does not alter the behaviour of the channel in the yeast system. 

Hence, it must be concluded, that the sensitivity of Kcv against caesium chloride is depending 

on the expression system; the channel is caesium sensitive in Xenopus oocytes (Gazzarrini et 

al. 2004) but insensitive in HEK293 (Thiel et al. 2010) and yeast cells (see Figure 28). 

Therefore, the results can differ by changing the expression system. 
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Another important factor, which is highlighted with the help of the homology model, is the 

interaction of the two TMDs of Kcv. Although the second transmembrane domain (TMD2) 

seems to be very tolerant to changes, the substitution of His83 leads to a total loss of function. 

The homology model shows that this residue lies in close contact with another essential amino 

acid in the TMD1 namely Phe30; also this amino acid does not tolerate a replacement by 

alanine. A close look at the structure reveals that the two amino acids are structurally 

interacting by generating a close helix-helix interaction. This kind of mutual interactions 

between helices are a key factor for stabilising many membrane proteins (Popot and 

Engelman 1990, Bowie 2005). A detailed look at the structure shows that Phe30 and His83 

are interacting over a distance of only 3.3 – 3.4 Å and such a close interaction of aromatic-

aromatic side chains is specific and named �-stack (Figure 29). The stack of �-electrons occurs 

if two or more aromatic molecules are stacked in a parallel manner in a distinct space of about 

3.3 Å. London dispersion forces mostly cause these �-�-interactions. Dispersion forces are 

present between all kinds of molecules and can be stronger or weaker depending on atom or 

molecule size. Therefore, aromatic stacks can play an important role for correct folding and 

stability of protein structures like in RNase A, where also a stack of histidine and 

phenylalanine enhances the stability of the α–helix (Shoemaker et al. 1990). 

 

 

 

Figure 29: Aromatic-Aromatic Interaction between TMD1 and TMD2 of Kcv. The distance between phenylalanine at position 

30 in the TMD1 and histidine at position 83 in the TMD2 are about 3.3 – 3.4 Å. This is the classical spacing for a �-�-interaction 

(�–stack). Therefore, the two aromatic residues can contribute via this helix-helix interaction to higher protein stability. 
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To summarise our results, the alanine-scan shows, that there are different crucial positions in 

both TMDs, which are essential for channel function: Phe14, His17, Ile20, Phe24, Tyr28, 

Phe30 and Phe31 of the TMD1 and His83 of the TMD2. These findings are supported by the 

calculation of the b-factors for every amino acid in the protein. The b-factors are a measure for 

the flexibility of the C�-atoms of each amino acid position in the protein and were calculated 

with the help of the MD simulations of Kcv (Tayefeh et al. 2007). High b-factors imply a high 

flexibility; low values indicate positions that are more rigid. 

Figure 30 show the computation of the b-factors for Kcv and reveal a dichotomy of the both 

TMDs. Both TMDs exhibits at one half high b-factors and are, therefore, flexible whereas the 

other half of the TMDs are more or less rigid. One important anchor for the TMD1 is the 

histidine at position 17 and for the TMD2 the histidine at position 83 (Figure 30) and both of 

them are located in the region of the transition zone between high and low b-factors. These 

results fit well with our aforementioned results of the alanine-scanning mutagenesis. The 

replacement of Phe14 reduces the ability of rescuing the yeast growth but not to the same 

degree as for the amino acids at positions His17, Ile20, Phe24, Tyr28, Phe30 or Phe31 of the 

TMD1 (Figure 23). Compared to the other six crucial positions in the TMD1 the Phe14 has a 

relatively high b-factor, which means this position is more flexible than the other positions 

and this flexibility of the Phe14, or rather the inflexibility of the other positions, is reflected by 

the sensitivity against amino acid exchanges. The same effect can be seen in the second TMD 

where His83 is the last amino acid of the TM segment with a low b-factor and, therefore, is 

the only amino acid, which is highly sensitive against exchanges (Figure 23). So the b-factors 

support the hypothesis that the total loss of channel function due to an amino acid exchange 

at these positions in the TMD1 could be explained through a loss of anchoring of the protein 

in the membrane and, therefore, presumably with an increase in the b-factors at these 

positions. 
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Figure 30: B-factor distribution of Kcv. Shown is the distribution of the b-factors in Å2 for the different amino acid positions of 

the viral potassium channel Kcv. Marked in pattern grey is the signature sequence and in plain grey the two TMDs with 

highlighted histidines at positions 17 and 83. Above the graph is a sketch of Kcv with the N- and C-terminus (N, C), both TMDs 

(TMD1/2) and the pore region with signature sequence (P/S). 

 

The importance of the histidine at position 17 is also underscored by the results of alanine-

insertion experiments (Baumeister 2010). The insertion of an alanine at different positions in 

the TMD1 leads to non-functional mutants in HEK293 and in yeast cells (Baumeister 2010) 

when inserted downstream of position 17, i.e. in the rigid part of the TMD. This loss of 

channel function might be due to the insertion of an alanine at position 17, which leads to a 

shifted orientation of the downstream crucial histidine. This hypothesis was tested with two 

mutants where tryptophan was inserted at position 17 and 18. As mentioned before a 

substitution of histidine to tryptophan (Kcv-H17W) was also in another experiment able to 

rescue yeast growth. The data in Figure 31 show that the two insertion mutants Kcv-W17 and 

Kcv-W18 were in the present case not able to restore the growth of the yeasts. 
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Figure 31: Yeast complementation assay of two insertion 

mutants of Kcv. Shown is the yeast complementation assay 

of Kcv wildtype (Kcv wt, positive control), pYES2 (negative 

control) and of the two insertion mutants, where tryptophan 

was inserted in the TMD1 at position 17 (Kcv-W17) or at 

position 18 (Kcv-W18). None of these mutants were able to 

rescue the yeast growth and only papillae due to 

spontaneous mutations of the yeasts are visible. The 

complementation assay was done as described in Figure 23. 

 

These results are not totally unexpected because there are many complex interactions within 

the protein so that an insertion of a large residue like tryptophan near to a histidine, which 

also carries a large side chain, can lead to different problems like, for example, steric 

hindrance. 

 

The same correlation between b-factors and crucial amino acids as described above for the 

TMD1 is found for TMD2. Also the latter TMD reveals two regions of mobility. While the 

upstream part of TMD2 is not flexible, the downstream part shows a high degree of flexibility. 

The histidine at position 83, i.e. the only amino acid, which is highly sensitive against an 

exchange, is more or less the last amino acid in the TMD2 with a low b-factor (Figure 30). The 

part downstream of TMD2 is relatively flexible, which means the His83 could be responsible 

for an anchoring of the upper part of TMD2 to the rigid part of TMD1 through the 

aformentioned �-�-interaction between the two TMDs. 

 

In summary, the b-factors of Kcv show a dual distribution within the two TMDs with a rigid 

part, which is connected to the pore and a highly flexible part directed towards the cytosol. In 

order to understand whether this architecture of the TMDs is unique or a common building 

principle in K+ channels, we analysed the b-factors form the respective pore module of other 

K+ channels.  
 
Figure 32 shows that the dual distribution is not only a property of Kcv but can also be found 

in Kir2.2 (eukaryotic strong inward-rectifier K+ channel, PDB-Code: 3JYC) and to some extend 

also in NaK (Na+/K+ conducting channel, PDB-Code: 2AHZ). The result of this analysis 

indicates that the anchoring of the TMDs maybe a structural feature, which is also relevant in 
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other channels for function. Due to the limited number of high-resolution crystal structures, it 

is still ambiguous if this distribution is a more general principle or not. Whether this way of 

anchoring is more important for the small 2TMD motif channels (see Chapter 1) than for the 

larger 6TMD motif channels, needs to be further investigated.  
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D C 

E F 

 

 
low high 

b-factor  

Figure 32: B-factor distributions of Kcv, Kir2.2 and NaK ion channels. Shown are the graphs of the b-factor distributions of 

the Cα-atoms of the TMD1-P-TMD2 motifs from (A) Kcv, (C) Kir2.2 (PDB-Code: 3JYC) and (D) NaK (PDB-Code: 3E86). 

Highlighted are the two transmembrane domains (TMD1/2, plain grey) around the signature sequence (S, patterned grey). The 

b-factor values depend on the experimental conditions, hence, no values are given, since only the tendency is important for 

the comparison. (B, D, F) illustrates the b-factors as 'b-factor 'putty'' as implemented in PyMol (www.pymol.org) of one 

subunit of (B) Kcv, (D) Kir2.2 and (F) NaK. The colour scale ranges from rigid parts with low b-factors coloured in blue to 

highly flexible parts with high b-factors coloured in red. The thickness of the ribbon increases from low to high b-factors. 
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Collectively the data show that the combination of alanine-scanning with a three dimensional 

identification of amino acid positions in the homology model of Kcv, together with 

information on the dynamics of the protein, is a powerful tool to uncover complex 

structure/function correlates in this ion channel.  

 

4.4.3. The π-stacks between TMD1 and TMD2 Stabilises the Spatial Structure of the Channel 

 

The data imply, that the aforementioned aromatic-aromatic interaction between Phe30 and 

His83 is an essential factor for channel function. Examples for the importance of such kind of 

interactions of aromatic side chains were already found in the case of the acid-sensing ion 

channels (ASICs) where the π-π-stacking between the extracellular and transmembrane 

domain is essential for proton gating (Li et al. 2008, Yang et al. 2009). In addition, the 

architecture of synthetic formed ion channels relies on this kind of� π-π-stacking interactions 

(Bhosale et al. 2006). 

 

The presumed interacting between Phe30 and His83 in Kcv is not a frequently occurring 

pairing in membrane proteins to make interhelical contact points (Adamian and Liang 2001). 

An alignment of viral potassium channels in Figure 33 shows that the position His83, 

however, is highly conserved throughout all viral potassium channels. Even the distantly 

related potassium channel Kesv from Ectocarpus siliculosus Virus (EsV-1) (Delaroque et al. 

2001) has this position conserved. 
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Figure 33: Alignment of viral potassium channels of different 

viruses of the family of Phycodnaviridae. Shown is an 

alignment of a set of viral potassium channels of different virus 

groups of the family of Phycodnaviridae. Highlighted in black 

are the histidines, which correspond to the histidine at the 

position 83 in KcvPBCV-1 and in grey the semi-conserved 

positions, which correspond to the phenylalanine at the 

position 30 in KcvPBCV-1. The vertical-bar above the alignment 

sketches the secondary structure of KcvPBCV-1. The symbols 

under the alignment denote the degree of conservation 

observed in each column:  

* - residues identical in all sequences 

:  - conserved substitutions 

.  - semi-conserved substitutions.  

  68 



 

The position 30 in Kcv is semi-conserved (Figure 33). In Kesv, we find a glutamine in this 

position i.e. an amino acid, which is uncharged and aliphatic. All other viral ion channels 

contain in this position a phenylalanine or methionine. Phenylalanine again is an aromatic 

amino acid with a propensity of π-π-stack interactions. In the case of methionine, it seems 

possible that the long and extended methyl group is able to stabilise the channel structure 

through C-H···π-interactions, where methionine is the aliphatic C-H donor and histidine is the 

aromatic � π-acceptor (Brandl et al. 2001). To test these assumptions different substitutions of 

both positions Phe30 and His83 with Ala, Gly, Phe, His, Met or Trp were made. Figure 34 

show that only two out of the 14 substitutions are able to rescue yeast growth on selection 

media. The substitutions, which generate a functional channel, agree with the idea of a � π-π-

interaction in this site. One of the two positive substitutions of Phe30 is tryptophan i.e. an 

amino acid with an aromatic side chain. As already expected from the alignments, Phe30 can 

also be replaced by methionine.  

 

             

Figure 34: Scanning mutagenesis of the phenylalanine at 

position 30 in the TMD1 and histidine at position 83 in the 

TMD2 of Kcv. Shown is the yeast complementation assay of 

the substitutions of the two positions 30 and 83 in the two 

TMDs of Kcv, where every position was replaced by different 

amino acids. The complementation assay was done as 

described in Figure 23. The labels indicates the substituted 

amino acids for which Phe30 (first label) and His83 (second 

label) was exchanged. 
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Additional data show that also other two mutations namely Kcv-Phe30His and Kcv-Phe30Gly 

seem to be capable of rescuing yeast growth on selective media. However, in these cases 

growth could only be detected at high-undiluted yeast concentration on the selective plates 

(Figure 34) meaning that these channel mutants may have a significantly reduced 

conductivity and requires K+ concentrations higher than 1 mM. Therefore, it is possible that at 

high-undiluted yeast concentrations the local K+ concentration is raised via the release of the 

intracellular K+ of the multitude of dead yeast and that this local increase allows the growth 

of the two mutant channels Kcv-Phe30His and Kcv-Phe30Gly at high-undiluted yeast 

concentration on the selective plates. 

 

 

 

Figure 35: Yeast complementation assay of the 

phenylalanine at position 30 in the TMD1 of Kcv. Shown 

are the two substitutions where the Phe30 was replaced 

by either glycine or histidine together with the positive 

(Kcv wt) and negative (empty vector) control. The 

complementation assay was done as described in Figure 

23. On the selective plates are the undiluted and the 1:10 

diluted samples shown. The labels indicate the 

substituted amino acids for which Phe30 (first label) was 

exchanged and the histidine at position 83. 

 

C-H···π-interactions, like the Met-His interaction, can contribute to the stability of proteins 

with the overall stabilisation energy of about 0.5 to 1.0 kcal*mol-1 per interaction and are, 

therefore, an important factor for folding stability (Brandl et al. 2001). Also almost all 

tryptophan residues in proteins are involved in C-H···π-interactions (Brandl et al. 2001). The 

Trp-His interaction can stabilise a structure by about 1.0 kcal*mol-1 (Fernández-Recio et al. 

1997) and is, therefore, in the same range as the Met-His interaction. Hence, it is not 

unexpected that the substitution of either methionine or tryptophan can rescue channel 

function in yeast. This finding highlights the concept of a functional conservation in proteins. 

This means not a specific amino acid is highly conserved at this position but the characteristics 

of the amino acid are highly conserved to maintain a functional interaction. In the present 

case the importance is on the interaction between the two TMDs, which can be brought about 

either by a π-π-interaction or alternatively also by C-H···π-interactions. 
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Previous studies on π-π-interactions in proteins revealed that the Trp-His and accordingly the 

Phe-His interaction is stronger, if the histidine is protonated (Fernández-Recio et al. 1997, 

Armstrong et al. 1993). To test, if the histidine at position 83 of Kcv is in a protonated state, a 

mutant was made in which histidine was replaced by arginine. Arginine was preferred over 

lysine since arginine is found more frequently to interact with aromatic side chains (Gallivan 

and Dougherty 1999). With the Kcv-H83R mutant, a positive charge is inserted in this region, 

which can create a cation-π-interaction between Arg83 and the Phe30 (Gallivan and 

Dougherty 1999). The yeast complementation assay shows that this mutation is not able to 

rescue yeast growth on selective media (Figure 34). The results of these experiments suggest 

that the histidine at position 83 could be in an unprotonated state.  

 

The present data show that the two positions Phe30 and His83 are essential for a proper 

channel function. The structural importance is given by the formation of intramolecular 

interactions between the two TMDs. Furthermore, these positions are highly conserved 

throughout the viral K+ channels and are susceptible to changes. Moreover, the results 

emphasise an even higher complexity because there is no reciprocity between the two 

positions as the mutual exchange of Phe and His leads to a non-functional mutant (Figure 34). 

Additionally, these results demonstrate that the homology model of Kcv (Tayefeh et al. 2009) 

is a very good reproduction of the real conditions in the protein; delicate interactions such as 

the π-π-stacking would have not occurred in an inappropriate model. Moreover, as mentioned 

before, the model of Kcv makes it possible to calculate the b-factors as a measure of flexibility 

for the amino acids. These b-factors show a good agreement with the results of the alanine-

scanning mutagenesis (Figure 30). For example, the b-factors of the interacting amino acid 

couple Phe30 and His83 is low and, therefore, are these residues rigid and fixed in their 

positions, which means that this couple can serve for maintaining intramolecular stability. 

This leads to an overall better understanding of the different mutants. 

 

4.4.4. Electrophysiological Measurements of the π-stack shows Effects on Gating 

 

It was mentioned at the beginning of the previous paragraph that aromatic-aromatic 

interactions could be important for the gating of ion channels. Therefore, the two functional 

mutants Kcv-F30W::GFP and Kcv-F30M::GFP, were also studied with electrophysiological 
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measurements in HEK293 cells to test whether the mutations influence the behaviour of the 

channel or not. 

Figure 36A shows the typical current responses of mock transfected HEK293 cells to a 

standard pulse protocol. In this case, the cells were transfected with the empty vector pEGFP 

(control). The control measurements show the characteristic background conductance of 

HEK293 cells with small K+ outward currents at positive voltages (K+ outward rectifier) and 

marginal inward currents at negative voltages (Figure 36E). 

 

 

E A 

B 

C 

D 

 

Figure 36: Electrophysiological measurements of HEK293 cells transfected with GFP or with Kcv::GFP. Shown are (A-D) the 

current responses to a standard pulse protocol (see Figure 17) and the corresponding (E) current-voltage relationships (I/V-

curves) of HEK293 cells transfected with (A) GFP in 100 mM KCl bath solution and with (B) Kcv wt transfected cells in 100 mM 

KCl or (C) in 100 mM NaCl or (D) with 10 mM BaCl2 in the KCl bath solution. Currents were measured in whole cell 

configuration to standard voltage protocol from holding voltage (0 mV) to test voltages between +60 and -160 mV. The 

symbols of the I/V-relationships cross-reference with the symbols at the current traces.  
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To distinguish further on better between functional and non-functional channel mutations, the 

ratio of cord conductance (-20 mV to -60 mV = Gneg versus 0 mV to +60 mV = Gpos) of the 

corresponding current/voltage (I/V) relation curves was calculated as described in Hertel et 

al. 2009. The ratio for mock-transfected HEK293 cells is always less than 1 (0.16 ± 0.27, n = 

12). In contrast in HEK293 cells, which are transfected with a chimera of Kcv and GFP 

(Kcv::GFP / Kcv-wt) this ratio is always greater than 1 (1.38 ± 0.27, n = 21) because Kcv 

causes large inward (Moroni et al. 2002, Hertel et al. 2006). Figure 36B shows an example of 

a measurement of a HEK293 cell expressing Kcv::GFP. The I/V-relation highlights all the 

features, which are typical for the viral potassium channel. This includes the linear increase in 

conductance between clamp voltages of 0 mV to -80 mV and a saturation of the inward 

current at voltages more negative of about -100 mV in HEK293 cells (Moroni et al. 2002, 

Hertel et al. 2006). When we use the ratio Gneg/Gpos with a threshold of one as a parameter to 

distinguish between cells without and with appreciable Kcv type conductance, we found that 

65 % of the HEK293 cells transfected with Kcv::GFP showed a characteristic Kcv channel 

activity (Figure 37B) (Hertel et al. 2009) with currents of -1425 ± 1040 pA (n = 21) at -140 

mV. The same analysis using the ratio of Gneg/Gpos was used in all further studies to 

differentiate between cells with or without active Kcv type currents. 

To test the cation selectivity of Kcv::GFP the potassium chloride in the bath solution was 

replaced by sodium chloride (Figure 36C). This leads to a strong suppression of the inward 

currents and furthermore to a negative shift of the reversal potential by -57 ± 32 mV (n = 3); 

altogether this indicates a strong preference of the channel for potassium over sodium ions. 

An addition of barium chloride at 10 mM to the bath medium (Figure 36D) resulted in an 

almost total block of the currents of about 88.8 ± 5.3 % (n = 5). The block was reversible 

upon removing the blocker. 

Figure 37A shows the amplitudes of the mean currents of mock-transfected, with Kcv::GFP 

and with different mutants transfected HEK293 cells. Figure 37B shows the corresponding 

percentage of cells, which show Kcv like conductance with a ratio Gneg/Gpos greater than one. 

Both sets of data reveal that the substitution of the phenylalanine at position 30 to tryptophan 

(Kcv-F30W) has no influence on the general channel behaviour. Only the amplitude of the 

mean current is with -1967 ± 1662 pA at -140 mV slightly larger than that in cells expressing 

Kcv::GFP. In addition, the portion of cells in which the channel was positively identified, was 

higher. While 65 % of the cells tested revealed Kcv-wt currents, 86 % of the cells exhibited, 

according to the aforementioned criteria, a Kcv-F30W::GFP current; the ratio Gneg/Gpos was  
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3.13 ± 1.40, n = 28, Figure 37B). This is 1.3-fold more than the corresponding value of 

Kcv::GFP. The reversal potential of the mutant current, which was measured after replacing 

K+ in the bath to Na+ was -59 ± 44 mV (n = 8). The addition of 10 mM barium chloride to 

the medium caused a block of the current of about 89 ± 1.9 % (n = 3). While the mutant 

seems to express slightly better than the wt channel, the selectivity of the channel mutant for 

potassium over sodium as well as the sensitivity against barium is like that of the wildtype 

channel (Figure 37A). 

 

The Kcv-F30M::GFP mutant generates in HEK293 cells no increase in conductance (n = 27, 

Figure 37A) although this mutation was able to rescue yeast growth (Figure 34). The ratio of 

Gneg/Gpos is with 0.12 ± 0.07 (n = 27) in the range of mock-transfected HEK293 cells. 
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Figure 37: Comparison of mock-transfected and with different Kcv constructs transfected HEK293 cells. Shown are the (A) 

amplitudes of the mean currents with their standard deviation of mock-transfected (control) and with different Kcv constructs 

(Kcv::GFP and mutants) transfected HEK293 cells at a test voltage of -140 mV in 100 mM KCl bath solution (grey bars) and 

after the addition of 10 mM BaCl2 to the bath solution (black bars, only for functional mutants shown). (B) Percentage of 

transfected HEK293 cells with Kcv like conductance for the same constructs as in (A). The number of recordings is indicated in 

brackets. 

 

There are two possible explanations:  

 

1. The currents of the mutated channels are so small that the signal to noise ratio is too low 

for detection. Therefore, the measurements may look like mock-transfected cells although the 

channel is active.  
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2. For the electrophysiological measurements, GFP fusion proteins are used to detect 

transfected cells. In this case, a GFP protein is fused to every subunit of the channel e.g. the 

tetramer contains four GFP molecules. GFP is with 238 amino acids 2.5-fold bigger than one 

subunit of Kcv and this may influence the behaviour of the channel (Baumeister and Hewing, 

unpublished). In contrast, in the yeast complementation assay no GFP is needed because of 

the auxotrophic selection of the yeast cells. 

 

To test the hypothesis whether the GFP fusion causes the loss of function in the Kcv-

F30M::GFP mutant, the same construct was also tested in yeast cells with a GFP containing 

variant of pYES2. Figure 38 shows that the GFP has no influence on channel function and the 

mutated channel is still able to rescue yeast growth on minimal potassium media. Hence, it 

seems as if the mutation Kcv-F30M either causes in HEK293 cells a significant reduction of the 

amplitude of currents or strongly affects the percentage of cells with functional channels; also, 

a combination of both is possible. 

 

 

 

Figure 38: The EGFP-Tag does not prevent the yeast 

rescue neither for the wildtype channel nor for the 

exchange mutant Kcv-F30M. Shown is the yeast 

complementation assay of the substitution of 

phenylalanine with methionine at position 30 in the 

first TMD of Kcv, which is fused to EGFP. The 

complementation assay was done as described in 

Figure 23. 

 

As a resume, we can conclude that the aromatic-aromatic interactions between Phe30 of 

TMD1 and His83 of TMD2 are important for the overall stability of the channel via the 

formation of interhelical π-π-interactions. The mutation of these positions does not influence 

the selectivity of the channel for K+ over Na+ or the sensitivity for Ba2+. However, the 

mutation seems to increase the fractional expression of the channel e.g. it increases the 

number of cells, which show after transfection a Kcv like characteristics. This could reflect the 

difference in energy contribution of the different � π-stack mutants to the overall stabilisation 

energy of the protein. 
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4.5. Conclusion 
 

Kcv is a miniature K+ channel of viral origin, which includes many hallmarks of potassium 

channels. Therefore, it is a good model system to study the very basic structure/function 

relationships in these types of channels.  

 

This work contributes to the global comprehension of potassium channels with the help of an 

alanine-scanning mutagenesis of both transmembrane domains of Kcv and with a comparative 

analysis of these results with the help of the homology model of the channel.  

 

The scanning of the first TMD emphasise the importance of the interaction of this domain with 

the lipid environment. It is well known that lipids can have a strong influence on channel 

function and behaviour or on the stabilisation of the protein in the membrane (Barrera et al. 

2008, Valiyaveetil et al. 2002). The results of this work underscore the importance of protein 

lipid interaction in the outer transmembrane domain for Kcv function. The data are best 

understood in the context of the homology model. The majority of crucial amino acids in 

TMD1 are oriented towards the membrane; the aromatic side chain character of these amino 

acids is most suitable for anchoring TMD1 in the membrane. The distribution of the critical 

amino acids corresponds well with the b-factors of the Kcv model from MD simulations in the 

sense that the proposed anchoring of TMD1 by the relevant amino acids correlates with a low 

mobility of TMD1 and the adjacent turret. An exception in this scenario is Phe14, which is 

located in a mobile part of TMD1. However, worth noting is that the mutant Kcv-F14A only 

reduced the complementation efficiency of the channel; the mutations to alanine in the 

immobile part of Kcv on the other hand abolish channel function but can be preserved by the 

substitution of aromatic residues. 

 

The b-factors of TMD2 are a mirror image of those from TMD1; the former is rigid at the N-

terminus and mobile at the C-terminus. The present data imply that this behaviour is 

controlled by an interaction between the two TMDs. The alanine-scan shows that with the 

exception of His83 none of the amino acid side chains in TMD2 are crucial for function. This 

implies that the TMD2 is not actively anchored in the membrane. The stabilisation of TMD2 is 

rather brought about by an intramolecular interaction via a � π-stack between the 

phenylalanine in the rigid part of the first and the histidine of the second TMD. This idea 
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again corresponds well with the distribution of the b-factors in TMD2, which start to increase 

downstream of His83. Anchoring of TMD1 and coupling to TMD2 seems connected because 

the disruption of either one or the other leads to a breakdown of conductivity. 

 

All in all the results reveal a complex network of interactions within a K+ channel monomer, 

which are essential for proper function. These interactions are not limited to the protein itself, 

but also to the interactive interactions between protein and lipid environment. Additional, a 

clustering of two subunits of different channel proteins is supposable. 
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5. Chapter 4 – Computational Predictions for Experimental Studies –Relevance of the 
Internal K+ Concentration for Channel Function 

 

5.1. Abstract 
 

Molecular dynamic (MD) simulations and related computational methods are powerful tools 

to understand and predict structure/function correlates in channel proteins. Here we combine 

computational and experimental methods in order to analyse the influence of single point 

mutations in the miniature viral potassium channel Kcv. Kcv is with only 94 amino acids one 

of the smallest known potassium channels; it exhibits most of the functional and structural 

hallmarks of potassium channels and is, therefore, a good model system to investigate basic 

structure/function relations in K+ channels. There is no crystal structure available yet but a 

homology based MD model of the Kcv channel has proved to explain and predict many 

experimental findings. Using this model, we were able here to examine the influenc of 

mutations of the C-terminal amino acid, which affect function, on the level of the protein 

structure. The model calculations show that point mutations of the last amino acid influence 

the cumulated potassium ion concentration profiles in the mutants; the most pronounced 

difference occurs in the K+ concentration in the channel cavity. The computed pattern of K+ 

concentration changes as a function of the amino acid in position 94 of Kcv and corresponds 

well with a functional test of Kcv mutants in a yeast recue system. The most important result 

is that the channel does not tolerate an elevation of the K+ concentration in the cavity. 

 

5.2. Introduction 
 

Ion channels are of crucial importance for a multitude of biological functions like the control 

of the electrical excitability of neurons and muscles (Catterall 1984), cell-cell-communication 

(Neher 1992) or osmoregulation (Schroeder et al. 1989). Therefore, ion channels are common 

in all forms of life from bacteria up to higher plants and humans. 

One important subfamily of these proteins are the potassium ion channels, which, as the name 

implies, are highly selective for potassium ions (K+). Characteristically K+ channels conduct 

K+ 10 to 1000 times better than sodium ions (Na+) (Hille 2001).  

K+ channels are tetrameric proteins, meaning that they are clusters of four subunits 

(MacKinnon 1991). The K+ conducting pore, which is formed in the centre of the tetramer, 

contains the selectivity filter with the signature sequence TxxTxGY/FG (Miller 1992, Jan and 
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Jan 1992). The latter is highly conserved throughout all K+ channels. Therefore, it can be used 

as recognition feature for potassium conduction proteins (Heginbotham et al. 1994).  

One of the smallest known K+ channels is the viral potassium channel Kcv (K+ channel 

Chlorella Virus) from the virus PBCV-1 (Paramecium bursaria Chlorella Virus Type 1), which 

infects endosymbiontic living chlorellae (Plugge et al. 2000, Van Etten et al. 2002). Despite of 

the small monomer size of only 94 amino acids Kcv exhibits, nonetheless, many essential 

hallmarks of more complex potassium channels. Like the pore unit of all other K+ channels 

Kcv is built of two transmembrane domains (TMD), which are connected by a pore loop (P 

Loop) including the signature sequence TxxTxGFG (Figure 39). Because the entire Kcv 

channel is in terms of structure not more than the pore module of complex potassium 

channels, it presents a simple model system to study the most basic structure/function 

relationships in K+ channels (Kang et al. 2004). 

 

 

 

Figure 39: Schematic model of the viral potassium channel Kcv. The minimalist viral potassium channel Kcv exhibits only 94 

amino acids (grey balls) and consists of two transmembrane domains connected by the pore loop with the signature sequence 

TxxTxGFG. The cytosolic N-terminus (N) is only 12 amino acids long; a cytosolic C-terminus is missing.  

 

The electrical properties of Kcv are well characterised in different heterologous expression 

systems like Xenopus oocytes (Plugge et al. 2000) or Human Embryonic Kidney cells (HEK293) 

(Moroni et al. 2002). It was also shown that growth assays of yeast mutants of Saccharomyces 

cervesiae (Tang et al. 1995) are suitable for testing Kcv activity (Figure 22). The combination 
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of functional testing and insight into the simple structure of the Kcv channel are now paving 

the way to understand structure correlates of this simple channel protein.  

 

One peculiar feature of Kcv is that it exhibits an only 12 amino acid long cytosolic N-terminus 

and no cytosolic C-terminus. The canonical bundle crossing of the second transmembrane 

domains (TMD2), which is important for gating in other K+ channels (Cuello et al. 1998, 

Heginbotham et al. 1999, Meuser et al. 1999), is, therefore, absent in Kcv. Single channel 

recordings of Kcv activity, however, show that this channel still exhibits typical gating 

fluctuations (Abenavoli et al. 2009) even in the absence of a canonical bundle crossing 

(Gazzarrini et al. 2002 and 2004). An analysis of two different gating modes in Kcv suggests 

that one gate is directly associated with the selectivity filter. This gate explains the behaviour 

of the channel to close fast in the sub-millisecond range at extreme negative or positive 

voltages (Abenavoli et al. 2009). The exact position of the second slower gate is still 

ambiguous. Single channel recordings show that negative voltages cause a slow voltage 

dependent activation of channel activity implying the presence of at least one additional gate 

This second gate probably involves the C-terminus of Kcv, which builds the mouth of the 

channel, i.e. the entrance site for K+ from the cytosol to the cavity of the channel (Hertel et al. 

2009, Tayefeh et al. 2007). Several experimental and computational studies have revealed 

that the C-terminal negative charged carboxyl groups of the four subunits bind a K+ ion and 

inhibit in this way the permeation of further K+ ions. The opening of this gate like structure is 

probably due to the formation of salt bridges between the N- and C-terminus of the channel. 

Computational studies revealed that a disruption of the salt bridge patterns between the C- 

and N-terminus eliminates an opening of this gate. The K+ ion remains in these mutants 

bound to the negative C-terminus and prevents the entry of other K+ ions into the cavity.  

Extensive mutational studies revealed that a minimal length of the N-terminus is required for 

a correct forming of the salt bridges (Moroni et al. 2002, Hertel et al. 2009) and, hence, for 

channel function. Furthermore, the analysis of the termini showed that two features are 

crucial for the building of the salt bridges: i. charged amino acids in the N-terminus and ii. a 

free carboxyl group at the C-terminus. This carboxyl group is provided by the terminal leucine 

at position 94 (Leu94). In a chimera in which Kcv is fused at the C-terminus with EGFP the 

first negative charged amino acid in the linker region between the channel and the fused 

EGFP takes the role of the salt bridge partner (Hertel et al. 2009). 
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An alanine-scanning mutagenesis of both TMDs, combined with yeast growth assays (see 

chapter 3) revealed that a free carboxyl group at the C-terminus alone is not sufficient for a 

proper channel function. It occurred that the exchange of Leu94 for alanine (Ala) resulted in a 

reduced ability of this channel mutant to rescue the growth of K+ uptake deficent yeast 

mutants. The result of this experiment implies that a free carboxyl group at the C-terminus is 

not alone influencing channel activity; the hydrophobic mouth of Kcv seems to interact in 

some other manner with the gate. 

 

In the present work, we further examine the hypothesis of salt bridge independent 

interactions of the C-terminus of Kcv on channel function. For this purpose, we calculated on 

the basis of the simulation model of Kcv the K+ profiles of different channel mutants in which 

the terminal Leu94 was exchanges against all possible amino acids. The computed results 

were compared with experiments in which we monitored the efficency of selected Kcv 

mutants to complement yeast growth on selective media. The data imply a direct correlation 

between functionality of the channel and K+ concentration in the cavity of Kcv due to a C-

terminal mediated charge transfer between C-terminus and cavity. 

 

5.3. Material and Methods 
 

5.3.1. Constructs and Mutagenesis  

 

For the yeast complementation assay, the Kcv gene was cloned into the EcoRI and XhoI site of 

a modified version (Minor et al. 1999) of the plasmid pYES2 (Invitrogen GmbH, Karlsruhe, 

Germany). For electrophysiological measurements in HEK293 cells (human embryonic kidney 

cells), the Kcv gene without its stop codon was cloned into the BglII and EcoRI site of the 

pEGFP-N2 vector (Clontech-Takara Bio Europe, Saint-Germain-en-Laye, France) in frame with 

the downstream enhanced green fluorescent protein (EGFP). The resulting fusion protein 

allows to identify transfected HEK293 cells. The different point mutations were inserted via 

the QuikChange Site-directed Mutagenesis method (Stratagen) and the resulting constructs 

were checked by DNA sequencing. 
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5.3.2. Saccharomyces cerevisiae Complementation Assay 

 

All complementation assays were done as described in Minor et al. 1999 with the yeast strain 

SGY1528 (Mat a ade 2–1 can 1–100 his 3–11,15 leu 2–3,112 trp 1–1 ura 3–1 trk 1::HIS3 trk 

2::TRP1) (Tang et al. 1995), which was kindly provided by Dr. Minor (UCSF, USA). This 

mutant yeast strain is deficient in the two potassium uptake systems TRK1 and TRK2. Hence, 

this strain is not able to grow on low potassium concentrations unless the yeasts express a 

functional potassium uptake system heterologously. For the yeast complementation assay on 

plates, the yeasts were grown in parallel under selective (0.5 mM KCl and 1mM KCl) and non-

selective (100 mM KCl) conditions for three days at 30 °C. For measurements in which yeast 

growth was monitored by optical density, 2 ml of selective liquid media containing 0.5 mM 

KCl were inoculated with yeasts to give an optical density of 0.1 at 600 nm (OD600). The 

cuvettes were sealed with laboratory film and incubated at 30 °C and 230 rpm. After 0h, 6h, 

24h, 48h and 72h the OD600 was measured with a spectrophotometer. 

 

5.3.3. Electrophysiological Measurements 

 

For the electrophysiological measurements, HEK293 cells were transfected with the Kcv::GFP 

fusion protein as described previously (see chapter3, page 45). After one day of growth in 35 

mm culture dishes at 37 °C with ambient 5 % CO2, the transfected cells were dispersed with 

Accutase® (SIGMA-ALDRICH, Schnelldorf, Germany), sowed at low density on new 35 mm 

culture dishes and allowed to settle over night. The patch-clamp measurements were 

performed on isolated single cells in the whole-cell configuration according to standard 

protocols (Hamill et al. 1981). Currents were recorded with an EPC-9 Patch Clamp amplifier 

(HEKA, Lambrecht, Germany). Data acquisition and analysis was performed with the Pulse 

software (HEKA, Lambrecht, Germany). For the measurements in whole-cell configuration, 

the holding voltage was 0 mV and the testing voltages were between +60 and -160 mV. The 

currents were measured at room temperature in different bath solutions containing as a 

standard 100 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES/KOH (pH 7.4). For a 

closer examination of the influence of the different mutations on channel properties like 

selectivity and blockage of the channel the composition of the standard bath solutions was 

changed in two ways: either 100 mM KCl was replaced by 100 mM NaCl or 10 mM BaCl2 was 
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added on top to the 100 mM KCl bath solution. In all cases, the osmolarity was kept constant 

at 300 mOsmol by adding mannitol.  

The patch pipettes contained 130 mM D-potassium-gluconic acid, 10 mM NaCl, 5 mM HEPES, 

0.1 mM GTP (Na salt), 0.1 μM CaCl2, 2 mM, MgCl2, 5 mM Phosphocreatine and 2 mM ATP 

(Na salt) (pH 7.4). A fast exchange of the solution of the bath chamber was guaranteed by a 

perfusion pipette, which was positioned near to the cell of interest. This perfusion allowed a 

fast exchange of the whole chamber solution in approximately 1 minute.  

 

5.3.4. Homology Model Structure Analysis and Calculations 

 

The open source program PyMOL (http://www.pymol.org/) was used for studying the 3D 

structure and the spatial relationship of different point mutations in the channel protein.  

The model of Kcv is based on the tetrameric form of the KirBac1.1 (PDB-Code: 1P7B) x-ray 

template structure (Tayefeh et al. 2009). Based on the Kcv model all Kcv-Leu94X modells 

were generated with MODELLER (Marti-Renom et al. 2000). To assign the force field 

parameters and for adding missing protons the academic version of CHARMM V31b1 were 

used (Brooks et al. 1983). The pore diameters of the different Kcv-Leu94X structures were 

calculated by HOLE (Smart et al. 1996). For the calculations of the spatial distributions of 

potassium ions in the Kcv channel and its mutants the 3D-RISM integral equation theory with 

a partial series expansion of order 3 (PSE-3 closure) (Kast and Kloss 2008) were applied to the 

the different channel structures. Prof. Dr. Stefan Kast (TU Dortmund University) performed all 

calculations of the Kcv channel and its mutants. 
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5.4. Results and Discussion 
 

5.4.1. A Terminal Free Carboxyl Group Alone is not Sufficient for Proper Channel Function 

 

Previous alanine-scanning mutagenesis studies of the two TMDs of Kcv revealed several 

important sites in both TMDs, which are crucial for a proper channel function. Interestingly 

the second TMD only bears two sites, which are sensitive to substitutions by alanine (Ala). 

Using yeast complementation as a functional assay it occures that histidine at position 83, 

which was discussed in the previous chapter (see chapter 3), and leucine at the terminal 

position 94 (Leu94) are critical sites. Figure 40 shows the typical results of a yeast 

complementation assay. For these experiments a yeast strain was used, which lacks an 

endogenous K+ transport system. These yeast mutants are only able to survive on media with 

high K+ concentrations (100 mM KCl = control plate). On a selection medium with low K+ 

(1 mM or 0.5 mM KCl) they can only grow if they express a heterologous potassium uptake 

system like Kcv (Figure 22). 

 

 

 

Figure 40: Yeast complementation assay of 

the last amino acid of Kcv. Shown is a yeast 

complementation assay in which the mutant 

yeast expresses Kcv wt as positive control, the 

empty vector pYES2 as negative control and 

the alanine exchange mutant Kcv-Leu94Ala. 

The yeast comple-mentation assay was done 

as described in Figure 23.  

 

A related study (Hertel et al. 2009), which was concentrated with the salt bridge pattern 

between positively charged amino acid residues of the N-terminus and the C-terminus, 

revealed that a free carboxyl group at the C-terminal end is of crucial importance for the 

formation of the salt bridges (Figure 41) and, therefore, for channel function. 
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Figure 41: Salt bridge pattern between 

two subunits of Kcv wt. Shown is the 

salt bridge pattern between the C- and 

N-termini of one or two subunits of Kcv. 

The protein backbone of the average 

structure of Kcv is shown as a cartoon 

and the salt bridge partners as ball and 

stick model (according to Hertel et al. 
2010).  

 

In the alanine-scanning mutagenesis of the second TMD, Leu94 was replaced by alanine (Kcv-

Leu94Ala, Figure 40). This means in terms of structure that the amino acid side chain is 

reduced to a methyl group but the negative carboxyl group is still present. So the formation of 

the salt bridges should not be affected.  

 

The functional test of the Kcv-Leu94Ala mutant suggests that a free carboxyl group is not the 

only important factor for channel function because the mutation leads to a reduced channel 

function. The data in Figure 40 show that the Kcv-Leu94Ala mutant grows much less on 

selective medium than the wt channel. 

 

Because of the apparent importance of Leu94, we analysed the spatial distribution of the C-

terminus in more detail using the model of Kcv (Tayefeh et al. 2009). Figure 42 shows that 

the three last amino acid residues of Kcv, namely leucine at position 92, 94 and threonine at 

position 93 form a distinct ring-like structure, which we may call here a hydrophobic mouth.  
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Figure 42: The C-terminal hydrophobic mouth of Kcv. Shown are (A) two subunits of Kcv wt in side view and (B) all four 

subunits of Kcv wt in bottom view. The protein backbone is drawn as a cartoon and the last three amino acids of the C-

terminus (leucine 92, threonine 93 and leucine 94) are shown as spheres. The bottom view clearly shows the annular 

hydrophobic mouth at the entrance to the cavity.  

 

The results of the functional data and the structural considerations imply that the amino acids 

of the C-terminus influence channel function not only through the formation of salt bridges 

between TMD1 and TMD2, but apparently also via other yet unknown structural features. 

 

5.4.2. Computational Predictions of the Internal K+ Concentration 

 

To test this assumption the K+ concentration ([K+]) profiles of all possible Leu94 exchange 

mutants were calculated by Prof. Stefan Kast (TU Dortmund, Germany) using the 3D-RISM 

integral equation theory with a partial series expansion of order 3 (PSE-3 closure) (Kast and 

Kloss 2008). 

Figure 43 shows the z coordinates that were used for the calculations of the different profiles. 

Furthermore, Figure 43 shows the allocation of the inner channel volume in six distinct 

sections. These sections are the accessible volumes from the HOLE analysis (Tayefeh et al. 

2009) in which K+ ions can accumulate. 
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Figure 43: Partition of the viral channel Kcv. 

Shown is one subunit of Kcv as cartoon along 

with the accessible volume from HOLE analysis 

(Tayefeh et al. 2009). The left scale indicates 

the z coordinates along the channel axis in Å. 

The right scale indicates six distinct volume 

sections in which K+ ions can accumulate.  

 

 

Figure 44A shows as an example the calculated [K+] profile for the Kcv wt channel; it 

illustrates very well the different concentrations of K+ ions along the channel axis. All K+ 

concentration profiles display the x-axis of the z coordinates in Ångström (Å) (Figure 43). The 

y-axis shows the potassium concentration (cK
+) relative to the concentration of in the bulk 

solution (cbulk).  

 

For a better interpretation of these K+ concentration profiles, we calculated also the 

corresponding cumulated [K+] profiles, which provide direct information about the K+ 

concentrations in the different chambers of the channel (Figure 43). Therefore, the integrals 

from the [K+] profile c(z) over the channel volume (Vchannel) of the different mutants are 

plotted. The x-axis displays in this case Kc(K+) * Vchannel with Kc(K+) = c(K+)/cbulk in Å³. Notably 

the channel volumes of the different mutants are quasi identical. Figure 44B shows exemplary 

the cumulated [K+] profile for Kcv wt. The difference of the [K+] between two steps in the 

curve, e.g. beginning and end of each inner volume, represents the accumulation or depletion 

of K+ ions in this region. For example, the difference of the values between -17.7 Ångström 

(Å) and 2.7 Å of the cumulated [K+] profile is a measure for the [K+] in the cavity ([K+]cav) 

(volume section 2 of Figure 43). Therefore, the curve of Figure 44B shows the same 

hexamerous classification as the channel itself (Figure 43). For a detailed description of the 

calculations, see Kast et al. submitted. 
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Figure 44: K+ concentration profile and the cumulated K+ concentration profile for Kcv wt. (A) The K+ concentration profile 

of Kcv wt shows [K+] along the channel axis z in Ångström (Å). The y-axis is cut off at c(K+)/cbulk = 16. (B) The corresponding 

cumulated profile displays the integral of [K+] profile over the channel volume in Å3. In this case Kc(K+) = c(K+)/cbulk. The numbers 

1 to 6 designate the [K+] steps in the channel (according to Figure 43). 
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Figure 45 now shows the cumulated profiles of all possible mutants including also the 

“mutation” Kcv-L94L for a better comparability of the results. It is obvious that the different 

curves are clustered in three groups (i-iii) according to their charge state: 

 

i. negatively charged amino acids 

ii. uncharged amino acids 

iii. positively charged amino acids 
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Figure 45: Cumulated K+ concentration profiles of the different Kcv-Leu94 mutants. The cumulated [K+] profiles of the 

different Kcv-Leu94 mutants display the integral of the [K+] profile over the channel volume in Å3. In this case 

Kc(K+) = c(K+) /cbulk; The value VChannel of all mutants is nearly identical to that of the wildtype channel and does not influence the 

calculation. The different profiles are separated in three groups: i. negatively charged amino acids (D, E), ii. uncharged amino 

acids iii. positively charged amino acids (R, K). The numbers 1 to 6 designate the [K+] steps in the different channel mutations 

(according to Figure 43). The different mutants are not labelled in detail.  
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Based on the calculations in Figure 45 seven different mutants were chosen according to the 

three different groups and tested experimentally for their functionality. Leu 94 in Kcv wt was 

mutated to the following amino acids: 

 

  i: aspartic acid (Asp, D) 

 ii: alanine (Ala, A), histidine (His, H), proline (Pro, P), tryptophan (Trp, W) and     

        tyrosine (Tyr, Y). 

iii: arginine (Arg, R) 

 

For group ii five different substitutions were selected in order to test the full range of different 

amino acid flavours. The substitutions together with the character of the amino acid side 

chains is summarised in Table 4.  

 

Table 4: Overview of the different mutations for the leucine at position 94 in the second TMD of Kcv. Shown are the 

different mutations of Leu94, which were tested experimentally together with the properties of the substituted amino acids.  

 

Mutation of Leu94 to: Amino acid characteristics 

Alanine (Ala, A) Tiny, Hydrophobic 

Arginine (Arg, R) Positive charge, Hydrophilic 

Aspartic Acid (Asp, D) Negative charge, Hydrophilic 

Histidine (His, H) Aromatic, Hydrophilic 

Proline (Pro, P) Cyclic, Hydrophobic 

Tryptophan (Trp, W) Aromatic, Hydrophobic 

Tyrosine (Tyr, Y) Aromatic, Hydrophobic 

 

The activity of Kcv wildtype (Kcv wt) and its mutants were assayed with the aforementioned 

yeast complementation assay. For a better quantitative comparison of the performance of the 

different Kcv mutants, we monitored yeast growth in 0.5 mM KCl media in liquid culture. 

Figure 46 shows the results for the Kcv-L94 mutants listed in Table 4.  
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Figure 46: Growth assays of the experimentally tested Kcv-L94 mutants in 0.5 mM K+ selective medium. The plot shows the 

optical densities measured at 600 nm (OD600) of yeast growth medium. Potassium uptake deficient yeasts were transfeted 

with Kcv wt, different Kcv mutants or vector only and grown in 0.5 mM KCl selective media. Data are mean +/- standard 

deviations (SD) of n > 4 independent experiments The OD600 values are normalised to the OD at the start of the inocculation. 

 

Kcv wt exhibits a normal sigmoidal growth curve in yeasts with a maximum after 48 hours 

(h), followed by a declining growth rate due to autoinhibitory effects and apoptosis. 

Therefore, for all further analysis the optical density after 48 hours was used for comparison 

of the different growth rates of the transformed yeasts.  

The experiments show that all of the selected mutations are able to rescue yeast growth on 

selective media with the exception of asparagine (L94D). Yeasts transformed with Kcv-L94D 

show no growth in the selective media beyond that of the negative control. The substitutions 

of Leu94 to histidine (L94H) or proline (L94P) leads to growth rates, which are only after 48 

h slightly higher than in the wildtype. The substitution to arginine (L94R) and tyrosine (L94Y) 

result in channels, which complement the yeast mutants at least during the onset of the 

growth phase in a similar way as the wildtype; deviation from the control growth only starts 

late during the experiment. The exchange of Leu94 to tryptophan (L94W) and alanine (L94A) 

significantly reduces the growth rate of the yeast mutants and both mutants show significant 

reduced cell numbers after 48 h of growth. The L94A mutants in contrast show only after 

some lack time an accelerated growth and reach a wildtype like density only after 72 h. 
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The yeast complementation assay has the disadvantage that it only provides indirect 

information on channel function. The assay contains no information on the biophysical 

properties of the different channel mutants. A higher growth rate of the yeast is not 

necessarily due to a higher conductance or open probability of the mutated channel protein. 

The optimal range of the yeast growth depends, for example, also on an optimal internal 

potassium concentration in the cells. Hence channels with a high conductance or open 

probability, may in principle result in an increase of the intracellular K+ concentration and in 

turn generate the same slow growth rate as channels with a low conductivity.  

 

For further studies, the experimental results of the yeast complementation assay were 

analysed in the context of the cumulated profiles of the calculated [K+]. Therefore, the 

differences of the [K+] at each of the six steps (Figure 43 / Figure 45) were calculated and 

normalised with respect to the wildtype. The resulting Table 5 gives an overview of the 

mutants and shows the corresponding accumulation or depletion of K+ in each chamber 

(Figure 43) in comparison to the wildtype.  
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Table 5: Depletion and accumulation of K+ in the different channel mutants. Shown is the calculated depletion and 

accumulation of K+ at six different steps (see Figure 45) along the conductance pathway of Kcv-L94 channel mutants. The 

functionality of the eight tested constructs in yeasts is given in the last row (n.s. = not specified). All values are normalised to 

the values of the wildtype and coloured from blue to magenta according to the expected depletion or accumulation of K+.  

 

Step 1 2 3 4 5 6  
z [Å] -33.9 -17.7 2.7 8.7 11.7 18.3 Function 
range -17.70 2.70 8.70 11.70 18.30 35.10 in Yeast 

L94A 0.06 -0.07 -0.15 0.29 0.11 -0.08 Yes 

L94D 0.18 0.81 0.03 0.31 0.31 0.00 No 

L94L 0.00 0.00 0.00 0.00 0.00 0.00 Yes 

L94H 0.05 -0.03 -0.13 0.41 0.14 0.05 Yes 

L94R -0.08 -0.54 -0.32 0.35 -0.11 0.00 Yes 

L94C 0.05 -0.07 -0.10 0.15 0.13 0.03 n.s. 

L94E 0.23 1.40 0.21 0.18 -0.02 0.05 n.s. 

L94F -0.01 -0.15 -0.14 0.45 0.02 -0.05 n.s. 

L94G -0.19 -0.25 -0.07 0.49 0.11 -0.02 n.s. 

L94I -0.03 -0.07 -0.05 0.15 0.14 0.00 n.s. 

L94K -0.19 -0.50 -0.28 0.13 -0.15 -0.04 n.s. 

L94M 0.03 -0.05 -0.15 0.17 0.06 0.00 n.s. 

L94N 0.05 -0.29 -0.01 0.29 0.20 0.08 n.s. 

L94P -0.09 0.07 -0.03 0.25 0.22 0.06 Yes 

L94Q -0.01 -0.15 -0.07 0.50 -0.07 0.01 n.s. 

L94S 0.04 -0.20 -0.21 0.64 0.02 0.00 n.s. 

L94T 0.04 -0.03 -0.09 0.12 0.09 0.00 n.s. 

L94V -0.11 -0.01 -0.06 0.34 0.18 0.08 n.s. 

L94W -0.03 -0.33 -0.06 0.52 0.02 0.07 Yes 

L94Y 0.00 -0.25 0.04 0.20 0.12 -0.01 Yes 
 

 

< -0.4  
> -0.4 -  
    -0.2  

> -0.2 -   
     0.0  

> 0.0 -  
    0.2  

> 0.2 -  
   0.4  > 0.4  > 1  
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The calculations of Table 5 together with the experimental data give a first impression on 

possible correlations between [K+] in the different channel volumes and functionality of the 

channel. The approach furthermore enables us to search for patterns in the distribution of the 

[K+] along the conducting patway of the channel, which could be crucial for a proper channel 

function. 

The unexpected and interesting finding is that the mutations at the C-terminus have no direct 

influence on the [K+] at the C-terminus itself (step 1) because no significant changes occur in 

this area. Indeed, the K+ concentration in the cavity ([K+]cav) (step 2 and partly step 3) seems 

to be the crucial factor, which determines the functionality of the channel; changes of [K+] in 

this part of the channel correlates well with the functionality of the channels in the 

complementation assay. Notably, a depletion of K+ at step 2 (for example in Kcv-L94A, L94W 

or L94R) goes together with a reduced growth rate of the yeast mutants, which express these 

mutant channels. A drastic accumulation of K+ on the other hand (e.g. Kcv-L94D) abolishes 

the growth of yeasts, which express the respective channel mutant. 

It is important to note that the depletion or accumulation of K+ at step 2 can only give a first 

evidence for the functionality of the channel; it cannot yet explain in detail the different 

behaviours of the functional channels. There are many more intra- and intermolecular 

interactions, which influence channel function or modulate the behaviour of the channel like, 

for example, the salt bridge pattern between the N- and C-terminus of Kcv (Hertel et al. 2009) 

During the evaluation of the cumulated [K+] profiles shown in Figure 45 three different amino 

acid groups were exposed according to the flavour of the amino acids, namely: positively 

charged, negatively charged and uncharged amino acids. The calculation results shown in 

Table 5 reveal, furthermore, an even more complex correlation between C-terminus and 

[K+]cav; that means not only positively charged but also uncharged amino acids, like serine or 

asparagine, lead to a depletion of K+ in the cavity. 

The depletion or accumulation of K+ in the cavity implies that this parameter affects channel 

function. In this context, we wanted to analyse the physicochemical flavour of the amino 

acids, which determines the K+ concentration in this compartment. It has already been 

mentioned that charge residues are not sufficient to explain the estimated K+ concentration 

differences at step 2 between the different mutants. Another possible parameter is the 

difference in the molecular weights of the amino acids. 

Figure 47 shows the comparison of the accumulation or depletion of K+ in the cavity (Table 5, 

step 2) as a function of the the molecular masses of the substituted amino acids. The plot 
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exhibits no correlation between molecular mass and the calculated changes in [K+]cav. Hence, 

the mechanism by which the amino acid flavour of the C-terminus influences the [K+] in the 

cavity remains unexplained. 
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Figure 47: Comparison of the changes in K+ concentration in the cavity as a function of the molecular mass of the 

substituted amino acids. The plot shows the calculated accumulation or depletion of K+ in the cavity of Kcv and the molecular 

mass of the amino acids, which were substituted for the leucine at position 94. 

 

5.4.3. Internal K+ Concentration Correlates with the Functionality of Channel Mutants  

 

The calculations of structure related differences in the concentration of K+ in the channel 

pathway are in a good agreement with the functional data on various channel mutants.  

To further test the robustness of these model predictions, several mutations based on the 

theoretical predictions were created; the mutants were then tested experimentally for 

function. Table 6 summarises the different mutants and gives an overview of the expected 

functionality of these constructs. 
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Table 6: Overview of a subset of tested Leu94 mutants. The table shows four mutations of Leu94 with the corresponding 

properties of the amino acids and the expected functionality in yeast. The predictions of mutant channel function in yeasts are 

based on the calculations of the depletion and accumulation of K+ in the channel mutants (for details see Table 5). 

 

Mutation of Leu94 to: Amino acid characteristics Expected functionality 

Glutamic Acid (Glu, E) Negatively charged, 

Hydrophilic 

None functional like Kcv-

L94D 

Glycine (Gly, G) Hydrophilic Less functional 

Lysine (Lys, K) Positively charged, 

Hydrophilic 

Less functional likes Kcv-L94R 

Serine (Ser, S) Hydrophilic Less functional 

 

Figure 48 shows the yeast complementation assay of the respective mutants. Nearly all 

predictions from the theoretical consideration coincided with the results of the growth assay. 

The drastic accumulation of K+ in the cavity of Kcv-L94E should result in a non-functional 

mutant. This is consitant with the gowth assay of yeast expressing Kcv-L94D; this mutant 

reveals after 48h no growth (Figure 46). The increasing cell number after 72 h is probably due 

to spontaneous mutations of the yeasts.  

The predicted accumulation of K+ in the cavities of Kcv-L94G and Kcv-L94S is considered to 

reduce the functionality of the channels. As expected from the prediction the growth of yeast 

mutants, which express these mutants, is greatly reduced. This is consistent with other 

mutants like Kcv-L94W, which show also reduced growth of the yeast mutants (Figure 46) 

and an accumulation of K+ in the cavity (Table 5). 

The only deviation between prediction and experimental result is found in the context of 

mutant Kcv-L94K. This mutant was expected to show a reduced growth rate in yeasts 

comparable with the mutant Kcv-L94R (Figure 46). The experiment however shows that Kcv-

L94K grows even better than the wildtype (Figure 48) even though the calculations of Table 5 

show a reduced [K+]cav.. From the perspective of the predictions, Kcv-L94K should function 

like Kcv-L94R. 
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Figure 48: Growth assay of the experimentally tested Kcv-L94 mutants in 0.5 mM K+ selective medium. The data show the 

optical densities measured at 600 nm (OD600) in 0.5 mM KCl selective media of the four Kcv-L94 mutants (n ≥ 4) and of Kcv wt 

and pYES2 as positive and negative controls. The OD600 values are normalised to the density at the start of the experiment. 

 

5.4.4. Influence of C-terminal Charges  

 

The good functionality of Kcv-L94K implies that this mutant may have a higher [K+]cav than 

predicted. This could be achived if the lysine in this position is not protonated. Table 5 shows 

that in particular the protonation of lysine is responsible for the significant reduction of K+ in 

the cavity. This would not be the first case in which a lysine has been found in a non-canonical 

deprotonated stage. Previous studies of a lysine of Kcv at position 29 at the end of the first 

TMD (Capter 2) showed that this lysine as well has to be deprotonated for a functional 

channel simulation (Tayefeh et al. 2009). Also in other proteins it was reported that the pKa 

value of amino acids can shift more than 4 units within the hydrophobic environment of the 

membrane (Li et al. 2008a, MacCallum et al. 2007, Yoo and Cui 2008). Hence a lysine at the 

end of the transmembrane domain of Kcv could well be in a deprotonated state because of the 

membrane environment.  
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To examine whether a deprotonated Lys at position 94 could explain the experimental results 

of Kcv-L94K, the cumulated [K+] profile was also calculated for the respective deprotonated 

Kcv-L94K mutant (Kcv-L94Kdeprot). Figure 49 shows the cumulated [K+] profiles for the 

mutants Kcv-L94Kdeprot, Kcv-L94Kprot and the wildtype channel.  
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Figure 49: Cumulated K+ concentration profiles of Kcv wt, Kcv-L94Kprot and Kcv-L94Kdeprot. The cumulated profiles of the 

three different constructs Kcv wt, Kcv-L94Kprot and Kcv-L94Kdeprot reveal that a deprotonated lysine at position 94 does not 

influence the K+ concentration in the channel. In contrast, the K+ concentration in the protonated state is drastically reduced. 

The cumulated K+ concentration profiles display the integral of the K+ concentration profiles over the channel volume in Å3. In 

this case Kc(K+) = c(K+) /cbulk; The value VChannel of all mutants is nearly identical to that of the wildtype channel and does not 

influence the calculation.  

 

Figure 49 shows that the concentration profile of Kcv-L94Kdeprot is nearly identical to the 

profile of the wildtype channel. The calculations in Table 7 furthermore confirm that the 

cumulated K+ concentration profile for Kcv-L94K with a deprotonated lysine at position 94 

equals the wildtype channel; other than the protonated version of Kcv-L94K, it does not show 

a depletion of K+ in the cavity.  
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Table 7: Depletion and accumulation of K+ in the channel mutant Kcv-L94K with protonated and deprotonated lysine. The 

data show the calculated depletion and accumulation of K+ at six different steps (see Figure 45) of Kcv-L94K in its protonated 

or deprotonated form. All values are normalised to the values of the wildtype and coloured from blue to magenta according 

to the occurring depletion or accumulation of K+.  

 

Step z [Å] range L94Kprot L94Kdeprot

1 -33.9 -17.70 -0.19 0.00 
2 -17.7 2.70 -0.50 0.02 
3 2.7 8.70 -0.28 -0.10 
4 8.7 11.70 0.13 0.21 
5 11.7 18.30 -0.15 -0.12 

6 18.3 35.10 -0.04 0.00 
 

< -0.4  
> -0.4 -  
    -0.2  

> -0.2 -   
     0.0  

> 0.0 -  
    0.2  

> 0.2 -  
   0.4  > 0.4  > 1  

 

The good agrrement between theoretical calculations and experimental data support the idea 

that the lysine in the mutant Kcv-L94K is in its deprotonated state and, hence, can therefore 

form a functional channel. The problem with this interpretation is that the terminal amino 

acid of Kcv is not buried within the membrane but faces the hydrophilic environment of the 

cavity. However, it has been shown that the pKa of the basic amino acids can be reduced by as 

much as seven units in a protein environment (Pace et al. 2009). Therefore, the 

circumstances, which lead to a deprotonation of the lysine, are still unknown and further 

analysis is necessary. 

 

The present results show that the insertion of an additional charge at the C-terminus of the 

TMD2 drastically reduces or even abolish channel function. Hence, we hypothesise that the 

insertion of a complementary charged residue might balance the additional net charge and 

may recover channel function. Therefore, a double mutant Kcv-L94D-95R was created. In this 

mutant, an additional positive charge (arigine at position 95) was introduced on the 

background of the non-functional mutant Kcv-L94D. The function of the mutant was tested 

experimentally; a calculation of the impact of this mutation on the [K+] in the channel 

pathway was for technical reasons not possible.  

The complementation assay of Kcv-L94D-95R is shown in Figure 50. As assumed, the double 

mutant is able to recover function of the non-functional Kcv-L94D mutant. Moreover, the 

growth rate of the transformed yeasts is significantly higher than in the wildtype. Therefore, 
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the insertion of a complementary charge can balance the additional inserted net charge and, 

hence, rescue channel function. 
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Figure 50: Growth assay of the the double mutant Kcv-L94D-95R. Shown are the optical densities measured at 600 nm 

(OD600) in 0.5 mM KCl selective media of the different Kcv-L94 mutants (n ≥ 4) and of Kcv wt and pYES2 as positive and 

negative controls. The OD600 values are normalised to the density at the start of the experiment. 

 

5.4.5. Electrophysiological Measurements 

 

To uncover the effect of the mutants on channel kinetic, two mutants namely Kcv-L94H and 

Kcv-L94Y were also analysed electrophysiologically.  

Both channel mutants are able to generate functional channels in HEK293 cells. They show 

the same kinetics as the wildtyp (Figure 36). Due to the low signal-to-noise ratio of the 

configuration and the expected small differences between the different functional channels, 

further analysis of the mutants was not carried out. 
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5.5. Conclusion 
 

The viral potassium channel Kcv reveals many critical hallmarks of complex potassium 

channels; the miniature K+ channel essentially represents the pore module of all potassium 

channels and is, therefore, a good model system to study the most basic structure/function 

relationships in K+ channels. 

 

It has been shown that the formation of salt bridges between positively charged amino acids in 

the N-terminus and the free carboxyl group of the terminal amino acid of the C-terminus is an 

important factor for channel function (Moroni et al. 2002, Hertel et al. 2009); disruption of 

each of the interaction partners leads to the loss of channel function. An alanine-scanning 

mutagenesis study (see chapter 3) revealed many important residues in both TMDs for 

channel function. One of these important residues is the C-terminal leucine at the end of the 

second TMD. Substitution of this leucine against alanine causes a reduced ability to rescue 

yeast growth in selective media with low potassium concentrations (Figure 40). These results 

imply that the formation of the salt bridges is not the only critical factor for channel function. 

Because the exchange from leucine to alanine maintains the free carboxyl group at the C-

terminus, the formation of salt bridges should not be affected. 

 

To uncover the influence of the C-terminal amino acid on channel function, a combined 

approach of experimental and computational studies was designed. Therefore, the K+ 

concentration profiles (Figure 44) and the corresponding cumulated profiles (Figure 45) were 

calculated for all possible amino acid substitutions. The calculations reveal that the internal 

K+ concentration in the cavity of the channel is dependent on the C-terminal amino acid 

substitution. 

 

Additionally, a set of amino acid substitutions were also experimentally tested for 

functionallity. The results reveal a good agreement between the internal K+ concentration in 

the cavity and the functionallity of the channel expressed in yeast. Accumulation of K+ in the 

cavity abolish channel function completely, depletion leads to a significant reduced 

functionallity. Therefore, an optimal concentration of K+ in the cavity is one important factor 

for channel function but not the only channel behaviour modulating factor. 
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Former studies of Furini et al. (2007) in contrast revealed for the bacterial potassium channel 

KcsA a linear correlation of K+ concentration in the cavity and channel current (see Figure 7 

of Furini et al. 2007). Based on the electrodiffusion theory (Poisson-Nernst-Plank theory) they 

hypothesised that this correlation is may a general mechanism for potassium channels (Furini 

et al. 2007). Notabley the group of Furini et al. only used a computational method without 

experimental verification.  

 

In contrast, the present data cannot verify this hypotesis of Furini et al. (2007). Our results 

reveal a much more complex correlation between internal K+ concentration and channel 

function. Neither mutations, which causes too low nor such, which causes too high K+ 

concentrations in the cavity are able to complement successfully the deletion yeast strain.  

Therefore, our model of an optimal internal K+ concentration seems to be a better 

representation of the reality because the computational data are in good agreement with 

experimental results.  
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6. Chapter 5 – Excursus: Further analysis of the 3D model of Kcv 
 

Until now, there is no crystal structure of the viral potassium channel Kcv available. However, 

the aforementioned studies show that an optimised homology model of Kcv, which is based on 

the tetrameric form of the KirBac1.1 (PDB-Code: 1P7B) x-ray template structure (Tayefeh et 

al. 2009) serves as a good basis for analysing possible intramolecular interactions in the 

protein structure.  

 

Here I further analyse this model of Kcv with implications on channel functions.  

 

In chapter 3, investigations of the b-factors, which are an indirect measure of protein 

flexibility, show that the simulated structure of Kcv reveals similarities in the b-factor 

distribution to more complex channels, namely Kir2.2 and NaK (Figure 32). The three 

channels share the same segmented flexibility in their TM segments with flexible parts 

pointing towards the cytoplasmatic side and a rigid part pointing towards the extracellular 

side (Figure 32). Furthermore, with the help of the model of Kcv it is possible to identify also 

structural analogies to other potassium channels. 

 

A closer look on the localisation of the aromatic residues in Kcv for example (Figure 51 C and 

D) reveals a tripartite distribution of these residues consisting of an external [E] and internal 

[I] interfacial region plus a band [B] located in the centre (Figure 51 C). Such aromatic belts 

on both sides of TMDs are presumptively important for the anchoring of the protein in the 

lipid bilayer (compare chapter 1, Figure 8) (Planque and Killian 2003). The same tripartite 

localisation can be found in the bacterial potassium channel KirBac1.1, but only in the open 

state model (Figure 51A). In the closed state (Figure 51B) the crystal structure reveals that the 

localisation of the aromatic residues is evenly distributed along the whole length of the TMDs 

(Domene et al. 2006) due to an altered orientation of the phenylalanines of the central band 

[B] of the TMDs (Figure 51B). These structural changes occur due to conformational changes, 

which the protein undergoes in its TM regions during gating. They are most relevant for the 

interaction of the protein with the lipid environment (Domene et al. 2006). 
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Figure 51: Illustration of the localisation of the aromatic residues at the water-lipid-interface of KirBac1.1 and Kcv. (A) The 

images show a model of KirBac1.1 in the open state. The cartoon of the protein backbone is drawn in cyan and the aromatic 

residues (Phe, Trp and Tyr) are shown in space-filling format in grey. The red arrows indicate the position of the aromatic 

residues, which show a tripartite distribution in the open state model (external [E] and internal [I] interfacial regions plus a 

band [B] located at the central cavity section). (B) In the closed state, the location of the aromatic residues is evenly 

distributed along the length of the transmembrane helices (according to Domene et al. 2006). (C) Top view and (D) side view 

of the Kcv homology model. The protein backbone is drawn in pale green and the aromatic residues (Phe, Trp and Tyr) are 

shown in space-filling format in violet (upper [E] and lower [I] belt) or red (central belt [B]). The red arrows indicate that the 

position of the aromatic residues is similar to the tripartite distribution in the open state model of KirBac1.1. 
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The central aromatic belt of Kcv, like the central band of KirBac1.1, is built only by 

phenylalanines. In the case of Kcv this are the phenylalanines at position 19 (TMD1), 88 and 

89 (TMD2). Because of the comparable distribution of the aromatic residues of Kcv and 

KirBac1.1, it is possible that the phenylalanines in the central band of Kcv are also involved in 

gating just like in KirBac1.1 (Domene et al. 2006). This hypothesis can only be tested, if a 

crystal structure of Kcv in open and closed state becomes available, which allows to check, 

whether the distribution of these residues differ between the open and closed states. Different 

existing functional and non-functional simulation models of Kcv wt (Tayefeh et al. 2009), 

however, may already provide first hints on the involvement of these aromatic residues in Kcv 

on gating. In this context, we have to keep in mind that a non-functional model is not 

necessarily comparable with a closed state model because the loss of function can have 

different reasons.  

 

Figure 52 shows the structure of one functional and three non-functional simulation models of 

Kcv wildtype (Tayefeh et al. 2009) with highlighted aromatic residues, namely Phe, Trp and 

Tyr.  
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Figure 52: Four different simulation models of Kcv with highlighted aromatic amino acids. Shown are four different 

functional and non-functional simulation models of Kcv (Tayefeh et al. 2009) in side view. The protein backbones are drawn in 

pale green and the aromatic residues (Phe, Trp and Tyr) are shown in space-filling format in violet (upper and lower belt) or 

red (central belt). It is obvious that the loss of function of the non-functional simulation models is independent from the 

tripartite distribution of the aromatic residues, because the tripartite distribution is preserved in all four models. The red 

arrows indicate the position of the aromatic residues, which show a tripartite distribution with external [E] and internal [I] 

interfacial regions plus a band [B] located at the central cavity section. 
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In all four models, a tripartite distribution of the aromatic residues is more or less visible. This 

could be a first hint that gating in Kcv is independent from the spatial distribution of the 

phenylalanines in the middle band. However, for a precise statement, crystal structures in the 

closed and open state are necessary.  

Taking all results together it appears that Kcv shares many structural and functional properties 

with other more complex ion channels, like the basic assembly principle, the b-factor 

distribution, gating properties, high selectivity and sensitivity against potassium channel 

blockers, to name just a few. This may show that viral ion channels are potential candidates 

for the ancestors of potassium channels. 
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7. Summary 
 

The viral potassium channel Kcv from Paramecium bursaria chlorella virus 1 (PBCV-1) is with 

only 94 amino acids minimal in size. Indeed, Kcv is one of the smallest potassium channels 

known so far, but still exhibits almost structural and functional hallmarks of complex 

potassium ion channels. Here we analyse the importance of the two transmembrane domains 

(TMD) for channel function. Using an alanine-scanning approach in combination with yeast 

complementation and electrophysiological recordings, we identified crucial important sites in 

both TMDs, which are important for channel function. Many of the key amino acids are 

located in the outer transmembrane domain and are essential for the correct positioning of the 

protein in the lipid membrane.  

 

(i) Snorkeling effects in KcvPBCV-1 are nonessential for a proper channel function 

 

A lysine near the water/lipid interface in a TM segment is able to snorkel. This snorkeling can 

increase the hydrophobic length of TM segments and helps to span the lipid membrane. 

Computational studies of KcvPBCV-1 have shown that the lysine at position 29 in the TMD1 has 

to be deprotonated for proper channel function. Extensive mutational studies of the lysine at 

position 29 in KcvPBCV-1 have shown that all amino acid exchanges, with exception of proline, 

are allowed at this position. This means that KcvPBCV-1 indeed tolerates a neutral amino acid in 

this position without loosing function. However, when the equivalent lysine, which is highly 

conserved in viral channels, is substituted by alanine in the related channels KcvMT325 or 

KcvATCV-1, these channels loose their function. The latter two channels do not have the 

cytosolic N-terminal domain, which is essential in KcvPBCV-1. We therefore propose that the 

snorkeling effect is becoming essential in the structural context of the Kcv channels without 

cytosolic N-terminus, and that this feature is not crucial for the functionality of KcvPBCV-1. 

 

(ii) Aromatic amino acids in the TMD1 are crucial for the anchoring of the  

      protein in the lipid membrane 

 

TMD1 contains several aromatic amino acids. According to the structural model of Kcv, these 

aromatic side chains are facing towards the lipid membrane and anchor the channel in the 

membrane. The anchoring is also reflected in the distribution of the b-factors of Kcv, which 
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are a measure for the flexibility or rigidity of the amino acids. The N-terminus of Kcv and the 

first half of the TMD1 exhibit high b-factors and are flexible; the rest of the TMD1, starting 

from His17, is rigid with low b-factors. The alanine exchange experiments underscore the 

functional importance of this anchoring. An exchange of the aromatic residues in TMD1 

beginning with His17 greatly reduces or abolishes channel function. These negative effects on 

channel function can be explained by a decreased anchoring of the protein in the membrane.  

 

(iii) The �π-stack between the two TMDs stabilises the spatial structure of the channel 

 

Alanine-scanning mutagenesis together with information on the three dimensional structure of 

Kcv identified intramolecular interactions between the TMD1 (Phe30) and the TMD2 (His83). 

A �π-π-interaction between aromatic rings in TMD1 and TMD2 generates a tight connection (π-

stack) between the two TMDs and coordinates them into the correct position. A mutation of 

one of the �π-stack-partners leads nearly in all cases to the loss of the channel function. Only 

substitutions in one partner amino acid (Phe30), which also allow �π-stacking interactions 

(Try, Met), are still able to maintain channel function. The results of these experiments imply 

that the intramolecular contact between the TMDs is essential for function. The position of the 

�π-stack in the channel model suggests, that the rigid part of TMD1 allows the stabilising of 

the upper part of TMD2 via this connection.  

 

 (iv) The C-terminal amino acid influences the potassium concentration in the cavity 

 

Mutations of the last C-terminal amino acid of the TMD2 in KcvPBCV-1 affect the activity of the 

channel. Computational data of the potassium concentration profiles of the different mutants 

predict that these mutations influence the internal potassium concentration of the channel. 

These changes do not occur, as expected, directly at the mouth of the channel but in the 

cavity. A theoretically predicted depletion or accumulation of potassium in the cavity, as a 

result of a mutation of the terminal amino acid, generates channels, which show in the 

experiments either a lower or no activity. Therefore, small changes in the amino acid sequence 

could cause drastic effects in the global K+ concentration distribution in the channel and, 

therewith, influences channel function. The good agreement between theory and experiment 

suggests that an optimal K+ concentration is essential for a proper channel function; a too 

high or too low K+ concentration leads to reduced or no channel function. Furthermore, the 
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results reveal the quality of the homology model of Kcv, which enables us to find long-term 

interactions between the C-terminus and the cavity, an interaction, which is independent on 

the salt bridges at the cytosolic entrance of the channel.  
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8. Zusammenfassung 
 

Der virale Ionenkanal Kcv aus dem Paramecium bursaria Chlorella Virus 1 (PBCV-1) ist mit 

nur 94 Aminosäuren sehr klein. In der Tat handelt es sich bei Kcv um einen der kleinsten 

bekannten Kaliumkanäle, der aber nichtsdestotrotz alle stukturellen und funktionellen 

Merkmale komplexer Kaliumkanäle besitzt. In dieser Arbeit wurde der Einfluss der beiden 

Transmembrandomänen (TMD) auf die Kanalfunktion untersucht. Durch die Kombination 

eines Alanin-Scans mit Hefekomplementationstests und elektrophysiologischen Messmethoden 

war es möglich, Positionen in beiden TMDs zu identifiziren, die für die Kanalfunktion 

essentiell sind. Viele dieser Schlüsselaminosäuren befinden sich dabei in der äußeren TMD 

und sind von grundlegender Bedeutung für die richtige Positionierung des Proteins in der 

Membran.  

 

 (i) “Snorkeling” Effekte sind für die Funktionalität von KcvPBCV-1 nicht essentiell 

 

Ein Lysin in der Nähe der Wasser/Lipid Grenzschicht ist in der Lage zu „snorkeln“. Dieser 

„snorkeling“ Effekt kann die hydrophobe Länge eines TM Segments erhöhen und damit die 

Inserierung in die Membran erleichtern. Computergestütze Analysen von KcvPBCV-1 haben 

gezeigt, dass das Lysin an Position 29 in der ersten TMD von KcvPBCV-1 im deprotonierten 

Zustand vorliegen muss, um eine funktionelle Kanalsimulation zu erzeugen. Ausführlich 

Mutationsstudien dieser Position in KcvPBCV-1 zeigten aber, dass alle Aminosäureaustausche, 

mit der Ausnahme von Prolin, zu einem funktionellen Kanal führen. Das bedeutet, das KcvPBCV-

1 auch ungeladene Aminosäuren an dieser Position toleriert, ohne dass dadurch die 

Kanalfunktion beeinträchtigt wird. Vergleichbare Positionen des Lysins sind innerhalb der 

viralen Kaliumkanäle hochkonserviert.Wird nun aber das Lysin in den verwandten Kanälen 

KcvMT325 oder KcvATCV-1 gegen Alanin ausgetauscht, führt dies zum Verlust der Funktionalität 

dieser Kanäle. Die beiden Kanäle KcvMT325 und KcvATCV-1 besitzen nicht die für KcvPBCV-1 

essentielle cytosolische N-terminale Domäne. Daher ist es möglich, dass „snorkeling“ Effekte 

zwar für die Funktionalität von Kcv Kanäle ohne cytosolischen N-Terminus von entscheidener 

Bedeutung sind, nicht aber für KcvPBCV-1. 

 

 

 

  119 



 

 (ii) Aromatische Aminosäuren der TMD1 sind wichtig für die Verankerung  

      des Proteins in der Lipidmembran 

 

Die erste TMD von Kcv ist reich an aromatische Aminosäuren. Das Strukturmodell von Kcv 

verdeutlicht, dass die Seitenketten dieser aromatischen Aminosäuren zur Membran hin 

orientiert sind und dadurch den Kanal in der Membran verankern. Diese Verankerung spiegelt 

sich auch in der Verteilung der b-Faktoren wieder, welche ein Maß für die Flexibilität bzw. 

Starrheit einer Aminosäure sind. Der N-Terminus von Kcv und die erste Hälfte der TMD1 

besitzen hohe b-Faktoren und sind demnach flexibel, der Rest der TMD1, beginnend mit 

His17, ist starr und besitzt niedrige b-Faktoren. Alanin-Substitutionsexperimente bestätigen 

dabei, dass die Verankerung entscheidend ist für die Funktionalität. Ein Austausch der 

aromatischen Aminosäuren der TMD1 führt, ab dem His17, zu einer stark verringerten 

Kanalfunktion bzw. zu einem völligen Verlust der Funktionalität. Dieser negative Effekt auf 

die Funktionalität kann durch die verminderte Verankerung des Proteins in der Membran 

erklärt werden. 

 

 (iii) Der �π-stack zwischen den beiden TMD stabilisiert die räumliche Struktur  

       des Kanals 

 

Mit der Hilfe des Alanin-Scans und des dreidimensionalen Modells von Kcv war es möglich, 

intramolekulare Interaktionen zwischen der ersten (Phe30) und zweiten TMD (His83) zu 

identifizieren. Diese �π-π-Wechselwirkungen (π-stack) zwischen den aromatischen Ringen der 

TMD1 und TMD2 führen zu einer festen Verbindung zwischen den beiden Domänen und 

halten sie somit in der richigen Position. Durch die Mutation eines der beiden 

Wechselwirkungspartner kommt es in nahezu allen Fällen zu einem Verlust der Kanalfunktion. 

Die einzige Ausnahme dabei bildet die Substitution des Phe30 zu Aminosäuren, die ebenfalls 

in der Lage sind einen �π-stack auszubilden (Tyr, Met) und somit die Kanalfunktion erhalten 

können. Die Ergebnisse verdeutlichen die Bedeutung der intramolekularen Interaktionen 

zwischen den beiden TMD für die Kanalfunktion. Die Positionierung des �π-stacks im 

Kanalmodell läßt vermuten, dass mittels dieser Wechselwirkungen der starre Teil der TMD1 

eine Stabilisierung des oberen Abschnittes der TMD2 bedingt. 
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 (iv) Die C-terminale Aminosäure beeinflußt die Kaliumkonzentration in der Cavität 

 

Mutationen der letzten Aminosäure des C-Terminus der TMD2 von KcvPBCV-1 beeinflussen die 

Kanalaktivität. Berechnungen von Kalium-Konzentrationsprofilen verschiedener 

Kanalmutanten ergaben, dass diese Mutationen die interne Kaliumkonzentration des Kanals 

beeinflussen. Diese Konzentrationsveränderungen treten dabei nicht, wie erwartet, direkt am 

Eingang des Kanals auf, sondern in der Cavität. Dabei stimmen die theoretisch getroffenen 

Vorhersagen über eine An- oder Abreicherung von Kalium in der Cavität, durch die Mutation 

der C-terminalen Aminosäure, mit der experimentell beobachteten reduzierten Kanalaktivität 

bzw. dem völligen Verlust der Funktionalität überein. Somit verursachen kleine 

Veränderungen der Aminosäuresequenz weitreichende Veränderungen in der globalen 

Konzentrationsverteilung der Kaliumionen im Kanal und beeinflussen damit dessen Funktion. 

Die gute Übereinstimmung zwischen Theorie und Experiment legt die Vermutung nahe, dass 

eine optimale Kaliumkonzentration die Vorraussetzung für die richtige Funktion des Kanals 

ist. Zu hohe oder zu niedrige Konzentrationen dagegen können die Funktionalität herabsetzen 

oder gar ganz verhindern. Des Weiteren spiegeln die Ergebnisse die Qualität des 

Homologiemodells von Kcv wider welches es ermöglicht, weitreichende Interaktionen 

zwischen dem C-Terminus und der Cavität aufzudecken, die scheinbar unabhängig von dem 

Vorhandensein der Salzbrücken an der cytosolischen Eingangsseite des Kanals sind.  
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14. Appendix   
 

Table 8: Overview over 109 amino acid parameters, which were tested for a correlation between the amino acid 

parameters and the assay data of the different Lys29 substitutions (see Figure 14). 

 

Amino Acid Parameters Reference 

Correlation 

coefficient 

    

Molar fraction (%) of 2001  

buried residues Nature 277:491-492(1979) 0.53 

Conformational preference  

for parallel beta strand.  Nature 282:109-111(1979) 0.51 

Proportion of residues 95%  

buried (in 12 proteins) J. Mol. Biol. 105:1-14(1976) 0.50 

Membrane buried helix 

parameter. Biochim. Biophys. Acta 869:197-214(1986) 0.49 

Hydropathicity J. Mol. Biol. 157:105-132(1982) 0.47 

Average surrounding 

hydrophobicity. Nature 275:673-674(1978) 0.46 

surrounding hydrophobicity; 

Molecular Simulation Vol. 34, No. 9, August 2008, 1–

48 0.45 

total nonbonded energy 

Molecular Simulation Vol. 34, No. 9, August 2008, 1–

48 0.45 

Hydration potential (kcal/mole)  

at 25 °C Biochemistry 20:849-855(1981) 0.44 

Normalized consensus 

hydrophobicity scale. J. Mol. Biol. 179:125-142(1984) 0.44 

buriedness 

Molecular Simulation Vol. 34, No. 9, August 2008, 1–
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List of Abbreviations 
 

14-3-3   Family of conserved regulatory molecules 

Å   Ångström 

ANK repeat  33-residue motif consisting of two α-helices separated by loops 

AQP0   Lens Aquaporin-0 

ASIC   Acid-sensing ion channel 

ATCV-1   Acanthocystis turfacea Chlorella Virus Type 1 

C   Cavity 

ClC   Chloride channel 

CNG channel  Cyclic nucleotide gated channel 

Cs+   Ceasium ion  

DNA   Desoxyribonucleic acid 

DOPG   Dioleoylphosphatidylglycerol 

DPPC   Dipalmitoylphosphatidylcholine 

E. coli   Escherichia coli 

EGFP   Enhanced green fluorescent protein 

EsV-1   Ectocarpus siliculosus Virus 1 

F   Filter 

G   Gate 

h   hour 

Hv channel  Voltage-gated proton channel 

HEK293   Human embryonic kidney 293 cell 

HERG   Human eag-related gene 

I/V-curve  Current-voltage relationship 

K+   Potassium ion 

[K+]   Potassium concentration 

[K+]cav   Potassium concentration in the cavity 

KATP   ATP-sensitive potassium channel 

Kesv   K+ channel from Ectocarpus siliculosus Virus 

kb   Kilobase 

KcsA   K+ channel from Streptomyces lividans 

Kcv   K+ channel Chlorella Virus 
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Kir2.1   Inward rectifier potassium channel 2.1 

KirBac1.1  bacterial inwardly-rectifying K+ channel 

Kir channel  Inwardly rectifying potassium channel 

Kv channel  Voltage-gated potassium channel 

LGIC   Ligand-gated ion channel 

Li+   Lithium ion 

M1 or M2  Transmembrane helices of KcsA 

MD simulation Molecular dynamics simulation 

ml   Millilitre 

mm   Millimetre  

mM   Millimolar 

mV   Millivolt 

MT235   Phycodnavirus MT325, which infects Chlorella Pbi 

MthK   K+ channel from Methanobacterium thermoautotrophicum 

MS channel  Mechanosensitive ion channel 

MscL channel  Mechanosensitive channel of large conductance 

μl   Mikrolitre 

Na+   Sodium ion 

Nav channel  Voltage-gated sodium channel 

NaK   Na+/K+ conducting channel 

NC64A   TChlorella strain NC64A 

nm   Nanometre 

OD600   optical density at 600 nm 

P or P loop  Pore or Pore loop 

pA   Picoampere 

PBCV-1   Paramecium bursaria Chlorella Virus Type 1 

PC   Phosphatidylcholin 

PDB   Protein Database 

pH   pH = -log10(aH) 

PI   Phosphatidylinositol 

pKa   pKa = -log10(Ka) 

PS   Phosphatidylserin 
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Rb+   Rubidium ion 

rpm   Revolutions per minute 

S2   second TMD of 6TMD motif channels 

S3   third TMD of 6TMD motif channels 

S4   Fourth TMD of 6TMD motif channels; voltage sensor 

TM   Transmembrane 

TMD   Transmembrane domain 

TRK1   Transport of potassium 1 

TRP channel  Transient receptor potential channel 

VGCC   Voltage-gated calcium channel 

wt   wildtype 

 

 

 

 

 

 

 

 

 

Amino acids  
 

A Ala Alanine  N Asn Asparagine 

C Cys Cysteine  P Pro Proline 

D Asp Asparatic acid Q Gln Glutamine 

E Glu Glutaminic acid R Arg Arginine 

F Phe Phenylalanine S Se Serine 

G Gly Glycine  T Thr Threonine 

H His Histidine  V Val Valine 

I Ile Isoleucine  W Trp Tryptophan 

K Lys Lysine   Y Tyr Tyrosine 

L Leu Leucine  X Unspecified or unknown amino acid 

M Met Methionine 
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