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Abstract

Peer-to-peer (P2P) technology has already been established in several application
domains, e.g., IP telephony, file sharing, and content distribution. It is considered to
be distributed, ad-hoc, robust and scalable approach for digital information transfer.
In this thesis, the P2P communication paradigm is proposed as an alternative
communication approach in the first response application domain.

Disaster relief efforts, after larger scale catastrophes, suffer from damaged or de-
stroyed communication infrastructure. Satellite connection equipment is hardly
available and costly, and therefore rescue workers tend to send foot messengers to
relay messages between the on-site organizations.
A P2P-inspired communication approach for first responders would relieve the over-
loading of communication channels, can function as a completely self-contained
method and remove the need for centrally managed communication approaches,
which might be damaged or destroyed after catastrophes.

In this thesis, we investigate a breakdown of the P2P-inspired communication
approach in four distinct layers. We identify the key challenges for each layer and
propose novel approaches for the most important challenges in each layer.

The main contributions are: (i) a systematic breakdown of the communication
concept in four distinct layers, and (ii) a mechanism called ’BridgeFinder’, which
increases the robustness of the communication network. The overlay network (iii)
’Pathfinder’ provides key functionalities like routing, lookup and exhaustive search.
The application-level multicast (iv) provides an efficient way of sending messages
to multiple recipients. The novel mechanism (v), called DCC, provides reliable
command and control structure management in a distributed fashion.
Besides the technical concept, we developed a simulation environment with working
prototypes for each contribution. Further, we evaluated the robustness, scalability
and efficiency of these communication approaches. We show that they meet the
stipulated requirements of first responders and perform at least equally or better
than the current approaches.
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Zusammenfassung

Peer-to-Peer-Technologie (P2P) ist bereits heute in unterschiedlichen Anwendungs-
gebieten etabliert, z.B. im Bereich IP-Telefonie, gemeinsamer Dateizugriff und
‘Content Distribution’. P2P ist bekannt als dezentraler, spontan verfügbarer, robuster
und skalierbarer Ansatz für den digitalen Informationsverkehr. In dieser Arbeit wird
das P2P-Kommunikationsparadigma als alternativer Kommunikationsansatz für den
Bereich der Katastrophenhilfe vorgeschlagen.

Im Falle größerer Katastrophen werden Hilfsmaßnahmen durch beschädigte oder
zerstörte Kommunkationsinfrastruktur deutlich erschwert. Satellitenverbindungen
sind selten verfügbar und kostspielig, dadurch tendieren Ersthelfer dazu Nachrichten
mittels Boten den beteiligten Organisationen vor Ort zuzustellen.
Ein P2P-basierter Kommunikationsansatz für Ersthelfer kann die Überlastung der
bestehenden Kommunikationsinfrastruktur mindern und als eigenständige Kommu-
nikationsmethode fungieren. Es wäre keine zentrale Verwaltung notwendig, welche
beschädigt oder zerstört werden könnte.

In dieser Arbeit wird eine Aufteilung des P2P-basierten Kommunikationsansatz in
vier separate Schichten vorgeschlagen. Die Aufgaben und Herausforderungen jeder
Schicht werden identifiziert und neue Ansätze für die wichtigsten Herausforderun-
gen vorgeschlagen.

Die Hauptbeiträge dieser Arbeit sind: Eine systematische Aufteilung des Kommu-
nikationsansatzes in vier separate Schichten (i) sowie der ‘BridgeFinder’ Mecha-
nismus (ii), welcher die Robustheit des Netzwerks erhöht. Das Overlay Netzwerk
(iii) ‘PathFinder’ bietet eine einzigartige Kombination der Schlüsselfunktionalitäten
Routing, Key-Lookup und Volltextsuche. Das Application-Level Multicast (iv)
bietet eine effiziente Möglichkeit Nachrichten an Empfängergruppen zu senden. Der
neuartige Mechanismus (v) ‘DCC’ ermöglicht ein verlässliches Management der
Organisationsstruktur in einem verteilten System.
Neben dem Konzept wird eine Simulationsumgebung zur Evaluation der vorgeschla-
genen Methoden vorgestellt. Es wurden Robustheit, Skalierbarkeit und Effizienz
der erarbeiteten Mechanismen evaluiert. Die erhobenen Anforderungen der Erst-
helfer konnten durchgehend erfüllt werden, die entwickelten Ansätze sind darüber
hinaus in den relevanten Bereichen performanter als die bisher vorgeschlagenen
Mechanismen.
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Chapter 1

Introduction

Peer-to-peer (P2P) technologies have been established in several application do-
mains, e.g., IP telephony, file sharing, and content distribution. The most prevalent
P2P application is Skype [Tho06], which is used for instant messaging and video
conferences. In addition e.g., Gnutella [KM02] and eMule [KB] also found their
way out of the laboratory and are used for file sharing purposes. Applications for
TV streaming such as PPLive and TVU, which are both based on P2P technology
have left beta status and are available to end users.

The advantages of the P2P approach are on the one side the self configuration
properties and the elimination of a single point of failure in the form of a central
server, but more important is the scalability of P2P systems. As long as a peer is
connected to the overlay network it donates parts of its resources to the P2P system.
Therefore, even P2P networks with several millions of peers are possible, because
every peer brings its required resources on its own.

In this thesis, the P2P communication paradigm is proposed as an alternative
communication approach in the application domain of first responders. Using a
P2P-based communication approach for first responders, it is possible to relieve
the overloading of communication channels and to remove the need for centrally
managed communication approaches, which might be damaged or destroyed after
catastrophes. The proposed P2P system is intended to be used after the existing
communication infrastructure has been heavily damaged, e.g., after an earthquake or
a hurricane. The need for reliable first response communications was one of the first
findings of the 9/11 attack on the Pentagon. In order to set realistic requirements to
address the needs of first response helpers, this work builds on analyzed findings of
disaster reports and interviewed first response helpers [Dir08].
In this thesis, a first response communication system is developed and evaluated by
extensive simulations. The main contribution is a P2P approach for communication
requirements at the incident area. Communication takes place primarily over
wireless links and between small handheld devices carried by the personnel. In
addition, there may be some optional servers (JAN towers) handling other tasks.

1
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Application Layer

Movement and Network Model

Connection Topology

Overlay Network

Figure 1.1: Layered Communication Model for First Responders

In recent larger scale disasters, communication could only be kept alive by explicitly
assigning foot messengers to carry messages from source to target. The goal is to
replace this last resort communication approach with a distributed, reliable, self-
organizing and versatile communication system. The challenge is to provide reliable
communication, even though parts of the network may be damaged or destroyed.

1.1 Scientific Contribution and Outline

In this thesis, we explore a breakdown of the P2P-inspired communication approach
in four distinct layers. After identifying the key challenges for each layer, we
propose novel approaches for the most important challenges.
In order to provide larger scale evaluations of first response communication ap-
proaches, simulations of recent or artificial disasters are performed. We devel-
oped a simulation framework, called the First Response Communication Sandbox
(FRCS) [BPSM08], which combines both, mobility of first responders and the
behaviors of communication devices.
Based on the requirements of first responders and the conducted simulations, this
thesis presents a P2P-based communication approach, which is designed especially
for the hostile environments that result from catastrophes.

Figure 1.1 shows the Layered Communication Model used in this thesis. Each layer
features its specific tasks and challenges.
The fundament is the ’Movement and Network Model’ layer. It provides both,
movement data from all participants of the scenario, and a basic connection graph
of all devices within communication range. On the next layer, called ’Connection
Topology’, all possible communication partners within range are preselected. The
challenge is to choose qualified neighbors from the large number of available
nodes and to protect the network from partitioning. On top, the ’Overlay Network’
layer provides search and lookup functionalities among all connected nodes. The
challenge is, on the one side, to save bandwidth and on the other side to provide
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fast access to all available resources. The topmost layer is the ’Application’ layer.
P2P applications are allowed to access methods provided by the layers below.
Nevertheless, a consistent view of the provided resources is the prevalent challenge
in the Application layer.

Each layer of the communication model is designed especially for the harsh environ-
ment found in first response situations. For each layer, at least one contribution is
presented in detail. From bottom to top, the most important contributions presented
are:

1. On the ’Movement and Network Model’ layer: A simulation environment
for the Movement and Network Model layer, which estimates movement of
first responders and civilians and simultaneously simulates the corresponding
mobile communication infrastructure.

2. On the ’Communication Topology’ layer: An approach called BridgeFinder,
which provides a mechanism for detecting critical paths between sparsely
connected clusters of mobile peers.

3. On the ’Overlay Network’ layer: An Application-Level Multicast in the
Overlay Network layer. A message with optional acknowledgment can be
sent to either all involved parties or to a defined subset of peers within the
network. The approach guarantees that no duplicate messages occur, which
saves bandwidth and energy.

4. On the ’Overlay Network’ layer: A P2P overlay network called Pathfinder,
which adapts itself dynamically to the current stability of the network. It is a
contribution for the Overlay Network Layer.

5. On the ’Application’ layer: P2P functionality, which is able to provide hierar-
chical data access in structured P2P overlay networks. It is a contribution to
the Application layer.

1.2 Publications

The main contributions of this thesis have been published as research contributions
in computer science conference proceedings.
An overview of the current application domains of P2P-technology has been
published in [GKM+07] The general approach of this work has been published
in [BSAL09]. In detail, the requirement analysis have been published in [Dir08],
followed by the analysis of existing P2P-overlay networks [BKM08]. A P2P mech-
anism for sending multicast messages has been published in [BKM09b]; alternative
approaches are presented in [KTL+09]. The simulation environment has been
published in [BPSM08] and [BKM09a], as well as an example An example ap-
plication for first responders in [BKK09]. The mechanism for identifying critical
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nodes within the network called BridgeFinder, and a P2P-overlay network, which
combines structured and unstructured search methods, are currently in submission.

1.3 Thesis Structure

The thesis is structured as follows:
Chapter 2 shows the requirements found typically in first response situations. Chap-
ter 3 presents the derived coarse communication concept, which is recommended
for communication in larger scale catastrophes.
In Chapter 4, the foundation for the simulation approach of rescue units is elicited
and implemented. It is used for simulation of communication patterns during a
disaster scenario. Chapter 5 systematically analyses how to identify articulation
points of sparsely connected node clusters; these points are crucial for keeping
the network connected. Chapter 6 analyses the applicability of existing P2P over-
lay networks for the harsh environment common to first response situations. The
findings lead to the development of a novel P2P overlay called PathFinder. In
Chapter 7, a new mechanism for an efficient application-level multicast is developed
and evaluated. Chapter 8 shows one implemented mechanism, built on the proposed
P2P communication approach. It maintains command and control hierarchy in a
distributed environment.
Chapter 9 concludes this thesis with a summary and provides directions for future
research opportunities.



Chapter 2

First Response Communication
Requirements

In this Chapter, requirements leading to the thesis’s proposed communication archi-
tecture for first responders are explained in greater detail.
First, by surveying the demand of first responders through extensive telephone inter-
views and from existing reports, the most important use cases are identified. Based
on these findings, non-functional requirements and design requirements demanded
by national authorities are analyzed. Finally we summarize the most important
findings, which lead to the coarse architecture proposed in this thesis.

The remainder of this Chapter is structured as follows. In Section 2.1, we present
the current state of disaster relief efforts and demonstrate the need for a distributed
communication approach. In Section 2.2 and Section 2.3 we summarize the these
use cases and the evaluation methodology. The non-functional requirements are
presented in Section 2.4. Finally, in Section 2.5 we present the System-of-Systems
concept proposed by homeland security. The Chapter concludes with a summary of
requirements (Section 2.6), which lead to the proposed architecture and mechanisms
put forth in this thesis.

2.1 Introduction

Working communications are extremely important in disaster management and first
response scenarios. In this Chapter, the main requirements of a communication
system for first response scenarios are elicited. Flexible communication architec-
tures are vital for larger scale disaster management, and existing communication
mechanisms have several shortcomings in light of the heterogeneity of first re-
sponse groups. The need for reliable first response communications was one finding
discovered after the 9/11 attack on the Pentagon: [bTSC02]

“Because radio communications were overloaded and ineffective, Cap-
tain Liebold sent two firefighters on foot to record the identification

5
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number and location of every piece of equipment on the Pentagon
grounds. In the first few hours, foot messengers at times proved to be
the most reliable means of communicating.”

This Chapter presents the requirements of the development of a first response
communication sandbox, intended to simulate the situation that occurs after the
existing communication infrastructure has been heavily damaged.
A P2P requirement analysis for first responders with prototyped software was done
by the University of Virginia [A.S03a], they identified three main issues in current
first response approaches and developed a prototype for a P2P based first response
solution. Further implementation of this P2P approach [A.S03a] is completed
using hypercast, GPS capabilities, multicast streaming video and access control
mechanism. Nevertheless, the goal was to develop a prototype, architecture design
and larger scale evaluations were out of scope.

Our requirements are based on reports and extensive telephone interviews with
rescue professionals, as well as on the findings of recent larger scale disasters.
In order to evaluate our proposed approach, we developed the First Response
Commmunication Sandbox (FRCS) in order to measure metrics derived from the
proposed requirements and to evaluate new approaches for tackling communication
in first response situations. Both pieces, the collected use cases combined with
FRCS allow for the evaluation and comparison of different disaster management
solutions under exactly the same laboratory conditions. FRCS is used in the entire
thesis and is presented in detail in Chapter 4.

2.2 Identified Use Cases

In this section, the basic requirements and use cases for a first response commu-
nication system are presented. Both, the requirements and use cases system from
the results presented in the literature [A.S03a] [J. 02], as well as extensive tele-
phone interviews conducted with professionals working on first response were
analyzed. The FRCS [BPSM08] [BKM09a] is intended for simulating distributed
rescue communication. The first response team on-site needs a reliable group com-
munication system to establish communication which supports the organizational
hierarchy [MB07]. On-site communications refer to the communication needs of
the first response team. They take place mainly over wireless links and between
small handheld devices carried by the personnel. In addition, there could be some
servers handling other tasks. A distributed approach can be used as communication
infrastructure in unreliable and rapidly changing environments. In fact, Groove
Office [Gro04] has already been applied successfully during first response situations.
Nevertheless, Groove had to provide a central backup server in order to make the
approach scalable.

Our goal is to augment or replace foot messengers with a distributed communication
system. Based on extensive telephone interviews, several use cases that the system
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ID Name Description Example

R1 Broadcast/
Multicast

Messages need to be sent to
groups of peers, optionally
with acknowledgment.

Operation Control sends evac-
uation message to first re-
sponse team

R2 Shift
Change

Immediate churn occurs, due
to massive logins of new shift
members and leaving peers
from the previous shift.

Firefighter Team A must rest
and responsibility is taken
over by firefighter Team B

R3 Locality
Awareness

Mobile user enters a certain
area and automatically re-
ceives location aware news

A medic is walking toward a
building and receives a warn-
ing not to enter the building

R4 Resource
Awareness

Additional hardware is pro-
vided, and the network adapts
to the new resources and op-
timally utilizes the additional
hardware

Operation control provides
additional hardware, and the
network restructures itself us-
ing the new hardware to stabi-
lize the overlay

R5 Active
Search

Search for an object, option-
ally within location range

A first response team is
searching for an available
paramedic nearby

R6 Hierarchy
Mainte-
nance

In all catastrophic scenarios,
there is a strict organization
hierarchy for all helpers.

A new team at the site it is
immediately assigned to a su-
pervisor and is able to receive
orders

Table 2.1: Use Case Table

would need to address are identified. These are listed in Table 2.1. An example for
each use case is provided as well.

The use case R1 - Broadcast/Multicast is necessary for sending important messages
to a group of users. The challenge of broadcasting information is to reach every
node regardless of its current position and its connection point. Table 2.2 shows
an extract of the 24h-Timeline of the 11/9 Pentagon incident [bTSC02] The listed
actions describe ‘multicast’ situations, i.e., messages that need to be delivered to a
group of people or to all devices connected to the incident network.
A typical use case scenario is one in which the officer in charge wants to send an
evacuation message to the first response team located in an endangered area.

The use case R2 - Shift Change occurs regularly if one rescue team needs rest and
its members’ roles are taken over by another team. The communication system
must ensure that roles, open tasks, and solved issues are seamlessly adapted by the
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Timeline Reported Actions

10:15 a.m. Chief Schwartz orders full evacuation because of warn-
ing of approaching hijacked aircraft

10:38 a.m. Chief Schwartz sounds the all-clear, ending the evacua-
tion

11:30 a.m. Chief Schwartz establishes the ICS Operations Section
at the Pentagon Heliport

2:00 p.m. Second threat of unidentified aircraft causes full evacua-
tion

Table 2.2: Arlington County Log Excerpt of After Action Report

new team.
A common scenario is when rescue team A needs to rest, and responsibility is taken
over by team B.

In the use case R3 - Locality Awareness, a digitally marked spot is visible to all
members of the network. If another team approaches e.g., a bridge, it will be notified
before it attempts to cross the bridge.
One critical scenario occurs when a paramedic is walking towards a building that
may possible collapse soon; he should receive a warning to not enter the building.

The Resource Awareness use case R4 ensures the optimal utilization of the available
hardware. Communication is heavily influenced by heterogeneous hardware with
dynamic fluctuation of resources.
During an operation, control provides additional hardware, and the network restruc-
tures itself using the new hardware for stabilizing the overlay.

Use case R5 - Active Search covers the need to search for people based on their roles,
distinct persons, or digitally marked tools. Usually the area that a first response
team can observe is visually limited, so digital support for locating objects and
people would improve the overview.
A typical active search scenario, is for example, searching for an available paramedic
nearby.

R6 - Hierarchy Maintenance is crucial to the success of first response. Strict
hierarchical decision making and reporting have become the standard for disaster
management. It is important to mention that the typical hierarchy dynamically
changes during an incident.

Table 2.3 shows an extract of the 24h-Timeline of the 9/11 Pentagon inci-
dent [bTSC02]. Disaster relief teams arrive incrementally at the site, and their
communication devices should assign them to a supervisor immediately in order to
receive orders. In the presented excerpt, 12 changes in the dynamic hierarchy were
required within 50 minutes.
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Timeline Reported Actions

9:40 a.m. Captain Chuck Gibbs arrives at the Pentagon
9:40 a.m. Captain Mark Penn arrives at Arlington County EOC
9:41 a.m. Battalion Chief Bob Cornwell arrives at the Pentagon

and assumes Incident Command
9:41 a.m. ACFD Truck 105 arrives at the Pentagon
9:42 a.m. ACFD Captain Edward Blunt arrives at the Pentagon

and establishes EMS Control
9:43 a.m. MWAA first responders arrive at the Pentagon
9:48 a.m. Assistant Chief James Schwartz arrives and assumes

Incident Command
9:49 a.m. FBI Special Agent Chris Combs arrives and is FBI rep-

resentative to Incident Command
9:50 a.m. Chief Schwartz establishes Fire Suppression Branch,

River Division, EMS Division, and A-E Division
9:50 a.m. Three area hospitals are prepared to receive patients
9:55 a.m. Assistant Chief John White arrives and is assigned EMS

Branch Commander
10:30 a.m. Arlington County EOC is operational

Table 2.3: Arlington County Log of After Action Report

In addition, loose cross-organizational communication should be established, while
maintaining the strict intra-organizational hierarchy [MB07].

2.3 Use Case Evaluation Methodology

A communication system for on-site communications for first response has a rela-
tively small amount of users, on the order of a few hundreds or a couple of thousand,
at most. Furthermore, the churn is expected to remain at moderate levels for most
of the nodes.
Evaluation of a first response solution must cover both, the actual performance of
typical use cases needed in catastrophic situations and a unified disaster scenario in
order to create comparable results.
In order to get a fairly reliable comparison of the different use cases, a metric for
each use case is introduced. The metric is completely independent of the chosen
communication technology and software.

Table 2.4 shows the basic evaluation methodology for each use case.
Nevertheless, a comparison is only possible with a “standardized” disaster sce-

nario. Otherwise the results would vary, depending on the number of communication
devices, network coverage, movement speed, resources of the devices, etc.
In order to overcome these numerous configuration discrepancies, we propose a
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ID Name Evaluation Crite-
rion

Description

R1 Broadcast/
Multicast

Average success rate Fraction of successfully delivered
broadcast/multicast messages

R2 Shift
Change

Average recovery
time

Average time needed for the net-
work peer recovery time

R3 Locality
Awareness

Notification Delay Average delay between event and
notification

R4 Resource
Awareness

Resource utilization
of peers

Relative resource utilization distri-
bution of peers

R5 Active
Search

Success rate of search Fraction of correctly answered
search queries / key lookups

R6 Hierarchy
Mainte-
nance

Average restructura-
tion time

Time needed to successfully re-
establish the command and control
hierarchy

Table 2.4: Use Case Verification Table

standardized scenario setup description [BPSM08]. The combination of proposed
use cases and the standardized scenario setup simplify comparisons between differ-
ent first response communication approaches.
Both, a set of necessary use cases and a scenario description for first response
situations are defined. With these two requirements met, a fair comparison of first
response solutions is possible. However, a universal definition of a standardized
disaster situation to evaluate first response communication approaches is not yet
available.

Nevertheless, standardized evaluation scenarios are likely to evolve, and with
our proposed scenario description, this process can be accelerated.

2.4 Non-functional Requirements

For a P2P first-response communication system, the use cases and requirements
R1-R6 are analyzed in Section 2. The primary use of a distributed communications
infrastructure in first response is to organize on-site communications in situations
where most of the existing infrastructure has failed. The on-site teams need a method
of reliable group communication that supports the organizational hierarchy of the
response teams. Communication takes place over wireless links and between small
handheld devices carried by the personnel. The networks are typically augmented
with access points or more powerful communication nodes (e.g., communication
vans). The main contribution is to augment the classical first response communica-
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tion approach, which is often supported by foot messengers, and replace it with a
distributed communication system.
When a crisis occurs, first responders from different professions, organizations and
jurisdictions meet. Helpers from fire departments, law enforcement agencies, emer-
gency medical services (EMS) and government agencies must work together in order
to manage the situation and to save lives. Depending on the scenario, hazardous
material (HAZMAT) workers, waste disposal technicians or victim rescue teams
are also needed. In order to work together successfully, first responders from all
professions, organizations and jurisdictions need must be able to communicate with
each other. They must be able to communicate with their colleagues, the command
center and other first responders. The reliance on voice-oriented communication
alone is one of the major drawbacks of current first responder systems identified
by [A.S03a].
We divided the non-functional requirements in the main areas: ‘Communication
Types and Devices Types’, ‘Information Infrastructure’, ‘Network Structure’, and
‘Communication Schemes.’

Communication Types and Devices Types The information content of voice
alone is not rich enough and can easily be misunderstood. In order to support first
responders appropriately, they need the option of exchanging miscellaneous types
of information; floor plans and area maps can provide better orientation; images and
videos of the incident scene can help the command center to make more informed
decisions instead of simply relying upon voice messages [A.S03a]. For that reason,
it is important to enrich the communication channel:

R7 (Communication Channel) - First Response communication shall
provide opportunities for text, voice and picture transmissions.

The lack of interoperability is also a major problem. Most agencies and de-
partments use different systems and equipment for communication. Sometimes,
not even police and firefighters from the same county are able to communicate
inter-disciplinarily using their standard devices. Thus, it is important to provide
inter-organization communication interfaces:

R8 (Interoperability) - First response communication shall provide
channels between organizations.

Information Infrastructure The third major problem is the limited situational
awareness of first responders and command centers. Even if a strong method of
communication is established, the command center cannot rely on reports from
first responders alone. They require access to databases, maps, personnel location,
etc. to evaluate the situation and make well-informed decisions rapidly based
on reliable information and a complete picture of the incident. In order to meet
any of these requirements, an incident scene network must be established. It is
formed without any existing infrastructure and is dismissed when the mission is
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accomplished. Connectivity between all participants must be provided, as well as
seamless communication across incompatible devices and agencies. The system is
mobile and temporary in nature and needs to be scalable to the dimension of the
incident. It must allow mobile users and cannot rely on specific users or specific
relay stations. Users must be able to connect or disconnect at any time without
affecting the system negatively.

Network Structure Mobile communication devices carried by first responders
could simply form a wireless network to communicate. Since the mobility pattern of
first responders is hard to predict, this kind of network is not reliable [BL07]. There-
fore, nomadic relay devices should be used, as they can be carried and deployed
by first responders. They form a stationary ad hoc backbone network to link first
responders to each other. Considering the nature and properties of incident scene
networks, a flexible architecture is needed to establish a reliable communication in-
frastructure. A P2P network is the optimal solution. P2P networks are decentralized,
distributed and server-less. They self-organize in a so-called overlay network and do
not rely on a single entity’s performance or availability. All peers in the system can
connect to each other directly or via any path. The architecture is flexible enough
to add features subsequently to address future needs [A.S03a]. Hence, using a P2P
overlay network on top of an established connection of all participants will more
than adequately meet first responders’ needs. In order to support first responders,
different types of information need to be exchanged [HHNL07]. Voice-oriented
messages will always be important and require strict timeliness and high quality.
Live video feeds from the incident scene improve situational awareness and make
remote meetings and assistance possible. Databases need to be accessible, and the
necessary information must be presented to first responders in a helpful way. There-
fore the underlying network infrastructure needs to meet certain delay requirements,
as discussed in [BL07]. Requirements of the ‘Information Infrastructure’ and the
‘Network Structure’ lead to:

R9 (Self-Sustaining) - Incident scene networks may require to be
established on demand without existing infrastructure.

Communication Schemes When examining the information exchange of first re-
sponders, two different types of information flow can be identified: vertical (upward
and downward) and horizontal (parallel) communication [HHNL07] [CSRU05].
Vertical communication represents the information exchange between entities at
different levels of the command hierarchy. It flows upward from first responders
to commanders, or downward from the command center to first responders. Hor-
izontal communication includes all information flows between first responders.
Figure 2.1 shows the vertical and horizontal communication needs of first respon-
ders. Therefore, a communication infrastructure needs to implement different
communication interfaces. These interfaces must be employed in such a way that
they overcome interoperability issues between heterogeneous devices and agency
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policies. One-to-one and one-to-many communication schemes must be available
to convey messages to certain first responders or groups according to their locations
and roles. Requirements of the information flow lead to:

R10 (Information Flow) - First response communication shall provide
means for vertical and horizontal messaging.

  

Figure 2.1: Information flow during crisis response

2.5 System of Systems

In the SAFECOM report [of06], the Department of Homeland Security introduces
the so-called ‘System of Systems’. It describes a network topology used to meet
the requirements of first responder communication during an incident. It is de-
signed to provide a connection between first responders and to command center.
In [HHNL07], a similar network is described. The authors also survey implications
regarding the architecture of first responder networks and discuss design criteria.
These communication networks are mobile and temporary in nature because they
must be deployed without the presence of an infrastructure. They are dismissed
when the mission is accomplished. They must allow for the integration of other
networks to connect incident scenes and to provide access to remote information
sources. To support incidents of any size and allow first responders to connect or
disconnect at any time, the architecture needs to be scalable and dynamic.

In present systems, communication often takes place between first responder and
command center. First, responders cannot communicate among each other. Neither
they nor the commanders are able to send messages to a certain subset of all
helpers or address all personnel in a certain area. Multicast, publish subscribe
systems and similar communication models are required to close this gap. These
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group communications are only possible if a network is established, that allows
connections between every involved person. While the primary objective is to
transport information between first responders, the infrastructure must also allow
for the exchange of video feeds and miscellaneous data. This is necessary to raise
the level of situational awareness.

System of Systems Hierarchy The System of System’s network is hierarchically
structured. It consists of PANs, IANs, JANs and an EAN all of which are log-
ical concepts. The hierarchy with the proposed connection method is shown in
Figure 2.2.

Figure 2.2: System of Systems

This thesis does provide novel approaches for network areas IAN and JAN.
They are embedded in the the adjacent network areas PAN and EAN. Therefore, a
basic understanding of EAN and PAN is required as well.

A Personal Area Network (PAN) represents the set of devices that are carried out by
first responders or embedded in their clothing.
The Extended Area Network (EAN) is the backbone network for connecting IANs
and JANs. It provides access to the Internet, as well as county, regional, state and
national systems.
An Incident Area Networks (IAN) is centered on wireless access points, such as
droppable relay devices or vehicle-mounted nodes. They are deployed on demand
and create multi-hop, ad hoc wireless networks to connect PANs and JANs. They
thereby act as a gateway for mobile first responders and connect them to the network.
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These access points are deployed at the incident scene and can scale to the magnitude
of the emergency.
Jurisdiction Area Networks (JANs) form the main communication network by
handling the access of IANs to the network and the EAN. They also provide
connection to a PSCD if the responsible IAN fails. These are of a more permanent
nature and includes communication towers. If no JAN node is available, IANs will
form an ad hoc network among themselves to maintain connectivity.
Partitioning of the communication areas lead to:

R11 (Communication Areas) - First response communication shall be
divided in the following categories: Personal Area Network, Incident
Area Network, Jurisdiction Area Network and Extended Area Nework.

PAN: Personal Area Network The Personal Area Network is a small-scale wire-
less network for communication among devices and sensors, carried or embedded
in clothing. The PSCD is the central communications hub of an involved individ-
ual and has three different networking interfaces: a wired field bus, a low-power
wireless radio, and a WLAN radio. The first two allow communication with other
devices in the PAN, while the latter one forms the uplink to the IAN. A wired
field bus allows first response members to connect small devices, such as sensors
embedded in clothing to the PSCD. It could be implemented using the Controller
Area Network (CAN) standard. Since radio communication always costs additional
power, a wired bus is very efficient in terms of energy. In addition, peripherals can
be directly powered through the bus.

Energy Consumption In many cases, sensors sleep most of the time. If they
are equipped with wireless network interfaces, it is important that listening for
incoming data packets does not consume much energy. The ZigBee and IEEE
802.15.4 standards were specifically developed for sensor networks and address
this issue. Similarly, the low power requirements of GSM, when solely listening for
incoming calls, enable one to build cellphones with long standby times.

Size Bluetooth modules, together with the necessary antennae, are considerably
smaller than WLAN or GPRS solutions. ZigBee products are not yet very mature.
However, the industry is working on complete system-on- chip (SoC) solutions
containing a microcontroller, baseband, and radio. In order to integrate the next
generation wireless devices in the PAN, we propose using the ZigBee standard,
which has been specifically designed for low-power sensor applications. Technolo-
gies like WLAN or Bluetooth do not meet these requirements. Bluetooth piconet is
limited to one master and seven slaves. Furthermore, only a master can initiate the
communication, and inquiry is slow and consumes a lot of power.

Consequently, body-worn sensors are mostly based on proprietary radio technologies
today, e.g., the Nike+iPod shoe pedometer or Polar heart rate monitors. The WLAN
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interface of the PSCD provides the uplink into the IAN. Compared to the PAN, it
requires a wider range and a higher bandwidth. Therefore, it will also require more
power. To implement this radio interface, the well-established 802.11 standards can
be used.

IAN: Incident Area Network The IAN is centered on wireless access points,
such as droppable relay devices or vehicle-mounted nodes. They are deployed
on demand and create multi-hop wireless networks to connect PANs and JANs.
Thus, they act as a gateway for mobile first responders that connects them to the
network. These access points are deployed at the incident scene and can scale to
the magnitude of the emergency. It can be fully built based on 802.11 and Internet
standards.

The basic 802.11 infrastructure can be provided by access points integrated into
police cars, EMS vehicles, and vehicles of other emergency services. If the range
of a network is insufficient, then it can be extended using WLAN repeaters. Such
repeaters can be deployed ad-hoc on the ground or in the air using small balloons.
According to tests, WLAN can be used up to 80 km/h and should therefore be usable
in most scenarios. Nevertheless, although UMTS is usable for speeds above 120
km/h, for example, the transmission rate drops to 144 kbps.
Internet technologies such as Dynamic Host Configuration Protocol (DHCP) allow
PSCDs to join the IAN in an ad-hoc manner. When PSCDs contact command
centers or access databases on the Internet, the corresponding addresses can be
obtained using the standard Domain Name Service (DNS). To find mobile resources
provided by other peers in the IAN, discovery can be implemented based on a
variety of technologies.

R12 (IAN) - The IAN shall provide the link between the PSCD and
the JAN; it must provide resource discovery and message routing.
IAN nodes are of non-permanent nature, they shall be portable and
offer a dynamic network topology for first responders on-site. The
IAN network topology is expected to change during the course of the
incident.

JAN: Jurisdiction Area Network JANs form the main communication network
by handling the access of IANs to the network and the EAN. They also provide
connection to a PSCD if the responsible IAN fails. JANs are of a more permanent
nature and includes communication towers. A Jurisdiction Area Network (JAN)
is a private network of an agency, e.g., police or an EMS. Through the JAN, the
specific command centers can be reached for secure database access, certificate
management, task dispatch, and resource mobilization. On the lower layer, these
uplinks will utilize various radio technologies, while the higher layers can be fully
based on Internet standards.
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The vehicles of such agencies provide the base infrastructure for the IAN and radio
uplinks into the specific JANs. Such uplinks can be implemented using Terrestrial
Trunked Radio (TETRA). If it is necessary to support remote incident sites as well,
such as satellite radios, the Iridium technology can be used as a fallback. In addition,
it is advisable to utilize the civil cellphone networks, such as GSM, UMTS, or
CDMA2000, because they add additional redundancy to the communication system,
provide high mobile data rates, and the associated technology is cheap and small.
However, because civil networks tend to be overloaded in large accidents, a separate
network such as TETRA will always be the first choice.

On the higher layers, such uplinks will be realized using Internet tunnel protocols,
such as the Point-to-Point Protocol (PPP), or the Point-to-Point Tunneling Protocol
(PPTP).

R13 (JAN) - The JAN shall provide the link between the IAN and
the EAN. The devices should be portable, but do not necessarily need
to be considered as mobile due to size constraints and power require-
ments. JAN nodes shall provide a more permanent network for disaster
response; its connection topology shall hardly be influenced by move-
ments of relief units. JAN nodes shall be able to mutually connect
using the extended area network.

EAN: Extended Area Network The EAN is based on the infrastructure of the
Internet. Different agencies can interconnect their individual JANs by using secure
Internet tunnels. IANs may also directly connect to the Internet and then use secure
Internet tunnels into specific JANs, thereby participating in the EAN.

PSCD: Public Safety Communication Device Each first responder carries a
Public Safety Communications Device (PSCD) that is his primary tool for commu-
nication with other helpers and the command center. It links the first responder’s
PAN to IANs and thereby connects him to the network. It also connects the first
responder’s devices in the PAN, records data from sensors and sends them to the
command center. In [HHNL07] these devices are called First Responder’s Com-
munication Devices (FRCDs). They record data from the Personal Area Network
(PAN) and also provide the link to the higher-order Incident Area Network (IAN).
Communication over the IAN allows first responders to convey information to the
command center and to receive orders or notifications. Computing devices come in
many different form factors and use different input and output methods. However,
regarding their user interfaces, there are only two large distinct classes, namely ears
& mouth and hands & eyes devices. The former draw their efficiency mainly from
the semantic richness developed over millennia (speech, music, etc.) and from the
orthogonal usability in many working contexts (hands-free operation); the latter
draw their efficiency primarily from the output bandwidth (a picture is worth more
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than a thousand words) and input intuitivity. Controls may resemble well-trained
activities, such as steering, drag-and-drop, or pointing.

The application domain requires the PSCD to be designed as a wearable computer.
Because the user interface should only put a minimum of additional cognitive load
on the user, neither computers with head-up displays, nor traditional palmtops
qualify as good solutions. Using wearables with head-up displays and single-
handed keyboards (e.g., Twiddler) puts a very high cognitive load on the user,
because computer interfaces using unnatural modalities are employed while the
wearer is performing some other, more primary, task in the physical world. An
audio-based device with a speech user interface is more natural to use and does not
require the level of attention that reading a display or operating a keypad would
require. The most important functionality of the PSCD is speech communication
with the command center or within peer groups. Consequently, the interaction with
the computer should also take place in the same modality. The advances in speech
recognition over the past few years also allow for its use in noisy environments, e.g.,
pilots of the interceptor plane Eurofighter can use voice commands to control the
communication systems of their plane.

These considerations indicate that no currently existing wireless networking standard
meets the requirements of all possible applications in the emergency response
domain. We will have to cope with a heterogeneous landscape of different standards
suited for certain applications only. In addition, multiple wireless networks using
different standards will be available in the same region of space.

2.6 Summary

In this Chapter we presented the requirements and technology needed in order to
build a distributed crisis response communication system.

Table 2.5 presents a summary of elicited requirements, they are divided into the
categories ‘Use Cases’, ‘Technological Requirements’ and ‘Design Requirements’.
While this list is far from complete, it does effectively limit the number of possible
approaches in a reasonable way. These requirements are adjuvant tools for both the
design of a first response communication framework and the deduction of verifiable
metrics required for evaluation. Table 2.4 already provides a basic quantitative
description approach for R1-R6, which allows for derivation of single-/multiscalar
evaluation metrics. R8-R13 mainly affects design, and technological requirements.
Design requirements are consequently followed in the proposed architecture and
technological requirements are modeled in the proposed simulation framework (cf.
4). The coarse design is presented in the next chapter.
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Type ID Name Implications

Use Cases

R1 Multicast Allow for multiple sources, pre-
vent network congestion

R3 Locality
Awareness

Offer Store and Retrieval mech-
anisms for position informa-
tions

R5 Active Search Provide key-lookup and exhaus-
tive search functionality

R6 Hierarchy
Maintenance

Provide dynamic command and
control structure

Technological
Requirements

R2 Shift Change Resistance against churn
R4 Resource

Awareness
Hardware utilization according
to device capabilities

R7 Communication
Channel

Multi purpose digital network

R9 Self-
Sustaining

Do not rely on remaining com-
munication infrastructure

R10 Information
Flow

Allow horizontal and vertical
message transmissions

Design
Requirements

R8 Interoperability Common device hardware and
software required

R11 Communication
Areas

Expose interfaces for adjacent
communication areas

R12 IAN Multihop Network Nodes
R13 JAN Portable Gateway

Table 2.5: Summary of elicited requirements



20 CHAPTER 2. FIRST RESPONSE COMMUNICATION REQUIREMENTS



Chapter 3

Derivation of Coarse Concept

In this Chapter, the coarse concept for the distributed communication approach
of this thesis is developed. We thereby concentrate on the research area of P2P
networks, as this is the main focus of this thesis.
In Section 3.1, the design principles and advantages of distributed systems for
disaster relief communication are presented. Then, in Section 3.2, principles of P2P
systems are recapitulated and building blocks of this thesis are introduced. Finally,
in Section 3.3 the proposed architecture is systematically derived from the elicited
requirements and the P2P principles.

3.1 Background

In this thesis, we propose a distributed communication approach for first responders
following the requirements delineated in chapter 2. In order to classify the applica-
bility (cf. section 2.6) of a distributed P2P system for first response communication,
the basic properties of distributed systems need to be revisited.

We use the following definition for a ‘Distributed System’ [CDK05]:

A distributed system is one which components located at networked
computers communicate and coordinate their actions only by passing
messages.

Bal [BST89] sharpens the definition by an additional requirement for computers
not sharing primary memory. This definition does not clarify the distinction between
a computer network and a distributed system though. The difference to distributed
systems can be found in the level of transparency established. Coulouris [CDK05]
therefore defines transparency as:

Transparency is the concealment from the user and the application
programmer of the separation of components in a distributed system,
so that the system is perceived as a whole rather than as a collection of
independent components.

21
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In other words the distributed nature of the underlying system is transparent to
the user’s and application developer’s view for distributed systems, which is not the
case for computer networks.

Another humorous and alerting quote by Leslie Lamport [Lam03] defines the
term as follows:

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

This humorous and alerting aspect of the above definition already indicates the
presence of additional barriers in distributed programming. The main problems aris-
ing in this context are lack of global state, lack of common clock and indeterministic
behavior.

In the next section, an introduction to the subclass of distributed networks called P2P
networks is presented. P2P networks are highly distributed and naturally face all
challenges common to distributed systems. The P2P community developed several
approaches and algorithms for designing and maintaining a highly distributed P2P
network.

3.2 Introduction to Peer-to-Peer Networks

The term Peer-to-Peer (P2P) in general describes a communication approach of
a distributed system. Many Peer-to-Peer definitions are proposed by different
researchers. The IETF proposed a definition covering the common aspects of
P2P [CI09]:

We consider a system to be P2P if the elements that form the system
share their resources in order to provide the service the system has been
designed to provide. The elements in the system both provide services
to other elements and request services from other elements.

P2P systems are designed to locate and share resources. The type of resources
may vary from processor power, memory, storage to bandwidth or even a combi-
nation of all of them. Devices participating in a P2P system are called nodes or
peers.

Each node neither acts as plain server nor as plain client; nodes act as the service
provider and requester at the same time. There is no distinction between clients
and servers [CI09]; this concept is often referred to as the servent concept [S+01].
The first larger scale P2P implementations were file sharing applications like Nap-
ster [Inc02], one approach where storage information on data objects was managed
centrally, whereas the actual objects were stored within nodes. This server-based
management approach makes the concept vulnerable, shutting down the manage-
ment server makes the network unusable. Kazaa [Smi03] was designed to distribute
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media data among users and completely decentralized. More P2P applications have
followed, and more prominent fields are instant messaging, telephony, distributed
computing and live video streaming. A successful application for instant messaging
and telephony is Skype [Tho06]; a widely used, open source application for dis-
tributed computing is SETI@home [KWA+01], and the Huazhong University of
Science and Technology developed the video streaming application PPLive.

Structured and Unstructured P2P Networks Two types of P2P overlay net-
works are the subject of active research and used in commercial products: structured
and unstructured [SW05].

Unstructured P2P Networks One considers a P2P network unstructured when
the links do not form a predefined topology, but may be chosen randomly. One
advantage is that a new peer can easily join the network without establishing a set of
mandatory links. The search process in an unstructured P2P overlay is performed by
(partially) flooding the network, which we call exhaustive search in the remainder
of this thesis. One obvious disadvantage is the often unsatisfying hit rate; the search
process creates high network traffic but offers little or no guarantees about finding
the object, and short of a byte-for-byte comparison, it is not possible to determine
whether two objects are the same. If a node is searching for widely distributed
informations it is very likely that the search process will return several successful
hits; looking for data located at only a few peers may return an unsuccessful query.

However, many P2P overlay networks are unstructured and scale to several
millions of users. The reason might be that unstructured networks are very suitable
for human-friendly keyword searches. Note that the search is not limited to simple
keywords; any query that can be evaluated locally on a peer is possible.

Structured P2P Networks A structured P2P overlay network does create a prede-
fined pattern of node connections, which needs to be actively maintained. Compared
to unstructured node arrivals, departures and failures cause considerable mainte-
nance signaling traffic. Nevertheless, structured P2P overlay networks allow fast
key-lookup mechanisms using distributed hash tables (DHTs). They hash peer and
object identifiers and distribute the hash buckets among the peers. A DHT-specific
routing algorithm defines how peers can route through the overlay when they want
to retrieve a certain object. Typically, the number of messages needed to locate
an object in a DHT grows logarithmically with the number of peers in the system.
Thus, DHTs are very efficient for simple key-value lookups (for which they have
been designed). Because objects are addressed with their unique names, searching
in a DHT is difficult to make efficient [YDRC06, LLH+03, RV03a]. Furthermore,
DHTs require the use of (globally) unique object identifiers, typically SHA-1 hashes,
which are not very suitable for human users to type.
The hash uniquely determines the location of a peer in the overlay and its neighbors,
as well as the placement of content on peers. Current DHTs assume that there is
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some out-of-band mechanism for mapping more human-friendly names into object
identifiers, but none of them goes into detail about such mappings.
The key-feature of DHTs is the fast lookup process and the high query hit rate; even
rare information can be reliably addressed. The query success rate is independent
from the number of objects available and therefore equally high for popular as well
as rare objects. DHTs have strict rules about how the overlay is formed and where
content should be placed in the network. The research world has seen several exam-
ples of DHTs [KK03, DZD+03, MNR02, RD01b, I. 01, ZKJ01, RFH+01a, Pla99,
MBR03]. They build unique network topologies, which determine large parts of
the runtime behavior. For example, a topology may be social network-inspired e.g.,
Symphony [MBR03]. However, there are many other overlay networks with unique
topologies and characteristic runtime behavior.

Search and Lookup As discussed above, unstructured and structured networks
have different strengths and weaknesses. The terms ‘Search’ and ‘Lookup’ can be
easily misinterpreted, because they both deal with the process of locating informa-
tion, but they describe a completely different approach.

Exhaustive Search In P2P networks ‘Search’ or often ‘exhaustive search’ de-
scribes a mechanism for searching fulltext information. It may be distributed in the
P2P network among several peers. Exhaustive Search usually refers to a probabilis-
tic search method, i.e., only a fraction of the available peers will receive and process
the query, otherwise the immense message load caused by a search query would
seriously decrease the performance of the overlay network. There have been several
implementations of search algorithms. Gnutella used a decentralized flooding of
queries [SW05]. Kazaa’s method has been found to be very efficient and robust in
practice [LKR05]. The BubbleStorm network [TKLB07] is a fully decentralized
network based on random graphs and is able to provide efficient exhaustive search
with tunable success rates. Irrespective of the search mechanism, the actual content
transfer happens directly between the two peers.

Key Lookup ’Key lookup’ or simply ‘lookup’ usually refers to the lookup mech-
anism used in DHTs. They are very efficient for simple key-value lookups (for
which they have been designed), but fulltext search is still an ongoing challenge and
usually imposes high signaling traffic on the network. Because the content is placed
with hash functions, real search queries are hardly feasible in DHTs. For example,
it is not feasible to query a DHT for all objects whose name begins with ‘Foo.’ This
would usually require asking every peer whether it has any matching objects.
Structured networks, on the other hand, offer very efficient means of looking up
known objects, but their ability to perform widely spanning searches is limited.
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3.3 Coarse Architecture

Design criteria for incident scene communication networks are derived from the
presented requirements (see chapter 2). The approach needs to be scalable, self-
organizing and self-recovering to ensure the upkeep of communication flow in case
of failures and malfunctions. Users and information flows need to be prioritized ac-
cording to role and direction [HHNL07]. need a different planning and coordination
approach than more severe incidents. Another important attribute is the phase of
the incident, starting from the pre-incident phase followed by the incident and post-
incident phase. authorities located off-site. especially effective in larger incidents,
i.e. the regular communication infrastructure may be damaged or destroyed.

The proposed architecture is inspired by the desirable properties known from
distributed systems and especially P2P networks. In particular, the following
properties found in the better known P2P overlay networks provide great flexibility
for the harsh environment found in the incident and post-incident phase:

• Communication without a central communication/coordination server

• Support of dynamic changes of the infrastructure (e.g., position, load and
number of devices)

• Multiple applications on the same communication infrastructure

Consequently, the architecture reserves one distinct layer for P2P overlay net-
works, which acts as an abstraction layer for the deployed applications. Never-
theless, the desired properties known from existing P2P overlay networks do not
automatically apply to any network environment. Communication devices may fail
or might have malfunctions (cp. Section 2.1). Therefore, basic network access and
transport, i.e., the underlying connection topology, need to be considered as well.
Remaining existing communication infrastructure might be used by first responders,
but they should not rely on it and should therefore bring their own communication
devices to the incident. This hardware is moved to the required areas on demand,
providing the pre-condition for network support. These considerations lead to the
basic layered architecture.

Architecture Overview We propose a communication architecture consisting of
four layers; the ‘Movement and Network Model’ layer, the ’Connection Topology’
layer, the ‘Overlay Network’ layer and the ‘Application’ layer. Of course, a model
with more than four layers is imaginable as well; in fact each layer may consist
of a specific protocol stack, divided into functional layers of its own. The key
benefit of the described four layered approach is that each layer provides a logical,
self-contained structure with either an implicit or explicit interface to the adherent
layers.
The transition from the ‘Movement and Network Model’ to the ‘Connection Topol-
ogy’ is comparable to the transition between the Open System Interconnection
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Reference Model (OSI Reference Model) [Zim80] layer 2 and layer 3.
The link between ‘Connection Topology’ and ‘Overlay Network’ divides the archi-
tecture in the transport-oriented and the application-oriented part, comparable to the
transition from layer 4 to layers 5-7 in the OSI model.
One previously established approach for the interface between the ‘Overlay Net-
work’ and the ‘Application’ layer is the Key-based Routing API (KBR) [DZD+03].
In the following, the tasks of the four layers are described more precisely:

Movement and Network Model The foundation of the architecture is the Move-
ment and Network Model layer. On the one side, its task is to act as a replay and
training environment for former incidents. This offers the possibility to alter the
communication strategy under examination and to evaluate new concepts in a clean
and safe environment. The higher the chosen level of detail, the more precise are the
simulated test results. On the other side, simulated or replayed data of participating
organizations are a perfect initial position for both, calculating a network coverage
map and an initial connection topology consisting of the set of all valid connections.

Incident Case In the first case, this layer evolves and changes during a first
response incident. Shortly after an incident, disaster relief organizations with
professional first responders appear on-site and deploy their communication devices.
Ideally , they strictly follow the trained course of action and adhere to elaborated
guides and regulations. Nevertheless, communication devices tend to fail and larger
scale disasters overwhelm the officers on duty. New temporary communication
structures appear and disappear naturally and unpredictably. The geographical
position, along with the state of all communication paths during the disaster relief
process, is the natural occurrence of the Movement and Network Model layer.

Simulation Case The second case, i.e., the simulation environment, acts as a
research, replay and training environment for former incidents. This offers the
possibility to alter the communication strategy under examination and to evaluate
new concepts in a clean and safe environment. Like in a real incident, the simulated
network coverage map depends on the position and state of the simulated devices.
An initial connection topology consisting of the set of all valid connections is
generated for further processing; like in the real environment, position of devices
may change and connections may break away.

Connection Topology In the connection topology layer, qualified neighbors from
the large number of available nodes are selected. For example, the connection
topology maintains a subgraph with dynamic edges of the Movement and Network
Model layer. In this layer, neighbor selection protocols, optimization to minimize
power consumption, detection of possible network fragmentation, collision handling
and packet retransmission protocols are implemented. It is still not possible to
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address precisely a distinct node or search for a piece of information; these functions
are implemented in the next layer.

Overlay Network It is a network of nodes and logical links that is built on top of
the existing network topology with the purpose of implementing additional func-
tionalities, the better known of which are key lookup and exhaustive search. Other
mechanisms typically implemented in the overlay network are security, multicast
and load distribution. Due to dynamic user behavior and network malfunctions,
the overlay network must constantly adapt itself. Nodes constantly join and leave
the network or simply fail without the possibility of following any protocol. An
important task of the overlay is to maintain a safe state of the network. Network
growth and shrinkage require maintenance mechanisms; malfunctioning nodes and
network outages are challenging for every overlay network.

Application Layer The topmost layer is the application layer. Applications are
allowed to access methods provided by the layers below. The application typically
uses store, search and lookup functionalities provided by the overlay layer. It is
important to build the applications independently from the chosen overlay network,
which allows for the running of applications on a variety of overlay networks. While
the functionality provided by most overlay networks is essentially the same, each
overlay network expects subtly different input parameters. The common Key-based
Routing API (KBR) [DZD+03] proposes an interface for DHT networks; it does
delegate the routing, delete, update and lookup tasks to the overlay network layer
and provides a common interface for all applications. In this thesis, we used KBR
for the proposed mechanisms based on DHT overlays. Some tasks are not efficiently
covered in the KBR-API: if one wants to search for an item instead of directly
addressing it with its key, or if one wants to send a message to a group of people, the
KBR-API does not offer an efficient method. We added two methods that are not
covered by the KBR-API: exhaustive search and application level multicast (ALM).
We are aware that full-text searching and ALM causes considerable signaling traffic
on several P2P overlay networks, but instead of restricting the functionality, the
consequence should be to provide mechanisms in the overlay network layer to
efficiently support both.

Revisiting Requirements Figure 3.1 presents the determining requirement types
leading to the proposed architecture. While design requirements pose specifications
to all parts of the proposed architecture, the above-described technical requirements
mainly affect the ‘Movement and Network Model’ and the Connection Topology.
The identified use cases primarily impact the ‘Application’ layer and the ‘Overlay
Network’ layer. Nevertheless, the elicited use cases do have indirect consequences
for all layers below. The major requirements are described in greater detail in
chapter 2.
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Figure 3.1: Design requirements and coarse software architecture

Especially important for designing the coarse concept are the design requirements
and the technical requirements R8-R13 (cf. section 2.6) for the communication
approach. By revisiting R8-R11, we conclude:

R8 (Common device hardware and software) This is one of the key elements of
P2P technology, and it is designed to work on unreliable commodity hardware and
is available for a wide set of operation systems and not restricted to programming
languages.

R9 (Self-Sustaining) The ‘Network and Movement Model’, the ‘Connection
Topology’ and the ‘Overlay Network’ layers are designed to provide medium
access, routing, search, and lookup capabilities. An implementation following this
coarse architecture provides all necessary properties for a self-sustaining system
(cf. [Zim80]).

R10 (Allow horizontal and vertical message transmissions) The servent con-
cept (cf. section 3.2) does not impose any restrictions on client or server func-
tionalities on a network, and each peer may provide or request a service, even
simultaneously.

R11 (Expose interfaces to adjacent communication areas) The adjacent com-
munication areas are the PAN and the EAN network areas. In Paragraph 2.5 we
argue that the PAN network is often custom built and therefore consists of highly
heterogeneous devices. Consequently a PAN interface needs to be a custom built
application of the application layer. This application does have access to all lower
layers and might therefore process and relay the information gathered from the
PAN.
The EAN network provides access to the Internet and is built on powerful nodes; it
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is the task of the ‘Connection Topology’ and the ‘Overlay Network’ to optimally
exploit the optional EAN access.

R12 (Multihop network approach) Multihop is one basic building block of P2P
technology (one exception is the Napster P2P network); most overlay networks
provide mechanisms for multihop searching, lookup and elaborated join and leave
procedures. Our approach explicitly provides the ‘Connection Topology’ and the
‘Overlay Network’ layers for multihop functionality.

R13 (Portable Gateway) A JAN tower (cf. Paragraph 2.5) must act as a portable
gateway to the EAN. It is the task of the overlay network to make gateways trans-
parent to the available devices.

In addition, the communication approach needs to be able to work in a simula-
tion/training mode. This is included in the architecture in order to allow for design
adaptations and excessive tests, thereby minimizing the risk of failures in real
incidents.
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Chapter 4

Movement and Network Model

The foundation of the proposed communication architecture is the ‘Movement and
Network Model,’ and the contribution of this Chapter is a consistent simulation
framework capable of combining network and movement simulation. The discrete
simulation framework supports feedback loops from the movement simulation
to the network simulation and vice versa. It enables a detailed analysis of the
reciprocal dependencies of wireless networks and moving peers. In this chapter, a
universal description format for handling all relevant settings and actions typical for
first response scenarios is presented. A user-friendly movement and environment
simulator, which interacts with the network simulation are developed and used for
evaluation of the mechanisms proposed in this thesis. The chosen data structure has
proven to be well suited for describing settings and actions found in a first response
scenario.

The remainder of this Chapter is structured as follows: Section 4.1 revisits the
‘Movement and Network Model’ layer and gives an overview of the proposed
simulation approach. Section 4.2 discusses related work. In Section 4.3, the
proposed data storage approach for the complete first response communication
process is presented. Then, in Section 4.4, the prototype implementation covering
the editor and the visualization component is presented. Section 4.5 presents
the movement simulation approach and its integration in the storage process. The
Section 4.6 addresses our approach of integrating network and movement simulation.
A summary of the contributions in this Chapter is provided in section 4.7.

4.1 Conceptual Building Blocks

In the following, we present the proposed approach of the ‘Movement and Network
Model’ and revisit the requirements relevant to this layer.

31
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4.1.1 Movement and Network Model Approach

The foundation of the proposed communication architecture is the Movement and
Network Model layer. It is used in two seemingly independent settings, during
practical disaster relief efforts and in a laboratory simulation environment (cf. Sec-
tion 3.3). In this thesis, we develop a flexible and extendible approach for the
simulation environment.
Its task is to provide a connection topology consisting of the set of all valid connec-
tions for further processing, as the device positions may change and connections
may break away.

The developed interaction work-flow is used to describe a scenario setup, including
dynamic network traffic and peer movement data, as shown in Figure 4.1. Please
note that further steps can be implemented at any time. Boxes with rounded
edges represent the data structure, whereas the other boxes represent our simulator
implementation on top of the data structure. The feedback loop between movement
and network simulation is shown as the double-headed arrow between the scenario
visualization module and the network simulator.
The simulation starts from the static world model, which describes the disaster
settings. The world model is enriched by acquired movement data as well as by
simulated network data, which can be added iteratively. Our contribution consists
of a generic and extendible scenario description and trace format, which covers
everything from the raw definition of terrain and dynamic movement of peers up to
a detailed description of network traffic during simulation time.

Figure 4.1: Simulation and Data Structure Interaction

A custom built visual editor for scenario layout, peer placement and for setting
distinct behaviors for individual peers is used to create scenarios.

4.1.2 Requirements

The main task of the ‘Movement and Network Model’ is to provide a dynamic
connection topology consisting of the set of all valid connections (cf. section 3).
Furthermore, elements requiring access to any information with direct geological
and physical relations are considered in the ‘Movement and Network Model’. These
are especially the requirements R3, R4 and R10.
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R3 (Locality Awareness) The simulation approach needs to offer location infor-
mation for the adjacent layers. The upper layers may provide mechanisms requiring
location information, and the topmost layer allows for location-based use cases. In
Section 4.3.1, we describe the storage approach for location information, and in
Section 4.5 we present how it can be accessed.

R4 (Resource Awareness) In order to allow the overlying layers for resource-
aware mechanisms, we propose directly modeling device properties in the ‘Move-
ment and Network Model’ layer. These properties are exposed in an API for the
remaining layers (cf. Section 4.5).

R10 (Allow horizontal and vertical message transmissions) The proposed sim-
ulation approach needs to prevent any assumptions on the proposed network topol-
ogy. The proposed approach is described in Section 4.3.2. The remaining layers
must be able to freely adapt to the physical conditions provided by the ‘Movement
and Network Model’ layer.

4.2 Related Work

There are several movement models, that can be plugged into our movement model
simulator, and in general, the modeling approaches are usually based on behavior
recognition combined with prediction [Ngu] [SG00] [GV06]. Our approach models
simple behaviors observed in disaster scenarios, combined with object interaction.

Combination of Movement and Network Simulation Several movement mod-
els are implemented in the project BonnMotion [dWG03] and its successor, AN-
Sim [Hel]. In general, these movement simulators do provide scenario files and
offer several exchangeable movement models, but they both lack active interaction
with environment and they are not able to adapt their behaviors according to the
communication on top of the movement model. Nevertheless, by tightly integrat-
ing our simulation framework to PlanetSim, we are on the one hand able to set
behaviors and active objects within the scenario and, on the other hand, to provide a
feedback loop from the overlay simulation to the movement model. Our approach,
in contrast to former movement simulators, is not to show the connection probability
of two randomly selected nodes, but to show how complete P2P overlays perform.
We integrated PlanetSim [Gea05] with our movement framework and, technically
speaking, changed the network layer within PlanetSim; due to our interface, other
P2P simulators can easily pick up the produced movement patterns. Additional sim-
ulators, especially ChunkSim [Kan07] and Peerfact.KOM [Kov07], would greatly
benefit from a combination of real world movement and network simulation in order
to obtain more realistic simulation results.
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The mature simulation engine called GlomoSim [ZBG98] is developed for precisely
simulating parts of wireless networks. It does support exchangeable movement
models as well. The focus of GlomoSim is to calculate packet reception, radio
models, radio propagation and different data link approaches; running complex
applications like P2P overlay networks has never been a goal of GlomoSim and is
therefore not supported. While GlomoSim does have desirable features, it is built
on the programming language Parsec [BMT+98], which does not support current
operating systems and is apparently no longer maintained.

Evaluation by Prototyping Especially for first response communication, there
already exists a wealth of prototypes, e.g., University of Virginia [A.S03b] identified
three main issues in current first response approaches and developed a prototype for
a P2P-based first response solution. Further implementation of their P2P solution is
done using hypercast, GPS capabilities, multicast streaming video and access control
mechanism. Nevertheless, the goal was to develop a prototype implementation and
evaluating their approach using our mobility simulation would clarify the suitability
for larger scale installations.

4.3 Storage Design

Simulating a first response scenario leads to two distinct challenges.
First, the desired level of detail needs to be tunable and the focus of the simulations
must be adaptable. Second, actors need to be deployed into the simulation on de-
mand, and they act as data sources during the simulation and should have individual
properties.

We propose an extensible data structure, which is on one hand reasonably fast,
accurate and dynamic, and on the other hand, it is still human readable. This section
describes the proposed data structure for storing the complete first response process.

4.3.1 World Model

First of all, information describing a first response scenario and information added
by the simulation process must be identified. The world model must be able to
be process movement and network data later, in order to correctly visualize and
analyze the simulated environment.
The setup of a first response scenario needs to consider many different aspects of the
environment, first response teams involved, type of catastrophe, terrain, and number
and type of affected people. Since every disaster may have individual elements and
characteristics, there exists no final set of building blocks for disaster simulation.
Consequently. the chosen data structure must be generic enough to be extended for
different types of environments and future catastrophes.
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Generic Storage A generic storage scheme is developed, which is able to satisfy
these requirements, and in addition, it can be extended with new types of peers
and environments. The data structure is decoupled from the simulation engine in
order to make simulations interchangeable and independent from the currently used
simulation engine. Design choices were made in order to store the information very
efficiently, as a scenario might grow rather big, containing hundreds or thousands of
objects that need to communicate with each other.
The simulation starts with the static description of the environment, which is called
the “worldmodel”. Since all further incremental steps rely on the worldmodel, it is
the root of the XML document. The data that need to be saved at this static stage of
the scenario development are the description of the map and the objects placed onto
that map, along with settings of their behaviors.

Three Dimensional Storage Model The map information is stored in a grid
manner. It contains the size of the map and two layers of map information. The first
layer is used to store the terrain of the map. Terrain information might be used later
for changing movement behavior or network range and for describing the location
and type of the disaster in the first response scenario. The second layer stores height
information used to create a 3-dimensional map. The height might also influence
speed and network range in the simulation.

Storing this data ineffectively would massively increase the file size, because a
grid with a size of 100 to 100 already contains 10000 grid cells with two layers
of information (one layer for the grid, one layer for height information). In order
to store the scenario efficiently, areas with the same terrain or height are grouped
together and saved only once.

The proposed scheme defines an ”object” tag that is used to store all actors.
This tag contains all information needed to identify the object and to process it later.
The mandatory information stored to identify an object are an ”ID”, object ”type”,
and object ”name”.

Table 4.1 types are used within the simulations. Nevertheless, not all of the
defined types need to be used in order to run a simulation. Custom types can be
added easily. The first step of our simulation workflow may contain a small set of
information, and as the simulation process continues, an increasing amount of data
enriches the simulation embodiment.
At all stages of the simulation, data can be added to the proposed storage buckets:
‘World Model’, ‘Movement Data’ and ’Network Data’ (cf. section 4.3.1). This first
static part produces a file containing object and map information.
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Object Description

CPU Predefined CPU settings per ob-
ject

Sender, node, receiver Tags for logging network traffic
Duration Simulation duration in hh:mm:ss
Point, size Definition of map areas and posi-

tions
Message Envelope for network messages
Terrain, height Definition of terrain type and

height
Disconnect, connect Logging of connection state
Waypoints Contains route information of

nodes
Network Network capabilities, bandwidth,

range

Table 4.1: XML objects

4.3.2 Movement Data

Wireless networks are usually modeled using so-called unit disk graphs (UDG) [KMW04].
The construction principle is as follows: Given a number N of nodes and a distance
threshold d, distribute all N nodes uniformly at random within an area of a fixed size.
Then, all nodes among which the geometric distance is less than d are connected by
edges. In other words, all nodes which lay close enough to each other are considered
neighbors in the resulting wireless ad-hoc network.

This model is valid for wireless networks within a perfect environment. How-
ever, in practice, entities usually move in groups, have favorite spots and avoid other
areas.

  

Figure 4.2: Unit disk graph (UDG) and our proposed obstacle augmented disk graph
(OADG)
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Therefore, we adapted the UDG model by inserting obstacles of different sizes
within the area where we place the nodes. These obstacles represent unpopular
or unaccessible areas. The generated graphs represent real world, ad-hoc wireless
networks more precisely. The approach for more realistic network models is based
on the findings of Jardosh [JBRAS03]. We call the network model OADG (obstacle
augmented disk graph). Figure 4.2 shows a unit disk graph and its counterpart with
obstacles of different sizes.

A similar model is obtained by extending UDGs with weighted edges [WZ04].
If the weight of an edge between two vertices exceeds a certain threshold, a con-
nection cannot be established. In that sense, our generated obstacles are areas with
infinite weighted edges, prohibiting any connections. More complex examples can
easily be created with the provided user interface of FRCS, which is presented in
Section 4.4.1.

After storing static scenario information (see Section 4.3.1), movement data will
be stored directly into the objects created in step one. For that purpose, the scheme
provides the ”waypoint” tag that contains position data, as well as a time stamp.
This waypoint data is the only additional information needed to make the transition
between a static first response scenario (before the movement simulation step) and a
dynamic first response scenario afterwards. Saving waypoints decouples the storage
format from the actual used movement pattern. Descriptions of complex movement
patterns are stored without redundancy in the XML file. A scenario might contain
hundreds and thousands of moving nodes so only changes of the actual movement
destination are saved. Actual positions between two waypoints are interpolated by
our simulation engine.

4.3.3 Network Data

The last step in the workflow enriches the XML scheme with network data. The
network data are stored in two different locations in the XML file, which reduces
redundancy and saves more space because a lot of network information may occur
as well. Connects and disconnects will happen regularly in a network with moving
nodes, and it is most efficient to save them into the objects themselves. Therefore,
little additional information must be stored at this point, only a ”connect” or ”discon-
nect” tag. This tag contains the ”ID” of the object connecting to or disconnecting
from and a timestamp to indicate when this event occurred.
Network messages on the other hand might travel between a lot of nodes before
they arrive where they belong. It could potentially accumulate a lot of redundant
information to save data into every object they might pass through on their way.
Therefore network messages are stored as independent objects similar to movements
of peers, though instead of waypoints, network messages contain a list of routing
information.

A ”simulatormessage” tag is defined by the XML scheme for that purpose. It
contains all the information about the message itself. This includes the ”ID” tag,
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and ”content” information as well as all the nodes involved into forwarding this
message. There is a ”sender” tag with the ”ID” of the sender object and a time
stamp when the message was ”sent”. There is also an optional ”receiver” tag with
the ”ID” of the receiver and a time stamp when the message was received. This
tag is optional because it might happen, that a message cannot be forwarded to the
intended receiver because the node is not connected to the network, and therefore
the message might be lost.
Between ”sender” and ”receiver” might be a list of ”nodes”, which were involved
into the forwarding process. Every node contains its ”ID” and a ”received” tag.
Normally it also contains a ”sent” tag unless the message could not be forwarded in
this step.
This separation of concerns enables message storing and tracing in the network
without generating any redundant information and maintaining the ability to restore
all types of important information, e.g., a message loss or routing delay.
The most important idea behind the XML design was that it standardizes the
complete description of a first response process, which contains the world model, the
movement data and the network data. Scenario description files are now readable by
any simulation engine able to process the proposed XML scheme. This decoupling
enables the use of different implementations for every step in the process and
the ability to communicate through the XML document. As the structure of the
XML file does not change (it can only be extended by additional information),
visualization of the data can happen in virtually every step.
The XML scheme was designed from scratch in order to store first response scenarios
used in movement and network simulation. Documents are easy and fast to parse
and the steps are decoupled to make any implementation effort as simple as possible.

4.4 Simulation Approach

Our contribution is a generic scenario description and trace format and the proposed
(cf. figure 4.1) XML workflow covering the whole first response communication
process.

In order to show functionality of the XML design and facilitate the development
of scenarios, a simulation framework that relies on the proposed XML data structure
is developed.

The first module is an editor for creating a disaster scenario. With the editor,
the time interval for the scenario, as well as the size of the map, can be specified.
Several editor tools are available to help users fill the map with terrain information
and to place objects on the map.

From within the editor, the movement simulator can be executed. Its task is to
fill all objects in the specified scenario with movement data. Diverse movement
models, in order to show different movement possibilities of the objects, are im-
plemented. The movement module is decoupled from the editor and can be used
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separately. Different types of movement models can be plugged into the simulation
framework. Two different prototypes of movement modules are implemented: ”Ran-
dom Movement Model” and ”Behavior Based Movement Model”. These models
are described in more detail in Section 4.5.
In order to run and visualize the scenario, a visualization module is developed. The
visualization module can read complex XML files specified in Section 4.3 in order
to visualize terrain information, object information, network data and movement
data. The visualization module is therefore designed in the same way as common
media players, which allows intuitive interaction with the user.
These modules are developed according to our defined workflow in the disaster
scenario XML file. Additional steps for refining the simulation process can be added
at any time.

4.4.1 Editor

The first step in the workflow described in Figure 4.1 is to define a world model.
This is realized in the editor, where the user creates the environment and the basic
layout of the disaster scenario. In this step, only static data are edited. At the end of
this phase, the editor launches the movement module in order to fill the scenario
with movement data. Thus, the user is able to create a new scenario with only a few
clicks. Parameters like map size, start and end time-stamp of the scenario, as well
as the default terrain filling can be specified in the editor as well. Figure 4.3 shows
the GUI of the editor with a simple example of a disaster scenario.
Storing and loading of a scenario are implemented according to the XML design

Figure 4.3: Screenshot of the editor

specified in Chapter 4.3. Different types of terrain information are implemented
in order to analyze a variety of different disasters. Most of the common types of



40 CHAPTER 4. MOVEMENT AND NETWORK MODEL

Name Mobility Special attributes

Civilian P fear, helpfulness, health, knowl-
edge

Civilian car C terrain specific behavior
Firefighter P helpfulness, health, knowledge
Fire engine C terrain specific behavior
Medic P helpfulness, health, knowledge
Ambulance C terrain specific behavior
Policeman P helpfulness, health, knowledge
Police car C terrain specific behavior
Mobile headquarter I CPU, network range,terrain spe-

cific behavior

Table 4.2: Peer Information, C=supports additional properties of a car engine,
P=supports properties for pedestrians, I=immobile

terrain that occur in the real world are implemented. The user can fill the map with
several implemented types of terrain information, such as grass, forest, sand, stones,
streets, buildings, water and fire. In our example, the ”fire” represents the disaster
location. However, it is also possible to describe other disaster scenarios by adding
more terrain information to the program. It is possible to extend the terrain model
with new types of terrain, like ”Collapsed Building” or ”Flooded Area” in order to
simulate other types of disasters.

In order to modify terrain information, three different tools are implemented.
The ”Terrain-Brush-Tool” lets the user fill single cells of the map with the selected
terrain. With the ”Terrain-Rectangle-Tool” the user can draw complete rectangles on
the map and, by releasing the mouse, the drawn rectangle is filled with the selected
terrain. To delete the terrain information a ”Terrain-Eraser-Tool” is implemented. It
sets the terrain information to ”No Terrain” for the selected cells.
Besides the terrain information, the user can place different objects onto the map.
Table 4.2 shows a selection of available objects, with some selected attributes.
Further attributes can be added easily and thus influence the behavior of the objects.
These predefined objects represent a basic set relevant to a disaster scenario. Similar
to the terrain information, the program can easily be extended to handle more and
other types of objects because the objects are decoupled in code. Every object stores
information about the terrrain where it is located, the speed it can move, etc.

Three different tools to modify the objects in the created disaster scenario are
developed, analogical to those for the terrain. The ”Object-Placement-Tool” lets
the user place the selected object onto the map. Sanity checks will prohibit placing
several objects on one cell and placing objects on improper terrain. With the ”Object-
Selection-Tool” the user is able to select and modify objects already placed. Their
name, CPU, bandwidth, network range and even the object type can be changed.
The ”Object-Eraser-Tool” lets the user remove objects from the scenario that are
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not longer needed.
After creating and modifying a disaster scenario, the user can save this scenario
to a XML file. Loading the disaster scenario is also possible. In addition, the
user may start a movement calculation in order to fill the objects in the created
disaster scenario with movement data. The current prototype allows selection of
the ”Random Movement Model” and ”Behavior-Based Movement Model”. Other
movement models can be added easily by extending the movement module. The
editor executes the movement module with the selected movement model and
calculates the movement of the objects in the scenario. The modified disaster
scenario is then automatically saved to a XML file in order to store the adaptations,
including the new movement data of every object in the scenario.

4.4.2 Dynamic Visualization

In order to visualize a complex disaster scenario, a dynamic visualization module is
implemented. It can load disaster scenarios created by the editor. Figure 4.4 shows
a screenshot of the module. It is designed to match the usability of any common
media player, so it is easy to use.

Figure 4.4: The dynamic visualization prototype

The dynamic visualization module consists of three areas with which the user
can interact. The biggest part of the module is the ”Visualization Panel”. The
disaster scenario is rendered on the main panel and played showing the simulated
first response scenario from the chosen XML file. The user can interact with
this panel by clicking and dragging. That way, the user can zoom in and out
or pan the current sector. On the left is a sidebar with more options. Here, the
user can select what should be rendered. It is possible to show the waypoints
the objects are moving to, as well as connections between these waypoints. The
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network connections between the different objects and the messages they send
to each other can be visualized as well. On the bottom of the proposed module
are the basic control elements of the module. As in every common media player
application, there is a time bar to jump directly to a specific time in the past or in
the future. Normally the proposed module visualizes the scenario in real time, but
the simulation speed can be modified by seeking forward or backward, or simply by
slowing the animation down to see what happens in slow motion. The animation
can be also paused or stopped. The visualization module supports an API in order
to enable different kinds of network simulators. The network simulator fills the
objects in the disaster scenario with network data. This allows objects to connect to
each other, as well as send and receive messages. That API is implemented in such
a way, allows the network simulator to indirectly influence the movement of the
objects and vice versa. This interface implementation is described in Section 4.6.

4.5 Movement Simulator

The second part of the process after designing the first response scenario is the
movement simulation.
The visualization module is able to process any scenario independently from the
chosen movement model. The separation of movement creation and movement
storage allows for plugin in new movement generators without the need to change
the storage format. It is important for the simulator, so it can be used as a stand-alone
product. Every implementation of a first response scenario using the XML scheme
provided would be able to use the simulator right away or with minor adaptations.

Input API The input API works in a straightforward manner because it needs only
one hook for the editor in order to load first response scenarios into the Simulator.
However, because the Simulator is already able to handle scenario objects that
are the result of parsing the XML input this is easy to achieve. No matter if the
generic XML input is used or the API is called from the editor, it is handled by
the same method of ”createXMLwithWayPoints” provided by the MobilityHelper
class. This hook enables loading any movement model with any first response
scenario, either from a file or directly by the API, and writing it to an output file
that contains the scenario enriched with waypoint information. This movement
simulation architecture is able to handle different types of movement models. The
only requirement is to implement the abstract Mobility class in order to provide
all methods needed for the output API. This output API is described in a separate
section, Section 4.6, because of the crucial influence on the simulation process.
There are two different movement models already implemented, which generate
waypoints and make use of the simulator architecture and the information provided
by the XML input. In order to show the generality of the simulator, two extremely
different types of movement models were chosen.
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Random Waypoint Model The first model implemented is a pure ”Random Way-
point Model”. At every step it will generate a new random waypoint. This random
waypoint will be checked against all types of constrains, e.g., whether the object
can stand on the terrain, whether there is another object already on the waypoint
or moving towards this waypoint. Even with all the constraints, this movement
model remains very simple. It generates waypoints for a network simulation step,
and therefore, benchmarking of different network protocols against each other is
possible.

Behavior Based Movement Model The second model implemented adopts a
completely different path. Instead of using random behavior, it is a behavior-based
movement model. This means it assigns some kind of behavior to each object that
will influence the movement in such a way that the result is a human-like movement
pattern. In every step, it will evaluate the current situation and recalculate the current
target waypoint for every object and thereby making it able to react to changes in
the environment.

Figure 4.5: Behavior based movement calculation

The behavior-based movement model may be configured freely and supports
the triggering of actions when using the properties shown in table 4.3.

While every object uses its behavior to find its target, a shortest path algorithm
based on the actual map knowledge will provide the object with its next waypoint.
The target itself is chosen in a human-like (behavior based) process, and the target
trajectory is based on incomplete information, which simulates human-behavior as
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Name Description

Position Current position
Waypoint Next planned stop of object
Line of Sight (LoS) Visual range of sight
Target Larger goal, consisting of several way-

points
Helpfulness Describes the possibility of detours for

spontaneous targets in LoS
Fear Probability of discarding waypoints and

targets
Health Determines movement speed
Shortest Path Calculate optimal new route to a target
Message Change target according to received

message
Follow Probability of following someone to his

waypoint

Table 4.3: Properties of behavior-based movement model

well. More models can easily be developed using the properties shown in table 4.3
to trigger movement actions. Additional properties can of course be implemented
as well.

The behavior-based movement model is designed to make the input for the network
simulator as realistic as possible by approximating what a human would do in every
step. Therefore one might be able to evaluate network protocols in a much more
realistic way and find flaws or advantages that were not that obvious before.

Behavior-Based Movement Model Scenario Figure 4.5 shows an example of
the behavior-based influence on the movement model. This example shows two
distinct movement behaviors. An ambulance (B1) wants to directly drive to the
disaster origin (D3) by passing C2. An obstacle prevents the ambulance from
passing through C2, and therefore, it is driving a detour to reach its destination. The
second example shows a medic (see A1) who has the task of caring for a casualty in
C4; the line from A1 over C3 to C4 marks the chosen way for the task. The medic
notices on his way that another casualty located in B3 needs medical treatment. He
will stop at B3 and continues later on his way to C4. His tasks, as well as the chosen
waypoints, are adapted at runtime depending on the actual environment. While
the behavior itself provides every object with a goal, e.g., ”rescue people” for an
ambulance, a characteristic mix of attributes for every object and the situation it is
facing, aside from factors like range of sight, will influence every object in a unique
manner.
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Both movement models show that the architecture itself can be used to implement
different types of model approaches and that information provided by the world
model is enough for any movement model to employ.

4.6 P2P Simulator Integration

As shown in Figure 4.1, the XML file is consecutively filled with network data. The
XML scheme was designed in such a way, that the separated modules described in
Section 4.4 can read the given information and add new information in every step
of the simulation. A network simulator can read the XML file in order to obtain
information regarding the disaster scenario, the objects and their movements. With
this information, different P2P networks or other network infrastructures can be
simulated and the information can be written back into the XML file. That way, the
different network structures can be tested and compared to each other.

Object Access The network simulator accesses informations about the different
objects and their movements. Every network capable object has the settings of
”CPU”, ”bandwidth” and ”range” to specify the network capabilities. Settings like
”CPU” and ”bandwidth” are held purposely in a relative way. There are three distinct
settings for them: ”small”, ”medium”, and ”large”. That way, the network simulator
can occupy every setting with an absolute value of its own. Thus different network
devices can be tested and compared to each other. The setting ”range” is an absolute
value. It describes the radius in grid cells on the map, taking the objects position
as middle point. That means all objects in this circular range can be reached and
receive messages.
The next section discusses the integration of the disaster scenario saved in a XML
file into any network simulator.

Reciprocal Interaction Objects like rescue units react on the messages they
receive. So the movement is linked directly to the network events. For instance, a
firefighter might find a victim and calls an ambulance or a medic. After receiving
the distress call, one or more idle medical units would move to the designated
coordinates to help the victim. It is obvious that an interaction between movement
module and network simulator is necessary.
In order to cover this case, an API for the movement module is developed to
synchronize the network simulator with the movement module in such a way that
every step in the movement model simulator influences every step in the network
simulator, and vice versa. This creates more realistic movement patterns by using
more information about the network and lets objects move in a more network-
friendly or even less network-friendly way. Infintite feedback loops are theoretically
possible, but did not occur so far. The last order is stored and prohibit iterating
between two concurrent movement goals. In order to test P2P protocols handling
worst case or best case scenarios, as well as distinct numbers of mobile nodes and
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data, the twofold simulation process delivers both, a network environment as well
as the according movement simulation.

Integration Approach As our input architecture is stepwise enhancing the data
structure, this approach is retained for the output structure as well. First of all,
we implemented a factory in order to switch between different mobility models.
Therefore, any mobility model that is created by the factory has to implement the
mobility interface. This interface can work with the disaster scenario object
that is created using our editor. The network simulator can then interact with both
objects, the mobility object that contains the desired movement model and the
disaster scenario,to create more realistic behavior. Thus, the network simulator
influences the movement of the nodes in every step and also reacts to the movement
that is inflicted by this influence. Figure 4.6 shows how the API is built and the
connection interfaces in order to remotely trigger the movement simulation.

+startSimulation() : State
+nextStep(networkState : NetworkState) 
: State
+hasNext() : bool
+setStep()
+setNetwork()

-network : PlanetSim
Mobility

+getTime()
+getMap() : StateMap

-time
-map : StateMap

State

-x : int
-y : int

StateMap

«uses»

+setMobility()
-mobility : Mobility

PlanetSim

NetworkState

1    1 «uses»

-id : long
-x : int
-y : int
-cpu
-network
-range : int

StateObject

1

*1

1

Figure 4.6: The Simulator integration

The new approach of the output API implemented in the movement simulator
enables a combined movement and network simulation process, i.e., both simulation
parts support feedback loops from one another. Since ”PlanetSim” is used as a
network simulator and is based on discrete steps, this API makes it possible to start
the movement simulation and synchronize the step size. The step size is a time
in milliseconds. Every time the method nextStep(networkState)is called, the
movement simulator will add the step size to the current time. Nonetheless, it is
also possible to jump to a certain timestamp by calling the method setStep(long
step). The movement simulator will then set the timer to the designated time given
by the argument ”step” (time = step ∗ stepS ize).
In every simulation step, the network simulator passes its network state to the
movement simulator. That way, the movement simulator can react to network events
that can occur between the network nodes. This is how the network simulator can
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directly influence the movement of the nodes. It can pass commands to the nodes
but the movement simulator has to decide whether to obey the order or to continue
the current task, or even whether to dedicate a new task to nodes.
In every simulation step, the movement simulator will return a stateobject. This
enables the movement simulator to influence the network simulation process. The
state object consists of the current time and a StateMap, where all disaster objects
are saved. The stateMapis constructed like the terrain map and is divided in grid
cells. Every disaster object (StateObject) is saved in one cell of the map. The
network simulator can use this information to calculate whether the nodes are in
range of each other or not. It can connect the nodes with each other and let them
send messages to one another. In order to identify every object the stateobject
carries an ID that never changes throughout the simulation process. The position as
well as the network information (”CPU”, ”bandwidth”, and ”range”) are saved in
the StateObjectas well. Otherwise, the network simulator would not be able to
make decisions about the network behavior of the nodes.

This API was implemented in order to be able to extend any network simulator to
interact with our movement simulator. It is possible to test different simulators and
different network structures. Different movement models can be compared to each
other using different network infrastructures and simulations as well.

4.7 Summary

Our contribution consists of a generic and extendible scenario description and trace
format, which covers everything from the raw definition of terrain and dynamic
movement of peers up to a detailed description of network traffic during simulation
time.
We strictly designed the ‘Movement and Network Model’ to satisfy the require-
ments elicited in Chapter 2. In particular, the requirements R3, R4 and R10 (cf.
Section 4.1.2) significantly determine the development of this simulation approach.

Common P2P network simulators, for example PeerfactSim.KOM [KKH+06],
Chunksim [Kan07], PlanetSim [Gea05], and Omnet++ [V+01] are designed to
conduct larger scale simulations and provide probabilistic models to simulate node
churn. However, these network simulators assume a working Internet topology,
movement simulations and mobile devices are not supported. Consequently these
simulators are not considered in the direct comparison with FRCS. Nevertheless,
we provide an interface which allows for integration of a P2P network simulator
with FRCS, thus simulations can either be performed assuming an Internet topology
or using the movement approach of FRCS (see Section 4.6).
Table 4.4 shows FRCS in comparison with GlomoSim and ANSim. By tightly
integrating movement and network simulation, we are able to build very fine grained
simulation models. This does allow for support of the reciprocal dependencies of
wireless networks and moving peers. Our description model proved to be adequate
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for the needs of simulating a first response process, from the beginning of the catas-
trophe until the completion of all tasks of the first response team. By combining
movement and network simulation more detailed communication simulations are
now feasible (cf. Figure 4.1). We are not aware of any other simulation framework
supporting reciprocal dependencies between both types of simulations in one inte-
grated framework.

Feature ANSim GlomoSim FRCS
Scenario Support • • •

Reciprocal Interaction ◦ ◦ •

Behavior Support ◦ ◦ •

Visualization of Scenario ◦ • •

Table 4.4: Comparison of FRCS with better known network simulators supporting
mobility

In order to test the flexibility of our description format, we built various scenarios
combined with two selected movement models (random waypoint and behavior
triggered) and simulated active network traffic on top. The intuitive possibility of
mix-and-match scenario, movement model and communication topology convinced
us to further investigate the extension of the first response communication sandbox.

Using the movement patterns and the simulated communication devices, a graph
containing all devices with their possible neighbors within range is calculated. This
graph changes its shape during the conducted simulations, because devices move
and new devices might be available. One challenge is to prevent the communication
network from being partitioned. A mechanism for detection of articulation points,
i.e., critical nodes, that keep the network connected, is presented in the next chapter.



Chapter 5

Connection Topology

The connection topology provides basic network access and is the precondition for
a functional ‘Overlay Network’ layer. A robust connection topology is crucial to the
whole communication approach. However, in the disaster’s incident phase, commu-
nication devices carried by disaster relief personnel tend to be unevenly distributed
over space (cf. Section 5.1). Several dense clusters of nodes are connected by a
few important nodes in sparsely occupied areas. Removing these articulation points
would partition the network and severely reduce or destroy the overall connectivity.

Our contribution in the ‘Connection Topology’ layer is the novel approach,
called BridgeFinder. It identifies the critical articulation points, operates as a fully
distributed algorithm and causes only very little messaging overhead. It is compliant
to the Push-Sum gossiping protocol and is significantly faster and more precise than
existing mechanisms.

The remainder of this Section is structured as follows:
In Section 5.1 we revisit necessary preliminary mechanisms and requirements.
Section 5.2 discusses related work. In Section 5.3 we describe the application
domain for BridgeFinder. The proposed approach is developed in Section 5.4.
A theoretical model for critical peers is derived from classic graph properties in
Section 5.5. Runtime observations of speed are conducted in Section 5.6. Section 5.7
proposes a practical approach for implementing BridgeFinder. In Section 5.8 we
evaluate our approach. Section 5.9 includes a discussion of possible damage by
malfunctioning devices or attacks. Section 5.10 concludes the Chapter.

5.1 Introduction

In this chapter, we present BridgeFinder, a distributed mechanism for calculating
graph measures, which until now have only been feasible with centralized algorithms
using global knowledge. BridgeFinder is fully decentralized, based on gossiping,
and only requires local knowledge. Our evaluation shows that BridgeFinder is
able to identify the critical nodes very efficiently. We also show how BridgeFinder

49
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Figure 5.1: First response ad-hoc wireless networks.

can be protected against malicious nodes attempting to skew the process, and how
BridgeFinder can easily be implemented with IPv6.

5.1.1 General Approach

Our simulations of disaster scenarios with FRCS (cf. Chapter 4) create sparse and
irregular communication graphs, and similar topologies have been observed in real-
world installations[MM07] [MM09]. Communication devices carried by disaster
relief personnel tend to be unevenly distributed over space. Several dense clusters
of nodes are connected by a few nodes in sparsely occupied areas. Removing
vital nodes along such bridges would partition the network and severely reduce the
overall connectivity. Consequently, detecting and protecting those few vital nodes
is crucial for keeping the network operational.

Figure 5.1 shows an example of a wireless multihop network within a first response
situation. Near the headquarter on the left side of the figure, and the recovery
location on the right side, there are dense communication clusters. These clusters,
however, are only sparsely interconnected. The challenge for establishing reliable
communication is to identify exactly those critical paths among clusters and secure
them by providing strong access points and rerouting messages in order to prevent
congestion. Failing to protect these paths could lead to network partitioning and
the inability of the headquarters to communicate with the personnel on the recovery
location.

Standard approaches for identifying those vital links require global network
knowledge, which is unavailable in mobile ad-hoc networks. Even if it were avail-
able, one would require O(V3) running time, where V is the number of nodes within
the network (by using Floyd-Warshall, for example). Obviously, such approaches
have extremely limited practical use.
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In order to overcome these challenges, we developed BridgeFinder. It leverages
the recently developed Push-Sum gossiping algorithm [KDG03]. BridgeFinder
identifies critical paths between densely connected clusters without any global
knowledge. Our results show that it has very modest running time and message
complexity. Furthermore, BridgeFinder can be integrated in the regular maintenance
and application traffic and therefore produces almost no message overhead.

5.1.2 Theoretical Foundations

In order to show how BridgeFinder efficiently identifies the critical nodes, we
require several theoretical foundations:

Gossiping Gossiping was first proposed in the context of distributed database
systems [DGH+87]. The developed mechanisms were called ‘epidemic-style’ or
‘gossip’ update algorithms. Databases did periodically check their state and used a
randomized method for selecting their gossip target to synchronize their state. The
basic epidemic protocol is called anti-entropy and requires two steps.
In step one, every node chooses another node at random for content exchange. In
the second step, during the exchange, each node resolves the differences and both
agree on a common state (cf. [DGH+87]).
In contrast to the classical network flooding, gossiping uses recurring bilateral
communication with individual message content. Database systems employed these
protocols using a low exchange frequency, while P2P systems use gossiping at
higher speed.

Push-Sum Our proposed approach leverages the recently developed gossiping
approach called Push-Sum [KKD04][TLB07]. The main purpose of the Push-Sum
algorithm is to estimate the number of nodes within a network. Its basic idea is as
follows: Imagine we want to measure the volume of a lake and we neither know the
shape its bottom follows, nor how deep it is. What we do is to release a school of
fish into the lake. Assuming that they spread out uniformly, we simply have to wait
long enough for the fish to diffuse within the lake. Then, we remove a gallon of
water from the lake and count how many fishes are in there. Knowing the original
number of fishes and the number of fishes per gallon of water, we can calculate a
very good estimate of the lake’s volume.1

Push-Sum works as follows: initially, every peer manages some lake region. Then
a peer starts the algorithm by picking up a number of fishes and distributing them
uniformly among its neighbors and itself. Afterwards, when gossiping, each peer
distributes fish uniformly among its own region and those of its neighbors. The
algorithm is finished when all peers have the same amount of water and fish,
according to some error tolerance. Knowing the current local amount and the fixed

1Analogy taken from [TKLB07]
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original amount of fish distributed within the network, each node can compute the
number of peers in the network.

Convergence Speed The convergence speed of the Push-Sum and therefore the
BridgeFinder algorithm is determined by the diffusion speed of the underlying
network. The diffusion speed characterizes how fast a value starting from an
arbitrary node diffuses through the whole network. In graphs with high expansion,
the convergence speed of Push-Sum has been proven to be O(log N+log 1

ε ) [TLB07],
where N is the number of nodes and ε, the relative convergence error. For geometric
networks with ”roughly” a uniform distribution of nodes in the Euclidian space the
diffusion speed is shown to be O(log1+ε d) [KKD04], where d is the diameter of the
network.

However, many complex networks, especially ad-hoc networks, have different
topology than the networks described above. They consist of densely connected
clusters that are only sparsely interconnected. An O-notation solution for the running
time of Push-Sum in such networks is only available for special metric spaces. A
general proof is not yet available [KKD04]. Both their irregular structure and
varying number of clusters make it very unlikely that a general solution for ad-hoc
networks could be derived. Therefore, we concentrated on numerical simulations to
estimate how Push-Sum really performs on those networks. For this purpose, we
used the OADG model (see Chapter 4).

Critical Peers To the best of our knowledge, two categories of critical peers are
known: global and local [SLS06]. If a global critical peer fails, the network is
broken into two or more components. If a local critical peer fails, this peer, along
with its neighbors, are isolated from the network. The rest of the network remains
intact.

There is a variety of specialized algorithms for detecting the second type of
peers [LXKL06] [SLS06] [WZ04]. Depending on the accuracy of their results,
they produce different computational overhead. Still, all of them require only the
neighbor list of each peer and no further knowledge about the network.

Global critical peers are much more important. Their failure affects the func-
tion of the entire network. However, there are no local and therefore no efficient
algorithms for detecting such peers.

Centrality Measures Before we explore the implementation details of Bridge-
Finder, we need to revisit two centrality measures, called betweenness centrality
and closeness from graph theory. They describe the specific role that critical peers
play in supporting communication flow.

Betweenness Centrality The first important measure is betweenness centrality,
or simply betweenness [Fre77][Bra01]. Nodes that occur on many of the shortest
paths between other nodes in the network have higher betweenness. Thus, the
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betweenness of a node is proportional to the number of shortest paths going through
this node. Consider a graph G = (V, E), where V is the set of nodes and E is the set
of edges connecting them. Then, the betweenness CB(v) of v ∈ V is given by:

CB(v) :=
∑

s,v,t,s,t

σst(v)
σst

(5.1)

where s, t ∈ V and σst(v) is the number of all shortest paths from s to t going
through v and σst the number of all shortest paths between s and t. The higher the
betweenness of a given node, the more important this node is for communication
within the network.

It is easy to see that betweenness is a very convenient measure for detecting
critical nodes within a network. Unfortunately, it is very expensive to compute. One
must to compute all shortest paths between all node pairs in the network and keep
track of the nodes on those paths. Some global network knowledge, as the number
of nodes in the network, is also required but in most cases unavailable in wireless
ad-hoc networks.

Closeness Centrality Another important measure is closeness centrality [Sab66]
[Dan06], here referred to simply as closeness. Using closeness, we can identify
those nodes within a network, that are responsible for rapid communication flow.
Again, consider a graph representation G = (V, E). The closeness of a node v is
defined as the mean geodesic distance (i.e., the shortest path) between a node v and
all other nodes reachable from it:

Cc(v) :=
1

n − 1

∑
t∈N\v

dG(v, t) (5.2)

where dG(v, t) is the geodesic distance between v, and t in G and n is the size of
the connected component N reachable from v. Closeness is a measure of how long
it will take for a particular piece of information to spread from a given node to all
other reachable nodes. Unfortunately, to compute the closeness of each node, one
again must to compute the shortest path between each two nodes in the network.
Therefore, closeness is also both: very expensive to compute and requires global
knowledge about the network.

5.1.3 Requirements

The main task of the ‘Connection Topology’ is to provide basic routing and network
connections(cf. Section 3) for the ‘Overlay Network’ layer.

In our approach, we focus on identifying critical links, as their failure may destroy
the connection topology and partition the network. A network consisting of several
isolated parts is not usable in a reasonable way, and therefore, this mechanism can
be seen as a key enabler for the elicited use cases (see Section 2.2).
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However, unbalanced network topologies are created automatically by manually
placing network devices in the field. Our approach, considers the device types listed
in requirements R12 and R13 (cf. Section 2.2) and is especially developed for
imbalanced network topologies (cp. Chapter 4).

The device sending range (IAN and JAN) and geological position may change
during the incident phase. These dynamic properties need to be supported by the
mechanism to identify ‘critical nodes’ as well.

5.2 Related Work

Our main target environments are wireless multihop networks. One example of
an application developed for such environments is Groove [Gro04]. A wireless
network environment is a challenge for such distributed applications. Due to
many unpredictable factors, established connections or even nodes may suddenly
disappear. As communication flow depends on network connectivity, it is crucial to
identify and protect critical peers within the network. Those are the peers whose
failure leads to malfunction or the complete breakdown of the network.
To the best of our knowledge, BridgeFinder is the first approach using properties of
the gossiping mechanism to detect critical peers.

Gossiping Gossiping is used in many network applications. One of them is the
Push-Sum algorithm [KDG03]. Its original epidemic protocol is called anti-entropy
and is used for database replication [DGH+87]. Another application of the Push-
Sum algorithm is counting peers in P2P overlay networks [TKLB07]. An overview
of actual epidemic protocols is given by Eugster [EGKM04].

Our contribution, BridgeFinder leverages the Push-Sum-based algorithm pro-
posed in [TLB07]. Our approach enables BridgeFinder to detect critical peers in a
distributed manner; its original purpose remains fully functional. Critical peers have
a large impact on the connectivity of a network. The absence of even only a small
number of those nodes may successfully render the network unusable [SGG03].

Critical Peers There is a large body of recent research dedicated to identifying
critical peers. The common approach is to send probe messages from a node, for
example from C to other nodes in the network. When a node receives a probe mes-
sage, it must send it back to C. C contacts iteratively a chosen set of nodes [QCC07]
or simply floods the network [LXKL06]. After all probe messages have returned
back to C, it computes how fast the single messages have returned. Based on its
results, C decides if it is a critical node or not. Short return times mean C is critical;
otherwise it is not critical. After the procedure is finished, the computed results are
known only to C.

Another approach is the detection algorithm based on the Midpoint Coverage Circle
(DMCC) [SLS06]. It also has a simple workflow. Assume that the node C wants to
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estimate whether it is a critical node. It chooses a random pair of nodes within the
network and asks them to contact each other. If the message exchanged by the two
nodes on its way goes through C, then C considers itself critical and not otherwise.
The computational overhead for C is smaller than the one in the previous approach.
However, in order to guarantee reliable results, C has to test a very large number of
node pairs. This produces a large message overhead for testing just a single node.
The acquired information is still known only by C.

5.3 Application Domain

There are two requirements the underlying network has to fulfill in order for Bridge-
Finder to function. First, a node must be able to communicate with some other
nodes in the network, at least with all of its neighbors. Second, the links in the
network must be undirected. In general, BridgeFinder can operate on any network
that fulfills these two criteria. Both requirements are satisfied by the underlying
‘Movement and Network Model’ layer.

BridgeFinder detects critical peers, that is, nodes crucial for communication
within the network. Therefore, the fewer the nodes on which communication
depends, the higher the benefit of using our approach. Compared to algorithms with
global knowledge in static networks, BridgeFinder is less accurate than standard
approaches for detecting critical nodes. However, its most significant advantage
is that it requires no global knowledge and can operate on continuously changing
underlying networks. That makes it very attractive when working with wireless
ad-hoc networks.

We have simulated wireless ad-hoc networks found especially in first response
situations. These types of networks are challenging because global knowledge
of the network is usually unavailable and moving peers are continuously altering
the network. As in first response situations, in many other use cases of ad-hoc
wireless networks, clusters with sparse interconnections arise naturally and need to
be identified in order to protect the network connectivity.

Networks may become partitioned in case of a crash by the critical peers. Our
approach identifies peers, that keep the network together. Once the critical peers
are known, partitioning can be avoided by establishing additional links among
susceptible clusters connected by those critical peers.

In any complex network, maintaining information flow is equal to the critical
nodes remaining operational. The higher the importance of a node, the higher the
impact of removing that node.

5.4 The BridgeFinder Algorithm

BridgeFinder relies on gossiping to identify the critical nodes (cf. Section 5.1.2).
The core algorithm of BridgeFinder operates just as Push-Sum with a small exten-
sion: each peer, aside from gossiping the currently possessed amount of water and
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Figure 5.2: Phases of the BridgeFinder algorithm and interleaving among multiple
runs

fish, also sends along how many times it has already exchanged values with its
neighbors to achieve that state. The following is a pseudocode of the core procedures
of BridgeFinder:

currentEstimate = my water / my fish;

Periodically:
my fish = my fish / (my degree + 1);
my water = my water / (my degree + 1);
iterations = iterations + 1;
sendToAllNeighbors(my fish, my water);

Receive(fish, water):
my fish = my fish + fish;
my water = my water + water;

Each node keeps track of the number of exchange operations with its neighbors
until it has converged. Overall, in our simulation, we set ε = 0.02. Thus, if the
current exchanged fish and water values do not change the previous values by more
than 2%, a node sets its state to converged.

After this convergence phase, the result is distributed in the result distribution
phase. Figure 5.2 shows how these phases are interleaved among multiple runs of the
algorithm. The results of the first run are distributed in parallel to the convergence
phase of the second run, and so on. The BridgeFinder algorithm exchanges data
between peers solely by piggybacking data on the normal network traffic.

Each node keeps a list of the 10 fastest converging nodes and the number of
exchange steps they required to converge. When a node v has converged, it checks
whether it has not been faster than some of the nodes in its top list. If this is the case,
v sends its next exchange messages to its neighbors, as well as the information that
it has converged and that it qualifies for the top 10 nodes list. Assume that a node w
receives a message that v has qualified for the top 10 list. Then, if not already done
so, w adapts its top list. Note that w can receive the update message along different
paths. Then, if not already completed, w in turn builds the update request in its next
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exchange messages to its neighbors, and so on. When BridgeFinder is started for
the first, time every node has only one entry in its list: the node itself. Distributing
an update message to every node in the network requires at worst as many exchange
steps as the network diameter.

In many real networks, the diameter is extremely small: the network of human
acquaintances that has over 6 billion nodes has a diameter close to 6 [Gua92];
and the Internet with hundreds of millions of nodes, and it has a diameter around
20 [AJB99]. Wireless networks have larger diameters (no exact estimate available,
as it depends on the network size) but possess similar community structures and high
clustering features as the two networks mentioned above. Therefore, distributing
the fastest converging nodes list within such networks also produces very modest
overhead.

After each run of the BridgeFinder algorithm, every node knows the fastest
converging nodes. As we show in Section 7.6, the fastest converging nodes are
also the nodes with high betweenness and centrality, i.e., they are the critical nodes.
Once they have been identified, measures can be taken to protect the network around
them.

5.5 Properties of Critical Peers

The crucial observation on which our approach relies is that critical peers also
play a significant role in distributing information within the underlying network
(cf. Section 5.1). Our results show that with a very high probability, a critical
peer either lies on many communication paths among other nodes or has very short
communication paths to almost all other nodes, or even both. Detecting peers with
such properties is with a very high probability, equivalent to detecting critical peers.

A straightforward question arises: How do we describe and detect peers playing
such an important role in supporting communication flow? To answer this, we can
use centrality measures from graph theory. However, these measures require global
network knowledge and are very expensive to compute. Overcoming these two prob-
lems is the main contribution of BridgeFinder. It leverages the recently developed
Push-Sum protocol and uses the convergence speed of the nodes to detect their role
for supporting communication flow. Consequently, it requires no global network
knowledge. Furthermore, as almost all nodes execute the protocol simultaneously,
it has modest running time and produces almost no additional state per peer.
A detailed description of how BridgeFinder detects the nodes with the most signifi-
cant centrality measures is given in the next section. Before that, we want to extend
the betweenness and closeness measures, because they do not necessarily cover all
cases of critical nodes.

Recall that the betweenness of a node v in graph G is equal to the number of
shortest paths between any two other nodes in the network going through v (see
Section 5.1). However, if v is even one single edge away from a node with high
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betweenness, its betweenness could be zero. That is because no shortest path goes
through v, as this automatically increases the path length by one. Figure 5.3 displays
the situation. It shows two groups of nodes. The numbers within the nodes are
their corresponding betweenness coefficients. In the group on the left side, there
is one central node with high betweenness. Its neighbors partly share its high
betweenness, as the paths going through the central node are equally divided among
all its neighbors. On the right side, however, betweenness is not that accurate in
detecting central nodes. The node on the left side has a zero betweenness coefficient
because it is one hop away from both high betweenness nodes. Therefore, no
shortest path goes through it, as the path length will increase automatically.

Average Betweenness To overcome this drawback, we introduce the following
measure:

Definition: The average betweenness of a node v is equal to the average between-
ness of its own and the betweenness of its neighbors:

CAB(v) :=
CB(v) +

∑
w∈M CB(w)

|M| + 1
(5.3)

where M is the set of neighbors of v.

In other words, not only nodes with high betweenness but also their neighbors
have high average betweenness. This more accurately reflects their central position
in the network for two reasons. First, these are the nodes that must overtake the
information flow if the leader node fails. Second, they can serve as a backup for the
leader node before it fails by interconnecting among each other and thus reducing
its load. This also significantly reduces the impact of suddenly losing the leader
node due to some unexpected reasons.

Average Closeness We also extended the definition of closeness to allow for
a better identification of the critical nodes. Above, we mentioned that it points
out central nodes. Nodes with small closeness are fast in distributing information
through the network. However, closeness is still a linear measure. In large networks,
there are whole regions of nodes with very similar closeness coefficients. In order
to sharpen the precision of closeness, we define square closeness. It also computes
all shortest distances among all nodes in the network, but squares them before the
average is computed:

Definition: The square closeness of a node v is equal to the sum of square distances
from v to all other reachable nodes:

Csqc(v) :=
1

n − 1

∑
t∈N\v

dG(v, t)2 (5.4)
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Figure 5.3: Betweenness does not always reflect the central role of a node.

where dG, N and n are defined as in (2).

Nodes with best closeness have significantly higher squared closeness than the
rest of the nodes. This makes it easier to detect outstanding nodes within clusters of
nodes with relatively equal closeness.

The centrality measures we just introduced overcome the drawbacks of the
standard centrality measures. However, they also describe the extent to which each
node plays a role in supporting communication flow. Our empirical results show
that the main load carriers in a network are also, in most cases, the critical peers.
Their absence will break the network apart.

Although all these measures are useful in identifying the critical nodes, they
are very expensive (if at all possible) to compute. Overcoming this problem is
BridgeFinder’s primary task, which we describe in the next section.

5.6 Gossiping Convergence

We generated four types of networks, and 500 networks of each type. The first type
is the standard unit disc graph. In the second type, we place two large obstacles
within the area where the nodes are distributed. The obstacles occupy the diagonal
of the Euclidian space and basically divide it in two halves, leaving just a narrow
bridge between the two halves. Then, we place the nodes uniformly at random
within the free area and connect by an edge all nodes lying within a distance of 12
units from each other. The size of the Euclidean space is fixed to 100 x 100 units
and all networks contain 250 nodes.

The third type of test networks is similar to the second one. The only difference
is that this time, we place three equally large obstacles, instead of two. This results
in two narrow bridges between areas accessible for nodes. Analogically, we place
four obstacles in the fourth model, resulting in three bridges.

Note that the existence of a bridge between the obstacles does not necessarily
mean that there are nodes occupying it, nor that it is used to connect different parts
of the network. Thus, there is also no guarantee that a network generated with
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Network Type Push-Sum BridgeFinder

3 Bridges 469 214
2 Bridges 597 282
1 Bridge 823 367
Unit Disk 94 72

Table 5.1: Convergence comparison between PushSum and BridgeFinder on differ-
ent network models measured in average number of exchange steps per node.

models 1 to 4 will even be connected. Therefore, we generated as many networks
from each type as necessary to acquire 500 connected instances from each type.

We ran the Push-Sum algorithm on the 500 instances of each network type. The
averaged results over each 500 runs are displayed in Table 5.1. For a definition of
convergence speed, please refer to Section 5.1. The result for a single network is
measured as the required average number of exchange operations per node. We
observe a large discrepancy in the required exchange operations between the ideal
case, the unit disc graph, and the most demanding model of just one single bridge.

Convergence Speed Observation In our tests, we saw that there is one very
important condition on which the convergence speed of the algorithm depends,
namely, which node starts the algorithm. The faster a node can distribute information
within the network, the larger the benefit of starting the algorithm from that node. If
we know the nodes with best topological positions, then we can improve the running
time of the algorithm by starting it from such nodes.

An intuitive solution arises. After running the algorithm once, the fastest
converging node from the last run is responsible for starting the next run. If it is not
able to do that, the second fastest converging node becomes responsible for starting
the algorithm, and so on.

This mechanism is integrated in BridgeFinder. Recall from Section 5.4 that the
list of the fastest converging nodes is constantly exchanged among nodes, and that
at the end of the algorithm, each node possesses the list of the 10 fastest converging
nodes. Thus, all nodes within the network are aware which node should start the
next run.

Adaptation of Protocol Initiation We also need to overcome the problem of
starting the algorithm for the first time, as well as avoiding different nodes from
starting and running BridgeFinder simultaneously. To achieve that, each node,
which decides to start the algorithm and has not already participated in it, picks
a random number and sends it over the network together with its values. If a
node receives values with a different random number in it, this means that two
simultaneous instances of BridgeFinder are running. The node ignores the gossiping
messages with the smaller random number and processes only the larger values.
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Figure 5.4: Implementation of BridgeFinder with IPv6 optional headers

Thus, BridgeFinder instances started with larger random numbers take priority over
those started with smaller numbers. This produces a slight overhead during the first
run of the algorithm, as initially computed values are being thrown away, but still
gives each node the possibility of starting the algorithm. This resolves the problem
of having to select a starting node within a distributed environment. Any node can
start the algorithm.

The benefit of starting BridgeFinder from the best converging nodes from
previous runs of the algorithm can be seen in Table 5.1. We ran the algorithm
over all 500 instances of each network model and averaged the results. The values
of BridgeFinder are always measured at the end of the second run, as the first
one is used to determine the top converging nodes within the network. Using that
approach, BridgeFinder performs better than the original Push-Sum algorithm in all
four network models. The acquired speed-up ranges from 20% to 220%.

Ultimately, even in a hostile environment like one-bridge network models, our
algorithm requires only a few more exchange operations per node than the overall
number of nodes in the network.
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5.7 Implementation

When a gossiping protocol like Push-Sum is used on the application level, then
no additional data needs to be transmitted during the convergence phase, because
the original gossiping protocol already transmits the water and fish values. To
implement BridgeFinder, it is only necessary to distribute the information about the
fastest converging nodes throughout the network after the convergence phase.

However, BridgeFinder can also be used in conjunction with any other routing
algorithm. In the following, we consider an implementation based on IPv6 optional
headers (RFC-2460), where the information required by BridgeFinder is piggy-
backed on the normal IPv6 traffic. Figure 5.4 shows the layout of an IPv6 packet. In
the IPv6 header, the Next Header (NH) field is set to 0 to indicate that a Hop-by-Hop
Options header follows.
In the Hop-by-Hop Options header, the Next Header value specifies the type of the
successive header. For example, a ICMPv6 packet would use type 58. Following
RFC-4727, the option type field is set to $3e. The type is encoded such that the
highest-order two bits specify the action that must be taken, if the processing IPv6
node does not recognize this type. A value of 00 instructs the receiver to skip this
option and to continue processing the remaining packet. Hence, it is possible to
use BridgeFinder even in networks where some peers do not support our custom
header. The third-highest-order bit of the type specifies whether or not the Option
Data of that option can change en-route to the packet’s final destination. This bit is
set, because we replace the header information at each intermediate peer. Setting
this value excludes the header data from the calculation of message digests, as used
by IPv6 authentication. Consequently, authentication will still operate correctly
end-to-end.
The options header exists in two variants. The fields fish and water are sent with
each message. As long as a peer has result updates to distribute, it also adds the
next item of its update set to the header.

5.8 Evaluation

We evaluated BridgeFinder using the OADG (cf. Chapter 4) network model. As
described in Section 5.6, we place obstacles in an Euclidean space, and the nodes
are divided in densely connected clusters that are only sparsely interconnected.
The number, size, and location of the obstacles determine the number of possible
bridges, i.e., narrow paths among occupied areas. Thus, different clusters can be
connected only sparsely, when at all. We evaluated four different network types
with none, one, two and three bridges.

Simulation Note that nodes are distributed in an unpredictable way within the
areas around the obstacles. Therefore, there is no guarantee how many of the
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Figure 5.5: Destroying networks by removing the fastest converging nodes

existing bridges are actually used to connect the different clusters, nor how many
different paths run through each bridge.

However, networks generated in this manner are very vulnerable. The few
nodes lying on the paths among clusters are exactly the few nodes keeping the
network together. We address two different questions. First, what topological
properties do these few nodes possess? Second, and more importantly, how effective
is BridgeFinder in detecting those very nodes?

We created 500 connected networks of each type. Each network consists of 250
nodes placed in a physical area of 100 x 100 units. The maximum edge length is
set to 12 units, i.e., we place edges among all nodes within distance of 12 units
from each other. We created multiple obstacles with dimensions of 25 x 25, 50 x 50
and 30 x 30 units (see figure 4.2 for an example setup). Due to the obstacles and
the random placement of nodes, the resulting networks are not always connected.
Therefore, during the generating process, we discarded non-connected networks,
and new ones were generated until 500 connected instances of each type were
acquired.

Evaluation Results Figure 5.5 shows the important role the nodes identified by
BridgeFinder play in keeping the network connected. One by one, we removed the
fastest 3.5% converging nodes. The x-axis shows the percent of removed nodes.
The y-axis shows the fraction of partitioned networks from the 500 instances of
each type. We consider a network partitioned if more than 25% of the remaining
nodes are not able to communicate with the rest of the network. Hence, isolating
only a small number of nodes is not a globally critical event, and we do not consider
it as a problem.

Figure 5.5 shows averaged results for all four different network types. Removing
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Figure 5.6: Intersecting the nodes with best centrality measures with 2% of the
fastest converging nodes

only 2% (equivalent to just 5) of the fastest converging nodes breaks 90%, 70% and
50% of the one, two and three bridge networks, respectively. BridgeFinder finds
with very high probability exactly the few nodes that keep the networks together.

Note that the standard unit disc graph does not partition; this is not surprising. In
such graphs, there are no critical nodes at all. Depending on the density of the
nodes, there are two possibilities. Either each node is very strongly interconnected
with the rest of the network, or all links are so sparse that each node is critical.
Thus, in unit disc graphs, there are no “special” nodes. Therefore, they all have very
similar convergence speeds. Removing the fastest converging nodes is equivalent to
removing randomly chosen nodes. Figure 5.5 just confirms the well-known fact that
unit disc graphs are resilient against attacks.

Analysis of Results Recall the two global measures we defined in Section 4:
average betweenness and square closeness. They are tools from graph theory for
describing the importance of nodes for distributing information within a network.
To answer the above question, we evaluate to what extent the top nodes identified
by BridgeFinder overlap with the best nodes identified by the two global measures.

Betweenness and Closeness Sets For each of our test networks, we compute two
sets: A and B. Set A consists of the highest 5% (i.e., 13 of all 250 nodes) average
betweenness nodes, and set B contains the highest 5% square closeness nodes. The
nodes in the union of A and B, A ∪ B, have either the highest average betweenness
or the highest square distance coefficients in the network, or in most cases, both.
Note that A and B are not necessarily disjoint. On the contrary, averaged over all
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generated networks, A and B overlapped to over 80%. The overlapping factor is
almost identical for the four different network types.

Simulation Results The set A ∪ B contains the nodes with the “best” topological
properties in the network. The question is how many of those nodes are within the
nodes identified by BridgeFinder. Figure 5.6 shows the results from the interSection
of 2% (equivalent to 5) of the fastest converging nodes with A∪B. In 85% of the one-
bridge networks, all five nodes have either high closeness or high betweenness, i.e.,
are in A ∪ B. Three of those five nodes have the same features in about 80% of the
two-bridge and unit disc networks, and in about 60% of the three-bridge networks.
Thus, the top nodes identified by BridgeFinder lay exactly on the key positions in
their networks. It is not surprising (as shown in Figure 5.5) that removing even a
few such nodes can damage a significant portion of the underlying networks.
Next, we intersect A∪ B with 5% (13 nodes) of the fastest converging nodes. Figure
5.7 displays the results. At least half of the fastest converging nodes lay on key
topological positions in their networks. This is the case in more than 80% of the
two-bridge networks and in over 90% of the one-bridge networks.

Our empirical results show that with very high probability, BridgeFinder identifies
the same nodes one would obtain by using global network measures. In both cases,
those are the few nodes keeping the network together.

Still, there are two very important differences between the two approaches. First, our
algorithm is faster in several orders of magnitude than computing global network
measures and furthermore produces very modest computational costs per node.
Second, and more importantly, BridgeFinder is a distributed approach. That makes
it a useful tool that can be applied to a vast variety of real world networks.

5.9 Security Issues

All gossiping-based systems are unfortunately vulnerable to attacks and malfunction-
ing nodes. This is because gossiping is a distributed approach, and an application
based on it cannot rely on a central trusted authority. This excludes any standard
approaches from the cryptography for verifying any exchanged information or
identifying its sources.

BridgeFinder is also based on gossiping and is thus similarly vulnerable. How-
ever, we are not interested in the values exchanged among nodes, but rather on the
speed with which this process converges. Convergence, on the other hand, is not a
local decision, but a mutual decision of the whole network of nodes. Relying on
the convergence speed instead of the values is enough to develop mechanisms that
make BridgeFinder resistant to attacks.
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Figure 5.7: Intersecting the nodes with best centrality measures with 5% of the
fastest converging nodes

Basic Approach The main idea behind our solution is that no node converges on
its own. A node can only claim it has successfully converged when the fluctuations
of the values possessed by the nodes surrounding it become relatively small. On
the other hand, a node can only claim it has still not converged when the values
maintained by its neighbors still vary significantly.

Therefore, each node needs just a scheme to estimate the fluctuations in the
neighbors values either as acceptable or not acceptable. Then, it can protect both,
itself and the whole network, from the following two types of possible attacks.
The first attack happens when a compromised node falsely claims it has converged
(lies to its neighbors about its real values) in order to qualify for the list of fastest
converging nodes. The second type of attack is when a node neglects the values sent
to it by its neighbors and continues flooding the network with higher/smaller values,
and thus preventing the algorithm from converging. If a node receives suspiciously
small or high values from one of its neighbors, let us say X, it can warn its other
neighbors. If its suspicions are confirmed by any other nodes, they send a message
through the network that X has been compromised. Then, all nodes having X in
their neighbor list exclude X from their communication flow.

To estimate whether the values sent by its neighbors are legitimate, a node can
calculate the mean value of the values received from the neighbors. Then, it can
use the average in a local decision process: each single value can differ only with a
given factor from the mean value.

The idea of using the mean of the neighbors values within a gossiping-based
application to estimate the impact of compromised nodes has already been studied
in [KDG03]. There, the authors show how one can use the median to compute an
acceptable quantile for the exchanged values under erroneous inputs from compro-
mised nodes. As mentioned above, it is not the values we are interested in, but
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rather the convergence speed.

Progression Speed We know that the fluctuations in the values are significant
at the beginning of the algorithm and decrease progressively with each iteration.
The speed of that progression for a node v at time i can be expressed through the
difference of its new and its old values:

sv(i) :=
xi − xi−1

xi
(5.5)

where xi and xi−1 are the current and the last values of v respectively. We call sv

the speed coefficient of v. As the algorithm converges, sv goes to zero for all nodes
in the network.

Furthermore, each node knows the number of exchange operations it has already
carried out (cf. Section 5.4). Based on that number and the speed coefficients of the
values it receives, each node qualifies them as suspicious or not suspicious.

The local decision making process for a node v works in three steps. When at
iteration k, v receives a new value x from its neighbor w: i) v computes the speed
coefficient of w at k, sw(k) (the one corresponding to x); ii) it computes the mean
value of the speed coefficients of the rest of its neighbors MS v; and iii) it checks
whether the following inequality holds:

|sw(k) − MS v| ≤
1
k

(5.6)

In case it holds, then v accepts the new value x of w. Otherwise, it marks x as
suspicious and reports it to its other neighbors. If enough nodes (one can vary
the number of required votes from one to all neighbors) confirm the suspicions
regarding v, then w can be excluded from the network.

Figure 5.8 shows the progression of the averaged speed coefficient over all nodes
in the corresponding network and the function 1/x. All plots are averaged results
over 100 instances of each network type. The speed coefficients in all network types
have similar gradients. They all are dominated by 1/x for x > 70.

One can easily conclude that the decision rule proposed in 5.9 is inadequate
within the first 70 iterations, but is very tight afterwords. That is, we allow com-
promised nodes to lie about their values at the beginning of the algorithm. The
huge fluctuations in the beginning of the algorithm make it highly unlikely that a
meaningful mechanism for that phase of the algorithm exists. At the beginning,
large values are exchanged with very small values in every exchange operation.

Our security mechanism remains successful if it overcomes the following three
challenges: i) detect nodes falsely claiming they have converged; ii) detect nodes
that manipulate their values after the network has stabilized; iii) detect malicious
nodes changing their values always within the tolerance interval, which should not
influence the convergence speed of the whole network.
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Figure 5.8: Average speed coefficient within one run of BridgeFinder on all four
network types

We address the first issue directly. A node cannot possibly lie it has converged
because once the network has stabilized, its neighbor will detect that its speed
coefficient is extremely close to zero in comparison to its surrounding nodes.

From Section 5.9, one can also read the magnitude to which a given value
can be manipulated. One can easily calculate that after only 100 iterations, even
discrepancies within 5% of the real value will be detected as suspicious. This buffer
decreases with each next iteration of the algorithm.

To address the final issue, we simulated the following scenario. Ten percent of
the nodes are malicious. They all have an oracle that provides them with the mean
value of the speed coefficients of their neighbors. These mean values are not known
under realistic circumstances. Then, all malicious node lie within the maximum
buffer at each fifth iteration. The results are displayed in figure 5.9. Even under
those circumstances, the overall convergence times of all four network types remain
intact.

We point out that this security mechanism does not prevent nodes from inserting
false values as long as they stay within the current tolerance interval of the receiving
node. That means that there is no guarantee that the output values have not been
compromised. Therefore, any information that can be extracted from those values,
e.g., number of nodes in the network, has to be used very carefully.

However, compromised nodes change convergence speeds only marginally. This
guarantees the proper function of the BridgeFinder algorithm, even in the presence
of compromised nodes.
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Figure 5.9: Optimal attack strategy every fifth iteration of BridgeFinder with 10%
of malicious peers

5.10 Summary

In this chapter, we presented BridgeFinder, a distributed algorithm for identifying
critical nodes in complex networks. Critical nodes are those whose disappearance
would partition the network, which would affect almost all elicited use cases 2.2.
Identifying and protecting those nodes is vital to keeping the network operational.
The benefit of using BridgeFinder is significant in fast-changing environments typ-
ically seen in first response situations. The approach may be applied to wireless
multihop networks, sensor networks and P2P networks. To the best of our knowl-
edge, there is no equivalent distributed approach. BridgeFinder is fast, reliable,
produces almost no additional message overhead and only small state per peer.

Approach Detect Global
Criticality

Construction
Steps

Error Rate Global
Error Rate

CAM ◦ 1 Low high
DMCC • 2 No error tunable
XTC ◦ 2 No error n.a.
BridgeFinder • 1 n.a. low

Table 5.2: Contributions and comparison with related work

Table 5.2 shows BridgeFinder in comparison to its directly related approaches.
The main contribution is the reliable detection of global critical nodes. It does not
test only some nodes, but rather evaluates, in parallel, all nodes in the network.
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When the algorithm is finished, the results are known to all nodes. Even with a
small state per peer and based only on local computations, the results are highly
accurate.

Furthermore, unlike other distributed approaches, it is resilient to attacks by ma-
licious nodes (cf. Section 5.9). BridgeFinder can easily be implemented on any
application or routing protocol, and we have shown as an example how to implement
it using IPv6 header options. With BridgeFinder a communication network may
be prevented from partitioning. This is essential for a P2P overlay network, which
heavily relies on a connected communication graph. In the next chapter, better
known P2P overlay approaches are evaluated for their applicability to the volatile
environment found after larger scale disasters.

Finally, although BridgeFinder is a fully distributed algorithm, it still has a reliable
guarding mechanism against malicious nodes attempting to harm the system. This
is because BridgeFinder focuses on the convergence speed and not on the values
collected by gossiping.



Chapter 6

P2P Overlay Network Layer:
Search and Lookup

In this Chapter existing types of P2P-networks are evaluated under the harsh environ-
ment found in first response situations. The findings of the conducted simulations
are valuable building blocks, which finally lead to the new P2P overlay network
PathFinder. It is designed to provide both, key lookup and exhaustive search, while
being able to recover quickly from network outages.

Section 6.1 revisits the challenges for overlay networks in first response situations.
In Section 6.2 state of the art robustness analysis for P2P overlay networks, as well as
the related lookup and exhaustive search mechanisms, are surveyed. In Section 6.3
the better known types of P2P networks are evaluated under the occurrence of high
churn, which leads to the design recommendations presented in Section 6.4. Then,
in Section 6.5 we propose a new P2P overlay network, which works under hostile
first response environments and combines flexible exhaustive search with quick
key lookup capabilities. Section 6.6 summarizes the most important aspects of the
proposed PathFinder overlay design and runtime metrics.

6.1 Introduction

First response communication needs to deal with heterogeneous devices, small
PDAs with limited bandwidth and limited CPU power, as well as highly available
servers offered by operation control (see Section 2.2). Current first response commu-
nications and planned future systems are based on wireless LAN or WIMAX [int05,
www06] (cf. Section 2.4).

6.1.1 General Approach

We cannot assume a wireless access point infrastructure right after a catastrophic
event. Therefore, the network must also support a wireless ad-hoc mode, at least un-
til a more stable communication infrastructure is available. In a typical first response
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case, the personnel carries small, handheld devices. Even sensor technology might
be used. In addition, more powerful equipment is also present, e.g., at the command
post. These nodes generally have much more power and bandwidth available. In
addition, these fixed spots are able to provide reliable wireless LAN infrastructure,
which greatly improves transfer rates.

In this thesis, we analyse four different overlay architectures: a fully unstructured
network, a network based on a distributed hash table, and two kinds of superpeer
networks, one with random superpeer selection and another with superpeer selection
based on actual peer capabilities. Our goal in this context, is to identify the strengths
and weaknesses of each of these overlays for the particular needs of a first response
scenario. The expected results are to find a reasonable range in which the different
P2P overlays perform as intended and to find the borders at which an overlay
becomes unusable.

The unstructured network is a randomly connected network where each peer
has three neighbors. We evaluated two superpeer network configurations. In the
first, all peers had the same resources, and some were selected as superpeers. In the
second, we gave some peers higher uptimes and selected them as superpeers. For
the DHT, we selected Tapestry [Zea04] (the results apply for other DHTs as well).
We initially assume that the actual network is able to provide fully reliable ad hoc
routing from any node to any other node. This enables us to evaluate the resistance
to churn.

6.1.2 Requirements

The main task of the ‘Overlay Network’ layer is to provide peer discovery and search
functionality (cf. Section 3). Our contribution in this context, a novel P2P overlay
network, may be used for a wide set of applications. However, it was designed to
better support the following typical requirements described in Section 2.2.

R4 (Resource Awareness) In order to utilize the heterogeneous resources effec-
tively, the P2P overlay network needs to be designed to allow for dynamic load
distribution. This property is one of the key design choices of the proposed overlay
network PathFinder.

R10 (Allow horizontal and vertical message transmissions) The developed
communication strategy must not restrict the message flow by design. It is the task
of the ‘Application Layer’ to implement the desired communication workflow and
eventually to restrict distinct communication channels.

R5 (Active Search) Searching is one of the key features of any overlay network.
Nevertheless, DHT overlay networks provide quick key lookup mechanisms, but do
not support effective full-text search mechanisms. However, unstructured networks
provide flexible exhaustive search mechanisms, but are not capable of efficient key
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lookups (cf. Section 3.2). Being able to combine searches and lookups in the same
overlay is very desirable, since it allows efficient and overhead-free implementation
of natural usage patterns. Our design requirement for a novel P2P overlay network
is to combine searches and lookups in an efficient manner.

6.2 Related Work

The first P2P overlay network for first response communication was developed
by the University of Virginia [A.S03a]. They identified main challenges in cur-
rent first response approaches and developed a prototype for a P2P-inspired first
response solution. Further implementation of their P2P solution [A.S03a] is done
using hypercast, GPS capabilities, multicast streaming video and access control
mechanism. Nevertheless, the goal was to develop a prototype implementation,
large scale simulations were not conducted.

DHT Overlay Networks in dynamic environments The basic DHT functional-
ity is very well studied [ZKJ01, I. 01, MNR02, RFH+01a, RD01b]. DHTs have
been studied in volatile environments, in particular, at higher churn rates, DHTs
tend to become unstable[S. 04]. Churn rate behavior is both theoretically exam-
ined [S. 05] and simulated.

Unstructured Overlay Networks in dynamic environments BubbleStorm [TKLB07]
is one novel unstructured P2P overlay network. Evaluations have shown its great ro-
bustness in highly volatile environments. As discussed in [TKLB07], BubbleStorm
is currently the most efficient overlay for exhaustive searches. However, like all
other unstructured P2P overlay networks, it does not support any mechanisms for
key lookup.

Hybrid Approach Solar [CK03] is a middleware layer suitable for transportation
context information in emergency response scenarios. Solar is based on a superpeer
architecture, in which the superpeers are connected over the Pastry [RD01a] DHT.
Although the superpeers have more transmission power, their interconnection net-
work is still subject to churn and network congestion effects, and it is not clear that
a DHT is the correct choice for the superpeer interconnection.

Combination of structured and unstructured P2P overlay networks These
approaches and our findings in this Chapter lead to our main contribution, the
efficient combination of an unstructured and a structured P2P network. To the best
of our knowledge, PathFinder is the first such overlay. This combination allows
for the support of both efficient exhaustive searches over the overlay, as well as
DHT-like key-value lookups.
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Besides our approach of implementing DHT functionality on a random graph, some
different kinds of overlay graphs are proposed to improve their performance. These
include Viceroy [MNR02], which is based on a butterfly graph, and Koorde [KK03],
whose underlying topology is a DeBruijn graph. Even though butterfly graphs have
nearly optimal diameters, practical implementations of Viceroy leads to lookup
delay of 3log2(N) [LKRG03], on average. The Koorde had to abandon the property
of constant degree in order to handle node failures. This leads to degree growth of
O(log(N)).

6.3 Evaluation

We now present the results from our evaluation, which are averaged over 20 simula-
tion cycles. All four evaluated connection topologies were simulated using Peersim
(see http://peersim.sourceforge.net) and perform perfectly in the case of no churn.
In each case, we simulated the disconnection of some fraction of peers, and varied
this fraction from 0 to 1. The failed nodes were randomly picked. Analyzing the
resulting network graph, we determined the number of clusters and the size of
the largest cluster. These are vital metrics for ensuring reliable delivery of critical
messages in a first response scenario. If there is no path between two nodes, there is
no possibility to send a message. If a path exists, it should be possible to forward
all messages to their correct recipients under the assumed reliable ad hoc routing
(see Section 4.5). The goal of our first evaluation is to compare the different overlay
networks and to determine which of them performs best at different node failure
ratios.

6.3.1 Unstructured Network

Figure 6.1 shows the results for the unstructured network case. The network
consisted of 2000 peers. The x-axis shows the percentage of failed nodes, the left
y-axis the size of the largest connected component (cluster), and the right y-axis
shows the number of clusters. The random topology is created with an average node
degree of 3 and non-directed connections. The advantage of a random topology is
the low clustering factor. Even with a 30% rate of failure, only 2.5% of all remaining
peers are unreachable. Further increasing churn rates result in a complete collapse
of the topology, occurs at 70%–80% failure rates.

6.3.2 Superpeer Network

We consider two cases for the superpeer network. In the first case (random select),
all nodes are homogeneous and some of them are designated as superpeers. The
second case, sensitive select, simulates a typical first response scenario after the first
larger wave of responders have arrived with more communications equipment. In
this case, we select a small subset of peers, make them more robust against failure,
and designate them as superpeers. In both cases we assume that the superpeers form
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Figure 6.1: Clustering in unstructured network

a full mesh between them, but other network topologies are also possible [CK03].
Selecting good peers as superpeers can be performed on-line by the peers themselves.
However, these details are outside the scope of this thesis.

From the 2000 peers, we designated 200 peers as superpeers, and the rest of the
peers were evenly distributed between the superpeers, with each peer connected to
only 1 superpeer. (Connecting to several superpeers in range might be desirable in
a real-world deployment.) As mentioned above, the superpeers form a full mesh
between themselves. In the first case, all nodes had equal failure probabilities. In the
second case, with more powerful peers as superpeers, the superpeers had a failure
probability that was 1/30 of the failure probability of the normal peers. Note that it
is still possible for superpeers to fail; it is just much less likely for this to occur than
for normal peers. As we evalute a worst case scenario, we did not provide backup
links for client peers, i.e., if a superpeer fails, all connected clients are considered
as disconnected.

Figure 6.2 shows the size of the largest cluster and number of clusters for the
two superpeer cases. The thin lines show the random select case, and the thick lines
show the sensitive select case where superpeers had longer uptimes.

The sensitive select strategy, i.e., selecting superpeers with better uptimes,
improves performance significantly. The size of the largest cluster is almost the
same as the number of remaining peers, meaning that in most cases, the complete
network remains connected. The number of clusters is also minimal. In contrast to
the randomly selected superpeers, the number of clusters is cut by a factor of 10.

6.3.3 DHT

We also investigated the Tapestry DHT in the same scenario. It is known to maintain
many connections to its neighbors, which should make it robust against node failures.
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Figure 6.3: Message reachability in Tapestry

We observed that in all of the cases, the Tapestry network remains connected; thus,
in principle, every message should always reach its intended recipient. We evaluated
the successful messages by choosing a random pair of peers 1000 times and letting
one of them perform a lookup of the other. The results are shown in Figure 6.3.
The x-axis again plots the fraction of failed nodes, and y-axis shows the fraction of
messages that reached their intended recipient. Note that the sender and receiver
were chosen from the set of nodes that were still alive after the failure. In other
words, 100% reachability was theoretically always possible.

Our results show a message success rate of less than 30%, if approximately
50% of peers fail. In other words, even though a graph of Tapestry is not clustered,
the delivery rate of messages dramatically decreases even at medium churn rates.
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The main reason for the low success rate is that Tapestry relies on certain routing
table entries for forwarding messages. Note that we did not run any topology
maintenance in any of the overlays after the failure. Each of the overlays is able
to recover full connectivity after the usual periodic maintenance, but the costs
are different. Unstructured and superpeer networks have relatively low costs, but
Tapestry needs to rebuild its routing tables, which presents a considerable overhead.

Although our evaluation was made with Tapestry, similar results could be expected
from any other DHT, with small differences in terms of connectivity and reachability.
However, all DHTs are based on the assumption that any peer is able to send a
message to any other peer. Under the reliable ad hoc routing assumption from above,
this is feasible, but under more realistic conditions, this assumption is no longer
valid.

6.3.4 Summary of Results

Both the unstructured network and Tapestry are very good at keeping the network
connected, i.e., minimizing the number of clusters. The superpeer network with
correct superpeer selection is able to achieve similar performance. However, both
the unstructured network and Tapestry require a fully reliable network to deliver the
service; failures will severely impact their performance.

In Table 9.1 we summarize the behaviors of the overlay networks as a function of
the fraction of failed nodes. We consider two cases: operational, where 70–100%
of the messages are routed to the correct recipients, and failed where less than 50%
of the messages arrive correctly. For each overlay network, we show how many
nodes in the overlay are allowed to fail for the network to meet the performance
targets. The reason for failure is that either the network has clustered or is unable to
find a correct routing path (DHT).

The unstructured topology performs better than randomly elected superpeers (SP/Ran-
dom); the failure occurs at 75% node failure, while in the superpeer case, a 50% rate
is sufficient to push the network to a failed state. This is because when a superpeer
fails, all its normal peers become individual clusters. Tapestry, as discussed in
Section 6.3.3, performs very poorly but the network remains connected. All values
are derived from the measured clustering which is shown in figures 6.1, 6.2 and 6.3.
For example in the unstructured, case 72% of the nodes (1440 peers) must fail in
order to keep 70% of the remaining nodes (392 peers) operational, i.e., 30% (168
peers) of the network are not part of the giant component.
If superpeers are selected based on their uptime, the network remains operational.
This is because, as shown in Figure 6.2, there is only a minimal amount of clustering.

In summary, good selection of superpeers yields significant performance gains
over normal unstructured networks. Our results also show that simply selecting
superpeers is not sufficient to obtain good performance.
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Topology Operational Failed

Superpeer Always Never
SP/Random 27% failed 50% failed
Unstructured 72% failed 76% failed
DHT 15% failed 30% failed

Table 6.1: Effect of node failures

6.4 Design Recommendation

We have evaluated different overlay networks in terms of their suitability for first
response scenarios. Our main findings and design recommendations are:

Exploit stable peers We have found that an overlay that may adapt its topology
to carefully selected stable peers (superpeers) is promising and greatly increases the
operational state (see Section 6.3.4).

Unstructured topology An unstructured network is able to handle larger amounts
of churn as well. Node failures hardly partition the network, and a giant compo-
nent remains functional until the failure exceeds about 75% of the nodes. The
high robustness against churn is predicted in a theoretic analysis of unstructed
networks [GHW07].

DHT overlay network A DHT-based network, although it remains connected, is
sensitive to churn. It is able to transmit messages to correct recipients only if the
network is relatively stable. Nevertheless, key lookup is one important functionality
provided by structured P2P overlay networks. Keeping this sensitiveness in mind,
DHT functionality should be offered if the network reaches a stable state. As soon
as more volatile user behavior or environment changes occur, the overlay network
should return to the unstructured mode of operation.

6.5 PathFinder

Given the derived requirements from Section 6.1.2 and the findings from Section 6.4,
the proposed overlay network

1. shall provide flexible search mechanisms.

2. should exploit peer heterogeneity i.e., be resource-aware.

3. might use an unstructured topology.

4. should support DHT functionality.
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Our approach, PathFinder, satisfies all of these requirements; it offers efficient
lookups and efficient exhaustive search in the same overlay. PathFinder is based on
a random graph overlay, which allows us to use existing mechanisms for efficient
search. In addition, we have designed an efficient key lookup mechanism that
enables DHT functionality. By introducing the concept of virtual peers, resources
may be freely distributed among the available peers. In addition, our evaluation
shows that PathFinder scales up to hundreds of millions of nodes and is comparable
or better in terms of lookup and search performance, when compared to existing
overlays.
To reiterate, the main contribution of this Section is the efficient combination of
searching and lookups in a single overlay.
We have evaluated PathFinder analytically and with simulations. We investigated
its resistance to churn and its robustness. Our results clearly show that PathFinder is
highly scalable, fast, robust, and requires only a small per-peer state. In terms of
exhaustive search performance, PathFinder is similar to BubbleStorm [TKLB07].
In terms of DHT-like lookup performance, our results show that PathFinder is at
least as good as current DHTs and, in most cases, is able to retrieve objects with
less overlay hops than other DHTs.

6.5.1 Introduction

Given the attractive properties of human-friendly keyword searches in unstructured
networks and computer-friendly and efficient lookups in DHTs, it is natural to ask
the following question:
Is it possible to combine the desirable properties in a single overlay network?
Of course, it would be possible to run two overlays in parallel, but a single overlay is
much more desirable, as it has considerably lower overhead, both in terms of overlay
maintenance and replication effort. Parallel overlays require twice the maintenance
traffic and state maintenance, as well as wasting space when objects are replicated.

General Idea In this thesis we present PathFinder, a P2P overlay that combines
an unstructured and a structured network in a single overlay. PathFinder is based
on a random graph, which gives it low average path length, a large number of
alternate paths for fault tolerance, and highly robust and reliable overlay topology.
Furthermore, the number of neighbors in PathFinder does not depend on the network
size. Therefore, the load of single peers in PathFinder remains constant, even if the
network grows up to 100 million or more peers.

Practical Example Being able to combine both efficient lookups and efficient
search is extremely useful for distributed applications and human users (cf. Sec-
tion 3.1). An efficient search (i) allows users to discover what content is available.
An efficient lookup (ii) enables them to retrieve the content later or forward it to
their friends, knowing that the friends will see the same content.
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The equivalent of this on the Web is (i) making a Google search and then (ii)
bookmarking the resulting Web page. The bookmark can then be retrieved later
or sent to friends. The key difference of PathFinder is that there is no need for a
centralized indexing service. The searches and lookups are built into the system
architecture.

Challenge In our design of PathFinder, we are fully compliant with the concepts
of BubbleStorm [TKLB07], namely the overlay structure based on random graphs.
We augment the basic random graph with a deterministic lookup mechanism (see
Section 6.5.2.3) to add efficient lookups into the exhaustive search provided by
BubbleStorm. As shown in [TKLB07] and discussed in [GHW07], overlays based
on random graphs are highly resilient even to large simultaneous crashes of peers.
At the same time, they provide short average path lengths between two peers.
The challenge, and one of the key contributions of this Chapter, is developing
a deterministic mechanism for exploiting these short paths to implement DHT-
lookups.

6.5.2 PathFinder Design

In this Section, we present how the PathFinder overlay is constructed and managed.
We will present in detail how key lookup, search, joining and leaving the network,
and handling of crashed nodes are performed in PathFinder. We also show how the
PathFinder network can be built in a practical scenario.

6.5.2.1 PathFinder Overlay Basics

PathFinder is based on a random graph1 G with a fixed number of nodes M. For a
network of N peers, M is typically between N and 2N. Section 6.5.2.7 shows how
to adapt M to the actual number of peers in the system. We call the nodes of G
virtual nodes. The degree of a virtual node is Poisson distributed. Each physical
node (i.e., peer) is responsible for one or more virtual nodes. In the remainder of
the Chapter, we will use the terms “peer” and “virtual node” to denote the different
actors.

Topology Creation Our approach is leveraging off a well-known characteristic of
pseudo random number generators (PRNGs); given the same seed every peer will
obtain the same sequence of pseudo random numbers. In PathFinder every node
must keep a PRNG and the preset average degree of virtual nodes c. The graph
construction proceeds as follows:

1. A peer initializes its pseudo random number generator with its own ID. (We
propose generating peer IDs from their IP addresses (see Section 6.5.2.5)).

1More precisely, we use an Erdös-Rényi random graph. In the remainder of the thesis we use the
term random graph.
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seed generator(myID);
foreach (virtualNode) {

numNeighbors = nextPoisson();
for i = 0, i < numNeighbors, i++ {

neighbor = nextRandom();
add(neighbor);

}

}

Figure 6.4: Code for calculating neighbors

2. The peer determines how many virtual nodes it should handle. See Sec-
tion 6.5.2.5 for details.

3. For every virtual node handled by the peer:

(a) The peer determines how many neighbors it should have by drawing a
pseudo random number and considering it to be from a Poisson distribu-
tion.

(b) The peer then draws as many pseudo random numbers as it has neighbors
and selects those virtual nodes as its neighbors.

Figure 6.4 illustrates this. Function nextPoisson returns a random number
from a Poisson distribution to determine the number of edges. Given an aver-
age degree of c, the probability of having k neighbors is well-approximated by
P(k) = ck

k! e−c. Function nextRandom returns a random number uniformly dis-
tributed between 0 and M.

A peer only needs a pseudo random number generator to perform this. There
is no need for network communication. Similarly, any peer can determine the
neighbors of any virtual node, by simply seeding the pseudo random number
generator with the ID of the virtual node. Note that neighbor links in the random
graph are directed.

Routing Table The routing table of a peer is determined by the neighbors of
its virtual nodes. It contains all the direct neighbors of all of its virtual nodes in
the random graph. These tables are easy to maintain, because all peers only hold
between one and two virtual nodes on average (i.e., c to 2c neighbors). As our
results show, the value of c = 20 is sufficient for good performance, and better
performance can be obtained for higher values of c. Because one entry in the routing
table contains the virtual node ID and its IP address, the value of c could possibly
be set to very high, on the order of hundreds or thousands, without undue burden on
a peer’s storage.

Figure 6.5 shows a small sample of PathFinder with a routing table for peer
11. The random graph has 5 nodes (1 through 5), and there are 4 peers (11 through
14). Peer 11 handles two virtual nodes (4 and 5), and all the remaining peers have 1
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Figure 6.5: A small example of PathFinder with peers and virtual nodes

virtual node each. The arrows between the virtual nodes show the directed neighbor
links.
Each peer keeps track of its own outgoing links, as well as incoming links from
other virtual nodes. A peer learns the incoming links as the other peers attempt to
connect to it. Keeping track of the incoming links is, strictly speaking unnecessary,
but makes key lookups much more efficient (see Section 6.5.2.3). The routing table
of peer 11 therefore consists of all outgoing links from virtual nodes 4 and 5, and the
incoming link from virtual node 3. In general, every peer is responsible for keeping
only its outgoing links alive. In contrast to established DHTs, the maintenance
costs of PathFinder does not depend on the network size, as the average number of
neighbors in the random graph is fixed.

6.5.2.2 Storing Objects

Each object stored in PathFinder has a unique identifier. We derive this identifier by
hashing the contents of the object with some hash function (e.g., SHA-1). Objects,
such as regularly updated news, lists of injured people, status reports, etc., that have
changing content but would prefer to remain under a single identifier can create the
hashes in any other manner.
The object is stored on the virtual node (peer responsible for the virtual node), which
matches the object’s identifier. If the hash space is larger than the number of virtual
nodes, as with SHA-1, then we map the object to the virtual node whose identifier
matches the prefix of the object hash.
There is no need for an additional lookup service, because PathFinder provides
exhaustive search over all the objects (see Section 6.5.2.4). When a user wants
to find an object, he performs a search that returns the object and its identifier.
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Subsequent retrievals of the same object can use the identifier to perform a lookup
(Section 6.5.2.3). If a user wants to send a link to the object to her friends, he can
send the identifier (which can include human-friendly metadata for display).

6.5.2.3 Key Lookup

Key lookup is the main function of a DHT. In order to perform quick lookups, the
average number of hops between peers needs to be small. We now present how
PathFinder achieves efficient lookups.

Basic Approach Suppose peer I wants to retrieve object O. Peer I determines that
virtual node J is responsible for object O. Denote the set of virtual nodes managed
by peer I as V . For each virtual node in V , peer I calculates the neighbors of those
nodes. (Note that this calculation is already done, as these neighbors are the entries
in peer I’s routing table.) Peer I checks whether any of those neighbors is virtual
node J. If yes, peer I will contact that peer to retrieve O.
If none of peer I’s virtual node neighbors is responsible for O, peer I calculates
the neighbors of all of its neighbors. Because the neighbors are well-defined (see
Figure 6.4), this is a simple local computation. Again, peer I checks whether any
of the new neighbors is responsible for O. If yes, peer I sends its request to the
neighbor whose neighbor is responsible for O.
Again, if no match is found, peer I expands its search by calculating the neighbors
of the nodes from the previous step, and checks again. This process continues until
a match is found. Eventually, peer I will have searched through the whole random
graph, so a match is guaranteed.

Forward Backward Chaining For an average degree of c per virtual node, the
above process requires us to compute ci nodes for each step i. This becomes
unwieldy for larger networks, which may require a larger number of steps. For
example, with c = 20 and 100 million nodes we need approximately 8 steps, i.e.,
208 = 2.5 · 1010 nodes. We mitigate this by expanding the search rings from both I
and O, as shown in Figure 6.6.

Because peer I is able to compute O’s neighboring virtual nodes, I can expand
the search rings locally from both the source and target sides. In every step, the
search depth of the source and target search ring is increased by one. For efficiency
reasons, peer I keeps its rings on its own side pre-computed in memory.2 This way,
peer I most only needs to start expanding the ring around the target and checking
if the newly computed virtual node is in its own list. As peers keep track of their
incoming links (Section 6.5.2.1), the above procedure functions effectively.

When a match is found, we have a path from the source to the target. We
pass the discovered path along in the lookup message. Thus, every peer on the

2A peer can pre-compute rings for all of its virtual nodes and use all of them when determining
the shortest path.
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Figure 6.6: Key lookup with local expanding ring search from source and target

path knows immediately to which of its neighbors it should forward the query.3 In
essence, PathFinder uses source routing for key lookups.

Performance Analysis Note that the whole computation of the path happens
locally on the source peer. The added cost comes in the form of additional memory
usage and computation time. We now show that they are both completely negligible
in practice.
We generated various PathFinder networks from 103 up to 108 nodes, with an
average degree 20. In all of them, we performed 5000 arbitrary key lookups. It
turned out that expanding rings of depth 3 or 4 (i.e., path length between 6 and 8)
is sufficient for a successful key lookup, as shown in Figure 6.7. In the figure, the
x-axis shows the path length and the y-axis shows the cumulative fraction of paths
observed. For example, for 1 million nodes, the average path length is concentrated
around 6. The theoretical average shortest path length for Erdös Renyi random
graph with 1 million nodes and average degree 20 is 4.6, so the difference is only
slight.

Figure 6.7 also shows that increasing the network size by a factor of 100 leads
only to two additional hops for key lookups. The key lookup performance depends
mainly on the average number of neighbors c and only slightly on the number
of virtual nodes N. It has been shown that the average path length scales with
O(ln(N)/ ln(c)) [Bol01]. Increasing c leads to better key lookup performance, but
higher average loads for the peers. Therefore, c can be adjusted to meet the needs

3An intermediate peer could also re-compute the path for the messages it receives, since the
original source is not aware of the incoming links of the intermediate peer. However, we do not expect
this to shorten the lookup path much, so in the interest of efficiency, we do not expect peers to do such
re-computations.



6.5 PATHFINDER 85

 20

 40

 60

 80

 100

 0  2  4  6  8  10

C
um

ul
at

iv
e 

Lo
ok

up
s

Path Length

10k nodes
1M nodes

100M nodes

Figure 6.7: Distribution of path length for 5000 key lookups

of the concrete application scenario.
Assuming an average degree of 20 and ring depth of 3 (on both sides), peer I needs
to compute 2 · 203 = 16, 000 neighbors. Assuming neighbors are stored as 4-byte
integers, this would require 64 kilobytes of memory. With ring depth 4 on both
sides, this rises to 320,000 neighbors and about 1.3 megabytes of memory. The
computation time for finding the match is typically on the order of 1 ms, even
on laptops. In summary, the additional cost of calculating neighbors in memory
does not represent any kind of a strain on memory nor does it take a long time.
Furthermore, a peer performs these computations only for its own requests; requests
from other peers can be simply forwarded using the path given in the message.

6.5.2.4 Searching with Complex Queries

PathFinder supports searching with complex queries with tunable success rates like
BubbleStorm [TKLB07]. In fact, because both PathFinder and BubbleStorm are
based on random graphs, PathFinder is fully compliant with the search mechanism
of BubbleStorm. In BubbleStorm, both the data and queries are sent to some number
of nodes, where the exact number of messages depends on how high the probability
of finding the match is set. We can use the exact same algorithm for PathFinder for
searching, and the reader is referred to [TKLB07] for details. The key advantage of
PathFinder is that it allows for both key lookups and exhaustive search on the same
network topology.

6.5.2.5 Node Join and Leave

We now describe the join and leave process for nodes in PathFinder. Its task is to:

• assign virtual nodes to peers.
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• maintain outgoing links by the peer responsible for the corresponding virtual
nodes.

• keep incoming links in the peer’s state.

The purpose of the node join process is to integrate a new peer into the Path-
Finder overlay. The join process can also be used to automatically rebalance the
network load, because virtual nodes may be unevenly distributed among the peers.

Node Join When a new peer A joins the network, it must contact a peer I that is
already part of the network. The first virtual node assigned to A is calculated as a
hash of its IP address. Peer I routes the join request using the key lookup procedure
(Section 6.5.2.3) to the virtual node, which matches A’s identifier. This node is
handled by peer B. Peer B will hand 1 or more of its virtual nodes over to A and
inform the neighbors about the new peer. In Section 6.5.2.7, we consider the case
where a peer has to contact several other peers to find a free virtual node and how
the network can adapt to such cases.

A successful join means that (i) a peer releases some of its assigned virtual
nodes to the new peer, but keeps at least one virtual node for itself, and (ii) the new
peer has successfully established connections to its neighbors. After the join process
is completed, the new peer has some number of virtual nodes with an up-to-date
neighbor table. It can be easily seen that the three invariants hold throughout the
join procedure in the absence of node failures. We consider them in Section 6.5.2.6.

Node Leave When a peer leaves the network, it relinquishes its virtual nodes
to its neighbors, who are responsible for establishing the connections to the right
peers. Note that the peer can divide its virtual nodes among its neighbors evenly,
as opposed to most existing DHTs, where the responsibilities are given to a single
node.
Observation: A peer joining or leaving the network will cause on average c +

ln(N)/ ln(c) messages.
The peer joining the network is routed to an arbitrary position determined by

the hash function of its IP address. This costs one key lookup, which is on average
c + ln(N)/ ln(c). The outgoing neighbors are directly transfered from the issuing
node. Then, on average c incoming links transferred from the issuing node need to
be updated, which causes c update messages.

6.5.2.6 Node Crash

A node crash is the sudden departure of a peer from the network without correctly
following the departure protocol from above. A crash violates the invariants from
Section 6.5.2.5, and neighbor tables are no longer correct.
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Crash Detection and Peer Responsibility The absence of the failed node is
recognized by its neighbors when they stop receiving keep-alive messages from it.
The time for detecting a failed node depends on the interval used for keep-alive
messages. When a peer detects a failed node, it locally calculates all neighbors of
the failed node. The first peer in the neighbor list has to take over the missing node.
Therefore, the peer, that has detected the failed node sends the first peer its own
IP address and a message that it should start a recovery process. If the first peer in
the neighbor list does not respond, it is replaced by the next peer in the list. Each
peer in the neighbor list, which detects the missing node and still has not received a
recovery message, also follows the above protocol. In case of concurrent attempts
taking over the failed node, the node with the smallest position in the list continues
the recovery process.

Topology Maintenance After a responsible peer has been determined, a new
routing table for the failed node has to be generated. For this purpose, c key lookups
have to be performed. After this step, which needs c ln(N)

ln(c) hops on average, a routing
table containing all outgoing links of the failed node is established.

The remaining incoming links are recovered automatically by the nodes pointing
to the failed node. They notice timeouts of keep-alive pings sent to the failed node.
Then, they update their routing tables by performing a regular key lookup to the
failed node. This reveals the new responsible peer in c ln(N)

ln(c) steps, on average. To
reduce the load of the new responsible peer, we can also route to its neighbors,
because they already know the IP address of the new responsible peer.

Observation: A failed peer causes 2c(ln(N)/ ln(c)) messages, on average, to
repair the network overlay.

Robustness Analysis Figure 6.8 shows the message volume for a simulated Path-
Finder network with 5000 peers and different fractions of crashed peers. The x-axis
shows the time from the crash in steps, where one step is at least one roundtrip time
between two peers in real time. The y-axis shows the total amount of maintenance
messages for each step in the whole system. The crash occurs at step 0, when all
the failed nodes, 10–50% of the nodes, disappear immediately.

Moderate crashes (up to 30% crashed nodes) are healed in about 100 simulation
steps, and even a crash of half the nodes is practically healed in 300 steps. The
message load also remains reasonable, with about 36 messages per peer on average
(half of 5000 peers crashed in worst case scenarios and a total number of messages
in the system is under 18000). Considering the real-world time required to heal
the system, if one step is 120 ms, then the system would heal itself in 12 s for
the smaller crashes and in 36 s for the 50% crash. The main determining factor
is the ability of peers to send all the required messages in a step, so the recovery
could potentially take longer. However, recovery times are still very short, on
the order of a few minutes at maximum. A similar performance was observed in
BubbleStorm [TKLB07], which is also based on a random graph.
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Figure 6.8: Repair costs for network with 5000 peers

6.5.2.7 Network Size Adaptation

In order to keep a reasonable ratio between peers and virtual nodes we must keep
track of the number of peers in the network. We estimate the number of peers in the
PathFinder overlay with the push-sum gossiping protocol [KDG03]. In [TLB07],
this procedure was extended to make it applicable to peer-to-peer networks. Push-
sum needs log(N) + log(1/ε) steps to converge.

as virtual nodes can easily be transferred between peers, PathFinder is able to
adapt itself to the current workload. Weaker peers may give up virtual nodes to
stronger peers.

Recall the join process from Section 6.5.2.5. When a new peer joins the network,
it takes some number of virtual nodes. However, when most of the peers in the
network have only one virtual node, the joining node has to make several requests
before finding a peer that still has available virtual nodes.

Adaptation Threshold The probability of finding a peer with more virtual nodes
can be described through the hypergeometric distribution f (1; N,m, c). A peer can
ask any of its c neighbors for virtual nodes, and success depends on the number
of peers with more than 1 virtual nodes within the network (m). As the ratio of
peers in the network to average number of neighbors (i.e., N/c) is higher than 0.95,
the process can also be approximated through the binomial distribution. A ratio
of virtual nodes to peers of 1.15 establishes a successful join for 80% of requests
within 10 hops (B(10, 0.15)) and over 96% after 20 hops.
We aim to keep the cost for a join reasonable. Therefore, when the threshold of 1.15
virtual nodes per peer is reached, the network starts a transition phase in which the
amount of virtual nodes is doubled.
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Transition Phase Assume that a virtual node w notices that the above threshold
is reached. Then w starts the transition phase by generating two new virtual nodes,
w1 and w2, adding a new bit to the left of its ID. One of w1 and w2 is given bit 0,
and the other bit, 1.
Now, w1 and w2 have to calculate their neighbors. They proceed as in Section 6.5.2.1,
but use the new ID space. The IDs of the calculated neighbors also have one extra
bit. Let x1 be one of the neighbors of w1. At this moment w1 still does not have a
routing table and cannot route to x1. Therefore, w1 disregards the left-most bit of
x1’s ID and uses the routing table of w to determine the node x corresponding to
this ID.

The peer responsible for x will be responsible for x1 when the transition phase
is over. This is because the ID of x1 is the ID of x, with one bit added to the left.
Therefore, w1 now adds this peer to its new routing table. If x has not yet started
the transition phase, then it does so now. When the above procedure is carried for
all new neighbors of w1 and w2, the transition phase for w is completed. When the
pushsum protocol confirms that the number of virtual nodes in the network has been
doubled, i.e., all virtual nodes have completed the transition, the old routing tables
are abandoned.

We expect the transition phase to be a rare event in an operational network.
Furthermore, it is not a time-sensitive process, so in a large network, it could
possibly be artificially stretched out to hours or days, since both the old and new
networks are operational during the transition.

Network Shrinking Shrinking the ID space is also possible and works similarly.
If the virtual node to peer ratio is higher than, e.g., 4/1, the amount of virtual nodes
can be reduced in order to improve lookup performance. The procedure is the
reverse of expanding the network, whereby peers will strip one bit from left of their
IDs. In case two different peers map to the same shorter ID (quite likely), the one
who had bit 0 as the first bit takes over. The peer who had bit 1 must find another
virtual node to take over. If we set the threshold of shrinking high enough (e.g.,
4/1), then there are enough virtual nodes for all peers, but a peer might have to
search for a free one.

Note that routing performance does not substantially change if the network
grows or shrinks by a factor of 2, which is a property of Erdös-Rényi random
graphs.

6.5.3 DHT Comparison and Analysis

Most DHT overlays provide the same functionality, because they all support the
common interface for key-based routing (cf. Section 3.2). The main differences
between the various DHT implementations are average lookup path length, resilience
to failures, and load balancing. In this section, we compare PathFinder to other
DHTs presented in the literature. We perform the comparisons both with simulations
and analytically for networks that are too large to simulate (up to 100 million virtual
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nodes). All simulations were performed with the P2P simulator PlanetSim [Gea05]
in combination with FRCS (cf. Chapter 4), the P2P overlays were either already
available within PlanetSim or were built and tested by the authors. All overlays
perform as expected from the evaluations of the related publications.

Chord The lookup path length of Chord is well studied [ZZ03].
It is asymptotically:
Lavg(N) = 1

(1+d) log(1+d)−d log(d) log N, where N is the number of peers in the network.
The parameter d tunes the finger density. Usually, Chord has finger density d = 1,
and therefore, Lavg =

log(N)
2 . The maximum path length of Chord is log(N)

log(1+d) . The

average path length of PathFinder is log(N)
log(c) , where c is the average number of

neighbors. In other words, even for relatively small c, PathFinder has a much shorter
path length than Chord.

Pastry The path length of the Pastry model can be estimated by dlog2b(N)e [RD01b],
where b is a tunable parameter. The authors recommend b = 4. In this model, there
are log2b(N) levels and 2b − 1 neighbors per level. This results in 96 neighbors for
a network of 50 million peers. PathFinder achieves comparable results with only
c = 20 neighbors, on average. For c = 50, the average path length of PathFinder
drops to 2/3 the path length of Pastry. Theoretically, PathFinder should achieve
Pastry’s performance for c = 16 (for b = 4). Given that our results show that Path-
Finder matches Pastry for c = 20, we suspect that Pastry’s real-world performance
for large networks would not be quite as good as the theoretical model leads us to
expect.

Symphony The Symphony overlay is based on a small world graph. This leads to
key lookups in O( log2(N)

k ) hops [MBR03]. The variable k refers only to long distance
links. The actual amount of neighbors is indeed much higher [MBR03].

CAN The diameter of CAN is 1
2 dN

1
d with a degree for each node 2d, with a

fixed d. With large d, the distribution of path length becomes Gaussian, like
Chord [LKRG03].

Butterfly The butterfly network has a nearly optimal diameter and average path
length. The average distance in a butterfly network is given by [HK91]: µd ≈
3 logk(N)

2 . An implementation of the butterfly network, Viceroy [MNR02], has an
average path length of 3 log2(N).

PathFinder The theoretical average path length of PathFinder is L =
log(N)
log(c) , where

c is the average number of neighbors per node. This is a property of its underlying
random graph.
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Figure 6.9: Average number of hops for 5000 key lookups in different DHTs

In summary, all DHTs have a path length proportional to O(log(N)), with some
individual multipliers or other factors. In this sense, there is not much difference
between them.

Practical Evaluation We used simulations to evaluate the practical effects of the
individual factors. We compared PathFinder with Pastry, Chord, Symphony, and
SkipNet [HJS+03]. Figure 6.9 shows the results for a 20000 node network. We
performed 5000 lookups from random nodes to random nodes and measured the
number of hops it took for each of the DHTs to find the object. We plot the number
of hops on the x-axis, and the y-axis shows the cumulative fraction of requests that
were successful with the given number of hops.

Pastry and PathFinder perform similarly, with the maximum number of hops being
around 4. Chord and SkipNet perform more poorly, needing on average 7 additional
hops. Symphony’s performance is extremely poor, with some lookups requiring up
to 40 hops (not shown in the figure). CAN and Viceroy had even poorer performance
and were thus dropped from further comparisons.

We also performed an analytical comparison, using the equations from literature
summarized above. Our goal is to gain some idea about how well the different
networks would scale to large networks with hundreds of millions of peers. We
compared PathFinder with Pastry and Chord. We ignored Symphony because of
its poor performance in the earlier experiment, and SkipNet because of the lack of
a well-understood analytical model for its performance. We also used a DeBruijn-
graph, because they are known to have optimal diameter.

Figure 6.10 shows the results. Note that PathFinder numbers are actual numbers,
not analytical. For the other case, we had to resort to analytical modeling due to
lack of suitable simulation environments. In Figure 6.10, x-axis shows the size of
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Figure 6.10: Average number of hops for different DHTs measured analytically.
Numbers for PathFinder are simulated.

the system, and the y-axis shows the average path length in the system. As was to
be expected based on Figure 6.9, Chord’s performance is clearly lower than that
of Pastry and PathFinder. Pastry and PathFinder are very similar in performance
for c = 20. Making c = 50 gives PathFinder a similarly sized neighbor tables as
Pastry, and yields about 1 hop less in systems of 100 million nodes. The line for
the DeBruijn graph shows the absolute shortest path for a PathFinder network with
c = 20, and PathFinder is only slightly over 1 hop longer.

6.5.4 Resilience Against Failures

High churn rates [SGG02] are common in peer-to-peer networks. Therefore, alterna-
tive paths may be needed to find a particular node. This is where PathFinder benefits
from its randomized structure. There are always as many alternative independent
routes between any two nodes as the minimum of their degrees [GHW07].

The question then becomes, how difficult is it to find a valid alternative path? Note
that a peer A is not aware if there is a failed node on its path to peer B. It is only
when A tries to reach B, that A notices that it has to search for an alternative path.
However, due to the high number of alternative independent paths (i.e., paths that
have only common start and end nodes) between each two nodes, the number of
retries required is very small.

We evaluated this by taking a network of 50000 virtual nodes and allowed
some percentage of them fail. We then checked all pairs of remaining nodes and
performed a key lookup using the procedure from Section 6.5.2.3. We recorded
how many times we had to re-try the path because of the failures. The results are
shown in Figure 6.11. One observes that 5 tries are sufficient to connect over 90%
of the node pairs, even when 25% of the nodes in the network have failed. In a case
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Figure 6.11: Required tries in order to find an alternative path between each couple of
nodes in a network with 50000 virtual nodes.

when almost half of the nodes have failed, then 12 tries lead to a successful lookup
in 80% of the cases.

In the test, we performed no maintenance in the overlay. After maintenance, the
number of retries drops to zero.

We have seen that between each pair of nodes in our network, there are enough
alternative independent paths, so that only a few attempts are needed, even in the
case of massive node crashes. However, there is still one crucial question remaining:
How does the average path length change with the number of failed nodes?

Recall that the underlying structure of our network is an Erdös Rényi random
graph. That is, for a large number of nodes and fixed average node degree c, the
degree distribution is well approximated by a Poisson distribution:

P(k) =
ck

k!
e−c

where P(k) is the probability that a node has degree k. From here it follows
that the diameter of the network is around D = ln(N)/ ln(c), where N is the number
of nodes in the network [Bol01]. Furthermore, and more interestingly for us, the
average shortest path length L is almost equal to the diameter and is given by
ln(N)/ ln(c) [Bol01].

Thus, given the number of nodes in the network N and c, we can always compute
L. A property of Poisson-distributed networks is that L will change only slightly,
even if half of the nodes in the network fail. In Figure 6.12 we plot the average
shortest path length for N = 50000 and different values of c. The x-axis shows the
fraction of failed nodes, and the y-axis shows the average shortest path length. As
we can see, the increases are minimal, even if half the nodes suddenly fail.
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Figure 6.12: Actual path length and optimal path length with node crashes

Even though the average shortest path length changes only minimally, it is not
guaranteed that our key lookup procedure will find a good alternative path. We
evaluated the probability densitiy for key lookups under node failures, and find that
the maximum number of hops only increases from 6 to 7 for N = 50000 and c = 20.

6.5.5 Security and Other Issues

In terms of security, PathFinder is comparable to other DHTs presented in the
literature. Peers receive their virtual node IDs as a hash of their IP addresses, which
is the same as in other DHTs. Note that an attacker with access to a large pool of IP
addresses can “choose” where to place herself. This is a common weakness of all
DHTs.
If a malicious peer drops messages that are routed through it, the sending peer will
eventually notice this because it does not receive a reply. Recall from Section 6.5.4
that there are as many node-disjoint paths between the sender and receiver as the
minimum of their degrees. Thus, the sender can simply try again using a different
path. The attacker is unlikely to be present on all the alternative paths. A simple
approach to detecting malicious peers is to send a message always using two
different paths.4 A comparison of the results will immediately reveal whether the
message or reply has been modified.
One approach for handling malicious peers deleting information stored on them is
to provide replicas, whereby an object is always handled by several independent
peers. In PathFinder we can use an approach similar to Tapestry [ZKJ01] and use a
constant sequence of salt when hashing the object names.

Because PathFinder builds an overlay network with randomly selected neighbors,

4Given the overhead caused by this, this strategy would only make sense if the number of malicious
peers is large.
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it is very likely that initially, it does not match well with the underlying IP network.
Other DHTs suffer from the same problem to a degree as well because their routing
algorithms also require contacting arbitrary peers in the network. DHT routing
is typically optimized by selecting neighbors with small RTTs, with the goal of
reducing the overall path latency. PathFinder supports dynamic transfer of virtual
nodes, which does alter the neighborset of the nodes. Although, it might not start
with an optimal adaptation, the network adapts to the underlying topology over time.
When a peer needs to route a message in PathFinder it computes the shortest path
as described in Section 6.5.2.3. If the peer notices that another of its neighbors has
considerably shorter RTT than the “correct” peer, it can send the message to that
neighbor. This may increase the path length in terms of hops, but might reduce the
latency. An evaluation of this scheme is part of our future work.

6.6 Summary

In this Chapter, we have presented PathFinder, an overlay that combines efficient
exhaustive search and efficient key lookups in the same overlay network. Being
able to combine search and lookups in the same overlay is very desirable, because it
allows efficient and overhead-free implementation of natural usage patterns. Path-
Finder is the first overlay to combine search and lookups in an efficient manner.

Approach Probabilistic
Search

Key
Lookup

Access
Delay

Churn Resistance

BubbleStorm • ◦ Probabilistic High
Chord ◦ • High Low
Pastry ◦ • Low Low
Viceroy ◦ • Lowest Low
PathFinder • • Low Low/High

Table 6.2: Comparison of PathFinder with state-of-the-art approaches

Table 6.2 presents a direct comparison with state-of-the-art approaches. PathFinder
offers desirable features for the volatile environments found in first response situa-
tions. Being able to combine search and lookups in the same overlay greatly satisfies
requirement R5 (active search) and furthermore creates a flexible approach for all
kinds of use cases. In addition, we have shown in Section 6.5.5 that PathFinder
provides a means for R4 (resource awareness) and R10 (allow horizontal and vertical
message transmissions) by not assuming any predefined communication structure.

Our results show that PathFinder has performance comparable or better to existing
overlays (average path length of an object lookup grows with ln(N)/ln(c), where
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N is the number of peers and c is the average number of neighbors per peer). It
scales easily to hundreds of millions of nodes, and key lookup performance is in
large networks better than in existing DHTs. Because PathFinder is based on a
random graph, we are able to use existing search mechanisms (e.g., BubbleStorm)
to enable efficient exhaustive search. We have shown the performance of PathFinder
both through simulations and analytical means. DHTs, although just as scalable on
paper, have not been demonstrated in dynamic networks of that size, so their true
scalability is still an open question.
Furthermore, PathFinder has a constant degree, so the state maintained by peers is
constant. In most DHTs, the state increases logarithmically with the network size.

In situations of high churn, PathFinder may therefore not be able to provide key
lookups. For example, in Chapter 6 we evaluated the Tapestry overlay behavior
in volatile environments and found that despite its robustness against network par-
titioning, its lookup success rate is sensitive to churn. PathFinder still provides
probabilistic search in volatile environments, as long as the network is not parti-
tioned. In stable environments, both the lookup and exhaustive search functionalities
are provided.
If the overlay network is in a stable state and therefore able to provide key lookup,
we propose adding a two-dimensional CAN network in order to offer locality pre-
serving search capabilities. The costs per node are reasonable, because each node
just needs to maintain approximately four additional links.



Chapter 7

P2P Overlay Network Layer:
Application-Level Multicast

Our Distributed Tree Construction (DTC) approach enables structured P2P networks
to perform prefix search, range queries, and multicast optimally. It achieves this by
creating a spanning tree over the peers in the search area, using only information
available locally on each peer. We evaluate the performance of DTC by comparing
its performance to existing application-level multicast solutions; we show that DTC
sends at least 30% fewer messages than common solutions.

The remainder of this Section is structured as follows: Section 7.1 presents the
general approach and requirements. In Section 7.4, we reveal how we construct the
distributed spanning tree and prove its properties. Section 7.5 shows an example
of how to build a prefix search using hash functions and our tree construction
algorithm. Section 7.6 evaluates our algorithm on different DHTs and compares its
performance against existing algorithms. In Section 7.7, we discuss the robustness of
our algorithm and present mechanisms for improving its resilience against malicious
peers. Section 5.2 discusses related work. Finally, Section 7.8 concludes the
Chapter.

7.1 Introduction

We tackle the problem of implementing a prefix search on a structured P2P network.
Our algorithm selects a subset of the overlay network and creates a spanning tree
for that subset rooted at any of the peers in that set. Typical applications that benefit
from prefix search are all systems that need to handle structured data. Structured
data is very commonly used in many applications. For example storing data based
on geographical location (e.g., tourist information) or any kind of classification
systems lend themselves readily to our algorithm.
The more attributes are available in the user provided search term (i.e., the more
precise the user’s query), the less nodes will be queried. In the case of a user
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performing a very precise search, the query will reduce itself to a standard DHT
key lookup. Because we create a spanning tree, our solution is not limited to
implementing prefix search; other applications, such as multicast and broadcast,
can also be implemented with our algorithm. Multicast (and also broadcast) is
extremely useful in cases where the DHT is built according to some specific criteria
(as opposed to a standard hash function; see Section 7.5), as it enables us to reach a
given set of nodes with minimal overhead.

The key feature of our algorithm is that it creates a spanning tree without any
communication between the peers, using only local information available to ev-
ery participating peer. As it is a tree, we are guaranteed that only the minimum
number of messages must be sent. These key features set our algorithm apart from
previous work, such as the application-level multicast proposed by Ratnasamy et
al. [RHKS01] or SplitStream [Cea03b]. Previous work typically either has a high
number of duplicate messages, requires additional coordination traffic, or requires
a second overlay network. Additionally, range and origin of the spanning tree can
freely be set to any value and any peer.

Our distributed tree construction algorithm (DTC) presented in Section 7.4 has
none of the shortcomings of the previous algorithms. It can be used on top of most
existing DHTs, and it works using information available at each peer about the
peer’s neighbors. As we show in Section 7.4, this standard information maintained
by the DHT is sufficient to span a tree.
As our evaluation shows, our DTC algorithm yields optimal performance in terms
of messages sent. We also show that the overhead of duplicate messages in existing
solutions is at least 30%, but can in several cases be up to 250%.

7.2 Requirements

The main task of the ’Overlay Network’ layer is to provide peer discovery and search
functionality (cf. Section 3). Our contribution, the Application Layer Multicast,
may be used for a wide set of applications.
The approach should provide strong mechanisms for R3 (locality awareness) and
R5 (active search) as well.

R1 (Multicast) First Responders need to send messages to a distinct group of
people or to a specific location (cf. Section 2.2).

R3 (Locality Awareness) The overlay needs to pass location information from the
’Connection Topology’ layer to the ’Application’ layer. The multicast mechanism
may provide a means for accessing groups of objects with proximate locations,
which allows for a wider set of location-based services in the ’Application’ layer.
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R5 (Active Search) The efficiency of active search, especially in the case of
key lookup, can be significantly enhanced using multicast mechanisms. Storing
objects with similar properties (e.g., objects with a common prefix, similar location
information or adjacent numeric identifiers) close to each other (see Section 7.5.1)
enables efficient searching for objects with common properties.

7.3 Related Work

Flooding approaches for P2P networks in general have been extensively investi-
gated [JGZ03, CRB+03, TKLB07]. While simple flooding approaches may apply to
unstructured networks, DHT networks can take advantage of the structured neighbor
lists and reduce the number of duplicate messages.

Multicast in CAN In the case of CAN, work by Ratnasamy et al. [RHKS01]
implemented an application-level multicast on top of CAN. As our evaluation shows,
this approach can have a significant overhead, even in the best case, will have an
overhead of about 32%. As we have demonstrated, the overhead is a function of the
network size and CAN dimensions, and in smaller search areas, the overhead can
grow considerably higher. An improved version of ALM is described in [Cea03a].
They reduce duplicate messages, but duplicates may still occur, especially in the
case of uneven zone sizes within the CAN overlay.

Range Queries and Prefix Search One approach for Range Queries within
DHTs [RHRS04] is to form a tree similar to our quad tree approach. The dif-
ference is that they explicitly use a DHT in order to store a generated tree for
accessing objects. Our approach, in contrast, does not use the DHT interface to
generate a tree; it directly restructures the mapping from object to nodes. The
advantage is that our solution enables prefix searching without any overhead.

Another approach for prefix search is presented in [JY06] by Joung et al. The
idea is that the prefixes build a sub-hypercube within a hypercube, which spans
a binomial tree [JFY05]. In general, a binomial tree can be traversed without
generating duplicate messages. On the downside, the hypercube needs to have
as many dimensions as bits in the ID space. Given a common 160 bit ID space,
this would lead to 160 dimensions, which in turn leads to 160 neighbors per node
for a binomial tree. Further overhead is generated, because each of the 2160 bits
needs to be addressable. Therefore, a prohibitively large number of logical nodes is
necessary in smaller networks. In contrast, our DTC algorithm achieves the same
optimal number of messages with no overhead over a standard DHT.

A different approach for prefix searching [AS03c] uses a combination of differ-
ent overlay networks, one for file management and another for site (participants)
management. The combination of a DHT-based overlay (e.g., CAN) with another



100
CHAPTER 7. P2P OVERLAY NETWORK LAYER:

APPLICATION-LEVEL MULTICAST

independent overlay enables prefix search as well, but at much higher costs. Our
solution does not require any additional maintenance costs or additional links; all
required knowledge can be calculated locally. While our work concentrates on
raw address coding and message distribution, additional performance optimizations
applied to routing for keyword search in DHT-based P2P networks [RV03b, Gna02]
can be used with DTC, as they are complementary to our solution. We do not alter
the underlying routing scheme, and therefore all optimizations used for the DHT
apply to DTC as well.

Applying multi-attribute range queries to current DHTs has been done by choosing
hubs [BAS04]. The idea of hubs, which are responsible for one attribute each, is
independent from the underlying DHT. A hub can be seen as a separate overlay for
each attribute. Our prefix and multicast approach can also be applied to hubs, which
would lead to an optimized ID space for each attribute. On the one hand fewer
nodes would need to be queried; on the other hand, a separate overlay network must
be maintained for each attribute.

7.4 Distributed Tree Construction

In unstructured networks, more than 70% of the messages are redundant, even with
a moderate TTL [JGZ03]. This high overhead is one of the main reasons for the
poor scalability of unstructured networks. With our distributed tree construction
algorithm (DTC), we are able to eliminate this overhead. Note that DTC builds on
top of a standard, structured overlay network. We first discuss the requirements, on
the structured overlay, and then present the DTC algorithm with optimality proofs.
Finally, in Section 7.4.3, we discuss different applications and how to build them
using DTC.

The idea behind DTC is to build a spanning tree to connect all the nodes we want to
search. When a query is sent from the root, every node in the tree receives it exactly
once. The challenge lies in constructing the tree without any overhead and using
only local information available in each node.

7.4.1 Structured Overlay

Our DTC algorithm works on any structured overlay (a.k.a. distributed hash table),
which fulfills the property that every node knows all of its immediate neighbors
in the overlay hash space. Networks like Chord [I. 01], CAN [RFH+01b] and
VoroNet [BKMR07] obviously fulfill this property. In case of Chord, the critical
information is knowing the successor and, for CAN, knowing all neighbors in
all coordinate directions. In the case of Pastry [RD01a], the condition is fulfilled
since the leaf sets of all nodes always contain the closest neighbors in the hash
space. Although Tapestry [Zea04] is very similar to Pastry, it does not have the
equivalent of the leaf set and thus might not be suitable without modifications.
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Kademlia [MM02] also fulfills the required condition, as the buckets for the shorter
distances contain the closest nodes in the hash space, and they should be complete.
In the remainder of this chapter, we consider only Chord and CAN as overlay
networks. Although the principle of DTC in both networks is the same, differences
in the overlay structures lead to performance differences (see Section 7.6).

7.4.1.1 DTC Algorithm

In the distributed tree construction algorithm, we start spanning the tree from a
point in the overlay, and expand from that point through the overlay according to
the overlay routing. The area of the overlay which the spanning tree is supposed to
cover is explicitly defined. The information about the root of the tree and the area
are sufficient to construct the spanning tree in a purely distributed manner. We will
now show how this can be done in Chord and CAN.

Note that even though the algorithm constructs a spanning tree, no peer has a
complete view of the tree. The tree is always constructed on-demand by having
the root send a message, which constructs the tree as it is passed through the peers.
Thus, when we say below that a peer adds some other peers to the tree as its children,
it means in practice that the peer in question forwards a message to the other peers.
Example: Chord

In the case of Chord, the area is an arc on the Chord ring and the root of the
tree is the first node on the arc. The simplest solution is adding nodes to the tree
along the chain of successors until the end of the arc has been reached. However,
this is not very efficient for large areas. Instead, we should use the fingers to create
shortcuts and to broaden the spanning tree. The root of the tree selects all of its
fingers that are in the area as its children. Each of them will recursively perform the
same operation until all peers in the same area (the arc) have been included in the
tree. Any of the peers can easily determine which of its fingers it should include, as
it knows the root and the length of the arc. The successor of the last point of the
arc1 is part of the tree, because the last points in the arc might contain objects that
are stored on their successor.
Example: CAN

In the case of CAN, the area is a convex area of the d-dimensional coordinate
space, with the root somewhere in this area. The restriction to convex search areas
is imposed by our algorithm. Non-convex areas can be searched by splitting the
search into non-overlapping convex searches that cover the desired area. The root
first adds its immediate neighbors (2d neighbors in a d-dimensional CAN), which
then continue adding their neighbors, according to the rules defined below. As in
the Chord-case above, the information about the root of the tree and the area it is
supposed to cover are available to the peers. The area can be defined either with
simply the radius of the area, or by specifying for each dimension separately how
far the area reaches in that dimension. As mentioned above, the only restriction on

1Often the first node after the arc.
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Figure 7.1: Example spanning tree of a CAN

the search area is that it must be convex.
We assume every node knows the following:

• Size of the zone of each neighbor (maintained by standard CAN routines)

• Root of the tree and the area it is supposed to cover (available in the message
that is used to create the tree)

Figure 7.1 shows an example of a spanning tree of a two-dimensional CAN.
The tree is rooted at the white zone marked O at coordinates (5, 5). The other white
zones are the children of the root, and the levels of the tree are shown in increasingly
darker shades of gray. The result is a spanning tree consisting of all nodes within
the CAN overlay.

The tree is constructed as follows. When a peer X receives the query, it computes
for every one of its neighbors the vector from the center of the root’s zone to the
center of the neighbor’s zone. If that vector intersects the common border surface
between X and the neighbor, then X should add that neighbor as its child. The vector
must intersect the common border surface between the two nodes; it is not sufficient
for the vector to pass through X’s zone. Consider the third zone from the left on the
bottom row in Figure 7.1, marked B. This zone has one light gray neighbor A on the
top and one medium gray C neighbor to the right. The vector from the root passes
through both of these neighbors, but the one on the right (marked C) is the parent of
node B.

It is important to note that every node is able to compute the vectors and
determine whether it should add any of its neighbors as children (and thus forward
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the message) by using only information available locally through normal overlay
communications. No coordination between nodes is needed, nor is any additional
traffic generated.

7.4.2 Proof of Optimality

We prove the following properties of our DTC algorithm:

1. The DTC algorithm creates a spanning tree over the area.

2. The depth of the tree is proportional to the message complexity of the under-
lying DHT.

For the simple version of a Chord-based DTC (i.e., every node passes the query
to its successor), the first property is obvious. The proof of the first property with
fingers is also straight-forward and is omitted from this discussion.

In the following, we will demonstrate the properties for a CAN-based DTC.
We make the simplifying assumption that the overlay network is able to heal itself
under churn without loss of messages. Note that this assumption explicitly allows
churn, as long as changes to the overlay structure are performed in a locally atomic
manner and no node departs between receiving and forwarding a query. We also
assume that the area over which the tree is to be spanned is convex.

Theorem 1 All nodes are added to the tree at least once. �

Proof For every zone Z in the convex area, there is a single vector that connects the
center points of that zone with the zone of the root of the tree. Starting from zone Z,
the vector determines Y , a neighbor of Z that will add Z as its child. Considering
zone Y , we can draw the vector between the center of Y and the starting zone, which
determines a zone X and neighbor of Y which adds Y as a child. Continuing in a
similar manner, we arrive at the zone of the root of the tree. Thus, we are able to
find a chain of zones that leads us from the root zone to zone Z. Thus, all nodes
have at least one path from the root, i.e., are part of the tree.

In some cases, it is possible that the vector between the root and a zone Z does
not pass through any direct CAN neighbor of Z. For example, in Figure 7.1, the
vector between the root and the zone marked K passes directly through the corner
point of the two zones. Depending on how the ownership of edges is defined, it is
possible that there is no neighbor through whose zone the vector passes on its way
from the root to K. (Note that regardless of how the ownership of edges is defined, it
is always possible to construct the zones such that this problem persists.) In general,
this issue arises when two zones share up to (d − 2) dimensions in a d-dimensional
CAN (e.g., a point in 2-dimensional CAN and a point or a line in a 3-dimensional
CAN). In this case, the forwarding algorithm does not reach all nodes. We have
defined the following tie breaker for these cases.
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The Tie Breaker We use the following rule to determine how to construct the
tree in the above case. The two problematic zones differ in at least 2 and up to d
dimensions. We order the dimensions beforehand. The forwarding path should be
such that the smallest dimensions with differences are used first. The length of the
tie breaker path will be the same as the number of dimensions in which the two
problem zones differ (i.e., between 2 and d). Note that none of the nodes on the
path would normally forward the query, but all of them are able to compute locally
that they are part of the tie breaker procedure and are able to perform their duties
correctly. In the example of Figure 7.1, the tie breaker would mean that M is the
node responsible for adding K as its child, because the x-coordinate is considered
before the y-coordinate. �

Theorem 2 All nodes are added to the tree at most once. �

Proof We prove this by contradiction. If a node A were to be added to the tree
twice, this would imply that two of its neighbors would think that the vector between
A and the root passes through their zones. This is clearly impossible, because the
responsibility is defined by the vector and the vector between A’s center point and
the center of the root’s zone intersects only one of the borders between A and its
neighbors. Thus, A can be added to the tree by at most one of its neighbors. �

Theorems 1 and 2 prove that every node in the area is added to the tree exactly
once, and thus the DTC algorithm creates a spanning tree rooted at the root zone
and covering all the nodes in the area. Note that the spanning tree is only a spanning
tree; it might not be the minimal spanning tree (but this property is not a requirement
of the applications we are considering).

Figure 7.2 shows a larger example of how the DTC algorithm constructs the
spanning tree. In Figure 7.2(a), we show the spanning tree overlaid on the underlying
CAN topology and show which peers add which other peers as their children.
Figure 7.2(b) shows only the resulting spanning tree.

Theorem 3 The depth of the spanning tree is proportional to message complexity
of the underlying DHT. �

We prove this for both Chord- and CAN-based DTCs. In the case of a Chord-
based DTC, we can construct the spanning tree using fingers, as mentioned above.
The links in the Chord-DTC spanning tree are determined by the fingers and
successor pointers of the nodes.

The claim of the theorem refers to the depth of the spanning tree. Note that
every path in the spanning tree is a legal DHT-routing path between the root and the
chosen node.

Proof (Proof for a Chord-based system) In a Chord-based system with fingers,
the spanning tree is simply a mapping from the fingers and successor pointers to the
nodes, and every path in the tree exactly corresponds to the routing path that the
standard Chord routing would take to reach that node. Hence, the depth of the tree
is O(log(N)). �
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(a) Spanning tree overlaid on CAN

(b) Spanning tree

Figure 7.2: Example of DTC-constructed tree

Proof (Proof for a CAN-based system) In a CAN-based system, every hop is also
a legal CAN routing hop, but not necessarily a hop that the standard greedy CAN



106
CHAPTER 7. P2P OVERLAY NETWORK LAYER:

APPLICATION-LEVEL MULTICAST

routing would take in a given situation. The DTC algorithm always follows the
vectors, but the greedy CAN routing might take shortcuts over large zones. Never-
theless, the length of the path in the spanning tree is still O( d√n). �

7.4.3 Sample Applications

The ability to construct a spanning tree from any point in the DHT is very powerful,
and allows us to develop many different kinds of applications. We now discuss
some of the applications that can be built with DTC.
Prefix Search in DHTs

As mentioned in the introduction, searching in DHTs is extremely inefficient.
With DTC and the hashing scheme from Section 7.5, we are able to implement
a prefix search over a freely selectable prefix, with only the minimum number of
messages needed. We achieve this through a slight modification of how content is
mapped on the nodes (see below) and by spanning a tree over a pre-determined area.

As discussed in the introduction, many applications can benefit from prefix
searches. In particular, applications that use any type of structured data lend
themselves readily to prefix searches. Structured data are very common and easily
map to hierarchical concepts that are used in many different applications.
Group Communication Primitives

If the root sends a message along the tree (as is done during the tree construction),
then every node in the area will receive the message exactly once. By tuning the
area that the tree spans, we can easily define different multicast groups and reach
them with the minimum number of messages. (As the comparison in Section 7.6
shows, the application-level multicast on CAN [RHKS01] has significant overhead
compared to our DTC-based approach.) It is even possible to let the area be the
complete hash space of the DHT, in which case we have an optimal broadcast
mechanism.

An important point to keep in mind when designing applications running with
DTC is whether there will be feedback to the root of the tree. In other words, a search
requires an answer, i.e., all the nodes in the tree with matching content should answer.
In contrast, a multicast or a broadcast might not require any acknowledgement from
the receivers. The presence or absence of feedback is thus application-dependent,
and we will return to this issue in Section 7.7.

7.5 Prefix Search in a DHT

We now present a way of mapping objects to peers in a DHT, such that the DTC
algorithm allows us to perform prefix searches on the DHT. We achieve this by
placing all objects matching a prefix in a certain area of the DHT, and the prefix
search corresponds simply to spanning a tree with the DTC algorithm over this area.
As an example of how to implement a prefix search, we consider the case of a d-
dimensional CAN. (Note that other DHTs mentioned as candidates in Section 7.4.1
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Figure 7.3: Example of quad tree coding

are 1-dimensional, thus they are simply special cases of the example.)

7.5.1 Quad Trees

The standard hashing algorithm of the DHT needs to be replaced by a function that
maps equal names to equal places. We use a region quad tree [Sam84] to preserve
the lexical order of all keys. The result is that one is able to spot in advance the area
where a set of keys with the same prefix is located. One example of such a mapping
is shown in Figure 7.3. The hash space is divided into four quadrants, according
to the first character of the object name; (in the example, object names can only
contain capital letters A–Z and numbers 0–9; the approach easily generalizes to any
character set). Each of the quadrants is further divided into four quadrants according
to the same mapping, and so on. As a result, any object whose name starts with the
prefix “JOS”, would be mapped to the shaded area near the top right corner of the
area.

Combined with the DTC algorithm, this mapping enables an efficient prefix
search in a DHT. We simply pick any node at random from the area of the desired
prefix and span a tree over the area covered by the prefix.

We can also adjust the granularity of the mapping in order to control how many
peers are present in the areas for prefixes of different lengths. We call this the
split factor, which works as follows. For example, consider the mapping shown in
Figure 7.3. The whole hash space is divided into four quadrants and each quadrant
is assigned a set of letters. When objects are stored, we look at the first character of
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Length of Nodes Share of Share of
Prefix in Area Keyspace Keyspace

Split Factor 1 Split Factor 3

0 1,000,000 100% 100%
1 250,000 25% 1.6%
2 62500 6.25% 0.02%
3 15625 1.6% 0.0004%
4 3906 0.4% 0.0001%
5 976 0.1% < 6 ∗ 10−6%
6 244 0.02%
7 61 0.006%
8 15 0.001%
9 4 0.0004%
10 1 0.0001%

Table 7.1: Split factor one and one million nodes

the object name and select the quadrant that matches. Then we split that quadrant
again into four according to the same rules and map the second character of the
object name. As the space is split once per each character, we call this split factor
one.

Table 7.1 shows how many nodes need to be searched for a given prefix. (Note
that we consider prefixes as characters of object names, because this would be how
users would employ a prefix search.) The numbers have been calculated for a CAN
of one million nodes and uniform distribution of peers. As we can see, already
relatively short prefixes of four to five characters map to a relatively small number
of peers, on the order of a few thousands. Already with a prefix of ten characters,
we would typically end up with only one peer being responsible.

Increasing the split factor results in a more aggressive splitting. For exam-
ple, consider a mapping of letters and digits to six bits (similar to Base64 encod-
ing [FB96]). For each split, we pick two bits and map them to one quadrant of the
space. One character is three such two-bit groups, and we have to split three times
before the area of a single character prefix can be determined. We call this split
factor three, an example of which is shown in Table 7.1 .

As we can see in Table 7.1, increasing the split factor results in a much more
aggressive splitting. For example, a prefix of two characters maps to an area of 244
peers.

We also define split factors smaller than one, which are less aggressive than
those in Table 7.1. This means that each splitting requires a prefix of multiple
characters. For example, splitting factor 0.5 (i.e., prefix of two characters for each
split) is implemented as follows. We arrange all the characters on the x- and y-
axes and then the points in the coordinate space define two-character prefixes. We
simply divide this space into four equal areas and use those areas for splitting. This
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approach easily generalizes, thus we can freely select the granularity of the splitting
according to the needs of the application. We do not change the general overlay
structure only the hash function is replaced. Thus, already known methods for
performance optimization [DLS+] and congestion control [KLBA] will apply as
well.

7.5.2 Range Queries

Note that regardless of the splitting algorithm and split factor, the DTC algorithm
can span the tree in any convex area of the hash space. When spanning the tree, the
DTC algorithm can also specify individually how far along each coordinate axis the
tree should span. By selecting the appropriate coordinates, it is possible to span the
tree in such a manner that it corresponds to a range query over the objects in the
DHT. Further evaluation of the practical performance of range queries is part of our
future research.

7.5.3 Discussion

A correct split factor may be critical for application performance. For the case of a
prefix search of objects in a DHT, we obviously want to limit the search areas to
be as small as possible without unduly stressing peers. For a high split factor, even
short prefixes map to a very small number of nodes and may thus result in severe
load imbalances because some prefixes are more popular than others. On the other
hand, a high split factor means that only a very small number of nodes must be
included in the DTC-constructed spanning tree.

Usually, the requirements for distributed hash tables demand a more or less
equal distribution of all keys in the hashtable. On the one hand, the equal distribution
balances the average load per peer which reduces local hotspots; alternatively, the
equality destroys the order of all keys.

One way to reduce hotspots is to choose a smaller split factor for multidi-
mensional quad trees at the cost of larger search areas. In addition, there are
several approaches for caching or load balancing queries within the CAN over-
lay [SMB01, RLS+03]. Techniques such as virtual nodes[I. 01] can also help to
alleviate the load imbalance. Evaluating the effectiveness of different load balancing
techniques is part of our future work.

7.6 Evaluation

We now evaluate the performance of our DTC algorithm and compare it against two
other solutions. We tested DTC over two DHTs, Chord and CAN, to show how its
performance in some cases depends on the underlying DHT. For comparison, we
have selected the application-level multicast on CAN by Ratnasamy et al. [RHKS01]
and a simple flooding scheme, where each node just forwards a message to all of its
neighbors, except the neighbor from which it obtained the message.
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As already reported by Jones et al. [JTWW02], implementing CAN is not always a
straight forward process, but we did not encounter any further problems than those
mentioned in [JTWW02]. We verified our implementation of the CAN network
by comparing it to the results in [JTWW02] and thoroughly testing our own, and
the results were as expected. Our Chord implementation is directly based on the
original work in [I. 01]. Our implementation of the ALM algorithm of [RHKS01]
did not face the race-condition mentioned in [Cea03a, JTWW02]; because we used
the cycle-based approach of PlanetSim in our simulation approach, it eliminated the
mentioned race-condition.

We simulated the four selected systems. The two DTC-based approaches built the
spanning tree, as described in Section 7.4. ALM from [RHKS01] and the simple
flooding were permitted to run as specified. We varied the size of the network
(values selected according to Section 7.5 for reasonable search areas) and, for CAN-
based systems, also the number of dimensions in the CAN. All simulations were
repeated 30 times, and the reported numbers are averages over the 30 simulation
runs.
We measured the number of messages received by each node and the depth of the
spanning tree. The first metric determines how (in)efficient the mechanism is, and
the second determines how quickly search results are available.

Table 7.2 shows the distribution of how many messages a given node received in a
2000 node CAN with 10 dimensions. (DTC-Chord was run on a standard Chord of
2000 nodes.) The table shows for each of the systems how many nodes on average
received the message from the root. We cut the table at 14 messages per node and
summed up all the nodes that received the message 14 times or more (applies only
to simple flooding, in this case). The last row shows the total number of messages
sent within the system. As there are 2000 nodes, 2000 messages are sufficient in the
optimal case.

As expected, the two DTC-based solutions do not generate any duplicate mes-
sages. ALM performs relatively well, generating about 50% too many messages.
We return to the evaluation of the overhead of ALM below. As Table 7.2 shows,
simple flooding has an extremely high overhead in terms of messages sent. The
factor-13 overhead shown is typical of the performance of simple flooding.

The performance of the DTC-based algorithms was as expected in all investi-
gated parameter combinations (e.g., network size, dimensions). Both of them were
able to perform their task consistently with the minimum number of messages, i.e.,
as many messages as nodes.

We also evaluated the depth of the spanning tree, as this directly affects the time
it takes to complete the operation (e.g., search or broadcast). We compared different
network sizes from 200 to 20000 nodes and different dimensions in CAN (ranging
from 2 to 20).

Figure 7.4 shows 5- and 10-dimensional CANs with 20000 nodes. In Fig-
ure 7.4(b), we also plot the DTC-Chord. The x-axis shows the number of hops and
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Messages DTC Simple ALM DTC
Received CAN Flooding Chord

0-1 2000 1 1143 2000
2-3 0 2 684 0
4-5 0 6 78 0
6-7 0 22 12 0
8-9 0 67 2 0

10-11 0 247 0 0
12-13 0 925 0 0
≥ 14 0 7851 0 0

Sum 2000 26106 3087 2000

Table 7.2: Average number of messages received per node

the y-axis shows how many nodes were reached with that many hops (i.e., how
many nodes are at that depth in the spanning tree).

As we can see, simple flooding has the smallest depth. It always takes the
shortest path to each node, because it forwards a message to all neighbors except
the sender. Therefore all nodes are reached with the minimum number of hops.

DTC-CAN and ALM have slightly poorer performances than simple flooding
and are very close to each other. In the case of the five-dimensional network and
20000 nodes, the optimum would be about seven hops, while ALM needs nine
and DTC-CAN eight hops in the average. The greater the number of dimensions
used for the CAN network, the smaller is the difference between the approaches.
Differences in the ten-dimensional CAN network (see figure 7.4(b)) with 20000
nodes are almost non-existent; both ALM and DTC-CAN need about seven to eight
hops on an average, while the optimal case would be approximately six hops.

DTC-Chord (shown only in Figure 7.4(b)) performs similarly to DTC-CAN
and ALM in the 10-dimensional case. DTC-Chord is independent of the number of
dimensions, so it would be in the same place in Figure 7.4(a). The finger tables of
Chord reduce the number of necessary hops effectively. While the CAN network
is able to be further optimized by using more dimensions, the optimum number of
hops for Chord is proportional to the density of the finger tables.

We investigated the performance with dimensions ranging up to 20, but we did
not observe any significant improvement in performance of DTC-CAN or ALM
after ten dimensions.

We now turn to evaluating the overhead of ALM, which was already shown in
Table 7.2. We compare ALM against DTC-CAN. Figures 7.5(a) and 7.5(b) show
how the overhead evolves as function of network size. The x-axis shows the number
of simulated nodes; we started from 200 nodes and simulated up to 20000 nodes.
The y-axis shows the average number of generated messages. We show several
variants of ALM, each with a different number of dimensions. Note that DTC-CAN



112
CHAPTER 7. P2P OVERLAY NETWORK LAYER:

APPLICATION-LEVEL MULTICAST

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  2  4  6  8  10  12  14  16  18  20

N
od

es
 r

ea
ch

ed

Hops

Simple Flood D=5
ALM D=5

DTC CAN D=5

(a) 5 Dimensional CAN with 20000 nodes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  2  4  6  8  10  12  14  16  18  20

N
od

es
 r

ea
ch

ed

Hops

Simple Flood D=10
ALM D=10

DTC Chord
DTC CAN D=10

(b) 10 Dimensional CAN with 20000 nodes

Figure 7.4: Query depth

was always able to perform optimally, i.e., as many messages as there were nodes.
Figure 7.5(a) shows the absolute overhead, i.e., how many unnecessary messages

ALM sent, and Figure 7.5(b) shows the relative overhead compared to DTC-CAN.
As the network size grows, the relative overhead of ALM in Figure 7.5(b) tends

to be approximately 32%. However, Figure 7.5(a) shows the interesting behavior of
ALM. For every number of dimensions, the curve has several sharp corners where
the overhead changes considerably. The reason for this is as follows.

The message overhead is heavily influenced by the absolute number of dimen-
sions and nodes. The greater the dimensions, the more nodes are needed to populate
the d-dimensional ID space uniformly. As soon as d√n ≥ 2, the overhead begins to
converge to the estimated 32% (see Figure 7.5(b)). Below the critical threshold, the
number of duplicate messages steadily increases with more nodes. This explains the
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high peaks for the smaller networks in Figures 7.5(a), and as Figure 7.5(b) shows,
the resulting overhead can be up to 250%.

In summary, the DTC-based approaches have the advantage of generating only the
minimum amount of traffic, while keeping the depth of the spanning tree similar to
ALM. ALM, on the other hand, has a message overhead of at least 32%, in many
cases up to 250%. The simple flooding approach turns out to be unusable because
the enormous message overhead would cause unacceptable congestions within the
overlay. However, simple flooding has the fastest response time of all compared
approaches.
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7.7 Robustness of DTC

Because the DTC algorithm (and other similar approaches like [RHKS01, Cea03b])
builds a tree, it is especially vulnerable to defective peers, which could either be the
result of a crash or a malicious peer. If a peer does not forward the message, then
all its children and their children will not be included in the spanning tree.

All DHTs have mechanisms in place to detect crashed peers and recover from
those crashes, so we do not consider such system failures to be a problem. The
only case a message could be lost is if a peer crashes between receiving a message
and forwarding it, which is extremely rare. In all other cases, we assume that the
standard DHT maintenance takes precedence over the tree spanning messages, and
that in such cases, the overlay will first be healed and thus no message loss or
duplication can occur.

Malicious Peer In the following, we consider the case of a malicious peer not
forwarding the message correctly onwards. The case of a malicious peer modifying
the message can easily be detected by picking a random public/private keypair,
signing the original message, and including the public key in the query. We first
evaluated the severity of this problem by selecting a randomly generated 20000-peer
network and spanning a tree with the DTC algorithm over the entire network. The
CAN networks in this test had ten dimensions. We varied the fraction of malicious
peers and selected the malicious peers uniformly at random from all the peers.
For each case, we measured the number of peers that were not part of the tree.
Each parameter combination was repeated 30 times, and the results we present are
averaged over all the runs.

Figure 7.5 shows the fraction of unreached peers as a function of malicious peers
for three systems from Section 7.6 (DTC-CAN, DTC-Chord, and ALM). Already
10% of malicious peers are able to cut off, on average, 20% of the peers from the
spanning tree. Because the DTC algorithm eliminates all duplicate messages, it is
particularly vulnerable to malicious peers, but the ALM does not fare much better.
Only when the fraction of malicious peers is between 10% and 50% does ALM
have any marked improvement over DTC-based systems. Although not shown in
Figure 7.5, the simple flooding approach is extremely resistant against malicious
peers. Peers become unreached only when the fraction of malicious peers is very
high (typically over 70–80%).

Effect of underlying DHTs There is an interesting point to note about the effects
of the underlying DHT on the performance of DTC-algorithms. For the case of 1%
malicious peers, Chord-based DTC performed much more poorly than CAN-based
DTC. In case of DTC-Chord, 8.6% of the peers were not reached, whereas in a
DTC-CAN, only 4.2% of the nodes were unreached. For comparison, in ALM,
3.7% of the nodes were unreached for that fraction of malicious peers. For other
fractions of malicious peers, the difference between Chord- and CAN-based DTCs
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Figure 7.5: Impact of malicious peers

was in practice negligible, although usually the Chord-based system had the higher
number of unreached peers.
The explanation for this is that in a 10-dimensional CAN, even if a malicious node
is near the root in the spanning tree, it cannot do much damage. In contrast, if the
longest finger of the root in Chord is malicious, it is able to cut half of the spanning
tree. Thus, a Chord-based DTC is slightly more vulnerable to malicious peers than
a CAN-based DTC.

Detect Malicious Peers - Propagation We now propose solutions for remedying
the problems caused by malicious peers. The fundamental problem is that a single
malicious peer can eliminate the complete sub-tree rooted at that peer from the
spanning tree. Our primary goal is thus detecting the presence of malicious peers,
with as little overhead as possible. The mechanisms below are not always able to
pinpoint the malicious peer; they only aim to discover malicious behavior in the
tree.

The effectiveness of DTC greatly depends on the kind of application using
DTC. If we are searching for objects stored in the DHT (as in Section 7.5), then the
problem simplifies greatly. This is because all peers should return a response to the
root of the tree indicating whether they have any objects that match the search. By
requiring all peers to send a response, the root can easily check the responses to see
whether the complete area has been searched. Any malicious peer would easily be
identified with such responses.
In the interest of scalability, the responses should be propagated back along the
tree. Furthermore, each peer should sign its response with a key that is tied to its
zone of responsibility in the DHT and its IP address. These signatures increase
the likelihood of discovering malicious peers, because the malicious peer would
have to invent the zones of responsibility and IP addresses for all the peers in its
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subtree. These might overlap with legitimate zones from other parts of the tree, thus
indicating the presence of a malicious peer. Furthermore, the root could also verify
some of the leafs of the tree (using additional communications) to confirm that the
responses were actually sent by them. Although this would reduce the effects of
malicious peers, in the absence of a centralized identity management scheme, it
cannot completely eliminate them.

Detect Malicious Peers - Multiple Trees Another solution is to split the root of
the spanning tree and, instead of a single tree, generate several spanning trees, each
covering a small area of the total tree and in such a manner that the union of the
smaller trees covers the whole area. This is easy to perform, because the DTC
algorithm allows us to define the area freely. The advantage is that each individual
search area becomes relatively small and allows for an easier detection of malicious
peers. As discussed in Section 7.5, a prefix length of four digits results in a search
area of about 4000 peers. By splitting the query into ten queries, each query needs
to cover about 400 peers. Requiring a response in such small trees does not present
a significant overhead, and thus, malicious peers would be easier to detect. Note
that the response traffic is required by the application and is thus independent of the
way the spanning tree is created (DTC, ALM, flooding, etc.).

The above solutions work well in the case where the tree is spanned for a purpose
that requires a response, e.g., a search. In the case of a pure one-way tree, such as
broadcast, no natural feedback channel exists. Acknowledgements, similar to the
responses in the search application, would work as described above, but in this case,
they would generate additional traffic in the network. However, without such an
acknowledgement mechanism, it is not possible to detect malicious peers. Thus, we
propose using the same mechanism for any kind of application. The second solution,
the creation of several, non-overlapping spanning trees, is likely to be more efficient
at detecting malicious peers, but a full evaluation of the proposed mechanisms is
part of our future work.

7.8 Summary

In this chapter, the multicast mechanism for the locality preserving overlay network
CAN was proposed. As requirement R1 explicitly stipulates sending a message to
a distinct set of peers, we designed an efficient multicast mechanism for volatile
environments found in first response scenarios. However, this approach provides
strong mechanisms for R3 (locality awareness) and R5 (active search) as well. CAN
is able to store objects with similar properties (e.g., objects with a common prefix or
location information) close to each other (see Section 7.5.1), which enables efficient
searching for objects with common properties.

Table 7.3 shows the state-of-the-art multicast approaches in comparison to our
proposed ALM mechanism. While the state-of-the-art options propose lightweight,
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application-level multicast mechanisms as well, to the best of our knowledge we
are the first to propose an ALM approach for CAN without duplicate messages.

Mechanism Average
Delay

Number of
Messages

Message
Ack.

CPU Effort

ALM-Castro cf. CAN Duplicates • Very Low
ALM-Ratnasamay cf. CAN Duplicates • Very Low
ALM cf. CAN Minimal • Low

Table 7.3: Comparison of ALM with state-of-the-art approaches

Our approach creates a spanning tree over a part of a DHT, with no inter-node
communication and using only information available locally on each node. A
mapping based on region quad trees enables CAN to perform prefix and region
searches on content stored in the DHT. This solution is not limited to searches, but
can also handle broadcast and multicast communications. Our evaluation shows that
DTC performs as expected, and the comparison to similar approaches from literature
reveals that the message overhead of existing solutions is considerably higher than
the optimal number of messages sent by DTC. The depths, of the spanning trees are
similar in all studied cases. We have also discussed the robustness of DTC against
malicious peers and presented solutions for strengthening DTC.
In the next chapter, an application model is presented; its purpose is to maintain
a strict command and control hierarchy in a distributed P2P network. It relies on
the functionality provided by the overlay network layer, as well as the connection
topology layer.
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Chapter 8

Application Layer: Distributed
Command and Control Structure
Management

Hierarchically structured organizations have clear and relatively short communi-
cation paths. However, one does not take advantage of this fact in modern P2P
overlays. As discussed in Chapter 2 management of a command and control hi-
erarchy is one of the key requirements for efficient and successful disaster relief.
We show how a command and control order can be imposed on a structured P2P
network. This approach can be used to benefit from hierarchical structure in any
communication system, especially in first response scenarios.

8.1 Introduction

8.1.1 General Approach

In this work, we present Distributed Command and Control (DCC) structure manage-
ment, a mechanism that imposes an hierarchical organization upon every structured
P2P network. DCC is independent from the structure of the underlying network.
Within first response systems, such hierarchy can be used to regulate the command-
flow in a disaster management. For example, a firefighter has just connected to
the P2P network and wants to communicate with the mobile headquarter. Our
mechanism allows him to find and contact the headquarter without any further
information.

As the communication network continuously changes, users join and leave
all the time, and the imposed hierarchy has to be adapted as well. If a certain
first response team disconnects from the network, the gap in the communication
chain must be refilled by the most appropriate participant in the network. We use a
distributed hash table (DHT) in order to manage the hierarchy in the network. The
position of a peer in the hierarchy is the key, and its address is the value; in other

119
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Headquarter

Police carFire Engine Ambulance

Figure 8.1: First response hierarchy

words, using a hash function, one can compute for each position in the hierarchy a
corresponding node ID. That is how each peer can easily determine its own position,
or find a peer that has a certain position within the network hierarchy.

8.1.2 Requirements

The main task of the ‘Application Layer’ itself is to provide a clean interface to the
(cf. section 3) overlay network layer and to act as an environment for the full set of
required applications. They are deployed into this layer satisfying one or several
elicited use cases (cp. Section 2.2).
The application layer is designed to act as a general host for a set of applications. In
the course of this thesis, we developed one approach, which fully covers the elicited
use case R6 (hierarchy maintenance, Section 2.2). This use case requires multiple
connections to different sets of nodes. In addition, substantial network traffic is
required in case of shift changes (use case R2) and node failures.

R2 (Shift Change) Teams of first responders in the incident and post-incident
phases work in relatively short shifts. The communication support needs to immedi-
ately integrate the new team on duty into the existing organization hierarchy and
transfer left open tasks to the new team.

R10 (Hierarchy Maintenance) During the incident phase, frequent adaptations
to the organizational hierarchy need to be performed. In the incident phase, more
than one required adaptation per five minutes was reported in the Arlington-County
action-log (see Section 2.2).

8.2 Related Work

Our DCC structure management approach, is based on distributed hash tables
(see Section 3.2 for an introduction to distributed hash tables). To the best of our
knowledge, it is the first approach to managing command and control structures
in a DHT overlay network. Nevertheless, there are other approaches that use P2P
overlay networks to accomplish a hierarchical structure for different purposes.
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One such data overlay is Somo [ZSZ03], which can be used on top of any P2P-
DHT network too. It collects and distributes meta data in O(logN) (where N is the
network size) and scales together with the hash table being used. The meta data is
aggregated from the leaves to the root of a tree and afterwards disseminated along
the tree. In fact, the Somo protocol may run on top of our organization hierarchy,
the repair costs for crashes will even be reduced by the first-come, first-serve policy
of DCC (a peer takes the highest vacant position possible).

When working with large complex applications, using simple distributed hash tables
is one of the best approaches. One such application is Place Lab [CRR+05]. It stores
and provides WiFi hotspots and mobile phone masts in a database. The database is
distributed on several servers (peers) that are responsible for storing and computing
data. To manage this task, Place Lab uses distributed hash tables. Every server
(peer) is responsible for a certain range of data. If the data in that range become too
large, the range is split and another peer receives the other half. That way, a binary
tree emerges whose leaves contain the data. The child node has the label of the
parent concatenated with 0 or 1, given to the left child or right child, respectively.
This data structure is called the prefix hash tree (PHT). PHTs need only a simple
put/get/remove-interface and can be built upon distributed hash tables. PHT is an
astonishing simple protocol, but has no overwhelming performance.

Cone [BVV03] is a distributed data structure especially designed for mathematical
operations like the sum and min/max. Cone uses a DHT overlay network, and unlike
DCC, focuses on data aggregation. In comparison, DCC is designed for to create
and maintain a dynamic organization structure; it can be easily extended to exploit
this structure for data aggregation and dissemination tasks.

8.3 Basic DCC-Model

The DCC structure management approach enables one to impose a hierarchy upon
any underlying structured P2P-network. For this purpose, it uses only send and
receive methods. Every overlay node represents one person in the disaster manage-
ment, with her/his specific rank in the chain of command. The overlay node knows
its rank and fills the corresponding position within the hierarchy. The rank and the
position of a node in the hierarchy are represented by an unique label. The label
of the peer with highest position, i.e., the root, contains one or more alphanumeric
symbols. The label of each subordinate peer is composed from the label of the
preceding peer, a dot and one or more alphanumeric symbols. For simplicity, we
just used one decimal digit for each position. Figure 8.2 represents an exemplary
scheme. The hierarchy does not necessarily need to be a completely balanced tree
or to have a symmetric structure. Depending on the desired staff-line, organization
leaves may be placed in different depths. The prefix values in the label of each node
describe its path to the root. This path can be used for different purposes: to contact
superior nodes, for targeted communication with a specific node through a common
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superior node or to monitor the direct superior node and apply for its position in a
case of failure.

position: 0

position: 0.2 position: 0.0position: 0.1

position: 0.2.0 position: 0.2.2position: 0.2.1position: 0.1.0 position: 0.1.1
C

Figure 8.2: Example of staff-line hierarchy on top of a DHT-network

8.3.1 Joining

We use a DHT to build the staff-line organization. The position in the hierarchy is
the key, and the value is the address of the corresponding peer. Assume that a new
node A tries to join the network, as specified in the P2P network overlay. After A
is connected to the network, it has to allocate its position within the hierarchy. To
achieve that, A hashes its rank with a hash function known to all peers, to generate
a network ID. Let B be the overlay node, responsible for the ID generated by A.
That is, B administrates the position P within the hierarchy, which corresponds to
A’s rank. A sends a request to take position P to B. The request contains: the rank
of A, its address and the desired position. Node A receives a positive reply if P is
vacant, or if the node currently occupying P is less appropriate than A. Otherwise,
B responds with information about the node X occupying P: its rank, its address
and its position (P). Then A sends a request to X and so on, until A finds its position
within the hierarchy. Once A has found its position, it also knows its direct superior
peer.

For communication within the network, it is sufficient if every peer knows its
superior and its subordinate peers. However, if necessary, any peer can locate any
other peer within the hierarchy. Consider Figure 8.2 again and assume that a peer
C (position 0.1.1) wants to communicate with a remote peer (e.g., position 0.0).
C knows that its position is one level below the position it is searching for: the
position of C has three dots, i.e. is on level three, and the desired position only two,
i.e., is on level two. Therefore, C sends a message to its superior, telling it that C
seeks a peer on a given position. Then, the superior node of C decides on its turn,
depending on its position and the requested position, whether to redirect the request
to its superior or to one of its subordinate nodes. Once the requested position has
been reached, a positive message is sent back along the chain. In other words, the
hierarchy of the peers is used to target messages precisely. Furthermore, each peer
has to make only locally based decisions.

In order to keep the hierarchy consistent, each peer occupies the most superior
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vacant position, even if this position does not directly corresponds to the peer’s rank.
Once the correct or more appropriate peer appears, the currently occupying peer
goes down the hierarchy tree. In the following, we call a hierarchy without gaps a
correct hierarchy.

8.3.2 Hierarchy Maintenance

P2P networks are like living systems; peers join, leave or even crash all the time.
These three processes are generalized under the term churn. The network overlay
and the hierarchy have to be robust against churn. The self-reorganizing capabilities
of P2P networks provide a stable basis for DCC. The exact manner depends on
the concrete overlay, but they all can effectively detect and handle new, crashed
and leaving peers. Once the underlying network has been repaired, the hierarchical
structure also has to be adapted. A crashed or leaving node means a gap in the
hierarchy. This gap has to be filled by a subordinate peer. However, this in turn
produces a new gap, until the repairing peer happens to be on the bottom most level
of the hierarchy tree. The same situation emerges when a peer joins the network.
It has to be placed in the most appropriate position. This, however, could mean
that some peers must be demoted, until again a bottom peer has been reached.
Nevertheless, in both cases, it is only one single path within the hierarchical tree
that is affected. In the worst case, the number of overall affected nodes scales as
O(logd(N)), where N is the number of peers in the network and d is the number
of subordinate peers per node. More importantly, the hierarchy always remains
consistent. It is simply about redistributing hierarchical positions.

In order to detect and react to churn, our mechanism periodically checks whether
the peer managing a given position is still the same. If it has changed, the proposed
mechanism just routes a message to the new peer. Routing messages are also
periodically sent to the superior peer to determine whether it has changed or whether
the position is not suddenly vacant.

8.3.3 Messages

DCC sticks to the key-based routing interface (KBR) [DZD+03] of the underlying
P2P network. DCC uses a set of four different messages to communicate with the
underlying network and other applications running on top of it. In this section, we
describe the structure and the purpose of those messages:

• position request message

• accept position request message

• position information message

• quit position message
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Figure 8.3: Reestablished hierarchy after node join in Chord

In case a node wants to take a position within the hierarchy, for example, to
join the hierarchy or to occupy a more appropriate position, a position request
message is routed. The message contains: the sender’s rank, the sender’s desired
position and the sender’s address. The message is sent to the peer responsible for
the network ID corresponding to the desired position. If the requesting node can fill
its desired position, it receives an accept position request message. The message
contains the sender of the message and the position. If another node holds the
desired position and is more appropriate, the requesting node receives a position
information message. A position information message contains: the sender, the
position, the address and the rank of the node holding the position. The requesting
node must select another position in the hierarchy, generally a subordinate position.
A node may also have to quit its position, if another more appropriate node request
its position. The receiver acknowledges the request and sends back a quit position
message. This message contains the sender and the position. Afterwards, the
requesting node starts the join procedure described above.

Of course, the message types can be extended according to the needs of the concrete
application domain, for example, for information exchange among nodes with
the same superior node. Furthermore, information aggregation and dissemination
protocols along the tree can be applied.

8.4 Simulation Setup

The following section describes the experimental setup we used for our simulations.
We measured the time required (in simulation steps) to establish correct hierarchy af-
ter continuous peer join or churn within the underlying network. In the simulations,
we placed DCC on top of the P2P networks Chord [I. 01], Symphony [MBR03]
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Figure 8.4: Reestablished hierarchy after node join in Symphony

and CAN [RFH+01b]. All charts are averaged values derived from repeating each
experiment twenty times. Please note that CAN performs exactly like Chord if we
set the dimensions d = log2N/2 [LKRG03].
To simulate first response scenarios, we used both, the P2P simulator Planet-
Sim [Gea05] combined with the First Response Communication Sandbox [BPSM08]
(FRCS), thus generating individual physical movement data for each peer. This is
the proposed simulation approach of the ‘Movement and Network Model’ layer (cf.
Section 4).

The application layer may use, the DHT functionality provided by the ‘Overlay
Network’ layer (cf. Chapter 4). Every overlay network provides the same interface
to the upper application layer (see Section 3.3). Therefore, one can run simulations
with different overlay networks using the same application. That is, changes in the
environment of one of the simulators are reflected in other ones, and vice versa.
Thus, FRCS simultaneously provides fine grained movement and location-aware
network models. Therefore, it produces more realistic results than combining two
separate simulators.
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Figure 8.5: Workflow of the simulation process

Figure 8.5 shows the complete simulation process. It begins with creating
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the environment, which is fixed for the rest of the process. Afterwards, the peer
configuration takes place, i.e., the number and the resources of the mobile peers,
as well as the stationary peers are configured. The next two steps are performed in
parallel; PlanetSim is running the network simulation while FRCS simulates the
movement of all peers. Concrete simulation results are presented in the section.

8.5 Evaluation

In our first experiment peers, join the network randomly. We always conduct two
simulation steps after a node has joined the network (one simulation step is about
100ms on average). We measure the time, i.e., the number of simulation steps,
required to establish a correct hierarchy. The hierarchy tree is constrained to at most
three subordinate positions per peer. Since peers join the network randomly, at least
at the beginning, they are usually placed first on higher positions than their ranks.
That avoids gaps in the hierarchy but produces higher reorganization costs in the
beginning of the simulation process. When the peers with the correct ranks appear,
reorganization takes place.

The empirical results show that the time needed to establish correct hierarchy varies
only slightly with the network size (see Figure 8.3). It takes about 250 simulation
steps from the time of the last joined peer until the time when the hierarchy is fully
established. One simulation step is the time needed for one communication hop,
which we set to 100ms. For example, in the observed scenario, the organizational
structure is established and functioning after approximately 25s.

The same experiment performed on Symphony has different reorganization costs
(see Figure 8.4). The time needed to reestablish the hierarchy depends on the
network size, because additional routing steps are required. Small networks perform
any routing within one densely connected cluster. With increasing network size,
several clusters appear, which are only sparsely connected with long distance links.
In that case, routing means leaving a cluster with a long distance link, entering
another cluster and then locally routing to the desired target. Nonetheless, average
reorganization costs are below 60s for a network with 1000 peers.

Comparing both P2P networks, the same implementation of DCC shows much
better performance in the Chord network. The reorganization delay is about 60%
less than that of Symphony. Furthermore, the variance of Chord is smaller than the
variance of Symphony. This comes from the better structure of the underlying net-
work of Chord. Nevertheless, the price is more links per peer and very constrained
freedom when new links are established.

Our next experiment simulates a typical scenario: after the joining process is
over and both the underlying network and the hierarchy are in steady state, we
simulate a random crash of 5% of all peers. We set the crash rate to 5 crashes per
second (i.e., one peer crashes every second simulation step). During the crash phase,
the underlying P2P network is already allowed to start maintenance operations.
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Figure 8.6: Reestablish hierarchy in Chord after failure of 5% of all nodes

The results show that the time required for Chord to reestablish the correct
hierarchy after the last peer has crashed grows logarithmically with the network size
(see Figure 8.6).

The same experiment is carried out on the Symphony network as well. Figure 8.7
shows the repair costs for a random crash of 5% of all Symphony peers. Given a
network size of 1000 peers, on average, 800 steps, which require approximately 80s,
are needed in order to fully reestablish the organizational structure. As observed
in the former experiment, where we continuously added peers to the network,
Symphony has higher variance in the delay for repairing the network. This is again
caused by the underlying routing mechanism of Symphony.

Then, we investigate the impact of different crash rates with a fixed number
of peers (500) in the network. The experiment requires an already established
organizational structure and begins after both the underlying network and the
hierarchy are in a steady state. We simulate crash rates between 1% and 20%.

It turns out that the time Chord required to reestablish correct hierarchy hardly
increases (see Figure 8.8). Even in a situation of a crash of 20% of all peers, the
network will most likely be re-established in between 40s and 60s. In other words,
independent of the underlying network, the overhead for building and maintaining
the network hierarchy only increases marginally with the network size and does not
depend on the crash rate.

Using the same simulation parameters, Symphony shows a slightly longer
delay than Chord. Though fail rates up to 20% are successfully repaired by DCC,
recovering requires almost always require more time than Chord. Node failure rates
higher than 15% show decreasing repair costs. This effect is even more visible using
a higher fraction of node failures. Even though this effect may be counterintuitive, it
occurs because the higher the number of failed nodes, the smaller the network size
becomes. The organizational hierarchy substantially shrinks and therefore fewer
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Figure 8.7: Reestablish hierarchy in Symphony after failure of 5% of all nodes

messages are needed for it to be reestablished.

All results described above are acquired with hierarchy constrained to at most three
subordinate positions per peer. But how does this affect the overall performance?
We perform another experiment. We fix the number of peers in the network, vary the
number of subordinate positions, remove the most superior peer (which produces
the highest reorganizational costs possible) and measure the time needed for the
hierarchy to recover.

From graph theory, we know: for a fixed number, N, of peers in a given network,
the hierarchy height h decreases when the number of subordinate positions grows,
and vice versa. For s subordinate positions, it holds that h = logsN. Therefore, when
the most superior peer fails, the larger h is, and the faster the hierarchy recovers to a
correct state. The time required for the hierarchy to recover depends on its height.
Thus, the recovery time scales as O(logN).

Figure 8.9 shows results for both Chord and Symphony networks with a fixed
number of 500 peers and under perfect conditions, i.e., no churn and no congestion.
The Chord network shows faster recovery time, which is caused by the underlying
faster routing algorithm. In addition, our experiments have shown high variance in
the experiments carried out on Symphony. Due to the way the routing algorithm of
Symphony is built, the average delay may vary more than those of Chord. In the
worst case, i.e., two subordinate nodes per peer, Symphony recovers from failures
of the root node within 70 seconds, and Chord recovers in 40 seconds on average.
Increasing the number of subordinates from two to four greatly reduces the delay
for reestablishing the hierarchy: by 40% within the Chord network and by 30%
within the Symphony network.
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Figure 8.8: Reestablish hierarchy under failure rate up to 20%
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8.6 Summary

The main contribution of this chapter is a novel approach for Distributed Com-
mand and Control Structure Management, an application that builds a hierarchical
structure upon a given structured P2P network. It is tested with a wide set of P2P
networks.

It prevents unnecessary coordination cycles between participating teams. Since
each peer knows its position, its superior peer and its subordinates, the command
and control path is predefined. This allows for more precise message routing, as
each peer can decide whether it should send a message down or up in the hierarchy.
Nonetheless, the superior nodes can monitor communication traffic among their
subordinate teams.

The overhead for joining, crashing or leaving the network scales logarithmically
with network size, N. More precisely, it depends linearly on the height of the
hierarchy h, given by h = logs(N), where s is the number of allowed subordinates
per peer. That is why s should be chosen according to the particular scenario. The
higher s grows, the more administrative overhead per peer, but the less time the
network requires to return to a steady state.

Property Somo Cone PHT DCC
DHT Independent • • • •

Repair Costs High High cf. overlay cf. application
Access Delay Low Low cf. overlay Low

Scalability cf. overlay Low cf. application cf. application

Table 8.1: Comparison of DCC with hierarchical access approaches for distributed
hash tables

One should not forget the overhead produced by the underlying P2P overlay
during fluctuations in the network. The size of this overhead depends on the
particular overlay. Table 8.1 shows DCC in comparison to its directly related
approaches. Unlike PHT, our application is based entirely on key-based routing.
That is, each position in the hierarchy is always bound to a peer. To overcome this
drawback and make our application as flexible as PHTs, one can introduce Position
Nodes. They are just placeholders for different positions in the hierarchy, but in
fact are administrated by the same peer. Furthermore, when a conflict for a specific
position occurs, peers can simply exchange Position Nodes and resolve the conflict
with zero overhead.
Our application is placed above a given P2P overlay and communication goes
through a specified interface. That is why the application layer has to perform
additional tasks like determining timeouts of peers. If the application were integrated
within the P2P overlay itself, a central timeout would have been sufficient. However,
exactly because of this communication interface, our application is easily extendible
and can be used with a broad range of existing P2P overlays.



8.6 SUMMARY 131

In addition, the staff-line organization is established explicitly with local knowledge.
Every peer has a unique hash value, generated from its label, which determines its
responsible node. In case of a network breakdown, this local knowledge can be used
whenever the network is available to reconstruct precisely the same organizational
hierarchy.
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Chapter 9

Conclusion and Outlook

The main contribution of this dissertation is on the one side the delineated four layer
architecture for a novel and distributed first response communication approach and
on the other side the proposed mechanisms for the most prevalent challenges of
each layer. The four layers, called ‘Network and Movement Model’, ‘Connection
Topology’, ‘Overlay Network’ and ‘Application Layer’ have been identified and
adapted to the harsh environment found in first response situations. We made
significant contributions at each layer and were able to either reduce message load
per peer or to increase robustness, and while satisfying the elicited requirements on
each layer of the P2P communication approach.

In this Chapter, we first summarize the main contributions of this thesis. In Sec-
tion 9.2, we compare the contributions of each layer with the state-of-the-art options.
In Section 9.3, we discuss potential for future work.

9.1 Contributions

The main contributions of this thesis are:

Overall Concept The concept of the proposed architecture is to adapt each layer
individually to its challenges found in first response situations. Our approach is
designed to support the division of the communication approach into areas (R11),
and explicitly supports devices with limited range, typically IAN and JAN networks
(R12 and R13). As it is fully built based on 802.11 and Internet standards, inter-
organizational communication could be built on top of the proposed architecture
(R8). The proposed architecture may replace the classic voice-only communication,
known from the two-way-radio set with a flexible framework for all kinds of
applications (R7) required for communication support. On the one side, each
layer faces individual challenges; on the other side, failures in one layer may have
consequences in the next layer. For example, network partitioning will be detected
in the connection topology layer, but has dramatic influence on the overlay network

133
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layer and finally, on the application layer. Therefore, all layers have been adapted
carefully to the application scenario in order to minimize the risk of network outages
and to prevent cumulative but opposing countermeasures.

Movement and Network Model We developed a simulation environment for the
‘Movement and Network Model’ layer, which on the one hand estimates movement
of first responders and civilians (R3) and simultaneously simulates the corresponding
mobile communication infrastructure (R4), see chapter 4 for the detailed approach.

The proposed simulation approach does not restrict the adjacent network topol-
ogy in any way (R10). It is a novel combination of movement simulation and
P2P networking simulation, with the possibility of reciprocal influence of both
simulation parts.

Connection Topology The novel approach BridgeFinder provides a mechanism
for detecting critical paths between sparsely connected clusters of mobile peers, i.e.,
IAN (R12) nodes and JAN (R13) nodes (see Chapter 5). This approach is used in
the Connection Topology layer to detect imminent partitioning of the distributed
communication network.
A network consisting of several isolated parts is not usable in a reasonable way;
therefore, this mechanism can be seen as a key enabler for the elicited use cases.

Overlay Network: Multicast First Responders need to send messages to a dis-
tinct group of people or to a specific location (R1). We propose an efficient ALM
in the Overlay Network layer (see Chapter 7). Messages with optional acknowl-
edgment can be sent to either all nodes or to a defined subset of peers within the
network.

The multicast mechanism provides a way to find groups of objects with similar
properties (R5), e.g., proximate locations (R3), similar duties or adjacent IDs. The
approach guarantees that no duplicate messages occur, which saves bandwidth and
energy. The state-of-the-art approach for the DHT network CAN provides similar
performance, but duplicate messages cannot be avoided.

Overlay Network: Search and Lookup The P2P network called PathFinder is
the first overlay combining efficient full-text search and key lookup (see Chapter 6.5)
in one overlay (R5). It uses the virtual nodes concept, which allows for dynamic
load balancing (R4). Each node may choose one out of many available disjoint paths
to an arbitrarily chosen target (R10). Our results show that PathFinder performs
comparably or better than existing overlays. Because PathFinder is based on a
random graph, we fully comply to state-of-the-art exhaustive search mechanisms as
well. PathFinder provides both, key lookup and exhaustive search.

Application Layer Teams of first responders in the incident and post-incident
phases work in relatively short shifts. The new team on duty needs to be immediately
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integrated into the existing organization hierarchy (R2). DCC, a novel approach
for managing distributed command and control structures (R10), is able to provide
hierarchical data access in structured P2P overlay networks. It prevents unnecessary
coordination cycles between participating teams. It allows precise message routing,
as each peer can decide whether it should send a message down or up in the
hierarchy.

9.2 Comparison Summary

In Table 9.1, we list the main contributions of this thesis structured into the proposed
layered architecture. At each layer, a technical comparison with directly related
work was performed. For a detailed analysis, please refer to the corresponding
chapters of this thesis.

9.3 Outlook

In this section, we show in which ways our approach could be enhanced and suggest
some future research directions.

Command and Control Structure Management of crisis response situations
have not yet adapted to new communication possibilities. Already established
management schemes are based on a strict command and control approach. This is
applied almost worldwide, but with a new communication system, nearly every team
is able to access an overview of the entire crisis at any time (cf. Chapter 8). Future
management approaches should allow communication between peers. Decisions
will be made more rapidly, because they are not slowed down by a bottleneck
somewhere in the organizational hierarchy. The flexibility provided by the next
generation of crisis response communication systems must be considered already
today when designing crisis response processes.

Interoperability We propose a communication approach for first responders
using common hardware and an open layered architecture, which is the cornerstone
for interoperability. However, assume that disaster relief organizations share the
same hardware, and that inter-organization communication were easily possible.
Then, it remains a significant challenge to adapt organizations to this flexibility.
Communication interfaces between a huge set of specialized organizations will be
required.

Mixed Mode P2P The research community has seen several examples of DHTs [KK03,
DZD+03, MNR02, RD01b, I. 01, ZKJ01, RFH+01a, Pla99, MBR03]. While all of
them have individual runtime characteristics and resource requirements, they tend
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to follow a simple greedy routing scheme. The common idea is that with every hop
in the overlay network, a key lookup message needs to be numerically closer to its
target ID. It is natural to ask whether future DHTs, instead of following a certain
approach, should have more freedom to choose their neighbors.

PathFinder An open question is the impact of the known (locally calculated)
overlay network topology of PathFinder. An attacker can compute the complete
topology and object assignments, so if there are any weaknesses in the topology,
these can be discovered. For example, if the topology were to have two large clusters
with only a few links between them, an attacker could try to partition the network.
We do not expect this to be a problem in large networks with sufficiently many
neighbors per virtual node. Evaluating the exact impact of this remains an open
issue.

Unstructured Command Hierarchy Further development of DCC should try to
abandon the required distributed hash table. This may be realized when every new
peer communicates with at least one old peer. With the help of the old peer, the
new peer should be able to determine peers in the network that have similar ranks.
That is, each peer has to find its hierarchical incident node in the existing hierarchy.
However it is not clear how much message overhead is required, and the robustness
against churn may be subject of future research activites.
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