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3.1. Nonequilibrium Molecular Dynamics Methods 

3.1.1. Reverse Nonequilibrium Molecular Dynamics 

Figure 3-1. Reverse Nonequilibrium Molecular Dynamics Method. 
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3.1.2. Dual-Thermostat Method 
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Figure 3-2. Dual-Thermostat Method. 
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3.1.3. Thermal-Noise Method 
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Figure 3-3. Thermal-Noise method. 

“ ”

3.1.4. Size Effects 
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3.2. Thermal Conductivity of Molecular Liquids 
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Table 3-1. Comparison of calculated thermal conductivities with experimental data.52 
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Table 3-2. Simulated22 and experimental46,53 thermal conductivities of methanol and ethanol at different 

temperatures. 
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Figure 3-4. Simulated thermal conductivities versus corresponding experimental values for water,11 n-hexane,11 

benzene,11,23 methanol,22 ethanol,22 toluene,23 o-xylene,23 m-xylene,23 and p-xylene.23 
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3.3. Thermal Conductivity of Polymers and its Anisotropy 

3.3.1. Amorphous Polyamide-6,6 
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Table 3-3. Experimental57-59 and simulated thermal conductivities of amorphous polyamide-6,6 at 300 K and 0.1 

MPa. 
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Figure 3-5. The calculated thermal conductivity of polyamide-6,6 as a function of degrees of freedom per repeat 

unit. The line is a linear fit to the data. Figure has been taken from the work of Lussetti et al.19 
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3.3.2. Crystalline Syndiotactic Polystyrene 

δ

Figure 3-6. The  modification of sPS viewed along the helix axis (  direction). Backbone atoms are highlighted in 

yellow. 
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Figure 3-7. Scheme of the different constraint patterns. Constrained bonds are marked by thick solid lines, flexible 

bonds by thin dashed lines. 
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Table 3-4. Components of the thermal conductivity in Cartesian directions (Wm-1K-1) and average thermal 

conductivity for the  phase of sPS. 
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3.3.3. Polyethylene 
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3.4. Thermal Conductivity and Thermal Rectification in Carbon Nanotubes 
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Figure 3-8. Thermal conductivity versus tube length for (5, 5), (10, 0), (7, 7), (10, 10), (17, 0), (15, 15), and (20, 20) 

SWNTs at 300 K. 

Figure 3-9. Thermal conductance  for different tubes at 300 K with a tube length between 50 and 350 nm. 
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α

Figure 3-10. Thermal conductance  versus temperature for different SWNTs of 30 nm length after applying 

quantum correction. 
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Figure 3-11. Atomic mass and temperature profiles in the (10, 10) single-walled nanotube with a mass gradient at 

an average temperature of 300 K. (a) Heat flows into the direction of lower atomic masses. (b) Heat flows into the 

direction of higher atomic masses. 
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Figure 3-12. Thermal conductivity versus nanotube length for various degrees of functionalization. 
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3.5. Force Field Considerations for the Calculation of Thermal Conductivities 
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4. Thermal Conductivity of Atactic Amorphous Polystyrene and its Mixture with 
Supercritical Carbon Dioxide 

Figure 4-1. Schematic representation of atactic polystyrene which is characterized by a random distribution of the 

phenyl rings. 
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4.1. Computational Details 
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4.2. Thermal Conductivity of Neat Polystyrene 

Figure 4-2. Density of neat PS at 0.1 MPa as obtained in experiment90 and by simulations. 



4. Thermal Conductivity of Atactic Amorphous Polystyrene 35 



4. Thermal Conductivity of Atactic Amorphous Polystyrene 36 

T

Figure 4-3. Thermal conductivity of polystyrene versus temperature at 0.1MPa obtained in experiment2 and by 

simulations. 

Figure 4-4. Thermal conductivity and density of polystyrene versus pressure at 400 K. 
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Figure 4-5. Orientation of C-C bonds in the backbone. 
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4.3. Thermal Conductivity of Neat Carbon Dioxide at Supercritical Conditions 

Figure 4-6. Simulated and experimental92 densities of CO2 under supercritical conditions. The uncertainties in the 

simulated densities are smaller than the size of the symbols. 
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Figure 4-7. Thermal conductivity of CO2 at supercritical conditions versus pressure at different temperatures. The 

uncertainties of the simulated thermal conductivity are smaller than the size of the symbols. 
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4.4. Thermal Conductivity of Binary Mixtures of Polystyrene and Carbon Dioxide 

Figure 4-8. Density of the binary mixture versus CO2 concentration in mass % at 400 K and 16 MPa. 
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Figure 4-9. Thermal conductivity of the binary mixture versus mass concentration of CO2 in % at 400 K and 16 MPa. 

Figure 4-10. Thermal conductivity of binary mixtures versus pressure for different mass concentrations of CO2 in % 

at 400 K. 
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Figure 4-11. Thermal conductivity of binary mixtures versus temperature for different mass concentrations of CO2 in 

% at 16 MPa. 
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Figure 4-12. Thermal conductivity of binary PS-CO2 admixture as a function of the degrees of freedom per unit 

volume encountered in the system. 
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Table 4-1. Thermal conductivities of neat PS and neat CO2 at different temperatures and pressures; experimental 

values93 in parenthesis. 
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Figure 4-13. Thermal conductivity of the binary mixture as a function of CO2 mass concentration derived by RNEMD 

simulations of the binary system and estimated via the interpolation. 

4.5. Summary 
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5. Anisotropy of the Thermal Conductivity for Amorphous Polystyrene and its 
Mixture with Supercritical Carbon Dioxide 
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Figure 5-1. Arrangement of stretched polystyrene in the simulation box as projected on the  and  plane. 

Stretching occurs in the  direction. The carbon atoms in the backbone chain have been highlighted in red. 
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5.1. Computational Details 
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5.2. Anisotropy of the Thermal Conductivity of Neat Polystyrene 
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c

Figure 5-2. Pressure dependence of the thermal conductivity of anisotropic polystyrene at 400 K and a stretching 

ratio of 35 %. 
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Figure 5-3. Temperature dependence of the thermal conductivity of anisotropic polystyrene at 0.1 MPa and a 

stretching ratio of 21 %. 

Figure 5-4. Thermal conductivity of anisotropic polystyrene as a function of the stretching ratio  at 0.1 MPa and 

400 K. The  and  average has been labeled by a dashed curve. The straight line refers to the thermal 

conductivity of the isotropic sample. 
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Figure 5-5. Distribution of the direction cosines of the C-C bonds in the PS backbone and side chain in the direction 

of stretching. The simulations have been carried out at a temperature of 350 K and a pressure of 0.1 MPa. 



5. Anisotropy of the Thermal Conductivity for Amorphous Polystyrene 55 

Figure 5-6. Anisotropy of the thermal conductivity  of PS as a function of the averaged direction cosine of the 

C-C backbone bonds in the parallel direction . The RNEMD data have been derived for different temperatures 

and stretching ratios. 
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5.3. Anisotropy of the Thermal Conductivity of Binary Mixtures of Polystyrene and 
Carbon Dioxide 

Figure 5-7. Pressure dependence of the thermal conductivity of a binary PS-CO2 mixture with 10 mass % of CO2 and 

a stretching ratio 22 %. The dashed curve is for the isotropic mixture. 
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Figure 5-8. Thermal conductivity of binary PS-CO2 mixtures as a function of the CO2 mass concentration at 400 K 

and 16 MPa for a stretching ratio of 23 %. The dashed curve is for the isotopic sample. 

Figure 5-9. Thermal conductivity of a binary mixture with 10 mass % of CO2 as a function of the stretching ratio at 

400 K and 16 MPa. The mean thermal conductivity  has been symbolized by a dashed curve. The 

straight line refers to the thermal conductivity of the isotropic sample. 
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Figure 5-10. Thermal conductivity ratio  as a function of the average cosine between the C-C bonds of the 

backbone and the direction of heat transfer  for binary mixtures at different pressures, temperatures and 

concentrations of CO2; see the same correlation for neat PS in figure 3-6. 

5.4. Dependence of the Thermal Conductivity on Number of Degrees of Freedom 
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Figure 5-11. Calculated thermal conductivity as a function of the degrees of freedom per volume for amorphous 

polyethylene,104 amorphous polyamide-6,6,19 crystalline syndiotactic polystyrene,10 liquid benzene11, liquid n-

hexane11, liquid cyclohexane11, supercritical CO2 (present work), amorphous atactic polystyrene (present work) , 

amorphous atactic polystyrene +CO2 (present work). 



5. Anisotropy of the Thermal Conductivity for Amorphous Polystyrene 60 



6. Conclusions and Outlook  61 

6. Conclusions and Outlook 



6. Conclusions and Outlook  62 

–



7. References  63 

7. References 



7. References  64 

http://www.gromacs.org/


7. References  65 



Acknowledgments  66 

Acknowledgments 

“

”



Curriculum Vitae  67 

Curriculum Vitae 

Elena Algaer 

Bleichstraße 30, 64283 Darmstadt 

Date of birth: 09-02-1983 

Education 

 Darmstadt University of Technology, Darmstadt, Germany 

Ph.D. in Chemistry 2007 – 2010

Dissertation: “Thermal conductivity of Polymer Materials - Reverse Nonequilibrium 

Molecular Dynamics Simulation” 

 Novosibirsk State University, Novosibirsk, Russia 

M.Sc. Honors in Computational Physics 2004 – 2006

Thesis: “The Event Digitalization Algorithm for the Liquid Xenon Calorimeter of the  

CMD-3 Detector” 

 Novosibirsk State University, Novosibirsk, Russia 

B.Sc. Honors in Physics 2000 – 2004

Thesis: “Computer Simulation of the Liquid Xenon Calorimeter of the CMD-3 Detector” 

School 

 Specialized Educational Scientific Center of NSU, Novosibirsk, Russia  1999 – 2000 

 Secondary School of Kasanka, Novosibirsk, Russia    1989 – 1999 



Publications  68 

Publications 

 

 

ö

 

 

 



Eidesstattliche Erklärungen  69 

Eidesstattliche Erklärungen 



Eidesstattliche Erklärungen  70 


