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Abstract  
Computer simulations of complex multi- particle systems have attracted more and 

more research interest. Molecular dynamics (MD) simulations have been used intensively 

in various scientific fields such as molecular biology, polymer physics, nanotechnology 

and many others. System properties measured at a certain time can be deduced from the 

coordinates and velocities of classical particles. If the interatomic forces are known with 

a good accuracy and the initial conditions of the system can be defined properly, 

molecular dynamics simulation can act as a computer simulation. It means that these 

results can be compared to experimentally obtained values and, more importantly, some 

other information about the system can be accessed, which sometimes is hard or 

impossible to measure. After a short overview on MD methods, several MD simulations 

will be presented. 

Thermal conductivity of polymer crystals is a typical quantity that is difficult to 

experimentally determine. This is because samples of  large-enough single crystals of 

polymers for thermal conductivity measurements have not yet been prepared, therefore 

the single crystal properties can only be determined via computer simulation. In Chapter 

3 we have summarized extensive calculations of the thermal conductivity of the δ -phase 

of syndiotactic polystyrene (sPS). Until now, only partial theoretical data dealing with 

thermal conductivity of crystalline polymers was available. 

This available data was particularly concerned with the correlation between 

thermal conductivity and the polymer’s morphology and orientation [D. Hansen and G. 

A. Bernier, Polym. Eng. Sci. 12 (3), 204 (1972)]. In comparison with the amorphous 

structure of polymer a large anisotropy can be established in crystalline polymer as result 

of varied structural and morphological parameters in different directions. MD simulations 

permit us, for example, to restrict some oscillations and to set the bond length between 

two atoms, which can be done by addition of constraints in the system. Such artificial 

constraints limit the free movement of the particles which decreases the degrees of 

freedom of the system. In this study we investigated the sensitivity of the thermal 

conductivity to different numbers and locations of such constraints in different parts of 
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the polymeric chains. It was found that the thermal conductivity has a tendency to 

decrease when the number of active degrees of freedom in the system is reduced by the 

introduction of stiff bonds. This dependence is, however, weaker and more erratic than 

previously found for molecular liquids and amorphous polymers [E. Lussetti, T. Terao, 

and F. Müller-Plathe, J, of Phys, Chem, B 111 (39), 11516 (2007)].  

Another physical property of polymers, which has attracted a great deal of 

attention from researchers in the recent times, is the understanding of the dynamic and 

static properties of polymer chains. Many technologies such as electronics packaging, 

coatings, adhesion, and composite materials are based on these polymeric properties. In 

Chapter 4 we discussed the physical properties of short polyvinyl-alcohol (PVA) 

oligomers up to a chain length of ten monomers chain (H(-CH2-CH(OH)-)NCH3). The 

specific volume was found to depend linearly on the inverse number of repeat units N, a 

result that is in agreement with experimental findings for other polymers. The gyration 

radius was found to depend on the number of formula units via 0.65 0.03N ± . The exponent 

simulated is somewhat larger than the known 0.588N  dependence for long chains in good 

solvents. We also discuss the orientation correlation function for different bonds in the 

chain. The relaxation times for these bond vectors, as obtained via the Kohlrausch-

Williams-Watt expression, showed an exponential dependence on the number of repeat 

units.  

In Chapter 3 we studied the thermal conductivity of crystal polymer but under 

certain conditions and as a response to a temperature gradient, it was possible to correlate 

the separation between different chemical species. This effect is called the Soret effect or 
thermal diffusion effect and is quantified by the Soret coefficient ( TS ). Although this 

effect has been studied for more than 150 years, a microscopic understanding of thermal 
diffusion processes in liquids is still unavailable. The precise prediction of TS  from 

theory and simulations and even the experimental determination for more complex 

systems is often a challenge. In Chapter 5, we studied the thermal diffusion behavior of 

an equimolar mixture of hydrocarbon chains in xylene. Hydrocarbon chains (alkanes and 

alkenes) with the same carbon number were considered in order to exclude the mass 
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contribution and to investigate the influence of molecular structure on the Soret 

coefficient. Thermal diffusion behavior was analyzed in terms of static and dynamic 

properties of the mixtures and an explanation for the observed results has been supplied. 

Chapter 6 finally summarizes the main conclusions of the present study in the 

thesis and provides summary of the work. 
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Zusammenfassung 
Computersimulationen komplexer Vierteilchen-Systeme haben in den letzten 

Jahren an Bedeutung gewonnen. Besonders Simulationen vom Molekular-Dynamik 

(MD)-Typ wurden vielfach benutzt, um Probleme aus dem Bereich der 

Molekularbiologie, der Polymer-Physik, der Nanotechnologie und ähnlicher Felder zu 

behandeln. Innerhalb bestimmter Zeitskalen können die Eigenschaften von Systemen auf 

Basis der Koordinaten und Geschwindigkeiten von klassischen Teilchen mit MD 

berechnet werden. Mithilfe genügend genauer Wechselwirkungspotentiale und 

definierten Anfangsbedingungen ist es möglich, Molekular-Dynamik-Simulationen 

durchzuführen. Die Ergebnisse dieser Rechnungen können mit experimentellen Daten 

verglichen werden. In Fällen, in denen experimentelle Ergebnisse nicht zugänglich sind, 

liefern die Computersimulationen den einzigen Zugang zu Systemeigenschaften. Nach 

einem kurzen Überblick über MD-Methoden, möchte ich in dieser Arbeit einige MD-

Simulationen vorstellen. 

Die thermische Leitfähigkeit von Polymerkristallen ist zum Beispiel eine 

Eigenschaft, die experimentell schwierig zu bestimmen ist. Dies liegt daran, dass 

genügend große Einkristalle von Polymeren noch nicht präpariert werden konnten. Das 

Verhalten solcher Einkristalle lässt sich deshalb nur am Computer bestimmen. Solche 

Simulationen möchte ich in Kapitel 3 für die thermische Leitfähigkeit der δ -Phase des 

syndiotaktischen Polystyrols (PS) beschreiben. Bis jetzt sind nur wenig theoretische 

Ergebnisse zur thermischen Leitfähigkeit kristalliner Polymere publiziert worden. 

Die wenigen zugänglichen Daten haben sich mit der Korrelation zwischen 

thermischer Leitfähigkeit und der Morphologie  bzw. Orientierung von Polymeren 

beschäftigt [D. Hansen and G. A. Bernier, Polym. Eng. Sci. 12 (3), 204 (1972)]. Im 

Unterschied zu amorphen Polymeren können kristalline Polymere aufgrund 

morphologischer und struktureller Parameter gewisse Anisotropen aufweisen. MD-

Simulationen an solchen Systemen können unter bestimmten Einschränkungen 

durchgeführt werden, z.B. dem Festhalten von Bindungen. Diese künstlichen 

Beschränkungen limitieren die Bewegung der Teilchen.  

In der vorliegenden Arbeit habe ich die Veränderung der thermischen 

Leitfähigkeit als Funktion der Anzahl und Position festgehaltener Freiheitsgrade in einem 
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Polymer untersucht. Wie erwartet, stellte sich heraus, dass die thermische Leitfähigkeit 

kleiner wird, wenn Freiheitsgrade im System durch die Einführung steifer Bindungen 

eingefroren werden. Diese Abhängigkeit ist in der von mir untersuchten δ-Phase von 

Polystyrol aber kleiner als in molekularen Flüssigkeiten und amorphen Polymeren [E. 

Lussetti, T. Terao, and F. Müller-Plathe, J, of Phys, Chem, B 111 (39), 11516 (2007)].  

Viele Wissenschaftler haben sich in den letzten Jahren dem Verständnis 

dynamischer und statischer Eigenschaften von Polymerketten gewidmet. Für viele 

Technologien im Bereich der Halbleiter, Lacke, Adhäsion und Komposit-Materialien 

sind diese Eigenschaften wichtig. In Kapital 4 möchte ich die physikalischen 

Eigenschaften von Polyvinyl-Alkohol (PVA)-Oligomeren mit Kettenlängen bis zu 10 

Monomeren (H(-CH2-CH(OH)-)NCH3) vorstellen. Ich konnte zeigen, dass das spezifische 

Volumen linear von der reziproken Anzahl N der Monomereinheiten abhängt. Diese 

Abhängigkeit wurde experimentell bei anderen Polymersystemen bestätigt. Für den 

Trägheitsradius Rg wurde eine 0.65 0.03N ±  Abhängigkeit gefunden. Der in dieser Arbeit 

ermittelte Exponent ist etwas größer als die bekannte 0.588N -Abhängigkeit für lange 

Ketten in guten Lösungsmitteln. In Kapitel 4 diskutiere ich ebenfalls die Orientierungs-

Korrelationsfunktion verschiedener Bindungen in der Kette. Die Relaxationszeiten dieser 

Bindungsvektoren wurden im Rahmen der Kohlrausch-Williams-Watts-Theorie 

berechnet. Sie zeigen die erwartete exponentielle Abhängigkeit als Funktion der Anzahl 

der monomeren  Baueinheiten. 

In Kapitel 3 beschäftige ich mich mit der thermischen Leitfähigkeit eines 

kristallinen Polymers unter verschiedenen Randbedingungen. Durch die „Antwort“ auf 

einen Temperatur-Gradienten war es möglich, die Entfernung zwischen den 

verschiedenen chemischen Komponenten zu bestimmen. Dieser Effekt, i.e. 

Thermodiffusion, wird durch den sogenannten Soret-Koeffizienten ( TS ) beschrieben. 

Obwohl dieses Phänomen schon seit 150 Jahren bekannt ist, existiert bis heute kein 

mikroskopisches Bild für die Thermodiffusion in Flüssigkeiten. Eine halbwegs genaue 

Bestimmung von TS  entweder durch Simulationen oder experimentell stellt für komplexe 

Systeme immer noch eine Herausforderung dar. In Kapitel 5 beschreibe ich die 

thermische Diffusion in einer äquimolaren Mischung reiner Kohlenwasserstoffe in Xylol. 

Dabei wurden Alkan- und Alken-Ketten mit der gleichen Anzahl von Kohlenstoff-
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Atomen verwendet, um Masseneinflüsse auf TS  auszuschließen und nur den strukturellen 

Einfluss auf den Soret-Koeffizienten zu bestimmen. Die thermische Diffusion in diesem 

System wurde mithilfe statischer und dynamischer Eigenschaften analysiert und erklärt. 

In Kapitel 6 fasse ich noch einmal die wichtigsten Ergebnisse der vorliegenden 

Doktorarbeit zusammen. 
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Chapter 1: Introduction 

The availability of modern, high speed computers rendered possible the intensive 

application of computational methods for scientific investigations. Although limited to 

approximate simulations of simple model systems in the early days, computational 

techniques are now capable of accurately modeling and investigating relevant, complex 

systems, such as polymers in different environments. The work presented in this thesis 

involves the application of computational methods to several areas. One of the topics 

studied was the thermal conductivity of polymer crystal. For this research the δ  phase of 

syndiotactic polystyrene has been chosen. Another application of computational methods 

for the study of molecular dynamics is the investigation of the physical properties of 

poly-vinyl-alcohol oligomers. The third topic studied and reported in this dissertation 

deals with computation of the Soret coefficient in equimolar mixtures of xylene/alka-

nes(enes). 

The first steps in the study of these subjects were taken in the beginning of  the 

1960’s as part of fundamental research in the statistical mechanics of macromolecules1. 

For research in this area Stanford University Professor, Paul J. Flory, was awarded the 

Nobel Price in 1974. At the present time, we have to note the research of the French 

physicist Pierre-Gilles de Gennes who described the dynamic properties of polymers. In 

his famous monograph, he mentioned several main points for progress in polymer science 

and one of them was the advancement in computer simulation. The methods of computer 

simulations that have been applied in this thesis is molecular dynamics (MD) and will be 

described in detail in Section 2.  

The significance of synthetic polymers and the role of natural macromolecules 

like proteins, polysaccharides, and nucleic acids in biological systems are well known. In 

spite of extremely wide variations in the chemical structure of macromolecules, it is 

possible to identify a few typical characteristics of polymers. One of these is their ability 

to change structure as a function of temperature and environment. Another characteristic 

that is unique to polymers is the low entropy of the system, which can be explained by 
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the covalent bonding of the atoms forming the backbone, so that they cannot move 

without shifting their neighbors. Therefore the physical properties of oriented polymers 

are exceptional, as will be illustrated in Chapter 3, with respect to thermal conductivity 

behavior.  

In this chapter we calculated the thermal conductivity of crystalline polystyrene. 

Polystyrene, abbreviated as PS, is witnessing increasing interest nowadays due to its 

various technical applications. This polymer is becoming more and more common in the 

production of electrical and electronic devises because of its electrical properties2. But, in 

order to estimate heat dissipation in electrical devices it is necessary to know the value of 

the thermal conductivity of the material at room temperature range. Additionally, 

appreciable levels of thermal conductance are needed for use of polystyrene in circuit 

boards, heat exchangers, and machinery3. Due to the tendency of polystyrene to be in 

crystal form of its enantiomers (isotactic and syndiotactic polymers) it is also important 

to know about the crystallinity of PS along with its thermal conductivity. However, until 

a pure crystal is obtained, the thermal conductivity of the crystalline polymer can be 

estimated only by simulation. 

Data on thermal conductivity has been reported for many polymers, but 

surprisingly little has been said about the relationship of thermal conductivity to such 

parameters as crystallinity and molecular orientation. The data of Hennig and Knappe4 

shows for a uniaxially-oriented polymers that the thermal conductivity increases in the 
direction of chain orientation (λ ) with a corresponding decrease in directions normal to 

the orientation ( λ⊥ ). However, the difference between those two values depends on the 

morphology of the polymer. For example, in the crystal form of quartz crystals 
/λ λ⊥ =1.7, while in a simple polymer as polyethylene / 100λ λ⊥ ≈ .5 In our work, this 

value has been estimated for crystal polystyrene δ  phase and for its collapse structure 

with density close to α / β  forms of crystal structure.  

Chapter 4 describes the physical properties of another polymer, polyvinyl alcohol 

(PVA) oligomers. The physical property has been studied as for polystyrene, and in this 

case, concerning its use in industry, the thermal conductivity is less crucial. PVA is a 
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synthetic polymer used since the early 1930s in a wide range of industrial, medical and 

food applications. In textiles for example, the polymer is applied as a sizing and coating 

agent. It provides stiffness to certain products making them useful for tube winding, 

carton sealing and board lamination. PVA is also used as a thickening agent for latex 

paint and common household white glue or in other adhesive mixtures.6 This wide 

application of the polymer demands careful studies of the polymer bulk. In our MD 

simulation we calculated the physical PVA oligomer’s properties which are usually used 

for discrimination between bulk and interface: radius of gyration, radial distribution 

function between different kinds of atoms in the molecule and the orientation correlation 

function of some bonds. Some of our results have been compared to experimental data 

and theoretical studies, and for both comparisons good agreement has been found7. 

Therefore this simulation can serve as reference data for future work on interfaces. 

 The same method which has been implied for the calculation of thermal 

conductivity of crystal polymer (Chapter 3) can be used for studies of an equally 

important property called the Soret effect. Thermodiffusion, also called thermal diffusion 

or the Ludwig–Soret effect, describes the partial separation of mixture components when 

the system is set in thermal gradients. Although Ludwig and Soret discovered the effect 

almost two hundred years ago, to date there is no full molecular understanding of the 

thermodiffusion in liquids. This effect plays an important role in many naturally 

occurring processes such as the, component segregation in solidifying metallic alloys or 

volcanic lava8 and and perhaps convection in stars_9. Technical applications for the 

process exempli gratia are isotope separations of liquids and gaseous mixtures, the 

thermal field flow fractionation of polymers10, the identification and separation of crude 

oil components11, the coating of metallic items, etc. On the basis of theoretical models, 

simulations, and recent experiments we elucidated some properties and mechanisms 

contributing to the Soret effect. For example, we know that the Soret effect is affected by 

the mass and size of particles, the interaction potential, and the composition of the 

mixture12. In our simulations, we chose components of the same mass, size and 
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interactions. Therefore we could study the effect of the structure on the Soret effect 

which is shown in Chapter 5. 
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Chapter 2: Theory and method 
 

 2.1 Thermal conductivity  

Heat is a form of energy that is transferred between two boundaries of a system 

based on a temperature difference, the transfer being from the boundary at the higher 

temperature to the boundary at the lower one. It is a transient phenomenon. Fourier’s law 

of conduction gives the relationship between heat flow and the temperature gradient for a 

homogeneous, isotropic solid in steady state. It is important to note, that the method 

which has been used for the thermal conductivity calculation, and which will be 

described later, is based on this law. It can be written in the form of: 
( , ) ( , )J r t T r tλ= − ∇
r v  

where ( , )J r tr  is the heat flux vector in the opposite direction of the temperature gradient, 

( , )T r t∇ v  is the temperature gradient vector, and the constant of proportionality, λ  , is the 

thermal conductivity of the material. It is a positive, scalar quantity. The minus sign is to 

make the heat flow a positive quantity, since the direction of heat flow is toward 

decreasing temperature.  

Thermal conductivity, λ , is a physical property of the conducting material. 

Sometimes, it is called a transport property because for a given temperature gradient, heat 

flux is directly proportional to thermal conductivity. Thus, thermal conductivity is an 

important property in thermal analysis.  

 

2.2 Soret effect 

 

2.2.1 Theory and calculation  

The Soret effect or the so called thermal diffusion is the tendency of a mixture of 

two or more components to separate as a result of a spatial temperature difference. The 

theory is based on the assumption that in steady state the component concentration and 

temperature profile between the hot and the cold region are linear functions and then the 

Soret effect is quantified by the equation: 
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1
(1 )

i
T

i i

dxS
x x dT

= −
−

 

where ix  is the mole fraction of component i, dT is  the temperature gradient and idx  is 

the concentration gradient. According to previous research of our group,1 for binary 

mixtures of Lennard-Jones particles, the species with a larger molecular weight tend to 

move from regions of high temperature to those of lower temperature. Also, for mixtures 

of similar molecular weight species, the molecules with a larger diameter (σ ) tend to 

diffuse from high temperature to low temperature. And, in spite of a numerous number of 

publications in the area of thermal diffusion in liquids, solids, polymers, etc., it is still the 

subject of research. 

 

2.2.2 Thermal Diffusion Forced Rayleigh Scattering 

Thermal diffusion Rayleigh scattering technique (TDFRS) is a powerful method 

which is used to study the Soret effect in liquid mixtures.2. The advantages of the method 

are a small temperature difference ( 20 mK) and a small fringe spacing ( 20 mm) which 

keeps the system close to the thermal equilibrium and allow to avoid the convection 

problems. In the benchmark test it was demonstrated that TDFRS gives reliable results 

for organic mixtures as well as for simple aqueous systems, which compare well with 

other experimental techniques.3  

Figure 2.1 shows the experimental setup. The beam (an argon-ion laser (488 nm)) 

is split into two (writing) beams with equal intensity by a beam splitter. The writing 

beams create an intensity grating in the sample. A built-in mirror based on a piezoelectric 

ceramic has the role of phase stabilization and phase modulation of the grating. To shift 

the grating by 0180 , the Pockels cell and the half wave plate were used. A small amount 

of dye in the sample converts the intensity grating into a temperature grating, which in 

turn causes a concentration grating by the effect of thermal diffusion.  Both gratings 

contribute to a combined refractive index. The diffraction efficiency of the refractive 

index grating in the sample cell is monitored by a He-Ne laser with a wavelength 
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632.8 nmλ =  at the Bragg angle. The diffracted beam and stray light were separated by 

a filter in front of the detector. 

 

 
  

Figure 2.1: Schematic drawing of a thermal diffusion forced Rayleigh scattering 

(TDFRS) setup. The picture has been taken from previous publication. 4 

 

The sample cell was installed inside a brass holder and can be adjusted in 

directions orthogonal to the optical axis. The thickness of the quartz cell (Hellma), which 

is used for TDFRS measurements, is 0.2 mm. A thermostat (Lauda ubrat) mounted in the 

brass holder controls the temperature of the sample by a circulating water bath with an 

uncertainty of 00.2 C . (c.f. Figure 2.1). 
The measured intensity ( )net tζ  of the He-Ne laser in the TDFRS experiment used 

for calculation of the Soret coefficient is:  
2,

,

( / )
( ) 1 (1 )(1 )

( / )
P T q Dt

net T
P x

n x
t S x x e

n T
ζ −∂ ∂

= + − −
∂ ∂

 

where x is the molar concentration of one of the components, n  is the refractive index at 

the readout wavelength, D is the coefficient of the mutual diffusion and q is the grating 

vector which has been mentioned before, whose absolute value is determined by the 
angle θ  between two writing beams and the wavelength ωλ : 
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4 sin
2

q
ω

π θ
λ

=  

For the determination of the transport coefficients, the measurement of contrast factors 

,( / )P Tn c∂ ∂  and ,( / )P xn T∂ ∂ were done independently. 

 

 
Figure 2.2: Sketch of the ,( / )P xn T∂ ∂  interferometer (the picture has been taken from 

previous publication. 5) 

 
The contrast factors ,( / )P Tn c∂ ∂  have been measured by an Abbe refractometer 

which is operated at 589 nm with further correction for the wavelength of the readout 
laser (633 nm). The contrast factor ,( / )P xn T∂ ∂  was measured with a Michelson 

interferometer at 633 nm. Figure 2.2 shows a drawing of the ,( / )P xn T∂ ∂ -system. To 

regulate the intensity, two foil polarizers were used. The laser beam was split into two 

beams. One of them passes through the beam splitter to the measurement cell and is 

reflected at the windows of the measurement cell. The reflected beams at the front 

window (a, b) and at the back window (c, d) are superimposed at the photodiode. The 

main contribution of the reflections stem from a and d, and are due to the larger 

refractive index differences ( 0.5≈ ) in air compared to the smaller refractive index 

differences at b and c ( 0.01≈ ) at the inner window, which is in contact with the liquid. 
The optical path difference s  depends on the change of the refractive index n  and wn  

and on the length l  and wl  of the sample and the window, respectively 

( ) (2 )w wds d nl d n l= +  
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The temperature derivative of refractive index is obtained by, 
1 2 2

2
w w w wn l l nn n l

T kl T l T l T l T
φ ∂ ∂∂ ∂ ∂

= ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅
∂ ∂ ∂ ∂ ∂

 

For this setup, wn =1.457. The values of the thermal expansion coefficients 1 w

w

l
l T

∂
⋅
∂

, 

1 l
l T

∂
⋅
∂

, and w

w

nl
l T

∂
⋅

∂
  are -7 -15.1 10  K⋅ , -7 -17.5 10  K⋅ , and  -6 -11.225 10  K⋅ , respectively.6 

 

2.3 Equilibrium molecular dynamics. 

A molecular dynamics simulation is generated as a trajectory of a set of particles 

in phase-space. In our studies we worked on an atomistic level, or in other words, atoms 

are the particles of the system. Molecular dynamics is the bases for calculating the time 

evolution of the atomic coordinates by solving differential equation numerically. Particles 

in a system moves under Newton's law of motion. Newton's classical  equations of 

motion for an object as applied to the study of molecular dynamics are given by 
( )( ) ( )

2 2
t t F tv t v t t

m
∆ ∆

+ = − + ∆  

( ) ( ) ( )
2
tx t t x t v t t∆

+ ∆ = + + ∆  

where ( )F t  is the force acting on the object, which has mass of m, velocity ( )v t  and 

coordinate ( )x t  at the time of t .  

For Newton’s equations of motion are to be resolved, therefore, the force acting an each 

particle has be known and  this force can be derived from the interaction potential, which 

is divided into several contributing components 

non bonded bondedU U U−= +  

non bonded Lennard Jones electostaticU U U− −= +  

_bonded bond angle torsion harmonic dihedralU U U U U= + + +    

The non-bonded interaction non bondedU −  is the interaction between two particles i and j. 

These particles are located apart from each other with a radius smaller than “cut off” (this 

“cut off” value is established by the experimenter) and defined by: 
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12 6

0

4 [( ) ( ) ]

4

ij ij
Lennard Jones ij

ij ij

i j
electostatic

ij

U
r r

q q
U

r

σ σ
ε

π ε ε

− = −

=
      

where ijr  is the distance between the two particles i and j, iq  their charges, ε  and 0ε  are 

the vacuum permittivity and the effective dielectric constant. ijσ and ijε are Van der 

Waals parameters for mixed interactions.  These can be obtained from the Lorentz-

Berthelot mixing rules: 

                                  ij ii jjε ε ε=                      1 ( )
2ij ii jjσ σ σ= +  

where iiε  and iiσ  are values which are specific to every type of atom. The potential 

functions and parameters are typically derived from parameter optimization through 

comparison to experimental data and quantum calculations. For the optimization of 

nonbonded parameters, various sources of data can be used, including molecular 

volumes, experimental heat of vaporization, compressibility and density. In particular, for 

most of the existing force-field descriptions developed for biomolecules, partial charges 

on the atoms of a molecule have been determined by ab initio calculations of gas phase 

complexes with a single water molecule. On the other hand, bonded parameters are 

usually optimized from experimental data such as gas-phase geometries and vibrational 

spectra. Bonded items can be defined by the following terms: 

Bond Stretch Terms 
2

0( )
2

r
bond

bonds

kU r r= −∑  

where r  is the bond length, 0r  is the equilibrium bond length, and rk  is the 

force constant. 

Angle Bend Terms 
2

0( )
2angle

angles

k
U ϕ ϕ ϕ= −∑  

where ϕ  is the angle between two bonds to a common atom, 0ϕ  is the equilibrium 

length, and kϕ  is the force constant. 

Torsion Terms 
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0[1 cos ( )]
2torsion

torsions

kU pτ τ τ= − −∑  

For a sequence of three bonds AB, BC, CD along the chain, we define τ  as the dihedral 
torsional angle 0τ  is the equilibrium dihedral torsional angle, p  is multiplicity and kτ  is 

the force constant. 

Harmonic dihedrals Terms: 

Defines harmonic dihedral angles, similar to torsions, but without periodicity 
2

_ 0
_

( )
2harmonic dihedral

harmonic dihedrals

kU δ δ δ= −∑  

δ  as the harmonic  dihedral angle 0δ  is the equilibrium harmonic dihedral angle, kδ is the 

force constant. 

 

2.4. Reverse non equilibrium molecular dynamics (RNEMD)  

In order to calculate the thermal conductivity or Soret coefficient we needed to 

impose the temperature gradient in our simulation box. This was done using the so-called 

heat exchange algorithm (HEX).7 For all simulations we used the YASP package,8 

developed in our group.  

 

 

 

 

 

 

 

 

Figure 2.3: Illustration of the heat exchange algorithm for determination of the Soret 

coefficient by non equilibrium simulation. 

 
In the reverse non-equilibrium algorithm, a heat flux ( zJ ) is artificially generated through 

the system by suitably exchanging particle velocities in different regions5. The simulation 

Slab:            0    1            N/2-1  N/2 N/2+1          N-1  NSlab:            0    1            N/2-1  N/2 N/2+1          N-1  N
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box is divided into N equal slabs along the z direction (c.f. Fig. 2.3), where slab 0 is 

defined as “hot” and the center slab N/2 as “cold”. Every Nexch step, the center-of-mass 

Cartesian velocity vectors of the “coldest” particle in the “hot” slab and the “hottest” 

particle in the “cold” slab of similar mass are swapped. Such non-physical velocity 

exchange produces a physical heat flux in the opposite direction through the intervening 

slabs (Fig. 2.3), conserving total linear momentum, total kinetic energy, and total energy 

of the whole system at the same time. The heat flux quantity can be controlled by the 

exchange frequency, that is, an increased exchange period will decrease the amount of 

the heat flux. It is defined by: 
2 21 ( )

2 2z hot cold
transfer

mJ v v
lA

= −∑  

where A is the cross sectional area of the simulation box perpendicular, l  is the length of 
the simulation, hotv  and coldv  are the velocities of the hot and the cold particle of the same 

mass m, whose velocities are exchanged. On the other hand the heat flux is also equal to 

 z
dTJ
dz

λ=  

where λ  is the capability of the material to transport heat through the system. 

For mixtures of molecules the Cartesian centre-of-mass velocity vectors of the 

two selected molecules need to be exchanged in order to keep their conformations. In this 

way the relative velocities of all atoms in the given molecule remain unchanged. The 

Cartesian centre-of-mass velocity vector is defined as 

_ _

_ _

i i
all atom in
molecule

cm
i

all atom in
molecule

m v

v
m

=

∑

∑

r

r  

where mi and vi are masses and velocities of atoms in the given molecule. The 

temperature in a molecular dynamics simulation with constraints is given by the 

equipartition theorem: 

∑=⎟
⎠
⎞

⎜
⎝
⎛ −

inslab
i

iislabB vmTkCN
  atoms

2

2
1

2
3  
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where C  is the number of constraints in the slab, N  is the number of atoms in the slab, 

im and iv  are the mass and velocity of atom i, and Bk is the Boltzmann’s constant. 
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Chapter 3: Anisotropy of the thermal conductivity in a crystalline 
polymer: Reverse non-equilibrium molecular dynamics simulation of 
the δ phase of syndiotactic polystyrene 

 

  3.1. Introduction 

Technical applications of polymers are often determined by their thermal 

properties. Design goals can be a particularly low thermal conductivity, for example in 

thermal insulation, as well as a particularly high thermal conductivity, for example in the 

packaging of electronic devices. High conductivities are often achieved in practice by 

blending the polymer with highly conductive inorganic fillers. An alternative is the use of 

polymer materials which are intrinsically better heat conductors, such as semicrystalline 

polymers with a high degree of crystallinity. Polymer crystallites are generally assumed 

to conduct heat better than the amorphous regions, both because of their higher density 

and the possibility of fast heat transport by phonons. 

The thermal conductivity of crystalline polymers is also of fundamental scientific 

interest. It will be anisotropic, and the conductivity along the polymer chains (phonon 

mechanism) is likely to be faster than perpendicular to it (collisions between atoms or 

groups of neighbouring polymer chains). Or, in other words: parallel to the chain 

direction, the transport will be more solid-like, whereas perpendicular to the chains, it 

will have a larger liquid-like component. Amorphous polymers, too, have both transport 

mechanisms, but they are difficult to separate. Thus, crystalline polymers can serve as 

separable model systems for studying the heat-transport mechanism in polymers in 

general. In polymer crystals, many properties show anisotropies: mechanical properties, 

transport properties, as well as others. Some have already been studied by molecular 

simulation, for example the anisotropic diffusion of small penetrants in crystalline 

polystyrene1 and poly(4-methyl pentene)2 and the anisotropy of the thermal expansion of 

different crystalline polymers.3  

We chose to investigate the thermal conductivity and, in particular, its anisotropy 

in polymer crystals by molecular dynamics simulations. The reasons are: (i) In 

simulations, the systems are well defined. The crystals are clean and perfectly oriented, 
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so heat conduction along the different crystal axes can be unambiguously distinguished. 

(ii) With the reverse non-equilibrium molecular dynamics method, we have a robust tool 

for obtaining the diagonal elements of the thermal conductivity tensor.4 This method has 

already been applied to molecular fluids5 and amorphous polymers.6 (iii) We have 

already investigated the anisotropy of heat conduction in stretched amorphous 

polyamide-6,6 by this method.7 One result was that the thermal conductivity in the 

stretching direction is enhanced over the unstretched amorphous sample, whereas in the 

perpendicular directions it was decreased. Turning from an amorphous stretched polymer 

to a polymer crystal should generate an even larger anisotropy. 

The crystalline polymer investigated here is crystalline syndiotactic polystyrene 

(sPS). The reasons for this choice are partly convenience (we have simulated this 

polymer in another context before and therefore have tested force field parameters1), 

partly the representative character of this polymer (the majority of crystalline polymers 

forms helices like sPS), and partly its technical and scientific importance (the low-density 

δ modification has cavities which can accommodate small molecular guests8). No 

individual components of the thermal conductivity tensor seem to be available from 

experiment for any crystalline polymer. Syndiotactic polystyrene is no exception. Hence, 

only the experimental thermal conductivity of syndiotactic polystyrene with unknown 

crystallinity can provide an order-of-magnitude estimate of the thermal conductivities to 

be expected.  

Syndiotactic polystyrene has another feature, which makes it interesting as a 

model system for a first study. Its δ phase is a loosely-packed crystal. Its density of 0.977 

g/cm3 1 is even lower than that of the amorphous syndiotactic polymer (1.055 g/cm3). The 

phase is metastable, and upon heating it spontaneously converts to the denser α or β 

crystalline phases.9 This metastability is also observed in the molecular-dynamics 

simulations. We find that a collapse of the δ structure to a denser crystal structure can 

easily be induced. While this compact structure is not a proper α or β phase, it still serves 

as a comparison to study the effect of an increase of the number of degrees of freedom 

per volume on the thermal conductivity and its anisotropy.  
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In addition to the anisotropy in polymer crystals, we study the effect of the 

computational model or force field on the thermal conductivity. It has been found for 

molecular liquids5 and for amorphous polyamide-6,67 that for a faithful description of the 

thermal transport not all intramolecular degrees of freedom may be retained in the model. 

It has been suggested that in reality the fast vibrations, such as bond stretching, are 

quantum oscillators and not excitable at room temperature. They can, therefore, not 

contribute to the storage and transport of energy. In a classical mechanical simulation, 

they should be removed from the force field and substituted by bond constraints or united 

atoms. Otherwise they can lead to artificially high simulated thermal conductivities. As 

this observation is so far only based on but a few examples, we continue this 

investigation in the present contribution by studying the influence of different constraint 

patterns on the thermal conductivity.  

 

3.2. Methods 
The reverse non-equilibrium molecular dynamics (RNEMD) method has been 

established as a robust way of calculating thermal conductivities of liquids and 

polymers.4-7 It has been described in every detail, including its strengths and 

weaknesses,10 so that only a short summary is given here. It assumes linear response, i.e. 

Fourier’s law 

( )z
dTJ
dz

λ= − ,                                                                                                     

where Jz is the heat flux in one direction (here: z direction) and (dT/dz) is the temperature 

gradient in the same direction. The proportionality constant λ is the thermal conductivity. 

In contrast to experiment, the heat flux is artificially imposed on the system and the 

temperature gradient is obtained from the temperature profile resulting in the system, 

whence the attribute “reverse”. The periodic simulation cell is divided along the z 

direction into 12sN =  slabs of identical volume; the first slab is designated as the “hot” 
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slab and the central slab ( sN /2) as the “cold” slab; energy is periodically transferred 

unphysically from the cold slab to the hot slab. As energy is conserved, it flows back 

through the system in the z direction by a physical transport mechanism, resulting, at 

steady state, in a temperature profile.  

The artificial heat flow is maintained by exchanging momenta of suitably selected 

particles, typically the hottest (=fastest) particle in the cold slab with the coldest 

(=slowest) particle in the hot slab. In its simplest form, the algorithm exchanges momenta 

of individual atoms (“atomic exchange”). If the algorithm is used in connection with 

bond constraints, it is, however mandatory, to avoid constraint violations by the 

momentum exchange. Therefore, momenta of the centres of mass of entire molecules 

(“molecular exchange” for molecular fluids and fluid mixtures) or of substructures of 

molecules (“semimolecular exchange” for macromolecules) are exchanged. These 

semimolecular groups may internally contain constraints. The chemical bonds between 

them must, however, be modelled by flexible bond terms. As constraints are needed in 

this work for physical reasons, we make much use of the semimolecular exchange. 

Details of the various exchange schemes can be found in refs. 7 and 10. 

 

3.3. Computational Details 

The initial coordinates of the δ modification of sPS were taken from the work of 

Milano et al.,1 which is based on the experimental X-ray structure.11 The basic cell 

contained several unit cells with altogether 12 polystyrene chains (Figure 3.1). Every 

chain had 16 monomers. Periodic boundary condition acted in all directions, so that the 

last backbone carbon of a chain was connected to the periodic image of its first backbone 

carbon. Thus, the system simulated corresponds to the limit of a perfect polymer crystal, 

which is infinite in all dimensions, including in the chain direction. There were no chain 

ends in the simulation, and the study of crystal faces, finite or broken chains, chain 

defects and the like is beyond the scope of this contribution. The basic cell was replicated 

three or four times in the direction of the heat flow (Figure 3.2). For a study of the 

thermal conductivity component in z direction for example, there were thus 12 chains of 
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48 monomers each in the final simulation cell, again with periodic boundary conditions in 

all directions. 

 

 

Figure 3.1: The δ modification of syndiotactic polystyrene (sPS) viewed along the helix 

axis (z direction). 

 

    
Figure 3.2: Different projections of the basic cell and its division into analysis slabs in x, 

y and z directions, respectively. For the RNEMD simulations, the basic cell has been 

replicated in the direction of the temperature gradient and heat flow: 3 times in x and z, 4 

times in y direction, respectively.  

 

The polystyrene force field has been used before in our work 1,12. It was 

augmented, where necessary, with harmonic force constants for those bonds, which were 
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not constrained (see below). The force constant was 360000 kJ mol-1 nm-2 for aromatic 

C-H bonds and 420000 kJ mol-1 nm-2 for all other bonds. The constrained bonds were 

kept rigid by the SHAKE algorithm.13,14 As there has been a systematic influence of the 

number and of degrees of freedom on the calculated thermal conductivities in our 

previous studies,5,7 different constraint patterns were tried. They are visualized in Figure 

3.3. The force field includes atomic partial charges on the phenyl rings. For the 

electrostatic interactions, the reaction field method has been used with a dielectric 

constant of 2.5. 
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Figure 3.3: Scheme of the different constraint patterns and assignment of semimolecular 

groups. Constrained bonds are marked by thick solid lines, flexible bonds by thin dashed 

lines. Semimolecular groups of atoms are encircled. 
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All simulations were performed by the program YASP15,16. The time step was 

0.0005 ps. The nonbonded cutoff was 1.1 nm for the neighbour list and 1.0 nm for the 

interactions. The neighbour list was updated every 15 time steps. The average 

temperature of the system was kept at 300 K using the Berendsen method with a coupling 

time of 0.2 ps .17 (In the nonequilibrium simulations, only the temperature averaged over 

the simulation box is thereby held fixed, while the RNEMD scheme in steady state leads 

to a constant temperature gradient and, hence to a local variation of the temperature.) In 

the equilibrium simulations only, also the pressure was kept at 101.3 kPa by a Berendsen 

manostat with a coupling time of 10 ps. For every system, equilibration was performed 

for at least 10 ns. After this period, the fluctuations of total energy and density over 500 

ps were in all cases below 2%.  

For the non-equilibrium (RNEMD) simulations, the system was divided into 12 

equal slabs along the x, y, or z direction. This number of slabs for the calculation of 

thermal conductivities is the result of the following considerations. There have to be 

enough slabs for the temperature gradient to be reasonably well defined. On the other 

hand, it turned out that, in a crystalline system, the number of slabs should be 

commensurate with the crystal structure. If this is not the case, the temperature gradient 

(dT/dα, α=x,y,z) can show spurious non-linearities as a consequence of equally spurious 

density oscillations. For an incommensurate division into slabs, an artificial density 

variation of more than 10% and a concomitant nonlinearity of the temperature gradient 

are evident (Figure 3.4). This problem had hitherto not been encountered in our previous 

thermal conductivity calculations for molecular liquids and amorphous polymers. To 

avoid such artifacts, we have always used 12 analysis slabs and ensured that in the 

transport direction investigated, there were either 12 layers of polymer helices in that 

direction (x and y) or 48 (=4×12) monomers per chain (z), cf. Fig 3.2. Momentum 

exchange between equal atoms or semimolecular groups has been performed every 900, 

1100 and 500 steps for the calculation of the thermal conductivity component in the x, y 

and z direction, respectively. The selection of these values is based on two requirements. 

On the one hand, the velocity exchange rate has to be large enough for fast convergence 
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of the temperature profile. On the other hand, a too large perturbation causes the hot slab 

to heat up so much, that the transition of the metastable δ phase to the collapsed structure 

can be induced. This is to be avoided. The chosen velocity exchange rates are a 

compromise worked out by trial and error. They cause temperatures between 318 and 325 

K on the hot side. The exchange rates are different for the different directions, because 

the thermal conductivities are different: For a certain maximum temperature not to be 

exceeded in the simulation, a higher heat flux (larger exchange rate) is allowed if the 

thermal conductivity is larger. 

 The RNEMD calculations were run for at least 1 ns, until the steady state was 

reached. They were continued for at least another 0.25 ns for sampling the temperature 

profile: The temperature profile and the imposed heat flux were sampled every 901th, 

1101th or 501th step, respectively. The calculations were performed under constant-

average temperature and constant volume conditions, with the same coupling times as in 

the equilibrium simulations, see above. 
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Figure 3.4b 

Figure 3.4: Density and temperature profiles of the same system (temperature gradient 

and heat flux in z direction, time step 0.0005 ps, semimolecular velocity exchange every 

0.25 ps, 8 constraint (Figure 3.3b), the average temperature of the system is 300K, which 

for the RNEMD analysis has been divided into different numbers of slabs: (a) 12 slabs, 

which is commensurate with the 48 monomers/chain in this direction: (b) 20 slabs, which 

is incommensurate and leads not only to spurious density oscillations, but also to 

nonlinearity artefacts in the temperature profile. 

 
From the error bars of the heat flux J and the temperature gradient S = (dT/dz), the 

error bar ∆λ of the thermal conductivity λ has been calculated by error propagation  

( )J S
J S

λ λ ∆ ∆
∆ ≤ +          

The temperature gradient and its error bar ∆S have been determined by a least-squares fit 

to the temperature profile (as in Figure 3.4a). For an error estimate of the heat flux ∆J, we 

calculated the cumulative exchanged energy. In the steady state, it is linear in the 

simulation time with a slope J. From a least-squares fit, the error ∆J was extracted. 
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The use of periodic boundary conditions in the MD simulation precludes the 

existence of certain phonons, especially those whose wavelengths exceed the length of 

the simulation box. Such long-wavelength phonons may contribute to static and dynamic 

properties, especially, in crystalline phases. To check for possible contributions of long-

wavelength phonons to the thermal conductivity of the δ phase, it has been recalculated 

with a box two times larger in the direction of the applied thermal gradient. No 

constraints have been used. The simulation cells have been divided into 24 slabs (2*12 

slabs). The velocity exchange has been performed every 5000, 7000 and 2000 steps, for 

the different directions, respectively. The perturbation is thus smaller than in the small 

systems. This was done as a safeguard against a possible temperature-induced collapse of 

the metastable δ phase, which is more likely to occur in the larger systems. Table 1 shows 

that all Cartesian components of the thermal conductivity agree within their error bars for 

both sizes, indicating that there are no finite-size effects on the scales investigated here. 

Effects on the thermal conductivity, however, unlikely, would have to come from 

phonons of much longer wavelengths. 
  

Table 3.1: Components of the thermal conductivity in the Cartesian directions [W m-1 K-

1] calculated for a simulation cell with the standard size of this work and with twice the 

size in the respective direction of thermal gradient. 

 

 size used in this work Double size 

xλ  0.171 ± 0.005 0.177 ± 0.006 

yλ  0.224 ± 0.004 0.226 ± 0.005 

zλ  0.554 ± 0.012 0.537 ± 0.023 
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3.4. Results and Discussion 

 

3.4.1. Metastability of the δ  modification of syndiotactic polystyrene 

The δ modification of sPS has an unusually low density and is known to be 

metastable. It can only be produced in the presence of small guest molecules, which 

occupy and stabilize its intrinsic cavities. Upon annealing, it spontaneously converts into 

the denser α or β forms. This behaviour was also found in some of the simulations, in 

which the δ crystal spontaneously collapsed into a denser structure. This collapse was 

always irreversible. In the dense structure, which we denote as “compact”, the helices are 

still intact. (If they had a tendency to disintegrate or unravel or change sense, this would 

be effectively prevented by the small system size and the periodic continuation of the 

chains. Hence, such structural change would not be seen in our simulations even if were 

thermodynamically favorable.) The density increased from around 0.975 g/cm3 of the δ 

modification (experiment 0.977 g/cm3)18 to about 1.091 g/cm3. This density is above the 

experimental value for amorphous sPS (1.055 g/cm3)11 and close to the experimental 

density (1.09 g/cm3)19 of the α and β modifications. However, the compact structure is 

different from the crystal structures of the α or β phases of sPS. We suspect that we 

observed the initial compaction of the metastable δ-sPS crystal, whilst the final 

rearrangement to one of the other crystal structures is either kinetically slow or is 

effectively hindered by system size and periodic boundary conditions, see above. The 

densities of the δ modification and of the compact form do not depend significantly on 

the constraining patterns (Table 3.2).  
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Table 3.2: Components of the thermal conductivity in the Cartesian directions [W m-1 K-

1], cell dimensions [nm], and densities [g/cm3] for syndiotactic polystyrene (300 K) and 

the different constraint patterns (cf. Figure 3.3): (a) δ phase; (b) compact structure. 

a) δ phase 
 0 constraints  8 constraints 6 constraints 11 constraints 15 constraints 16 constraints

xλ  0.171 ± 0.005 0.162 ± 0.001 0.156 ± 0.004 0.155 ± 0.005 0.172 ± 0.007 0.107 ± 0.004

yλ  0.224 ± 0.004 0.198 ± 0.001 0.207 ± 0.002 0.184 ± 0.004 0.200 ± 0.004 0.186 ± 0.004

zλ  0.554 ± 0.012 0.475 ± 0.025 0.523 ± 0.010 0.512 ± 0.024 0.510 ± 0.027 0.301 ± 0.014

D
im

en
si

on
 X 3.319 3.318 3.319 3.319 3.318 3.319 

Y 3.309 3.307 3.309 3.309 3.308 3.308 

Z 3.102 3.101 3.102 3.102 3.103 3.102 

Density 0.974 ± 0.003 0.975 ± 0.002 0.974 ± 0.002 0.974 ± 0.002 0.974 ± 0.002 0.974 ± 0.003

b) compact structure 

 0 constraints  8 constraints 6 constraints 11 constraints 15 constraints 16 constraints

xλ  0.234 ± 0.002 0.205 ± 0.004 0.207 ± 0.004 0.204 ± 0.004 0.203 ± 0.007 0.171 ± 0.01 

yλ  0.251 ± 0.003 0.223 ± 0.006 0.226 ± 0.002 0.221 ± 0.007 0.231 ± 0.011 0.183 ± 0.006

zλ  0.510 ± 0.008 0.501 ± 0.009 0.468 ± 0.012 0.474 ± 0.013 0.544 ± 0.087 0.339 ± 0.011

D
im

en
si

on
 X 3.198 3.198 3.202 3.201 3.195 3.193 

Y 3.189 3.189 3.183 3.182 3.185 3.179 

Z 2.989 2.989 2.993 2.991 2.985 2.986 

Density 1.089 ± 0.011 1.090 ± 0.010 1.088 ± 0.018 1.093 ± 0.012 1.097 ± 0.015 1.096 ± 0.017

 

In the context of calculating thermal conductivities for crystalline sPS, there are 

two consequences from the tendency of the δ modification to turn into the compact form. 

Firstly, if we want to calculate properties of δ-sPS, we must make sure that this 

modification exists throughout the simulation. It turned out that the occurrence of a 
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compaction depends on the details of the simulation. The length of the time step has an 

influence as does the constraint pattern. There seems to be a delicate balance, which 

keeps the δ form metastable and a small disturbance tips the system over the edge to 

compaction. Some combinations (e.g. time step = 0.002 ps and constraint pattern of 

Figure 3.3e) led to a compaction within 10 ns, whereas others (e.g. time step = 0.0005 ps 

and constraint pattern of Figure 3.3c) showed (meta)stability over the entire simulation of 

50 ns and longer. We have, therefore, continued our simulations with the latter time step. 

It should also be noted that the collapse of the δ phase had not been observed in our 

previous simulations of this system.1 This may be due to the fact that in those simulations 

there were small guest molecules present, which stabilized the structure. Alternatively, 

the previous simulations may simply have been too short for a compaction event to 

happen. Secondly, even though the thermodynamic state and the experimental relevance 

of the compact structure are not clear, we have nonetheless calculated its thermal 

conductivities. These values act as reference points for understanding the effects of 

density on the thermal conductivity and its anisotropy.  

 

3.4.2. Magnitude of the thermal conductivity 

There seems to be no experimental information available for the thermal 

conductivity of crystalline syndiotactic polystyrene in any of its modifications. A sample 

of semicrystalline syndiotactic polystyrene of unknown crystallinity at 300 K (density 

1.050 g/cm3) showed a thermal conductivity of 0.19±0.03 W m-1 K-1.20 It is to be 

expected that the average thermal conductivity of crystalline sPS is larger, but of the 

same order of magnitude. This was indeed found for the different models (Table 3.2): 

The calculated average thermal conductivity ( ) 3zyx λλλλ ++=  is between 0.20 and 

0.30 W m-1 K-1 for the δ form and between 0.23 and 0.33 W m-1 K-1 for the compact 

form, with variations depending on the constraint pattern. This level of agreement shows 

that our models are in the right order of magnitude. The agreement is consistent with our 

recent study on polyamide-6,6,6,7 where the calculation and the experiment agreed to 

within a factor of 1.0-1.5, depending on the model. 
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It is interesting to note that the difference between the average thermal 

conductivity of the δ modification and the compact structure is approximately 

proportional to their density difference (~11%.). The thermal conductivity is, therefore, 

approximately proportional to the number of degrees of freedom (which are the 

transporters of heat) per volume. If this reasoning holds, the α and β modifications, 

which have densities similar to the compact form, may be expected to also have similar 

average thermal conductivities. This speculation can, however, only be verified or 

falsified by experimental measurements. 

 

3.4.3. Anisotropy of the thermal conductivity  

For both structures, the heat transport in the helix direction (z) is much larger than 

in the perpendicular directions (Table 3.1). The anisotropy defined as ( )yxz λλλ +2  is 

about 2.7 (2.0-3.0 depending on the constraint pattern) for the δ form and about 2.1 for 

the compact form. The decrease from δ to compact is due to both a decrease of the 

parallel component λz and an increase of the two perpendicular components, in 

particular λx. This is shown numerically in the anisotropy between the two perpendicular 

thermal conductivities λy/λx. This ratio is about 1.32 for the δ modification, and it drops 

to about 1.09 for the compact form. This could be again a hint, that the more compact 

crystal modifications α and β could have a reduced anisotropy (helix direction versus 

perpendicular directions) and that the two perpendicular directions could be very similar. 

Looking at the structure (Figure 3.1), one would naïvely expect a higher thermal 

conductivity in x direction than in y, because of the apparently smaller distance between 

the chains in x direction. The opposite is true: λy is higher than λx. The reason is a closer 

contact between atoms of opposite phenyl rings in y direction, which has been observed 

in a crystal structure by de Rosa et al..18 The shorter overall distance between pendant 

groups arises from a shorter distance in z direction, which is not visible in the two-

dimensional projection of Figure 3.1.  

The change of the individual thermal conductivity components with the transition 

from the δ modification to the compact structure can be understood by inspection of the 
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polymer structure shown in Figure 3.1. Most of the density increase is caused by 

compaction perpendicular to the helix direction z. Thus, neighbouring chains get into 

closer contact in these directions. As a consequence, λx and  λy, which are mainly 

determined by collisions of atoms of neighbouring chains, increase. The heat transport in 

the direction parallel to the helix λz remains largely unchanged by compaction. It shows 

only small increases or decreases depending on the constraint pattern. The reason for this 

behaviour is that the heat conduction in helix direction includes a larger component of 

(faster) phonon transport than in the perpendicular directions. This transport proceeds 

largely unhindered in a polymer helix, which is free of internal defects. The change of the 

environment of the individual helix due to closer packing with its neighbours provides 

only a small perturbation to the heat transport within the chain. It leads only to small 

increments or decrements of the thermal conductivity λz. 

 

3.4.4. Influence of constraint patterns on the thermal conductivity   

In previous work, was been found that the number of degrees of freedom of a 

model has an influence on the calculated value of the thermal conductivity. Degrees of 

freedom store the energy and transfer it. Eliminating explicit hydrogen atoms by united-

atom models as well as using constraints decreases the number of available degrees of 

freedom and consequently decreases the thermal conductivity. This tendency was not 

only found for molecular fluids5, but also in an almost quantitative correlation for 

different models of amorphous polyamide-6,6.6,7 According to these considerations, the 

thermal conductivity of the different sPS models is, therefore, expected to decrease for an 

increasing number of constraints. Table 3.2 shows that this is clearly not always the case.  

One observes, firstly, that the variations due to the constraint pattern are relatively 

small: For a given polymer structure and thermal conductivity component, different 

constraint patterns cause differences of about 32%. This has to be compared to almost a 

factor of 2 in the case of polyamide-6,6.7 So it appears that the thermal conductivity of 

crystalline sPS is remarkably robust against variation of the degrees of freedom in the 

model. This is advantageous for the reliability of the predictions. Secondly, there is no 
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systematic variation of the thermal conductivity with the number of constraints. One may 

interpret into the data a general trend of the thermal conductivity falling with the number 

of degrees of freedom. This trend is, however, superposed by erratic variations: For 

example, the λx of the δ phase decreases from 0 to 6 constraints, then increases at 8 

constraints, falls again at 11 constraints, before increasing at 15 constraints where the 

highest conductivity of all is found. However, the 16-constraints model always shows the 

smallest thermal conductivity. Especially for the parallel direction, it is significantly 

below all other constraint patterns.  

The observations (small variations, erratic variations, and the 16-constraint model 

being systematically below the others) can probably be explained by the fact that not only 

the number of degrees of freedom matters for the heat transport, but also their location. 

Some of the C-C bonds in the backbone have to be treated as flexible, as otherwise the 

breakdown of the polymer into the semimolecular groups of the RNEMD algorithm 

would not be possible. In the first five constraint patterns (constraints < 16), these bonds 

of the main chain are treated as flexible bonds with high vibrational frequencies. On the 

other hand, these backbone bonds are responsible for most of the heat transport along the 

polymer chain. Freezing one half of them (16 constraints) leads to the observed 

significant reduction of the thermal conductivity. In contrast, the pendant atoms and 

groups are not strongly coupled to the energy transport along the backbone, and it is not 

important whether or not they contain a few constraints. In contrast, in polyamide-6,6 

there are no large pendant groups and the constraint patterns studied in ref. 4 involved 

also a substantial fraction of backbone bonds. It is, therefore, in hindsight no surprise that 

for polyamide there was a strong correlation between the number of degrees of freedom 

and the thermal conductivity, whereas in the polystyrene of the present work the 

correlation, if any, is much weaker. 

 

3.4.5. Influence of chain packing on the thermal conductivity 

Differences in the density, or the density of degrees of freedom per volume, have 

already been made responsible for differences in the thermal conductivity of the δ 
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modification of sPS and the compact form (Sect. 3.4.2). In order to study the effects of 

density or chain packing in more detail, we have performed additional simulations of 

both forms, in which only the density was varied, while the respective crystal structure 

was left intact. This should allow the separation of the effects of density and that of other 

structural differences between the two phases. For this comparison, we have chosen the 

completely unconstrained model of sPS (0 constraints, Figure 3.3a). The volume of the 

simulation cell has been varied by changing only the dimensions x and y, which are 

perpendicular to the chain direction. The z direction has been kept constant, assuming 

that the chains are inherently stiff in this direction, and that a change of the cell length in 

z may only be achieved at the expense of a structural transition of the polymer helices, 

i.e. other crystalline or amorphous phases. The x and y components of the cell dimensions 

and the atom coordinates were affinely scaled by a common factor P with respect to their 

average values obtained from equilibrium simulations (300K and 101.3 kPa). The cell 

volume V after scaling is, therefore, 0
2VPV = , where V0 is its equilibrium volume. The 

density of degrees freedom is now P-2 times its equilibrium value at standard temperature 

and pressure (or: 0
2 ρρ=−P , with ρ0 being the density at equilibrium). The 

simulations with the scaled volume were run under constant-volume conditions.  

The scale factor P has been set to 0.965, 0.97, 0.98, 0.99, 1.01, 1.02 and 1.03, 

both for the δ form and the compact form. The resulting thermal conductivity 

components are shown in Figure 3.5 as a function of the relative density ρ/ρ0. Changing 

the size of the x and y dimensions by a few percent has only a small bearing on the heat 

conductivity of both structures. Furthermore, there are not only differences between the 

two structures, but different directions of the heat flux are affected in different ways. 

Thus, it makes sense to discuss separately the heat transport parallel to the helix direction 

(z) and perpendicular to it (x and y). 

For the parallel heat conductivity λz, recall that the thermal conductivity is defined 

as the amount of energy transported in z direction per time, per temperature gradient,  and 

per cross-sectional area Lx×Ly. As Lx×Ly is proportional to P2, λz is expected to be 

proportional to P-2= ρ/ρ0 when there are no other effects. This is evidently not always the 
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case (Figure 3.5). While for the δ modification one might argue about the presence of a 

linear increase of λz with ρ/ρ0 (Figure 3.5a), for the compact form there is definitely a 

decrease (Figure 3.5b). There is some logic to this finding. In the loosely-packed δ form, 

individual helices are more decoupled in their heat transport, and compressing them in a 

perpendicular direction has only the geometric effect of increasing the number of chains 

per cross-sectional area. In contrast, in the compact structure the closer packed 

neighbouring chains interfere negatively with each other’s transport by disturbing long-

wavelength phonons; lateral compression enhances these interferences, and the thermal 

conductivity λz decreases. The stronger mutual influence of neighbouring chains in the 

compact configuration is evident from the mean-square fluctuation of the backbone 

carbon atoms as a function of ρ/ρ0. For the compact structure, the dependence (slope) is 

much larger than for the loosely-packed δ modification (Figure 3.6).  

Turning to the heat transport perpendicular to the chain directions λx and λy, 

scaling of Lx and Ly by P means that both the cross-sectional area is changed (this time by 

P, not P2), but also the dimension of the system in the direction of the transport, equally 

by P. The expected geometric effect is an increase of λx (or λy) as 0
1 ρρ=−P . Any 

deviation from this behaviour would first and foremost have to be attributed to the 

extension or compression of the system in the direction of heat flow, i.e. perpendicular to 

the chain direction. The behaviour in Figure 3.5 is mixed. For the loosely-packed δ form 

(Figure 3.5a), there is an increase of λy with ρ/ρ0; whether square-root or linear or some 

other law may be argued about. The other perpendicular component λx is definitely 

independent of ρ/ρ0. For the compact form (Figure 3.5b), there is a clear increase (most 

likely linear) with ρ/ρ0 for both perpendicular components. An explanation relies again 

on the higher density of the compact form. Here, the neighbouring chains are in close 

contact, and changing their contact distances has a pronounced effect on the 

perpendicular heat transfer from chain to chain. The result is a dependence, which is 

stronger than from geometrical considerations alone. In the looser δ form, the effect of 

the chain-chain distance is not so large, and the dependence of λy largely follows the 

geometry. The observed reduction of λx with ρ/ρ0 must have still more subtle reasons.  
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Figure 3.5a 
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Figure 3.5b 

Figure 3.5: Thermal conductivity (Cartesian components) of sPS at 300 K as a function 

of the density normalized by its equilibrium value at 300 K and 101.3 kPa: (a) δ form, 

and (b) compact form  

 

A final remarks concerns possible inhomogeneities of the stress in the system. A 

large enough temperature gradient can induce a density gradient, particularly in 
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molecular fluids. In polymers, in contrast, chain connectivity keeps density differences 

much smaller. This is evident, for example, in Figure 3.4. There could, however, be local 

differences in the stress, which we have not investigated. They could possibly lead to 

locally varying shifts in effective vibrational frequencies and thus have an effect on the 

thermal conductivity. We expect such effects to be small. The density variations 

discussed here have concomitant stress variations, which are probably larger than those 

induced by a thermal gradient. And even they have not produced significant effects on 

the thermal conductivity. The problem of stress inhomogeneities affecting the thermal 

conductivity would merit its own investigation, probably with a simple model system 

rather than a realistic polymer model, and it would most likely need much longer 

simulations to distinguish an effect above the statistical noise. 

 

3.5. Summary 

The main purpose of this chapter is to investigate, for the first time, the thermal 

conductivity in a polymer crystal and the anisotropy between its individual Cartesian 

components by non-equilibrium molecular dynamics. To this end, the δ modification of 

syndiotactic polystyrene (sPS) was simulated, which is of low density and metastable, as 

well as a more stable, so-called compact structure, which has a density similar to the 

crystalline α and β forms of sPS, but not their crystal structure. The overall thermal 

conductivities have been found to be in the correct range, with experimental thermal 

conductivities not available for these systems: Comparison of the absolute values with the 

thermal conductivities of amorphous polymers and, especially, amorphous syndiotactic 

polystyrene show the expected level of agreement. 

The crystalline structure of the polymer causes the thermal conductivity to be 

anisotropic. Reverse non-equilibrium molecular dynamics can clearly differentiate 

between the diagonal components of the thermal conductivity tensor. The heat 

conduction parallel to the polymer chains λz is 2.5–3 times faster than perpendicular to it, 

λx and λy. This finding tallies with our previous results on oriented but still amorphous 

polyamide-6,6, where we also found the largest thermal conductivity in the stretching 
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direction.6,7 The reason is in both cases that different heat conduction mechanisms 

dominate different spatial directions. Along the chain (z), there is a strong coupling of 

stiff and nearly harmonic degrees of freedom and the energy transport proceeds via 

phonons. Perpendicular to the chain direction (x and y), heat has to be transferred 

between atoms of neighbouring chains by a less efficient mechanism. The lower 

efficiency arises from the softer coupling and the strong anharmonicity of intermolecular 

interactions. Although technically the perpendicular motions of polymer segments in a 

crystal can be denoted as transversal phonons, the mechanism of energy transfer between 

chains is much more akin to the collision transfer mechanism, which dominates heat 

conduction in liquids. The two perpendicular directions show between them a small 

difference in their thermal conductivities λx and λy. This residual anisotropy can be 

explained by closer contacts between pendant groups of adjacent chains in one of the 

directions. Compaction of the crystal from the δ phase to the compact structure has the 

expected effects: The perpendicular thermal conductivities λx and λy increase due to 

closer contact between neighbouring chains. The parallel thermal conductivity λz does 

not change much. If anything, it shows a slight decrease, possibly due to perturbation or 

scattering of phonons by the interaction with the neighbouring chains. These 

interpretations are also borne out by the comparison, in terms of thermal conductivities, 

of structures which are slightly compressed or expanded, but still in their original crystal 

phase. 

The influence of the constraint patterns on thermal conductivity was also 

examined. Lo and behold, we found an increase of the thermal conductivity with the 

number of degrees of freedom or the number of unconstrained bonds, albeit with a 

considerable scatter of the data. In contrast to our previous simulations on molecular 

liquids and amorphous polymers5,6, where we found a clear correlation, in both crystalline 

sPS structures the dependence is not as pronounced. The one exception are the backbone 

bonds: If they are constrained the thermal conductivity is visibly reduced. This 

observation is another indication that the dominant energy flow in polystyrene occurs via 

the backbone. The degrees of freedom of the pendant phenyl rings make only a minor 



 36

contribution. Therefore the constraints within the side groups matter less. This is different 

in the polyamide studied previously, which has no significant side groups, such that all 

degrees of freedom have a more or less equal role in the energy transport. These 

preliminary conclusions are, however, based on a very limited statistic of two polymers. 

Studies on other polymers with different chemical connectivities are under way to 

investigate the correlation between degrees of freedom and the thermal conductivity in 

more detail. 

From an application point of view, it is interesting to note that the average thermal 

conductivity (λx + λy + λz)/3 of the polymer crystal is larger than that of the amorphous 

polymer with the same chemistry λa. The reason is that the component along the chain is 

increased significantly; here, λz is 2.5–3 times larger than λa. The perpendicular 

components, on the other hand, are of a similar magnitude as the amorphous thermal 

conductivity, λx ~ λy ~ λa. In summary, a net increase results from crystallization. 

Crystallization, thus, opens a way of increasing the intrinsic thermal conductivity of a 

polymer material without the addition of heat-conducting inorganic filler particles. 
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Chapter 4. Properties of polyvinyl alcohol oligomers: a molecular 
dynamics study 

 

4.1.Introduction 

 Polyvinyl alcohol (PVA, (H(-CH2-CH(OH)-)NCH3), where N is the number of 

repeat units, “monomers”) is used in a large number of applications. Pervaporation 

membranes to remove residual water from organic solvents,1 drug encapsulation and 

delivery,2 the design of composite materials,3 as well as metal nanoparticle stabilization4 

are just a few of them. A detailed knowledge of the physical properties of polymers as a 

function of the number of repeat units is the prerequisite for their optimum design in such 

applications. Physical key quantities are, e.g., the specific volume, the viscosity, 

geometrical parameters such as the radius of gyration as well as relaxation times which 

are relevant for process optimizations. In the past years simulations of the Molecular 

Dynamics (MD) type have become a powerful tool to evaluate such quantities in 

computer experiments. Nevertheless, such simulations are still a challenge for polymers 

with a large number N of repeat units. The long relaxation times for bond vectors require 

a prohibitive computational effort. It is thus necessary to perform model simulations on 

polymers with long chain length in order to estimate the accuracy and capability of MD 

approaches for these systems. 

 This is the focus of the present work in which have analyzed the static and 

dynamic properties of melts of PVA oligomers at a temperature T of 400 K. The data 

derived has not been considered in the literature up to now. By choosing T = 400 K we 

are above the measured glass transition of PVA at 358 K. In additional 300K simulations 

we have shown that the low-temperature MD results refer to PVA glass. For the 

simulations we have employed a force field that had been developed some time ago by 

one of the present authors for PVA as well as for different PVA solutions.5 We have 

adopted those parameters without further modifications. The present contribution should 

be considered as one step to determine polymer lengths required to reproduce the 
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properties of real polymers. In this context we also have estimated the chain lengths in 

atomistic PVA melts that we required for reliable equilibration and sampling procedures 

to derive dynamic quantities.   

 

4.2.Computational details 

 We have used the PVA force field of ref. 5 for the present MD simulations. The 

PVA data have been extracted from an ethanol force field by adding bond angle and 

dihedral angle terms that do not occur in the simple alcohol. As explained in detail in ref 

5, ab initio and density functional calculations have been performed to optimize the force 

field parameters for the torsional behaviour. The capability of this setup has been 

documented in a number of publications.5,6 

Table 4.1 summarizes some information on the simulated samples. Each system 

contains atactic PVA oligomers with methyl groups at both chain ends. The tacticity has 

been generated randomly for each of the chains. As shown already by Müller-Plathe and 

van Gunsteren5 this method can be used to describe the formation of an atactic polymer 

by a free radical polymerization. Firstly, all samples except isopropanol have been 

prepared at 400 K (the measured glass temperature of PVA is 358 K7). The preparation 

has been carried out according to a procedure described by Milano and Müller-Plathe for 

polystyrene.8 The conformation of each chain was generated separately using a hybrid 

pivot Monte Carlo molecular dynamics (PMC) approach,9 as implemented in the GMQ 

software of Brown.10 In PMC simulations, randomly picked dihedral angles are allowed 

to undergo a trial change. The method generates ensembles for a phantom chain, where 

two atoms interact with each other only if they are separated by less than a certain 

number of bonds. The bond cutoff, defining the boundary of the interatomic interactions, 

has been set to 7 as reported by Milano and Müller-Plathe.8 The PMC method 

successfully generates melt-like conformations of apolar and polar polymer chains. The 

accuracy of the bond cutoff employed has not been quantified for the PVA polymers. 
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Despite differences in the interatomic interactions in the present work and ref. 8 we have 

chosen the same cutoff term. For each chain 2·105 pivot moves have been performed. 

 

Table 4.1: Total number of chains, atoms and time windows ts for the evaluation of 

quantities of the studied systems. Note that the. ts number do not contain the time 

required for the relaxation. 

 

System 

(repeat units per 

chain) 

Total number 

of chains 

Total number 

Of atoms 

ts  
[ns] 

Isopropanol 

(=PVA monomer, N=1) 

1250 15000 25 

PVA oligomer 

(N=2) 

800 15200 25 

PVA oligomer 

(N=3) 

600 15600 36 

PVA oligomer 

(N=5) 

400 16000 32 

PVA oligomer 

(N=7) 

300 16200 30 

PVA oligomer 

(N=10) 

200 15000 43 a) 

a) Even after a relaxation of 45 ns followed by a simulation of 43 ns we observed a 

small slope [-8 J/(mol·ps)] in the total energy. Nevertheless, the 43 ns trajectory 

was used for the analysis. 

 

We have placed the samples of isopropanol and longer chains into a separate 

periodic box at a reduced density of about 0.7 g/cm3. The density of isopropanol at 

ambient conditions7 amounts to 0.783 g/cm3 and of amorphous PVA11,12 up to 1.26 
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g/cm3. For isopropanol we have carried out a simple relaxation at a constant temperature 

of 400 K and constant pressure of 101.3 kPa. The simulation has been terminated when 

the total energy and the mass density reached their equilibrium values. The systems were 

first energy-minimized to remove the most unfavorable contacts. Afterwards we have 

carried out a set of MD simulations of 200 ps each by using soft-core potentials as 

implemented in our simulation package YASP.13 This allows the atoms to pass through 

each other and guarantees that the whole system gets rid of possible entanglements. Thus, 

the strain is minimized. We have performed eight relaxation simulations starting with the 

potential energy V0 = 0.3 kBT at zero atom-atom distance13 and ending with V0 = 60 kBT 

before using the full non-bonded potential. The six intermediate V0 parameters chosen 

amount to 1.5, 6, 12, 24, 36, 48 kBT. This step was followed by a relaxation simulation of 

the oligomer bulk at a constant temperature of 400 K and a constant pressure of 101.3 

kPa until the total energy and the mass density reached their equilibrium values. After 

this step, the production simulations have been carried out (Table 4.1). 

All production simulations of isopropanol and the PVA bulk have been done 

under NPT conditions using the program YASP.13 The temperature and pressure were 

kept constant using the Berendsen thermostat and barostat14 with coupling times of 0.2 ps 

and 3.0 ps, respectively. The simulation time step was 2 fs with a sampling period of 2 

ps. We have updated the neighbor list to calculate the nonbonded Lennard-Jones 

interactions every 15 time steps. A cutoff radius of 1.1 nm for the neighbor list and 1.0 

for the potential has been chosen. To derive the electrostatic contribution we have used 

the reaction field method with a value of 19.92 for the dielectric constant (relative 

permittivity) of isopropanol. 

4.3. Results and discussion 

4.3.1. Density, specific volume and distribution of the atoms 

Before discussing any properties of melts of PVA oligomers one should try to 

prove the validity of the model chosen. For this purpose, the density of the system was 

obtained also at a temperature of 300 K. All constant pressure (NPT) simulations were 
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first equilibrated with respect to the total energy and density of the system. The initial 

coordinates for the cooling to 300 K were taken from oligomer systems equilibrated at a 

temperature of 400 K. The calculated density of isopropanol (PVA oligomer N=1) was 

found to be 0.812±0.002 g/cm3. This value is 3.7% larger than the experimental 298 K 

value of 0.7827 g/cm3.7 For the N=2 system 2,4-pentanediol we notice that the present 

MD result of 0.949 g/cm3 is by only 1.5 and 0.6% smaller than the experimental value of 

0.9635 and 0.955 g/cm3.15 Now let us consider the PVA system. Davidson11 and 

Brandrup et al.12 reported an experimental density of amorphous PVA at 298 K of 1.26 

g/cm3. The chains adopted in the present contribution are too short for a direct 

comparison with experiment. Thus the density of a simulated long-chain PVA (1/N ~ 0) 

can be only extrapolated. In Figure 4.1 such an estimate is displayed for the specific 

volume (i.e. inverse density) which is plotted as a function of the inverse number of 

“monomers” (1/N). A similar linear dependence as encountered in the diagram was found 

previously by Dollhopf et al. for n-alkanes.16 We want to mention, that the extrapolated 

density of an infinite PVA chain as derived from the experimental values of isopropanol 

and 2,4-pentanediol is two times smaller than the one which is actually found.11,12 

Therefore only the specific volumes of PVA oligomer systems with a chain length of 

N=5,7,10 were used to estimate the PVA density in the limit N → ∞  by a linear fit 

similar to the one in Figure 4.1. Despite the limitation to three data points the MD based 

extrapolated density of amorphous PVA with infinitely long chains of 1.182±0.003 g/cm3 

is only 6.2% lower than the experimental value. Note that the specific volume displayed 

in the figure leads to an extrapolated value larger than the experimental number. Our 

simulations indicate that smaller oligomers up to N=10 formula units per chain can be 

employed to estimate the density or the specific volume of very long PVA chains. 
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Figure 4.10: Specific volume of melts of PVA oligomers as a function of the inverse 

chain length at T=300 K. The value of amorphous PVA at 298 K11,12 was put at 1/N = 0. 

This choice is based on the assumption that the PVA chains reported in the literature11 are 

longer than the ones simulated here. Note that the N=1, 2 systems have been omitted in 

the linear fit. 
a) The data for 2,4-pentanediol is taken from the ChemExper catalog.15 

 

 Figure 4.2 shows the specific volume distribution of PVA melts at temperatures 

of 300 and 400 K as a function of 1/N. It could be expected a priori, that the estimated 

high-temperature specific volume (density) is higher (lower) than the 300 K volume 

(density). In the limit ∞→N  the density at 400 K amounts to 1.153±0.004 g/cm3. In 

analogy to T=300 K, the density was estimated from the data points obtained for PVA 

melts of oligomers with chain lengths N=5,7,10. To the best knowledge of the authors, 

experimental data that could be compared with the present 400 K simulation, have not 

been reported up to now.  
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Figure 4.11: Specific volume of PVA oligomer melts as a function of the inverse chain 

length at T=300, 400 K. In analogy to Figure 4.1 the N=1 and 2 data have been omitted in 

the linear fit. 

 

 Figures 4.3 and 4.4 depict the radial distribution function (RDF) of the oxygen 

atoms and the neighboring methine carbons in PVA melts at 400 K. The structural details 

in the RDF indicate the liquid nature of isopropanol at this temperature. The comparison 

of the oxygen RDF for PVA oligomers with N≥2 shows that the major peak occurs 

approximately at the same position as in the case of the hydrogen bond of isopropanol 

(around 0.29 nm). From Figure 4.3a we deduce that the longer PVA chains form a melt 

with higher density. This leads to enhanced RDF peaks at slightly shorter distances. In 

Figure 4.3b we can identify the presence of weak additional peaks in systems with larger 

N which are of intramolecular origin. 

For melts of PVA oligomers with a chain length N≥2 we see a set of peaks with 

reduced intensity between the two major ones (0.28 – 0.55 nm) that is absent in 

overheated, liquid isopropanol (N=1). The first major peak at 0.28 nm for N≥2 arises both 

from intramolecular and intermolecular hydrogen bonds between hydroxy groups. The 

intramolecular part is due to oxygen atoms from neighboring repeat units. The second 

prominent peak at 0.55 nm is created by intermolecular and intramolecular atoms far 

apart. All small peaks between the major ones are predominantly of intramolecular 

origin. They are an outcome of the equilibrium values of the bond lengths, angles and – 
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partially - torsions. These geometrical parameters prevent that intramolecular oxygens 

can occupy energetically preferable positions. For oligomers with chain length N≥3, one 

additional weak peak appears at 0.67 nm overlapping with the broad major peak at 0.55 

nm. In isopropanol and pentane(2,4,)diol (N=2) the weak peak at 0.67 nm is absent. Both 

the 0.55 nm peak and the weak shoulder at 0.67 nm are of intramolecular origin. Their 

relative sharpness (see Figure 4.3a, N=2,3) also supports this assignment.  
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Figure 4.12a 
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               Figure 4.12b 

Figure 4.12: Radial distribution function between oxygen atoms in melts of PVA 

oligomers with chain lengths N=1,2,3 (a) and N=5,7,10 (b) at 400 K. 

 

 The RDFs of the methane carbon atoms (Figure 4.4) carrying the hydroxyl groups 

are similar to the distribution of the hydroxyl oxygens. In Figure 4.4 it is possible to 
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correlate each peak in the C(CO)-C(CO) RDF to a characteristic peak in the O-O RDF. 

To a certain extent one can identify the fingerprints of the monomers in the RDF of the 

long-chain systems. There are a few interesting features that are completely absent for 

isopropanol (N=1) and partially absent for pentane(2,4)diol (N=2) (Figure 4a), but appear 

in the melts of longer PVA oligomers (Figure 4.4a and b). As the chain length increases 

and the mobility of the chains decreases, one can identify a set of small sharp peaks at 

0.47, 0.52, 0.7, and 0.77 nm. In analogy to the oxygen RDF, these peaks are due to 

intrachain carbon pairs. They seem to be somewhat sharper than the corresponding peaks 

in the oxygen RDFs. This can be explained by the fact that the methine carbon atoms are 

linked through fewer bonds than the oxygen atoms. 
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Figure 4.13a 
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Figure 4.13b 
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Figure 4.13: Radial distribution function between methine carbon atoms (connected to 

oxygen) in melts of PVA oligomers with chain lengths N=1,2,3 (a) and N=5,7,10 (b) at 

400 K. In the inserts we have fragmented the radial distribution function into intra- and 

intermolecular contributions. N=3 has been chosen in the first diagram, N=10 in the 

second one.  

 

 The calculated gyration radii of all PVA melts including isopropanol are shown in  

Figure 4.5. It was found that the gyration radius depends on the number of repeat units in 
the chain via the relation 0.65 0.03

yrationgR N ±= . The calculated exponent is somewhat larger 

than the known N dependence for long chains in a good solvent ( 0.588
yrationgR N= ).17 In 

the melt, random walk statistics (~N1/2) would be expected for infinite chains. The higher 

exponent in this work is probably owed to the shortness of the oligomers. 

 

0.0 0 .5 1 .0 1 .5 2 .0 2 .5
-2 .2

-2 .0

-1 .8

-1 .6

-1 .4

-1 .2

-1 .0

-0 .8

-0 .6

-0 .4

ln
 (R

gy
ra

tio
n/[n

m
])

ln  N

 ln  R gyra tion

 L inear fit (R gyra tion=N (0 .65 ))

 
Figure 4.14: Double logarithmic representation of the gyration radius of PVA chains as a 

function of the chain length (the error bar is the standard deviation).  

 

4.3.2. Relaxation and diffusion 

Relaxation processes in PVA melts were studied via the orientation correlation 
function (OCF) ( ))(cos)(1 ttC ϕ=  for the different bond vectors (O-H, O-C, C-C 

[internal] – all internal CH(OH)-CH2 bonds only, C-C [end] – CH(OH)-CH3 bonds at the 
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end of chains only) and chain end-to-end vectors (see Figures 4.6 and 4.7). The averaging 

in the OCFs covers all molecules in the simulation box. ( )tϕ  is the angle by which the 

vector rotates during the time interval t. The decay of the OCF for the O-H bond vector 

shows the behavior expected for the high viscosity of long PVA chains (Figure 4.6), i.e. 

their relaxation times are large. There is also a sizeable difference between melts of 

oligomers with the chain length N≤3 and N≥5. The OCF for the O-H bond vector in melts 

(liquids) of the shorter PVA oligomers decays within a time much smaller than 2 ns. In 

PVA chains with the length N≥5, the OCF decays much slower. For N=5 it takes more 

than 40 ns to approach zero. For the longer oligomers (N=7,10), these times are even 

longer. 

In Figure 4.7 we compare the OCFs of different bond vectors and end-to-end 

vectors for N=3 and N=10. The OCF for other oligomers are not shown. For the 

oligomers with N=3 and shorter (Figure 4.6), all correlation functions reach zero in less 

than 4.7 ns. For PVA oligomers with N=10, on the other hand, none of the given OCF 

approaches zero even after 45 ns. While the OCF for all bond vectors exhibits - to a 

certain extend - decay properties, the OCF of the end-to-end vector is almost constant 

(Figure 4.7b) on the time scale of our simulations. The OCFs of the end-to-end vector for 

the other shorter oligomers with N=5 and 7 decay only slightly faster. We have to confess 

that simulations over much larger time windows would be necessary to derive 
quantitative information on the decay properties of the 1( )C t . Unfortunately such MD 

runs are beyond the capability of the present computer facilities. Nevertheless we feel 

that the comparison between the data of short and long chains is useful to indicate 

qualitative differences in the dynamic properties.  
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Figure 4.15a 
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Figure 4.15b 

Figure 4.15: Orientation correlation function of the O-H bond vector for melts of PVA 

oligomers with the chain length N=1,2,3 (a) and N=5,7,10 (b) at 400 K. The insert in 

figure (a) shows the orientation correlation functions for isopropanol (N=1) and 2,4-

pentanediol (N=2) at higher resolution. Note the logarithmic scale for the y-axis.  
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Figure 4.16b 

Figure 4.16: Orientation correlation function for the bond vectors (O-H, O-C, CH-CH2 

[internal], CH-CH3 [end]) and the end-to-end vectors for melts of PVA oligomers with 

the chain length N=3 (a) and N=10 (b) at 400 K. In analogy to Figure 4.6 a logarithmic y-

axis scaling has been employed.  

 

An attempt was made to fit the OCFs to the Kohlrausch-Williams-Watts (KWW) 
expression [ ]( )βτ/exp t− . The values for the relaxation time τ and the stretching 

parameter β were then used to calculate the average relaxation time ( ) )/1(/ ββττ Γ= , 

where Γ is the gamma function. As a reasonable fit of all OCFs to the KWW formula has 

been impossible, only some of the relaxation times could be determined. The calculated 
τ  values are plotted in Figure 4.8. All relaxation times in the N≤3 family depend 
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exponentially on the number of monomers. A reasonable fit for the bond vector C-C 

[internal] and the end-to-end vector of PVA chains for N=5,7, and 10 was possible only 

for the O-H (N=5,7,10), O-C (N=5,7), and C-C [end] (N=5) bond vectors. In the melt of 

PVA oligomers with N=5 the O-H, O-C, and C-C [end] bond vectors reproduce 

relaxation times already found in the first group of PVA melts (N=1,2,3). For the PVA 

oligomers with N=7,10, an exponential increase cannot be confirmed yet. Such a 

dependence, however, cannot be excluded completely as full relaxations of PVA melts 

probably have not been reached (cf. Table 4.1, Figure 4.6b and 4.7b). Larger trajectories 

are required for these melts to render a quantitative analysis possible. 
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Figure 4.17: Average relaxation times τ  obtained by fitting the orientation correlation 

function for different bond vectors and the end-to-end vector of PVA oligomers to the 

Kohlrausch-Williams-Watts expression. We have chosen an exponential ordinate scaling 

to observe a linear behavior in connection with the KWW formula. Data points are only 

given for systems where it has been possible to obtain a reasonable fit. 

 

In the present work the self-diffusion of oxygen, C [internal] (CH2 and CHOH), 

and C [end] (terminating CH3) atoms was studied, too. The calculated self-diffusion 

coefficients are given in Table 4.2. As could be expected (see also the decay of the 

OCFs), the diffusivity of the atoms in a melt decreases with increasing chain length. It is 
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worth mentioning that diffusion coefficients of the chains with N=7-10 are extremely 

small (upper bound ≈ 1•10-9 cm2/s). But note that similar numbers have been found in an 

experimental NMR study of PVA in water solution.18 The simulation times accessible 

restrict the determination of the center-of-mass diffusion coefficients of PVA oligomers 

to the N=1,2 and N=3 (not shown) species. 

In analogy to the work of Bennemann et al. we have shown in Figure 4.9 the 

mean square displacement (MSD) of the oxygen atoms for different PVA melts in a 

double logarithmic scale.19 The MSD in the melt of the N=3 system reflects quite fast 

diffusion of oxygen during the first few picoseconds; later it becomes a little slower. For 

the longer PVA chains (N=5,7,10) this effect is more pronounced. It can be explained by 

differences in the diffusion modes. At short times up to 0.5 ns, we have “free” diffusion. 

After this time the connection of the atoms to the chain slows down their diffusion. This 

mechanism is well known for polymer melts.20 The diffusion of the other atoms is similar 

to the behavior of oxygen. At least in the time interval considered, the simulations do not 

reproduce details of the Rouse model.20 Probably the chains considered are still too short. 

As discovered by Ding et al., oligomer chains establish a polymer-like behavior 

consistent with the Rouse dynamics for molecular weights exceeding the “monomer” 

weight by a factor larger than 20.21 

 

Table 4.2: The self-diffusion coefficient of different atoms in melts of PVA oligomers 

with different chain lengths. 

System 

(chain length) 

Diffusion coefficient [cm2/s] 

O (OH) C (CH3) C (CH2 and 

CHOH) 

Center 

of mass 

Isopropanol 

(PVA oligomer N=1) 

3.4±0.2•10-5 3.4±0.2•10-5 3.4±0.2•10-5  3.4±0.2•10-5 

PVA oligomer 

(N=2) 

4.8±0.2•10-6 4.8±0.2•10-6 4.8±0.2•10-6 5±3•10-6 

PVA oligomer 5.9±0.1•10-7 6.2±0.2•10-7 5.9±0.2•10-7 5.3±2•10-7 
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(N=3) 

PVA oligomer 

(N=5) 

1.2±0.1•10-8 2.04±0.03•10-8 1.37±0.04•10-8 - 

PVA oligomer 

(N=7) 

5.9±0.3•10-9 1.5±0.1•10-8 7.37±0.4•10-9 - 

PVA oligomer 

(N=10) 

2.0±0.1•10-9 1.9±0.1•10-9 1.1±0.1•10-9 - 
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Figure 4.18a 
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Figure 4.18b 

Figure 4.18: Mean square displacement of the oxygen atoms in melts of PVA oligomers 

with N=1, 2, 3 (a) and N= 5, 7, 10 (b) at 400 K in a double logarithmic representation. 
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The insert in figure (b) shows the mean square displacement in the melt of the N=5,7,10 

materials in an enhanced scale. 

 

4.4. Summary  

 Properties of melts of polyvinyl alcohol oligomers with different chain lengths 

(N=1,2,3,5,7,10) were studied at 300 and 400 K. Isopropanol (N=1) at 400 K has to be 

regarded as an overheated liquid. The specific volume of the polymers studied depends 

reciprocally on the number of repeat units. Such a behavior has been found previously by 

Dollhopf et al. for n-alkanes.16 Modifications of the radial distribution function of oxygen 

and carbon as a function of the polymer length follow expectations: the peaks become 

more pronounced for longer PVA oligomers. Here the molecules are less mobile and the 

melt becomes more viscous. Both intrachain and interchain contributions to the RDF 

peaks have been assigned. The gyration radius depends on the number of formula units 
via 0.65 0.03

yrationgR N ±= .  

  For dynamical information, orientation correlation functions were studied. It was 

found that all bond and end-to-end vectors of PVA oligomers with N=1,2,3 relax 

completely within a few nanoseconds. For longer PVA oligomers, the relaxation takes 

much more time. Whenever possible, the Kohlrausch-Williams-Watts expression was 

used to fit and integrate the OCFs to obtain the relaxation times. The relaxation time for 

O-H, O-C, and C-C [end] scales exponentially with the chain length up to N=5. For 

longer oligomers, the dependence is not clear. This might be due to insufficient 

simulation times for PVA oligomers with N=7 and 10, or due to the onset of a different 

scaling behavior for longer chains.  

The mean square displacement of the hydroxyl oxygens and backbone carbon 

atoms in all PVA melts has been calculated. The short PVA oligomers (N=1,2) are closer 

to a liquid-like behavior. The MSD increases linearly from the start. PVA oligomers with 

N=3 are an intermediate case. For the PVA oligomers with N=5,7 and 10 the diffusion of 

the atoms within the first pico- or nanoseconds is faster (so-called “free diffusion”). After 
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this period the atoms “feel” the constraints of the chain and the overall diffusion slows 

down so that anomalous diffusion is found. Quantitative agreement of the present 

findings with the Rouse model has not been observed.20 It seems that the oligomer chains 

considered are still too short to reproduce a polymer-like behavior compatible with this 

approach,21 although the simulations have reached the present computational limits.  

 From the dynamic properties of PVA melts with shorter oligomers (i.e. N up to 

10) one can conclude that the simulation of a melt of longer PVA chains on a full 

atomistic level is currently not feasible. In simulations of interfaces between PVA 

meltsand solid (metallic) surfaces this becomes even more evident. Larger systems are 

required for a proper modelling. The relaxation times at the interface are also much 

longer than in the bulk.22 Therefore, coarse grained simulations of PVA melts23 seem to 

be the method of choice to study the behaviour of PVA near a solid surface. 
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Chapter 5: Study of the Soret effect in hydrocarbone chains / 
aromatic compound mixtures. 

 

  5.1. Introduction 

In a binary mixture exposed to a temperature gradient, the Soret effect induces a 

concentration gradient. 
(1 )Tx S x x T∇ = − − ∇                                                                                              5.1 

where x∇  is concentration gradient, T∇ is temperature gradient and TS is the Soret 

coefficient. /T TS D D= is the ratio of the thermal diffusion coefficient and the collective 

diffusion coefficient. A positive Soret coefficient of the component with the mole 

fraction x implies that this component moves to the cold region of the fluid. 

Although the discovery of the effect by Ludwig took place more than 150 years 

ago, there is so far only a limited microscopic understanding for liquids.1 Apparently, the 
magnitude as well as the sign of TS  are very sensitive to the chosen mixture. Generally, 

there is no Soret effect in the mixture of absolutely equal components due to the principle 

of symmetry. The Soret effect is basically the response of the system to the difference 

between two mixing partners. This simple conception was investigated in detail by 

experiments and by simulations. 

Molecular dynamics simulations of equimolar mixtures of particles2 and spherical 

molecules3 show that the component with the larger mass, the smaller radius and the 

larger depth of the interaction potential moves to the cold side. In the previous 

publication4 have been shown experimentally and by reverse non-equilibrium molecular 

dynamic simulation (RNEMD) that the binary mixtures of simple molecules 

(tetraethylsilane, di-tert-butylsilane and carbon tetrabromide in carbon tetrachloride) obey 

this rule of thumb. 

Another large group of substance studied are the hydrocarbons which have been 

investigated experimentally and theoretically5-7. However, for alkane/benzene mixtures7 

the simple rule of thumb fails. The heavier linear alkane always moves to the warm side. 

This tendency becomes weaker with increasing degree of branching and the highly 
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branched isomer of heptane (2,2,3 - trimethybutane) moves to the cold side and then 

benzene to the warm side. The trend that linear alkanes have the strongest tendency to 

move to the warm side had already be observed by Kramers and Broeder for n-nonane 

and n-hexadecane5 compared to other hydrocarbons, such as the branched isooctane and 

one and two ring compounds. 

The thermal diffusion behavior of linear alkanes is well described by a simple 

lattice model (SLM)7. At the same time the SLM is not capable to describe the thermal 

diffusion behavior of branched alkanes because their thermodynamic parameters such as 

density, heat capacity and thermal expansion coefficient are not sensitive to the degree of 

branching. Recently, the influence of the degree of branching by RNEMD simulation has 

been investigated.8 The simulated Soret and mutual diffusion coefficients reproduce the 
experimental trend. However, the simulated values of TS  values are systematically 

3 13 10 K− −≈ ⋅  lower than in the experiment. The observed decrease of the magnitude of 

TS  for equimolar alkane/benzene mixtures with branching of the alkane can not be 

explained by mass and size effects. The effect of the molecular shape, which affects the 

liquid structure, as well as kinetic properties of the mixture, needs to be considered 

additionally. However, has not been found a simple relation to take branching or, more 

generally, molecular shape, into account. 

In this research we extend the work by considering hydrocarbon chain /aromatic 

compound mixtures. Benzene was replaced by cyclohexane and two xylene isomers (p-

xylene and o-xylene). As a solute we used heptane, two of its isomers 2,3-

dimethylpentane (2,3-DMP) and 2,4- dimethylpentane (2,4-DMP). Experiments were 

performed using the thermal diffusion forced Rayleigh scattering technique. The 

experimental results were compared with RNEMD simulations. Additionally, we 

investigated the effect of intramolecular flexibility using RNEMD by introducing two 

double bonds for 2,3-DMP and 2,4-DMP e.g. considering two alkenes: 2-methyl-3-

methylenepent-1-ene (2,3-DMPEN) and 2,4-dimethylpenta-1,3-diene (2,4- DMPEN), 

respectively. 
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5.2 Experimental details  

 

 5.2.1 Sample preparation 

Heptane, o-xylene (98%) and p-xylene (98%) were purchased from Fluka; 2,3- 

dimethylpentane (99%) and 2,4-dimethylpentane (99%) were ordered from Aldrich; 

cyclohexane (99.9%) we got from LiChrosolv. Figure 5.1 shows the chemical structure of 

the investigated molecules. For all mixtures the alkane mole fraction was adjusted by 

weighing the components. The TDFRS experiments require a small amount of dye in the 

sample. In this work, all samples contained approximately 0.002 wt% of the dye 

Quinizarin (Aldrich). This amount ensures a sufficient optical modulation of the grating 

but is small enough to avoid convection and contributions of the dye to the concentration 

signal. Before each TDFRS experiment, approximately 2 ml  of the freshly prepared 

solution were filtered through 0.2 mµ  filter (hydrophobic PTFE) into an optical quartz 

cell with 0.2 mm optical path length (Helma) which was carefully cleaned from dust 

particles before usage. 
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Figure 5.1: Chemical structure of the investigated molecules. The branched 

alkanes (or alkenes) are: 2,3-DMP (2,3-dimethylpentane), 2,4-DMP (2,4-

dimethylpentane), 2,3-DMPEN (2-methyl-3- methylenepent-1-ene) and 2,4-DMPEN 

(2,4-dimethylpenta-1,3-diene). 

 

5.2.2. Refractive index increment measurements 

 In order to determine the changes of the refractive index n with composition x at 
constant pressure P and temperature T, ,( / )P Tn x∂ ∂  for each hydrocarbon chain/aromatic 

ring compound we measured the refractive index of several mixtures of different 

concentration around the equimolar mixture with an Anton Paar RXA 156 refractometer. 
The slope ,( / )P Tn t∂ ∂  was then determined by linear interpolation. The temperature 

derivatives at constant pressure and composition, ,( / )P xn T∂ ∂ , were determined from 

measurements with a Michelson interferometer(ref) in a temperature range of 3 C above 

and below the temperature of the thermal diffusion forced Rayleigh scattering TDFRS 

experiment. 
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5.2.3 TDFRS experiment and data analysis 

In our thermal diffusion forced Rayleigh scattering (TDFRS) experiments, the 
beam of an argon-ion laser ( ωλ =488 nm) is split into two writing beams of equal 

intensity which interfere in the sample cell (ref) for a detailed description of the method). 

A small amount of dye is present in the sample and converts the intensity grating into a 

temperature grating, which in turn causes a concentration grating by the effect of thermal 

diffusion. Both gratings contribute to a combined refractive index grating, which is read 
out by Bragg diffraction of a third laser beam ( rλ =633 nm). The intensity ( )net tζ  of the 

signal depends on the transport coefficients and the index of refraction increments and 

may be expressed as 
2,

,

( / )
( ) 1 (1 )(1 )

( / )
P T q Dt

net T
P x

n x
t S x x e

n T
ζ −∂ ∂

= + − −
∂ ∂

                                                                    5.2 

where q is the grating vector, whose absolute value is determined by the angle _ between 
two writing beams and the wavelength ωλ : 

4 sin
2

q
ω

π θ
λ

=                                                                                                                      5.3 

For the determination of the transport coefficients, is fitted to the measured heterodyne 
signal using the independently measured contrast factors ,( / )P Tn t∂ ∂  and ,( / )P xn T∂ ∂  

 

  5.3. Computational Details  

The Reverse Non-equilibrium Molecular Dynamics (RNEMD)9 method has been 

applied to investigate the thermal diffusion of binary mixtures of alkane(alkene) in p-

xylene o-xylene and cyclohexane. Lorentz-Berthelot mixing rules were employed for 

unlike non-bonded interactions. The force field parameters for the benzene ring of xylene 

were taken from Milano and Müller-Plathe.10 The C-H bonds were slightly polarized in 

order to reproduce the quadrupole moment. For carbon and hydrogen of the methyl group 

of xylene we used the following Lennard-Jones parameters: ε  = 0.22/0.15 kJ/mol and σ  

= 0.3/0.245 nm, respectively.  

For alkanes, alkenes and cyclohexane we used the TraPPE-UA11,12 force field. All 

nCH  groups were treated as individual atoms without taking into account electrostatic 
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interactions. We would briefly like to mention the differences between the force fields for 
alkanes and alkenes. For the 2CH  and 3CH  groups present in both alkane and alkene, we 

used the same Lennard-Jones parameters. We took into account the difference in shape 

due to the double bond by appropriate new LJ parameters of 2sp  geometry,12 angle, and 

bond length changes, which lead to the expected different specific volume for alkene 

compared to alkane. Only constrained bonds were used in the simulation, which were 

kept rigid by the SHAKE algorithm.13 For the electrostatic interactions, the reaction field 

method has been used with a dielectric constant of 2.06 which is the average value of the 

alkanes and the xylenes. We found a good agreement between simulated and 

experimental values for the density, heat of vaporization and self diffusion of the xylene 

molecules (c.f. Table 5.1). Unfortunately, we could not find any reliable experimental 

values for the self diffusion coefficient of o-xylene but it is in the same order of 

magnitude as for benzene molecule.10 

 All simulations were performed by the program YASP14 with periodic boundary 

conditions in all directions for as least 12 ns. The time step was 2 fs. The non-bonded 

cutoff was 1.2 nm for the neighbour list and 1.1 nm for the interactions. The neighbour 

list was updated every 15 time steps. The temperature and pressure were kept at 298 K 

and 101.3 kPa using the Berendsen method with a coupling times of 0.2 ps for the 

temperature and 5 ps for the pressure.15 For every system is consisted 320 molecules, 

equilibrium was performed for at least 4 ns. After this period, the fluctuations of the total 

energy and density over 500 ps were in all cases below 2%. 

 

Table 5.1: The comparison of the physical properties of xylene obtained from the 

simulation and experimental work. 

 p-xylene o-xylene 

 experiment Simulation experiment Simulation 
1( / )density gm Lρ −⋅  0.8616 0.858 ± 0.002 0.8616 0.864 ± 0.003 

1

_ _
( / )vap

heat of vaporization
H kJ mol−⋅

 42.3817 41.7 ± 0.1 43.4317 37.5 ± 0.1 
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5 2 1

_
( /10 )
self diffusion coefficient
D cm s− −

−
 4.118 2.24 ± 0.2 - 1.78 ± 0.2 

 

For Soret coefficient calculation every cell of mixture was replicated three times 

in the direction of temperature gradient (in our case is z direction, means Lx=Ly=Lz/3= 4-

4.2nm). All RNEMD simulations were performed at constant NVT conditions. The 

periodic system was divided into 20 slabs. The average temperature was kept at 298 K. 
The temperature gradient was created by exchanging every 100th ( 100N ) step the center of 

mass velocity vector of two molecules (”coldest” molecule in the hot slab one and the 

”hottest” molecule in the cold slab eleven) of the same type. The temperature profile 

were sampled every 101th step. After the concentration gradient is induced the Soret 

coefficient can be calculated. For each simulation run two values of the Soret coefficient 

were calculated: from the nine slabs of the downward branch and from the nine slabs in 

the upward branch. The hottest and coldest slabs have been excluded from the analysis. 
The final value of TS  represents the average value, the error bars reflect the difference 

between TS  from downward and upward branches. 

 

5.4. Results and Discussion 

 

5.4.1. Experiment 

Figure 5.2 shows the experimentally determined Soret coefficient for different 

hydrocarbon/ aromatic compound mixtures. For all considered solvents the magnitude of 

TS  becomes smaller with increasing degree of branching of the first component and is 

also sensitive to the nature of the second component. This is the same trend which we 

observed for other heptane isomers in benzene.7 It is remarkable, that all curves have the 

same shape and no intersection points were observed. 
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Figure 5.2: The experimentally measured Soret coefficients for equimolar mixtures of 

some alkanes and alkenes in different aromatic compounds. The data for 

hydrocarbon/benzene mixtures were taken from Polyakov et. al.8 

 

The obtained results can be analyzed within a phenomenological conception 

proposed by Wittko in his PhD dissertation.19 They assumed that the Soret coefficient for 

a given mixture (of the component A in the component C) is only determined by the 

difference in the properties of the pure mixing partners Aσ  and Cσ , respectively 
AC A C

TS σ σ= −                                                                                                       5.4 

σ  might be interpreted as heat affinity. Thus, the Soret coefficient of the components A 
in the component C ( AC

TS ) can be calculated using AB
TS  and CB

TS : 
AC AB CB

T T TS S S= −                                                                                                     5.5 

Figure 5.3 shows a satisfactory agreement between the experimental values of the Soret 
coefficient TS  and the calculated calc

TS  using Eq. 5.4.  

In order to determine the heat affinities an overestimated linear equation of the form 

TM Sσ =
ur uur

                                                                                                                   5.6 

has to be solved. σ
ur

_ and TS
uur

 are vectors consisting of the heat affinities and Soret 

coefficients of the different solvents and M  is a Matrix consisting of 1, -1 and 0 
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combining the corresponding solvents with their Soret coefficients and heat affinities. In 

order to determine the heat affinities we have to rewrite the equation system. 
1( )T T

TM M M Sσ −=
ur uur

                                                                                             5.7 

The heat affinities are only determined up to an arbitrary constant, which we have chosen 

to be zero for o-xylene, the substance with the lowest tendency to move to the warm side. 

The substance with the largest affinity to the cold is the asymmetric heptane. The 

calculated Soret coefficients are perfectly described by a straight line through the origin 

with a slope of 0.99±0.03. 

 Our series of heat affinities shows parallels with the logarithm of the separation 

factor S given by Kramers and Broeders5. Also they found the lowest values for ”log S” 

for the two linear alkanes n-nonane and n-hexadecane followed by the branched iso-

octane, one ring compounds (xylene, ethylcyclohexane, p-cymene) and two ring 

compounds (isopropyl-napthalene, α -methylnaphtalene). 

 

Table 5.2: Physical properties for the solvents used in the analysis by Eq. 5.8: heat of 

vaporizationat the boiling point20,21, density at room temperature20 and the principal 

moment of inertia.22  
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The importance of the molecular shape for the thermal diffusion in binary 

mixtures of two disk-like molecules was recently investigated for a mixture of benzene 

and cyclohexane by Debuschewitz and Köhler.23 They correlated the Soret coefficient 

with the difference in mass and in the component of the moment of inertia perpendicular 

to the molecular plane. In our case we have difficulties with the quantitative application 

of this conception because it is not clear which component of the moment of inertia needs 

to be considered for the alkane molecules. At the same time, it is clear that the observed 

”parallel shift” of the curves (c.f. Figure 5.2) with the substitution of the solvent 

(benzene, cyclohexane, p- or o-xylene) is related to the physical properties (difference in 

mass and moment of inertia) of these cyclic components. As a simple approach, we 
related the heat affinity with the product of heat of vaporization vapH∆  and the density ρ  

(or in other words this product equal to cohesive energy density), the mass and the ratio 

of the largest to the smallest moment of inertia. 

 
max min/vapH m I Iσ γ ρ α β= ⋅ ∆ ⋅ + ⋅ + ⋅                                                                            5.8 

where , ,γ α β  are constants. The first term should account for the chemical contribution, 

the second term for the mass and the last term for the asymmetry of the molecule. The 

expression of the chemical contribution will certainly break down in the case of polar 

substances19, but it might also loose its validity, if one considers other systems than 

alkanes. Also, the contribution of the asymmetry becomes difficult in the case of larger 

and more flexible molecules.  

 The black round symbols in the lower right part in Figure 5.3 show the correlation 
of σ  and calcσ  according to Eq. 5.8 with -4 31.74 × 10 /( )mol cm kJ g Kγ = , 

-56.57 × 10  /( )mol g Kα = −  and -4 12.38 × 10 Kβ −= − . The straight line corresponds to a 

line fit with a slope of 0.88 and an intercept of -42.74×10 . The correlation coefficient is 

only in the order of 0.93. Considering the component of moment of inertia perpendicular 
to the molecular plane zzI  leads to slightly lower correlation coefficient of 0.89. 

Especially the correlation for the organic ring compounds degrades, while the correlation 

of the alkanes slightly improves. Additionally, we can replace the chemical contribution 
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by vapH ρ , which corresponds to the Hildebrandt parameter δ . This decreases the 

correlation coefficient further to 0.81. 

 Finally, we would like to point out that we did not consider excess effects in Eq. 

5.4 and 5.8, which play an important role in the thermal diffusion behavior of liquid 

mixtures.24 Due to the limited number of equimolar mixtures studied we were also not 

able to account for a change in composition. Whether this simple approach according to 

Eq. 5.8 holds also for other nonpolar systems needs to be investigated in the future for a 

large number of systems. 

 

 
Figure 5.3: The comparison of the experimental values of the Soret coefficient and the 

predicted ones using Eq. 5.5. The upper right part of the figure shows the heat affinity σ  
of each solvent, which have been used to calculated cal

TS  . In the lower right part of the 

figure σ  is correlated with the calculated heat affinity calσ  calc according to Eq.5.6 

(black round symbols). 

 

5.3.2.. Simulation 

Additionally, we performed also simulations for the experimentally investigated 

mixtures. In order to study the influence of the rigidity of bonds, we included also 2,3- 

DMPEN and 2,4-DMPEN. Figure 5.4 shows a typical temperature and mole fraction 
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profiles for equimolar mixtures of heptane in p-xylene. These profiles were found to be 

linear, so that the temperature and the concentration gradients can be easily calculated. 

The average fluctuation of the concentration is 8%, and the temperature variation is 2 K 

in each slab. 

 Figure 5.5 shows the simulated Soret coefficient for different alkane 

(alkene)/aromatic compound mixtures. For all considered solvents, the magnitude of the 

Soret coefficient becomes smaller with increasing degree of branching of the first 

component. For the mixtures with xylenes, the shapes of the curves are not sensitive to 

the nature of the second component and the substitution of o-xylene by p-xylene makes 
the magnitude of TS  smaller, which confirms the experimental trend (cf. Figure 5.2), but 

the simulation data are systematically to low. Or in other words, their magnitude is too 

large, which means that the simulations predict a larger separation of the compounds 

compared to the experiment. In some cases such as 2,3-DMP/ heptane, the values differ 

by a factor of 2, but nevertheless, the branching effect is also clearly visible in the 

simulations. If we look at the influence of the rigidity of bonds on the Soret coefficient by 

comparing the results for alkedienes and alkanes, we notice there is a stronger tendency 

for the alkedienes to move to the warm side. Figure 5.5 shows some intersection points 

which were not observed in the experiment (cf. Figure 5.2). The possible reason could be 

an inconsistency of the force fields used. The Lennard-Jones parameters used for benzene 

and cyclohexane were different from the ones for p-xylene and o-xylene, as explained in 

section 5.3 
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Figure 5.4: The temperature and mole fraction profiles for n-heptane/p-xylene mixture. 

The open and solid symbols refer to first 9 slabs and reversed in x direction last 9 slabs of 

the simulation box. 

 

In the previous work7 has been shown that the simple conception found for 

Lennard Jones mixtures is not capable to explain the effect of branching in 

heptane/benzene mixtures. This approach is also not able to explain the thermal diffusion 

behavior of alkane(alkene)/p-xylene and alkane(alkene)/o-xylene mixtures.  

Although the validity of the Hildebrandt solubility parameter concept is not 

sufficient to describe the thermodiffusive motions,25 there are several examples in the 

literature where a correlation has been found. For instance, the Soret coefficient of 

spherical molecules4 shows a correlation with the energy density. Also, for a 

thermosensitive polymer26 in different alcohols, the concentration at which the Soret 
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coeffcient changes sign is correlated with the Hildebrandt solubility parameter. 

Furthermore, the simulations of Lennard-Jones liquids show a correlation between the 

Soret coefficient and the potential energy density of a species.2 
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Figure 5.5: The simulated Soret coefficients for equimolar mixtures of some alkanes and 

alkenes in different solvents. 

 

Figure 5.6 shows the calculated Soret coefficient for ten xylene mixtures versus 

the difference in Hildebrandt parameters ( δ∆ ) of the mixing partners, which is defined 

as square roots’ subtraction of solvents’ and solutes’ cohesive energy density. The 

Hildebrandt parameter has been calculated from equilibrium molecular dynamic 
simulations using the so-called nonbonded energy.2,10 The magnitude of TS  becomes 

smaller with increasing δ∆  for heptane, 2,3-DMP and 2,4-DMP, what is not the case for 

the mixture of spherical LJ particles.2 On the other hand, if one compares 2,3-DMPEN 

and 2,4-DMPEN with heptane, the opposite trend can be observed. One can expect that a 

larger δ∆  increases the difference between the mixing partners, resulting in a larger 
value of the magnitude of TS . It is obvious that we cannot confirm this simple 

correlation. Even for those nonpolar solvents, the thermal diffusion behavior is guided by 

a delicate balance of cross and pure interactions between the mixing partners. 
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Figure 5.6: The simulated Soret coefficient (p-xylene: solid symbols, o-xylene: open 

symbols) plotted versus the difference in the Hildebrandt parameter of the mixing 

partners.  

 

5.4. Conclusions  

The Soret coefficients of equimolar mixtures of heptanes (heptane, 2,3-DMP, and 2,4-

DMP) in cyclohexane, p-xylene, and o-xylene were determined using the TDFRS 

technique and the RNEMD method. In the simulation, we considered 2,3- DMPEN and 

2,4-DMPEN, additionally. Both approaches show the decrease of the magnitude of ST 

with increasing degree of branching, but the value determined by simulation is 

systematically too small, while its magnitude is too large. We could assign to each 

component a heat affinity, which allows the calculation of the Soret coefficient of the 

mixture and could be related to the heat of evaporization, density, mass, and assymmetry 

of the pure component. The magnitude of the Soret coefficient does not increase with the 

difference in Hildebrandt parameters of the mixing partners, as is expected for the 

mixtures of Lennard- Jones particles. 
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 In order to gain a better understanding, further investigations of the thermal 

diffusion on a microscopic level and a detailed molecular dynamic analysis of the 

orientation dynamics in equilibrium and nonequilibrium will be necessary. The goal will 

be to identify the important parameters and properties, which have the largest influence 

on the thermal diffusion behavior. 
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Chapter 6: Summary  
The successful applications of melt polystyrene (PS) in the automotive, electrical 

and electronics, consumer and industrial areas offers a unique combination of heat 

resistance, chemical resistance, and good electrical properties.1 Therefore, thermal 

properties studies of biaxially oriented crystal PS film is essential because it can open the 

door to another market where clarity and strength properties make it ideal for many new 

applications.2 Pending a pure crystal has been not attained yet, the thermal conductivity 

of the crystalline polymer can be calculated only by simulation, as has been done in this 

work. 

Non equilibrium MD simulations were employed for the calculation of thermal 

conductivity of the δ modification of syndiotactic polystyrene and so-called compact 

structure, which has a density similar to the crystalline α and β forms of s-PS, but not 

their crystal structure. To the best of our knowledge, it was the first time where the 

estimation of the value of polymer crystal thermal conductivity has been done by 

computer simulation and anisotropy has been evaluated. We tested six different force 

field sets, which were varied in the number of degrees of freedom. It was found that the 

thermal conductivity is sensitive to the number of degrees of freedom of the system. 

Fully atomistic models with all flexible bonds always overestimates experimental values, 

as was found in previous publication3, whereas the fully constrained bonds in repeat unit 

in our model yield an average value of the conductivity in all directions that is in 

excellent agreement with experimental data. It is important to note that stiffness of bonds 

in the backbone has a higher influence on the thermal conductivity than stiffness of the 

bonds in the pendant groups of the polymer. 

Due to the polymer’s oriented structure, anisotropy of the thermal conductivity 

was observed, which can be applied in various fields of technology. The heat conduction 

parallel to the polymer chains is 2.5–3 times larger than perpendicular to it. Even in the 

values of the thermal conductivities of two perpendicular directions small differences 

were observed.  
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Our research is not limited to only studies of polymer’s thermal conductivity. 

Singe polymers are also widely used for interfaces in the second project has been to 

analyze the data, which is essential for bulk definition in interfaces studies.  

Polymer interfaces are of considerable technological importance for products 

ranging from reflectors for car lights, compact discs, and electrically shielded computer 

cases to foils for food packaging.4 But polymer absorption on a surface significantly 

changes dynamic (like mean-squared displacement, diffusion, orientation correlation 

function) and static properties (like density, gyration radii, radii distribution function).5 

Then, to distinguish the interface between polymer and surface, the simulated system 

must contain the bulk region of polymer. Therefore, in Chapter 4 we discussed the 

morphology of small polyvinyl alcohol oligomers with different chain lengths 

(N=1,2,3,5,7,10). The linear dependence between specific volume of the polymers and 

inverse of the number of repeat units is found in the previous publication of Dollhopf et 

al. for n-alkanes.6 The density at N → ∞  was interpolated from the observed dependence 

for the polymer at 400K and at 300K and compared to experimental data. RDFs between 

different parts of oligomers have been illustrated. We have shown that intramolecular 

interactions are dominant for long chains. Gyration radii were calculated and are in good 

agreement with theoretical studies.  

Unfortunately, often it is difficult to calculate dynamic properties for polymers 

because of slow diffusion. In spite of that, the orientation correlation function for 

different bonds in the chain was calculated and from it the relaxation time has been 

determined. The Kohlrausch-Williams-Watts expression was used to fit and integrate the 

orientation correlation functions (OCF) to obtain the relaxation times. The relaxation time 

for most of the bonds scales exponentially with the chain length up to N=5. The mean 

square displacement (MSD) of the hydroxyl oxygens and backbone carbon atoms in all 

PVA melts has been evaluated. A linear behavior of the MSDs as a function of time can 

be observed for short oligomers. For the long oligomers, the diffusion of the atoms within 

the first picoseconds is faster (so-called “free diffusion”). The oligomers discussed in 

these studies are not long enough for observation of the Rouse model. 
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And finally in the last topic of the thesis we came back to the thermal properties 

where the Soret coefficient of mixtures has been calculated. The aim of Chapter 5 is to 

gain a better understanding of the thermal diffusion behavior in liquid mixtures. First, we 

investigated liquid binary systems of spherical, chain-like and associated simple 

molecules by thermal diffusion. The influence of physical properties like mass, density, 
Hildebrandt parameter (see later the definition) etc. on TS  is analyzed. We calculated the 

Soret coefficient for mixtures of xylene with the different isomers of heptane (heptene). It 

is important to note that by theory all mixtures may have a similar Soret coefficient 

because the mass, size and interactions for each solvent/solute are the same. Differences 

are found in the structure and shape, which cause different moment of inertia. We 

expected that the planarity of alkene and xylene will result in a better “fitting” to each 

other which could lead to reduction in the thermal diffusion. In despite of that our 

expectations were erroneous. Previous publications reported a correlation between the 

Soret coefficient  and the Hildebrandt parameter, 7 which is defined as 

_ sec _

( ) ( )v v

m mfirst component ond component

H RT H RT
V V
− −

−  where vH  is heat of vaporization and 

mV  is molar volume, but it was not confirmed in our results. Most of the simulation data 

has been compared to experimental values and good agreement has been found. 
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