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1. Summary

Understanding  the  mechanisms  driving  stability  in  natural  ecosystems  is  of  crucial 

importance, especially in the current context of global change. A classic paradigm in ecology 

was that complex food webs (the “who eats whom” of natural ecosystems) should be unstable. 

This  paradigm,  however,  was  based  on  simple  mathematical  models.  Throughout  the  last 

decades, scientists proposed solutions to the contradictions between the predictions of simple 

models  and  the  observation  of  the  complexity  of  nature.  However,  the  fundamental 

mechanisms driving these stabilizing effects are still rather unexplored. Especially, exploring 

and predicting the reaction of natural ecosystems to changes of the environment is a pressing 

issue of our time. Forecasting models predicted global warming up to 8°C until 2100, also 

nutrient  enrichment  is  caused  by  anthropogenic  land  use.  This  causes  changes  in  species 

composition and may lead to species extinctions.

A fundamental unit  of  natural ecosystems is the interaction between species.  The most 

obvious interaction is the feeding interaction between a predator and its prey. This interaction 

is mainly influenced by the metabolism and the feeding rate of the predator, as well as by the 

population density of the prey. Combining a mechanistic understanding of these interactions 

and  traditional  population  models  led  to  ground-breaking  insights  into  the  mechanisms 

stabilizing food-webs. For example,  a non-random distribution of feeding interactions in a 

food web increases its resistance against destabilizing effects. This might be caused by strong 

constraints introduced by the distributions of body masses across the species in a food web. 

Additionally, relatively weak interactions are known to have a positive effect on stability, if 

they occur in a specific way within small food-web motifs (e.g., a weak interaction from a top 

predator  to  the  basal  species  and  a  strong  interaction  to  its  main  prey,  the  intermediate 

predator). Also, models suggested that the stability of natural populations may change, if the 

feeding  capacity  and  the  metabolism  (or  the  death  rate)  of  a  predator  are  not  equally 

influenced  by  the  environmental  temperature.  However,  empirical  support  for  this  is  still 

scarce. 

In this thesis, I  explored the impact of body masses and environmental temperature on 

feeding interactions (Chapters  3.1., 3.2.& 4.1.). Additionally, I explored the influence of these 

constraints  on population and food-web stability  by using mathematical  models  (Chapters

3.3., 3.4., 4.1. & 4.2.).

The  body-mass  dependence  of  metabolism  generally  followed  the  3/4  power  laws  as 

predicted by the Metabolic Theory of Ecology (Chapter 3.1.). However, the strength of the 

feeding rates follows a hump-shaped curve with the body mass ratio of the predator to its prey 

(Chapters 3.1.& 3.2.). This leads to the phenomenon that a predator would not be able to fulfil 

its  metabolic  demands  if  only  insufficient  small  prey  would  be  available  (Chapter 3.2.). 
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Moreover, with increasing temperature, the metabolism increases more than the ability of the 

predator to consume food (Chapter 4.1.). These findings have fundamental implications for 

food web stability. Predators only are able to exist within a given range of body mass ratios to 

their prey. Approximately 97% of all tri-trophic food chains existing in natural food webs fall 

within  this  range  (Chapter 3.3.).  Additionally,  at  high  body-mass  ratios  an  additional 

interaction from the top predator to the basal species (omnivory) leads to a higher stability 

when incorporating the results from chapters 3.1. & 3.2. into the population models. Together 

with the distribution of the interactions as given in natural food webs (Chapter 3.3.), omnivory 

motifs are stabilised within the whole range of natural body-mass ratios (Chapter 3.4.).

The different temperature dependencies found for metabolism and feeding in chapter 5.1 

led  to  more  stable  population  cycles  but  may  also  lead  to  extinction  events  caused  by 

starvation of the predators. In addition, warming affects the food web structure, increasing or 

decreasing  these  starvation  effects,  as  found  in  chapter 4.1. Also,  enrichment  effects  on 

population stability  and food-web persistence can be overcome by incorporating  naturally 

plausible feeding interactions (Chapter 5.1.).

Overall, incorporating naturally relevant feeding interactions from laboratory studies into 

population  and  food-web  models  provides  important  insights  into  the  functioning  of 

populations and their stability in the context of food webs and their response to global change.
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19th century by the Hudson's Bay Company (Fig. 2.4.1, after  Elton & Nicholson 1942). The 

first simple models describing such population cycles were developed in the 1920s by Alfred 

J.  Lotka  (1925) and  Vito  Volterra  (1926).  Through  time  their  complexity  increased  by 

incorporating more realistic feeding interactions (e.g. a type II functional response  (Holling 

1959a, b; Real 1977, 1979; Koen-Alonso 2007), see Chapter 2.3. for detailed information) and 

growth  terms  (Rosenzweig  &  Mac  Arthur  1963) Later,  by  taking  empirically  measured 

biological rates into account the model was generalised to explore general patterns of natural 

populations (Yodzis & Innes 1992, but see chapter 2.4. for a  detailed introduction to that 

topic). 

In the early 19th century scientists started to describe natural ecosystems by their food-web 

structure (i.e., the graphical representations of “who eats whom”) (Elton 1926). At first, the 

complexity of food webs was assumed to have a stabilizing effect  (MacArthur 1955). Later, 

Robert May's studies (1972) on complex networks suggested that a higher complexity leads to 

less  stable  systems.  By  adding  more  and  more  realistic  biological  dependencies  to  their 

models such as an non-random distribution of the strength of interactions, scientists observed 

several ways to stabilize complex food-web models  (e.g. Yodzis 1981; de Ruiter, Neutel, & 

Moore 1995; McCann, Hastings, & Huxel 1998). However, today the question remains of why 

interaction strengths are distributed in a stabilizing way in natural food webs. Using the model 

provided by Yodzis & Innes (1992) and combining it with food-web models led to the insight 

that stability increases when the populations within the food web increase in body mass when 

they  are  on  a  higher  trophic  level  (Brose,  Williams,  & Martinez  2006).  This  body-mass 

distribution is also known to be common in nature (Brose et al. 2005a, 2006a). However, the 

bioenergetic models used in these prior studies are only based on simple metabolic constraints 

on  body  mass.  But  feeding  interactions  also  depend  on  non-metabolic  constraints,  i.e. 

predators cannot feed on prey that  is  too small  prey or prey that  is  much larger than the 

predator  (Elton 1926, Brose in press). In general predators prefer prey that have an optimal 

size  ratio  that  maximises  the  energetic  uptake  in  comparison  to  the  energy  they  spend 

searching, catching and handling the prey (MacArthur & Pianka 1966).

Metabolism and feeding interactions do not only depend on body mass but also on the 

environmental temperature, where increasing temperature leads to higher metabolism, higher 

moving rates and higher  feeding rates (Peters  1983,  see Chapters 2.2. & 2.3. for  detailed 

information).  In  a  recent  theoretical  study,  Vasseur  &  McCann  (2005) showed  that  the 

differences in temperature dependence between feeding rates and metabolism may affect the 

stability of a predator-prey system. However, the studies on temperature-dependent feeding 

rates and their effects on population and food-web stability are scarce.

In my doctoral thesis, I combined techniques from the field of metabolic theory, foraging 

theory, population biology and food web ecology to investigate the natural patterns that lead to 
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stable ecosystems. Furthermore, I investigated how external environmental changes, such as 

warming and nutrient enrichment influence population stability and the survival of species.

More specifically, I measured the metabolic and feeding rates of soil organisms such as 

beetles  and spiders  to  gain  information  about  how these  rates  scale  with  body mass  and 

environmental temperature (Chapters 3.1., 3.2. & 4.1.). These results were used to develop new 

population and food web models to gain an deeper understanding of how nature can be stable 

and  persistent  (Chapters 3.3., 3.4. & 5.1.)  and  to  gain  insight  into  what  the  effects  of 

anthropogenic induced global change may be (Chapters 4.1. & 4.2.).

 2.2. The allometry and temperature dependence of 

metabolism

One of the most basic biological constraints might be the metabolism of organisms; all 

movements from molecules up to whole flocks need energy. This energy is gained by burning 

nutriments.  That  process  was  first  recognized  in  the  18th century  by  the  French  chemist 

Antoine Laurent Lavoisier, who is also known as the father of modern chemistry. He was also 

the first to describe the mechanisms of metabolism (Poirier 1998). About a century later, the 

first  theories  were developed about  how metabolism scales  with animal  body mass.  Max 

Rubner (1883) described in experiments using dogs ranging from 3 to 30 kilograms, that the 

percentage of the nutriment demand decreases with the body mass of the dogs. He explained 

this phenomenon by the mismatch between the surface and the mass of the body which scales 

approximately with a power of  2/3. However, this “surface theory” was rejected several times 

starting with the studies of Max Kleiber  (1932, 1947, 1961) who described an increase of 

metabolism with a 3/4 power law with body mass, called Kleiber's law. Beside the surface 

theory,  other  theories  where  developed  to  support  the  often  found  exponent  of  3/4.  The 

“structure theory” takes into account that larger animals have a higher percentage of skeleton 

to stabilize their  body  (McMahon 1973). The negligible metabolic activity of the skeleton 

tissue might explain the allometry of metabolism whereas the bones of a mouse constitute 5% 

of  their  body  mass  and  that  of  elephants  20%.  A  mathematical  description  leads  to  an 

exponent of 3/4 (McMahon 1973). 

The Metabolic Theory of Ecology was based on the fractal organisation of the transport 

networks of animals and plants (West, Brown, & Enquist 1997, 1999; Brown et al. 2004). The 

central idea of this approach was to take not only the outer surface into account but also the 

fractal structure of the inner surfaces like blood vessels in animals or the transport network in 

plants. This yields an allometric slope of 3/4.
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 2.3. Foraging Theory

In foraging theory, the central description of feeding events is the functional response (Box 

3.1.1; Fig.  2.3.1). The first theoretical and empirical framework was introduced by Holling 

(1959a,  b).  He  presented  a  mechanistic  model  that  took  the  handling  time,  Th,  and  the 

instantaneous search rate,  a, into account. The handling time includes the time a predator,  i, 

needs to subdue, ingest and digest its prey,  j, as well as resting or cleaning itself  (Hassell 

1978). The attack rate is an average per capita moving or foraging speed expressed as area or 

volume successfully searched per time and predator (eg. m² individuals-1 day -1). With these 

parameters, the basic mechanistic equation becomes

F ij�
a ij N j

1�a ij T h ij
N j

(2.3.1),

which  has  a  hyperbolic  shape 

with  increasing  prey  density 

(Fig.  2.3.1c)  yielding  a 

decreasing  predation  risk  for  a 

single  prey  item  to  be  hunted 

with  increasing  prey  density 

(Fig.  2.3.1d).  This  basic 

equation  is  called  type  II 

functional response (Fig. 2.3.1c) 

and  most  other  more  or  less 

complex  functions  can  be 

derived from it  (Jeschke, Kopp, 

&  Tollrian  2002).  Beside  the 

type II functional response, the 

other basic curves are the type I 

functional response (Fig. 2.3.1a) 

which shows a linear increase of 

the  feeding  rate,  yielding  a 

constant  predation  risk  for  the 

prey  (Fig.  2.3.1b);  the  type  III 

functional response (Fig. 2.3.1e) 

that  has  a  sigmoid  shape  with 

prey density, yielding a hump-shaped predation risk for a single prey item (Fig.  2.3.1f); and 

the predator-interference functional response, which takes the density and interaction of the 

predators into account (Fig. 2.3.1g), and where the predation risk for a single prey decreases 
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Figure 2.3.1: The shapes of the functional response models type I (a), 

type II (c), type III (e) and the predator interference functional 

response (g). The right column displays the according per capita 

predation risks (feeding rates divided by prey density) for one prey 

individual (b, d, f, h).



with increasing predator density (Fig. 2.3.1h).

The type I functional response is maybe the oldest description of a prey-dependent feeding 

interaction  that  follows  a  simple  linear  increase  with  prey  density  (Fig.  2.3.1a).  The 

mechanistic explanation for a type I functional response is the simplifying assumption that the 

handling time (Eqn. 2.3.1) approaches zero. 

F ij�a ij N j (2.3.2)

This assumption can be made if 

the  predator  is  able  to  forage 

while  he  is  consuming  and 

digesting.  Animals  that  are 

much  larger  than  their  prey, 

such  as  filter  feeders,  are  that 

kind of predators and assuming 

that the filtering rate follows the 

environmental  density  of  prey 

items,  the  functional  response 

becomes linear  (Jeschke, Kopp, 

& Tollrian 2004). A more recent 

study  suggested  that  a  type  I 

functional  response  is  wrong, 

because  most  studies  ignore 

relatively low densities or extremely high densities of prey (Sarnelle & Wilson 2008). They 

showed that if these gaps of density are filled, the feeding curve becomes sigmoidally shaped, 

which implies a type III functional response.

The type III functional response assumes that the attack rate is not a constant but prey-

density dependent. The simplest form of that is a linear increase of the attack rate:

a ij�b ij N j (2.3.3), 

where  bij is  the  attack  coefficient  and  Nj is  the  prey  density.  This  yields  the  following 

functional response:

F ij�
b ij N j

2

1�b ijT hij
N j

2
(2.3.4)

which has a sigmoid shape (Fig.  2.3.1e). The linear increase of the attack rate may not be 

enough to describe the complexity of the functional response. The attack rate can become an 

even more complex function of prey density (Juliano 2001). However, most of that attack-rate 
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Figure 2.3.2: Different shapes of the functional response varying from 

q = 0 to q = 1.



models lack in statistical applicability. Real (1977, 1979) presented an elegant way to describe 

the prey-density  of the attack rates by introducing the Hill  exponent,  h,  to the functional 

response model. The Hill exponent was adopted from enzyme kinetics (Barcroft & Hill 1910)

F ij�
b ij N j

h

1�b ij T hij
N j

h
(2.3.5)

In this functional response model, the attack rate becomes

a ij�b ij N j

q
(2.3.6)

where the  q-exponent  equals  the Hill  exponent  minus one (q=h-1)  (Williams & Martinez 

2004a). This description of the functional response is more flexible than distinct attack-rate 

models (Juliano 2001) and allows a continuous shape of the functional response from a strict 

type II to a type III functional response (Fig. 2.3.2).

The question of how feeding is related to the prey density is not the only one in foraging 

theory. The predator density is also important to understand the feeding relationships (Skalski 

& Gilliam 2001). Increasing predator density leads to more competition among predators as 

well as miscellaneous other activities such as mating or eventually social interactions. These 

interferences can be included in the functional response in several ways, whereas the easiest 

was tested to be the best (Skalski & Gilliam 2001). In this so called Beddington-De Angelis 

functional response, a simple interference term �i is added to the model yielding (Beddington 

1975; De Angelis, Goldstein, & O'Neill 1975):

F ij�
aij N j

1��i N i�aijT hij
N j

(2.3.7a).

Using this interference term in the generalized type III functional response leads to:

F ij�
bij N j

h

1��i N i�b ijT hij
N j

h
(2.3.7b).

In addition to the time spent handling and searching, a predator spends time interacting with 

other  intra-specific  individuals  which  yields  a  decreased  per  capita  feeding  rate  with 

increasing predator density (Fig.  2.3.1g). There are many other formulations of interference 

existing in the literature, but see Chapter 5.1. b) and the paper by Abrams & Ginzburg (2000) 

for a detailed discussion on that topic.

Beside  these  mechanistic  approaches,  Real  (1977,  1979) introduced  an  often  used 

phenomenological version of the functional response. It comprises maximum ingestion rates 

Jmax and half-saturation densities N0 instead of handling times and attack rates:
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F ij�
J max N j

h

N0

h
�N j

h
(2.3.8a);

F ij�
J max N j

h

N0

h��i N i�N j

h
(2.3.8b).

This is especially convenient if functional responses are calculated from field observations, 

as often done in marine sciences  (e.g.  Smout & Lindstrom 2007).  Also,  many theoretical 

studies  use  similar  functional  responses  to  predict  macro-ecological  patterns  such  as 

population dynamics and food web persistence (e.g. Yodzis & Innes 1992; McCann & Yodzis 

1994; McCann & Hastings 1997; McCann et al. 1998; Williams & Martinez 2004a; Brose, 

Berlow, & Martinez 2005; Brose et al. 2006b; Rall, Guill, & Brose 2008). 

With the following assumptions, the mechanistic models (Eqn. 2.3.7) can be derived from 

the phenomenological one and vice versa:

J max�
1

T
h

(2.3.9a);

N 0�
1

aT
h

(2.3.9b).  

For a detailed description of these derivations, see Chapter 3.4. b).

All  functional response models presented so far only describe one predator – one prey 

interactions. In natural food webs, however, prey have several predators and predators have 

many prey species. A generalized description of a multi-species functional-response model 

was provided by Murdoch & Oaten (1975). The model considers the time a predator spends 

foraging on other prey as follows:

F ij�
bij N j

h

1�b ijT hij
N j

h��
k�1

k�n

bik T hik
N k

h
(2.3.10). 

The phenomenological version of the model can also be written in a multi-species version 

(Koen-Alonso 2007):

F ij�
�ij J max N j

h

N tot��ij N j

h��
k�1

k�n

�ik N k

h
(2.3.11), 

where Ntot is the total half-saturation density and �ij is the weight factor of the predator to a 

specific prey. The weight factor can be derived by dividing the prey specific attack rate by the 

17



sum  of  all  attack  rates.  The  total  half-saturation  density  is  calculated  by  the  maximum 

ingestion rate  divided by the sum of  all  specific  attack rates  (see  Koen-Alonso 2007 and 

Chapter 3.4. b) for details).

 2.4. Theoretical Ecology – from populations to food webs

Population Biology has a long standing 

history starting  with  early  observations  of 

the abundances of the Canadian lynx in the 

19th century (Fig.  2.4.1). The Hudson's Bay 

Company counted the returning furs of the 

lynx  by  their  trappers,  and  Elton  & 

Nicholson  (1942) investigated  the  data  to 

create a time series that is longer than 100 

years. This early dataset is still explored and 

extended  by  scientist  (e.g.  Bulmer  1974; 

Krebs et al. 2001; Roth et al. 2007; Vik et 

al. 2008). These ten-year population cycles 

of  the  lynx  were  interpreted  as  the 

numerical reaction to the abundance of its 

main  prey,  the  snowshoe hare.  To explain 

such  cycles,  scientists  developed 

mathematical models already in the 1920's 

(Lotka  1925;  Volterra  1926).  The Lotka-Volterra  model  made simple  assumptions  like  an 

exponential  growth  of  the  prey  species  and  a  linear  type  I  functional  response.  Later, 

Rosenzweig & MacArthur (1963) replaced these simple assumptions with a logistic growth (a 

species can grow to a maximum according to a hump shaped curve) and a saturating type II 

functional  response  (see  Chapter 2.3.).  These  substantial  components  of  the  Rosenzweig-

MacArthur model are still used in recent studies to explore population dynamics. One further 

step was to include general mechanisms and scalings to the population models. Based on the 

Rosenzweig-MacArthur  model,  Yodzis  & Innes  (1992) developed  a  body-mass  dependent 

population  model  that  was  based  on  macro-ecological  rates  of  production,  feeding  and 

metabolism. Additionally, by expressing every rate relatively to the growth rate and all spatial 

rates relatively to the carrying capacity of the basal species they generalized the model (but 

see Chapters 3.4. and 5.1. for  a  detailed description).  With Yodzis  & Innes model,  many 

studies on small food web motifs (e.g. the three species food chain, omnivory and competition 

motifs) were carried out (e.g. McCann & Yodzis 1994; McCann & Hastings 1997; McCann et 

al. 1998) which influenced and stimulated ecological research. 
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Figure 2.4.1: The population cycle of the Canadian lynx 

as reported by Elton & Nicholson (1942). The x-axis 

represents the years from 1820 to 1940 and the y-axis 

denotes the lynx furs returned to the Hudson's Bay 

Company from the area of the MacKenzie River 

District. (Data from Elton & Nicholson (1942); Table 4)



Generally,  the  methods  to  explore  the  dynamical  output  of  population  models  are 

numerous.  The  simplest  method  is  the  graphical  inspection  (Fig.  2.4.2)  provided  by 

Rosenzweig and MacArthur (1963). 

First, a population model has to be created. In a two species system, two equations are 

drawn; one for the resource species (referred to as the basal or prey species) and one for the 

consumer species (or predator species). These equations comprise (1) a growth term for the 

basal  species  that  includes  growth and intraspecific  competition;  (2)  a  feeding interaction 

between the species, expressed as the functional response of the consumer on the resource 

species; and (3) a loss term of the predator species according to death or metabolism of the 

consumer:

dN i

dt
�N i Gi�N j F ij

(2.4.1a)

dN j

dt
�N j F ij�z j N j

(2.4.1b), 

where Gi is the growth rate of the resource species and zj is the death rate of the consumer. For 

example, using a type II functional response for the feeding rate Fij and a logistic growth for 

the growth term Gi yields

dN i

dt
�N i r i�1�N i

K �� aij N i

1�aij T hij
N i

N j (2.4.2a)

dN j

dt
�

aij N i

1�aij T hij
N i

N j�z j N j (2.4.2b)

In a second step, the assumption is made that both populations exhibit equilibrium dynamics 

(the population densities do not change through time; dNi/dt = dNj/dt = 0). The equations can 

be rewritten and simplified to get the resource and consumer isoclines:
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N j��
a ij r iT hij

N i

2��rij�aij ri T hij
K i�N i�ri K i

aij K i

(2.4.3a),

N i�
�z j

aij z j T hij
�aij

(2.4.3b).

In  these  equations,  the  population  densities  of  the  predator  species  follow a  quadratic 

function depending on the prey density and the prey density follows a straight line depending 

on the death rates of the predator and on the functional response parameters. The graphical 

solution is presented in the so-called phase-space diagram (Fig.  2.4.2a). Imagine a starting 

population size of approximately 2.2 for the resource species and of approximately 0.4 for the 

predator  density.  The  population  dynamics  follow  a  circular  behaviour  counter-clockwise 

(spiral  in  Fig.  2.4.2a).  The parameters  are  chosen so that  the time series  follows a spiral 

trajectory towards the intersection of both isoclines. From this analysis, the population cycles 

through time can  be drawn into a  second graph (Fig.  2.4.2b).  However,  there are  several 

problems using this approach. Exploring large gradients of parameters would cause an infinite 

set  of  phase-space diagrams.  For this  reason,  many studies also use a  graph plotting two 

parameters of interest (e.g. body mass and temperature) while indicating the parameter space 

in which (1) the system is feasible, and (2) the system will exhibit non-equilibrium dynamics. 

The boundaries between the different areas are called feasibility boundary and Hopf boundary 

(Yodzis & Innes 1992), but see Chapter 5.1. d) for a detailed derivation of these boundaries.
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Figure 2.4.2: Graphical representation of the equations (2.4.3a,b). Plot (a) displays the phase space of the prey 

population (x-axis) and the predator population (y-axis). The spiral displays the time-dependent population 

densities of both populations. (b) Mirroring the values of that spiral into a plot, where the time is the x-axis and 

the population density is the y-axis yields the time series of both species, whereas the predator yields a lower 

population density than the prey.





human impact (Berryman & Millstein 1989). Later studies showed that there is evidence for 

chaotic dynamics in tri-trophic food chains in theoretical studies within biological relevant 

parameters  (Hastings  &  Powell  1991;  McCann  &  Yodzis  1994a),  empirical  experiments 

(Beninca et al. 2008), and might not only due to human impact such as enrichment (McCann 

& Yodzis 1994b). From this turning point of population modelling, the question came up, why 

natural  populations  are  able  to  co-exist  in  a  relatively  non-chaotic  way.  By  adding  an 

additional feeding interaction from the top predator of this tri-trophic food chain to the basal 

species (creating an omnivorous top predator), McCann & Hastings (1997) showed that with a 

specific set  of parameters,  the chaotic dynamics found in  the food chain were reduced to 

equilibrium dynamics. With this study, they solved two problems in one step: omnivorous 

motifs tended to become simple predator-prey systems, as the top predator out-competes the 

intermediate or vice versa. However, more general studies showed that the space of possible 

biological relevant parameters also allows scenarios where chaotic dynamics or out-competing 

occur more often than the system is stabilized (Holt & Polis 1997; Vandermeer 2006). Despite 

the  lack  of  empirical  evidence  and  generality  of  the  existence  of  weak  interactions,  the 

concept  that  weak  interactions  have  the  power  to  stabilise  populations  was  extended  and 

generalised to more complex structural motifs and to whole food webs (McCann et al. 1998; 

Neutel, Heesterbeek, & de Ruiter 2002). 
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Figure 2.4.4: Visualizations of empirical measured food webs; (a) the Benguela Marine System (Yodzis 1998) as 

an example for an food web that has a low number of species and a low number of feeding interactions; (b) the 

Broadstone Stream food web (Woodward, Speirs & Hildrew 2005), a highly connected food web with a small 

number of species, in Chapter 3.4.; (c) the Weddell Sea marine food web (Brose et al. 2005a), the to date largest 

measured food web with over 500 species. Image produced with FoodWeb3D, written by R.J. Williams and 

provided by the Pacific Ecoinformatics and Computational Ecology Lab (www.foodwebs.org, Yoon et al. 2004).



The  investigation  of  food-web  stability  is  challenging.  Food  webs  comprise  several 

populations that feed on each other (e.g. Fig.  2.4.4). Because of the high number of species 

and  their  interactions,  the  graphical  and  analytical  analyses  presented  in  the  previous 

paragraphs  are  not  usable.  This  led  to  many simplifications  in  the  analyses,  e.g.  a  linear 

interaction  term (attack  rate,  see  above).  Despite  all  these  simplifications,  early  stability 

investigations of food webs showed that increasing complexity (the number of species or the 

number of feeding interactions) leads to a decreased probability of stability in the food web 

(Gardner & Ashby 1970; May 1972). However, the structure of the investigated webs was 

extremely artificial, as a random structure was assumed. With increasing interest on food-web 

structure within ecological sciences, ecologists measured the food web structure of real food 

webs  [e.g.  the  marine  food-web  from Benguela  (Yodzis  1998);  the  freshwater  food  web 

Broadstone  Stream,  U.K.  (Woodward,  Speirs,  &  Hildrew  2005);  and  the  today's  largest 

measured food-web,  Weddell  Sea  (Brose  et  al.  2005a);   Fig.  2.4.4,  image produced with 

FoodWeb3D,  written  by  R.J.  Williams  and  provided  by  the  Pacific  Ecoinformatics  and 

Computational Ecology Lab (www.foodwebs.org, (Yoon et al. 2004)]. Analyses of these food 

webs showed that the structure is not random but follows strong constraints  (e.g. Martinez 

1991).  Also  the  distribution  of  the  strength  of  the  interactions  is  non-random.  Stability 

analyses of such food webs also showed an increased resistance against perturbations than 

random networks  (e.g.  Yodzis  1981;  de  Ruiter,  Neutel,  &  Moore  1995,  1998).  With  the 

increasing knowledge of food-web structure, the question arised how structure can emerge 

from general  natural  patterns.  This  led to  the development of several  structural  food web 

models  that  first  followed simple  stochastic  principles  (Cohen,  Briand,  & Newman 1990; 

Williams & Martinez 2000), but became more and more mechanistic by trying to include e.g. 

phylogenetic traits (Cattin et al. 2004). Using these and similar models and combining them 

with numerical population models led to deep insights into how stability is influenced by the 

shape of the functional response or allometric constraints given by the Metabolic Theory of 

Ecology (Williams & Martinez 2004a; Brose et al. 2006b).
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