
Abstract. In this document, we have studied two orthogonal
approaches of building DSLs and their advantages and
disadvantages with respect to MDSD. We show that embedded
DSLs can be used to implement a MDSD-typical DSL rapidly.
Further, we show that embedded DSLs and aspect-oriented
programming can be used in concert. We also discuss how modular
language engineering and language composition enables new reuse
capabilities among modelling languages with a slightly higher
initial development effort.

Acknowledgements. This work was partly supported by the
feasiPLe project, Federal Ministry of Education and Research
(BMBF), Germany.

Implementing and Composing
MDSD-Typical DSLs

TR-Nr.: TUD-CS-2009-0156

Tom Dinkelaker, dinkelaker@st.informatik.tu-darmstadt.de
Technische Universität Darmstadt, Germany

Christian Wende, c.wende@tu-dresden.de
Technische Universität Dresden, Germany

Henrik Lochmann, HLochmann@gmx.net
Technische Universität Dresden, Germany

mailto:HLochmann@gmx.net
mailto:c.wende@tu-dresden.de
mailto:dinkelaker@st.informatik.tu-darmstadt.de

Table of Contents
INTRODUCTION..3

A CLASSIFICATION SCHEME FOR LANGUAGE COMPOSITION APPROACHES.....................5

1.1 SYNTAX / SEMANTIC COMPOSITION...5
1.2 NON-INVASIVE / INVASIVE COMPOSITION ..7
1.3 DECENTRALIZE / CENTRALIZED COMPOSITION...7

IMPLEMENTING EMBEDDED DOMAIN-SPECIFIC LANGUAGES...8

1.4 LANGUAGE FEATURES FOR EMBEDDING ABSTRACTIONS..8
1.4.1 Java..9
1.4.2 Groovy..9
1.4.3 Ruby..10

1.5 AN ARCHITECTURE FOR EDSL IMPLEMENTATION...11
1.5.1 A Layered Architecture for Implementing EDSLs...12
1.5.2 Tailoring the DSL Syntax...13
1.5.3 From the Language Interface Layer to Implementation..15

1.6 BLACK-BOX COMPOSITION WITH POPART...17
1.7 USING ASPECT-ORIENTED PROGRAMMING FOR INVASIVE SEMANTIC COMPOSITION...18

1.7.1 Combining Aspect-oriented Programming and EDSLs...19
1.7.2 Crosscutting Composition..19

1.8 EDSLS IN MDSD..22

INTEGRATION OF MDSD-TYPICAL DSLS THROUGH ROLE-BASED LANGUAGE
COMPOSITION ..23

1.9 FOUNDATION OF ROLE-BASED LANGUAGE COMPOSITION...23
1.9.1 Constituents of our Language Composition System...24

1.10 CONSTITUENTS OF A LANGEM SPECIFICATION...28
1.11 CLASSIFICATION OF ROLE-BASED LANGUAGE COMPOSITION...30
1.12 COMPOSITION OF LANGUAGE SEMANTICS USING ONTOLOGICAL FOUNDATIONS..30
1.13 COMPOSITION OF AN EXEMPLARY LANGUAGE TO DESCRIBE GRAPHICAL WIZARD DIALOGUES...........................33

1.13.1 Requirements for the Wizard Dialogue Language...33
1.13.2 Realisation of the Wizard Dialogue Language..34
1.13.3 Application of the Composed Language to Specify Wizard Dialogues.....................................38

COMPARISON OF THE DIFFERENT APPROACHES..40

CONCLUSION...43

REFERENCES..44

2

1. Introduction
The specification of software systems benefits from appropriate abstractions for specific
system concerns. As usually software consists of multiple concerns, hence, a set of
domain-specific languages (DSLs) is used in combination. The traditional approach of
language development requires the developer to provide parsers, compilers, and
development tools for every DSL, which is a cost-intensive task. When using multiple
DSLs in model-driven software development (MDSD), and at the same time, and these
DSLs even evolve, the effort to implement a DSL is increased massively. Hence, means
to reduce development costs for DSLs are necessary.

One possibility is to make use of existing general-purpose languages for DSL
development with the creation of so-called embedded domain-specific languages
(EDSLs). This bottom-up approach allows rapidly providing new DSLs by shaping the
syntax and semantics of an existing general-purpose host language to represent the
concepts of the DSL as close as possible. Thus, EDSLs can partially reuse the parsers,
compilers and development tools of their host languages. Implementing EDSLs is a well-
known technique in many languages, like Ruby [Ruby], Groovy [Groovy], Scala [Scala],
Haskell [Haskell], and ML [MTM+97]. For example, the popular Ruby on Rails Web
framework [Rails] strongly utilizes the EDSL approach for a family of DSLs. Domain-
specific literals and operators are introduced using language constructs provided by the
host language and must be interpreted by a library that implements the domain logic. It
follows that the domain-specific code needs to conform to the host language syntax. The
embedding of DSL constructs into host language programs simultaneously addresses the
need for semantic connection of expressions in different multiple DSLs.

Another possibility to improve the development of DSLs and their combination in
particular scenarios is to extend traditional language development techniques with means
for syntactic and semantic language composition. This top-down approach allows to
implement single DSLs or even DSL parts in modular units and to integrate developed
languages to form a platform for system specification. This approach tends to a higher
initial effort for DSL implementation, but provides more flexibility regarding language
syntax and feature reuse.

In this document we describe two exemplary representatives of both approaches and
compare their advantages and disadvantages. Section 1.1 introduces a general
classification scheme for DSL realisation and integration approaches. It distinguishes
between invasive and non-invasive language composition techniques regarding syntax
and semantics. Using this classification scheme we describe existing language
composition approaches and discuss their appropriateness in different application
scenarios. Section 1.3 introduces a flexible approach for embedding DSLs in dynamic
object-oriented host languages (Groovy and Ruby) and discusses which language features
are crucial for the host language to be applicable. A compositional approach for building
DSLs independent of particular host languages is described in Section 1.8. In addition we
present a language composition example involving several integrated DSLs. Section
1.13.3 compares the presented approaches for DSL engineering and our findings are
concluded in Section 1.13.3.

3

2. A Classification Scheme for Language
Composition Approaches

Composing languages is a difficult challenge that involves two major tasks [KL07]. One
the one hand, the most difficult task is to derive a composition specification for merging
the different language specifications to form a combined syntax and semantics. On the
other hand, an implementation for the combined language must be provided, whereby a
framework could ease this task through allowing minimum performance overhead,
maximum code reuse, auto-configuration, and manual override.

We developed different approaches for the composition implementation of multiple
DSLs, which composes their syntax and may also compose their semantics. We identified
different composition approaches in related work that support for different flavours of
composition, which we differentiate according to the influence the composed parts pose
on each other. While non-invasive composition does not affect the implementation of the
languages, invasive composition may change the language’s interfaces and their
implementation. We additionally distinguish between centralized and decentralized
approaches for the specification of language composition. To round up the categorization
of the language composition approaches, we provide a classification scheme that
comprises the three above described dimensions, depicted in Figure 1.

Figure 1 – Classification Scheme for Language Composition Approaches

1.1 Syntax / Semantic Composition
Concerning the syntax of two languages, their corresponding expressions (such as
keywords, block statements, or other phrases) may remain untouched or not after
composition. We call composition without adapting the syntax of the composed
languages non-invasive syntax composition, while adapting the syntax of at least one of
the languages is called invasive-syntax composition. Embedded DSLs are by definition
syntax composition, whereby the DSL syntax does not introduce new concepts into its
host language. Because an embedded DSL does not violate the syntax of the host

4

language, the host language’s parser and compiler can be reused.

Good examples for non-invasive composition are Java annotations [Sun04] that allow
adding domain-specific syntax to Java code. For instance, Hibernate [Hiber] uses
annotations for specifying persistency requirements. Annotations are a generic extension
mechanism of the language allows for DSL extensions to be added to the Java syntax
inside annotation blocks, which does not affect the core Java syntax. Other examples are
XML-based DSLs that are specified through a XML Schema Definition (XSD). Since
each DSL conforms to the XML core syntax and multiple XML documents may use
different XSD, an XML document may use primitives from multiple DSL definitions by
using a name space prefix in front of the tag name. Note that used XSD Schemas must
have been imported before. In effect, name space allow several DSLs to be composed
without affecting DSL syntax of each other (or respectively the core XML syntax) since
the XSD files are only imported.

In addition, the characteristics of such a composition could vary in the extent the syntaxes
of the languages are mixed with each other. The least syntactical mixed form of
composition would only allow different DSL syntax to be used in different type of
modules. E.g., in the Struts Web framework [Struts], while for many purposes Java is
used, it leverages DSL in several ways: views are created in JSP files which support
domain-specific tag libraries, the page flows are specified in XML configuration files,
and . There are examples in which the syntax is composed such that the programmer may
use either the one syntax or the other to specify a part of a module. E.g., in Pascal
[Pascal], one can open an assembler block to use assembler code instead of high-level
code. In the strongest form of mixing the syntaxes, the syntaxes could be completely
merged into one, such that keywords of different composed languages can be used in any
module, scope, or context.

From the perspective of language semantics, on the one hand, non-invasive language
semantic composition composes two embedded languages that do not interfere with each
other. E.g., we can embed SQL into Java without changing the fundamental Java syntax
and semantics. We call languages that do not interfere in their specification and
implementation independent. Two independent languages can be integrated at a well-
defined interface, i.e., by using a shared type, e.g., we can integrate Java and SQL using a
cursor type that iterates over rows in a SQL result table. The composition of two
independent languages can be using pre-processors and the composition specification is
expected to be rather small. On the other hand, invasive language semantic composition is
a difficult problem that must cope with syntactical and semantic interactions in language
composition specification and composition implementation. E.g., the Java Security
Framework [Oak01] of the Java VM composes Java code and a security policy. The
policy is written in a DSL for describing permissions for un-trusted code that originates
from various sources in particular Applets from the Internet. In case, general-purpose
Java programs are execute under different semantics that enforces the defined policies. If
a security policy is violated, the semantics of Java code is changed such that an exception
is thrown.

5

Figure 2 shows the different dimensions/flavours of composition together with well-
known examples:

Composition Non-invasive Invasive

Syntax Java/JPA Annotations Embedded SQL

Semantics Embedded SQL DSL for Java Security Policy

Figure 2 – Dimensions/flavours of composition and their representatives.

1.2 Non-Invasive / Invasive Composition
In case of non-invasive semantics composition the syntax of multiple languages is
composed, while the semantics of each of the language stays unchanged. Concerning the
composition specification, non-invasive semantics composition integrates multiple
syntaxes without changing the semantics of the composed languages. E.g., embedded
SQL is a good example of non-invasive composition in programming languages that
makes the SQL syntax directly available in languages such a C or Java. Still, the base
syntax of the language is not changed, i.e., the syntax and semantics of classes is not
changed. The composed languages must be bridged so that one can transfer a value from
one language’s scope to another language’s scope. E.g., use a Java value in an SQL query
and iterate over the query result in Java. Such integration can be achieved by using
variables and types shared between two or more domains. If no such shared type exists,
the specifications of the languages can be appended with a new shared type.

DSL embeddings and compositions elaborated so far are black-box. EDSL semantics is
defined on top of the semantic of the hosting language without changing the latter as well
as the embeddings do not interfere with each other. However, such black-box
embedding/composition is not always appropriate. E.g., we have identified situations in
which DSL from different domains are composed in their execution. But such
compositing of several DSLs that are embedded as libraries is complicated, because the
specification and the implementations of the libraries become dependent on each other. In
the first way, the composition specification is a hard problem, as the language designer
must determine all point where the languages could interfere. For each interference, an
appropriate way for resolution of potential conflicts must be provided. A complete
discussion the specification problem is out of the scope. We refer to [CE00], which
discusses this problem of aspectual composition of languages. Nonetheless, we elaborate
a special case of invasive composition, namely crosscutting composition.

1.3 Decentralize / Centralized Composition
In our scheme, we additionally distinguish between centralized and decentralized
approaches for the specification of language composition. Here, centralized characterizes
approaches that implement language composition with a dedicated pivotal asset, such as a
common interface or mapping paradigm. With decentralized, we indicate approaches that
implement the composition of two or more languages case by case in a peer-to-peer
manner, where each language pair is composed in isolation.

6

3. Implementing Embedded Domain-specific
Languages

With the increasing complexity of applications, the use of domain-specific languages
(DSLs) is becoming very important. Using domain-specific abstractions increases the
abstraction level and decreases the representational gap between the way domain experts
think and the way domains are modelled in programs, facilitating understanding and
maintenance. However, these advantages of DSLs have their price. Traditionally, pre-
processors are used for introducing domain-specific abstractions into general-purpose
languages (GPLs). While it enables to implement domain-specific syntactic and semantic
analyzes, this approach is labour intensive. A sophisticated language processing
infrastructure has to be built on top of the infrastructure available for the hosting GPL.
Furthermore, it is a well-known problem that DSLs implemented by means of this
approach are hard to compose.

To address these problems, Hudak [Hud96] introduced the notion of a domain-specific
embedded language. We will refer to such a language as an embedded domain-specific
language (EDSL), while others refer to such a language an internal domain-specific
language. Roughly speaking, these are DSLs that are implemented as libraries in a
hosting language. Following this approach allows reusing the general-purpose features of
the host language. The reuse of features implemented in the host language significantly
reduces the development costs of language features of the embedded DSL [Fow05].
Further no parser and compiler has to be implemented, and tools for the host language can
be used.

In this section, we investigate how a textual DSL that is often found in MDSD can be
implemented as an embedded DSL in another programming language.

1.4 Language Features for Embedding Abstractions
Embedding textual domain-specific language has been used in many programming
languages, such as the aforementioned Ruby, Groovy, Scala, Haskell, and ML. A
question that remains to be answered is: what language features qualifies a language to be
good for embedding. And, what is the best approach to embed a language. Giving a
complete answer to these questions is out-of-scope of this document. Moreover, the
questions may also be asked for non-textual languages, such as UML 2.0 that allows
domain-specific syntax to be embedded using UML Profiles, that can be seen a light-
weight extension mechanism or facility that supports embeddings. Further, one can ask
with what features today languages should be extended with for better supporting
embedding DSLs. A common denominator for all approaches for embedding DSLs is that
they need some kind of extension mechanism in the host language that opens the host
language for adding domain-specific abstractions.

7

In the Figure 3, an overview of languages, their support for embedding DSLs is given,
and which extension mechanism can be used for embedding domain-specific abstractions.

Language Techniques Extension Mechanisms

Haskell Monads [Hud96] Algebraic types, functions

Java Domain-specific libraries
[Fowler05][FP06]

Class loading

Groovy Design patterns, pretended
method calls [Groovy]

Dynamic features / flexible syntax,
closures, meta-object protocols

Ruby Design patterns, pretended
method calls [Ruby]

Dynamic features / flexible syntax,
closures, meta-object protocols

Scala Embedding into the type system
[OSV07], Polymorphic embedding
[HORM08]

Traits (mixin composition),
imports

UML 2.0 Meta modelling UML profiles, meta-object facility

XML Extensible language platform Namespaces

Figure 3 – Languages and feature for embedding

In this document, we discuss a selection of languages and approaches for embedding
DSLs. In particular, we study dynamic object-oriented programming languages and how
embedded DSL can be used in MDSD. We focus on Groovy and Ruby because of the
openness in these languages.

1.4.1 Java
Although Java has no special language feature for embedding DSL, it has been used to
embed languages in form of domain-specific libraries. This approach called a fluent
interface is discussed by Fowler [Fow05b] and by Freeman and Pryce [FP06]. The
knowledge and semantics of a problem domain are embedded, whereby domain objects
are mapped to a set of classes and operations on them are mapped to methods. A major
problem with embedding DSLs in Java is that there is a large syntax noise that requires
DSL programs to use more or different characters in the EDSL syntax. Using additional
or different characters is necessary in certain cases to make the concrete DSL syntax of
the EDSL conforms to the host language syntax. This syntax noise can be measured
relative to the ideal syntax of a standalone DSL implementation with its own syntax that
can be designed without restriction only to serve the user’s need. Possible metrics are the
Levenshtein distance [Lev65].

1.4.2 Groovy
Groovy [Groovy] is a pure object-oriented scripting language that nicely integrates with
Java [GJSB00]. The syntax is close to Java and one can call Groovy code from Java and
vice versa without converting passed objects. Groovy provides special features that
facilitate the embedding of DSLs: a flexible syntax, a meta-object protocol, and closures
as first-class entities. Worth to mention, we later use Groovy to present one possible
implementation of our EDSL architecture. This paragraph briefly introduces those
features relevant for understanding the embedded DSL implementation. For a more
comprehensive introduction to Groovy we refer to [Koe07].

Groovy's flexible syntax offers syntactic sugar for collection types and for passing
parameters to methods. This flexibility results in EDSL syntax with a small syntax noise,

8

i.e., the amount of code one has to write in addition or which is written different to an
idealized DSL syntax. Groovy provides a meta-object protocol (MOP), which enables
pretended method calls (and pretended properties), that are methods (or respectively
properties) that are not defined in the object’s class and for those a method or respectively
a field access can be forwarded to other methods or objects. When one invokes a method
on such an object, respectively access a field, not defined in the object's class. Such
"pretended" methods, respectively fields, are handled by the meta-object associated with
the receiver, if any, called delegate. In particular, we later use the MOP to allow the
dispatch of keywords in DSL programs that are treated as pretended method calls.

A Groovy closure is a first-class entity that can be referenced and that can be used to
defer the evaluation of a piece of code. Closures are defined using curly brackets. E.g.,
Closure cl = {x -> x*x}, defines a closure that takes the parameter x and
returns its square value, thus cl.call(5) will return 25. A Groovy closure does not
encapsulate a fixed evaluation context. A closure also may be assigned a delegate to
whom any unbound symbols are dispatched. In particular, we later use closures to realize
nested code structures and inject domain object as symbols in the evaluation context.

1.4.3 Ruby
Ruby [Ruby] is a dynamic object-oriented scripting language for which several
implementations on different platforms are available. In comparison to Groovy, Ruby
provides similar features that can be used to embed DSLs. In particular, Groovy was
inspired by the Ruby language and its features. It is targeted to provide those features for
Java. Note that we have used these features to repeat our EDSL implementation approach
for Ruby, as we have used the corresponding features for Groovy. In contrast to Groovy,
the Ruby language does provide more dynamicity with respect to its module system, e.g.,
Ruby support dynamic mixins.

There are minor differences with respect to the features that we use to embed DSLs. The
syntax of Ruby has shown to be more flexible to design the concrete syntax of an EDSL
closer to the abstract syntax [Fow2003]. Ruby supports closures in form of so-called
blocks1. The Ruby MOP allows pretended methods as Groovy and moreover provides
several abstractions on MOP operations.

From the perspective of model-driven software engineering, an advantage of Ruby is that
the language implementation is not bound to a particular language platform, as there are
Ruby implementations that are standalone, compiled, based on the Java and C# stack
available. Thus, Ruby has a better prospect with respect to platform variability.

Despite we have implemented the architecture for EDSL implementation both in Groovy
and in Ruby, for the sake of brevity, we present only the Groovy implementation.

1 In contrast to Groovy closures, Ruby blocks do not support delegates that are necessary
for the approach followed by the rest of the paper. However, we can use a different
context for a block (with DSL code that uses DSL keywords) by evaluating the block in
foreign context. This can be done by calling instance_eval method on a delegate
object (that implements methods for DSL keywords). Whereby, passing the block as a
parameter to the instance_eval method. This will dispatch calls inside the block to
the evaluation context from which the block is called, thus to the instance in which the
block call is evaluated – the delegate object.

9

1.5 An Architecture for EDSL Implementation
We have developed a new architecture and framework for implementing embedded
DSLs, called POPART that is implemented in Groovy. We propose to use a host language
for embedding DSLs that supports a set of language features including closures, a meta-
object protocol (MOP), and object-oriented programming. We present an approach to
implementing EDSLs that combines the power of these features to achieve modular,
flexible, and composable embeddings of DSLs. On top of this, the OO mechanisms of
interfaces and sub-classing enable pluggable interpreters and allow for defining new
interpreters by reusing the infrastructure built for existing EDSLs, or other libraries.
Object composition enables flexible black-box composition of EDSLs. Based on these
features, the ongoing research investigates embedding aspect-oriented language
constructs, which can be used to support what we call crosscutting composition of DSLs;
as opposed to black-box composition, the interpretation of EDSLs to be composed is
changed by the composition.

Figure 4 – Classification of the applicability of the POPART architecture

The POPART architecture we propose can be classified with respect to the classification
schema introduced in Section 1.1. POPART supports a decentralized implementation of
EDSLs and allows non-invasive syntax composition. Multiple domain-specific extensions
that are implemented in POPART and on top of the same host language have the same
concrete syntax of the host language. Because of this property, one can mix DSL
keywords without writing a new parser. Further, POPART allows non-invasive semantic
compositions of DSLs as modular and hierarchical DSL implementations and also
provides support for polymorphic embedding [HORM2008]. Moreover, invasive semantic
composition is supported by providing either using a generic semantic composition
operator provided by POPART or by implementing a custom semantic composition
comparator. In particular, invasive semantics composition is used for crosscutting
composition of different DSLs, where the execution of one DSL program influences the
execution (semantics) of another DSL program.

10

1.5.1 A Layered Architecture for Implementing EDSLs
We propose a four-layered architecture for embedding DSLs in Groovy (cf. right-hand
side of Figure 5). At the first layer (P), there are DSL programs which use DSL elements,
i.e., domain-specific primitives and domain-specific means of composition/abstraction
[ASS96]. At the second layer (L), there are DSL interfaces, which declare operations for
each DSL element. These operations are implemented by DSL interpreters in the third
layer (I). DSL interpreters make use of classes from domain meta-models, each modelling
domain abstractions, eventually by reusing existing types from the host language or from
a library. Domain meta-models constitute the fourth layer (M) of our architecture. In the
implementation of the architecture in Groovy, EDSL programs are enclosed in Groovy
closures and the Groovy MOP automatically maps between DSL elements used in a
program and the corresponding operations in a DSL interface. Together, the (L)-, (I)-, and
(M)-layer form a run-time, that can be used to evaluate DSL programs, which we refer to
in the following as a LIM run-time.

Layered Architecture

DSL Meta Model

DSLProgram

DSLInterface

DSLInterpreter

eval()

P

L

M

<keyword>

I

Recipe for Embedding a DSL

1) Create a meta model (M) for the domain

2) Create a language interface(L) that extends DSL
a) for each domain literal keywordadd a getter method

that return a meta model type representing the literal
b) for each domain operation keywordadd a method

that takes the operands as its parameters and
returns the operation result

c) for each nested element keywordadd a method that
takes a closure for the nested code

3) Create an interpreter class(I)
a) implements the interface (L)
b) instantiates types from meta model (M)

DSL Program Layer

Language Interface Layer

Interpreter Layer

Domain Meta Model Layer

Figure 5 - Architecture and a Recipe for Embedding DSLs

A recipe of steps to follow for instantiating the proposed architecture is given on the left-
hand side of Figure 5. The right-hand side of Figure 5 shows an overview of the
instantiation of the DSL architecture for an embedding DSL.

11

1.5.2 Tailoring the DSL Syntax

machine Watch {
start state reseted {

entry: resetTimer;
transitions {

when start enter running;
when switchOff enter off;

}
}

state running {
entry: startTimer;
do: loopRunning;
transitions {

when split enter paused;
when stop enter stopped;

}
}

state paused {
entry: pauseTimer;
transitions {

when unsplit enter running;
when stop enter stopped;

}
}

state stopped {
entry: stopTimer;
transitions {

when reset enter stopped;
when switchOff enter off;

}
}

state off {
exit: switchOff;
transitions {

when toEnd end;
}

}
}

(b) DSL code in Groovy Syntax(a) original DSL code

IFsmDSL dsl = new FsmDSL();
dsl.eval(name:"watch") {

state(name:"reseted",type:"start") {
entry "resetTimer";
transitions {

when (event:"start",enter:"running");
when (event:"switchOff",enter:"off");

}
}

state(name:"running") {
entry "startTimer";
perform "loopRunning";
transitions {

when(event:"split",enter:"paused");
when(event:"stop",enter:"stopped");

}
}

state(name:"paused") {
entry "pauseTimer";
transitions {

when(event:"unsplit",enter:"running");
when(event:"stop",enter:"stopped");

}
}

state(name:"stopped") {
entry "stopTimer";
transitions {

when(event:"reset",enter:"stopped");
when(event:"switchOff",enter:"off");

}
}

state(name:"off") {
exit "switchOff";
transitions {

when(enter:end);
}

}
}

Figure 6 - An Example FsmDSL Program modelling a Watch Clock

Figure 6 (a) shows an example program that defines a state machine to model a watch
clock. The watch clock consists of five states (i.e., reseted, running, paused, stopped, and
off). Each state may have a set of action delegates defined that have delegate type: a)
entry, delegate type executes the action when entering the state, b) do, delegate type
executes the action while remaining in the state, and c) exit, delegate type executes the
action when leaving the state. Moreover, each state defines a set of legal transitions to
other states. Each transition is defined that when an event (following the keyword when)
occurs that the state machine should enter the next state (following the keyword enter).

Recall that an important requirement for implementing a DSL as an embedded DSL is
that the DSL syntax must comply with the host language’s syntax. Before one can
implement a DSL as an embedded DSL in Groovy, the DSL syntax must be changed to
comply with Groovy syntax. This restriction is an inherited drawback from the
implementation approach of embedded DSL [Fow05]. The effect may vary from host
language to host language and may even disqualify the embedded DSL approach in cases
where it is not feasible to adapt the DSL syntax to the host languages syntax. The

12

embedded DSL approach assumes that the end user can posture with a more or less
slightly changed DSL syntax that is close to the original DSL syntax, while savouring the
advantages of the implementation efficiency of embedded DSLs.

As the DSL syntax in Figure 6 (a) is not compliant with Groovy syntax, the DSL code
must be transformed to the code shown in Figure 6 (b). Note that the code snippets
highlighted with a gray box show points at which the DSL syntax had to be heavily
changed in order to comply with the Groovy host language syntax.

In general, one must construct legal host language code. Therefore, expressions in the
original DSL syntax were transformed, so that they will be parsed as legal Groovy
method calls, which is a necessary demand of our implementation architecture. In cases in
which expressions consists of multiple tokens, these must start with a keyword that
identifies the expression type followed by a list of named parameters, which are treated as
parameters to that keyword.

In the example, the above transformation rule for deriving legal method calls had to be
applied for the keywords: state and when...enter. Note that while we use brackets for the
keywords state and when, the brackets in case of entry, do, and exit can be omitted.
Further, the colon (:) has a special meaning in Groovy, therefore it cannot follow the
keywords: entry, do, and exit.
In the state machine example, the DSL syntax violated the Groovy syntax in the
following cases:

1. The top-level keyword machine of the original DSL is not available by default. To
enter the syntactical environment to use DSL keywords a designated DSL
interpreter instance must be created with new FsmDSL(). Next, one can
evaluate DSL code passed to the eval method. (The instantiation of the
interpreter poses additional syntax noise on the Groovy DSL syntax, which is
presented this way for the sake of understanding. Later, we show how one can
remove this syntax noise by using a so-called bootstrap keyword.)

2. The first state in the DSL program is defined as a start state. This violates Groovy
syntax because the expression “start state reseted” cannot be resolved by the
Groovy parser, which expects a well-formed method call with parameters at this
place. Therefore, the position of the start keyword was moved to be an optional
parameter (type) in the parameter list of the state keyword in the Groovy DSL.

3. In state “running”, the original DSL keyword do conflicts with Groovy syntax,
because the keyword do is already defined in Groovy. Therefore, the keyword has
been renamed to perform.

4. In the last state “off”, the keyword combination when...end has been transformed
such that there is no event to take that transition and the state to enter is the end
state that is referred to by using the keyword end passed as a keyword parameter
to the when keyword.

13

1.5.3 From the Language Interface Layer to Implementation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

M
O

P

Closure with DSL code
entry(String s)
perform(String s)
exit(String s)
transitions(Closure cl)
when(String e,String a)
state(params HashMap,

Closure cl)

registry : Registry

FsmInterpreter

Domain Meta
Model Layer

entry(String s)
perform(String s)
exit(String s)
transitions(Closure cl)
when(String e,String a)
state(params HashMap,

Closure cl)

<<Interface>>
IFsmDSL

Interpreter
Layer

Language
Interface Layer

b

eval(HashMap params,
Closure cl) : Object

<<Interface>>
DSL

UMLGeneratora

DSL Program
Layer

delegate

Interpreter
Meta Model

State-
Machine

Transi-
tion

State

Action-
Delegate

UML State Chart

UMLState-
Chart

UMLTransi-
tion

State

UML-
Code

...

Ia

IIa

Ib

IIb

P ML I

IFsmDSL dsl = FsmDSL.new();
dsl.eval(name:"watch") {
state(name:"reseted",type:"start") {
entry "resetTimer ";
transitions {
when (event:"start",enter:"running");
when (event:"switchOff",enter:"off");

}
}
...

c

d

Figure 7 – The EDSL Architecture Instantiation for FsmDSL

In Figure 7, the instantiation of the EDSL architecture presented in Figure 5 is shown. To
define states, a domain-specific composition element is introduced denoted by the
keyword state. Each state in StateMachineDSL has a name and a closure (the code
block in the curly brackets following the name declaration). The code inside a closure for
defining a state (cl) may contain DSL abstractions, e.g., entry or state, as well as
arbitrary Groovy code, e.g., Groovy's control structure each{} can be used in order to
generate a number of states in the state machine using closures as templates.

At index (L) of Figure 7, the language interface of FsmDSL is declared in the IFsmDSL
interface. The latter declares an operation for each DSL element: state, when.
Mapping between the DSL elements used in the program at index (P) — a Groovy
closure — and the operations in IFsmDSL is taken over by Groovy's MOP by assigning
an object that implements IFsmDSL to the delegate field of the closure enclosing the
DSL program.

Several implementations of IFsmDSL are possibly corresponding to different
interpretations of FsmDSL. Two such interpretations are shown in Figure 7 ((Ia) and
(IIa)). FsmInterpreter provides a custom interpretation of definitions of a state
machine using the custom meta-model at index Ib, while UMLGenerator uses the
meta-model of abstract syntax tree of UML (index (IIb)) to generate UML state charts
from FsmDSL state machine definitions. The implementation of FsmInterpreter is
elaborated in Figure 8. The method eval (cf. Figure 8, lines 6—11) (inherited from the
marker interface DSL, which is extended by IFsmDSL) lays down what it means to
evaluate a state machine definition. It creates an instance of the meta-class
StateMachine for which subsequently defined states will be defined. Next, the
executing DSL interpreter instance (this) is assigned to the delegate field of the
machineDefinition closure (line 9). As a result, domain-specific elements with no
meaning in the host language (e.g., state, or entry) encountered during the execution of
the machineDefinition closure (line 10) are dispatched to the executing interpreter
instance by the MOP (this mapping is schematically shown by the curved lines labelled a,
b, c, and d in Figure 7).

To interpret DSL elements, following the recipe (in Figure 5), any DSL interpreter
defines a) a property for each domain literal (e.g., end in lines 14—15 in Figure 8 in

14

FsmInterpreter), b) a method for each domain operation (e.g., entry, perform,
exit, and when in lines 18—33 in FsmInterpreter), and c) a special method for
each domain-specific abstraction/composition element (e.g., state in lines 36—43 and
transitions in line 45 in FsmInterpreter).

class FsmInterpreter implementss IFsmDSL {
…
private StateMachine currentMachine;
private State currentState;
…
public eval(HashMap params, Closure machineDefinition) {
…
currentMachine = new StateMachine(params.name,…);
machineDefinition.delegate = this;
machineDefinition.call();

}

//domain literals
private State endState = new State("end",…);
public State getEnd() { return endState; }

//domain operation
public void entry(String name) {…}

public void exit(String name) {…}

public void perform(String name) {…}

public void when(HashMap params) {
State from = currentState;
State to = currentMachine.getState(params.enter);
if (to == null) {

to = new State(params.enter);
currentMachine.addState(to);

}
Transition t = new Transition(from,to,params.event);
from.addTransition(t);

}

//nested element
public void state(HashMap params,Closure stateDefinition) {

…
currentState = new State(params.name,…);
currentMachine.addState(currentState);
…
stateDefinition.delegate = this;
stateDefinition.call();

}

public void transitions(Closure transitionDefinitions) {...}
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Figure 8 – The Interpreter for FsmDSL

15

1.6 Black-box Composition with POPART
For black-box composition, the syntax of multiple languages (EDSLs) is composed, while
the semantics of each of the language stays unchanged. This allows using keywords from
several DSLs in a program that is evaluated using a composed interpreter that reuses the
modular EDSL implementations. We have classified black-box composition as a form of
non-invasive semantics composition, whereby in contrast to invasive semantics
composition (see Section 1.7), there is no interference between the semantics of
composed languages.

Concerning the composition specification problem, black-box composition solves the
technical integration between the multiple syntaxes, whereby the semantics of each
composed language is considered as a black-box. For instance, it could be desirable to
transfer a parameter value from one language’s scope to another language’s scope. Such
integration can be achieved by using variables and types shared between two or more
domains. If no such shared type exists, the specifications of the languages can be
appended with a new shared type.

We have developed a new DSL framework for composing DSLs in the implementation
space, called POPART. POPART supports this type of integration if each of the
languages is developed as an embedded DSL. Interpreters are first-class entities that can
be passed as values. This provides a great flexibility that can particularly be used for
composing DSLs.

We can use different of these interpreters in order to evaluate code. Interpreter may
reference other interpreters. Having interpreters as first class values facilitates very
powerful, fine-grained and dynamic composition of DSLs using customizable
composition. One can mix keywords within a program. Mixed DSL programs can be
executed by calling the eval method on a interpreter instance that combines the DSLs to
be composed. The code is passed in form of a first-class value, a closure. When a DSL
keyword is encountered in the mixed DSL code, the keyword is delegated as a method
call to their corresponding DSL that is composed.

Using factory objects, one can dynamically select interpreter implementations for a
certain language interface. Calls to the interpreter’s eval method can obviously be
within conditional clauses or arbitrarily nested. POPART also provides support for
declarative composition of interpreters with so called interpreter combiners - instances of
the special interpreter class InterpreterCombiner or its subclasses. Figure 9 gives
an overview of the composition infrastructure of POPART.

Figure 9 – Interpreter combiners for modular DSL Implementations.

Like any other POPART interpreter, an interpreter combiner implements the DSL
interface, i.e., the method eval declared therein that takes a Closure as a parameter,
containing DSL code that uses language elements from several DSLs. Unlike simple
interpreters, interpreter combiners do not directly define any domain-specific semantics.

16

methodMissing(name,args):Object
propertyMissing(name):Object
propertyMissing(name,value):void
...

InterpreterCombiner

<<Interface>>
DSL 1..* <<composes>>

Fold-
Combiner

CCCombiner

FsmInterpreter
Concrete DSL

Implementations

AdviceDSL

PointcutDSL

Instead, they hold references to other interpreters to which DSL elements are forwarded
and implement two special methods of the Groovy MOP: methodMissing and
propertyMissing. By convention, whenever a method is called on an object that is
not defined in its class (a pretended method call), Groovy's MOP executes the method
methodMissing of that class, passing the name of the method and the arguments of
the pretended call as parameters. In a similar way, propertyMissing is invoked when
accessing a (pretended) property. The methods methodMissing and
propertyMissing implemented in InterpreterCombiner lay down DSL
composition semantics. Programs that mix elements from several DSLs are defined in
closures whose delegate object is an InterpreterCombiner. When a domain
operation or a domain-specific nesting element is encountered, the
InterpreterCombiner delegate receives a pretended method call and
methodMissing is invoked by the MOP with the respective domain-specific keyword
as the method name. In a similar way, the MOP dispatches literal keywords by invoking
propertyMissing on the InterpreterCombiner delegate. Given their
parameters and the inner interpreters referenced by their receiver, methodMissing and
propertyMissing implement look-up semantics for the domain-specific abstractions.
Several such semantics are conceivable and can be realized by a hierarchy of interpreter
combiners in POPART. For instance, in case of the InterpreterCombiner, which
holds a list of DSLs, methodMissing forwards a pretended method call to the first
interpreter in the list that implements a keyword method with the same signature as the
method of the pretended call. Another composition semantic is to forward to all
interpreters that have an implementation of the pretended call. Special cases of the latter
semantics are combiners that compose different interpreters of the same language. Other
types of interpreter combiners are shown in Figure 9. The FoldCombiner implements
more generic composition operators by taking a closure that entails the composition
semantic as a parameter and a list of DSLs in its constructor. Specifically, when a
keyword is received, it is forwarded to all interpreters in the list and the returned values
are used as parameters to the closure that calculates the result

1.7 Using Aspect-Oriented Programming for invasive
Semantic Composition

Consider the scenario when we would like to compose a DSL for describing workflows,
called ProcessDSL, with another EDSL for enforcing secure communication with
partners, called SecurityDSL.

The EDSL interface and interpreter of ProcessDSL provides keywords for describing
workflows, such as task for defining the steps of a workflow, registry to retrieve a
reference to the registry service that can be used to look up other services, and notify
to send out an email to all stake holders of a process. We have implemented ProcessDSL
as an EDSL in POPART in the class ProcessInterpreter that defines keyword
methods for registry, notify, and task.

The EDSL interface and interpreter of SecurityDSL provides the necessary primitives for
encrypting outgoing SOAP messages and decrypt incoming encrypted messages.
SecurityDSL is implemented in a class SecurityDSL and provides two operations:
encrypt(data,alg), that encrypts the first argument using the encryption algorithm
provided as the second argument, and decrypt(encData) for decrypting.

17

1 DSL process_dsl = new ProcessInterpreter();
2 DSL security_dsl = new SecurityDSL();
3 DSL combined_dsl = new InterpreterCombiner(process_dsl,security_dsl);
4 }
5 combined_dsl.eval(name:"EasyCreditProcess") {
6 def offers = [:];
7 task (name:"getOffers") {
8 def services = registry.find("Banking");
9 services.each { bank ->
10 def enc_request = encrypt(new RateRequest(),RSA);
12 def enc_response = bank.call("getRate",[enc_request]);
13 offers[bank] = decrypt(enc_response); ;
14 }
15 }
16 }
17 task (name:"selectOffer") {
18 def selectedBank = ... //get cheapest bank from offers
19 def enc_request = encrypt(new BorrowRequest(),RSA);
20 def enc_response = selectedBank.call("borrow",enc_request);
21 def response = decrypt(enc_response);
22 notify "Credit from $selectedBank.name"
23 }
24}

Figure 10 – A secured Workflow in a black-box composed DSL

Given ProcessDSL and SecurityDSL, we would like to write process definitions which
encrypt/decrypt messages sent to external services. As illustrated in Figure 10, we could
use black-box composition to compose ProcessDSL and SecurityDSL (lines 1-2) and then
use the resulting combined interpreter (in line 3) to evaluate programs that use language
elements from both domains (while ProcessDSL keywords are marked in blue,
SecurityDSL keywords are red). The program, however, suffers from tangling and
scattering - the code for security concerns is not localized (cf. lines 10-12 and 19-21). We
would rather prefer to write the security code once using SecurityDSL elements and have
a fine-grained composition mechanism that integrates the execution of security code into
well-defined points during the interpretation of ProcessDSL. We call this style of
composing DSLs crosscutting composition.

1.7.1 Combining Aspect-oriented Programming and EDSLs
To address the problem of code scattering and tangling in composed DSLs we would like
to use aspect-oriented programming for semantic invasive composition embedded DSLs.
However, all aspect-oriented programming languages that could be integrated with
languages commonly used in MDSD did not provide the language features powerful
enough to embed DSLs. There are two possibilities, either to extend an AO language with
more powerful feature necessary for embedding DSLs, or to extend a language that
provides powerful features with support for AOP. As providing features for embedding
would demand the implementation of an AO language and the accompanying tools from
scratch, we have chosen the latter option. Whereby, we follow the same approach for
implementing an AO language that we followed for implementing DSLs. Based on the
same features for embedding DSL syntax, we use these feature to embed aspect-oriented
language constructs. The resulting AO language supports what we call crosscutting
composition of DSLs; as opposed to black-box composition, the interpretation of EDSLs
to be composed is changed by the composition. We have implemented the architecture as
a framework in Groovy [Groovy], which we call POPART. Groovy has been chosen
since it supports the features mentioned above and for its flexible syntax. Yet, any other
language that supports the same set of features can be used as an implementation
language.

1.7.2 Crosscutting Composition
To realize crosscutting composition of DSLs, we make use of aspect-oriented concepts.
An overview of the approach is schematically given in Figure 11. In this approach, aspect

18

modules specify crosscutting composition semantics for programs written in different
EDSLs (EDSL1-Program and EDSL2-Program), each with its own LIM runtime. To
express composition semantics, an aspect makes use of pointcuts and advice, common
language elements of aspect-oriented languages such as AspectJ [AspectJ] and
composition operators such as before, after, around, and proceed. Roughly
speaking, pointcuts define queries for selecting points in the interpretation of the
programs of EDSL1, advice is a closure enclosing code in EDSL2, and composition
operators determine the order of execution.

EDSL Program 1

Modified
EDSL 1

LIM Runtime

eval() <keyword>

Aspect

Aspect
LIM Runtime

eval() before()

EDSL Program 2

EDSL 2
LIM Runtime

eval() <advice_keyword>

EDSL Pointcut

Pointcut EDSL
LIM Runtime

eval() <pcd_keyword>

evaluate
advice

evaluate
pointcut

matches on
a join point
of EDSL 1

fire
join points
1

2

3

Figure 11 – Crosscutting composition of DSLs

The aspect language used for EDSL composition is itself implemented as an EDSL (cf.
aspect LIM runtime in Figure 11). The aspect language interpreter, called CCCombiner,
is a subclass of InterpreterCombiner (cf. Figure 9). It has a reference to the
interpreter for one of the DSLs to be composed (EDSL2 in Figure 11) and to the
interpreter of the pointcut language for querying points in the interpretation of the other
DSL (EDSL1 in Figure 9). CCCombiner uses a meta-model for aspects and provides
keywords before, around, after, and proceed. In a nutshell, the aspect meta-model consists
of classes that model the core elements of AOP as first-class entities, such as Aspect,
JoinPoint, and Pointcut. An aspect in the PlasmaJ meta-model maintains a list
associating Pointcut objects to closures. JoinPoints represent points in the
interpretation of an EDSL exposed for composition by maintaining information about
their type and the context exposed when these points are reached. The set of points in the
interpretation of an EDSL that are identified as join points for composition is determined
by a domain-specific join point model (DS-JPM). For illustration consider defining a DS-
JPM for ProcessDSL, consisting of two kinds of join points. First, there are service
selection join points: Points at which the registry is consulted to select services of a
certain category; exposed properties include the pattern used to select services and the
resulting set of selected services. Second, there are service call join points: Points at
which a remote call to a Web service is done as part of interpreting a process level call;
exposed properties include the name of the service, the SOAP document representing the
call, whether the invocation is remote or local. A DS-JPM for an EDSL is defined by
extending the core aspect meta-model with DS join point types and by creating a
modified version of EDSL's LIM run-time that creates and fires join point objects during
the execution of programs. Technically, the modified version of the original EDSL LIM
runtime is automatically derived in POPART by using AspectJ [AspectJ] aspects.

Pointcuts are modelled in the meta-model as filter objects that select join point objects
19

based on their type and exposed context values. The filtering AOP and EDSLs queries are
written in a domain-specific pointcut language (DS-PCL) which is also an EDSL with its
own LIM run-time. The interface of a DS-PCL declares keywords for the so-called
pointcut designators. For illustration, consider embedding a DS-PCL for ProcessDSL and
the DS-JPM including service selection and service call join points. Such an embedding
would include an EDSL interface, say IProcessPointcutDSL, declaring keyword methods
service_call and service_selection. The latter would be implemented in a
class, say ProcessPointcutDSL that uses the meta-model classes for modelling
pointcuts. The pointcut expression “service_call("get.*") & if_pcd
{ external }” selects all service calls, where the operation name (one of the values
in the context of service call join points) matches the regular expression "get.*" and
where the call is remote, which is reflected by testing the Boolean variable external
(also part of the context of a service call join point). The result of evaluating this pointcut
expression would be a Pointcut object (class in aspect meta-model) that is composed
of other Pointcut objects the sub-expressions in the pointcut.

Crosscutting composition takes place at run-time. When join points of the EDSL1 are
fired at run-time to the aspect run-time (Figure 11 index 1), the latter calls match on the
pointcut objects resulting from evaluating pointcut expressions defined in aspect modules
and stored in Aspect instances, passing the fired join point that as a parameter. If a
pointcut matches, the closure associated to it is evaluated by the corresponding run-time.

1 IProcessDSL dsl = new ProcessInterpreter ();
2 dsl.eval(name:"EasyCreditProcess ") {

…
5 task (name:"getOffers") {

…
8 offers[bank] = bank.call("getRate",[…]);

}
…

}

1 DSL pc_dsl = new ProcessPointcutDSL ();
2 DSL dsl = new SecurityDSL ();
3 DSL ccc = new CCCombiner (dsl,pc_dsl);
4
5 ccc.eval(){
6 around(service_call(".*") & if_pcd{ external })
7 soapDocument = encrypt (soapDocument ,RSA);
8 proceed();
9 decrypt(soapDocument);
10 }
11 }

(a) ProcessDSL code (b) An example aspect

soapDocument = encrypt (soapDocument ,RSA);
proceed();
return decrypt (soapDocument);

Figure 12 – Crosscutting composition example

For illustration, Figure 12 (b), lines 5-11 shows an aspect that composes code to secure
outgoing and incoming soap messages into any external service call point. The aspect
specifies that the code in the gray box should wrap service calls by means of the
composition operator around/proceed (proceed can be thought of a place holder for the
wrapped call). This aspect is evaluated by an instance of CCCombiner initialized with a
ProcessPointcutDSL interpreter and a SecurityDSL interpreter (lines 1-3). The
interpretation of keywords used in the pointcut, service_call, external, and
if_pcd is dispatched by ccc to the instance of the ProcessPointcutDSL
interpreter. When the process definition in Figure 12 (a) is evaluated and the
interpretation of the bank service call at line 8 reaches the point where the corresponding
web-service proxy is called, the control is passed to the aspect (Figure 12 (b), indicated
by the arrow to the right), because the call matches the pointcut of the aspect. When
executing the security code in the aspect, security operations are interpreted by the
SecurityDSL interpreter. The context of the intercepted join point is also visible to the
security code (e.g., SOAPDocument).

20

1.8 EDSLs in MDSD
To integrate EDSLs with the model-driven approach, we have implemented a prototype
integration of the EDSL implementation and the metamodeling framework EMF. As an
alternative to develop a generator for EMF metamodel, one can use the generated Java
classes of an EMF metamodel. To realize an EDSL. In a nutshell, the Ecore metamodel
and the corresponding EMF infrastructure is used to generate Java classes from the
metamodel.

Next, the developer integrates the metamodel with the interpreter class in Groovy. The
interpreter class is implemented using the same approach presented above, but it offers
another method load which can be used to load a Reflective Ecore Model, which creates
a metamodel instance that can be interpreted.

Figure 13 – The Interpreter for FsmDSL

21

4. Integration of MDSD-typical DSLs through
Role-Based Language Composition

In the previous section we discussed techniques for the implementation and integration of
DSLs using an EDSL approach. We have seen that it allows for a rapid implementation of
new DSLs but also comes with some drawbacks. First, EDSLs are built on top of a
general-purpose programming language which needs to provide special language features
to enable proper embedding. Second, the syntax of the host language imposes restrictions
on the DSL syntax. In this section we will discuss the integration of languages at the level
of modelling languages where no general-purpose abstractions are available and concrete
syntaxes are not limited to textual representations. In a model-driven software
development process (MDSD) [Bet04][OMG03a] these languages are used during system
design, but not for the final implementation of software. They can also be understood as
DSLs, since the typically cover a specific domain of system design.

Due to the domain-specificity of modelling languages, they are often used in combination
to describe several design aspects of a software system. These need to be integrated to
realize a coherent executable system [BrLo07]. Therefore artefacts from different
domains need to be matched and composed. In existing approaches this integration is
typically realized during code generation [Fujaba][Jenerator]. Artefacts are matched by
names and generated glue-code bridges the gap between abstractions of different
domains. This has several disadvantageous implications:

- The integration happens during code-generation time. Hence, inconsistencies in
related models cannot be detected during system design.

- The relationships between different languages are defined only implicitly in the
code generators. We have no systematic understanding of the overall language
infrastructure.

- Individual languages are hard to reuse and re-combine without a systematic
consideration of language decomposition and composition.

- The integrated languages stay encapsulated syntactically and semantically.

These issues raise the need for a systematic approach to safe composition of modelling
languages. We need to provide means to describe relationships between modelling
languages at the level of language specifications. That is, we describe language
composition for specifications of languages not specifications (or expressions) in
languages.

Since modelling languages address specific aspects of a system, the concepts of their
specifications intertwine in a crosscutting way. Therefore, we introduce a role-based
approach for language composition. It employs the technique of role-modelling [Ree96]
[And97] to address the aspectual character of language specifications and allow for their
invasive superimposition. In the following we will discuss the foundations of this
approach and its prototypical implementation in the language composition framework
LanGems Modeller.

1.9 Foundation of Role-Based Language Composition
Considering the interaction of several modelling languages during the design of a
software system, their combination can be again understood a language itself. In this

22

language the individual languages are used to realize a specific functional feature. W.r.t.
the composed language, we call a modular sub-language realising a feature in the
composed language LanGem. This notion is derived from the terms morpheme and
lexeme: During the lexical analysis of a program, a lexeme describes the smallest unit in a
parser's input stream. Morphemes denote the smallest entities with a defined semantics.
Stretching this argumentation to the level of language specifications the term LanGem
refers to a self-contained component that realize a particular language feature. To
compose a language we choose from a collection of several language features and
describe the connection of the LanGems realising them.

This section introduces the foundation of our role-based language composition system –
LanGems Modeller.

1.9.1 Constituents of our Language Composition System
In this section we will present the conception and realisation of our role-based language
composition system which contributes means to define aspectual language specifications
and compose them to integrated languages.

Figure 14 - Overview of the LanGems Composition System

Generally, a composition system is a triple consisting of a component model, a
composition language, and a composition technique [Ass03]. The component model
describes how components – in our case LanGems – look like and how they can be
accessed. The composition language introduces the vocabulary used to describe concrete
composition programs that specify the combination of several components to a system –
in our case an integrated language. And finally, the composition technique defines the
technological background that actually realizes the composition.

Before we introduce the key concepts of our language composition system LanGems
according to these constituents, we will have a look at its coarse structure (cf. Figure 14).
The LanGems approach contributes a dedicated composition system for languages. The
specification of the individual LanGems is based on the LanGems Module Specification
Language that institutes the concepts of the LanGems component model. How several
LanGems are combined is specified in a composition program formulated in the
LanGems Composition Language. This program is evaluated by a composition tool that
implements our language composition technique and generates an integrated language
from several LanGems.

Component Model
Every LanGem is built upon a concrete abstraction needed to describe the realisation of
the LanGems language feature. This concrete abstraction constitutes the LanGems
component model. The ongoing research in the area of Model-Driven Software
Development (MDSD) [Bet04][OMG03a] introduced metamodels as an adequate
methodology to describe a language's abstraction. In comparison to abstract syntax trees
(ASTs) traditionally used for compiler construction the graph-like structure of abstract

23

syntax models (ASMs) allows representing references between language artefacts that are
not related in terms of the natural containment hierarchy. The relevance of such
references is indicated by examples found in nearly every language: consider the
relationship of a procedure call and the procedure declaration in a procedural language,
the references between states and transitions all contained in a state machine, or the
definition of a classifier's property and navigation on this property in an OCL expression.

Figure 15 - Metamodel of the LanGems Module Specification Language

We want to keep the LanGems decoupled. But their combined use for the specification of
software systems necessitates a tight integration of their conceptualisations. Every
LanGem contributes a partial aspect of the system design and only their superimposition
makes a coherent executable software.

Therefore, we extended the Ecore meta-modelling language (cf. Eclipse Modeling
Framework (EMF) [BBM03]) with additional concepts (cf. Figure 15) which were
inspired by the paradigm of role modelling [Ree96][And97]: The abstract
conceptualisation of a LanGem is described by means of a module (Module) that
contains a collaboration between natural types (Natural) and role types [Ste00]
(Role). The types are distinguished by the fact that the identity and properties of naturals
are found within the LanGem's application domain while roles describe generic variation
points in the LanGem's collaboration. Naturals and Roles are special kinds of a
metaclass (EClass). That means, their properties are described by attributes
(EAttribute) and their interrelations by associations (EReference).

A number of considerations caused us to construct our component model upon the EMF
Framework: The EMF type system provides advanced means to construct the abstraction
a LanGem. EMF comes with a code generator to realize a Java implementation for EMF
models. This code generation is extensible which allowed us to integrate our EMF
extensions. The data and collection types shipped with the EMF standard library build the
foundation for a uniform data exchange between several LanGems which is a
fundamental premise to build compatible language modules.

It is important to understand that role types establish a type interface that is used in the
LanGem's collaboration for the specification of its concrete syntax and semantics. The
variability of a role type lies in the way this interface is implemented, because role types
obtain their identity, and some structural and semantic properties from objects of other

24

types – their role players (cf. the next section on composition technique for details on
role players). The role's semantic requirements are specified in terms of role operations
(RoleOperation) that introduce an explicit composition interface between role types
and role players. So role operations hide both the structural and the semantic adaptation
the role player. In the other direction the role types hide the inner workings of a LanGem
from the outside but provide an explicit composition interface to ensure semantic and
structural safe compositions.

Composition Language
The composition of several LanGems and their adaptation for interoperation is
externalized to a dedicated composition program. Thus, a maximal independence of
solitary LanGems is achieved which allows their flexible combination and adaptation to
allow for new combination of individual modelling languages.

Figure 16 - Metamodel of the LanGems Composition Language

Figure 16 depicts the metamodel of the composition language used in LanGems. It is
connected with the metamodel for the LanGems Module Specification Language to
describe the combination of several LanGems using the concepts defined in their
specification. Every composition program defines a Composer which consists of a
number of Compositions each describing the integration of a generic LanGem with
variation points (its role types) and an extended LanGem that binds these variation
points. These Compositions comprise several RoleBindings which impose a
played-by relation between a natural type of the extended LanGem and a role type of the
generic LanGem. The adaptation of the role player to the semantic and structural
requirements of its role is described by means of RoleOperationBindings for every
RoleOperation defined in the Role. These bindings can be specified using OCL
expressions which declare the implementation of the role operation in the context of the
role player.

Composition Technique
Since language composition describes the connection of several LanGems, a role binding
is typically established between a role type of one LanGem and a natural type of another
LanGem. This binding between a role and the role player constitutes our central operator
for language composition. It results in the superimposition of the LanGem's
collaborations and specifies a combined language.

25

Figure 17 – Graphical notation for LanGems Specification extending the syntax of
UML class diagrams

Figure 18 - Generative role-binding pattern

As stated above, we use Java and EMF as implementation technologies for the LanGems
System. Java has no concept to represent roles and role bindings in the language. Thus,
we used the generator pattern shown in Figure 18 to implement language composition.
The left part of the Figure uses the notation introduced in Figure 17 to describe a role-
binding between the Form natural from a user interface LanGem and the Activity
role from a statechart DSL. The used pattern (shown right) implements the
superimposition of the role models for the involved LanGems in accordance to the
composition program and consists of three layers:

LanGem Type Interface Since the type interface specified in the LanGems component
model is used during the specification of LanGem's syntax and semantics, it needs to be
preserved during the composition. Therefore we generate the interfaces in correspondence
to the role types and the natural types of the component model. In the generation step,
role operations are simply mapped to normal operations. The role binding is mapped to an
implements-relationship between the interface of the role player and the role interface.

LanGem Implementation The implementation of the type interfaces is encapsulated in
the classes in a second layer of the implementation pattern. This layer implements the
functionality relevant within the collaboration of the according LanGem, for instance, the
persistence of an ASM (abstract syntax model) instance, the EMF-API for programmatic
ASM manipulation, or LanGem semantics that are implemented operationally in Java. As

26

stated above, role types have no own identity, but obtain their identity from the role
player. Hence, classes of role types are abstract and cannot be instantiated directly.

Composition Implementation The third layer encapsulates code used to actually
implement the role bindings described in the composition program. Role binding affects
the implementation of the role playing classes, which also needs to implement the role
specific part of the role interface. This is done by delegating all calls to role-specific
operations on the role player to a generated role adapter. This adapter extends the abstract
implementation of the role type and therefore derives all properties of the role
implementation. In addition, it implements the missing role operations according to the
OCL expressions given in the composition program. The role playing object can be
accessed from the adapter via the association player. Thus this layer also encapsulates
the adaptations between the role players and their roles.

1.10Constituents of a LanGem Specification
For our language composition approach we define a general structure of the constituents
for the specification of a single LanGem. Clark et al. [CSW08] define a language as a
combination of abstract syntax, concrete syntax, and semantics. Since we aim at
composing LanGems of individual modelling languages, their specifications imitate this
structure (cf. Figure 19). In the following we will describe the fundamental characteristics
of these dimensions and their interrelation.

Figure 19 - Constituents of a LanGem Specification

Abstract Syntax (AS) The concepts of the LanGems's domain abstraction, their
properties and relationships establish the foundation of every LanGem realisation. As
discussed in Section 1.9.1, the abstract syntax of a LanGem constitutes the component
model of our language composition system and the superimposition of the individual
component models is the technique used for language composition. Hence, the abstract
syntax specification is the central artefact of a LanGem specification. As depicted in
Figure 19, every individual LanGem contributes its own abstract syntax and – in relation
to this – its semantics and its concrete syntax.

Concrete Syntax (CS) The concrete syntax describes how language expressions are
presented to the user. The possible representations are manifold: Traditionally, we think
of a textual syntax, defined using a concrete syntax formalism like Extended Backus-
Naur Form (EBNF) [ALSU06]. In the area of MDSD languages, diagrammatic syntaxes
gained importance and even the tree-based model editors found in current modelling tools
(e.g. EMF [BBM03]) provide a concrete syntax for language expression.

All concrete syntax formalisms have in common, that they are explicitly or implicitly
related to the abstract syntax of a language. Parsers transform a textual syntax into an

27

ASM instantiating the language metamodel, diagram editors use specific graphical
primitives to distinguish model entities regarding their abstract types, and tree-editors
combine a graphical representation of the containment associations between model
entities with a textual and form-based representation of entity attributes and references.

We integrated EMFText [ETE09] to realize composable concrete syntax specifications.
EMFText provides an EBNF-like syntax to define parsing rules for each natural type of a
LanGem's abstract syntax separately. Thus, the granularity of the concrete syntax
specification matches the granularity of a LanGem. The parsing rules directly reference
properties and associations of the types to relate features of the abstract syntax and their
textual representation. The type information for properties and associations contained in
the abstract syntax is used by EMFText to choose appropriate parsing rules for non-
terminals in a rule's body: For attributes, regular expressions are used to parse their values
w.r.t. the attributes primitive type, containment associations [BBM03] are parsed using
the rules for the associations type or sub-types, and non-containment references are
resolved in a second parser pass. Since the composition technique used in LanGems
preserves the type interface of the composed LanGems, the concrete syntaxes defined for
individual LanGems can be combined and used for the composed language. For the
composition of the concrete syntaxes of several LanGems their rule sets are combined.
The transition between the rule sets is directed by the role-playing relationships that are
specified between the LanGems during language composition. That means the concrete
syntax of role types results from the concrete syntax of the natural types which play the
role. Hence, the concrete syntax specification of a LanGem inherits its variability from
the LanGem's abstract syntax. The composed EMFText specification is used to generate
an ANTLR-Parser [Paa07] that directly builds instances of the integrated ASM. Currently
we only support textual concrete syntaxes. However, we argue, that the technique applied
for composing textual syntaxes can be easily expanded to other syntax representations.

Semantics (Sem) A language semantics describes computations over language constructs.
We divide static semantics and execution semantics. Typically, modelling languages have
their execution semantics defined in the transformation to an implementation language.
We will have a detailed discussion on the composition of translational semantics in
Section 1.3.

Static semantics are applied for type checks in the ASM, to test the well-formedness of
language expressions or in our special case to adapt domain abstractions from different
LanGems. This needs to be done in a way the machine can interpret. Literature [Win93]
[CSW08] distinguishes several formalisms often for this purpose (e.g., operational,
denotational, translational, or extensional approaches).

Currently, the LanGems Modeller allows for two ways to work define language
semantics. First language expressions and role operation bindings can be specified by an
operational semantics defined in Java. Second, OCL expressions can be used.

28

1.11Classification of Role-Based Language
Composition

Figure 20 classifies our compositional approach for language integration in accordance to
the facets introduced in Section 1.1. Language composition invasively merges the
concrete syntaxes of the involved modelling languages in accordance to a given
composition program. Non-invasive syntax integration is not feasible; because there is no
central host language whose language constructs could be reused for language
embedding.

Figure 20 - Classification of Role-Based Language Composition

The semantic integration of the involved languages works non-invasively. It is expressed
using predefined composition interfaces between language modules. That means,
semantics of different languages interact only in anticipated ways. However, existing role
modelling approaches used in software engineering provide means for aspectual and,
thus, invasive semantic integration which will be adopted for our language composition
approach in our future work.

The integration of multiple languages works decentralized. For language composition
LanGems are connected directly by role-playing relationships. A central, universal
integration mechanism is not provided.

1.12Composition of language semantics using
ontological foundations

Language composition case by case is pragmatic and often the way of choice to get
quickly to desired results. However, to foster reuse of existing composition specifications
not only for concrete syntax integration and to ensure a maximum of reutilisation also on
final code level in model-driven development, a centralized approach to language
mediation might be an adequate alternative. This section describes the HybridMDSD
approach that provides the Unified Software Modelling Ontology (USMO) [BrLo08] – a
universal ontological conceptualisation for modelling languages – acting as central
semantic broker.

In MDSD one distinguishes between conceptual modelling and platform modelling. The
Object Management Group (OMG) [OMG03a] furthermore distinguishes platform-

29

independent and platform-dependent models to abstract from concrete technical
realisations. Platform or technical languages and instantiating system models form the
basis for successive generation or interpretation steps that lead to executable programs.
Therefore, platform languages and their models employ a limited set of semantic concepts
and roles that can be described in a conceptualization for software systems. Here,
languages and models reference themselves and comprise dependencies between each
other, as illustrated in Figure 21.

data
structures

persistency
mapping

behaviour
descriptions

user
interface

process
flows

DSM 1
DSM 2

DSM 3

DSM 4

DSM 5

References

Figure 21 – Inter-Model dependencies in MDSD

In a centralized composition approach, the meaning of dedicated constructs of a
modelling language may be mapped to concrete concepts and roles of a universal
conceptualization. This way, each language and its instances obtains a semantics that was
defined only once before and acts as a central interface for language composition.

Within the HybridMDSD project [COPL08], we followed this approach and defined the
Unified Software Modelling Ontology (USMO) [BrLo08], which serves as central
conceptualization to capture the semantics of modelling language constructs. To this end,
HybridMDSD is to be classified as centralized approach for language composition, which
is dedicated to language semantic only. An appropriate classification according to our
scheme introduced in the section above, is illustrated in Figure 22.

30

Figure 22 - Classification of the HybridMDSD approach

Our ontology contains concepts to describe structural and behavioural aspects of
modelling languages semantics. This is comparable to above stated static and execution
semantics. Besides the advantageous reuse possibilities through a central
conceptualization, the semantics contained in our ontology can be used to derive certain
composition patterns not only on modelling level but also on the level of actual program
code. For instance, the knowledge about the sequential interaction of certain behavioural
entities in different languages can be used to derive code patterns that are potentially
useful for the integration of artefacts that are generated from each language and according
models.

To give a summarizing example for language mediation/-composition based on a central
semantic interface, we consider the composition of a structural language, a behavioural
language that facilitates the modelling of dynamic semantics and a user interface
language that represents various persistent structural entities. Figure 23 gives an informal
overview about the example. The shown DSLs share concepts and relations with the
ingredients of the example that discussed in more detail within the next section.

Figure 23 – Informal overview of the centralized composition of 3 DSLs

31

The illustration shows sample models of languages for 1) user interface dialogs (view
DSL), 2) data entities (data DSL) and 3) persistence services (action DSL). They
are interconnected using our central ontology by interpreting specific modelling
constructs in terms of the semantic specification. As the figure shows, the example
comprises a model in each of the 3 languages. The view model contains a graphical
widget with a title, a text field and a save button. The data model contains a Survey
business object with a title attribute. The action model contains a saveSurvey
action which takes an argument of type Survey and persists that. The arrows in Figure
23 express the semantic connection between the different models: The widget from view
model shows the Survey business object and invokes the saveSurvey action. The
saveSurvey action furthermore modifies the Survey business object.

1.13Composition of an Exemplary Language to
Describe Graphical Wizard Dialogues

In this section we discuss the application of the LanGems Modeller for the integration of
three individual DSLs to define graphical wizard dialogues.

1.13.1 Requirements for the Wizard Dialogue Language
For the implementation of a software system often behavioural, structural, and semantic
properties need to be specified. A typical example is the description of the page flow in a
graphical wizard dialogue. The specifications of the different dimensions typically
involve very different conceptualisations. In the following we describe the design of an
exemplary language to describe graphical wizard dialogues. This language is composed
from three standard modelling languages.

Dialogue Execution Behaviour
A language for graphical wizards needs to provide means to specify the general dialogue
execution. Wizards consist of several pages collecting a users input to achieve a standard,
repetitive task. To structure this task in several logical sub-steps, wizards use pages that
are passed in certain sequence. This sequence is not defined statically, but depends on
decisions of the user of the wizard.

To describe this overall progress, we use state charts. State charts are a common
technique [SCXML][OMG03b] to represent finite automata and several implementations
[ASCXML][Sam08] can be found Pages of the wizards are represented by States that are
connected through Transitions describing the possibility to change from one State to
another. Every State can have several outgoing Transitions pointing to the States that can
be reached next.

Besides these core concepts of state charts, we identify variable concepts that have a clear
semantics within the state chart but are additionally used to leave the domain of finite
automata. They describe variable points in the LanGems’ conception where it can
possibly be connected with other LanGems during language composition: During the
execution of the wizard one of the outgoing Transitions is selected based on Triggers
send from the runtime context of system the chart is applied in. Activities are executed as
long as the chart is in a special State. Their behaviour depends on the concrete area the
state chart is applied in. Guards describe additional conditions for passing a Transition.
The concrete technique used to describe these conditions may also vary with the
application.

32

Semantic Execution Constraints
In addition we need to define semantic constraints on the runtime state of the system to
influence the dialogue behaviour. To define these constraints a declarative constraint
language (e.g. OCL [OMG03c]) could be applied. It allows to efficiently describing
conditions that need to be satisfied in the runtime context of the system to select a specific
path in the wizard's page flow.

User Interface Structure
The wizard language also need to provide domain-specific means to describe the user
interface (UI) displayed in the wizard pages. We know a manifold of declarative
specification languages (XUL [XUL] and XAML [Mac08] which have been found
beneficial [BV04] for the specification of graphical UIs. Their domain-specificity reduces
the semantic gap between interface design and realisation, they abstract from a concrete
implementation platform, and their structure respects the figuration of the actual interface.
Concepts typically found in UI-languages are: Form, Label, Text, Selection, and Button.

1.13.2 Realisation of the Wizard Dialogue Language
For the realisation of the Wizard Dialogue Language we used the LanGems approach
described in Section 1.8. First, we identified the LanGems according to the requirements
defined above. They are depicted in Figure 24 which uses the notation depicted in Figure
17.

33

Figure 24 - LanGems of the exemplary wizard dialogue language

The statechart LanGem contributes the constructs of a state machine. A Chart
consists of a number of States and Transitions connected via the associations in
and out. Transitions are associated with Triggers and Guards. Triggers
provoke state changes using Transitions they belong to, when all Guards of the
Transition hold. Triggers, Guards, and the Activitys performed in a State
represent potential variation points in our statechart LanGem and are therefore
modelled as role types with appropriate role operations.

The ocl LanGem allows the specification of OCLExpressions. For means of
simplicity we restricted the representation of an expression to a purely textual format.
This textual expression is fed into the Eclipse Model Development Tools (MDT) OCL
Interpreter [MDT08] for evaluation. A more advanced realisation of the LanGem is in
preparation and will provide means to represent OCL expressions using their ASM.

The ui LanGem introduces concepts to describe the structure of a Form dialogue. For
this demonstration it is restricted to very basic constructs like Buttons, Text and
Selection fields. However, the LanGem can easily be extended to support more
advanced user-interface elements.

34

Figure 25 - Composition Program for the exemplary wizard dialogue language

Figure 25 depicts the program composing the three LanGems. It uses the notation
introduced in Figure 17. The statechart LanGem realizes the integration of all
sublanguages. Therefore, its role types are bound to natural concepts from the other
LanGems. The ocl LanGem and the statechart LanGem are composed by using
OCLExpressions for specifying Guards in the state chart. Second, we compose the
statechart LanGem and the ui LanGem: The Activity executed in a state of the
wizard corresponds to opening the Form described with the UI-language and Buttons
pressed in the navigation area of a Form act as Triggers which provoke
Transitions.

The differing domain abstractions are adapted by the role operation bindings depicted in
the Listing in Figure 25.

Specification and Composition of LanGem Syntax and
Semantics
Every LanGem introduces a special conceptualisation tailored to the purpose it is
developed for. This eased the specification of its concrete syntax and the semantics.
Figure 26 depicts the specification for the concrete syntax of the statechart LanGem.
The rules use the EBNF-like syntax of EMFText: Rule heads refer to natural types they
parse (e.g., Chart). Rule bodies use double-quoted strings to define terminal keyword
tokens (e.g., ”chart”) and non-terminals to refer to references (e.g., elements) and
attributes (e.g., chartname) of the natural types. This connects concrete syntax
elements and abstract syntax of a LanGem.

35

Figure 26 - Specification of a concrete textual syntax for the statechart LanGem

Parsing rules for these non-terminals are derived from their types in the abstract syntax.
For instance, to parse the non-terminal elements the rules for State and
Transition are used alternatively, due to their inheritance relation with the type
Element (cf. Figure 24).

Non-terminals which refer to role-types are handled likewise, with the difference that
they are bound to the parsing rules of their role players during language composition.
This integrates the concrete syntax of the combined LanGems. For instance, due to the
role binding between Form and Activity, the non-terminal do in State is bound to
the parsing rule for Form (cf. Figure 27. To derive a composed syntax specification for
all LanGems, we combine their individual parsing rules.

36

Figure 27 - Specification of a concrete textual syntax for the form LanGem

1.13.3 Application of the Composed Language to Specify
Wizard Dialogues

Figure 28 shows the application of the composed wizard dialogue language. It specifies
an exemplary wizard to manage arbitrary items in a stock of inventory. As highlighted in
the listing, constructs from the LanGems used form an integrated language which allows
specifying different concerns of the software system using a well-suited
conceptualisation. The composed parser translates the textual representation into an
instance of the composed ASM.

Generating implementation code from this model would result in a multi-stepped wizard
dialogue as depicted on the right of Figure 28. Single dialogue pages are represented by
screenshots taken from the running application. Arrows between a form button and a page
describe a path in dialogue flow triggered when the button is pressed. The OCL
expressions annotated at these arrows specify the context conditions that must hold to
walk the path.

37

Figure 28 - Example for the Application of the composed Wizard Dialogue
Language

38

5. Comparison of the different approaches
The presented approaches of building DSL and the different levels at which domain-
specific abstractions are used have their advantages and disadvantages. There are
differences in how close an implementation of a DSL is to the domain concepts and in the
effort needed for DSL implementation. Here, we will discuss these differences.

1) Abstraction Level: The DSL engineering approaches takes place at different
abstraction levels with differing premises for language composition. In Section
1.3, we have shown that at implementation level DSL embedding can be used for
providing a specialized language infrastructure in general-purpose languages. In
Section. 1.8, we have shown an approach for building DSL at the model level.

2) Language Classification or Paradigm: The languages used for DSLs
implementation belong to different classes of languages or follow different
paradigms. Programming languages have classifications, such as functional
programming, object-oriented programming, visual programming, and so forth.
Each of these languages and their paradigms have been studied for years and
communities have revealed the advantages and disadvantages. In Section 1.3 we
presented an approach to build DSLs by embedding them in host langauges. The
selection of the right host language to base an embedded DSL implementation on
should be driven by the requirements in language features and properties of the
DSL under design. In Section 1.8 we have discussed how to build DSLs at
modelling level where often no general-purpose abstraction is available. Here
dedicated languages are used to specify language semantics and syntax.

3) Language Features: In Section 1.4, we discussed different languages that can be
used for implementing EDSLs. What language features are needed to allow
embedding of DSL is not the only important question for selection an adequate
host language. Another important question is what (other) language features the
host language provides that could be valuable in the target domain. For example,
dynamic languages could be advantageous if the set of domain types is not fix and
if we what to keep the set of domain types open. For example, strong typed
languages allow automatically checking certain properties of DSL programs
written for the EDSL. Another question is when an embedding DSL whether the
host language features are inherited to the embedded DSL or not. We know that
we cannot reuse all features in most languages and EDSL implementation
approaches. E.g., the concept of modules cannot be reused, when embedding a
DSL using our EDSL architecture in Groovy or Ruby. This is because an EDSL
program currently is implemented in a method body in which the languages do not
allow to define new modules. Thus DSL program must implement a new module
concept without reusing the existing module feature. In Section. 1.8, discussed
another way for reusing language features. We argued for modularising language
specification in accordance to functional features and provided special techniques
for composing these modules to integrated languages. This enables reuse of
language features like name analysis and type checking among a family of DSLs.

4) Syntax noise: When embedding a language into a textual host language, the
resulting EDSL syntax must be designed to conform to the host language syntax.
In Section 1.5.2, we have discussed the concrete syntax noise in the POPART
framework. Similar syntax noise exists for different host languages. The extend of

39

the syntax noise depends on how close the host language is to the DSL “ideal”
syntax – the syntax one would define if the DSL would be implemented as an
embedded DSL. Also the flexibility of the host language syntax is important, e.g.,
omissions of code fragments such as brackets can help to design the concrete DSL
syntax to appear closer to the ideal syntax. In Section 1.8, we showed how
language modules can be integrated syntactically by composing their language
parsers. The composed textual syntax has no noise.

5) Correctness and Safety: The different host languages differ in the correctness
and safety that is provided in the EDSL implementation. In Ruby, DSL programs
are implemented as scripts in which domain objects do not have a special type that
is checked before running the DSL program. This allows writing DSL programs
that are incorrect and that evaluation results in errors at run-time [Ruby]. In
contrast, EDSL can be implemented in Groovy such that types are optionally
check or unchecked [Groovy]. Scala allows embedding a DSL in the type system,
whereby correctness of DSL programs can be checked using the compiler
[HORM08]. Also, in Omega [She04] other constraints not only types can be
checked for embedded languages, this can be used to automatically guarantee
domain-specific properties. The language composition approach presented in
Section 1.8 uses a type-safe composition pattern that integrates languages at
abstract syntax level. Thus, the domain-specific type system and type checking
defined for individual languages is preserved during composition.

6) Integrating Semantics: Another important difference is how the semantics are
provided. For instance, the EDSL implementation approach presented in Section
1.3 provides the semantics directly in the EDSL implementation. For integrating
modelling languages semantically, Section 1.8 discusses a decentralized approach
superimposing partial language semantics and a centralized approach for
composing semantics using a universal conceptualisation.

7) Reuse: POPART allows modular implementation of EDSLs of which each is an
extension of the host language syntax. EDSLs can be extended with new
keywords and existing keywords can be overridden. Moreover, the EDSL
approach in JRuby, Groovy, and Scala allows reusing standard Java libraries and
their semantics built-in. Reusing libraries is particularly effective as a large set of
libraries are available. The LanGems approach presented in Section 1.8 separates
LanGem implementation and language composition and, thus, allows for reusing
modularized language features and sublanguages across a family of modelling
languages.

8) Composability: In Section 1.1, we have discussed what parts of modular
language implementations can be composed. While certain approaches allow
composing only the syntax, other allows composing semantics of the language
implementation.

9) DSL Integration: An appropriate integration is needed to allow for embedding of
EDSL code, transfer objects as parameters, and passing results back. Using
Groovy for implementing EDSLs allows integration top of the Java platform. In
contrast, several Ruby interpreters exist for different language platforms. This
allows reusing, one EDSL implementation on different language platforms. Role-
based language composition is a flexible technique to embed sublanguages into
modelling languages, to enrich them with generic language features, and to
integrate several modelling languages to a coherent system specification.

40

6. Conclusion
In this document, we have studied two orthogonal approaches of building DSLs and their
advantages and disadvantages with respect to MDSD. We showed that embedded DSLs
can be used to implement a MDSD-typical DSL rapidly. Further, we show that embedded
DSLs and aspect-oriented programming can be used in concert. We also discussed how
modular language engineering and language composition enables new reuse capabilities
among modelling langauges with a slightly higher initial development effort.

In future work we will further investigate how embedded DSLs can be integrated with
MDSD more tightly. We will elaborate how good support and integration should be
designed. We will study known problem with the DSL implementation approaches. In
particular, we strive for reducing the runtime overhead that is due to EDSL execution and
for improving the reuse of the language infrastructure.

41

References
[ASS96] Abelson H., Sussman, G., Sussman, J.: Structure and interpretation of

computer programs. MIT Press, Cambridge, Mass., 1996.

[ALSU06] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley, 2006.

[And97] Andersen, E.P.: Conceptual Modeling of Objects: A Role Modeling
Approach. Ph.D. Thesis. Oslo, Norway, University of Oslo 1997.

[ASCXML] Apache Software Foundation: Apache Commons SCXML.
http://commons.apache.org/scxml/ (2008) Last accessed July 10 2008.

[Ass03] Aßmann, U.: Invasive Software Composition. Springer-Verlag Inc., New-
York 2003.

[Bet04] Bettin, J.: Model-driven software development. MDA Journal, 2004.

[BrLo07] Bräuer M., Lochmann H.: Towards Semantic Integration of Multiple
Domain-Specific Languages Using Ontological Foundations. 4th
International Workshop on (Software) Language Engineering (ATEM'07)
at MoDELS, 2007.

[BrLo08] Bräuer, M., Lochmann, H.: An Ontology for Software Models and its
Practical Implications for Semantic Web Reasoning. Proceedings of 5th
European Semantic Web Conference, 2008.

[BV04] Bravenboer, M., Visser, E.: Concrete Syntax for Objects: Domain-
specific Language Embedding and Assimilation without Restrictions. 19th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’04), 2004.

[CE00] Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools,
and applications. ACM Press, Addison-Wesley, New York, NY, USA,
2000.

[CSW08] Clark, T., Sammut, P., Willans, J.: Applied Metamodelling a Foundation
for Language Driven Development (2nd Edition). Ceteva, Available for
download from http://www.ceteva.com/book.html, 2008.

[COPL08] Lochmann, H.: The HybridMDSD Project. Copenhagen Programming
Language Seminar, Available for download from
http://www.itu.dk/research/funtechs/coplas/2008-09-16.html, September,
2008.

[ETE09] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert and
Christian Wende.:Derivation and Refinement of Textual Syntax for
Models. Proc. of the 5th European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009).

[BBM03] Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework.
Pearson Education, 2003.

[Fow05] M. Fowler: Language Workbenches: The Killer-App for Domain Specific
Languages? http://martinfowler.com/articles/languageWorkbench.html.
2005.

42

http://martinfowler.com/articles/languageWorkbench.html
http://www.itu.dk/research/funtechs/coplas/2008-09-16.html
http://commons.apache.org/scxml/%20

[Fow05b] M. Fowler: FluentInterface.
http://www.martinfowler.com/bliki/FluentInterface.html, 2005.

[Fujaba] Fujaba Development Team: The Fujaba Toolsuite.
http://www.fujaba.de/. Last accessed July 10, 2008.

[GJSB00] Gosling, J., Joy, B., Steele, G., Bracha G.: The Java Language
Specication (Second Edition). Addison-Wesley, Boston, Mass, 2000.

[Groovy] The Groovy Home Page. http://groovy.codehaus.org/.

[Haskell] The Haskell Programming Language. http://www.haskell.org/. Last
accessed September 15, 2009.

[Hiber] Hibernate. http://www.hibernate.org/, Last accessed October 24, 2008.

[HORM08] Hofer, C., Ostermann, K., Rendel, T., Morrs, A.: Polymorphic
Embedding of DSLs. In GPCE, 2008.

[Hud96] Hudak, P.: Building domain-specific embedded languages. ACM
Computing
Surveys, 1996.

[Jenerator] Völter M., Gärtner A.: Jenerator - Generative Programming for Java.
http://www.voelter.de/data/pub/jeneratorPaper.pdf, Last accessed July 10,
2008.

[Joe1997] Joehanes R.: Combining Pascal with Assembly.
http://www.geocities.com/SiliconValley/Park/3230/pas/pasl2014.html.
Last accessed September 16, 2009.

[KL07] Kojarski, S., Lorenz, D.: Awesome: an aspect co-weaving system for
composing multiple aspect-oriented extensions. In OOPSLA, 2007.

[Koe07] König, D., Glover, A.: Groovy in Action. Manning, 2007.

[Lev65] Levenštejn, V.: Levenshtein Distance, 1965.
http://en.wikipedia.org/wiki/Levenshtein_distance

[Mac08] MacVittie, L.A.: XAML in a Nutshell. O’Reilly Media, 2006.

[MDT08] MDT Development Team: Model Development Tools (MDT) – OCL.
http://www.eclipse.org/modeling/mdt/?project=ocl, Last accessed July 10,
2008.

[MTM+97] Milner, R. and Tofte, M. and Macqueen, D. and Harper, R.: The
definition of standard ML. The MIT Press, 1997.

[Oak01] Oaks, S.: Java Security. O'Reilly Media, 2001.

[OMG03a] Object Management Group: MDA Guide Version 1.0.1, 2003.

[OMG03b] Object Management Group: Unified Modeling Language:
Superstructure Version 2.0. http://www.omg.org/cgi-bin/doc?ptc/03-08-
02.pdf, OMG document number ptc/03-08-02, 2003.

[OMG03c] Object Management Group: UML 2.0 OCL Specification.
http://www.omg.org/cgibin/doc?ptc/03-10-14, OMG document number
ptc/03-10-14, 2003.

43

http://www.omg.org/cgibin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?ptc/03-08-02.pdf
http://www.omg.org/cgi-bin/doc?ptc/03-08-02.pdf
http://www.eclipse.org/modeling/mdt/?project=ocl
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.geocities.com/SiliconValley/Park/3230/pas/pasl2014.html
http://www.voelter.de/data/pub/jeneratorPaper.pdf
http://www.hibernate.org/
http://www.haskell.org/
http://groovy.codehaus.org/
http://www.fujaba.de/
http://www.martinfowler.com/bliki/FluentInterface.html

[OSV07] Odersky, M., Spoon, L., Venners, B.: Programming In Scala. Artima
Press, Mountain View, CA, USA, 2007.

[Paa07] Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[Rails] Ruby on Rails Homepage, http://www.rubyonrails.org/, Last accessed
October 24, 2008.

[Ree96] Reenskaug, T.: Working with objects. The OOram Software Engineering
Method. Manning Prentice Hall, 1996.

[Ruby] The Ruby Language. http://www.ruby-lang.org/. Last accessed October 27,
2008.

[Sam08] Samek, M.: Practical UML Statecharts in C/C++, Second Edition: Event-
Driven Programming for Embedded Systems. Butterworth Heinemann,
2008.

[Scala] The Scala Programming Language. http://www.scala-lang.org/. Last
accessed September 15, 2009.

[SCXML] W3C: State Chart XML (SCXML): State Machine Notation for Control
Abstraction. http://www.w3.org/TR/scxml/, Last accessed July 10, 2008.

[She04] Sheard, T.: Languages of the future. SIGPLAN Not., 39(12):119-132,
2004.

[Ste00] Steimann, F.: On the Representation of Roles in Object-Oriented and
Conceptual Modelling. Data Knowledge Engineering 35(1), 2000.

[Struts] Apache: Struts Framework. http://struts.apache.org/, Last accessed October
24, 2008.

[Sun04] Sun: Java 1.5 - Annotations
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html, Last
accessed October 24, 2008.

[Win93] Winskel, G.: Formal Semantics of Programming Languages. The MIT
Press, 1993.

[XUL] Mozilla Foundation: XML User Interface Language (XUL) Project.
http://www.mozilla.org/projects/xul/, Last accessed July 10, 2008.

44

http://www.mozilla.org/projects/xul/
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://struts.apache.org/
http://www.scala-lang.org/
http://www.ruby-lang.org/
file:///C:/Dokumente und Einstellungen/Lokale Einstellungen/Temporary Internet Files/Content.Outlook/WF10TMCM/, http:/-www.rubyonrails.org-

	1.1 Syntax / Semantic Composition
	1.2 Non-Invasive / Invasive Composition
	1.3 Decentralize / Centralized Composition
	1.4 Language Features for Embedding Abstractions
	1.4.1 Java
	1.4.2 Groovy
	1.4.3 Ruby

	1.5 An Architecture for EDSL Implementation
	1.5.1 A Layered Architecture for Implementing EDSLs
	1.5.2 Tailoring the DSL Syntax
	1.5.3 From the Language Interface Layer to Implementation

	1.6 Black-box Composition with POPART
	1.7 Using Aspect-Oriented Programming for invasive Semantic Composition
	1.7.1 Combining Aspect-oriented Programming and EDSLs
	1.7.2 Crosscutting Composition

	1.8 EDSLs in MDSD
	1.9 Foundation of Role-Based Language Composition
	1.9.1 Constituents of our Language Composition System

	1.10 Constituents of a LanGem Specification
	1.11 Classification of Role-Based Language Composition
	1.12 Composition of language semantics using ontological foundations
	1.13 Composition of an Exemplary Language to Describe Graphical Wizard Dialogues
	1.13.1 Requirements for the Wizard Dialogue Language
	1.13.2 Realisation of the Wizard Dialogue Language
	1.13.3 Application of the Composed Language to Specify Wizard Dialogues

