
Abstract.  In  this  document,  we  have  studied  two  orthogonal 
approaches  of  building  DSLs  and  their  advantages  and 
disadvantages  with  respect  to  MDSD.  We  show  that  embedded 
DSLs  can  be  used  to  implement  a  MDSD-typical  DSL rapidly. 
Further,  we  show  that  embedded  DSLs  and  aspect-oriented 
programming can be used in concert. We also discuss how modular 
language engineering and language composition enables new reuse 
capabilities  among  modelling  languages  with  a  slightly  higher 
initial development effort. 
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1. Introduction
The specification of software systems benefits from appropriate abstractions for specific 
system  concerns.  As  usually  software  consists  of  multiple  concerns,  hence,  a  set  of 
domain-specific languages (DSLs) is used in combination.  The traditional approach of 
language  development  requires  the  developer  to  provide  parsers,  compilers,  and 
development tools for every DSL, which is a cost-intensive task. When using multiple 
DSLs in model-driven software development (MDSD), and at the same time, and these 
DSLs even evolve, the effort to implement a DSL is increased massively. Hence, means 
to reduce development costs for DSLs are necessary. 

One  possibility  is  to  make  use  of  existing  general-purpose  languages  for  DSL 
development  with  the  creation  of  so-called  embedded  domain-specific  languages 
(EDSLs). This bottom-up approach allows rapidly providing new DSLs by shaping the 
syntax  and  semantics  of  an  existing  general-purpose  host  language  to  represent  the 
concepts of the DSL as close as possible. Thus, EDSLs can partially reuse the parsers, 
compilers and development tools of their host languages. Implementing EDSLs is a well-
known technique in many languages, like Ruby [Ruby], Groovy [Groovy], Scala [Scala], 
Haskell [Haskell],  and  ML [MTM+97]. For example,  the popular  Ruby on Rails Web 
framework [Rails] strongly utilizes the EDSL approach for a family of DSLs. Domain-
specific literals and operators are introduced using language constructs provided by the 
host language and must be interpreted by a library that implements the domain logic. It 
follows that the domain-specific code needs to conform to the host language syntax. The 
embedding of DSL constructs into host language programs simultaneously addresses the 
need for semantic connection of expressions in different multiple DSLs. 

Another  possibility  to  improve  the  development  of  DSLs  and  their  combination  in 
particular scenarios is to extend traditional language development techniques with means 
for  syntactic  and  semantic  language  composition.  This  top-down  approach  allows  to 
implement single DSLs or even DSL parts in modular units and to integrate developed 
languages to form a platform for system specification. This approach tends to a higher 
initial effort for DSL implementation, but provides more flexibility regarding language 
syntax and feature reuse.

In  this  document  we describe  two exemplary  representatives  of  both  approaches  and 
compare  their  advantages  and  disadvantages.  Section  1.1 introduces  a  general 
classification  scheme  for  DSL realisation  and integration  approaches.  It  distinguishes 
between invasive and non-invasive language  composition  techniques  regarding syntax 
and  semantics.  Using  this  classification  scheme  we  describe  existing  language 
composition  approaches  and  discuss  their  appropriateness in  different application 
scenarios. Section  1.3 introduces a flexible approach for embedding DSLs in dynamic 
object-oriented host languages (Groovy and Ruby) and discusses which language features 
are crucial for the host language to be applicable. A compositional approach for building 
DSLs independent of particular host languages is described in Section 1.8. In addition we 
present  a  language  composition  example  involving  several  integrated  DSLs.  Section 
1.13.3 compares  the  presented  approaches  for  DSL engineering  and our  findings  are 
concluded in Section 1.13.3.

3



2. A  Classification  Scheme  for  Language 
Composition Approaches

Composing languages is a difficult challenge that involves two major tasks [KL07]. One 
the one hand, the most difficult task is to derive a composition specification for merging 
the different language specifications to form a combined syntax and semantics. On the 
other hand, an implementation for the combined language must be provided, whereby a 
framework  could  ease  this  task  through  allowing  minimum  performance  overhead, 
maximum code reuse, auto-configuration, and manual override. 

We  developed  different  approaches  for  the  composition  implementation  of  multiple 
DSLs, which composes their syntax and may also compose their semantics. We identified 
different composition approaches in related work that support for different flavours of 
composition, which we differentiate according to the influence the composed parts pose 
on each other. While non-invasive composition does not affect the implementation of the 
languages,  invasive composition  may  change  the  language’s  interfaces  and  their 
implementation.  We  additionally  distinguish  between  centralized and  decentralized 
approaches for the specification of language composition. To round up the categorization 
of  the  language  composition  approaches,  we  provide  a  classification  scheme  that 
comprises the three above described dimensions, depicted in Figure 1. 

Figure 1 – Classification Scheme for Language Composition Approaches

1.1 Syntax / Semantic Composition
Concerning  the  syntax  of  two  languages,  their  corresponding  expressions  (such  as 
keywords,  block  statements,  or  other  phrases)  may  remain  untouched  or  not  after 
composition.  We  call  composition  without  adapting  the  syntax  of  the  composed 
languages  non-invasive syntax composition, while adapting the syntax of at least one of 
the languages is called  invasive-syntax composition. Embedded DSLs are by definition 
syntax composition, whereby the DSL syntax does not introduce new concepts into its 
host  language.  Because  an  embedded  DSL  does  not  violate  the  syntax  of  the  host 
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language, the host language’s parser and compiler can be reused.

Good examples for non-invasive composition are  Java annotations [Sun04] that allow 
adding  domain-specific  syntax  to  Java  code.  For  instance,  Hibernate [Hiber]  uses 
annotations for specifying persistency requirements. Annotations are a generic extension 
mechanism of the language allows for DSL extensions to be added to the Java syntax 
inside annotation blocks, which does not affect the core Java syntax. Other examples are 
XML-based DSLs that are  specified through a  XML Schema Definition (XSD). Since 
each DSL conforms to the XML core syntax and multiple  XML documents  may use 
different XSD, an XML document may use primitives from multiple DSL definitions by 
using a  name space prefix in front of the tag name. Note that used XSD Schemas must 
have been imported before. In effect, name space allow several DSLs to be composed 
without affecting DSL syntax of each other (or respectively the core XML syntax) since 
the XSD files are only imported. 

In addition, the characteristics of such a composition could vary in the extent the syntaxes 
of  the  languages  are  mixed  with  each  other.  The  least  syntactical  mixed  form  of 
composition  would  only  allow  different  DSL syntax  to  be  used  in  different  type  of 
modules. E.g., in the  Struts Web framework [Struts],  while for many purposes Java is 
used,  it  leverages DSL in several  ways:  views are created in JSP files which support 
domain-specific tag libraries, the page flows are specified in XML configuration files, 
and . There are examples in which the syntax is composed such that the programmer may 
use either  the one syntax  or  the  other  to specify a  part  of  a  module.  E.g.,  in  Pascal 
[Pascal], one can open an assembler block to use assembler code instead of high-level 
code.  In the strongest form of mixing the syntaxes,  the syntaxes could be completely 
merged into one, such that keywords of different composed languages can be used in any 
module, scope, or context.

From the perspective of language semantics,  on the one hand,  non-invasive language 
semantic composition composes two embedded languages that do not interfere with each 
other. E.g., we can embed SQL into Java without changing the fundamental Java syntax 
and  semantics.  We  call  languages  that  do  not  interfere  in  their  specification  and 
implementation  independent.  Two independent  languages  can be integrated  at  a  well-
defined interface, i.e., by using a shared type, e.g., we can integrate Java and SQL using a 
cursor  type that  iterates  over  rows  in  a  SQL  result  table.  The  composition  of  two 
independent languages can be using pre-processors and the composition specification is 
expected to be rather small. On the other hand, invasive language semantic composition is 
a difficult problem that must cope with syntactical and semantic interactions in language 
composition  specification  and  composition  implementation.  E.g.,  the  Java  Security  
Framework [Oak01]  of the Java VM composes  Java code and a  security policy.  The 
policy is written in a DSL for describing permissions for un-trusted code that originates 
from various sources in particular  Applets  from the Internet.  In case,  general-purpose 
Java programs are execute under different semantics that enforces the defined policies. If 
a security policy is violated, the semantics of Java code is changed such that an exception 
is thrown.
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Figure  2 shows  the  different  dimensions/flavours  of  composition  together  with  well-
known examples:

Composition Non-invasive Invasive

Syntax Java/JPA Annotations Embedded SQL

Semantics Embedded SQL DSL for Java Security Policy

Figure 2 – Dimensions/flavours of composition and their representatives.

1.2 Non-Invasive / Invasive Composition 
In  case  of  non-invasive  semantics  composition  the  syntax  of  multiple  languages  is 
composed, while the semantics of each of the language stays unchanged. Concerning the 
composition  specification,  non-invasive  semantics  composition  integrates  multiple 
syntaxes  without  changing the semantics  of the composed languages.  E.g.,  embedded 
SQL is  a  good example  of  non-invasive  composition  in  programming  languages  that 
makes the SQL syntax directly available in languages such a C or Java. Still, the base 
syntax of the language is not changed, i.e., the syntax and semantics of classes is not 
changed. The composed languages must be bridged so that one can transfer a value from 
one language’s scope to another language’s scope. E.g., use a Java value in an SQL query 
and iterate  over  the  query result  in  Java.  Such integration  can  be  achieved  by using 
variables and types shared between two or more domains. If no such shared type exists, 
the specifications of the languages can be appended with a new shared type.

DSL embeddings and compositions elaborated so far are black-box. EDSL semantics is 
defined on top of the semantic of the hosting language without changing the latter as well 
as  the  embeddings  do  not  interfere  with  each  other.  However,  such  black-box 
embedding/composition is not always appropriate. E.g., we have identified situations in 
which  DSL  from  different  domains  are  composed  in  their  execution.  But  such 
compositing of several DSLs that are embedded as libraries is complicated, because the 
specification and the implementations of the libraries become dependent on each other. In 
the first way, the composition specification is a hard problem, as the language designer 
must determine all point where the languages could interfere. For each interference, an 
appropriate  way  for  resolution  of  potential  conflicts  must  be  provided.  A  complete 
discussion  the  specification  problem is  out  of  the  scope.  We refer  to  [CE00],  which 
discusses this problem of aspectual composition of languages. Nonetheless, we elaborate 
a special case of invasive composition, namely crosscutting composition.

1.3 Decentralize / Centralized Composition
In  our  scheme,  we  additionally  distinguish  between  centralized  and  decentralized 
approaches for the specification of language composition. Here, centralized characterizes 
approaches that implement language composition with a dedicated pivotal asset, such as a 
common interface or mapping paradigm. With decentralized, we indicate approaches that 
implement  the  composition  of  two or  more  languages  case by case in  a  peer-to-peer 
manner, where each language pair is composed in isolation. 
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3. Implementing  Embedded  Domain-specific 
Languages

With the  increasing  complexity  of  applications,  the  use of  domain-specific  languages 
(DSLs)  is  becoming  very  important.  Using  domain-specific  abstractions  increases  the 
abstraction level and decreases the representational gap between the way domain experts 
think  and the  way domains  are  modelled  in  programs,  facilitating  understanding  and 
maintenance.  However,  these advantages of DSLs have their  price.  Traditionally,  pre-
processors  are  used  for  introducing  domain-specific  abstractions  into  general-purpose 
languages (GPLs). While it enables to implement domain-specific syntactic and semantic 
analyzes,  this  approach  is  labour  intensive.  A  sophisticated  language  processing 
infrastructure has to be built on top of the infrastructure available for the hosting GPL. 
Furthermore,  it  is  a  well-known  problem  that  DSLs  implemented  by  means  of  this 
approach are hard to compose.

To address these problems, Hudak [Hud96] introduced the notion of a  domain-specific  
embedded language. We will refer to such a language as an  embedded domain-specific  
language (EDSL),  while  others  refer  to  such  a  language  an  internal  domain-specific  
language.  Roughly  speaking,  these  are  DSLs  that  are  implemented  as  libraries  in  a 
hosting language. Following this approach allows reusing the general-purpose features of 
the host language. The reuse of features implemented in the host language significantly 
reduces  the  development  costs  of  language  features  of  the  embedded  DSL [Fow05]. 
Further no parser and compiler has to be implemented, and tools for the host language can 
be used. 

In this section, we investigate how a textual DSL that is often found in MDSD can be 
implemented as an embedded DSL in another programming language.

1.4 Language Features for Embedding Abstractions
Embedding  textual  domain-specific  language  has  been  used  in  many  programming 
languages,  such  as  the  aforementioned  Ruby,  Groovy,  Scala,  Haskell,  and  ML.  A 
question that remains to be answered is: what language features qualifies a language to be 
good for  embedding.  And,  what  is  the best  approach to  embed a  language.  Giving a 
complete  answer  to  these  questions  is  out-of-scope  of  this  document.  Moreover,  the 
questions may also be asked for non-textual  languages,  such as UML 2.0 that allows 
domain-specific syntax to be embedded using UML Profiles, that can be seen a light-
weight extension mechanism or facility that supports embeddings. Further, one can ask 
with  what  features  today  languages  should  be  extended  with  for  better  supporting 
embedding DSLs. A common denominator for all approaches for embedding DSLs is that 
they need some kind of  extension mechanism in the host language that opens the host 
language for adding domain-specific abstractions. 
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In the Figure 3, an overview of languages, their support for embedding DSLs is given, 
and which extension mechanism can be used for embedding domain-specific abstractions.

Language Techniques Extension Mechanisms

Haskell Monads [Hud96] Algebraic types, functions

Java Domain-specific libraries 
[Fowler05][FP06]

Class loading

Groovy Design patterns, pretended 
method calls [Groovy] 

Dynamic features / flexible syntax, 
closures, meta-object protocols

Ruby Design patterns, pretended 
method calls [Ruby] 

Dynamic features / flexible syntax, 
closures, meta-object protocols

Scala Embedding into the type system 
[OSV07], Polymorphic embedding 
[HORM08]

Traits  (mixin  composition), 
imports

UML 2.0 Meta modelling UML profiles, meta-object facility

XML Extensible language platform Namespaces

Figure 3 – Languages and feature for embedding

In this  document,  we discuss a  selection  of languages  and approaches  for embedding 
DSLs. In particular, we study dynamic object-oriented programming languages and how 
embedded DSL can be used in MDSD. We focus on Groovy and Ruby because of the 
openness in these languages. 

1.4.1 Java
Although Java has no special language feature for embedding DSL, it has been used to 
embed  languages  in  form of  domain-specific  libraries.  This  approach  called  a  fluent  
interface is  discussed  by  Fowler  [Fow05b]  and  by  Freeman  and  Pryce  [FP06].  The 
knowledge and semantics of a problem domain are embedded, whereby domain objects 
are mapped to a set of classes and operations on them are mapped to methods. A major 
problem with embedding DSLs in Java is that there is a large syntax noise that requires 
DSL programs to use more or different characters in the EDSL syntax. Using additional 
or different characters is necessary in certain cases to make the concrete DSL syntax of 
the EDSL conforms  to  the host  language  syntax.  This  syntax  noise can be measured 
relative to the ideal syntax of a standalone DSL implementation with its own syntax that 
can be designed without restriction only to serve the user’s need. Possible metrics are the 
Levenshtein distance [Lev65]. 

1.4.2 Groovy
Groovy [Groovy] is a pure object-oriented scripting language that nicely integrates with 
Java [GJSB00]. The syntax is close to Java and one can call Groovy code from Java and 
vice  versa  without  converting  passed  objects.  Groovy  provides  special  features  that 
facilitate the embedding of DSLs: a flexible syntax, a meta-object protocol, and closures  
as first-class entities.  Worth to mention,  we later  use Groovy to present  one possible 
implementation  of  our  EDSL  architecture.  This  paragraph  briefly  introduces  those 
features  relevant  for  understanding  the  embedded  DSL  implementation.  For  a  more 
comprehensive introduction to Groovy we refer to [Koe07]. 

Groovy's  flexible  syntax  offers  syntactic  sugar  for  collection  types  and  for  passing 
parameters to methods. This flexibility results in EDSL syntax with a small syntax noise, 
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i.e., the amount of code one has to write in addition or which is written different to an 
idealized DSL syntax.  Groovy provides a meta-object protocol (MOP), which enables 
pretended  method calls  (and  pretended  properties),  that  are  methods  (or  respectively 
properties) that are not defined in the object’s class and for those a method or respectively 
a field access can be forwarded to other methods or objects. When one invokes a method 
on such an object,  respectively access  a field,  not  defined in  the object's  class.  Such 
"pretended" methods, respectively fields, are handled by the meta-object associated with 
the receiver,  if  any,  called  delegate.  In particular,  we later  use the MOP to allow the 
dispatch of keywords in DSL programs that are treated as pretended method calls.

A Groovy closure is a first-class entity that can be referenced and that can be used to 
defer the evaluation of a piece of code. Closures are defined using curly brackets. E.g., 
Closure cl = {x -> x*x},  defines  a  closure that  takes  the  parameter  x and 
returns its square value, thus cl.call(5) will return 25. A Groovy closure does not 
encapsulate  a fixed evaluation context.  A closure also may be assigned a  delegate to 
whom any unbound symbols are dispatched. In particular, we later use closures to realize 
nested code structures and inject domain object as symbols in the evaluation context.

1.4.3 Ruby
Ruby  [Ruby]  is  a  dynamic  object-oriented  scripting  language  for  which  several 
implementations  on different  platforms are  available.  In comparison to  Groovy,  Ruby 
provides similar  features that  can be used to embed DSLs. In particular,  Groovy was 
inspired by the Ruby language and its features. It is targeted to provide those features for 
Java. Note that we have used these features to repeat our EDSL implementation approach 
for Ruby, as we have used the corresponding features for Groovy. In contrast to Groovy, 
the Ruby language does provide more dynamicity with respect to its module system, e.g., 
Ruby support dynamic mixins. 

There are minor differences with respect to the features that we use to embed DSLs. The 
syntax of Ruby has shown to be more flexible to design the concrete syntax of an EDSL 
closer  to  the abstract  syntax  [Fow2003].  Ruby supports  closures  in  form of so-called 
blocks1. The Ruby MOP allows pretended methods as Groovy and moreover provides 
several abstractions on MOP operations.

From the perspective of model-driven software engineering, an advantage of Ruby is that 
the language implementation is not bound to a particular language platform, as there are 
Ruby implementations  that are standalone,  compiled,  based on the Java and C# stack 
available. Thus, Ruby has a better prospect with respect to platform variability. 

Despite we have implemented the architecture for EDSL implementation both in Groovy 
and in Ruby, for the sake of brevity, we present only the Groovy implementation.

1 In contrast to Groovy closures, Ruby blocks do not support delegates that are necessary 
for the approach followed by the rest  of the paper.  However,  we can use a  different 
context for a block (with DSL code that uses DSL keywords) by evaluating the block in 
foreign context. This can be done by calling  instance_eval method on a  delegate 
object (that implements methods for DSL keywords). Whereby, passing the block as a 
parameter to the instance_eval method. This will dispatch calls inside the block to 
the evaluation context from which the block is called, thus to the instance in which the 
block call is evaluated – the delegate object. 
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1.5 An Architecture for EDSL Implementation
We  have  developed  a  new  architecture  and  framework  for  implementing  embedded 
DSLs, called POPART that is implemented in Groovy. We propose to use a host language 
for embedding DSLs that supports a set of language features including closures, a meta-
object protocol (MOP), and  object-oriented programming.  We present an approach to 
implementing  EDSLs that  combines  the  power  of  these  features  to  achieve  modular, 
flexible, and composable embeddings of DSLs. On top of this, the OO mechanisms of 
interfaces  and  sub-classing  enable  pluggable  interpreters  and  allow  for  defining  new 
interpreters  by  reusing  the  infrastructure  built  for  existing  EDSLs,  or  other  libraries. 
Object composition enables flexible black-box composition of EDSLs. Based on these 
features,  the  ongoing  research  investigates  embedding  aspect-oriented  language 
constructs, which can be used to support what we call crosscutting composition of DSLs; 
as opposed to black-box composition,  the interpretation  of EDSLs to  be composed is 
changed by the composition.

Figure 4 – Classification of the applicability of the POPART architecture

The POPART architecture we propose can be classified with respect to the classification 
schema introduced in Section 1.1. POPART supports a decentralized implementation of 
EDSLs and allows non-invasive syntax composition. Multiple domain-specific extensions 
that are implemented in POPART and on top of the same host language have the same 
concrete  syntax  of  the  host  language.  Because  of  this  property,  one  can  mix  DSL 
keywords without writing a new parser. Further, POPART allows non-invasive semantic 
compositions  of  DSLs  as  modular  and  hierarchical  DSL  implementations  and  also 
provides support for polymorphic embedding [HORM2008]. Moreover, invasive semantic 
composition  is  supported  by  providing  either  using  a  generic  semantic  composition 
operator  provided  by  POPART  or  by  implementing  a  custom  semantic  composition 
comparator.  In  particular,  invasive  semantics  composition  is  used  for  crosscutting 
composition of different DSLs, where the execution of one DSL program influences the 
execution (semantics) of another DSL program.
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1.5.1 A Layered Architecture for Implementing EDSLs
We propose a four-layered architecture for embedding DSLs in Groovy (cf. right-hand 
side of Figure 5). At the first layer (P), there are DSL programs which use DSL elements, 
i.e.,  domain-specific  primitives  and domain-specific  means  of  composition/abstraction 
[ASS96]. At the second layer (L), there are DSL interfaces, which declare operations for 
each DSL element. These operations are implemented by DSL interpreters in the third 
layer (I). DSL interpreters make use of classes from domain meta-models, each modelling 
domain abstractions, eventually by reusing existing types from the host language or from 
a library. Domain meta-models constitute the fourth layer (M) of our architecture. In the 
implementation of the architecture in Groovy, EDSL programs are enclosed in Groovy 
closures  and the  Groovy MOP automatically  maps  between DSL elements  used  in  a 
program and the corresponding operations in a DSL interface. Together, the (L)-, (I)-, and 
(M)-layer form a run-time, that can be used to evaluate DSL programs, which we refer to 
in the following as a LIM run-time.

Layered Architecture

DSL Meta Model

DSLProgram

DSLInterface

DSLInterpreter

eval()

P

L

M

<keyword>

I

Recipe for Embedding a DSL

1) Create a meta model (M) for the domain

2) Create a language interface(L) that extends DSL 
a) for each domain literal keywordadd a getter method 

that return a meta model type representing the literal
b) for each domain operation keywordadd a method

that takes the operands as its parameters and 
returns the operation result 

c) for each nested element keywordadd a method that  
takes a closure for the nested code

3) Create an interpreter class(I) 
a) implements the interface (L)   
b) instantiates types from meta model (M)

DSL Program Layer

Language Interface Layer

Interpreter Layer

Domain Meta Model Layer

Figure 5 - Architecture and a Recipe for Embedding DSLs

A recipe of steps to follow for instantiating the proposed architecture is given on the left-
hand  side  of  Figure  5.  The  right-hand  side  of  Figure  5 shows  an  overview  of  the 
instantiation of the DSL architecture for an embedding DSL.
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1.5.2 Tailoring the DSL Syntax

machine Watch {
start state reseted {

entry: resetTimer;
transitions {

when start enter running;
when switchOff enter off;

}
}

state running {
entry: startTimer;
do: loopRunning;
transitions {

when split enter paused;
when stop enter stopped;

}
}

state paused {
entry: pauseTimer;
transitions {

when unsplit enter running;
when stop enter stopped;

}
}

state stopped {
entry: stopTimer;
transitions {

when reset enter stopped;
when switchOff enter off;

}
}

state off {
exit: switchOff;
transitions {

when toEnd end;
}

}
}

(b)  DSL code in Groovy Syntax(a) original DSL code

IFsmDSL dsl = new FsmDSL();
dsl.eval(name:"watch") {

state(name:"reseted",type:"start") {
entry "resetTimer";
transitions {

when (event:"start",enter:"running");
when (event:"switchOff",enter:"off");

}
}

state(name:"running") {
entry "startTimer";
perform "loopRunning"; 
transitions {

when(event:"split",enter:"paused");
when(event:"stop",enter:"stopped");

}
}

state(name:"paused") {
entry "pauseTimer";
transitions {

when(event:"unsplit",enter:"running");
when(event:"stop",enter:"stopped");

}
}

state(name:"stopped") {
entry "stopTimer";
transitions {

when(event:"reset",enter:"stopped");
when(event:"switchOff",enter:"off");

}
}

state(name:"off") { 
exit "switchOff";
transitions {

when(enter:end);
}

}
}

Figure 6 - An Example FsmDSL Program modelling a Watch Clock

Figure 6 (a) shows an example program that defines a  state machine to model a watch 
clock. The watch clock consists of five states (i.e., reseted, running, paused, stopped, and 
off). Each state may have a set of  action delegates defined that have delegate type: a) 
entry,  delegate  type  executes  the action when entering the state,  b)  do,  delegate  type 
executes the action while remaining in the state, and c)  exit, delegate type executes the 
action when leaving the state. Moreover, each state defines a set of legal  transitions to 
other states. Each transition is defined that when an event (following the keyword when) 
occurs that the state machine should enter the next state (following the keyword enter).

Recall that an important requirement for implementing a DSL as an embedded DSL is 
that  the  DSL  syntax  must  comply  with  the  host  language’s  syntax.  Before  one  can 
implement a DSL as an embedded DSL in Groovy, the DSL syntax must be changed to 
comply  with  Groovy  syntax.  This  restriction  is  an  inherited  drawback  from  the 
implementation approach of embedded DSL [Fow05].  The effect  may vary from host 
language to host language and may even disqualify the embedded DSL approach in cases 
where  it  is  not  feasible  to  adapt  the  DSL syntax  to  the  host  languages  syntax.  The 

12



embedded DSL approach assumes  that  the end user  can  posture with a  more  or  less 
slightly changed DSL syntax that is close to the original DSL syntax, while savouring the 
advantages of the implementation efficiency of embedded DSLs.

As the DSL syntax in  Figure 6 (a) is not compliant with Groovy syntax, the DSL code 
must  be transformed  to  the  code shown in  Figure 6 (b).  Note  that  the  code  snippets 
highlighted  with a gray box show points  at  which the DSL syntax  had to be heavily 
changed in order to comply with the Groovy host language syntax. 

In general,  one must construct legal host language code. Therefore, expressions in the 
original  DSL syntax  were  transformed,  so  that  they  will  be  parsed  as  legal  Groovy 
method calls, which is a necessary demand of our implementation architecture. In cases in 
which  expressions  consists  of  multiple  tokens,  these  must  start  with  a  keyword  that 
identifies the expression type followed by a list of named parameters, which are treated as 
parameters to that keyword. 

In the example, the above transformation rule for deriving legal method calls had to be 
applied for the keywords: state and when...enter. Note that while we use brackets for the 
keywords  state and  when,  the brackets  in case of  entry,  do,  and  exit can be omitted. 
Further, the colon (:) has a special meaning in Groovy, therefore it cannot follow the 
keywords: entry, do, and exit.
In  the  state  machine  example,  the  DSL  syntax  violated  the  Groovy  syntax  in  the 
following cases:

1. The top-level keyword machine of the original DSL is not available by default. To 
enter  the  syntactical  environment  to  use  DSL  keywords  a  designated  DSL 
interpreter  instance  must  be  created  with  new FsmDSL().  Next,  one  can 
evaluate  DSL  code  passed  to  the  eval method.  (The  instantiation  of  the 
interpreter  poses additional  syntax  noise on the Groovy DSL syntax,  which is 
presented this way for the sake of understanding. Later, we show how one can 
remove this syntax noise by using a so-called bootstrap keyword.)

2. The first state in the DSL program is defined as a start state. This violates Groovy 
syntax  because  the  expression “start  state  reseted” cannot  be resolved  by the 
Groovy parser, which expects a well-formed method call with parameters at this 
place. Therefore, the position of the start keyword was moved to be an optional 
parameter (type) in the parameter list of the state keyword in the Groovy DSL.

3. In state “running”, the original DSL keyword  do conflicts with Groovy syntax, 
because the keyword do is already defined in Groovy. Therefore, the keyword has 
been renamed to perform.

4. In the last state “off”, the keyword combination when...end has been transformed 
such that there is no event to take that transition and the state to enter is the end 
state that is referred to by using the keyword end passed as a keyword parameter 
to the when keyword.
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1.5.3 From the Language Interface Layer to Implementation
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IFsmDSL dsl = FsmDSL.new();
dsl.eval(name:"watch") {
state(name:"reseted",type:"start") {
entry "resetTimer ";
transitions {
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Figure 7 – The EDSL Architecture Instantiation for FsmDSL

In Figure 7, the instantiation of the EDSL architecture presented in Figure 5 is shown. To 
define  states,  a  domain-specific  composition  element  is  introduced  denoted  by  the 
keyword state. Each state in StateMachineDSL has a name and a closure (the code 
block in the curly brackets following the name declaration). The code inside a closure for 
defining a state (cl) may contain DSL abstractions, e.g.,  entry or  state, as well as 
arbitrary Groovy code, e.g., Groovy's control structure each{} can be used in order to 
generate a number of states in the state machine using closures as templates.

At index (L) of Figure 7, the language interface of FsmDSL is declared in the IFsmDSL 
interface.  The  latter  declares  an  operation  for  each  DSL  element:  state,  when. 
Mapping  between  the  DSL elements  used  in  the  program at  index  (P)  — a  Groovy 
closure — and the operations in IFsmDSL is taken over by Groovy's MOP by assigning 
an object that implements  IFsmDSL to the delegate field of the closure enclosing the 
DSL program.

Several  implementations  of  IFsmDSL are  possibly  corresponding  to  different 
interpretations  of  FsmDSL.  Two such interpretations  are  shown in  Figure 7 ((Ia)  and 
(IIa)).  FsmInterpreter provides  a  custom interpretation  of  definitions  of  a  state 
machine  using  the  custom meta-model  at  index  Ib,  while  UMLGenerator uses  the 
meta-model of  abstract syntax tree of UML (index (IIb)) to generate UML state charts 
from FsmDSL state machine definitions. The implementation of FsmInterpreter is 
elaborated in  Figure 8. The method eval (cf.  Figure 8, lines 6—11) (inherited from the 
marker  interface  DSL,  which is  extended by  IFsmDSL)  lays  down what  it  means  to 
evaluate  a  state  machine  definition.  It  creates  an  instance  of  the  meta-class 
StateMachine for  which  subsequently  defined  states  will  be  defined.  Next,  the 
executing  DSL  interpreter  instance  (this)  is  assigned  to  the  delegate  field  of  the 
machineDefinition closure (line 9). As a result, domain-specific elements with no 
meaning in the host language (e.g., state, or entry) encountered during the execution of 
the machineDefinition closure (line 10) are dispatched to the executing interpreter 
instance by the MOP (this mapping is schematically shown by the curved lines labelled a, 
b, c, and d in Figure 7). 

To  interpret  DSL elements,  following  the  recipe  (in  Figure  5),  any  DSL interpreter 
defines a) a property for each domain literal (e.g.,  end in lines 14—15 in  Figure 8 in 
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FsmInterpreter), b) a method for each domain operation (e.g.,  entry,  perform, 
exit, and when in lines 18—33 in FsmInterpreter), and c) a special method for 
each domain-specific abstraction/composition element (e.g., state in lines 36—43 and 
transitions in line 45 in FsmInterpreter).

class FsmInterpreter implementss IFsmDSL {
… 
private StateMachine currentMachine;
private State currentState;
… 
public eval(HashMap params, Closure machineDefinition) {
…
currentMachine = new StateMachine(params.name,…);
machineDefinition.delegate = this;
machineDefinition.call();

}

//domain literals
private State endState = new State("end",…);
public State getEnd() { return endState; }

//domain operation
public void entry(String name) {…}

public void exit(String name) {…}

public void perform(String name) {…}

public void when(HashMap params) {
State from = currentState;
State to = currentMachine.getState(params.enter);
if (to == null) {

to = new State(params.enter);
currentMachine.addState(to); 

}
Transition t = new Transition(from,to,params.event);
from.addTransition(t);

}

//nested element
public void state(HashMap params,Closure stateDefinition) {

… 
currentState = new State(params.name,…);
currentMachine.addState(currentState);
… 
stateDefinition.delegate = this;
stateDefinition.call();

}

public void transitions(Closure transitionDefinitions) {...} 
}
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Figure 8 – The Interpreter for FsmDSL
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1.6 Black-box Composition with POPART
For black-box composition, the syntax of multiple languages (EDSLs) is composed, while 
the semantics of each of the language stays unchanged. This allows using keywords from 
several DSLs in a program that is evaluated using a composed interpreter that reuses the 
modular EDSL implementations. We have classified black-box composition as a form of 
non-invasive  semantics  composition,  whereby  in  contrast  to  invasive  semantics  
composition  (see  Section  1.7),  there  is  no interference  between  the  semantics  of 
composed languages. 

Concerning  the  composition  specification  problem,  black-box  composition  solves  the 
technical  integration  between  the  multiple  syntaxes,  whereby  the  semantics  of  each 
composed language is considered as a black-box. For instance, it could be desirable to 
transfer a parameter value from one language’s scope to another language’s scope. Such 
integration can be achieved by using variables and types shared between two or more 
domains.  If  no  such  shared  type  exists,  the  specifications  of  the  languages  can  be 
appended with a new shared type.

We have developed a new DSL framework for composing DSLs in the implementation 
space,  called  POPART.  POPART  supports  this  type  of  integration  if  each  of  the 
languages is developed as an embedded DSL. Interpreters are first-class entities that can 
be passed as values. This provides a great flexibility that  can particularly be used for 
composing DSLs.

We can  use  different  of  these  interpreters  in  order  to  evaluate  code.  Interpreter  may 
reference  other  interpreters.  Having  interpreters  as  first  class  values  facilitates  very 
powerful,  fine-grained  and  dynamic  composition  of  DSLs  using  customizable 
composition.  One can mix keywords  within a program. Mixed DSL programs can be 
executed by calling the eval method on a interpreter instance that combines the DSLs to 
be composed. The code is passed in form of a first-class value, a closure. When a DSL 
keyword is encountered in the mixed DSL code, the keyword is delegated as a method 
call to their corresponding DSL that is composed.

Using  factory  objects,  one  can  dynamically  select  interpreter  implementations  for  a 
certain  language  interface.  Calls  to  the  interpreter’s  eval method  can  obviously  be 
within  conditional  clauses  or  arbitrarily  nested.  POPART  also  provides  support  for 
declarative composition of interpreters with so called interpreter combiners - instances of 
the special interpreter class InterpreterCombiner or its subclasses. Figure 9 gives 
an overview of the composition infrastructure of POPART.

Figure 9 – Interpreter combiners for modular DSL Implementations.

Like  any  other  POPART  interpreter,  an  interpreter  combiner  implements  the  DSL 
interface, i.e., the method eval declared therein that takes a Closure as a parameter, 
containing  DSL code that  uses  language  elements  from several  DSLs.  Unlike  simple 
interpreters, interpreter combiners do not directly define any domain-specific semantics. 
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Instead, they hold references to other interpreters to which DSL elements are forwarded 
and  implement  two  special  methods  of  the  Groovy  MOP:  methodMissing and 
propertyMissing. By convention, whenever a method is called on an object that is 
not defined in its class (a pretended method call), Groovy's MOP executes the method 
methodMissing of that class, passing the name of the method and the arguments of 
the pretended call as parameters. In a similar way, propertyMissing is invoked when 
accessing  a  (pretended)  property.  The  methods  methodMissing and 
propertyMissing implemented  in  InterpreterCombiner lay  down  DSL 
composition semantics. Programs that mix elements from several DSLs are defined in 
closures  whose  delegate  object  is  an  InterpreterCombiner.  When  a  domain 
operation  or  a  domain-specific  nesting  element  is  encountered,  the 
InterpreterCombiner delegate  receives  a  pretended  method  call  and 
methodMissing is invoked by the MOP with the respective domain-specific keyword 
as the method name. In a similar way, the MOP dispatches literal keywords by invoking 
propertyMissing on  the  InterpreterCombiner delegate.  Given  their 
parameters and the inner interpreters referenced by their receiver, methodMissing and 
propertyMissing implement look-up semantics for the domain-specific abstractions. 
Several such semantics are conceivable and can be realized by a hierarchy of interpreter 
combiners in POPART. For instance, in case of the  InterpreterCombiner, which 
holds a list of DSLs,  methodMissing forwards a pretended method call to the first 
interpreter in the list that implements a keyword method with the same signature as the 
method  of  the  pretended  call.  Another  composition  semantic  is  to  forward  to  all 
interpreters that have an implementation of the pretended call. Special cases of the latter 
semantics are combiners that compose different interpreters of the same language. Other 
types of interpreter combiners are shown in Figure 9. The FoldCombiner implements 
more  generic  composition  operators  by  taking  a  closure  that  entails  the  composition 
semantic  as  a  parameter  and  a  list  of  DSLs  in  its  constructor.  Specifically,  when  a 
keyword is received, it is forwarded to all interpreters in the list and the returned values 
are used as parameters to the closure that calculates the result

1.7 Using Aspect-Oriented Programming for invasive 
Semantic Composition

Consider the scenario when we would like to compose a DSL for describing workflows, 
called  ProcessDSL,  with  another  EDSL  for  enforcing  secure  communication  with 
partners, called SecurityDSL. 

The  EDSL interface  and interpreter  of  ProcessDSL provides  keywords  for  describing 
workflows, such as task for defining the steps of a workflow, registry to retrieve a 
reference to the registry service that can be used to look up other services, and notify 
to send out an email to all stake holders of a process. We have implemented ProcessDSL 
as an EDSL in POPART in the class  ProcessInterpreter that  defines keyword 
methods for registry, notify, and task.

The EDSL interface and interpreter of SecurityDSL provides the necessary primitives for 
encrypting  outgoing  SOAP  messages  and  decrypt  incoming  encrypted  messages. 
SecurityDSL is  implemented  in  a  class  SecurityDSL and  provides  two operations: 
encrypt(data,alg), that encrypts the first argument using the encryption algorithm 
provided as the second argument, and decrypt(encData) for decrypting.
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1 DSL process_dsl = new ProcessInterpreter(); 
2 DSL security_dsl = new SecurityDSL();
3 DSL combined_dsl = new InterpreterCombiner(process_dsl,security_dsl);
4 }
5 combined_dsl.eval(name:"EasyCreditProcess") {
6 def offers = [:];
7 task (name:"getOffers") {
8 def services = registry.find("Banking");
9 services.each { bank ->
10 def enc_request = encrypt(new RateRequest(),RSA);
12 def enc_response = bank.call("getRate",[enc_request]);
13 offers[bank] = decrypt(enc_response); ;
14 } 
15 }
16 }
17 task (name:"selectOffer") {
18 def selectedBank = ... //get cheapest bank from offers
19 def enc_request = encrypt(new BorrowRequest(),RSA);
20 def enc_response = selectedBank.call("borrow",enc_request);
21 def response = decrypt(enc_response);
22 notify "Credit from $selectedBank.name"
23 } 
24}

Figure 10 – A secured Workflow in a black-box composed DSL

Given  ProcessDSL and  SecurityDSL, we would like to write process definitions which 
encrypt/decrypt messages sent to external services. As illustrated in Figure 10, we could 
use black-box composition to compose ProcessDSL and SecurityDSL (lines 1-2) and then 
use the resulting combined interpreter (in line 3) to evaluate programs that use language 
elements  from  both  domains  (while  ProcessDSL keywords  are  marked  in  blue, 
SecurityDSL keywords  are  red).  The  program,  however,  suffers  from  tangling  and 
scattering - the code for security concerns is not localized (cf. lines 10-12 and 19-21). We 
would rather prefer to write the security code once using SecurityDSL elements and have 
a fine-grained composition mechanism that integrates the execution of security code into 
well-defined  points  during  the  interpretation  of  ProcessDSL.  We  call  this  style  of 
composing DSLs crosscutting composition. 

1.7.1 Combining Aspect-oriented Programming and EDSLs
To address the problem of code scattering and tangling in composed DSLs we would like 
to use aspect-oriented programming for semantic invasive composition embedded DSLs. 
However,  all  aspect-oriented  programming  languages  that  could  be  integrated  with 
languages  commonly  used  in  MDSD did  not  provide  the  language  features  powerful 
enough to embed DSLs. There are two possibilities, either to extend an AO language with 
more  powerful  feature  necessary  for  embedding  DSLs,  or  to  extend  a  language  that 
provides powerful features with support for AOP. As providing features for embedding 
would demand the implementation of an AO language and the accompanying tools from 
scratch,  we have chosen the latter  option. Whereby,  we follow the same approach for 
implementing an AO language that we followed for implementing DSLs. Based on the 
same features for embedding DSL syntax, we use these feature to embed aspect-oriented 
language  constructs.  The  resulting  AO  language  supports  what  we  call  crosscutting 
composition of DSLs; as opposed to black-box composition, the interpretation of EDSLs 
to be composed is changed by the composition. We have implemented the architecture as 
a  framework in Groovy [Groovy],  which we call  POPART. Groovy has been chosen 
since it supports the features mentioned above and for its flexible syntax. Yet, any other 
language  that  supports  the  same  set  of  features  can  be  used  as  an  implementation 
language. 

1.7.2 Crosscutting Composition
To realize crosscutting composition of DSLs, we make use of aspect-oriented concepts. 
An overview of the approach is schematically given in Figure 11. In this approach, aspect 
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modules  specify crosscutting  composition  semantics  for  programs written  in  different 
EDSLs (EDSL1-Program and  EDSL2-Program),  each  with  its  own LIM runtime.  To 
express composition semantics, an aspect makes use of pointcuts and advice, common 
language  elements  of  aspect-oriented  languages  such  as  AspectJ  [AspectJ]  and 
composition  operators  such  as  before,  after,  around,  and  proceed.  Roughly 
speaking,  pointcuts  define  queries  for  selecting  points  in  the  interpretation  of  the 
programs  of  EDSL1,  advice  is  a  closure  enclosing  code  in  EDSL2,  and composition 
operators determine the order of execution.

EDSL Program 1

Modified
EDSL 1

LIM Runtime

eval() <keyword>

Aspect

Aspect 
LIM Runtime

eval() before()

EDSL Program 2

EDSL 2
LIM Runtime

eval() <advice_keyword>

EDSL Pointcut

Pointcut EDSL 
LIM Runtime

eval() <pcd_keyword>

evaluate
advice

evaluate
pointcut

matches on 
a join point
of EDSL 1

fire
join points
1

2

3

Figure 11 – Crosscutting composition of DSLs

The aspect language used for EDSL composition is itself implemented as an EDSL (cf. 
aspect LIM runtime in Figure 11). The aspect language interpreter, called CCCombiner, 
is  a  subclass  of  InterpreterCombiner (cf.  Figure  9).  It  has  a  reference  to  the 
interpreter  for  one  of  the  DSLs  to  be  composed  (EDSL2  in  Figure  11)  and  to  the 
interpreter of the pointcut language for querying points in the interpretation of the other 
DSL (EDSL1 in  Figure 9).  CCCombiner uses a meta-model for aspects and provides 
keywords before, around, after, and proceed. In a nutshell, the aspect meta-model consists 
of classes that model the core elements of AOP as first-class entities, such as Aspect, 
JoinPoint,  and  Pointcut.  An aspect in the PlasmaJ meta-model maintains a list 
associating  Pointcut  objects  to  closures.  JoinPoints  represent  points  in  the 
interpretation  of an EDSL exposed for composition by maintaining  information about 
their type and the context exposed when these points are reached. The set of points in the 
interpretation of an EDSL that are identified as join points for composition is determined 
by a domain-specific join point model (DS-JPM). For illustration consider defining a DS-
JPM for  ProcessDSL,  consisting  of  two kinds  of  join  points.  First,  there  are  service  
selection  join points:  Points  at  which  the registry  is  consulted  to select  services  of a 
certain category; exposed properties include the pattern used to select services and the 
resulting set  of selected services.  Second, there  are  service call  join points:  Points  at 
which a remote call to a Web service is done as part of interpreting a process level call; 
exposed properties include the name of the service, the SOAP document representing the 
call, whether the invocation is remote or local. A DS-JPM for an EDSL is defined by 
extending  the  core  aspect  meta-model  with  DS  join  point  types  and  by  creating  a 
modified version of EDSL's LIM run-time that creates and fires join point objects during 
the execution of programs. Technically, the modified version of the original EDSL LIM 
runtime is automatically derived in POPART by using AspectJ [AspectJ] aspects.

Pointcuts are modelled in the meta-model as filter objects that select join point objects 
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based on their type and exposed context values. The filtering AOP and EDSLs queries are 
written in a domain-specific pointcut language (DS-PCL) which is also an EDSL with its 
own  LIM run-time.  The  interface  of  a  DS-PCL declares  keywords  for  the  so-called 
pointcut designators. For illustration, consider embedding a DS-PCL for ProcessDSL and 
the DS-JPM including service selection and service call join points. Such an embedding 
would include an EDSL interface, say IProcessPointcutDSL, declaring keyword methods 
service_call and  service_selection. The latter would be implemented in a 
class,  say  ProcessPointcutDSL that  uses  the  meta-model  classes  for  modelling 
pointcuts.  The  pointcut  expression  “service_call("get.*")  &  if_pcd 
{ external }” selects all service calls, where the operation name (one of the values 
in  the context  of  service  call  join  points)  matches  the  regular  expression "get.*"  and 
where the call is remote, which is reflected by testing the Boolean variable  external 
(also part of the context of a service call join point). The result of evaluating this pointcut 
expression would be a Pointcut object (class in aspect meta-model) that is composed 
of other Pointcut objects the sub-expressions in the pointcut.

Crosscutting composition takes place at run-time. When join points of the EDSL1 are 
fired at run-time to the aspect run-time (Figure 11 index 1), the latter calls match on the 
pointcut objects resulting from evaluating pointcut expressions defined in aspect modules 
and stored in  Aspect  instances,  passing the  fired  join point  that  as  a  parameter.  If  a 
pointcut matches, the closure associated to it is evaluated by the corresponding run-time.

1 IProcessDSL dsl = new ProcessInterpreter ();
2 dsl.eval(name:"EasyCreditProcess ") {

…
5 task (name:"getOffers") { 

…
8 offers[bank] = bank.call("getRate",[…]); 

}
…

} 

1 DSL pc_dsl = new ProcessPointcutDSL ();
2 DSL dsl = new SecurityDSL ();
3 DSL ccc = new CCCombiner (dsl,pc_dsl);
4
5 ccc.eval(){
6 around(service_call(".*") & if_pcd{ external })  
7 soapDocument = encrypt (soapDocument ,RSA);  
8 proceed();
9 decrypt(soapDocument );    
10 }
11 } 

(a) ProcessDSL code (b) An example aspect

soapDocument = encrypt (soapDocument ,RSA);
proceed();
return decrypt (soapDocument );

Figure 12 – Crosscutting composition example

For illustration,  Figure 12 (b), lines 5-11 shows an aspect that composes code to secure 
outgoing and incoming soap messages into any external service call point. The aspect 
specifies  that  the  code  in  the  gray  box  should  wrap  service  calls  by  means  of  the 
composition operator around/proceed (proceed can be thought of a place holder for the 
wrapped call). This aspect is evaluated by an instance of CCCombiner initialized with a 
ProcessPointcutDSL interpreter  and  a  SecurityDSL interpreter  (lines  1-3).  The 
interpretation  of  keywords  used  in  the  pointcut,  service_call,  external,  and 
if_pcd is  dispatched  by  ccc to  the  instance  of  the  ProcessPointcutDSL 
interpreter.  When  the  process  definition  in  Figure  12 (a)  is  evaluated  and  the 
interpretation of the bank service call at line 8 reaches the point where the corresponding 
web-service proxy is called, the control is passed to the aspect (Figure 12 (b), indicated 
by the arrow to the right),  because the call  matches the pointcut  of the aspect.  When 
executing  the  security  code  in  the  aspect,  security  operations  are  interpreted  by  the 
SecurityDSL interpreter. The context of the intercepted join point is also visible to the 
security code (e.g., SOAPDocument).
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1.8 EDSLs in MDSD
To integrate EDSLs with the model-driven approach, we have implemented a prototype 
integration of the EDSL implementation and the metamodeling framework EMF. As an 
alternative to develop a generator for EMF metamodel, one can use the generated Java 
classes of an EMF metamodel. To realize an EDSL. In a nutshell, the Ecore metamodel 
and  the  corresponding  EMF infrastructure  is  used  to  generate  Java  classes  from the 
metamodel. 

Next, the developer integrates the metamodel with the interpreter class in Groovy. The 
interpreter class is implemented using the same approach presented above, but it offers 
another method load which can be used to load a Reflective Ecore Model, which creates 
a metamodel instance that can be interpreted.

Figure 13 – The Interpreter for FsmDSL

21



4. Integration  of  MDSD-typical  DSLs  through 
Role-Based Language Composition 

In the previous section we discussed techniques for the implementation and integration of 
DSLs using an EDSL approach. We have seen that it allows for a rapid implementation of 
new DSLs but also comes with some drawbacks.  First,  EDSLs are  built  on top of  a 
general-purpose programming language which needs to provide special language features 
to enable proper embedding. Second, the syntax of the host language imposes restrictions 
on the DSL syntax. In this section we will discuss the integration of languages at the level 
of modelling languages where no general-purpose abstractions are available and concrete 
syntaxes  are  not  limited  to  textual  representations.  In  a  model-driven  software 
development process (MDSD) [Bet04][OMG03a] these languages are used during system 
design, but not for the final implementation of software. They can also be understood as 
DSLs, since the typically cover a specific domain of system design. 

Due to the domain-specificity of modelling languages, they are often used in combination 
to describe several design aspects of a software system. These need to be integrated to 
realize  a  coherent  executable  system  [BrLo07].  Therefore  artefacts  from  different 
domains need to be matched and composed.  In existing approaches this integration is 
typically realized during code generation  [Fujaba][Jenerator]. Artefacts are matched by 
names  and  generated  glue-code  bridges  the  gap  between  abstractions  of  different 
domains. This has several disadvantageous implications:

- The integration happens during code-generation time. Hence, inconsistencies in 
related models cannot be detected during system design.

- The relationships between different languages are defined only implicitly in the 
code generators.  We have no systematic  understanding of the overall  language 
infrastructure.

- Individual  languages  are  hard  to  reuse  and  re-combine  without  a  systematic 
consideration of language decomposition and composition.

- The integrated languages stay encapsulated syntactically and semantically. 

These issues raise the need for a systematic approach to safe composition of modelling 
languages.  We  need  to  provide  means  to  describe  relationships  between  modelling 
languages  at  the  level  of  language  specifications.  That  is,  we  describe  language 
composition  for  specifications  of  languages  not  specifications  (or  expressions)  in 
languages. 

Since modelling languages  address specific  aspects  of a system,  the concepts of their 
specifications  intertwine  in  a  crosscutting  way.  Therefore,  we  introduce  a  role-based 
approach for language composition. It employs the technique of role-modelling [Ree96]
[And97] to address the aspectual character of language specifications and allow for their 
invasive  superimposition.  In  the  following  we  will  discuss  the  foundations  of  this 
approach and its  prototypical  implementation  in the language  composition  framework 
LanGems Modeller. 

1.9 Foundation of Role-Based Language Composition
Considering  the  interaction  of  several  modelling  languages  during  the  design  of  a 
software system,  their  combination  can be again understood a  language itself.  In this 
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language the individual languages are used to realize a specific functional feature. W.r.t. 
the  composed  language,  we  call  a  modular  sub-language  realising  a  feature  in  the 
composed  language  LanGem.  This  notion  is  derived  from  the  terms  morpheme and 
lexeme: During the lexical analysis of a program, a lexeme describes the smallest unit in a 
parser's input stream. Morphemes denote the smallest entities with a defined semantics. 
Stretching this argumentation to the level of language specifications the term LanGem 
refers  to  a  self-contained  component  that  realize  a  particular  language  feature.  To 
compose  a  language  we  choose  from  a  collection  of  several  language  features  and 
describe the connection of the LanGems realising them. 

This section introduces the foundation of our role-based language composition system – 
LanGems Modeller. 

1.9.1 Constituents of our Language Composition System
In this section we will present the conception and realisation of our role-based language 
composition system which contributes means to define aspectual language specifications 
and compose them to integrated languages.

Figure 14 - Overview of the LanGems Composition System

Generally,  a  composition  system  is  a  triple  consisting  of  a  component  model,  a 
composition  language,  and  a  composition  technique [Ass03].  The  component  model 
describes  how components  – in  our case LanGems – look like and how they can be 
accessed. The composition language introduces the vocabulary used to describe concrete 
composition programs that specify the combination of several components to a system – 
in our case an integrated language. And finally,  the composition technique defines the 
technological background that actually realizes the composition.

Before  we introduce  the key concepts  of  our  language  composition  system  LanGems 
according to these constituents, we will have a look at its coarse structure (cf. Figure 14). 
The LanGems approach contributes a dedicated composition system for languages. The 
specification of the individual LanGems is based on the LanGems Module Specification  
Language that institutes the concepts of the LanGems component model. How several 
LanGems  are  combined  is  specified  in  a  composition  program  formulated  in  the 
LanGems Composition Language. This program is evaluated by a composition tool that 
implements  our language composition technique  and generates  an integrated language 
from several LanGems. 

Component Model
Every LanGem is built upon a concrete abstraction needed to describe the realisation of 
the  LanGems  language  feature.  This  concrete  abstraction  constitutes  the  LanGems 
component  model.  The  ongoing  research  in  the  area  of  Model-Driven  Software 
Development (MDSD)  [Bet04][OMG03a] introduced  metamodels as  an  adequate 
methodology to describe a language's abstraction. In comparison to abstract syntax trees 
(ASTs) traditionally used for compiler construction the graph-like structure of  abstract  
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syntax models (ASMs) allows representing references between language artefacts that are 
not  related  in  terms  of  the  natural  containment  hierarchy.  The  relevance  of  such 
references  is  indicated  by  examples  found  in  nearly  every  language:  consider  the 
relationship of a procedure call and the procedure declaration in a procedural language, 
the  references  between states  and transitions  all  contained  in  a  state  machine,  or  the 
definition of a classifier's property and navigation on this property in an OCL expression. 

Figure 15 - Metamodel of the LanGems Module Specification Language

We want to keep the LanGems decoupled. But their combined use for the specification of 
software  systems  necessitates  a  tight  integration  of  their  conceptualisations.  Every 
LanGem contributes a partial aspect of the system design and only their superimposition 
makes a coherent executable software. 

Therefore,  we  extended  the  Ecore meta-modelling  language  (cf.  Eclipse  Modeling 
Framework (EMF)  [BBM03])  with  additional  concepts  (cf.  Figure  15)  which  were 
inspired  by  the  paradigm  of  role  modelling  [Ree96][And97]:  The  abstract 
conceptualisation  of  a  LanGem  is  described  by  means  of  a  module  (Module)  that 
contains  a  collaboration between  natural  types (Natural)  and  role  types [Ste00] 
(Role). The types are distinguished by the fact that the identity and properties of naturals 
are found within the LanGem's application domain while roles describe generic variation 
points  in  the  LanGem's  collaboration.  Naturals  and  Roles  are  special  kinds  of  a 
metaclass  (EClass).  That  means,  their  properties  are  described  by  attributes 
(EAttribute) and their interrelations by associations (EReference). 

A number of considerations caused us to construct our component model upon the EMF 
Framework: The EMF type system provides advanced means to construct the abstraction 
a LanGem. EMF comes with a code generator to realize a Java implementation for EMF 
models.  This  code  generation  is  extensible  which  allowed  us  to  integrate  our  EMF 
extensions. The data and collection types shipped with the EMF standard library build the 
foundation  for  a  uniform  data  exchange  between  several  LanGems  which  is  a 
fundamental premise to build compatible language modules.

It is important to understand that role types establish a type interface that is used in the 
LanGem's collaboration for the specification of its concrete syntax and semantics. The 
variability of a role type lies in the way this interface is implemented, because role types 
obtain their identity, and some structural and semantic properties from objects of other 
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types – their role players (cf. the next section on composition technique for details on 
role players). The role's semantic requirements are specified in terms of role operations 
(RoleOperation) that introduce an explicit composition interface between role types 
and role players. So role operations hide both the structural and the semantic adaptation 
the role player. In the other direction the role types hide the inner workings of a LanGem 
from the outside but provide an explicit  composition interface to ensure semantic and 
structural safe compositions.

Composition Language
The  composition  of  several  LanGems  and  their  adaptation  for  interoperation  is 
externalized  to  a  dedicated  composition  program.  Thus,  a  maximal  independence  of 
solitary LanGems is achieved which allows their flexible combination and adaptation to 
allow for new combination of individual modelling languages. 

Figure 16 - Metamodel of the LanGems Composition Language

Figure 16 depicts the metamodel of the composition language used in LanGems. It is 
connected  with  the  metamodel  for  the  LanGems  Module  Specification  Language  to 
describe  the  combination  of  several  LanGems  using  the  concepts  defined  in  their 
specification.  Every  composition  program  defines  a  Composer which  consists  of  a 
number of Compositions each describing the integration of a generic LanGem with 
variation points (its role types) and an  extended LanGem that binds these variation 
points.  These  Compositions  comprise  several  RoleBindings  which  impose  a 
played-by relation between a natural type of the extended LanGem and a role type of the 
generic  LanGem.  The  adaptation  of  the  role  player  to  the  semantic  and  structural 
requirements of its role is described by means of RoleOperationBindings for every 
RoleOperation defined in the  Role.  These bindings can be specified using OCL 
expressions which declare the implementation of the role operation in the context of the 
role player.

Composition Technique
Since language composition describes the connection of several LanGems, a role binding 
is typically established between a role type of one LanGem and a natural type of another 
LanGem. This binding between a role and the role player constitutes our central operator 
for  language  composition.  It  results  in  the  superimposition  of  the  LanGem's 
collaborations and specifies a combined language. 
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Figure 17 – Graphical notation for LanGems Specification extending the syntax of 
UML class diagrams

Figure 18 - Generative role-binding pattern

As stated above, we use Java and EMF as implementation technologies for the LanGems 
System. Java has no concept to represent roles and role bindings in the language. Thus, 
we used the generator pattern shown in  Figure 18 to implement language composition. 
The left part of the Figure uses the notation introduced in  Figure 17 to describe a role-
binding between the  Form natural from a user interface LanGem and the  Activity 
role  from  a  statechart  DSL.  The  used  pattern  (shown  right)  implements  the 
superimposition  of  the  role  models  for  the  involved  LanGems  in  accordance  to  the 
composition program and consists of three layers: 

LanGem Type Interface Since the type interface specified in the LanGems component 
model is used during the specification of LanGem's syntax and semantics, it needs to be 
preserved during the composition. Therefore we generate the interfaces in correspondence 
to the role types and the natural types of the component model. In the generation step, 
role operations are simply mapped to normal operations. The role binding is mapped to an 
implements-relationship between the interface of the role player and the role interface. 

LanGem Implementation The implementation of the type interfaces is encapsulated in 
the classes in a second layer of the implementation pattern. This layer implements the 
functionality relevant within the collaboration of the according LanGem, for instance, the 
persistence of an ASM (abstract syntax model) instance, the EMF-API for programmatic 
ASM manipulation, or LanGem semantics that are implemented operationally in Java. As 
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stated above,  role types  have no own identity,  but  obtain their  identity from the role 
player. Hence, classes of role types are abstract and cannot be instantiated directly. 

Composition  Implementation The  third  layer  encapsulates  code  used  to  actually 
implement the role bindings described in the composition program. Role binding affects 
the implementation of the role playing classes, which also needs to implement the role 
specific part of the role interface.  This is done by delegating all  calls  to role-specific 
operations on the role player to a generated role adapter. This adapter extends the abstract 
implementation  of  the  role  type  and  therefore  derives  all  properties  of  the  role 
implementation. In addition, it implements the missing role operations according to the 
OCL expressions  given  in  the  composition  program.  The  role  playing  object  can  be 
accessed from the adapter via the association player. Thus this layer also encapsulates 
the adaptations between the role players and their roles.

1.10Constituents of a LanGem Specification
For our language composition approach we define a general structure of the constituents 
for the specification of a single LanGem. Clark et al.  [CSW08] define a language as a 
combination  of  abstract  syntax,  concrete  syntax,  and  semantics.  Since  we  aim  at 
composing LanGems of individual modelling languages, their specifications imitate this 
structure (cf. Figure 19). In the following we will describe the fundamental characteristics 
of these dimensions and their interrelation.

Figure 19 - Constituents of a LanGem Specification

Abstract  Syntax (AS)  The  concepts  of  the  LanGems's  domain  abstraction,  their 
properties  and relationships  establish  the foundation of every LanGem realisation.  As 
discussed in Section  1.9.1, the abstract syntax of a LanGem constitutes the component 
model  of  our  language  composition  system and the superimposition  of the individual 
component models is the technique used for language composition. Hence, the abstract 
syntax  specification  is  the central  artefact  of  a LanGem specification.  As depicted  in 
Figure 19, every individual LanGem contributes its own abstract syntax and – in relation 
to this – its semantics and its concrete syntax.

Concrete  Syntax (CS)  The  concrete  syntax  describes  how language  expressions  are 
presented to the user. The possible representations are manifold: Traditionally, we think 
of a textual syntax,  defined using a concrete syntax formalism like Extended Backus-
Naur Form (EBNF) [ALSU06]. In the area of MDSD languages, diagrammatic syntaxes 
gained importance and even the tree-based model editors found in current modelling tools 
(e.g. EMF [BBM03]) provide a concrete syntax for language expression. 

All concrete syntax formalisms have in common, that  they are explicitly or implicitly 
related to the abstract syntax of a language. Parsers transform a textual syntax into an 
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ASM  instantiating  the  language  metamodel,  diagram  editors  use  specific  graphical 
primitives  to distinguish model  entities  regarding their  abstract  types,  and tree-editors 
combine  a  graphical  representation  of  the  containment  associations  between  model 
entities with a textual and form-based representation of entity attributes and references.  

We integrated EMFText  [ETE09] to realize composable concrete syntax specifications. 
EMFText provides an EBNF-like syntax to define parsing rules for each natural type of a 
LanGem's  abstract  syntax  separately.  Thus,  the  granularity  of  the  concrete  syntax 
specification matches the granularity of a LanGem. The parsing rules directly reference 
properties and associations of the types to relate features of the abstract syntax and their 
textual representation. The type information for properties and associations contained in 
the abstract  syntax  is  used by EMFText  to  choose appropriate  parsing rules  for  non-
terminals in a rule's body: For attributes, regular expressions are used to parse their values 
w.r.t. the attributes primitive type, containment associations  [BBM03] are parsed using 
the  rules  for  the  associations  type  or  sub-types,  and  non-containment  references  are 
resolved  in  a  second parser  pass.  Since  the  composition  technique  used  in  LanGems 
preserves the type interface of the composed LanGems, the concrete syntaxes defined for 
individual  LanGems  can  be  combined  and  used  for  the  composed  language.  For  the 
composition of the concrete syntaxes of several LanGems their rule sets are combined. 
The transition between the rule sets is directed by the role-playing relationships that are 
specified between the LanGems during language composition. That means the concrete 
syntax of role types results from the concrete syntax of the natural types which play the 
role. Hence, the concrete syntax specification of a LanGem inherits its variability from 
the LanGem's abstract syntax. The composed EMFText specification is used to generate 
an ANTLR-Parser [Paa07] that directly builds instances of the integrated ASM. Currently 
we only support textual concrete syntaxes. However, we argue, that the technique applied 
for composing textual syntaxes can be easily expanded to other syntax representations.

Semantics (Sem) A language semantics describes computations over language constructs. 
We divide static semantics and execution semantics. Typically, modelling languages have 
their execution semantics defined in the transformation to an implementation language. 
We  will  have  a  detailed  discussion  on  the  composition  of  translational  semantics  in 
Section 1.3. 

Static semantics are applied for type checks in the ASM, to test the well-formedness of 
language expressions or in our special case to adapt domain abstractions from different 
LanGems. This needs to be done in a way the machine can interpret. Literature [Win93]
[CSW08] distinguishes  several  formalisms  often  for  this  purpose  (e.g.,  operational, 
denotational, translational, or extensional approaches).

Currently,  the  LanGems  Modeller  allows  for  two  ways  to  work  define  language 
semantics. First language expressions and role operation bindings can be specified by an 
operational semantics defined in Java. Second, OCL expressions can be used.
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1.11Classification  of  Role-Based  Language 
Composition

Figure 20 classifies our compositional approach for language integration in accordance to 
the  facets  introduced  in  Section  1.1.  Language  composition  invasively  merges  the 
concrete  syntaxes  of  the  involved  modelling  languages  in  accordance  to  a  given 
composition program. Non-invasive syntax integration is not feasible; because there is no 
central  host  language  whose  language  constructs  could  be  reused  for  language 
embedding. 

Figure 20 - Classification of Role-Based Language Composition

The semantic integration of the involved languages works non-invasively. It is expressed 
using  predefined  composition  interfaces  between  language  modules.  That  means, 
semantics of different languages interact only in anticipated ways. However, existing role 
modelling  approaches  used  in  software  engineering  provide  means  for  aspectual  and, 
thus, invasive semantic integration which will be adopted for our language composition 
approach in our future work. 

The  integration  of  multiple  languages  works  decentralized.  For  language  composition 
LanGems  are  connected  directly  by  role-playing  relationships.  A  central,  universal 
integration mechanism is not provided. 

1.12Composition  of  language  semantics  using 
ontological foundations

Language composition  case by case is  pragmatic  and often  the way of  choice to  get 
quickly to desired results. However, to foster reuse of existing composition specifications 
not only for concrete syntax integration and to ensure a maximum of reutilisation also on 
final  code  level  in  model-driven  development,  a  centralized  approach  to  language 
mediation  might  be  an  adequate  alternative.  This  section  describes  the  HybridMDSD 
approach that provides the Unified Software Modelling Ontology (USMO) [BrLo08] – a 
universal  ontological  conceptualisation  for  modelling  languages  –  acting  as  central 
semantic broker. 

In MDSD one distinguishes between conceptual modelling and platform modelling. The 
Object  Management  Group  (OMG)  [OMG03a] furthermore  distinguishes  platform-

29



independent  and  platform-dependent  models  to  abstract  from  concrete  technical 
realisations. Platform or technical languages and instantiating system models form the 
basis for successive generation or interpretation steps that lead to executable programs. 
Therefore, platform languages and their models employ a limited set of semantic concepts 
and  roles  that  can  be  described  in  a  conceptualization  for  software  systems.  Here, 
languages  and models  reference  themselves  and comprise  dependencies  between each 
other, as illustrated in Figure 21.
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Figure 21 – Inter-Model dependencies in MDSD

In  a  centralized  composition  approach,  the  meaning  of  dedicated  constructs  of  a 
modelling  language  may  be  mapped  to  concrete  concepts  and  roles  of  a  universal 
conceptualization. This way, each language and its instances obtains a semantics that was 
defined only once before and acts as a central interface for language composition.

Within the HybridMDSD project [COPL08], we followed this approach and defined the 
Unified  Software  Modelling  Ontology  (USMO)  [BrLo08],  which  serves  as  central 
conceptualization to capture the semantics of modelling language constructs. To this end, 
HybridMDSD is to be classified as centralized approach for language composition, which 
is dedicated to language semantic only.  An appropriate classification according to our 
scheme introduced in the section above, is illustrated in Figure 22.
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Figure 22 - Classification of the HybridMDSD approach

Our  ontology  contains  concepts  to  describe  structural  and  behavioural  aspects  of 
modelling languages semantics. This is comparable to above stated static and execution 
semantics.  Besides  the  advantageous  reuse  possibilities  through  a  central 
conceptualization, the semantics contained in our ontology can be used to derive certain 
composition patterns not only on modelling level but also on the level of actual program 
code. For instance, the knowledge about the sequential interaction of certain behavioural 
entities in different languages can be used to derive code patterns that  are potentially 
useful for the integration of artefacts that are generated from each language and according 
models.

To give a summarizing example for language mediation/-composition based on a central 
semantic interface, we consider the composition of a structural language, a behavioural 
language  that  facilitates  the  modelling  of  dynamic  semantics  and  a  user  interface 
language that represents various persistent structural entities. Figure 23 gives an informal 
overview about  the example.  The shown DSLs share concepts  and relations  with the 
ingredients of the example that discussed in more detail within the next section.

Figure 23 – Informal overview of the centralized composition of 3 DSLs
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The illustration shows sample models of languages for 1) user interface dialogs (view 
DSL), 2) data entities (data DSL) and 3) persistence services (action DSL). They 
are  interconnected  using  our  central  ontology  by  interpreting  specific  modelling 
constructs  in  terms  of  the  semantic  specification.  As  the  figure  shows,  the  example 
comprises  a  model  in  each  of  the 3 languages.  The view model  contains  a  graphical 
widget with a title, a text field and a save button. The data model contains a Survey 
business  object  with  a  title attribute.  The  action  model  contains  a  saveSurvey 
action which takes an argument of type Survey and persists that. The arrows in Figure
23 express the semantic connection between the different models: The widget from view 
model shows the  Survey business object and invokes the  saveSurvey action. The 
saveSurvey action furthermore modifies the Survey business object. 

1.13Composition  of  an  Exemplary  Language  to 
Describe Graphical Wizard Dialogues

In this section we discuss the application of the LanGems Modeller for the integration of 
three individual DSLs to define graphical wizard dialogues.

1.13.1 Requirements for the Wizard Dialogue Language
For the implementation of a software system often behavioural, structural, and semantic 
properties need to be specified. A typical example is the description of the page flow in a 
graphical  wizard  dialogue.  The  specifications  of  the  different  dimensions  typically 
involve very different conceptualisations. In the following we describe the design of an 
exemplary language to describe graphical wizard dialogues. This language is composed 
from three standard modelling languages.

Dialogue Execution Behaviour
A language for graphical wizards needs to provide means to specify the general dialogue 
execution. Wizards consist of several pages collecting a users input to achieve a standard, 
repetitive task. To structure this task in several logical sub-steps, wizards use pages that 
are passed in certain sequence. This sequence is not defined statically,  but depends on 
decisions of the user of the wizard. 

To  describe  this  overall  progress,  we  use  state  charts.  State  charts  are  a  common 
technique [SCXML][OMG03b] to represent finite automata and several implementations 
[ASCXML][Sam08] can be found Pages of the wizards are represented by States that are 
connected  through  Transitions describing  the  possibility  to  change from one  State to 
another. Every State can have several outgoing Transitions pointing to the States that can 
be reached next. 

Besides these core concepts of state charts, we identify variable concepts that have a clear 
semantics within the state chart but are additionally used to leave the domain of finite 
automata.  They  describe  variable  points  in  the  LanGems’  conception  where  it  can 
possibly be connected  with  other  LanGems during  language  composition:  During  the 
execution of the wizard one of the outgoing  Transitions is selected based on  Triggers 
send from the runtime context of system the chart is applied in. Activities are executed as 
long as the chart is in a special State. Their behaviour depends on the concrete area the 
state chart is applied in.  Guards describe additional conditions for passing a Transition. 
The  concrete  technique  used  to  describe  these  conditions  may  also  vary  with  the 
application. 
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Semantic Execution Constraints
In addition we need to define semantic constraints on the runtime state of the system to 
influence  the  dialogue  behaviour.  To  define  these  constraints  a  declarative  constraint 
language  (e.g.  OCL  [OMG03c])  could  be  applied.  It  allows  to  efficiently  describing 
conditions that need to be satisfied in the runtime context of the system to select a specific 
path in the wizard's page flow. 

User Interface Structure
The wizard language also need to provide domain-specific means to describe the user 
interface  (UI)  displayed  in  the  wizard  pages.  We  know  a  manifold  of  declarative 
specification  languages  (XUL  [XUL] and  XAML  [Mac08] which  have  been  found 
beneficial [BV04] for the specification of graphical UIs. Their domain-specificity reduces 
the semantic gap between interface design and realisation, they abstract from a concrete 
implementation platform, and their structure respects the figuration of the actual interface. 
Concepts typically found in UI-languages are: Form, Label, Text, Selection, and Button. 

1.13.2 Realisation of the Wizard Dialogue Language
For the realisation of the Wizard Dialogue Language we used the LanGems approach 
described in Section 1.8. First, we identified the LanGems according to the requirements 
defined above. They are depicted in Figure 24 which uses the notation depicted in Figure
17.
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Figure 24 - LanGems of the exemplary wizard dialogue language

The  statechart LanGem contributes the constructs of a state machine. A  Chart 
consists of a number of States and Transitions connected via the associations in 
and  out.  Transitions  are  associated  with  Triggers  and  Guards.  Triggers 
provoke state changes using  Transitions they belong to,  when all  Guards of the 
Transition hold.  Triggers, Guards, and the Activitys performed in a State 
represent  potential  variation  points  in  our  statechart LanGem and  are  therefore 
modelled as role types with appropriate role operations. 

The  ocl LanGem allows  the  specification  of  OCLExpressions.  For  means  of 
simplicity we restricted the representation of an expression to a purely textual format. 
This textual expression is fed into the Eclipse Model Development Tools (MDT) OCL 
Interpreter  [MDT08] for evaluation. A more advanced realisation of the LanGem is in 
preparation and will provide means to represent OCL expressions using their ASM.

The ui LanGem introduces concepts to describe the structure of a Form dialogue. For 
this  demonstration  it  is  restricted  to  very  basic  constructs  like  Buttons,  Text and 
Selection fields.  However,  the  LanGem can  easily  be  extended  to  support  more 
advanced user-interface elements.  
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Figure 25 - Composition Program for the exemplary wizard dialogue language

Figure  25 depicts  the  program  composing  the  three  LanGems.  It  uses  the  notation 
introduced  in  Figure  17.  The  statechart LanGem  realizes  the  integration  of  all 
sublanguages.  Therefore,  its  role  types  are  bound to  natural  concepts  from the  other 
LanGems. The  ocl LanGem and the  statechart LanGem are composed by using 
OCLExpressions for specifying  Guards in the state chart. Second, we compose the 
statechart LanGem and the ui LanGem: The Activity executed in a state of the 
wizard corresponds to opening the Form described with the UI-language and Buttons 
pressed  in  the  navigation  area  of  a  Form act  as  Triggers which  provoke 
Transitions.

The differing domain abstractions are adapted by the role operation bindings depicted in 
the Listing in Figure 25. 

Specification  and  Composition  of  LanGem  Syntax  and 
Semantics
Every  LanGem  introduces  a  special  conceptualisation  tailored  to  the  purpose  it  is 
developed  for.  This  eased  the  specification  of  its  concrete  syntax  and the  semantics. 
Figure 26 depicts the specification for the concrete syntax of the statechart LanGem. 
The rules use the EBNF-like syntax of EMFText: Rule heads refer to natural types they 
parse (e.g.,  Chart). Rule bodies use double-quoted strings to define terminal keyword 
tokens (e.g.,  ”chart”) and non-terminals to refer to references (e.g.,  elements) and 
attributes  (e.g.,  chartname)  of  the  natural  types.  This  connects  concrete  syntax 
elements and abstract syntax of a LanGem.
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Figure 26 - Specification of a concrete textual syntax for the statechart LanGem

Parsing rules for these non-terminals are derived from their types in the abstract syntax. 
For  instance,  to  parse  the  non-terminal  elements the  rules  for  State and 
Transition are  used  alternatively,  due  to  their  inheritance  relation  with  the  type 
Element (cf. Figure 24). 

Non-terminals  which refer to role-types  are handled likewise,  with the difference that 
they are bound to the parsing rules of their role players during language composition. 
This integrates the concrete syntax of the combined LanGems. For instance, due to the 
role binding between Form and Activity, the non-terminal do in State is bound to 
the parsing rule for Form (cf.  Figure 27. To derive a composed syntax specification for 
all LanGems, we combine their individual parsing rules.
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Figure 27 - Specification of a concrete textual syntax for the form LanGem

1.13.3  Application  of  the  Composed  Language  to  Specify 
Wizard Dialogues

Figure 28 shows the application of the composed wizard dialogue language. It specifies 
an exemplary wizard to manage arbitrary items in a stock of inventory. As highlighted in 
the listing, constructs from the LanGems used form an integrated language which allows 
specifying  different  concerns  of  the  software  system  using  a  well-suited 
conceptualisation.  The  composed  parser  translates  the  textual  representation  into  an 
instance of the composed ASM.

Generating implementation code from this model would result in a multi-stepped wizard 
dialogue as depicted on the right of Figure 28. Single dialogue pages are represented by 
screenshots taken from the running application. Arrows between a form button and a page 
describe  a  path  in  dialogue  flow  triggered  when  the  button  is  pressed.  The  OCL 
expressions annotated at these arrows specify the context conditions that must hold to 
walk the path. 
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Figure 28 - Example for the Application of the composed Wizard Dialogue 
Language
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5. Comparison of the different approaches
The presented approaches of building DSL and the different  levels  at  which domain-
specific  abstractions  are  used  have  their  advantages  and  disadvantages.  There  are 
differences in how close an implementation of a DSL is to the domain concepts and in the 
effort needed for DSL implementation. Here, we will discuss these differences.

1) Abstraction  Level: The  DSL engineering  approaches  takes  place  at  different 
abstraction levels  with differing premises for language composition.  In Section 
1.3, we have shown that at implementation level DSL embedding can be used for 
providing a specialized language infrastructure in general-purpose languages. In 
Section. 1.8, we have shown an approach for building DSL at the model level.

2) Language  Classification  or  Paradigm: The  languages  used  for  DSLs 
implementation  belong  to  different  classes  of  languages  or  follow  different 
paradigms.  Programming  languages  have  classifications,  such  as  functional  
programming,  object-oriented programming, visual programming, and so forth. 
Each of  these  languages  and their  paradigms have  been studied  for  years  and 
communities have revealed the advantages and disadvantages. In Section 1.3 we 
presented an approach to build DSLs by embedding them in host langauges. The 
selection of the right host language to base an embedded DSL implementation on 
should be driven by the requirements in language features and properties of the 
DSL under  design.  In  Section  1.8 we  have  discussed  how  to  build  DSLs  at 
modelling  level  where  often  no  general-purpose  abstraction  is  available.  Here 
dedicated languages are used to specify language semantics and syntax.

3) Language Features: In Section 1.4, we discussed different languages that can be 
used  for  implementing  EDSLs.  What  language  features  are  needed  to  allow 
embedding of DSL is not the only important question for selection an adequate 
host language. Another important question is what (other) language features the 
host language provides that could be valuable in the target domain. For example, 
dynamic languages could be advantageous if the set of domain types is not fix and 
if  we what  to  keep  the  set  of  domain  types  open.  For  example,  strong typed 
languages  allow  automatically  checking  certain  properties  of  DSL  programs 
written for the EDSL. Another question is when an embedding DSL whether the 
host language features are inherited to the embedded DSL or not. We know that 
we  cannot  reuse  all  features  in  most  languages  and  EDSL  implementation 
approaches. E.g., the concept of modules cannot be reused, when embedding a 
DSL using our EDSL architecture in Groovy or Ruby. This is because an EDSL 
program currently is implemented in a method body in which the languages do not 
allow to define new modules. Thus DSL program must implement a new module 
concept without reusing the existing module feature.  In Section.  1.8, discussed 
another way for reusing language features. We argued for modularising language 
specification in accordance to functional features and provided special techniques 
for  composing  these  modules  to  integrated  languages.  This  enables  reuse  of 
language features like name analysis and type checking among a family of DSLs.

4) Syntax  noise: When  embedding  a  language  into  a  textual  host  language,  the 
resulting EDSL syntax must be designed to conform to the host language syntax. 
In Section  1.5.2, we have discussed the concrete syntax noise in the POPART 
framework. Similar syntax noise exists for different host languages. The extend of 
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the syntax noise depends on how close the host language is to the DSL “ideal” 
syntax – the syntax one would define if the DSL would be implemented as an 
embedded DSL. Also the flexibility of the host language syntax is important, e.g., 
omissions of code fragments such as brackets can help to design the concrete DSL 
syntax  to  appear  closer  to  the  ideal  syntax.  In  Section  1.8,  we  showed  how 
language modules  can be integrated syntactically  by composing their  language 
parsers. The composed textual syntax has no noise.

5) Correctness and Safety: The different host languages differ in the correctness 
and safety that is provided in the EDSL implementation. In Ruby, DSL programs 
are implemented as scripts in which domain objects do not have a special type that 
is checked before running the DSL program. This allows writing DSL programs 
that  are  incorrect  and  that  evaluation  results  in  errors  at  run-time  [Ruby].  In 
contrast,  EDSL can  be  implemented  in  Groovy such that  types  are  optionally 
check or unchecked [Groovy]. Scala allows embedding a DSL in the type system, 
whereby  correctness  of  DSL  programs  can  be  checked  using  the  compiler 
[HORM08].  Also,  in  Omega  [She04]  other  constraints  not  only  types  can  be 
checked  for  embedded  languages,  this  can  be  used  to  automatically  guarantee 
domain-specific  properties.  The  language  composition  approach  presented  in 
Section  1.8 uses  a  type-safe  composition  pattern  that  integrates  languages  at 
abstract syntax level. Thus, the domain-specific type system and type checking 
defined for individual languages is preserved during composition.

6) Integrating Semantics: Another important difference is how the semantics are 
provided. For instance, the EDSL implementation approach presented in Section 
1.3 provides the semantics directly in the EDSL implementation. For integrating 
modelling languages semantically, Section 1.8 discusses a decentralized approach 
superimposing  partial  language  semantics  and  a  centralized  approach  for 
composing semantics using a universal conceptualisation. 

7) Reuse: POPART allows modular implementation of EDSLs of which each is an 
extension  of  the  host  language  syntax.  EDSLs  can  be  extended  with  new 
keywords  and  existing  keywords  can  be  overridden.  Moreover,  the  EDSL 
approach in JRuby, Groovy, and Scala allows reusing standard Java libraries and 
their semantics built-in. Reusing libraries is particularly effective as a large set of 
libraries are available. The LanGems approach presented in Section 1.8 separates 
LanGem implementation and language composition and, thus, allows for reusing 
modularized  language  features  and sublanguages  across  a  family  of  modelling 
languages. 

8) Composability: In  Section  1.1,  we  have  discussed  what  parts  of  modular 
language  implementations  can  be  composed.  While  certain  approaches  allow 
composing only the syntax,  other allows composing semantics  of the language 
implementation.

9) DSL Integration: An appropriate integration is needed to allow for embedding of 
EDSL  code,  transfer  objects  as  parameters,  and  passing  results  back.  Using 
Groovy for implementing EDSLs allows integration top of the Java platform. In 
contrast,  several  Ruby interpreters  exist  for  different  language  platforms.  This 
allows reusing, one EDSL implementation on different language platforms. Role-
based language composition is a flexible technique to embed sublanguages into 
modelling  languages,  to  enrich  them  with  generic  language  features,  and  to 
integrate several modelling languages to a coherent system specification.
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6. Conclusion
In this document, we have studied two orthogonal approaches of building DSLs and their 
advantages and disadvantages with respect to MDSD. We showed that embedded DSLs 
can be used to implement a MDSD-typical DSL rapidly. Further, we show that embedded 
DSLs and aspect-oriented programming can be used in concert. We also discussed how 
modular language engineering and language composition enables new reuse capabilities 
among modelling langauges with a slightly higher initial development effort. 

In future work we will further investigate how embedded DSLs can be integrated with 
MDSD more  tightly.  We will  elaborate  how good support  and  integration  should  be 
designed. We will study known problem with the DSL implementation approaches. In 
particular, we strive for reducing the runtime overhead that is due to EDSL execution and 
for improving the reuse of the language infrastructure.
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