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Magnetische Eigenschaften der

Orthooxovanadate (CoxNi1−x)3V2O8

Zusammenfassung

Die Orthooxovanadate der 3d Übergangsmetalle M3V2O8, deren Kristallstruktur als kagome stair-

case bekannt ist, weisen gerade aufgrund dieser bemerkenswerten Struktur interessante mag-

netische Eigenschaften auf. Obwohl diese Verbindungen für M=Co, Ni, Mn, Cu isostrukturell

zueinander sind, weichen sie in Bezug auf ihre magnetischen Phasenumwandlungen und Magnet-

strukturen deutlich voneinander ab. Da die magnetischen Ionen auf den Eckpunkten von eck-

verknüpften Dreiecken liegen, spielt geometrische Frustration in diesem System eine große Rolle.

Dies beschränkt sich nicht nur darauf, dass die antiferromagnetischen Strukturen verringerte geord-

nete magnetische Momente aufweisen, sondern anscheinend auch auf die ferromagnetische Struk-

tur des Co3V2O8, da sie mit 1.54 Bohrschen Magnetonen ein stark vermindertes Cobalt-Moment

aufweist.

Im Rahmen dieser Arbeit wurde eben jene ferromagnetische Struktur im Detail untersucht, und

es konnte gezeigt werden, dass das verhältnismäßig schwache magnetische Moment nicht Folge der

Frustration ist, sondern auf die starke Hybridisierung zwischen Cobalt- und Sauerstofforbitalen

zurückzuführen ist. Der ausgeprägte kovalente Charakter jenes Cobalt-Ions führt auch dazu, dass

die Sauerstoffionen infolge des Ladungstransfers mit Anlegen eines externen Magnetfelds signifikant

zur Magnetisierung beitragen.

Im zweiten Teil dieser Arbeit wurde die Mischreihe (CoxNi1−x)3V2O8 systematisch untersucht. Es

konnte ein detailliertes Phasendiagramm aufgestellt werden, in das die magnetischen Phasenumwand-

lungen in Abhängigkeit der Temperatur und der Zusammensetzung eingetragen wurden. Weiter-

hin konnte an einer ausgewählten Zusammensetzung von x=0.5 eine interessante Magnetstruktur

beobachtet werden, die sich stark von denen der Endglieder unterscheidet.





Magnetic properties of the kagome

staircase mixed system (CoxNi1−x)3V2O8

Abstract

The orthooxovanadates of the 3d transition metals M3V2O8, known as kagome staircase systems,

reveal interesting magnetic properties due to their crystal structure. Although these compounds

are isostructural for M=Co, Ni, Mn, Cu, they differ considerably with respect to their magnetic

phase transitions and magnetic structures. As the magnetic ions are situated on corners of corner-

sharing triangles, geometric frustration plays an important role in this system. This is not only

confined to the fact, that the antiferromagnetic structures exhibit reduced magnetic moments, but

apparently also to the ferromagnetic structure of Co3V2O8, which exhibits a strongly reduced Co

moment of 1.54 Bohr magnetons.

Within this work precisely this ferromagnetic structure has been investigated in detail and it

could be shown that the relatively weak magnetic moment does not result from frustration, but

is a consequence of the strong hybridization effects between the cobalt and oxygen orbitals. The

pronounced covalent character of this Co ion leads to the fact that due to the charge transfer the

oxygen ions significantly contribute to the bulk magnetization when applying an external magnetic

field.

The second part of the presented work deals with the systematic investigation of the mixed system

(CoxNi1−x)3V2O8. A detailed magnetic phase diagram could be drawn, in which the temperature

and composition dependent magnetic phase transitions have been pinpointed. Furthermore, an

interesting magnetic structure of a chosen composition of x=0.5 has been observed, which differs

considerably from those of the end members.
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1. Introduction

The transition metal orthooxovanadates M3V2O8 (MVO) (M = Ni, Co, Cu, Mn) have re-

cently attracted the interest of the scientific community due to their complex magnetic and

ferroelectric properties. Especially the compounds Co3V2O8 (CVO) and Ni3V2O8 (NVO)

have been in the focus of international research groups. The crystal structure of these

isostructural compounds is known for almost 40 years and has first been published by

Fuess et al. in 1970 [1]1 and three years later confirmed by Sauerbrei et al. [2]. The

MVO compounds crystallize in the orthorhombic space group Cmca and are characterized

by edge-sharing MO6 octahedra separated by VO4 tetrahedra (Fig. 1.1). This geometry

is interesting with respect to the magnetic properties as the magnetic ions form buckled

planes of corner-sharing isosceles triangles (Fig. 1.2) representing an anisotropic variation

of the ideal kagome net [3]. Within these buckled planes, the kagome staircases, M1 ions

on crystallographic (4a) sites, denoted as cross-tie (c) ions in the literature, link the linear

chains of M2 or so called spine (s) ions on (8e) sites, which are situated above and below

the M1 plane.

If a crystal lattice imposes a triangular arrangement of magnetic ions, an incompatibility

of their antiferromagnetic nearest neighbour interactions occurs, which is known as geo-

metrical frustration and has been subject of recent intensive experimental and theoretical

work. Highly frustrated systems like the spin-12 two-dimensional kagome net possess an

infinitely large number of classical ground states and remain disordered spin liquids down

to 0 K [4, 5]. Due to the zig-zag geometry of the kagome staircases, two inequivalent

magnetic sites and slightly different distances between them, the exchange interactions

between different nearest neighbours become anisotropic as well as supplementary im-

portant interaction pathways occur, which relieve the frustration and lead to long-range

ordered magnetic structures and interesting magnetic phase diagrams. The magnetic cou-

pling is mainly effectuated via a nearly 90◦ superexchange pathway between Mc-Ms and

Ms-Ms nearest neighbours, but further more complex intra- and interlayer coupling path-

ways exist, which play an important role for the temperature dependence of the magnetic

properties [6].

1Reference [1] uses a different notation for labeling the axes; space group Abam was used, so the a and c

axes are swapped.

1



1. Introduction

Figure 1.1.: Visualization of the buckled

planes of edge sharing MO6 octahedra

(McO6 light blue, MsO6 dark blue) iso-

lated by non-magnetic VO4 tetrahedra

(grey).

Figure 1.2.: A single kagome staircase

viewed along the b axis only showing

the magnetic ions on both crystallo-

graphic sites (Mc light blue, Ms dark

blue) revealing the corner-sharing isosce-

les triangles.

First results concerning the magnetic structure have been published before 1982 [1, 7], but

despite this interesting crystal structure it was only in 2002 that Rogado et al. continued

to focus on the magnetic properties of these materials [8, 9]. Magnetization measure-

ments showed that, despite their isostructurality, these compound exhibit quite different

sequences of magnetic phase transitions [6, 10–14]. Thus, Cu3V2O8 undergoes one mag-

netic phase transition [9], but much more complex behaviour can be observed for NVO and

CVO with a sequence of four [15] and five [6] magnetic phase transitions in absence of an

applied external magnetic field. Field dependent studies on single-crystals [11–13, 15, 16]

revealed highly anisotropic magnetic phase diagrams. It has to be stressed once again

that although these compounds are isostructural, the magnetic phase diagrams differ con-

siderably depending on the spin state of the magnetic ion reflecting the sensitive balance

between the many competitive magnetic interactions, which are possible in the kagome

staircase lattice. Recent work on Mn3V2O8 [17] revealed two magnetic phase transitions

at zero field and a rich magnetic phase diagram with seven different phases.

Partially substituting one type of magnetic ions with another, again leads to new mag-

netic properties, which differ from those of either end member. So it could be shown

in [11] for powder samples of the mixed system (CoxNi1−x)3V2O8 (CNVO) with x=0.25,

2



1.1. Aims of the thesis work

0.5 and 0.75 that only one magnetic phase transition occurs, which was revealed by mag-

netization measurements. Not less interesting is the fact that the magnetic structures

differ substantially despite their isostructurality. CVO reveals a ferromagnetic ground

state with intermediate antiferromagnetic phases modulated by a propagation vector with

a b∗ component [6, 13, 18], while NVO exhibits four different antiferromagnetic structures

modulated along a∗ [15, 19].

Further studies on the magnetic properties of CVO by implanted muons [20] and inelas-

tic neutron scattering [21] have been reported, while considerable work has been done

concerning the multiferroic properties of NVO [22–25].

1.1. Aims of the thesis work

One part of this thesis work is motivated by the discovery made in [11] concerning the

differing magnetic properties of the mixed system CNVO. In addition to the magnetization

experiments, neutron diffraction data have already been collected on a (Co0.5Ni0.5)3V2O8

powder sample. An a∗ modulation has been deduced, but the exact modulation and mag-

netic structure have not been understood. In this matter further neutron powder and

single crystal diffraction experiments will be performed.

The existence of only one magnetic phase transition has been deduced in [11] by magneti-

zation measurements and neutron powder diffractograms at three different temperatures.

This will be completed by heat capacity measurements, which will be done in cooperation

with Dr. Thomas Wolf from Research Center Karlsruhe (Institute of Solid State Physics).

It has already been observed in [11] that the Néel temperature varies as a function of

composition. This observation will be extended to the whole range of the mixed system

CNVO. In this concern, more powder samples with shorter steps in the composition pa-

rameter x will be prepared and investigated. Heat capacity experiments on the whole

range using single crystals will again be carried out with Dr. Thomas Wolf.

In order to elucidate the mechanism of the superexchange coupling in the kagome staircase

compounds, magnetization density maps will be deduced by measuring precise magnetic

structure factors using a single crystal of the pure Co compound. Due to its ferromag-

netic ground state it is suited to be investigated by the polarized neutron technique. The

accuracy of this method will permit to draw a detailed magnetization density map as a two-

dimensional projection. Directly from such a map information about the superexchange

and possibly supersuperexchange pathways, which would be manifest by magnetization

3



1. Introduction

on the V and O sites, could be deduced. The Co-O-Co superexchange coupling mecha-

nism will be investigated by performing an aspheric refinement on the observed magnetic

structure factors, which should yield the orbital occupations of the tg and e2g states.

A second approach to the magnetization density will be attempted by the Magnetic Comp-

ton Scattering method. This method, which is sensible to only the spin of the magnetic

moment, yields the spin density in momentum space as a one-dimensional projection on

the scattering vector. By measuring different directions the two-dimensional momentum

spin density will be reconstructed and correlated with the magnetization density obtained

by the polarized neutron method.

Additionally, ab initio calculations will be performed, which will be done in cooperation

with Dr. Mohamed Zbiri from the Institut Laue-Langevin. The calculation will furnish

system-specific electron wave functions for the different Co3d orbitals. As the square of

a wave function, which is occupied by an unpaired electron, represents the magnetization

density, this is an appropriate way to compare the observations with theoretical predic-

tions.

4



2. Special methodology and theory

2.1. Polarized neutron diffraction

The basis of classical polarized neutron diffraction (PND) is the determination of precise

magnetic structure factors, which can be used to map the distribution of unpaired spins

in magnetic materials. The fact that the strength of the interaction between neutron and

condensed matter is dependent on the orientation of the neutron spin is the principle idea

of polarizing neutron beams. The nuclear interaction is only neutron spin dependent, if

the scattering nucleus itself has a spin and if the spins of the nuclei are ordered, which

only applies to extreme conditions like very low temperatures in the mK region or very

high magnetic fields. Therefore, nuclear diffraction can be considered as spin independent.

In contrast, electron spins are much more easily ordered leading to an important neutron

spin dependence of the magnetic scattering.

The scattering cross-section of a spin polarized neutron beam contains an interference term

between the nuclear and the magnetic scattering, which changes sign when the neutron

spin direction is flipped. This interference already implies an important criterion for the

investigated materials: the nuclear and magnetic scattering have to contribute to the same

Bragg reflection, which is the case for ferromagnets and ferrimagnets, where the nuclear

and magnetic scattering densities have the same periodicity. But also the investigation

of paramagnetic materials is possible as soon as a magnetization has been induced by an

external magnetic field. The observed intensity of the diffracted neutrons with spin-up

or spin-down for a given Bragg reflection is proportional to the square of the sum or dif-

ference, respectively, of its nuclear structure factor (FN ) and magnetic interaction vector

(QM ) (Eq. 2.1)

I± ∼ (FN ± |QM |)2 = F 2
N ± 2p±FNQ

z
M +Q2

M , (2.1)

where 2p±FNQ
z
M is the aforementioned interference term with the polarization p± of the

spin-up and spin-down beam, respectively. The magnetic interaction vector QM (Eq. 2.2)

expresses the component of the magnetic structure factor, which is perpendicular to the

scattering vector k and therefore is effective in magnetic scattering.

5



2. Special methodology and theory

QM =
k

|k| × FM × k

|k| (2.2)

Qz
M , the component of QM along the magnetization direction, is the quantity which is

effective with respect to the neutron polarization. The geometry of the introduced vectors

can be seen in Figure 2.1.

Figure 2.1.: Geometrical definition of the vectors FM , QM , Qz
M , k and the angle α.

By measuring the flipping ratio R, which is the ratio between the spin-up and spin-down in-

tensity, one is able to express the magnetic structure factor as a fraction of the nuclear one

(Eq. 2.3) with the help of the geometrical relations QM = qFM and Qz
M = qQM = q2FM

(q = sinα) according to Fig. 2.1.

R =
I+

I−
=
F 2

N + 2p+FNFMq
2 + F 2

Mq
2

F 2
N − 2p−FNFMq2 + F 2

Mq
2
=
1 + 2p+q2γ + q2γ2

1− 2p−q2γ + q2γ2
, with γ =

FM

FN
(2.3)

As the magnetic structure factors are obtained by a simple ratio measurement, many

of the systematic errors which have to be taken into account for absolute measurements

cancel out. Another great advantage of this method is the sensitivity for small magnetic

moments, which can be emphasized by a simple example. Considering an in-plane reflec-

tion with q=1 and a magnetic structure factor which is a tenth of the value of the nuclear

structure factor i.e. γ = 0.1, the observed intensity using unpolarized neutrons would be

I ∼ F 2
N + F 2

M = F 2
N + 0.01F 2

N = 1.01F 2
N .

6



2.1. Polarized neutron diffraction

In contrast, for polarized neutrons the intensity of e.g. the spin-up neutrons is much higher

due to the interference term:

I+ ∼ (FN + FM )2 = F 2
N + 0.2F 2

N + 0.01F 2
N = 1.21F 2

N

This fact also allows a more precise measurement of weak magnetic reflections in higher

sin θ/λ regions.

A simple schematic arrangement of a polarized neutron diffractometer is depicted in

Fig. 2.2. Neutrons from a reactor source are monochromated and polarized by a mag-

Figure 2.2.: Simple schematic arrangement of a polarized neutron diffractometer [26].

netized crystal. Therefore, the monochromating crystal needs to possess a Bragg reflec-

tion, for which the nuclear structure factor is equal to the magnetic interaction vector.

In this case the intensity of neutrons whose spins are polarized parallel to QM will be

proportional to 2FN , while the intensity of the ones with antiparallel spins will be zero.

The monochromated and polarized beam passes through magnetic guide fields in order to

avoid depolarization by stray fields. A spin flipper is inserted between the monochromator

and the sample, which, when activated, reverses the direction of the neutron spins. The

sample is mounted on a two-circle diffractometer, which offers the possibility of applying

a vertical magnetic field. The measurement of flipping ratios is performed by positioning

the sample in a way that it diffracts the maximum intensity of a given Bragg reflection.

By turning the spin flipper on and off with a frequency of about 1 Hz fluctuations of the

neutron beam flux are compensated and the ratio between the intensities can be built

after correcting them for the background.

Further information can be found in [27] and [28].

7



2. Special methodology and theory

2.2. Magnetic Compton Scattering

2.2.1. Introduction to X-ray Compton Scattering

The well known Compton effect is an inelastic scattering process of a photon with an elec-

tron and obviously shows the partical-like behaviour of radiation (Fig. 2.3). The electron

taking part in the collision may gain or lose momentum after the transfer, which results

in a Compton shifted line in the spectrum. This line is Doppler-broadened along the di-

rection of momentum transfer, which is the scattering vector, due to the initial motion

of the electron. The observed quantity in a Compton scattering experiment is therefore

a one-dimensional projection of the momentum component along the scattering vector.

Direct three-dimensional information is only accessible by detecting the recoil electron

as well as the scattered photon in a complicated experiment, which is still in the devel-

opment stage. An indirect method, which allows to gain three-dimensional information

is the reconstruction of many one-dimensional projections obtained by different crystal

orientations with respect to the incident beam. As Compton scattering is an incoherent

interaction, the perfection of the single crystal is not critical, i.e. extinction effects, which

plague single crystal diffraction experiments, do not have to be considered.

Compton profile studies involve measuring changes in photon energy implying the need of

an incident beam with well-defined energy. Because of the weakness of the cross-section,

high flux is necessary. Furthermore, higher energies than the ones supplied by X-ray

tubes are necessary to overcome intensity losses due to photoelectrical absorption, coher-

ent diffraction and incoherent scattering. All these requirements are perfectly fulfilled by

synchrotron radiation. An absolute imperative for synchrotron radiation, however, is the

need of circularly polarized radiation in order to investigate spin densities, which will be

described in detail in Sec. 2.2.3, when dealing with Magnetic Compton Scattering (MCS).

For further information the interested reader is referred to [29] and [30].

2.2.2. Basic formulae

The basic formula for the Compton shift for a stationary target electron, which can be

derived by the application of conservation of momentum and energy, is given in Eq. 2.4

∆λ =
2h

mc
sin2

(

φ

2

)

=
h

mc
(1− cosφ), (2.4)

where ∆λ is the wavelength shift of the scattered photon and φ is the scattering angle.
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2.2. Magnetic Compton Scattering

Figure 2.3.: Schematic diagram of the Compton scattering interaction. The indices 1 and

2 refer to the photon properties (E energy, k wave vector, ǫ̂ polarization) before and after

the scattering process, respectively. p and σ denote the electron’s momentum and spin.

The symbol φ has been chosen instead of θ to clearly distinguish between the Compton

scattering angle and the Bragg angle. In situations where incoherent and coherent scatter-

ing may occur φ = 2θ. The remaining symbols have their usual meaning. For the purposes

of X-ray Compton scattering it is more useful to write Eq. 2.4 in terms of the energies of

the incoming and scattered photons, E1 and E2,

E2 =
E1

1 + (E1/mc2)(1− cosφ)
. (2.5)

From this equation one can understand the powerful energy loss mechanism of the Comp-

ton scattering process as for backscattering (φ = 180◦) the energy of the scattered photon

beam never exceeds 1
2mc

2 whatever the incident beam energy.

According to Fig. 2.3 the photon energy shift, i.e. the transferred energy to the electron

with initial momentum p, can be written as

E2 − E1 = ~ω =
1

2m
[p+ ~(k1 − k2)]

2 − |p|
2

2m

=
~

2q2

2m
+

~q · p
m

(2.6)

by using the energy and momentum conservation. The first term is simply the fixed Comp-

ton shift and the second term is a Doppler shift that depends on the component of the

electron momentum along the direction of momentum transfer, i.e. the scattering vector

q. If this direction shall be referred to as the z-axis, the Compton profile, J(pz), can be

9



2. Special methodology and theory

defined as

J(pz) =

∫ ∫

ρ(px, py, pz)dpxdpy, (2.7)

which is a one-dimensional projection of the probability distribution of the electron mo-

menta onto the z-axis, i.e. q. The probability function ρ(p) can be normalized by the

requirement that

∫

J(pz)dpz =

∫

ρ(p)dp = Z, (2.8)

where Z is the number of electrons per formula unit. Now ρ(p) is a probability density

just like ρ(r), so the Fourier transform of the first can be defined as

B(r) =

∫

ρ(p) exp(ip · r/~)dp, (2.9)

which is called the reciprocal form factor [31, 32] and is the counterpart of the familiar

X-ray form factor. Similarly, this quantity is to be deduced by a Compton scattering ex-

periment. The accessibility of this three-dimensional function becomes clear by combining

Eqs. 2.7 and 2.9 to

B(z) =

∫

J(pz) exp(ipzz/~)dpz. (2.10)

Eq. 2.10 states that the Fourier transform of a Compton profile represents a line through

the three-dimensional function B(r), i.e. this function can be reconstructed by measur-

ing a large number of directional Compton profiles. This procedure is called the direct

Fourier-transform method and was reported to be one of the most useful to reconstruct

momentum densities [33, 34]. Due to the finite number of values of Compton profiles

an approximate B(r) is obtained by interpolation at fine mesh points in position space.

Finally, the momentum space density can be deduced by the inverse Fourier transform of

B(r):

ρ(p) = (1/2π~)3
∫

B(r) exp(−ip · r/~)dr (2.11)

A fundamental concept of Compton scattering is the so called impulse approximation,

which requires that the transferred energy ~ω is large compared with characteristic ener-

gies ~ωc of the system [35]. The essence of the impulse approximation is that the scattering

10



2.2. Magnetic Compton Scattering

process is assumed to be so fast that the scattering atom has no time to rearrange itself.

As a consequence the transferred energy and momentum are so large that the recoil elec-

tron can be considered as free. Within the impulse approximation the double differential

scattering cross-section (DDSCS) simplifies to

d2σ

dΩdω2
=

(

dσ

dΩ

)

Th

m

~q
J(pz), (2.12)

where ω2 is the scattered photon frequency, Ω is is the scattered solid angle and
(

dσ
dΩ

)

Th

is the Thomson scattering cross-section arising from charge scattering.

2.2.3. Magnetic Compton Profile

In the case of MCS the magnetic field associated with the incident electromagnetic wave

interacts with the magnetic moment of the electron, which leads to a magnetic contribu-

tion to the charge scattering [35, 36]. The DDSCS is therefore extended by a magnetic

cross-section term (Eq. 2.13), which interferes with the charge cross-section term and stems

from only the spin part of the magnetic moment as the orbital part cancels out.

d2σ

dΩdω2
∝ |A(ǫ̂1, ǫ̂2)|2J(pz) + 2i{A∗(ǫ̂1, ǫ̂2)B(ǫ̂1, ǫ̂2,k1,k2,σ)}Jmag(pz) (2.13)

A and B stand for the amplitudes of charge and magnetic scattering, respectively, whose

squares correspond to their differential cross-section. The purely magnetic scattering am-

plitude is about a factor of (~ω/mc2) smaller than the charge scattering amplitude, i.e.

the detected intensity of the purely magnetic scattering will be of at least four orders

smaller when using photons of 10 keV (additionaly, the ratio of unpaired to total electron

number and the size of the magnetic moment have to be accounted for). The imaginary

part of the interference term denotes the different polarization behaviour of the charge and

magnetic scattering. Because of the factor i the magnetic contribution to the Compton

scattering will only be found experimentally if the polarization factors connected with

the magnetic scattering amplitude are complex or if the structure is non-centrosymmetric.

Complex polarization factors will occur, if the incident photon beam is circularly polarized.

A further important term in the cross-section of magnetic scattering is the spin-direction

with respect to the scattering geometry, which is

d2σmag

dΩdω2
∝ σ · (k1 cosφ+ k2). (2.14)

11



2. Special methodology and theory

For a backscattering geometry this means that the magnetic signal will be maximal, if

the sample is magnetized along the beam direction. The fact that the interference term

is proportional to the momentum density of unpaired-spin electrons [ρ↑(p) − ρ↓(p)] is

exploited in order to obtain a difference in the DDSCS on reversing the direction of the

sample magnetization, which only reverses the sign of the interference term. In doing so,

the Compton profiles of the respective sample magnetization states are subtracted from

each other yielding the Magnetic Compton Profile (MCP), which is defined as

Jmag(pz) =

∫ ∫

|χ↑(p)|2 − |χ↓(p)|2 =
∫ ∫

ρmag(p)dpxdpy (2.15)

with χ↑(↓)(p) denoting the momentum wave function of an occupied majority (minority)

spin state. Similar to the charge Compton profile the MCP is normalized to the spin

moment per formula unit:

∫

Jmag(pz)dpz =

∫

ρmag(p)dp = µS (2.16)

The relative contribution of the MCP to the total Compton profile is expressed by the

magnetic effect

M0 =
I+ − I−
I+ + I−

· 100%, (2.17)

where I+ and I− denote the intensity of the total Compton scattering with the magneti-

zation of the sample being parallel and antiparallel, respectively, to the scattering vector.

2.2.4. Experimental set-up

Figure 2.4 shows the experimental set-up for the determination of magnetic Compton

profiles. An insertion device called Elliptic Multipole Wiggler (EMPW) (a) is placed in a

straight section of the electron orbit between two bending magnets. An EMPW consists of

a well defined arrangement of periodic permanent magnets creating horizontal and vertical

magnetic fields. The resulting magnetic field on the beam axis causes the electrons to

follow an elliptic trajectory, which tangentially emit elliptically polarized radiation. The

doubly bent monochromator (b) selects a specified photon energy and focuses the beam

onto the sample (d), which is mounted between the poles of a C-shaped electromagnet (e)

and is magnetized along the incident beam direction in order to maximize the scattering

cross-section. By reversing the direction of the electromagnet’s current the reversal of the

12



2.2. Magnetic Compton Scattering

sample magnetization is effected. In order to reduce the background due to air scattering,

the sample is held inside vacuum, while an ion chamber (c) monitors the beam intensity. A

detector (f) usually placed at a scattering angle of almost 180◦ consists of several elements

circularly arranged around the diffracted beam. The experimental procedure consists

Figure 2.4.: Schematic diagram of a magnetic Compton profile measurement [29]. (a) The

insertion device (EMPW), (b) doubly bent focusing monochromator, (c) ion chamber, (d)

sample, (e) C-shaped electromagnet, (f) multi-element detector.

in recording the Compton profiles, i.e. to analyze the energy of the diffracted photons,

measured with the sample magnetization parallel and antiparallel to the beam direction.

The difference between these profiles yields one directional magnetic Compton profile. For

reconstructing the two-dimensional spin momentum density in a desired crystallographic

plane several directional magnetic Compton profiles have to be measured by rotating the

sample about a vertical axis. Beam decay and fluctuations are accounted for by switching

the magnetization in short intervals (few seconds) with a repetition of the cycle such

as [+−−+] and monitoring the diffracted photon intensity by detecting a fluorescence

and/or elastic peak from an element in the sample. It must be ensured that the sample

does not move when switching the polarization of the magnet, so that the photons impinge

on exactly the same position.
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2. Special methodology and theory

2.3. Group theory

Physical systems like e.g. crystal and magnetic structures are provided with a certain

symmetry, which needs to be reflected correctly in a mathematical way. In this regard

group theory has become a central mathematical tool for dealing with symmetry, and its

applications in physics have led to rich and fruitful consequences. In connection to solving

magnetic structures, group theory or representation analysis is used to obtain magnetic

configurations that are symmetry compatible rather than using the trial-end-error method,

which can be difficult and misleading especially for complex magnetic structures with a

large number of magnetic moments in the primitive cell.

The content of this chapter will be elucidated by using the space group Cmca as an example

in every subsection as it is the space group in which the (CoxNi1−x)3V2O8 compounds

crystallize in. For a complete description of group theory and its application to magnetic

structures see [37] and [38].

2.3.1. Definition of a group

A group G is a set of distinct elements g1, g2, . . . , gn, which are the symmetry operators

in the case of space groups. Any two elements gi and gj combined by an operation called

the group multiplication (◦) should satisfy the following four axioms:

• The set G is closed under multiplication: For any two elements gi and gj of G, their

unique product gj ◦ gi also belongs to G.

• The associative law holds:

gk ◦ (gj ◦ gi) = (gk ◦ gj) ◦ gi.

• There exists in G an element E which satisfies

E ◦ g = g ◦ E = g

for any element g ∈ G. Such an element E is called the identity element.

• For any element g ∈ G, there exists an element g−1 which satisfies

g−1 ◦ g = g ◦ g−1 = E,

where g−1 is the inverse element of g.

Groups containing an infinite number of elements are called infinite, while finite groups

have a finite number of elements, where the total number of elements corresponds the

order of the group.

The commutative law does not necessarily hold, but:
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2.3. Group theory

• If any two elements gi and gj of a given group G commute, i.e., if

gj ◦ gi = gi ◦ gj

holds, then such a group G is said to be Abelian.

The space group Cmca contains eight symmetry operators for the (000)+ set [39], hence

G = {E, 21,z, 21,y, 2x, 1̄, bxy, cxz,myz}. The symmetry operators correspond to the identity
element, a two-fold screw axis along z, a two-fold screw axis along y, a two-fold rotational

axis along x, an inversion center, a glide plane perpendicular to z with a translation along b,

a glide plane perpendicular to y with a translation along c and a mirror plane perpendicular

to x. The existence of the identity is trivial and the inverse element to any element is the

element itself, because g2
i = E. The fulfillment of the associative and commutative can be

deduced from the multiplication table (Tab. 2.1).

Table 2.1.: Multiplication table of space group Cmca.

E 21,z 21,y 2x 1̄ bxy cxz myz

E E 21,z 21,y 2x 1̄ bxy cxz myz

21,z 21,z E 2x 21,y bxy 1̄ myz cxz

21,y 21,y 2x E 21,z cxz myz 1̄ bxy

2x 2x 21,y 21,z E myz cxz bxy 1̄

1̄ 1̄ bxy cxz myz E 21,z 21,y 2x

bxy bxy 1̄ myz cxz 21,z E 2x 21,y

cxz cxz myz 1̄ bxy 21,y 2x E 21,z

myz myz cxz bxy 1̄ 2x 21,y 21,z E

The multiplication table of space group Cmca is diagonally symmetric, which directly

shows that it is an Abelian group.

2.3.2. Subgroups

H is a subgroup of G, if it is a group itself under the four axioms mentioned in the previ-

ous section and if all elements hi are elements of G. Both the single element {E} and the
group G itself are trivial subgroups of G. All other subgroups are called proper subgroups.

The space group Cmca has the following 14 proper subgroups:

{E, 21,z}, {E, 21,y}, {E, 2x}, {E, 1̄}, {E,bxy}, {E, cxz}, {E,myz},

{E, 21,z, 21,y, 2x}, {E, 21,z, 1̄,bxy}, {E, 21,z, cxz,myz},
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2. Special methodology and theory

{E, 21,y, 1̄, cxz}, {E, 21,y,bxy,myz}, {E, 2x, 1̄,myz}, {E, 2x,bxy, cxz}.

2.3.3. Cosets and coset decomposition

From every set of elements one can obtain a coset by multiplying it by a scalar or an

element not in the specific set. E.g., if the elements of the subgroup H = {1, 21,z} are
multiplied by 21,y on the right side, one obtains

H21,y = {1, 21,z}21,y = {21,y, 2x},

which is the right coset of H (the group multiplication symbol is omitted from this sec-

tion onwards). Similarly, the elements of H can be multiplied on the right side by 1̄ and

cxz, which yields the right cosets {1̄,bxy} and {cxz,myz}. One can see that all elements
of space group Cmca can be generated by right cosets, hence there exists a right coset

decomposition of Cmca with respect to the subgroup H:

Cmca = H +H21,y +H 1̄ +Hcxz, with H = {1, 21,z}.

As Cmca is an Abelian group the left coset decomposition is equivalent.

2.3.4. Conjugate elements or classes

Group elements, which are conjugate to each other can be classified into classes. An ele-

ment b is conjugate to a if there is a group element g so that

b = gag−1. (2.18)

With the help of the multiplication table (Tab. 2.1) one can evaluate Eq. 2.18 for every

combination of elements a and g, which is given in Tab. 2.2.

As every line consists of exactly one element, there exist no conjugate elements in space

group Cmca, i.e. every single element builds a class by itself resulting in eight classes. As

a consequence every subgroup H of Cmca is composed by classes, which is a characteristic

of invariant subgroups, because it satisfies the relation

gHg−1 = H (2.19)

for all elements g ∈ Cmca.
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2.3. Group theory

Table 2.2.: Calculation of Eq. 2.18.

E 21,z 21,y 2x 1̄ bxy cxz myz

E E E E E E E E E

21,z 21,z 21,z 21,z 21,z 21,z 21,z 21,z 21,z

21,y 21,y 21,y 21,y 21,y 21,y 21,y 21,y 21,y

2x 2x 2x 2x 2x 2x 2x 2x 2x

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄

bxy bxy bxy bxy bxy bxy bxy bxy bxy

cxz cxz cxz cxz cxz cxz cxz cxz cxz

myz myz myz myz myz myz myz myz myz

2.3.5. Representations of a group

Group G shall be a finite group of order nG consisting of the elements g1(= E), g2, . . . , gn

and Γ(gi) are square matrices associated with each group element gi. If the matrices sat-

isfy the homomorphism rule

Γ(gj)Γ(gi) = Γ(gk) (2.20)

for the corresponding relation of the group elements

gjgi = gk, (2.21)

then the set of matrices Γ(g1),Γ(g2), . . . ,Γ(gn) is called a representation of the group G.

To every Γ there exists an Ω with

Ω(g) = P−1Γ(g)P, (2.22)

where P is a permutation matrix, then Γ and Ω are said to be equivalent. The individual

matrices are called representation matrices and the size of the matrices is the dimension

d of the representation, which can also be expressed as

d = Tr[Γ(E)] =
∑

i

Γi,i(E). (2.23)

From two representations Γ1 and Γ2 of group G one can construct a representation of
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larger dimension, which results from the direct sum of Γ1 and Γ2

Γ(g) = Γ1(g)⊕ Γ2(g) =

(

Γ1(g) 0

0 Γ2(g)

)

(2.24)

with the dimension being dΓ = dΓ1 + dΓ2 . A representation with a structure like the one

in Eq. 2.24 is called reducible, which can be reduced or decomposed into Γ1 and Γ2. The

reduction can also be achieved due to an equivalence transformation. If no equivalence

transformation can achieve such a block-diagonalization like in Eq. 2.24, the presentation

is called irreducible.

A special reducible representation is the regular representation, which is defined by the

matrices

(Γreg(g))i,j = δ(g−1
i ggj), (2.25)

where δ(g) is 1, if g is the unit element and 0 otherwise. The rows and columns of the

matrices are specified by the numbers i and j attached to the group elements and only

those matrix elements i, j are nonzero for which gi = ggj holds. The dimension of the

representation is equal to the order of the group. The explicit form of the regular repre-

sentation matrices can easily be deduced from the multiplication table by replacing the

elements in the first row with their inverse elements. The matrix Γreg(g) is then obtained

by replacing all g in the table with 1 and filling the rest with 0. As the inverse elements of

space group Cmca are the elements themselves the multiplication table does not change.

Hence, e.g. Γreg(21,z) would be

Γreg(21,z) =

































0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

































. (2.26)

Every presentation can be brought into a unitary form by means of an equivalence trans-

formation. An important property of a unitary matrix is that its inverse is equal to its

conjugate transpose

(A−1)i,j = (A∗)j,i, (2.27)
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which simplifies calculations. Therefore, from now on every representation should be con-

sidered as unitary.

From the Schür lemmas important equations can be deduced, which are necessary to

construct irreducible representations.

• Schür’s first lemma

If ΓU and ΓV are two irreducible matrix representations of orders dU and dV of a

group G, A is a matrix of order dU × dV and

ΓU (g)A = AΓV (g) ∀g ∈ G (2.28)

is fulfilled, then A is either the zero matrix or a square matrix (U = V ) and the two

matrix representations are equivalent.

• Schür’s second lemma

If ΓU is an irreducible matrix representation of order dU and A is a matrix of order

dU × dU such that

ΓU (g)A = AΓU (g) ∀g ∈ G, (2.29)

then A is either the null matrix or a (complex) multiple of the unit matrix of order

dU × dU .

An outcome of the Schür lemmas is the orthogonality theorem (see Appendix A.1.1 for the

proof)

∑

g∈G

ΓU
j,l(g)

(

ΓV
n,m(g)

)∗
=
nG

dU
δUV δjnδlm, (2.30)

where δαβ is the Kronecker symbol (δαβ = 1 if and only if α = β and 0 otherwise).

2.3.6. Characters

A very important concept attached to any matrix representation Γ(g) is its character,

which is

χ(g) = Tr[Γ(g)] =
∑

i

Γi,i(g). (2.31)
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As the trace is invariant under circular permutation of matrices it is well suited to show

that two equivalent matrix representation have the same character and two matrix repre-

sentations with the same character are equivalent (see Appendix A.1.2). A second funda-

mental property is that the values of the characters χ(g) are common to all the conjugate

elements (see Appendix A.1.3).

The sum of χ(g) over the irreducible presentations yields important relations (see Ap-

pendix A.1.5 for the proof) like

∑

U

dUχ
U (g) = 0, for g 6= E (2.32)

and

∑

U

d2
U = nG, for g = E. (2.33)

From the orthogonality theorem (Eq. 2.30) the first orthogonality of characters (Eq. 2.34)

can easily be deduced by putting j = l, n = m and summing over j and n.

∑

g∈G

χU (g)
(

χV (g)
)∗
= nGδUV (2.34)

As the character is equal for every element ge in the class Ce one can write χe and sum

over the classes:

ncl
∑

e=1

n(Ce)χ
U
e

(

χV
e

)∗
= nGδUV , (2.35)

with ncl being the number of classes and n(Ce) the number of elements in the respective

class.

A second orthogonality theorem of characters can be deduced (see Appendix A.1.4), which

can be expressed by

∑

U

χU
e

(

χU
f

)∗
=

nG

n(Ce)
δef . (2.36)

If one defines a vector according to

20



2.3. Group theory













√

n(C1)χ
U
1 (g)

√

n(C2)χ
U
2 (g)

...
√

n(Cncl
)χU

ncl
(g),













(2.37)

then the scalar product of such vectors is simply the left-side of Eq. 2.35. As an ncl-

dimensional vector space can have at most ncl mutually orthogonal vectors, the number

of vectors nr, i.e. the number of representations, must not exceed the dimension ncl:

nr 6 ncl.

Similarly, a vector in nr dimensions can be constructed:













χ1
e(g)

χ2
e(g)
...

χnr
e (g).













(2.38)

The orthogonality of such vectors is expressed by Eq. 2.36 implying that the number of

vectors ncl does not exceed the dimension nr:

ncl 6 nr.

From these two requirements the important result

nr = ncl (2.39)

can be obtained, which means that the number nr of inequivalent irreducible representa-

tions is equal to the number ncl of classes.

2.3.6.1. Construction of character tables

All relations necessary to determine the characters of irreducible representations have been

derived:

1. The number of inequivalent irreducible representations nr is equal to the number of

classes ncl (Eq. 2.39):

nr = ncl.
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2. The sum of squares of the dimensions of inequivalent irreducible representations is

equal to the order nG of the group (Eq. 2.33):

∑

U

d2
U = nG.

3. First orthogonality of characters (Eq. 2.34):

∑

g∈G

χU (g)
(

χV (g)
)∗
= nGδUV .

4. Second orthogonality of characters (Eq. 2.36):

∑

U

χU
e

(

χU
f

)∗
=

nG

n(Ce)
δef .

5. Relation for characters resulting from class multiplication (Eq. A.26):

n(Ce)n(Cf )χ
U
e (g)χ

U
f (g) = dU

∑

w

cwefn(Cw)χ
U
w(g).

In many cases the first three rules suffice to create the character table. Group Cmca

consists of eight classes (see Sec. 2.3.4), which using (1) leads to eight inequivalent irre-

ducible representations. The order of group Cmca is nG = 8, so it can easily be deduced

from the second rule, that eight one-dimensional irreducible representations exist contain-

ing the identity representation with χ1(g) = 1. At this point an intermediate character

table can be constructed, which contains the so far deduced characters written in red

colour (Tab. 2.3). As g2=E for every element g, all characters must hold
(

χU (g)
)2
= 1 or

χU (g) = ±1. From (3) with U 6= V it follows that each row of the character table contains

four times 1 and four times -1. Respecting mutual orthogonality the character table can

be completed.
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Table 2.3.: Character table of space group Cmca.

E 21,z 21,y 2x 1̄ bxy cxz myz

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 -1 -1 -1 -1

Γ3 1 1 -1 -1 1 1 -1 -1

Γ4 1 1 -1 -1 -1 -1 1 1

Γ5 1 -1 1 -1 1 -1 1 -1

Γ6 1 -1 1 -1 -1 1 -1 1

Γ7 1 -1 -1 1 1 -1 -1 1

Γ8 1 -1 -1 1 -1 1 1 -1

2.3.7. Basis functions and projection operators

A set of functions {ψ1, ψ2, . . . , ψdU
} is called a basis for a representation ΓU , if

gkψj =

dU
∑

ı=1

ψiΓ
U
i,j(gk) (2.40)

holds, i.e., if the basis is closed within itself under the operations g ∈ G. Individual mem-
bers of the basis are called basis functions or basis vectors, which are symmetry-adapted

functions or vectors.

Such basis functions, which transform according to a unitary matrix ΓU (g) of an irre-

ducible representation, can be constructed by the method of projection operators. An

arbitrary function f contains, in general, components of various irreducible representa-

tions, which allows the decomposition

f =
∑

U

∑

j

cUj ψ
U
j , (2.41)

where the cUi are the coefficients of the expansion. When a projection operator defined by

OP U
i,j
=
dU

nG

∑

g∈G

(

ΓU
i,j(g)

)∗
g (2.42)

is applied to the above function f , it picks up the symmetry-adapted function ψU
i :

OP U
i,j
f = cUj ψ

U
i (2.43)
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2. Special methodology and theory

Thus, if the function f contains an irreducible component ψU
j , operation of the above

projection operator on f generates ψU
i . If not, Eq. 2.43 is zero. OPi,i

is the diagonal

projection operator that either gives a basis vector or nothing, while OPi,j 6=i
is a shift

operator that from a basis vector helps to generate the other basis vectors.

2.3.8. Application to the magnetic structures of (CoxNi1−x)3V2O8

For solving a magnetic structure it is absolutely necessary to know the crystal structure

of the investigated compound, i.e. the space group, in order to apply the techniques

deduced by group theory analysis. As a second step the periodicity of the magnetic

structure expressed by the propagation vector k has to be determined, because the group

G or little group Gk (magnetic subgroup of G) under consideration is dependent on the

type of k. With the help of the derived rules of Sec. 2.3.6.1 the character table can be

built, from which the irreducible matrix representations can be deduced. From the direct

product of the permutation representation Γperm and the axial vector representation Γvect,

representing the permutation of magnetic atoms and the orientation of their magnetic

moments due to the symmetry elements, respectively, one obtains the transformation-

induced matrix representations. These will then be decomposed again into a direct sum of

irreducible representations. Applying the projection operator technique on the irreducible

representations with respect to a given starting function yields the basis vectors, i.e. the

symmetry adapted vectors, which describe the magnetic modes.

2.3.8.1. Space group Cmca and atomic positions

As mentioned above the space group Cmca contains eight symmetry operators, which are

G = {E, 21,z, 21,y, 2x, 1̄, bxy, cxz,myz}. The magnetic ions M2+ occupy the Wyckoff sites

4a and 8e (Tab. 2.4).

2.3.8.2. Propagation vectors

For (CoxNi1−x)3V2O8 three different types of propagation vectors have been observed,

which are k1 = 0, k2 = (ka∗ , 0, 0) and k3 = (0, kb∗ , 0). For k1 all eight symmetry opera-

tors are compatible, hence Gk1
= G. If the propagation is nonzero, Gk may be a proper

subgroup of G, i.e. certain symmetry elements are not compatible with the propagation

vector. The condition for compatibility of a symmetry element g = {α|tα +Rn}, where α
denotes the rotational part (proper or improper) and tα, Rn its translational part, is that

it leaves the propagation vector invariant modulo a reciprocal lattice vector Kp, which

writes as
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2.3. Group theory

Table 2.4.: Reference atoms for the Wyckoff sites 4a and 8e. To every position (x, y, z)

the position (x+ 1
2 , y +

1
2 , z) exists due to the C-centering.

Site j Atom s x, y, z-Coordinates

(4a)
1 (0,0,0)

2 (0,12 ,
1
2)

(8e)

1 (1
4 , y,

1
4)

2 (3
4 , ȳ +

1
2 ,

3
4)

3 (3
4 , ȳ,

3
4)

4 (1
4 , y +

1
2 ,

1
4)

α∗k = k+Kp. (2.44)

Using Eq. 2.44 with all symmetry elements in combination with k2 and k3 yields the little

groups Gk2
and Gk3

(see Appendix A.2.1 for the individual calculations):

Gk2
= {E, 2x, bxy, cxz} Gk3

= {E, 21,y, bxy,myz} (2.45)

2.3.8.3. Irreducible matrix representations

Using the derived relations, which are summarized in Sec. 2.3.6.1, the character tables for

the different little groups can be built. Tab. 2.3 already represents the character table

of the vector group Gk1
with k1=0 describing the ferromagnetic structure of Co3V2O8.

Since the irreducible representations Γk,U are all 1-dimensional, they coincide with their

characters.

The character table for Gk2
can be constructed as easily as for Gk1

and is shown in

Tab. 2.5. In the case of Gk3
it has to be considered, that the symmetry elements 21,y

Table 2.5.: Character table of the little group Gk2
.

E 2x bxy cxz

Γk2,1 1 1 1 1

Γk2,2 1 1 -1 -1

Γk2,3 1 -1 1 -1

Γk2,4 1 -1 -1 1
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2. Special methodology and theory

and bxy possess a translational part of (01
20), which coincides with the direction of the

propagation vector. This fact is accounted for by applying a phase factor, which describes

the modulation of the magnetic moments along the direction of propagation (Eq. 2.46).

mljs =
∑

{k}

Skjs exp(2πikRl) (2.46)

mljs denotes the magnetic moment at a lattice point l of sublattice s of Wyckoff site j,

{k} is the star of k consisting of all vectors αik not differing by a reciprocal lattice vector,

Skjs is the Fourier coefficient and the exponential term containing the propagation vector

k and a lattice vector Rl represents the phase shift. The phase factor, with which the ir-

reducible representations Γk3,U (21,y) and Γ
k3,U (bxy), hence the characters χ

k3,U (21,y) and

χk3,U (bxy), have to be multiplied calculates as

ϕ = exp(2πikRl) = exp






2πi







0

kb∗

0













1
2
1
2

0












= exp(πikb∗) (2.47)

Tab. 2.6 shows the character table for Gk3
containing the phase shifts for the special

symmetry operators.

Table 2.6.: Character table of the little group Gk3
.

E 21y bxy myz

Γk3,1 1 exp(πikb∗) -exp(πikb∗) -1

Γk3,2 1 exp(πikb∗) exp(πikb∗) 1

Γk3,3 1 -exp(πikb∗) -exp(πikb∗) 1

Γk3,4 1 -exp(πikb∗) exp(πikb∗) -1

2.3.8.4. Transformation-induced matrix representations and reduction

As mentioned above the transformation-induced matrix representations for the different

sites are obtained by

Γkj = Γk,vect ⊗ Γk,perm
j . (2.48)

The two and four reference atoms (Tab. 2.4) for the magnetic sites 4a and 8e, respectively,
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2.3. Group theory

are the only ones required to uniquely define the magnetic structure. All the others are

related to these by the primitive translations of the C-centered lattice. The reference

atoms form a basis for the permutation representations Γk,perm
4a and Γk,perm

8e , which are of

dimension 2 and 4, respectively. Atomic positions are polar vectors, which are transformed

by a symmetry operator according to

x′ = αx+ tα. (2.49)

The transformation properties are shown in Tab. 2.7. It can easily be deduced that the

Table 2.7.: Transformation of the positions for the magnetic sites 4a and 8e.

4a 1 2 8e 1 2 3 4

E 1 2 1 2 3 4

21,z 2 1 2 1 4 3

21,y 2 1 1 2 3 4

2x 1 2 2 1 4 3

1̄ 1 2 3 4 1 2

bxy 2 1 4 3 2 1

cxz 2 1 3 4 1 2

myz 1 2 4 3 2 1

only nonzero traces of Γk1,perm
4a are for E, 2x, 1̄ and myz, while Γ

k1,perm
8e contains nonzero

diagonal elements only for E and 21,y:

χk1,perm
4a (E) = χk1,perm

4a (2x) = χk1,perm
4a (1̄) = χk1,perm

4a (myz) = 2 (2.50)

χk1,perm
8e (E) = χk1,perm

8e (21,y) = 4. (2.51)

The derived transformation properties and characters are also valid for Gk2
with the

exception that the symmetry elements not in the little group simply vanish. In the special

case of Gk3
, where the remaining symmetry elements do not generate the entire cell,

the M2 8e site splits into two orbits (orbit 1: atom 1 and 4, orbit 2: atom 2 and 3),

i.e. the permutation representations for the two orbits of 8e are of dimension 2. The

transformation properties of the two orbits are shown in Tab. 2.8. The atoms marked
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2. Special methodology and theory

by an asterisk are those, which are equal in the crystallographic point of view, but have

been translated by the C-centering translation vector after application of the symmetry

operator.

Table 2.8.: Transformation of the positions for the two orbits of the magnetic site 8e.

o1 1 4 o2 2 3

E 1 4 2 3

21,y 1∗ 4∗ 2∗ 3∗

bxy 4 1 3 2

myz 4∗ 1∗ 3∗ 2∗

Bearing in mind the phase factor the nonzero characters are

χk3,perm(E) = 2 and χk3,perm(21,y) = 2 exp(πikb∗). (2.52)

The permutation representations will now be decomposed into the irreducible representa-

tions according to

Γ
k,perm
j (g) =

⊕

U

nk,UΓ
k,U (g) with nk,U =

1

nGk

∑

g∈Gk

χk,perm
j (g)

(

χk,U (g)
)∗
. (2.53)

Using the obtained permutation characters (Eq. 2.51) and the character table (Tab. 2.3)

the coefficients nk,U can be calculated (see Appendix A.2.2) indicating how many times

Γk,U is contained in Γk,perm
j . For k1 one obtains for the different sites:

Γ
k1,perm
4a = Γk1,1 ⊕ Γk1,7, (2.54)

Γ
k1,perm
8e = Γk1,1 ⊕ Γk1,2 ⊕ Γk1,5 ⊕ Γk1,6. (2.55)

The direct sums of the irreducible representations give back the representations of dimen-

sion 2 and 4 as expected. It can be checked in Appendix A.2.2 that the reductions for Gk2

and Gk3
are
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2.3. Group theory

Γ
k2,perm
4a = Γk2,1 ⊕ Γk2,2 (2.56)

Γ
k2,perm
8e = Γk2,1 ⊕ Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4 (2.57)

Γ
k3,perm
4a = Γk3,2 ⊕ Γk3,3 (2.58)

Γk3,perm
o1

= Γk3,perm
o2

= Γk3,1 ⊕ Γk3,2 (2.59)

Now the transformation of the magnetic moments is taken into account. As the magnetic

moment is an axial vector, it transforms as a polar vector under rotation, but remains

invariant under the inversion. This is expressed by

S′ = η(α)αS = Γvect(g)S, (2.60)

where η(α) is the determinant of α. The transformation properties of magnetic moments

are depicted in Fig. 2.5 and listed for the symmetry operators of space group Cmca in

Tab. 2.9.

Figure 2.5.: Symmetry operators acting on axial vectors.
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Table 2.9.: Transformation of the components Sx, Sy and Sz of a magnetic moment S.

E 21,z 21,y 2x 1̄ bxy cxz myz

Sx −Sx −Sx Sx Sx −Sx −Sx Sx

Sy −Sy Sy −Sy Sy −Sy Sy −Sy

Sz Sz −Sz −Sz Sz Sz −Sz −Sz

Reductions of Γk,vect over the irreducible representations Γk,U yield

Γk1,vect = Γk1,3 ⊕ Γk1,5 ⊕ Γk1,7 (2.61)

Γk2,vect = Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4 (2.62)

Γk3,vect = Γk3,1 ⊕ Γk3,3 ⊕ Γk3,4 (2.63)

which is verified in Appendix A.2.3.

Finally, the transformation-induced matrix representations are obtained with the help of

further direct product reductions (see Appendix A.2.4):

Γk1

4a = (Γk1,3 ⊕ Γk1,5 ⊕ Γk1,7)⊗ (Γk1,1 ⊕ Γk1,7) = Γk1,1 ⊕ 2Γk1,3 ⊕ 2Γk1,5 ⊕ Γk1,7 (2.64)

Γk1

8e = (Γk1,3 ⊕ Γk1,5 ⊕ Γk1,7)⊗ (Γk1,1 ⊕ Γk1,2 ⊕ Γk1,5 ⊕ Γk1,6)

= Γk1,1 ⊕ Γk1,2 ⊕ 2Γk1,3 ⊕ 2Γk1,4 ⊕ Γk1,5 ⊕ Γk1,6 ⊕ 2Γk1,7 ⊕ 2Γk1,8 (2.65)

From Eq. 2.64 one can conclude that the basis functions for the irreducible representa-

tions Γk1,2,Γk1,4,Γk1,6 and Γk1,8, which are not contained in the reduction of Γk1

4a , are

necessarily zero. For all irreducible representation that appear twice in the reduction two

different sets of linearly independent basis vectors will have to be built.

Analogously the reduction of the transformation-induced matrix representations over the

irreducible matrix representations of the little groups Gk2
and Gk3

are

Γk2

4a = (Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4)⊗ (Γk2,1 ⊕ Γk2,2)

= Γk2,1 ⊕ Γk2,2 ⊕ 2Γk2,3 ⊕ 2Γk2,4 (2.66)
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Γk2

8e = (Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4)⊗ (Γk2,1 ⊕ Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4)

= 3Γk2,1 ⊕ 3Γk2,2 ⊕ 3Γk2,3 ⊕ 3Γk2,4 (2.67)

Γk3

4a = (Γk3,1 ⊕ Γk3,3 ⊕ Γk3,4)⊗ (Γk3,2 ⊕ Γk3,3)

= 2Γk3,1 ⊕ Γk3,2 ⊕ Γk3,3 ⊕ 2Γk3,4 (2.68)

Γk3

o1
= Γk3

o2
= (Γk3,1 ⊕ Γk3,3 ⊕ Γk3,4)⊗ (Γk3,1 ⊕ Γk3,2)

= Γk3,1 ⊕ Γk3,2 ⊕ 2Γk3,3 ⊕ 2Γk3,4 (2.69)

2.3.8.5. Deduction of the magnetic modes

The magnetic modes, which are the basis vectors for the irreducible representations, are

obtained by the projection operator technique. The basis vectors for each site are deduced

as

ψk,U
i,j = O

Pk,U
i,j

ψ =
dU

nG

∑

g∈G

(

Γk,U
i,j (g)

)∗
g ψ (2.70)

from a trial magnetic moment ψ = S = (S1x S1y S1z)
T . Since all the irreducible represen-

tations are one-dimensional only the calculation of ψk,U
1,1 is necessary. Using the respective

transformation properties of the 4a positions and spin components from Tab. 2.7 and

Tab. 2.9 one obtains

ψk1,1
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













+
1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













=
1

2













S1x

0

0






−







S2x

0

0












. (2.71)

Disregarding the prefactor, which anyway will be the refined parameter in the magnetic

structure refinement, the essential result for the basis vectors of irreducible representation
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Γk1,1 is an antiferromagnetic coupling along the x direction of atom 1 at (000) and atom

2 at (01
2

1
2), while the y and z components are zero. The same calculation for the 8e site

yields an antiferromagnetic G-mode for the y component (see Wollan-Köhler-Bertaut no-

tation [40] below):

ψk1,1
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S1x

S1y

−S1z






+ 1 ·







S2x

−S2y

−S2z













+
1

8






1 ·







S3x

S3y

S3z






+ 1 ·







−S4x

−S4y

S4z






+ 1 ·







−S3x

S3y

−S3z






+ 1 ·







S4x

−S4y

−S4z













=
1

4













0

S1y

0






−







0

S2y

0






+







0

S3y

0






−







0

S4y

0












. (2.72)

G = S1 − S2 + S3 − S4 (G-mode),

A = S1 − S2 − S3 + S4 (A-mode),

C = S1 + S2 − S3 − S4 (C-mode),

F = S1 + S2 + S3 + S4 (F -mode).

The n sets of basis vectors of all the respective irreducible matrix representations ob-

tained by the projection operator technique are listed in Tab. 2.10 (see Appendix A.2.5

for the respective calculations) and as mentioned above all the irreducible representations

appearing twice in the reduction possess two sets of linearly independent basis vectors.
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Table 2.10.: Basis vectors of the irreducible matrix representations of Gk1
.

4a 8e

Γk1,1 S1x − S2x 0 0 0 Gy 0

Γk1,2 0 0 0 0 Ay 0

Γk1,3 0 S1y − S2y S1z + S2z Gx 0 Fz

Γk1,4 0 0 0 Ax 0 Cz

Γk1,5 0 S1y + S2y S1z − S2z 0 Fy 0

Γk1,6 0 0 0 0 Cy 0

Γk1,7 S1x + S2x 0 0 Fx 0 Gz

Γk1,8 0 0 0 Cx 0 Az

The fundamental hypothesis of representation analysis is that the vectorial Fourier coef-

ficients Skjs are linear combinations of basis vectors, which is in a simplified form:

Skj =
∑

n

Cnψ
k,U,n
i,j . (2.73)

The coefficients Cn, which can be complex, are the refined parameters in the calculation

of the magnetic moments according to Eq. 2.46, which e.g. for Γk1,7 would be

ml,4a =
∑

{k}

Sk,4a exp(−2πikRl) = Sk,4a exp(−2πikRl) + S
∗
k,4a exp(2πikRl)

= 2Sk,4a = 2
∑

n

Cnψ
k1,7,n
1,1 = 2C1(S1x + S2x) (2.74)

and

ml,8e = 2 [C2(Fx) + C3(Gz)] . (2.75)

The basis vectors for the irreducible matrix representations of Gk2
and Gk3

are shown in

Tab. 2.11 and Tab. 2.12. The reference atoms 2 and 3 of the 8e site shall now be 2′ = 2+t

and 3′ = 3 + t, where t denotes the translation vector (1
2 ,

1
2 , 0). The renumbering is done

in order to have all the reference atoms at the same x-value, i.e. in phase.

It could be shown in the preceding chapters that a purely mathematical treatment based

on symmetry properties yields a manageable number of magnetic structure models, which
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have to be tested separately with the observed data. Due to the symmetry relations

between equivalent magnetic moments the number of refinable parameters is reduced sig-

nificantly.

Table 2.11.: Basis vectors of the irreducible matrix representations of Gk2
.

4a 8e

Γk2,1 S1x − S2x 0 0 Cx Gy Az

Γk2,2 S1x + S2x 0 0 Fx Ay Gz

Γk2,3 0 S1y − S2y S1z + S2z Gx Cy Fz

Γk2,4 0 S1y + S2y S1z − S2z Ax Fy Cz
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Table 2.12.: Basis vectors of the irreducible matrix representations of Gk3
.

4a o1(2)

Γk3,1 0 S1y + aS2y S1z − aS2z 0 S1(2)y + aS4(3)y 0

Γk3,2 S1x − aS2x 0 0 0 S1(2)y+aS4(3)y 0

Γk3,3 S1x + aS2x 0 0 S1(2)x+aS4(3)x 0 S1(2)z − aS4(3)z

Γk3,4 0 S1y − aS2y S1z+aS2z S1(2)x − aS4(3)x 0 S1(2)z + aS4(3)z
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2.4. Extinction

The complex phenomena of extinction is an effect, which severely plagues single crystal

diffraction experiments, because the application of its correction is connected to idealized

crystal models and to a compromise between different diffraction theories. The kinemati-

cal theory [41], which is derived from interference calculations for the waves scattered by

individual atoms, assumes that the diffracted amplitude is always small so the interaction

between the incident and the scattered waves can be neglected. This case cannot be ap-

plied to perfect crystals, whose lattices are coherent over a large region. The diffraction of

perfect crystals is described by the dynamical theory [42–47], while its application is rather

restricted. Therefore, as pointed out by Zachariasen [48], a general theory for extinction

needs to contain both theories as limiting cases.

The extinction effect itself is the attenuation of the incident as well as the diffracted beam

inside the crystal due to successive interaction between both. Within a perfect domain of

the crystal the scattered and transmitted beams act themselves as incident beams, which

are scattered or transmitted again. Accordingly, the beam Sp in Figure 2.6 can be thought

of as a superposition of the transmitted part of beam Sp−1 through plane p and the scat-

tered part of Tp at the same plane. The incident beam, which has already lost intensity

through scattering is thus further reduced in amplitude by the doubly diffracted beam,

which has a phase shift of π radians. This phenomena is called primary extinction and

leads to a much stronger attenuation compared to what would be expected by the kine-

matic theory even taking into account ordinary absorption. Primary extinction becomes

negligibly small when the mosaic blocks or the structure factor are very small.

In the case of a real crystal, which can be understood with the highly oversimplified concept

of an ideally imperfect crystal as depicted in Figure 2.7, the perfect domains extend only

to very small blocks. These blocks possess a mean radius and a distributed orientation so

that when one block is in the reflection position only a fraction of the others are oriented

likewise. The attenuation of the beam like for primary extinction is now effectuated by

whole blocks, which is called secondary extinction. But contrarily the intensity and not

the amplitude is reduced as the blocks do not scatter coherently because of being slightly

rotated and not necessarily distant by a lattice vector. Secondary extinction becomes

negligibly small when the misorientation of the blocks becomes sufficiently large or again

if the reflection is very weak.

In the two following sections the extinction models, which are implemented in the Cam-

bridge Crystallographic Subroutine Library (CCSL) [49] and in FullProf [50], will be elu-
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p+1
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Figure 2.6.: Scattering and transmission of respective beams S at planes p.

Figure 2.7.: Illustration of an ideally imperfect crystal by a distribution of slightly mis-

aligned blocks.
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2. Special methodology and theory

cidated.

2.4.1. The Becker-Coppens model

The widely accepted and applied model for extinction correction is the one developed by

Pierre J. Becker and Philip Coppens, which has been published in a tripartite publica-

tion [51–53]. Their theory is based on Darwin’s transfer equations for the manyfold energy

exchange between the incident and diffracted beams inside the crystal:

∂I0
∂x1

= −σ(I0 − I)

∂I

∂x2
= −σ(I − I0)

∂I0
∂x1

+
∂I

∂x2
= 0 (2.76)

with the boundary conditions

I0(M
0
1 ) = I0

I(M0
2 ) = 0. (2.77)

I0 and I represent the intensity of the incident and diffracted beam at a certain point

M(x1, x2) inside the crystal related to an external coordinate system after having been

rescattered at N(u1, u2) (see Fig. 2.8), I0 is the incident intensity before the beam enters

the crystal. σ defines the diffraction cross-section per unit volume and unit intensity,

which is given by

σ(ǫ1) = I−1
0 v−1Pk(ǫ1) = I−1

0 v−1R2
0

∫∫

Ik(ǫ)dǫ2dǫ3, (2.78)

where Pk(ǫ1) and Ik(ǫ) are the detected power and intensity at a distance R0 in the kine-

matical approach in dependence on the primary (ǫ1) and secondary (ǫ2, ǫ3) divergence.

Finally, Ik writes as

Ik(ǫ) = I0

∣

∣

∣

∣

FK

R0

∣

∣

∣

∣

2 ∣
∣

∣

∑

L

exp(2πiλ−1
ǫ.L)

∣

∣

∣

2
(2.79)

with the structure factor F , the polarization factor K, the wavelength λ and a lattice
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2.4. Extinction

Figure 2.8.: Section of the crystal in the diffraction plane indicating a point M(x1|x2)

inside the crystal.

vector L. σ(ǫ1) is considered to be constant over the crystal volume and only dependent

on the average domain size and shape. The quantity Q, the average cross-section per unit

volume, is obtained by integrating σ(ǫ1) over ǫ1, which results in

Q =

∣

∣

∣

∣

FK

V

∣

∣

∣

∣

2

λ3/ sin(2θ). (2.80)

The kinematical integrated intensity Pk is:

Pk =

∫

Pk(ǫ1)dǫ1 = I0vQ. (2.81)

So if extinction effects are present, the observed integrated intensity P reduces to

P = Pk · y (2.82)

with y being the extinction factor, which needs to be calculated. By solving the trans-

fer equations with an ansatz of the form I(x1, x2) = a(x1, x2) exp(−σx2) or I0(x1, x2) =

b(x1, x2) exp(−σx1) one can express the diffracted beam intensity at point M(x1|x2) after

the beam has been rescattered at N(u1|u2) (Appendix A of [51]):
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2. Special methodology and theory

I0(x1, x2) = I0 exp[−σ(x1 − x0
1)]

+ σ2{exp[−σ(x1 + x2)]

∫ x1

x0

1

du1

∫ x2

u0

2

I0(u1, u2) exp[σ(u1 + u2)]du2} (2.83)

Using 2.78 with I0(x1, x2) and the beam path length MM1
2 the power of the diffracted

beam writes as

P (ǫ1) = σ

∫

v
I0(x1, x2) exp[−σ(x1

2 − x2)]dv. (2.84)

One can define a function ϕ(σ) so that

P (ǫ1) = I0vσϕ(σ) = Pk(ǫ1)ϕ(σ). (2.85)

Integrating Eq. 2.85 over ǫ1 with the help of

∫

f(x)g[h(x)]dx =

∫

f(x)dx

∫

h(x)g[h(x)]
∫

h(x)dx
(2.86)

yields with Eq. 2.82

y = Q−1

∫

σϕ(σ)dǫ1. (2.87)

Therefore, the extinction factor is dependent on the functions ϕ(σ), which describes the

manyfold rescattering before point M is reached, and σ(ǫ1), which has to be evaluated

for different crystal shapes in dependence on the mean domain radius and mosaicity. The

function ϕ(σ) can be obtained by using Eq. 2.83 p iterative times, which accounts for 2p-

fold energy exchange between the incident and the diffracted beam. As Eq. 2.83 contains

a quadratic term in σ each iteration adds a term in which the power in σ is increased by

2. Hence, ϕ(σ) can be expressed as a power series in σ (Appendix B of [51]):

ϕ(σ) = 1− σt(1) +
σ2

2!
t(2) + . . .+ (−1)nσ

n

n!
t(n) + . . . (2.88)

with the total beam path length

t(n) =
n

∑

j=0

(

n

j

)2

v−1

∫

v
dvtj1t

′n−j
2 , (2.89)
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2.4. Extinction

where t1 and t
′

2 represent the distances M
0
1M and MM1

2 , respectively. Assuming a crys-

tal with a convex limiting surface the diffracting cross section σ(ǫ1) can be expressed as

(Appendix C [51])

σ(ǫ1) = Qv−1

∫

v
dv · α · sin

2(πǫ1α)

(πǫ1α)2
, (2.90)

where

α = l sin(2θ/λ) (2.91)

with l being the thickness of the crystal parallel to the diffracted beam. In order to include

secondary extinction effects the misorientation angle η of the various crystallites has to be

taken into account. Hence, the deviation of the ideal Bragg angle is now (ǫ1 + η) and the

diffracting cross-section becomes

σ̄(ǫ1) =

∫

σ(ǫ1 + η)W (η)dη, (2.92)

where W (η) is the angular distribution of the misorientation. Eq. 2.92 corresponds to

a convolution of σ and W and represents two broadening effects on the reflection curve,

which are the mean particle size t̄ and the mean angular misorientation g, respectively. As

Eqs. 2.76 describe the transfer of intensity they are physically more realistic for treating

secondary extinction, where the diffraction is incoherent due to the misorientation of the

crystallites. In the case of primary extinction, which is characterized by the interference of

coherently scattered beams, they are, however, a reasonable approximation. In practice,

the complicated Eq. 2.87 is reduced to an analytical expression by fitting Eq. 2.93 to the

numerically obtained values.

yi =

{

1 + 2xi +
Ai(θ)x

2
i

1 +Bi(θ)xi

}−1/2

(2.93)

The index i is p or s for primary or secondary extinction, respectively. The functions xi,

Ai(θ) and Bi(θ) are given below [ᾱ is the mean value of α (Eq. 2.91), G and L stand for

Gaussian or Lorentzian crystallite distributions, T̄ is the mean path length through the

whole crystal].

xp =
2

3
Qᾱt̄ (2.94)
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xs =
2

3
QαG,LT̄ (2.95)

αG = ᾱ/

(

1 +
ᾱ2

2g2

)1/2

(2.96)

αL = ᾱ/

(

1 +
2ᾱ

3g

)1/2

(2.97)

Ap(θ) = 0.2 + 0.45 cos 2θ (2.98)

Bp(θ) = 0.22− 0.12(0.5− cos 2θ)2 (2.99)

As,G(θ) = 0.58 + 0.48 cos 2θ + 0.24 cos2 2θ (2.100)

Bs,G(θ) = 0.02− 0.025 cos 2θ (2.101)

As,L(θ) = 0.025 + 0.285 cos 2θ (2.102)

Bs,L(θ) = 0.15− 0.2(0.75− cos 2θ)2 if cos 2θ > 0 (2.103)

Bs,L(θ) = −0.45 cos 2θ if cos 2θ < 0 (2.104)

The final approximation for the extinction factor y is

y ≃ yp · ys. (2.105)

An application of the Becker and Coppens model to the treatment of flipping ratios has

been reviewed in [54]. The transfer equations (Eqs. 2.76) for the intensities of the two

different spin states [55] can be expressed as

∂I+
0

∂x1
= −σ̄+I+

0 + σ̄++I+ + σ̄−+I−

∂I+

∂x2
= −σ̄+I+ + σ̄++I+

0 + σ̄−+I−0

∂I−0
∂x1

= −σ̄−I−0 + σ̄−−I− + σ̄+−I+

∂I−

∂x2
= −σ̄−I− + σ̄−−I−0 + σ̄+−I+

0 , (2.106)

using the Becker and Coppens notation, where again I±0 and I± refer to the incident and

diffracted intensities, + and − indicates the spin state of the neutrons. Here σ̄ij denotes

the diffracting cross-section for an incident neutron in spin state i to be diffracted in spin
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state j. σ̄+ and σ̄− represent the total diffraction cross-section for incident neutrons in a

given spin state according to

σ̄+ = σ̄++ + σ̄+−

σ̄− = σ̄−− + σ̄−+. (2.107)

In contrast to the unpolarized neutron case the diffraction cross-sections σ̄ij differ from

each other by |F ij |:

σ̄++(ǫ1) = χ(ǫ1)|F++|2 = χ(ǫ1)|FN + q2FM |2

σ̄−−(ǫ1) = χ(ǫ1)|F−−|2 = χ(ǫ1)|FN − q2FM |2

σ̄+−(ǫ1) = σ̄−+(ǫ1) = χ(ǫ1))|F+−|2 = χ(ǫ1)|FM |2q2(1− q2), (2.108)

where χ(ǫ1) is a Lorentzian or Gaussian function of ǫ1 and q is the geometrical factor de-

scribed in Sec. 2.1. Generally, the cross-section σ̄+− is very small and the values of q2 are

close to 1, so that if σ̄+− is assumed as zero, Eqs. 2.108 reduce to Eqs. 2.76 and a solution

can be found in the same manner like for the unpolarized case. If the perturbing effect of

the spin-flip term is too big, it can be corrected by a method described in the Appendix

of [55], where the intensities I+ and I− are expressed as Taylor-series expansions around

x = 0 only keeping terms up to second order.

Finally, the observed flipping ratio R can be calculated by correcting the kinematical flip-

ping ratio Rk according to

R = Rk
y+

y−
, (2.109)

where both y+ and y− fulfill the assumption of Eq. 2.105. The correction factor of sec-

ondary extinction for a Lorentzian distribution of crystallites, which is commonly the case,

is given by

y±s =

∞
∑

n=0

(

−QαLyp

3

)n (

2n

n

)

T (n)

n!
with αL =

(

λ

t̄ sin 2θ
+

2

3g

)−1

(2.110)

The different correction factors for the two spin states originate from the different values

of Q, which contains the structure factor (see Eq. 2.80). The correction factor y±p for

primary extinction remains the one given in Eq.2.93.
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2.4.2. The extinction model implemented in FullProf

The extinction model used in FullProf is an empirical model and represents a compro-

mise to cover both primary and secondary extinction. It is also implemented in the Shelx

program [56] and has shown to work well in practice, although the expression for the

extinction factor does not correspond to any of those in the literature. The extinction

factor, which is most similar to the treatment in [57], is given by

y =

(

1 +
0.001xF 2

c λ
3

4 sin(2θ)(sin θ/λ)2

)− 1

2

, (2.111)

where x is the refinable isotropic extinction parameter and Fc is the calculated structure

factor.

FullProf is complemented by an anisotropic extinction model, where the isotropic param-

eter x is replaced by xaniso, a tensor acting subsequently on the scattering vector (hkl):

xaniso =













x11 x12 x13

0 x22 x23

0 0 x33













h

k

l



















h

k

l






= x11h

2+x22k
2+x33l

2+x12hk+x13hl+x23kl.

(2.112)

By applying this formalism and refining the parameters xij one can empirically correct

extinction effects, which can vary considerably for different families of (hkl) reflections.

The extinction correction for flipping ratios used in FullProf is based on the formalism

presented in [54]. The observed flipping ratio for centrosymmetric crystal structures (real

structure factors) is written as

R =
(F 2

N + q2F 2
M )p+

p + 2q2FNFMp
+
m + (1− q2)q2F 2

Mypm

(F 2
N + q2F 2

M )p−p + 2q2FNFMp
−
m + (1− q2)q2F 2

Mypm
(2.113)

with the correction terms

p±p =
1

2

[

(1± p)(1 + 0.001I+λ3xaniso

4 sin2(θ/λ) sin(2θ)
)−1/2 + (1∓ p)(1 + 0.001I−λ3xaniso

4 sin2(θ/λ) sin(2θ)
)−1/2

]

(2.114)

p±m =
1

2

[

(1± p)(1 + 0.001I+λ3xaniso

4 sin2(θ/λ) sin(2θ)
)−1/2 − (1∓ p)(1 + 0.001I−λ3xaniso

4 sin2(θ/λ) sin(2θ)
)−1/2

]

(2.115)
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ypm = (1 +
0.001(1− q2)q2FMλ

3r

4 sin2(θ/λ) sin(2θ)
)−1/2, (2.116)

where p is the beam polarization and I± are the uncorrected intensities for a spin-up and

spin-down beam, respectively (see Eq. 2.1).
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2.5. Molecular orbitals and basis sets

For describing the electronic properties of a molecule or an isolated cluster it is not suf-

ficient just to consider atomic orbitals (AOs) as bonding effects play a considerably large

role in the deformation of valence orbitals due to hybridization. Thus it is more reasonable

to use molecular orbitals ψ(r) (MO), which are the linear combination of basis functions

φ(r) emerging from the AO wave functions with respect to a certain basis set:

ψi(r) =
∑

j

cjφj(r) (2.117)

In principle, any set of mathematical functions can be used, since the coefficients cj of

the basis functions in the final MO are selected by the variation function to minimize the

selc-consistent field (SCF) energy, i.e. inadequate basis functions will simply appear with

small or zero coefficients. However, the choice of the basis set will depend on the atoms

and properties to be studied. The first basis sets were developed by J. C. Slater, who used

Slater-type orbitals (STOs) [58], whose general expression is given as

s = N exp(−ζr). (2.118)

STOs are quite accurate, but very tedious in calculation. S. F. Boys came up with an

alternative when he developed the Gaussian-type orbital (GTO) [59]:

g = N exp(−αr2) (2.119)

The difference between the GTO and the STO lies in the radial dependence. The GTO

squares the radius so that the product of two Gaussians is another Gaussian (Gaussian

Product Theorem), which makes the equations easy to handle and reduces computational

effort. The loss of accuracy is compensated by combining several Gaussian equations.

The general equation for a GTO g is given by

g(x, y, z, α) = Nxmynzo exp(−α[x2 + y2 + z2]), (2.120)

where N is a normalization factor and α is the orbital exponent. The variables x, y and

z are cartesian coordinates. The quantities m, n and o are not quantum numbers but

simply integral exponents at cartesian coordinates. When m + n + o = 0, then g is said

to be a s-type Gaussian function; when m+ n + o = 1, then g is a p-type Gaussian; and
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when m+ n+ o = 2, then g is a d-type Gaussian.

Minimum basis sets simply consist of one basis function for every AO under consideration,

thus this concept is not very suited to describe molecular charge distributions. The small-

est basis set, which should be used to account for bonding effects, is a Split Valence Basis

(SVB). In this set the inner shell atomic orbitals are built by a single contracted Gaussian-

type orbital (CGTO), while the valence shell is described by two basis functions. This

concept bears the advantage of a more accurate representation of the actual orbital due to

increased flexibility. Widely used SVB sets are the 3-21G [60–62] and the 6-21G [62–64]

basis sets for elements up to Ar and Xe, respectively. If higher accuracy is required than

attainable with a SVB, then a Triple Zeta Valence (TZV) basis [65] should be employed,

where the valence shell is represented by three basis functions (eqs. 2.123-2.125), thus

giving even more flexibility to the molecular orbitals.

As mentioned above SVBs provide two basis functions for the valence shell, e.g. the Co3d

shell. The inner part consists of a linear combination of two CGTOs, where d3d,k are the

3d shell contraction coefficients, according to Eq. 2.121 [62].

φ′SV B,3d(x, y, z) =
2

∑

k=1

d′3d,kgd(x, y, z, α
′
3d,k) (2.121)

The outer part is represented by a single primitive GTO (Eq. 2.122).

φ′′SV B,3d(x, y, z) = gd(x, y, z, α
′′
3d) (2.122)

The values of α and d3d,k are determined by those GTOs, that minimize the SCF energies

of the respective atoms, and are stored in ab initio calculation packages. According to a

TZV basis a 3d orbital is constructed as follows:

φ′TZV,3d(x, y, z) =
4

∑

k=1

d′3d,kgd(x, y, z, α
′
3d,k) (2.123)

φ′′TZV,3d(x, y, z) = gd(x, y, z, α
′′
3d) (2.124)

φ′′′TZV,3d(x, y, z) = gd(x, y, z, α
′′′
3d) (2.125)

When atoms are brought close together, their charge distribution causes a polarization

effect, which distorts or polarizes the shape of the atomic orbitals. The consequence is
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that even more flexibility is needed for describing the orbitals than attainable with s, p, d

shapes etc. in free atoms. This is best accomplished by adding basis functions of higher

angular momentum quantum number. In this way e.g. an s orbital can be polarized by

mixing in p orbital symmetry. Likewise, p orbitals can be polarized by adding d orbitals

and d orbitals by adding f orbitals. These additional basis functions are called polarization

functions and are usually added as single, non contracted GTOs.
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3. Sample preparation and

characterization

(CoxNi1−x)3V2O8 powder samples have been synthesized by stoichiometrically mixing the

oxides CoO, NiO and V2O5 according to

3xCoO + 3(1− x)NiO + V2O5 −→ (CoxNi1−x)3V2O8. (3.1)

The starting materials have been thoroughly ground and pressed into pellets before sin-

tering at 1050◦C for one day. After further grinding the obtained powder has again been

pressed into pellets and sintered for four more days. The samples have been precharac-

terized by X-ray diffraction at the University of Technology Darmstadt using the powder

diffractometer STOE Stadi P with Mo-Kα1
with the confirmation of the correct phase

formation. Further characterization has been done on the neutron powder diffractometers

D20 and D1A of the Institut Laue-Langevin as a part of the respective experiments, which

will be reported in detail in Sec. 4.

Co3V2O8 and (Co0.5Ni0.5)3V2O8 single crystals have been grown from self-flux in a ZrO2/Y

crucible by the slow cooling method by Dr. Thomas Wolf, which is thankfully acknowl-

edged. After selecting high quality single crystals by short experiments on the Laue

diffractometer Orient Express, the chosen crystals have been examined on the single crys-

tal diffractometers D9, D10 and D15 (ILL) confirming the correct phase formation. The

remaining single crystals have been checked for parasitic phases by grinding and investi-

gating them at the powder diffractometer D20 with satisfying result.
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4. Results

4.1. Co3V2O8

The magnetic phase diagram and the magnetic structures of Co3V2O8 have been exten-

sively investigated by several groups [6, 11–13, 16, 18], so the aim of this study is to focus

the magnetic structures in more detail. Until this point only spherical magnetization

density distribution on the Co2+ ions has been assumed in order to refine the magnetic

structure models. By applying the techniques of polarized neutron diffraction and mag-

netic Compton scattering results shall be obtained which, due to their precision, should

allow an aspheric description of the magnetic form factors of Co. In this regard ab initio

molecular orbital wave functions have been calculated to represent the respective density

distributions as accurately as possible. In order to obtain precise magnetic structure fac-

tors from observed flipping ratios, the nuclear structure factors have to be determined

accurately, especially with regard to extinction, which plays a dominant role in this study.

4.1.1. Nuclear structure within the paramagnetic phase

The nuclear structure of a chosen Co3V2O8 single crystal of approximately 50 mm
3 has

been investigated at the hot neutron four-circle diffractometer D9 (ILL). The diffractome-

ter is used for precise and accurate measurements of Bragg intensities up to very high

momentum transfer. Due to the availability of short wavelengths, the instrument is very

well suited for high resolution structure determination because a large part of reciprocal

space can be explored. The wavelength can continuously be chosen between 0.25 and

0.85 Å by selecting the take-off angle of a Cu(200) monochromator in transmission ge-

ometry. λ/2 contributions are suppressed by the use of resonance filters. A 64x64 mm2

two-dimensional detector is employed, which can be used to study satellites and twinning.

Aim of this experiment has been to deduce precise nuclear structure factors, which should

then be used in combination with the measured flipping ratios from the polarized neutron

experiments (Sec. 4.1.4) to determine the magnetic structure factors and therewith the

magnetization density. Regarding the necessity of correcting extinction effects the mea-

surement on D9 consisted in determining the FN of a set of more than 500 independent

reflections up to sin θ/λ = 0.92 with two different wavelengths (λ1=0.835 Å, λ2=0.512
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Figure 4.1.: Instrument layout of the hot neutron four-circle diffractometer D9.

Å). Only by measuring the same set of reflections with different wavelengths one can ade-

quately reveal the wavelength dependent extinction effects. The data collection has been

performed in the paramagnetic phase at T = 13.5 K, which is just above the Néel temper-

ature of 11.2 K. In order to be able to apply precise absorption and extinction corrections

the crystal shape has been modeled (Fig. 4.2) with 15 delimiting faces for the calculation

of the beam path lengths t̄. The observed integrated intensities have been corrected for

absorption by applying the transmission factor integral exp[µ(t̄in + t̄out)] and analyzed

by simultaneously fitting a structure model to both datasets with λ1 and λ2 using the

programs CCSL [49] and FullProf [50]. Due to the application of different extinction mod-

els, all independent reflections were used for the CCSL refinement (beampath dependent

extinction model), while for the use of FullProf the symmetry-equivalent reflections have

been merged (empirical extinction model).

The orthorhombic space group Cmca could be confirmed and the refinement of the orienta-

tion matrix yielded the cell constants a = 6.015(3) Å, b = 11.480(5) Å and c = 8.289(4) Å

after the sample has been aligned by centering 40 reflections. The subsequent structure

refinement process included the atomic positions and isotropic temperature factors of Co

and O plus additional extinction parameters. The atomic position and temperature fac-

tor of V have been fixed in all refinements, because of its low coherent neutron scattering

cross section. However, every attempt of refining the extinction parameters with the CCSL

program by applying the derivative integral (t̄in + t̄out) exp[µ(t̄in + t̄out)] according to the

Becker and Coppens model [51] resulted in a divergence of the refinement process, which

is presumably due to severe extinction effects. Due to this reason, the domain radius,
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4.1. Co3V2O8

Figure 4.2.: Shape model of the investigated single crystal for the calculation of the re-

spective beam path lengths.

which is the diverging parameter, was set to 9999 nm, the largest value readable by the

CCSL. The agreement between the calculated and the observed nuclear structure factor

is still quite good, which is expressed by R=6.1. The refined parameters can be seen in

the upper part of Tab. 4.1.

In contrast, a refinement using the more stable empirical model implemented in FullProf

succeeded. An anisotropic Shelx-like model was employed, where only the diagonal ele-

ments of the orientation tensor have been used and refined. The large extinction effects

are manifest for the (240) reflection with y = 0.19(3). The calculated nuclear structure

factors show similarly good agreement with the observed ones (R=5.3 and R=5.5 for the

λ1 and λ2 dataset, respectively), which can be seen in Fig. 4.3. The resulting structural

parameters are given in the lower part of Tab. 4.1. Within the error bars the refined struc-

ture models are the same for both refinement programs with exception of the temperature

factors and the O1 z-value, which is a consequence of the different extinction models.
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Table 4.1.: Structural parameters of the investigated Co3V2O8 single crystal sample re-

sulting from a refinement using the CCSL (upper part) and FullProf (lower part).

Atom x y z B(Å2)

Co1 0 0 0 0.12(6)

Co2 1
4 0.1332(4) 1

4 0.03(4)

V 0 0.3773 0.1204 0.30

O1 0 0.2498(2) 0.2281(2) 0.22(2)

O2 0 0.0011(2) 0.2444(2) 0.24(2)

O3 0.2707(1) 0.1182(1) 0.9984(1) 0.19(2)

Extinction parameters

Domain radius(nm): 9999 Mosaicity spread(rad): 0.432(6)

Co1 0 0 0 0.27(10)

Co2 1
4 0.1328(7) 1

4 0.20(7)

V 0 0.3773 0.1204 0.30

O1 0 0.2489(3) 0.2700(4) 0.38(4)

O2 0 0.0008(4) 0.2448(4) 0.33(4)

O3 0.2702(3) 0.1185(3) 0.9990(2) 0.33(4)

Extinction parameters

x11=1.0(1) x22=0.36(5) x33=0.6(1)
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Figure 4.3.: Illustration of the fit results in a Fobs vs. Fcal plot using the CCSL (left) and

FullProf (right).
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4.1.2. Nuclear structure in the ferromagnetic phase

As the flipping ratio measurement has been carried out within the ferromagnetic phase

it is an important detail to verify, if the system does not undergo any significant changes

concerning the nuclear structure due to phase transitions or magnetostriction. Using in-

sufficiently precise nuclear structure factors will affect the observed magnetic structure

factors in the flipping ratio measurement. This is why an additional nuclear structure in-

vestigation has been undertaken at the single crystal thermal neutron diffractometer D15

(ILL). The instrument has been operated in normal-beam mode as a vertical cryomagnet

has been used in order to apply a magnetic field of H=2 T along the crytallographic a

direction. Three different wavelengths are available, from which λ=0.85Å [Cu(331) reflec-

tion in transmission mode] had to be chosen despite the loss of flux in order to guarantee

identical absorption and extinction effects as with the polarized neutron experiment, which

has been performed with λ=0.84Å. The temperature has been set to 3.5 K

A preliminary part of the experiment has been performed at T=13.5 K, the same tem-

perature as the nuclear structure investigation within the paramagnetic phase. A number

of 40 reflections has been centered in order to orient the single crystal inside the cryo-

magnet. From the obtained angles a first orientation matrix has been deduced by refining

the wavelength, the γ and the ν offset, but leaving the cell parameters constant as they

have been precisely determined on D9. The same reflections have been used in order to

orient the sample at the experimental conditions of T=3.5 K and H=2 T. This time the

previously refined values for the wavelength, the γ and the ν offset (λ=0.85368 Å, γoff=-

0.09◦, νoff=0.015
◦) have been set as constant, while the cell parameters have been refined.

The obtained values of a=6.006(6) Å, b=11.451(7) Å and c=8.278(6) Å indicate that no

significant change of the cell dimensions has taken place.

The actual experiment consisted in measuring the integrated intensities of those reflections,

for which flipping ratios have been measured. After absorption and extinction corrections

have been applied the measured values correspond to

I ∼ F 2
N +Q2

M = F 2
N + q2F 2

M , (4.1)

where the proportionality factor is the scale factor. Introducing γ Eq. 4.1 can be rewritten

as

I ∼ F 2
N (1 + q2γ2), (4.2)
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i.e. the magnetic contribution to the integrated intensities can be canceled out by using

the previously measured flipping ratios. That way the nuclear structure can be analyzed

even while measuring within the ferromagnetic phase. The nuclear structure refinement

process has been performed using the same parameters as described in the previous section

and confirmed the nuclear structure concerning the atomic parameters listed in Tab. 4.1.

Slight deviations of the temperature factors and extinction parameters have been observed,

but the results from the previous section are regarded as much more reliable: firstly, due

to the fact that extinction effects are better handled because of having used two different

wavelengths and secondly, because the intensities of certain reflections can be attenuated

by the pillars of the cryomagnet. The conclusion of this experiment is that the derivation

of the FM from observed flipping ratios by using the observed FN at T = 13.5 K is justified.

All low-angle nuclear reflections suffer considerably from extinction, therefore, special at-

tention has been paid to the extinction of magnetic scattering. As the flipping ratio

treatment uses the same extinction parameters for both nuclear and magnetic scattering,

it is important to verify, if the extinction effects are indeed comparable. Therefore, three

strong magnetic reflections have been measured as a function of applied magnetic field

after the sample has been cooled in zero-field to 3.5 K. Fig. 4.4 shows the integrated in-

tensities of three reflections after the nuclear contribution has been subtracted. The field

dependence of the magnetic contribution reveals a surprising and interesting tendency:

Instead of increasing with increasing applied field, as one would expect if the cross-tie site

gets saturated, the intensity of magnetic scattering drops significantly. This observation

can be explained with field dependent increase of primary extinction. At H=0 T the

sample exhibits a multidomain state with presumably negligible extinction effects. By

increasing the field the magnetic domains grow until they reach approximately the size

of the structural domains. On reaching saturation at H≈0.25 T the primary extinction

effects for magnetic scattering should be comparable to those of nuclear scattering. The

mosaicity which governs secondary extinction should a priori not be affected.

In order to verify these assumptions the extinction correction factor y has been calculated

for three magnetic reflections according to the anisotropic FullProf model (see Sec.2.4.2).

The calculated values have been compared with the observed ones, which can easily be de-

duced from the intensity ratios at H=0 T and H=0.25 T. The results are listed in Tab. 4.2.

It can be seen that the calculated extinction factors are to a greater or lesser extent com-

parable with the observed ones. Nevertheless, the extinction of magnetic scattering seems

to be underestimated.
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Figure 4.4.: Intensity of three different magnetic reflections in dependence of an applied

magnetic field revealing primary extinction effects.

Table 4.2.: Observed and calculated extinction correction parameters for three low-angle

magnetic reflections.

(hkl) sin θ/λ (Å−1) FM,obs (10
−12 cm) yobs ycal

(021) 0.10595 4.87(1) 0.39(7) 0.46(3)

(002) 0.12064 3.39(1) 0.47(6) 0.64(3)

(023) 0.20083 4.72(1) 0.47(6) 0.60(3)
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4.1.3. Ab initio calculations using the GAMESS code

The General Atomic and Molecular Electronic Structure System (GAMESS) [66, 67] is

a general ab initio quantum chemistry package, which can compute self-consistent field

(SCF) molecular wave functions using different Hartree-Fock models. The motivation for

calculating such a wave function in connection with the aims of this thesis work is that

its square represents the electron density distribution:

|φ(r)|2 = ρ(r) (4.3)

or the magnetization density if the difference between the majority and minority states is

concerned:

|φ↑(r)|2 − |φ↓(r)|2 = ρmag(r) (4.4)

In this way experimental spin and magnetization density data can be compared with

theoretical predictions. The following results have been obtained using the version PC

GAMESS [68]. The two different clusters CocO6 and CosO6 (Fig. 4.5) were modelled

separately. The calculations were performed within the framework of the Kohn-Sham

formulation of the density functional. The functional B3LYP was employed to approxi-

mate the exchange-correlation interaction. The B3LYP is a hybrid model, well adapted

to study transition metal compounds and magnetic interactions, in which a predefined

amount of the exact Hartree-Fock exchange is added to the well known pure density

functionals [69–72]. For the atoms in the clusters Ahlrich’s pVDZ AO basis set [73]

Co(14s,8p,5d,1p)/[5s,2p,2d,1p],O(7s,4p,1d)/[3s,2p,1d] has been employed. The notations

(klm) and [klm] indicate the number of Gaussian type orbitals and contracted Gaussian

type orbitals, respectively. The orbital exponents and contraction coefficients for for the

Co and O orbitals, which minimize the SCF energies are listed in Appendix B.1.

In order to mimic the Madelung potential, the two quantum mechanical clusters were

surrounded by point charges (PC) according to the Effective Fragment Potential (EFP)

method [74]. The EFP method replaces the chemically inert part of the system by EFPs,

while performing a regular ab initio calculation on the chemically active part. The inert

parts interact with the active part through non-bonded interactions and of course affect

the ab initio wave functions. As previously reported for other systems [75–78], the choice

of the embedding method was shown to be crucial for the physical meaning of the ab initio

calculations. For a point charge sphere of r = 7.5 Å around the CoO6 cluster the calcula-

tion yielded reasonable spin density distributions on the respective ions, although spheres
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Figure 4.5.: Visualization of the two different clusters CocO6 and CosO6. Coc and Cos are

located at positions (0,0,0) and (1
4 ,0.1332,

1
4), respectively.

are not recommendable for building up Madelung potentials. Increasing the number of

point charges to a sphere of r = 10 Å or to 2x2x2, respectively 3x3x3 unit cells ends up

with unreasonably high spin density on one of the oxygen ions or even non-converging

calculations. The reason for such artifacts is an improper boundary between the quantum

mechanical cluster and the point charges. As a result, the electron density leaks out of

the cluster due to the attraction by the positive point charges. To avoid this a boundary

region has been introduced, which is formed by effective core potentials (ECP) placed in

the nearest cationic positions around the cluster. The objective of the ECP method is

to construct potentials which are only dependent on the valence electrons, but take into

account the influence of the inert, core electrons. By replacing the core electrons with an

effective potential, the need for the core basis functions is eliminated, which saves comput-

ing time. Additionally, the ECP represent relativistic effects, which are largely confined

to the core. Thus, the first coordination shell of Co2+ and V5+ ions has been described by

ECPs according to the SBKJC ECP basis set [79]. As native ECPs for Co and V do not

treat the 3s and 3p electrons as core electrons, those ECPs would in fact be too compact

due to the higher number of valence electrons. In order to overcome this problem the ECPs

for Mg and Al have been used due to the fact that their ionic radii are closer to those of

Co and V, respectively. Except for the 3d shells, the remaining electrons are replaced by
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an effective potential. Thus, 1565 PC (3x3x3 unit cells with the respective Co ion in the

center) have been built to mimic the Madelung potential on the cluster. The coefficients

cj relevant to the Co3d MO (see Appendix B.2) were extracted from the simulations and

used together with the chosen basis functions to build up the MO as described in Sec. 2.5.

In order to visualize the obtained MOs, the square of the wave function, corresponding to

the density, is integrated along an axis of choice and plotted as a two-dimensional density

plot. The projected MOs of the CocO6 and CosO6 clusters are shown in Fig. 4.6 and

Fig. 4.7, respectively. It can clearly be seen especially for the eg orbitals (last two rows)

that hybridization effects between the Co3d and O2p orbitals cannot be neglected. Fur-

thermore, the visualization clarifies that every single Co3d orbitals does not consist of one

pure atomic orbital. This becomes evident for the Cocdxy orbital which has a strong dyz

mixing and vice versa the Cocdyz orbital which has a strong dxy mixing (see AO coeffi-

cients in Appendix B.2). The fact that the Coc and Cos orbitals are slightly rotated for

the projections along the x and y axis, respectively, results from the anisotropic kagome

staircase structure and its special point charge distribution around the cluster atoms in

combination with the symmetrical degree of freedom arising from the point symmetry of

the respective clusters (2/m.. for CocO6, .2. for CosO6 [39]).

The results of the ab initio calculations concerning the special shape of each MO and the

obvious hybridization effects lets assume their importance for the treatment of the spin

and magnetization densities. The partially strong deviation from the Co3d AOs could

make a crucial difference in the refinement of the magnetic structure.
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dxz

dxy

dyz

dx2-y2

d3z2-r2

Figure 4.6.: Ab initio molecular orbitals corresponding to the Co3d orbitals of the CocO6

cluster as projections along the principal crystallographic axes. Contour lines are drawn

at 0.001, 0.003, 0.005, 0.05, 0.3 and 0.6 (arb. units).
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dxy

dyz

dxz

d3z2-r2

dx2-y2

Figure 4.7.: Ab initio molecular orbitals corresponding to the Co3d orbitals of the CosO6

cluster as projections along the principal crystallographic axes. Contour lines are drawn

at 0.001, 0.003, 0.005, 0.05, 0.3 and 0.6 (arb. units).
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4.1.4. Magnetization density in real space

The magnetization density has been investigated at the spin polarized two-axes diffrac-

tometer 5C1, which is situated at the hot source of the Orphée reactor at the Laboratoire

Léon Brillouin (Saclay). Using an incident polarized neutron beam the instrument is de-

voted to the determination of magnetic structure factors for magnetic form factor and

magnetization density studies on single crystals. Fig. 4.8 shows the instrument layout.

Neutrons emerging from the source are monochromated and polarized by the (111) re-

flection of a magnetized Heusler crystal Cu2MnAl. The used wavelength is 0.84 Å, which

corresponds to the maximum flux of the hot source and is ideal for studying large domains

of reciprocal space. The polarization factor of the beam is p = −0.88, which means that
88% of the neutrons in the incident beam are in a spin-down polarization state. The po-

larization direction of the incident neutron beam is defined by magnetic guide fields and

can be inverted with the help of a cryogenic flipping device. The sample is mounted inside

a cryomagnet, which offers a minimum temperature of 1.5 K and a maximum magnetic

field of 7.5 T. The signal is detected by a lifting arm single detector (3He counter), which

covers an angular range from 0◦ to 123◦ in the horizontal and from -5◦ to 23◦ in the

vertical plane. The procedure of measuring a flipping ratio of a certain (hkl) reflection

consists in determining the ratio between the respective scattered intensities I+ and I−

exactly on the peak maximum as well as off the peak on either side in order to determine

the background. This procedure is called the bpb-method (background peak background).

Over 500 independent reflections have been measured in this way.

As the crystal structure is centrosymmetric the experimental magnetization density can

directly be reconstructed by a Fourier synthesis (Eq. 4.5) where the Fourier coefficients are

the magnetic structure factors. These have been derived by solving Eq. 2.113 with respect

to FM . The correct solutions of this second-order equation have been derived iteratively

with the calculated FM as starting values using the Mathematica program [80].

ρ(r) =
1

V

∑

q

F (q) exp [−2πi(qr)] (4.5)

Fig. 4.9 shows the projection of the magnetization density onto the b-c plane. Like it has

been assumed in Sec. 4.1.2, the Coc does not get saturated, but significant magnetization

density is present on V and O sites. While the density is quite localized for the V, O1

and O2 sites, rather diffuse density can be observed around the O3 site. The split density

peaks of O1 result from the fact, that actually two O1 ions are visible in the projection.

Similarly, the density around the Cos ions seems to be much higher compared to the Coc

ions, which is due to the fact, that two Cos ions are contained in the projection, while only
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Figure 4.8.: Instrument layout of the spin polarized hot neutron two-axes diffractometer

5C1.

65



4. Results

one Coc ion is projected. Besides the superexchange pathways Cos-O2-Coc and Cos-O3-

Coc an interlayer exchange becomes evident with the non-zero magnetization density on

V and O1. Further ab initio solid state computations are currently done to simulate the

spin density map of Co3V2O8 and to elucidate the composite mechanisms of the induced

magnetic moments on the different O and V sites. This will be the subject of a forthcoming

publication [81].
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Co
s

Co
c

V

O1O2

O3

(a)

Figure 4.9.: (a) Crystal structure viewed along the a axis. (b) Experimental magnetization

density as a projection onto the b-c plane. Contour lines defining positive values are drawn

as solid lines in 0.05 µB/Å
2 intervals between 0 µB/Å

2 and 0.15 µB/Å
2 and in 0.4 µB/Å

2

intervals above. Negative isodensities are represented by broken lines in 0.1 µB/Å
2 steps.
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4.1.5. Spin density in momentum space

The investigation of the spin density in momentum space of Co3V2O8 has been carried

out at the High Energy Inelastic Scattering beamline BL08W at the SPring-8 (Super Pho-

ton Ring 8 GeV) synchrotron in Hyogo, Japan. This beamline is designed for Compton

scattering spectroscopy as it offers elliptically polarized X-rays emitted from an Elliptic

Multipole Wiggler. The incident photon beam with an energy range of 170-300 keV is

monochromated and focused by an asymmetric Johann type monochromator using the

Si(620) reflection. The sample magnetization is achieved with a superconducting mag-

net with a maximum field of 3 T and a minimum polarity-switching time of 5 seconds.

The backscattered photon energy is analyzed by a 10-segmented Ge solid state detector

positioned at a scattering angle of 178.4◦. The experiment has been carried out with an

incident photon energy of 176.3 keV, which gives a good compromise between the beam

intensity and the scattering cross section.

The initial interest of applying this method to Co3V2O8 has been to map the spin density

in momentum space as a projection onto the b∗-c∗ plane of the ferromagnetic phase in

order to gather information about the 3d electron spin states and to correlate the results

with those obtained from the polarized neutron diffraction experiment, but the experimen-

tal conditions and especially the large magnetic anisotropy of the system did not allow

that. The minimal achievable sample temperature is approximately 5.6 K, i.e. close below

the magnetic transition into the antiferromagnetic phase. It can be seen in the magnetic

phase diagrams [13, 16] that at this temperature already weak magnetic fields applied

along the b or c axis induce a magnetic phase transition into the antiferromagnetic phase,

while H||a stabilizes the ferromagnetic one. The necessity of applying a magnetic field of

considerable strength and therewith magnetizing the sample along the incident beam in

order to increase the magnetic contribution to the scattering cross-section (see 2.14) be-

side the requirement of turning the sample about a vertical axis to be able to reconstruct

the two-dimensional momentum density, led to a change of strategy. To make sure not

to induce magnetic phase transitions by rotating the sample the measurements have been

carried out within the antiferromagnetic phase at T=7.5 K and applying a magnetic field

of H=2 T with the induced ferromagnetic component lying in the b-c plane. In addition

to the trivial directions [010] and [001] four further directional magnetic Compton profiles

have been investigated in the b∗-c∗ plane. An additional profile has been measured along

the [100] direction with a decreased applied magnetic field of 0.25 T.

The Compton profiles of the respective sample magnetization states have been recorded

for 60 seconds, repeating the cycle [+−−+−++−] multiple times. Due to the fact that
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the more intense charge Compton profiles still exhibit relatively large values at the out-

ermost measured positions of pz = ±10 and in order to integrate the area correctly with
respect to the magnetic effect, the profiles have been extrapolated using tabulated data

for the elements resulting from Hartree-Fock calculations [82]. The MCPs were extracted

by taking the difference of the scattered intensities I+ and I− of the respective charge

Compton profiles. Before summing up the magnetic intensity of each detector cell, the

data have been corrected for the detector cell efficiency, sample absorption and scattering

cross-section according to [83]. Furthermore, the energy scale of each detector cell has

been calibrated by measuring a radioactive sample Ba133Co57 with well known emission

energies. The area under each profile has been normalized to the number of magnetic

electrons per formula unit. The experimental MCPs were folded at pz = 0 to increase

statistical accuracy by taking the average of each branch.

The seven measured directional MCPs are depicted in Fig. 4.10, where the abscissa pz

is represented in atomic units (a.u.) and is taken to be parallel to the scattering vector,

which corresponds to the incident beam direction because of the backscattering geometry.

With the use of iron standards the induced ferromagnetic component can be deduced from

Figure 4.10.: Directional magnetic Compton profiles measured along seven different crys-

tallographic directions. ϑ defines the angle between the b∗ axis and the respective MCP.
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the magnetic effect. The magnetic effects of the respective directional MCPs are listed

in Tab. 4.3 with their corresponding ferromagnetic components induced parallel to the

scattering vector.

Table 4.3.: Magnetic effects of the respective directional MCPs with a magnetic field H

applied along the scattering vector. ϑ denotes the angle between a MCP and the [001]

direction.

MCP ϑ (◦) H(T ) M0 (%) S (µB)

[001] 0 2 0.541 0.616

[023] 17 2 0.488 0.556

[012] 34.7 2 0.415 0.472

[011] 54.1 2 0.274 0.312

[032] 64.3 2 0.229 0.261

[010] 90 2 0.095 0.108

[100] 90 0.25 0.251 0.287

Using all profiles except MCP100 the projected spin density in the py-pz plane has been

reconstructed by the direct Fourier-transform method. The calculation has been performed

on a grid with a distance of 0.1 a.u. between each point. The result is shown as a two-

dimensional contour plot in Fig. 4.11. Low spin density can be recognized inside the first

Brillouin zone (BZ), which extends beyond its border along the 〈010〉 and 〈001〉 directions.
In the vicinity of the first BZ border the density increases more rapidly with increasing

momentum along 〈021〉. Peaks are present at (px, py)=(0.35, 1.85) and (1.4, 0.55).

In order to analyze the observed MCPs theoretical ones have to be prepared. Therefore,

the ab initio wave functions of the CoO6 clusters (Sec. 4.1.3) have to be transformed into

momentum space by an inverse Fourier transformation according to

χ(p) = (2π)−
3

2

∞
∫

−∞

ψ(r) exp(−ipr)dr, (4.6)

where p and r are given in atomic units. In contrast to the real space density, where

the atomic wave functions must contain a translational vector in order to represent the

position of each atom, the momentum space density possesses the general property of

being single-centered, i.e. each momentum space wave function has zero as its origin. If a

many-electron system can be understood as composed of independent particles described

70



4.1. Co3V2O8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a)

Figure 4.11.: Experimental momentum spin density as a projection onto the py-pz.
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by single-particle wave functions, then, within the limits of the impulse approximation,

each scattering process will only involve one electron of the system. Thus, a theoretical

MCP of a respective crystallographic direction can be obtained by simply summing over

the square of every wave function representing an unpaired electron. The sum of squares

is then projected onto the scattering vector, i.e. integrated along two axes, which are

perpendicular to it. In order to do so for crystallographic directions in the py-pz plane,

which are different than the principal ones, a coordinate transformation has been carried

out, which rotates the momentum space wave functions around the px axis by the angle

ϑ so that the scattering vector comes to lie on the former pz axis ([001] direction). The

expression for a theoretical MCP is

Jth(p
′
z) =

∫ ∞

−∞

∫ ∞

∞

∑

k

βkχ
2
k(p

′
x, p

′
y, p

′
z)dp

′
xdp

′
y, (4.7)

where βi are the refinable parameters, which express the contribution of each orbital to

the MCP. For the integration the symmetry relations between the different cluster density

distributions in the unit cell have to be taken into account, which yield two and four

symmetrically inequivalent CocO6 and CosO6 clusters, respectively (Tab. 4.4). The point

Table 4.4.: Symmetry relations between the two and four inequivalent CocO6 and CosO6,

respectively.

cluster Co position symmetry relation to c1/s1

c1 (0, 0, 0) xyz

c2 (0, 1
2 ,

1
2) xyz̄

s1 (1
4 , y,

1
4) xyz

s2 (3
4 , y,

1
4) x̄yz

s3 (3
4 , ȳ,

3
4) x̄ȳz̄

s4 (1
4 , ȳ,

3
4) xȳz̄

symmetries of the CocO6 and CosO6 clusters are 2/m.. and .2. [39], which correspond to

2/m.. and .2/m. in momentum space. Due to the special symmetry of the CosO6 density,

the projections of the different clusters in momentum space are invariant for the principal

axes and those in the py-pz plane. In the case of the CocO6 clusters, the projections onto

non-principal axes in the py-pz yield different profiles, which need to be averaged. Due to

the complexity of the expressions the projections of the respective orbitals have been car-

ried out numerically by calculating discrete points according to the measured data. Then

a linear combination of four Gaussians has been fitted to the calculated points showing
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excellent agreement. These fit results were used in the subsequent treatment.

Like previously reported [36] the fact that the projection of each orbital has a charac-

teristic shape makes it possible to analyze its contribution to the observed MCP. In this

way the occupation of orbitals under consideration can be determined. This is done by

fitting the weighted calculated MCPs simultaneously to all the observed ones. Before

doing so, the theoretical MCPs have to be convoluted with a Gaussian function having

a full width at half maximum (FWHM) of the instrumental resolution of BL08W, which

has been deduced as follows. From the calibrating sample Ba133Co57 the FWHM of a Co

emission line at E = 122.0614 keV has been determined to 693.71 eV, which corresponds

to ∆E = FWHME/2
√

2 ln(2) = 1.7567 keV. The conversion from energy values into

momenta given in atomic units is

pz =
EC − E1 + (ECE1/mc

2)(1− cosφ)
√

E2
1 + E2

C − 2E1EC cosφ
· 137.036 a.u., (4.8)

where E1 is the incident photon energy, EC the Compton peak energy (see Eq. 2.5) and

φ the scattering angle. The error propagation is calculated by

∆pz =

∣

∣

∣

∣

dpz

dE2

∣

∣

∣

∣

∆E2. (4.9)

The result FWHMpz = 0.573 a.u. yields the gaussian resolution function

δ(pz) =
2
√

2 ln(2)√
2πFWHMpz

exp



−1
2

(

2
√

2 ln(2)

FWHMpz

pz

)2


 . (4.10)

Hence, the calculated MCPs J(pz) for the instrument BL08W are

Jcal(pz) = (Jth ∗ δ)(pz) =

∞
∫

−∞

Jth(τ)δ(pz − τ)dτ. (4.11)

The refinement of the contribution of each orbital has been carried out simultaneously

with the flipping ratio refinement and will be explained in detail in the next section.
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4.1.6. Correlated refinement in both spaces

The idea behind correlating the density distributions in real and momentum space is that

the contribution of each spin polarized orbital to the observed density must be the same

in both spaces. Like for the MCPs the contributions βk of the real space MOs can be used

to deduce the magnetic form factors fX(q) of the respective elements X by calculating

the Fourier transform of the atomic spin density:

fX(q) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∑

k

βkψ
2
k,X(r) exp(2πiqr)dr, (4.12)

where ψk,X defines the real space MO k only including the atomic orbitals φi,X of element

X=Co, O. For the V ions the analytic approximation of the V4+ form factor [84] has been

used. With this procedure the observed flipping ratios can be refined based on an a simple

aspheric magnetic form factor model deduced from ab initio wave functions.

The refinement has been made for the results of calculations using different basis sets,

which were 6-31G [85, 86], 6-31G∗ [85, 86], Ahlrich’s VDZ [73], Ahlrich’s pVDZ [73],

Ahlrich’s VTZ [73] and Ahlrich’s TZV [65]. Each basis set has been used with either

SBKJC [79, 87] or Stuttgart RLC 1997 [88, 89] ECPs. The best results have been ob-

tained with Alrich’s pVDZ basis set, where the choice of the ECP did not affect the

results. Refining the contribution parameters for each MCP individually yields excellent

agreement with the observed profiles. But since the refinement process exhibits numerous

local minima with significantly varying results, it has been considered more reasonable

to include all MCPs in the refinement despite the magnetic anisotropy. The respective

contribution parameters βk have been refined simultaneously in both spaces together with

the magnetic moments of Co, V and O by minimizing the function

χ2 =
1

2

∑

i

(Ri,obs −Ri,cal)
2

σ2
i,obs

+
1

2

∑

n

∑

j

Jn,obs(pz,j)− Jn,cal(pz,j)
2

σ2
j,obs

(4.13)

with i and j defining discrete data points of the PND and MCS experiment, respectively,

and n referring to the respective MCPs. The refinement yields fairly good agreement

expressed by RMCS=5.7 and RPND=9.6 for the respective experiments. The refined total

magnetic moments are
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4.1. Co3V2O8

µ(Coc) = 1.54(4) µB

µ(Cos) = 2.87(3) µB

µ(V) = 0.41(4) µB

µ(O1) = 0.05(5) µB

µ(O2) = 0.46(5) µB

µ(O3) = 0.36(5) µB.

Summing the magnetic moments of all ions in the unit cell weighted by their site multi-

plicity and dividing by the number of Co ions yields an averaged magnetization of 3.38

µB/Co
2+. This value shows excellent agreement with the macroscopic magnetization for

H = 2 T along the a axis reported in [16]. The resulting orbital contribution parameters

are listed in Tab. 4.5. The refined parameters were used to calculate the MCPs, which are

shown as black solid lines in Fig. 4.12. From the calculated MCPs the momentum space

spin density has been reconstructed and is shown together with the observed density in

Fig. 4.13. The calculated magnetization density map is derived from a Fourier synthesis

using the calculated magnetic structure factors. Fig. 4.14 shows the projection of the ob-

served and calculated magnetization density onto the b-c plane together with the crystal

structure.

The main features of the respective density maps coincide well, although some differences

are evident: the dip in the momentum space density around pz=0 is not pronounced well

in the calculated map with a shape, which is rotated by 90◦ with respect to the observed

map. This possibly results from strong hybridization effects between the Co3d and O2p

orbitals. The real space spin density of the O1 and O3 sites is slightly underestimated.

Furthermore, density peaks exist, which do not coincide with atomic positions. However,

this fact can be attributed to truncation effects in the Fourier series.
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4. Results

Figure 4.12.: Observed ([red] dots) and calculated ([black] solid lines) normalized direc-

tional MCPs (shifted vertically in order to improve clarity, horizontal lines serve as a guide

for the eye). The abscissa pz is taken to be parallel to the respective scattering vector. ϑ

denotes the angle between a respective MCP and the [001] direction.

Table 4.5.: Refined orbital occupation parameters of the CocO6 and CosO6 clusters.

orbital Coc Cos

dxy 0.27(2) 0.12(2)

dxz 0.27(2) 0.12(2)

dyz 0.16(2) 0.26(2)

dx2−y2 0.17(2) 0.30(2)

d3z2−r2 0.13(2) 0.20(2)
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4.1. Co3V2O8
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Figure 4.13.: Reconstructed experimental (a) and calculated (b) spin momentum density

in the py-pz plane. Contours are drawn in 0.025 µB/(a.u.)
3 intervals. White solid lines

depict the boundary of the first Brillouin zone.
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Figure 4.14.: (a) Crystal structure viewed along the a axis. (b) Experimental and (c)

calculated magnetization density as a projection onto the b-c plane. Contour lines defining

positive values are drawn as solid lines in 0.05 µB/Å
2 intervals between 0 µB/Å

2 and 0.15

µB/Å
2 and in 0.4 µB/Å

2 intervals above. Negative isodensities are represented by broken

lines in 0.1 µB/Å
2 steps.
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4.2. (CoxNi1−x)3V2O8

4.2. (CoxNi1−x)3V2O8

Numerous publications using various methods exist concerning the CVO and NVO com-

pounds, but except one report about the cationic occupation factors, no study of the

mixed system CNVO exists in the literature. Hence, a systematic investigation has been

carried out with magnetization, heat capacity, neutron powder and neutron single-crystal

diffraction experiments. Interesting aspects could be revealed concerning the magnetic

phase diagram and the magnetic structure.

4.2.1. The dependence of k on the composition parameter x

The propagation vectors of the CNVO mixed system have been investigated using three

powder samples with different composition parameters x at the high-resolution two-axis

neutron powder diffractometer D1A (ILL). This instrument (Fig. 4.15) is able to provide

high resolution at long wavelengths due to its large take-off angle, with shorter wavelength

contamination eliminated by the guide tube, which makes it particularly suited to mag-

netic structure studies. A wide range of wavelengths from 1.39 Å to 2.99 Å is available by

a simple rotation of the anisotropically squashed focussing germanium monochromator.

For this experiment the optimum wavelength of 1.911 Å has been chosen, which emerges

from the Ge(115) reflection. The nuclear structures have been investigated in the param-

Figure 4.15.: Instrument layout of the high-resolution two-axis diffractometer D1A.
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4. Results

agnetic phase at 20 K, while the magnetic structures have been studied at T=2 K with

zero magnetic field. The structural investigation confirmed the correct phase formation of

the powder samples and showed close agreement to previously reported data [2, 8, 12, 90].

The cell constants of the mixed compounds behave according to Vegard’s law. Like pre-

viously reported [90] the Co ions were found to preferably occupy the more symmetric 4a

sites, resulting in cation distribution factors of KD=0.73, 0.81 and 0.76 for x=0.27, 0.52

and 0.76, respectively. Table 4.6 lists the structural parameters as well as the refined com-

position parameter x. Fig. 4.16 shows the magnetization data of the three CNVO powder

samples zooming the low temperature region. For x=0.27 and x=0.52 a slight drop of the

Figure 4.16.: Magnetization in dependence on the temperature of (CoxNi1−x)3V2O8 for

x = 0.27, 0.52 and 0.76 (logarithmic scale). Arrows mark the transition points.

magnetization can be observed at T=8.1 K and T=7.5 K, respectively, whereas the curve

for x=0.76 only exhibits a change of slope at T=5.5 K. From the characteristics of the

curves an antiferromagnetic ordering could be deduced and then confirmed by neutron

powder diffraction experiments.

Due to the existence of multiple magnetic phases with temperature dependent propagation

vectors for NVO and CVO [6, 15, 19], patterns were collected at different temperatures

below the respective transition points. In contrast to its parent compounds CNVO does

not exhibit temperature dependent shifts of the magnetic reflections which is illustrated

in Fig. 4.17 for x=0.27. One can only notice an increase of intensity of the magnetic

reflections with decreasing temperature which is an ordinary effect due to reduced thermal

displacement. The magnetic reflections could be indexed by introducing a propagation

vector k = (δ, 0, 0) with δ being dependent on the composition parameter x. The shift of
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Table 4.6.: Structural parameters of the investigated (CoxNi1−x)3V2O8 powder samples.

Composition x Cell Position/Ion M(1) M(2) V O(1) O(2) O(3)

0.27

a=5.9540(3) x 0 0.25 0 0 0 0.2674(9)

b=11.4094(7) y 0 0.1306(7) 0.3762 0.250(1) 0.002(1) 0.1197(6)

c=8.2530(6) z 0 0.25 0.1196 0.268(1) 0.244(1) 0.9998(6)

0.52

a=5.9811(3) x 0 0.25 0 0 0 0.2683(7)

b=11.4359(5) y 0 0.1307(8) 0.3762 0.2509(9) 0.0030(9) 0.1197(5)

c=8.2704(5) z 0 0.25 0.1196 0.2687(9) 0.2443(9) 0.9989(9)

0.76

a=6.0069(3) x 0 0.25 0 0 0 0.2683(7)

b=11.4648(6) y 0 0.132(1) 0.3762 0.250(1) 0.002(1) 0.1200(5)

c=8.2876(5) z 0 0.25 0.1196 0.2679(9) 0.2434(9) 0.9988(9)
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Figure 4.17.: Powder diffraction patterns of (Co0.27Ni0.73)3V2O8 at different temperatures.

Arrows mark the magnetic reflections. The numbers in brackets indicate the vertical shift

to improve clarity.

the magnetic reflections is clarified in Fig. 4.18. The values of δ are 0.372(5), 0.491(4) and

0.52(3) for x=0.27, 0.52 and 0.76, respectively. It has to be mentioned that the increase of

background at low angles for x=0.76 has also been observed for CVO at all investigated

temperatures below 14K. The observed patterns could be reproduced well (Fig. 4.19) based

on a magnetic structure model similar to NVO with the antiferromagnetic vector along

the a axis and weak ferromagnetism along c.

In contrast to NVO and CVO the mixed compounds CNVO only exhibit a single ordered

magnetic structure. Within the limits of the experimental precision the modulation of

the magnetic moments and the magnetic structure are similar to NVO, i.e. the magnetic

moments propagate according to k = (δ, 0, 0) with an antiferromagnetic vector along a

and weak ferromagnetism along c, whereas CVO exhibits ferromagnetic coupling along

a and a wave vector with a non-zero component along the b*-direction. For the three

investigated samples x=0.27, 0.52 and 0.76 the imcommensurability δ has been found

to be dependent on the composition parameter x (δ increases with increasing x). The

compound with x=0.76 seems to be close to a critical amount of Co, which disturbs the

antiferromagnetic structure of NVO. A higher degree of frustration can be deduced due

to the small and broad magnetic reflections (Fig. 4.18), which is well correlated with the

less pronounced transition point in the magnetization curve (Fig. 4.16). Since the ground

state of CVO is ferromagnetic, a quantum critical point is expected where the two types

of magnetic interactions lead to a fully frustrated system for a certain composition with
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Figure 4.18.: Powder diffraction patterns of x=0.27, 0.52 and 0.76 at 2K. The dashed lines

indicate the shift of the magnetic reflections. Again the patterns are vertically shifted for

clarity.

Figure 4.19.: Observed pattern (red dots), calculated pattern (black line) and difference

plot (blue line) of (Co0.52Ni0.48)3V2O8 at 2K and zero field.
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4. Results

x > 0.76, which is subject of the forthcoming section. More compositions with shorter

steps in x have been investigated in order to specify the k(T ) dependence and to spot the

critical value of x where the magnetic structure switches from the NVO to the CVO type.

Additional neutron diffraction experiments on a (Co0.5Ni0.5)3V2O8 single crystal have been

carried out in order to extract precise information about the magnetic structure, which is

shown in Section 4.3.
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4.2. (CoxNi1−x)3V2O8

4.2.2. Magnetic composition-temperature phase diagram

Powder samples with short steps in the compositional parameter x, prepared like described

in Section 4.2.1, were investigated at a high-resolution (D1A) and a high-intensity neutron

powder diffractometer (D20) at the Institut Laue-Langevin using wavelengths of 2.99 Å

supplied by the (113) reflection of a Ge monochromator and 2.41 Å from the (002) re-

flection of a pyrolytic graphite HOPG monochromator. Each sample was measured in

the paramagnetic regime at 20 K in order to extract the nuclear structure and especially

the compositional parameter x. The investigation of the magnetic properties was per-

formed at 1.5 K. Measurements on all powder samples were made using D1A except for

the samples with x = 0, 0.35 and 0.71, for which D20 was used, and those with x = 0.87,

0.92 and 0.98, for which both instruments were used. Due to the extremely high neutron

flux at D20 and the large position-sensitive microstrip detector (see instrument layout in

Fig. 4.20), diffraction patterns can be recorded as a matter of seconds, which gave rise to

the possibility of the investigation as a function of temperature.

Figure 4.20.: Instrument layout of the high-intensity two-axis diffractometer D20.

Single crystals with concentrations x = 0, 0.5, 0.65, 0.86 and 1.0 were grown from self flux.

The compositions of the mixed crystals were estimated using lattice parameters deter-

85



4. Results

mined using X-ray powder diffraction and Vegard’s law. The specific heat was measured

using a PPMS from Quantum Design. The data around the phase transitions were ob-

tained by analyzing individual relaxation curves after a large (2-3 K) temperature pulse

via a method similar to the one presented in [91].

Neutron diffraction experiments on the respective powder samples within the paramagnetic

phases (PM) at 20 K revealed the correct phase formation of the orthorhombic structures

(space group Cmca). The refinement process included the cell parameters, the atomic

positions of M and O, an overall isotropic temperature factor and the Co:Ni ratio. The

atomic position of V has been fixed in all refinements because of its low coherent neu-

tron scattering cross section. The resolution parameters u, v and w as well as the ratios

source width/detector distance and detector width/detector distance, which describe the

asymmetry of the reflection profiles, have been set according to the instrumental resolu-

tion function. The recorded diffraction patterns of the paramagnetic phases (20 K) were

subtracted from the respective magnetically ordered ones (1.5 K) in order to emphasize

the magnetic scattering, which is depicted in Fig. 4.21.
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Figure 4.21.: Magnetic scattering of (CoxNi1−x)3V2O8 powder samples with different val-

ues of x at 1.5 K and zero field obtained by measurements on D1A. The patterns are

shifted vertically for clarity.

It was found that substituting 2% of Co with Ni results in a critical composition where

both ferromagnetic (2θ = 36◦ and 41◦) and antiferromagnetic (2θ ≈ 3◦) reflections of the
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4.2. (CoxNi1−x)3V2O8

CVO magnetic structure type can be observed. However, the antiferromagnetic (0 + δ 0)

reflection is very low in intensity but significant if compared to the diffraction pattern of

the x = 0.66 sample.

In order to be precise on the critical values especially with respect to the uniformity of

the powder samples investigated the reflection profile has been examined in detail: the

ratio between Co and Ni on the magnetic sites determines the cell constants according to

Vegard’s law; therefore the peak positions are dependent on the composition. Assuming

a distribution of compositions within one powder sample, one would expect enlarged re-

flection profiles due to the different contributions. In the case of an uneven distribution,

an asymmetry of the reflection profile may be observed. To clarify this point the profile

of the nuclear (042) reflection, which is strong, isolated from others and close to the min-

imum of the resolution curve of the instrument, has been focussed on (Fig. 4.22). The

raw data points (triangles stand for x = 0.96, circles represent x = 0.98) have been fitted

with Pseudo-Voigt functions, whose FWHM are defined only by the fixed instrumental

resolution and asymmetry parameters (where the latter do not affect the peak profile at

such high angles anyway). The calculated points (not shown, but connected with straight

lines) show excellent agreement with the observed data. From the difference plots (dashed

lines with respective symbols) a minimal asymmetry might be observed. Therefore, the

raw data have been fitted with an asymmetric double sigmoidal function, which is charac-

terized by w1 giving the main FWHM of the curve and additional parameters w2 and w3

describing the asymmetry of either side of the peak. The refined values are w2 = 0.092(8)

and w3 = 0.094(7) for the x = 0.96 sample and w2 = 0.096(2) and w3 = 0.092(6) for

x = 0.98 showing that no significant asymmetry exists. The fact that the reflection profile

is neither enlarged nor asymmetric leads to the conclusion that the powder samples inves-

tigated are uniform within the limits of precision of the diffractometer. From the standard

deviations of the refined occupation parameters a standard deviation of the composition

of less than 0.01 can be deduced for each sample.

Below x = 0.98 the ferromagnetic phase is completely suppressed for T ≥ 1.5 K with

the antiferromagnetic structure being modulated by k1 with δ = f(T, x). But it is only

for x between 0.92 and 0.95 that additional magnetic reflections [(0 +δ 1) and (0 2-δ 1)]

can be observed and indexed. Below x = 0.92 these reflections disappear; furthermore,

the fundamental reflection becomes weaker and much broader than the predicted peak

width, but even the better defined magnetic reflections are considerably broader than the

instrumental resolution giving rise to the assumption that only antiferromagnetic short-

range order is present. This case is the same for x > 0.95 with the difference that no

information about the peak width can be deduced, because the (000)+ reflection profile is
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Figure 4.22.: Nuclear (042) reflection for x = 0.96 (triangles) and x = 0.98 (circles) at

20 K. The straight lines connect the calculated points (not depicted) obtained by a fit

with Pseudo-Voigt functions (dashed lines with respective symbols represent the difference

curves). The dashed lines without symbols are the result of the asymmetric double sigmoid

fit.
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4.2. (CoxNi1−x)3V2O8

influenced by the high background due to its very small diffraction angle. In contradiction

to the results of Section 4.2.1 it can be seen, due to there being more samples on the

Co rich side, that for x = 0.76, which is exactly the same powder sample, the (000)+

reflection of the CVO type still can be observed in a broad and weak form (Fig. 4.21).

Hence, as for x = 0.71 the magnetic reflections can be indexed by a propagation vector

k2 = [0.522(7), 0, 0] (Fig. 4.23), the critical composition, where the magnetic structure

switches from the CVO to the NVO type, has to be in the region 0.71 < x < 0.76. It can

be seen from the refinement, that the width of the magnetic reflections is consistent with

the instrumental resolution revealing long-range ordered antiferromagnetism for x < 0.71.

Figure 4.23.: Observed pattern (red dots), calculated pattern (black line) and difference

plot (blue line) of (Co0.71Ni0.29)3V2O8 at 1.5 K and zero field revealing the NVO modula-

tion type with k2 = [0.522(7), 0, 0]

By indexing the magnetic reflections of the respective neutron diffraction patterns the

composition dependence of the incommensurabilities δ could be deduced (upper panel of

Fig. 4.24), but it has to be mentioned that a precise determination of the propagation

vector of the samples with x > 0.95 turned out to be difficult owing to background prob-

lems as mentioned above. As previously observed for x = 0.27 and 0.52 (Sec. 4.2.1) the

positions of the magnetic reflections only change with composition and not with tempera-

ture, whereas the NVO magnetic structure exhibits a temperature dependent propagation

vector [15]. Due to measurements on D20 it could be revealed that a substitution of 3.5%

Ni with Co suppresses the aforementioned temperature dependence, which is shown in

Fig. 4.25. Similarly, it could be observed due to thermodiffractograms with temperature

steps of 0.1 K, that the previously reported temperature dependence of the propagation
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4. Results

Figure 4.24.: Upper panel: Incommensurabilities δ as a function of the compositional pa-

rameter x. Lower panel: Magnetic (x, T ) phase diagram of (CoxNi1−x)3V2O8 obtained

by neutron powder diffraction (red squares) and single crystal heat capacity (blue dots)

experiments.
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4.2. (CoxNi1−x)3V2O8

Figure 4.25.: Magnetic (1-δ 1 1) reflection for x = 0 (lower panel) and x = 0.035 (upper

panel). The data points have been fitted with Pseudo-Voigt functions. The temperature

dependent shift of the magnetic reflection can clearly be seen for x = 0, where it does not

exist for x = 0.035.

vector of the CVO magnetic structure [6] becomes weak on reaching a composition of

x = 0.87 [Fig. 4.26(a)]. Only a slight shift of the fundamental (000)+ reflection can be

observed above approximately 4 K (exact determination results difficult due to the rather

weak reflection compared to the background). The temperature dependent shift of the

magnetic reflections can be clearly seen in Figs. 4.26(b) and (c). For the x = 0.92 sample

in Fig. 4.26(b) the magnetic reflections appear at 8.6(1) K and can be indexed by a propa-

gation vector k1 = (0, 0.5, 0). Between 8.6(1) K and 4.2(1) K the positions of the magnetic

reflections vary with temperature until they lock in at 4.2(1) K with k1 = (0, 0.4, 0). In the

case of x = 0.98 depicted in Fig. 4.26(c) one can observe a temperature dependent shift

of the magnetic reflections throughout the antiferromagnetic phase without any lock-ins.

The magnetic phase transition into the ferromagnetic phase takes place at 4.2(1) K.

Heat capacity measurements were performed on the pure Ni and Co compounds and on

three intermediate ones (x = 0.5, 0.65 and 0.86). Fig. 4.27 shows the specific heat in a

Cp/T versus T plot. The data for NVO and CVO exhibit the same sequence of transitions

and are qualitatively similar to the data reported previously [6, 12, 15]. Cp/T is, however,

up to a factor of 10 larger at the first-order incommensurate to commensurate magnetic

transitions at about 3.8 K (NVO) and 6 K (CVO) than the data in [6], [12] and [15],

which were also all acquired using a PPMS. This large difference is due to the inadequacy
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Figure 4.26.: Thermodiffractogramms of powder samples with (a) x = 0.87, (b) x = 0.92

and (c) x = 0.98. The patterns were recorded in 0.1 K steps.

92



4.2. (CoxNi1−x)3V2O8

of the standard PPMS software in dealing with sharp first-order phase transitions. For

CVO especially, a large part of the magnetic entropy is gained at this first-order transition,

which is missed by using the standard PPMS specific heat data acquisition. For the mixed

crystals (x = 0.5, 0.65 and 0.86) only a single sharp feature indicating a phase transition is

observed down to the lowest measured temperature of 2 K in agreement with the neutron

powder diffraction experiments. These transition temperatures are plotted in the lower

panel of Fig. 4.24 together with those determined by the magnetic neutron scattering data.

Good agreement is found between the two sets of transition temperatures, confirming the

Vegard’s law approximation of the single crystal Co contents.

0 5 10 15
0

1

2

3

 

C
p
/T

(J
/m

o
lK

2
)

T (K)

x=0

x=0.5

x=0.65

x=0.86

x=1

Figure 4.27.: Heat capacity curves as a function of temperature revealing a single phase

transition for the mixed crystals.
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4.3. (Co0.5Ni0.5)3V2O8

The nuclear and magnetic structure investigation of a (Co0.5Ni0.5)3V2O8 single crystal has

been performed at the four-circle diffractometer D10 (ILL). The diffractometer, which has

been used in the standard four-circle configuration (without the energy analyzer option), is

suited for conventional crystallographic studies of nuclear and magnetic structures due to

its good momentum resolution with relatively high flux and its low intrinsic background. It

is equipped with an 80x80 mm2 two-dimensional microstrip detector for three-dimensional

resolution in reciprocal space. In the diffraction configuration the detector may be inclined

up to 30◦ to the equatorial plane to increase the out-of-plane access. A schematic diagram

of the instrument is shown in Fig. 4.28.

Figure 4.28.: Instrument layout of the four-circle diffractometer D10.

As no magnetic contribution from a zero wave vector could be observed on the nuclear

reflections, both the nuclear and the magnetic structure were investigated at T = 1.5 K

using a wavelength of 2.359 Å from a pyrolytic graphite monochromator. An additional

data set of the nuclear reflections was collected with λ = 1.255 Å supplied by the (200)

reflection of a Cu monochromator in order to be able to apply extinction and absorption

corrections. By using a four-circle cryostat a large part of reciprocal space could be

investigated offering the possibility of measuring a large number of reflections. Besides

the structure investigations various scans in reciprocal space directions and in temperature

have been carried out in order to extract information about the a*, b* and c* components
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of the propagation vector and the magnetic phase transition temperature. Magnetization

curves were recorded on a Quantum Design SQUID magnetometer (Darmstadt University

of Technology) as a function of temperature, in 0.05 K steps, in a magnetic field of 50

Oe applied along the principal crystallographic axes. The specific heat was measured

at Forschungszentrum Karlsruhe in zero field with a standard PPMS calorimeter from

Quantum Design. The data close to the transition were obtained by using a procedure

similar to that presented in [91], which allows for a high temperature-resolution.

4.3.1. Nuclear structure

The nuclear structure investigation confirmed the correct phase formation of the or-

thorhombic structure (space group Cmca). The cell constants were found to be a =

5.981(2) Å, b = 11.436(5) Å and c = 8.261(6) Å showing close agreement with the previ-

ously investigated powder sample with a similar composition (Sec. 4.2.1, Tab. 4.6). The in-

tegrated intensities were corrected for absorption and extinction applying the transmission

factor integral exp[−µ(t̄in+ t̄out)] and the derivative integral (t̄in+ t̄out) exp[−µ(t̄in+ t̄out)]

according to the Becker and Coppens Lorentzian model [51] [µ is the linear absorption

coefficient, which is 0.448 cm−1 for (Co0.5Ni0.5)3V2O8]. The structure models were refined

using programs of the CCSL [49] and confirmed by FullProf [50]. The nuclear structure

refinement included the respective atomic positions and isotropic temperature factors of

M and O plus the cation distribution of Co and Ni on both M sites and the extinction

parameters. Because of its low coherent neutron scattering cross section, the atomic po-

sition and the temperature factor of V have been fixed in all refinements. The refined

values (R1 = 6.5) are listed in Table 4.7. The goodness of the fit is illustrated by a Fobs

vs. Fcal plot in Fig. 4.29. The analysis of the cation occupancy yields a true Co:Ni ratio

of 53:47 with the Co2+ ions having a higher affinity for the more symmetric (4a) site as it

has been observed on powder samples in Sec. 4.2.1.
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Figure 4.29.: Illustration of the fit results. The left and right panels show the nuclear and

magnetic data, respectively.

Table 4.7.: Structural parameters of the investigated (Co0.5Ni0.5)3V2O8 single crystal

sample.

Atom x y z B(Å2) occupancy

Co1 0 0 0 0.11(5) 0.612(9)

Co2 0.25 0.1304(2) 0.25 0.12(5) 0.492(9)

Ni1 0 0 0 0.11(5) 0.388(9)

Ni2 0.25 0.1304(2) 0.25 0.12(5) 0.508(9)

V 0 0.3762 0.1196 0.24 1

O1 0 0.2489(3) 0.2306(5) 0.25(5) 1

O2 0 0.0012(3) 0.2451(5) 0.25(5) 1

O3 0.2673(3) 0.1193(2) 0.9988(5) 0.29(5) 1

Extinction parameters

Domain radius(nm): 1.4(1) Mosaicity spread(rad): 0.037(3)
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4.3. (Co0.5Ni0.5)3V2O8

4.3.2. Magnetic phase transition temperature

The investigation of the magnetic properties was first dedicated to examine the transition

temperature and the propagation vector. Therefore the (000)+ and (111)− reflections

were measured as a function of temperature to determine the transition temperature into

the antiferromagnetic phase. It can be seen in the upper right inset of Fig. 4.30 that the

magnetic reflections appear at approximately 6.8(2) K. Magnetization measurements with

an applied magnetic field of 50 Oe parallel to the respective crystallographic axes exhibit

anomalies of the magnetization curves at 7.6(1) K (lower panel of Fig. 4.30), which agrees

well with the transition temperature of the powder sample investigated on the same in-

strument. The specific heat is shown in the upper panel of Fig. 4.30 in a Cp/T versus

T representation. The magnetic transition manifests itself as a sharp maximum in Cp/T

at TN = 7.4(1) K, which is declared as the temperature of magnetic ordering as the heat

capacity is considered to be the most precise of the data presented here for localizing the

magnetic phase transition. The slightly different results in the magnetization and diffrac-

tion experiments are considered to be a result of the chosen criterion of determining the

transition temperature.

A magnetic signal extends in the specific heat data up to about 25 K, i.e. more than 3

times TN . This could be the signature of magnetic fluctuations, whose nature is unknown.

Similar short-range ordering effects up to about 3 x TN are also observed in Cu3V2O8 [9]

and may share a similar origin. Below TN , Cp/T remains unusually high down to the lowest

measured temperature of 1.8 K, probably because of magnetic fluctuations, consequence of

the frustration. Such a behaviour is sometimes observed in heavy-fermion systems, where

strong fluctuations, due to Kondo and RKKY interactions, are present in the magnetically

ordered phase [92]. At about 2.4 K a ”bump” can be observed in the Cp/T data, whose

origin is not yet understood.

97



4. Results

0 5 10 15 20 25

0.04

0.08

0.12

6 7 8 9
0.028

0.030

0.032

0.034
 

 

 H ll a

 H ll b

 H ll c

 

 

M
 (

e
m

u
/g

)

T (K)

0

1

2

0 2 4 6 8
0

5000

10000

15000

In
te

g
ra

te
d

 I
n

te
n

s
it
y

T (K)

 (0.49 0 0)

 (0.51 1 1)

 

C
p
/T

 (
J/

m
o

lK
2
)

Figure 4.30.: Upper panel: Heat capacity curve as a function of temperature. The inset in

the upper right corner displays the temperature dependence of the integrated intensities of

two chosen magnetic reflections (data points in the upper panel and inset are connected by

straight lines). Lower panel: Magnetization curves of a (Co0.5Ni0.5)3V2O8 single crystal

with H = 50 Oe applied parallel to the crystal axes, respectively. The inset indicated by

an arrow shows a magnification to focus the transition point of the curve with H||b.
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4.3. (Co0.5Ni0.5)3V2O8

4.3.3. Propagation vector

In order to verify the propagation vector the (000)+ reflection was scanned along the three

principal directions of reciprocal space. The a*, b* and c* components of the wave vector

were deduced by determining the centers of Pseudo-Voigt functions, which were fitted to

the observed reflection profiles (Fig. 4.31). The resulting values confirm the propagation

vector k = (0.49, 0, 0), where it has to be stressed that an incommensurability is present.

This has been checked by verifying the position of the (400) reflection, which was found

to be precisely centered at h = 4.00.
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Figure 4.31.: q-scans through the (000)+ reflection along the a*, b* and c* direction. The

centers of the Pseudo-Voigt fits are displayed in the upper right corners of the respective

plots confirming the propagation vector k=(0.49, 0, 0).

4.3.4. Magnetic structure

For the determination of the magnetic structure more than 400 independent magnetic

reflections have been measured. Magnetic structure models were obtained by the help

of representation analysis. The eight symmetry operators for the (000)+ set of space

group Cmca form the group G. As mentioned in Sec. 2.3.8.2 only four symmetry ele-

ments of group G leave the propagation vector k = (0.49, 0, 0) invariant, forming the

little group Gk={1, 2x, bxy, cxz}. All the elements of Gk permute, which leads to four

one-dimensional irreducible representations labelled Γ1 to Γ4. The decompositions of

the induced representations for the respective sites are Γ(4a) = Γ1 + Γ2 + 2Γ3 + 2Γ4

and Γ(8e) = 3Γ1 + 3Γ2 + 3Γ3 + 3Γ4 (see Sec. 2.3.8.4). The observed integrated in-

tensities are distinctly best described (R1=8.2, see Fig. 4.29) by the magnetic mode

C1(S1ay−S1by)+C2(S1az +S1bz)+C3(S2ax+S2bx−S2cx−S2dx)+C4(S2ay−S2by−S2cy+

S2dy)+C5(S2az+S2bz+S2cz+S2dz) corresponding to Γ
4 (see Sec. 2.3.8.5, Tab. 2.11), where

Si,n represents a magnetic moment of atom n on site i (see Table 4.8 for the definition of
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the respective atoms). The propagation of the magnetic mode is amplitude modulated by

Table 4.8.: Fractional coordinates of the M2+ ions related to the spin properties Si,n and

the corresponding Fourier coefficients.

Site i Atom n x,y,z-Coordinates Fourier coefficients

1(4a)
a (0,0,0) (0,v1,w1)

b (0,12 ,
1
2) (0,−v1,w1)

2(8e)

a (1
4 , y,

1
4) (u2,v2,w2)

b (1
4 , ȳ +

1
2 ,

3
4) (u2,−v2,w2)

c (1
4 , y +

1
2 ,

1
4) (−u2,−v2,w2)

d (1
4 , ȳ,

3
4) (−u2,v2,w2)

the wave vector k = (0.49, 0, 0). The parameters C1 to C5 have been set as variables in

the refinement process, where an averaged magnetic form factor consisting of the weighted

analytical approximations of the Ni2+ and Co2+ form factors [84] has been used. In a first

step, the refinement parameters C1 and C4 were found to be very small with relatively

large standard deviations indicating that the magnetic moments on both crystallographic

sites probably do not exhibit a b component. For further refinement steps these variables

were set to zero. However, an upper bound of 0.11(3) µB and 0.15(6) µB can be given

for the (4a) cross tie and (8e) spine moments, respectively [C2=1.59(2) µB, C3=1.44(2)

µB, C5=0.65(1) µB]. Finally, the resulting amplitudes of the modulating waves have been

refined to 1.59(1) µB along the c axis for the cross tie spins and 1.60(1) µB within the a-c

plane for the spine spins at 1.5 K. The angle θ between the spine magnetic moments and

the c axis has been refined to 65.1(3)◦. A phase shift between the modulating waves of the

two magnetic sites results in a considerably worse fit and is therefore not justified. The

magnetic structure is depicted in Fig. 4.32.
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Figure 4.32.: Antiferromagnetic structure model with k = (0.49, 0, 0). (a) shows the per-

spective view on three neighbouring staircases. (b) shows a single staircase viewed along

the b axis revealing the loops and waves (sketched in red) consisting of ferromagnetically

coupled nearest neighbours.
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5. Summary

A thorough and systematical study of the magnetic properties of the 3d transition metal

orthooxovanadates (CoxNi1−x)3V2O8 combining a variety of methods such as neutron

powder and single crystal diffraction, polarized neutron diffraction, magnetization and

heat capacity measurements, magnetic Compton scattering and ab initio calculations has

been presented. On the one hand investigations on the mixed system have been carried

out, which led to entirely new insights into the magnetic temperature-composition phase

diagram and the magnetic structure. On the other hand detailed and precise analysis of

the extensively studied compound Co3V2O8 yielded highly interesting and valuable fea-

tures, which have not been realized before.

The first part of the investigation of the mixed system (CoxNi1−x)3V2O8 has been carried

out using neutron powder diffraction on three samples with x=0.27, 0.52 and 0.76. In

contrast to the end members only one temperature dependent magnetic phase transition

into an antiferromagnetic ground state could be observed. The measured magnetic reflec-

tions could be indexed by introducing a propagation vector k = (δ, 0, 0) and it has been

revealed that the incommensurability δ is dependent on the compositional parameter x,

where δ increases with increasing amount of Co.

The magnetic phase transitions of the (CoxNi1−x)3V2O8 system have been examined as a

function of temperature and composition by neutron powder diffraction and single crys-

tal heat capacity experiments. The obtained transition points of both methods match

up well and are plotted together in the magnetic (x, T ) phase diagram (lower panel of

Fig. 4.24). One can observe a decrease of TN with increasing amount of M2+ substitution

starting from either end of the phase diagram, until the lowest observed Néel temperature

of 5.5 K is reached with x = 0.76. This composition still exhibits a CVO type modulation,

while x = 0.71 is modulated by k2, what indicates a change of the magnetic structure

for 0.71 < x < 0.76 into the antiferromagnetic long-range ordered NVO type. Further-

more, it has been deduced that small degrees of magnetic ion substitution disturb the

magnetic structures of the parent compounds. Substituting 2% of Co with Ni leads to

a suppression of the ferromagnetic CVO ground state in favour of the antiferromagnetic

short-range ordered CVO phase with k1 = [0, δ(T, x), 0]. On the other hand, 3.5% Co on
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5. Summary

the magnetic sites of NVO remove the temperature dependence of its propagation vector

k2 = [δ(T, x), 0, 0]. A further interesting result is the existence of a phase within AF1 with

δ having a constant value of 0.4, which is the case for T < 4.2K and 0.76 < x < 0.92.

These findings allowed to draw a preliminary phase boundary inside the AF1 phase (dot-

ted lines in Fig. 4.24).

In the proposed magnetic structure of (Co0.5Ni0.5)3V2O8, which results from the same

irreducible representation as the high temperature incommensurate phase of NVO and is

modulated by the same type of propagation vector, the two sublattices of M2+ ions exhibit

differently oriented magnetic moments in the a-c plane, where the cross-tie moments are

collinear along the c axis, but the spine moments span a 65.1(3)◦ angle with the c axis. As

previously reported [15], the symmetry of the crystal structure admits a Dzyaloshinskii-

Moriya interaction [93, 94] among the nearest neighbour spine spins, which justifies the

observed canting between the aforementioned spins in (Co0.5Ni0.5)3V2O8. Fig. 4.32 dis-

plays the magnetic structure after a global phase shift of π
4 has been applied in order to

show a picture, in which the amplitude of all magnetic moments is sufficiently high so that

their orientation is clearly visible. The 4a site is represented by green atoms and magnetic

moments, while the 8e site is depicted in blue. Fig. 4.32(b) shows a single staircase viewed

along the b axis, which emphasizes the characteristics of this magnetic structure. Given

the orientation of the magnetic moments with respect to the crystal axes, there exist in

principle 23 possibilities to place the moments on the corners of the isosceles triangles of

the kagome staircase structure. The magnetic structure presented here reveals only six of

these possibilities. No triangle can be found, in which all three moments point either to-

wards or away from each other, as it would be expected for a frustrated antiferromagnetic

system. Due to the propagation vector k = (0.49, 0, 0) the direction of every magnetic

moment is flipped after a translation of the lattice vector a. The resulting picture of the

average magnetic structure shows loops, within which every pair of nearest neighbour spins

couples as in a canted ferromagnet. We call this arrangement a quasiferromagnetic loop,

because a ferromagnetic component exists for every pair of nearest neighbours but not

for the whole loop. These loops are connected along the a axis with alternating sense of

rotation, while they are separated along the c axis by cross-tie moments not belonging to

the loops, but forming the same kind of canted ferromagnetic coupling with their nearest

neighbour of the superior part of a loop on either side. This results in a sort of wave along

the c axis, which also alternates its direction when translated by a. Similarly, we call this

a quasiferromagnetic wave, because the ferromagnetic components of two neighbouring

spins are not parallel for all pairs of neighbours. After a translation of ±12.5a, where the
amplitudes of the magnetic moments run through the full value and zero, respectively, the

loops are shifted by (1
2 , 0,

1
2), i.e. they change places with the connecting segments. This
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switching has a period of 25a. As the propagation vector possesses an a* component the

neighbouring kagome staircases do not differ concerning their spin arrangement like in the

antiferromagnetic structure of CVO, where the staircases alternate between ferromagnetic

and antiferromagnetic ones. It can be seen in Fig. 4.32(a) that the orientation of the

spine spins within the chains along the a axis is exactly the same as in each of the two

neighbouring chains of the next staircase. A mean-field approach to the first ordered state

based on classical spins [95] was attempted in order to confirm the magnetic structure

theoretically. The attempt failed because of the inability of adequately describing each

magnetic moment’s vicinity, which varies locally as a consequence of the statistical occu-

pation of the magnetic sites by Co and Ni.

Like it has already been observed on the powder samples, only one magnetic phase tran-

sition exists down to 1.8 K, which the heat capacity measurements confirm. However, as

an incommensurate magnetic structure is not likely to be a ground state, a commensurate

lock-in is expected at very low temperatures.

The striking result of this experiment is the considerable deviation of the (Co0.5Ni0.5)3V2O8

magnetic structure from those of its parent compounds CVO and NVO, which exhibit a

variety of magnetic structures with magnetic moments oriented along the a axis [6] or

predominantly in the a-b plane with small components along c [19], respectively. Com-

paring the ground states of the parent compounds, which are a ferromagnet for CVO

and a canted antiferromagnet for NVO, with the magnetic structure presented here, one

can deduce a higher degree of competition between nearest neighbour interactions for

(Co0.5Ni0.5)3V2O8. A simple global picture based on exchange interactions cannot be set

as a consequence of the chemical disorder. However, the Ising-like behaviour of Co2+ in

combination with its higher affinity for the 4a site could explain the collinear alignment of

the cross-tie spins. The result of this work should be followed by a theoretical approach as

it shows once again that the competition of the exchange interactions along various cou-

pling pathways in this particular crystallographic system results in a variety of different

interesting magnetic structures.

The probably most stunning results were obtained from the real space magnetization and

momentum space spin density distributions. Detailed and precise analysis of these quan-

tities were required in order to determine the exact contribution of the atomic species

involved in the studied system. Quantum chemical modeling was needed to gain insights,

at a molecular level, into the electronic structure of the two cobalt-oxide octahedra. In

this context, ab initio cluster calculations were done for the CocO6 and CosO6 octahedra

yielding precise molecular orbitals and wave functions. The latter were used to analyze

the experimentally observed density distributions. The refinement of the contribution of

each molecular orbital wave function, at a quantum chemical level, to the real and mo-
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mentum space densities simultaneously has shown to be a powerful procedure allowing

to get interesting and valuable features of the magnetic form factors. The importance of

system-specific molecular orbital wave functions becomes obvious with the fact that the R

value for the flipping ratio refinement could be improved from 13.8, which results from an

individual refinement with tabulated spherical form factors, to 9.6 with the use of the ab

initio results even for the correlated refinement. In order to be able to obtain such valuable

results it was crucial to perform accurate extinction corrections as the very phenomena

turned out to be of great magnitude. With this extensive treatment a crucial observation

could be made concerning the Coc ion. The previous assumption, that the ferromagnetic

structure at zero magnetic field is not fully ordered because of the Coc only exhibiting 1.54

µB, could be disproved. Previous macroscopic magnetization measurements [16] indeed

showed a saturated moment of approximately 3.4 µB per Co site at H=2 T along a, but

the results presented here reveal that the field dependent increase of magnetization stems

from the V, O2 and O3 sites. Hereby, the V and O2 site show quite localized magneti-

zation density, while the O3 density seems to be smeared out due to truncation effects

in the Fourier series. The spin polarized density on O2 and O3, which are those oxygen

ions in the CocO6 clusters, may be a strong indication for a partially covalent character of

the Coc ions and the reason for their relatively low magnetic moment compared to Cos.

Referring to an ionic spin-32 Co2+ the value of the Coc magnetic moment would imply,

that almost 50% of the spin density is transferred to the surrounding ligands. As pointed

out in [96] the underlying physical process involved in the spin transfer is rather a paired

O2p electron going to a half occupied Co3d orbital and not vice versa, thus reducing the

cation and increasing the ligand moment. Large covalency, although to a lesser extent

(28%), has also been observed in Fe3O4 [97].

The magnetization density distribution clearly exhibits the superexchange pathways be-

tween the two different Co sites, but it indicates also the interlayer coupling, which is

mediated by the V-O1 bridge. Combining the methods of polarized neutron diffraction

and magnetic Compton scattering allowed to refine the occupations of the Co3d orbitals

in a stable way. Like it has been previously reported but with inverse results [7] the two

crystallographically different Co ions exhibit different spin polarized orbital occupations.

While the unpaired electrons are equally distributed between the t2g and eg levels for the

Cos ion, the magnetic signal stems by as much as 70% from the t2g orbitals for the Coc

ion. Concerning the eg orbitals of both ions the basal plane orbital dx2−y2 is more popu-

lated than the apical d3z2−r2 orbital. This possibly indicates a higher exchange interaction

between the Cos ions via an intermediate O2 ion. In the case of the Coc ions it could be

a hint that the magnetic exchange with the spine Co ions takes place preferentially via

an O3 ion. In other words, the O2 sites mediate the superexchange between spine and

cross-tie ions, while the O3 sites mediate the superexchange between the spine ions. The
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O1 sites which are situated at the outermost positions of the staircases reveal only weak

magnetic moments, but therefore they could play a role in the interlayer coupling with

the V ions. Fig. 5.1 shows a part of kagome staircase, in which the different oxygen types

are distinguishable. The pathways which are believed to play a more pronounced role for

the exchange interaction are represented by thick bonds.

Figure 5.1.: Part of a kagome staircase showing the cross-tie (light blue) and spine Co ions

(dark blue) with the respective superexchange pathways via O1 (yellow), O2 (orange) and

O3 ions (red). Pathways corresponding to more populated orbitals are sketched as thick

bonds.
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A. Group theory

A.1. Derivations

A.1.1. The orthogonality theorem

From the arbitrary matrix B of dU rows and dV columns and two inequivalent represen-

tations ΓU and ΓV of dimensions dU and dV , respectively, one can construct a matrix A

by means of

A =
∑

g∈G

ΓU (g)BΓV (g−1). (A.1)

Multiplying Eq. A.1 with a V -dimensional representation of an arbitrary group element

g′ on the right side yields

AΓV (g′) =
∑

g∈G

ΓU (g)BΓV (g−1g′). (A.2)

As g−1g′ must be equal to some element gk ∈ G according to the first group axiom so that

g′ = ggk, every element g
′ appears in the set ggk. It does not appear twice in ggk, since

it should appear in the forms ggk and ggl, which would give gk = gl by premultiplying

by g−1 contrary to the assumption that the group elements are distinct. This so called

rearrangement theorem allows to sum Eq. A.2 over g′′ ≡ g′−1g instead of g:

AΓV (g′) =
∑

g′′∈G

ΓU (g′g′′)BΓV (g′′−1) = ΓU (g′)A. (A.3)

Eq. A.3 shows that A fulfills Schür’s first lemma, hence if ΓU and ΓV are inequivalent, A

must be the zero matrix so that

∑

l

∑

m

∑

g∈G

ΓU
j,l(g)Bl,mΓ

V
m,n(g

−1) = 0, (A.4)

which means that any successive row-column multiplication of ΓU (g)BΓV (g−1) gives a

zero element. As B is a completely arbitrary matrix it can be chosen to have all elements
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zero except for Bl,m = 1, which yields

∑

g∈G

ΓU
j,l(g)Γ

V
m,n(g

−1) = 0 (A.5)

as only the elements in the last column of ΓU and those in the last row of ΓV are multiplied

with Bl,m. With ΓV being a unitary matrix one can write

∑

g∈G

ΓU
j,l(g)

(

ΓV
n,m(g)

)∗
= 0 (A.6)

Eq. A.6 states the orthogonality theorem in case that ΓU and ΓV are inequivalent. In case

of equivalency Eq. A.1 is combined with Schür’s second lemma:

A =
∑

g∈G

ΓU (g)BΓU (g−1) = c1, (A.7)

where c is a complex scalar and 1 is the unit matrix of order dU . With the same choice of

B as above one obtains

∑

g∈G

ΓU
j,l(g)Γ

U
m,n(g

−1) = cδjn, (A.8)

which obviously is only nonzero if the elements multiplied produce a diagonal element on

the right side of Eq. A.7, hence if the jth row of ΓU (g) is multiplied with the jth column

of ΓV (g−1). To determine the constant c one sets j = n and sums over j. The left-hand

side of Eq. A.8 yields

dU
∑

j=1

∑

g∈G

ΓU
j,l(g)Γ

U
m,j(g

−1) =
∑

g∈G

[

ΓU (g−1)ΓU (g)
]

m,l
=

∑

g∈G

ΓU
m,l(g

−1g) = nGδlm, (A.9)

while for the right-hand side one obtains

c

dU
∑

j=1

1 = cdU . (A.10)

Combining the results of Eq. A.9 and Eq. A.10 gives

c =
nG

dU
δlm. (A.11)

Substituting Eq. A.11 into Eq. A.8 and using unitarity yields the orthogonality theorem

stated in Eq. 2.30.

112



A.1. Derivations

A.1.2. Equality of characters for equivalent representations

Let T and S be two arbitrary square matrices of the same dimension. One can show with

∑

i

(TS)i,i =
∑

i

∑

j

Ti,jSj,i =
∑

j

∑

i

Sj,iTi,j =
∑

j

(ST)j,j , (A.12)

the following important property:

Tr(TS) = Tr(ST) (A.13)

Setting S = QT−1 in Eq. A.13 one obtains

Tr(TQT−1) = Tr(Q), (A.14)

which shows that the trace is invariant with respect to similarity transformations. Since

equivalent representations are related to each other through Eq. 2.22, their characters are

equal owing to Eq. A.14.

A.1.3. Constance of characters within classes

Any two conjugate elements a and b of a group G are related by

gag−1 = b (A.15)

with some group element g ∈ G. The corresponding relation among the representation

matrices

Γ(g)Γ(a)Γ(g)−1 = Γ(b) (A.16)

together with Eq. A.14 yields

χ(a) = χ(b) (A.17)

showing that characters are constant over conjugacy classes.
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A.1.4. Second orthogonality theorem for classes

For any class Cw of the group G Eq. 2.18 holds, which can be rewritten as

gCw = Cwg, (A.18)

where g is an arbitrary element of G. Due to the homomorphism between the group and

its representation, a similar relation to Eq. A.18 exists for the representation matrices as

well. With defining

Cw ≡
∑

g∈Cw

ΓU (g) (A.19)

one obtains

ΓU (g)Cw = CwΓ
U (g). (A.20)

Since ΓU is irreducible, Schur’s second lemma requires that Cw = λ1. To determine λ the

trace is taken of both sides, which yields

n(Cw)χ
U
w = λdU (A.21)

and therefore

Cw =
n(Cw)

dU
χU

w1 (A.22)

Any product of classes consists of classes itself, which can straightforwardly be shown by

gCeCfg
−1 = gCeg

−1gCjg
−1 = CeCf . (A.23)

Hence any product of classes may be written as

CeCf =
∑

w

cwefCw, (A.24)

which means that Cw appears cwef times in the class product CeCf . One can use the ho-

momorphism rule again to write

CeCf =
∑

w

cwefCw (A.25)
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Substituting Eq. A.22 into Eq. A.25 gives

n(Ce)n(Cf )χ
U
e χ

U
f = dU

∑

w

cwefn(Cw)χ
U
w . (A.26)

With the result of Appendix A.1.5,

∑

U

dUχ
U
w = nGδw1, (A.27)

where C1 denotes the class that consists of the single element E, and by summing both

sides of Eq. A.26 over the irreducible representations U, one obtains

n(Ce)n(Cf )
∑

U

χU
e χ

U
f = nGc

1
ef (A.28)

Now Cf ′ shall denote the class consisting of the n(Cf ′) inverse elements g−1 with respect

to Cf , which consists of n(Cf ) elements g with n(Cf ′) = n(Cf ). Due to the unitarity of

the representation matrices one obtains

χU
f ′ =

(

χU
f

)∗
(A.29)

Considering the class product CeCf (Eq. A.24) the class constant c
1
ef is zero, if Ce 6= Cf ′ ,

because CeCf does not contain the unit element. If Ce = Cf ′ , products of the form gg−1

appear n(Ce) in the class product. Replacing f by f ′ in Eq. A.28 leads to the second

orthogonality for characters

∑

U

χU
e

(

χU
f

)∗
=

nG

n(Ce)
δef (A.30)

A.1.5. Sum of characters over representations

From Eq. 2.25 the character of the regular representation can be derived, which is

χreg(g) =

g
∑

i=1

δ(g−1
i ggi) =







nG, if g = E

0, otherwise
(A.31)

Since the regular representation is reducible, it can be decomposed into a direct sum of
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irreducible representations, which can be written as

Γreg(g) =
⊕

U

nUΓ
U (g), (A.32)

where nU are nonnegative integers. As the matrix of a regular representation can be

block-diagonalized by means of equivalence transformation (see Eq. 2.24), its character

can be expressed as

χreg(g) =
∑

U

nUχ
U (g). (A.33)

By multiplying by
(

χU (g)
)∗
and summing over V instead of U yields

∑

g∈G

χreg(g)
(

χU (g)
)∗
=

∑

V

nV

∑

g∈G

χV (g)
(

χU (g)
)∗
, (A.34)

which with application of the first orthogonality of characters (Eq. 2.34) simplifies to

∑

V

nV nGδUV = nUnG. (A.35)

Combining Eq. A.34 and Eq. A.35 gives the coefficients nU as

nU =
1

nG

∑

g∈G

χreg(g)
(

χU (g)
)∗
=

(

χU (E)
)∗
= dU . (A.36)

Using this result in Eq. A.33 leads to

∑

U

dUχ
U (g) = 0, for g 6= E (A.37)

and

∑

U

d2
U = nG, for g = E. (A.38)
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A.2. Calculations

A.2.1. Compatibility of symmetry elements with propagation vectors

To be compatible with a respective propagation vector a symmetry element has to fullfill

α∗k = k+Kp. (A.39)

α∗(E)k2 =







1 0 0

0 1 0

0 0 1













ka∗

0

0






=







ka∗

0

0






(A.40)

α∗(21,z)k2 =







1̄ 0 0

0 1̄ 0

0 0 1













ka∗

0

0






=







−ka∗

0

0






6=







ka∗

0

0






+Kp (A.41)

α∗(21,y)k2 =







1̄ 0 0

0 1 0

0 0 1̄













ka∗

0

0






=







−ka∗

0

0






6=







ka∗

0

0






+Kp (A.42)

α∗(2x)k2 =







1 0 0

0 1̄ 0

0 0 1̄













ka∗

0

0






=







ka∗

0

0






(A.43)

α∗(1̄)k2 =







1̄ 0 0

0 1̄ 0

0 0 1̄













ka∗

0

0






=







−ka∗

0

0






6=







ka∗

0

0






+Kp (A.44)

α∗(bxy)k2 =







1 0 0

0 1 0

0 0 1̄













ka∗

0

0






=







ka∗

0

0






(A.45)

α∗(cxz)k2 =







1 0 0

0 1̄ 0

0 0 1













ka∗

0

0






=







ka∗

0

0






(A.46)

α∗(myz)k2 =







1̄ 0 0

0 1 0

0 0 1













ka∗

0

0






=







−ka∗

0

0






6=







ka∗

0

0






+Kp (A.47)

Only E, 2x, bxy and cxz leave k2 invariant modulo Kp. Note that ka∗=0.5 makes no
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difference for the incompatible elements as (010) is no reciprocal lattice vector because of

the C-centering.

α∗(E)k3 =







1 0 0

0 1 0

0 0 1













0

kb∗

0






=







0

kb∗

0






(A.48)

α∗(21,z)k3 =







1̄ 0 0

0 1̄ 0

0 0 1













0

kb∗

0






=







0

−kb∗

0






6=







0

kb∗

0






+Kp (A.49)

α∗(21,y)k3 =







1̄ 0 0

0 1 0

0 0 1̄













0

kb∗

0






=







0

kb∗

0






(A.50)

α∗(2x)k3 =







1 0 0

0 1̄ 0

0 0 1̄













0

kb∗

0






=







0

−kb∗

0






6=







0

kb∗

0






+Kp (A.51)

α∗(1̄)k3 =







1̄ 0 0

0 1̄ 0

0 0 1̄













0

kb∗

0






=







0

−kb∗

0






6=







0

kb∗

0






+Kp (A.52)

α∗(bxy)k3 =







1 0 0

0 1 0

0 0 1̄













0

kb∗

0






=







0

kb∗

0






(A.53)

α∗(cxz)k3 =







1 0 0

0 1̄ 0

0 0 1













0

kb∗

0






=







0

−kb∗

0






6=







0

kb∗

0






+Kp (A.54)

α∗(myz)k3 =







1̄ 0 0

0 1 0

0 0 1













0

kb∗

0






=







0

kb∗

0






(A.55)

As one can see Gk3
consists of E, 21,y, bxy and myz.

A.2.2. Reduction of the permutation representation

The multiplicity coefficients nk,U are obtained by

nk,U =
1

nGk

∑

g∈Gk

χk,perm
j (g)

(

χk,U (g)
)∗

(A.56)
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1. k1 = 0

• M1 site 4a

nk1,1 =
1

8
(2 · 1 + 2 · 1 + 2 · 1 + 2 · 1) = 1 (A.57)

nk1,2 =
1

8
[2 · 1 + 2 · 1 + 2 · (−1) + 2 · (−1)] = 0 (A.58)

nk1,3 =
1

8
[2 · 1 + 2 · (−1) + 2 · 1 + 2 · (−1)] = 0 (A.59)

nk1,4 =
1

8
[2 · 1 + 2 · (−1) + 2 · (−1) + 2 · 1] = 0 (A.60)

nk1,5 =
1

8
[2 · 1 + 2 · (−1) + 2 · 1 + 2 · (−1)] = 0 (A.61)

nk1,6 =
1

8
[2 · 1 + 2 · (−1) + 2 · (−1) + 2 · 1] = 0 (A.62)

nk1,7 =
1

8
(2 · 1 + 2 · 1 + 2 · 1 + 2 · 1) = 1 (A.63)

nk1,8 =
1

8
[2 · 1 + 2 · 1 + 2 · (−1) + 2 · (−1)] = 0 (A.64)

Hence, the decomposition

Γ
k1,perm
4a = Γk1,1 ⊕ Γk1,7, (A.65)

• M2 site 8e

nk1,1 =
1

8
(4 · 1 + 4 · 1) = 1 (A.66)

nk1,2 =
1

8
(4 · 1 + 4 · 1) = 1 (A.67)

nk1,3 =
1

8
[4 · 1 + 4 · (−1)] = 0 (A.68)

nk1,4 =
1

8
[4 · 1 + 4 · (−1)] = 0 (A.69)

nk1,5 =
1

8
(4 · 1 + 4 · 1) = 1 (A.70)

nk1,6 =
1

8
(4 · 1 + 4 · 1) = 1 (A.71)
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nk1,7 =
1

8
[4 · 1 + 4 · (−1)] = 0 (A.72)

nk1,8 =
1

8
[4 · 1 + 4 · (−1)] = 0 (A.73)

This results in

Γ
k1,perm
8e = Γk1,1 ⊕ Γk1,2 ⊕ Γk1,5 ⊕ Γk1,6. (A.74)

2. k2 = (ka∗ , 0, 0)

• M1 site 4a

nk2,1 =
1

4
(2 · 1 + 2 · 1) = 1 (A.75)

nk2,2 =
1

4
(2 · 1 + 2 · 1) = 1 (A.76)

nk2,3 =
1

4
[2 · 1 + 2 · (−1)] = 0 (A.77)

nk2,4 =
1

4
[2 · 1 + 2 · (−1)] = 0 (A.78)

Γ
k2,perm
4a = Γk2,1 ⊕ Γk2,2 (A.79)

• M2 site 8e

nk2,1 =
1

4
(4 · 1) = 1 (A.80)

nk2,2 =
1

4
(4 · 1) = 1 (A.81)

nk2,3 =
1

4
(4 · 1) = 1 (A.82)

nk2,4 =
1

4
(4 · 1) = 1 (A.83)

Γ
k2,perm
8e = Γk2,1 ⊕ Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4 (A.84)
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3. k3 = (0, kb∗ , 0)

• M1 site 4a

nk3,1 =
1

4
[2 · 1 + 2 · (−1)] = 0 (A.85)

nk3,2 =
1

4
(2 · 1 + 2 · 1) = 1 (A.86)

nk3,3 =
1

4
(2 · 1 + 2 · 1) = 1 (A.87)

nk3,4 =
1

4
[2 · 1 + 2 · (−1)] = 0 (A.88)

Γ
k3,perm
4a = Γk3,2 ⊕ Γk3,3 (A.89)

• M2 site 8e (valid for o1 and o2)

nk3,1 =
1

4
[2 · 1 + 2 exp(πikb∗) · (exp(πikb∗))

∗] = 1 (A.90)

nk3,2 =
1

4
[2 · 1 + 2 exp(πikb∗) · (exp(πikb∗))

∗] = 1 (A.91)

nk3,3 =
1

4
[2 · 1 + 2 exp(πikb∗) · (− exp(πikb∗))

∗] = 0 (A.92)

nk3,4 =
1

4
[2 · 1 + 2 exp(πikb∗) · (− exp(πikb∗))

∗] = 0 (A.93)

Γ
k3,perm
8e = Γk3,1 ⊕ Γk3,2 (A.94)
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A.2.3. Reduction of the axial vector representation

The multiplicity coefficients nk,U are obtained by

nk,U =
1

nGk

∑

g∈Gk

χk,vect(g)
(

χk,U (g)
)∗

(A.95)

1. k1 = 0

nk1,1 =
1

8
[3 · 1 + (−1) · 1 + (−1) · 1 + (−1) · 1
+ 3 · 1 + (−1) · 1 + (−1) · 1 + (−1) · 1] = 0 (A.96)

nk1,2 =
1

8
[3 · 1 + (−1) · 1 + (−1) · 1 + (−1) · 1 + 3 · (−1)
+ (−1) · (−1) + (−1) · (−1) + (−1) · (−1)] = 0 (A.97)

nk1,3 =
1

8
[3 · 1 + (−1) · 1 + (−1) · (−1) + (−1) · (−1)
+ 3 · 1 + (−1) · 1 + (−1) · (−1) + (−1) · (−1)] = 1 (A.98)

nk1,4 =
1

8
[3 · 1 + (−1) · 1 + (−1) · (−1) + (−1) · (−1)
+ 3 · (−1) + (−1) · (−1) + (−1) · 1 + (−1) · 1] = 0 (A.99)

nk1,5 =
1

8
[3 · 1 + (−1) · (−1) + (−1) · 1 + (−1) · (−1)
+ 3 · 1 + (−1) · (−1) + (−1) · 1 + (−1) · (−1)] = 1 (A.100)

nk1,6 =
1

8
[3 · 1 + (−1) · (−1) + (−1) · 1 + (−1) · (−1)
+ 3 · (−1) + (−1) · 1 + (−1) · (−1) + (−1) · 1] = 0 (A.101)

nk1,7 =
1

8
[3 · 1 + (−1) · (−1) + (−1) · (−1) + (−1) · 1
+ 3 · 1 + (−1) · (−1) + (−1) · (−1) + (−1) · 1] = 1 (A.102)

nk1,8 =
1

8
[3 · 1 + (−1) · (−1) + (−1) · (−1) + (−1) · 1
+ 3 · (−1) + (−1) · 1 + (−1) · 1 + (−1) · (−1)] = 0 (A.103)
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The 3-dimensional axial vector representation decomposes as

Γk1,vect = Γk1,3 ⊕ Γk1,5 ⊕ Γk1,7 (A.104)

2. k2 = (ka∗ , 0, 0)

nk2,1 =
1

4
[3 · 1 + (−1) · 1 + (−1) · 1 + (−1) · 1] = 0 (A.105)

nk2,2 =
1

4
[3 · 1 + (−1) · 1 + (−1) · (−1) + (−1) · (−1)] = 1 (A.106)

nk2,3 =
1

4
[3 · 1 + (−1) · (−1) + (−1) · 1 + (−1) · (−1)] = 1 (A.107)

nk2,4 =
1

4
[3 · 1 + (−1) · (−1) + (−1) · (−1) + (−1) · 1] = 1 (A.108)

Γk2,vect = Γk2,2 ⊕ Γk2,3 ⊕ Γk2,4 (A.109)

3. k3 = (0, kb∗ , 0)

nk3,1 =
1

4
[3 · 1 + (− exp(πikb∗)) · exp ((πikb∗))

∗

+ (− exp(πikb∗)) · (− exp(πikb∗))
∗ + (−1) · (−1)] = 1 (A.110)

nk3,2 =
1

4
[3 · 1 + (− exp(πikb∗)) · (exp(πikb∗))

∗

+ (− exp(πikb∗)) · (exp(πikb∗))
∗ + (−1) · 1] = 0 (A.111)

nk3,3 =
1

4
[3 · 1 + (− exp(πikb∗)) · (− exp(πikb∗))

∗

+ (− exp(πikb∗)) · (− exp(πikb∗))
∗ + (−1) · 1] = 1 (A.112)

nk3,4 =
1

4
[3 · 1 + (− exp(πikb∗)) · (− exp(πikb∗))

∗

+ (− exp(πikb∗)) · (exp(πikb∗))
∗ + (−1) · (−1)] = 1 (A.113)
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Γk3,vect = Γk3,1 ⊕ Γk3,3 ⊕ Γk3,4 (A.114)

A.2.4. Reduction of some direct products

The direct product Γk,U ⊗ Γk,V of two irreducible matrix representations is generally re-

ducible and expands as

Γk,U ⊗ Γk,V =
⊕

W

nUV
k,WΓ

k,W , (A.115)

where the nUV
k,W are the Clebsh-Gordan coefficients, which can be expressed by

nUV
k,W =

1

nGk

∑

g∈Gk

χk,U (g)χk,V (g)
(

χk,W (g)
)∗

(A.116)

as the character of a direct product representation is simply the product of the respec-

tive characters. Now the following direct products can be decomposed into irreducible

representations:

1. k1 = 0

• Γk1,3 ⊗ Γk1,1

n3,1
k1,1 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1

+ 1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1] = 0 (A.117)

n3,1
k1,2 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1)

+ 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · (−1)] = 0 (A.118)

n3,1
k1,3 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1

+ 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1)] = 1 (A.119)

n3,1
k1,4 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · (−1)

+ 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · 1] = 0 (A.120)
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n3,1
k1,5 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1

+ 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1)] = 0 (A.121)

n3,1
k1,6 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)
+ 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1] = 0 (A.122)

n3,1
k1,7 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · 1
+ 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1] = 0 (A.123)

n3,1
k1,8 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)
+ 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1)] = 0 (A.124)

The decomposition is

Γk1,3 ⊗ Γk1,1 = Γk1,3 (A.125)

• Γk1,5 ⊗ Γk1,1

n5,1
k1,1 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1
+ 1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1] = 0 (A.126)

n5,1
k1,2 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1)
+ (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · (−1)] = 0 (A.127)

n5,1
k1,3 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1
+ (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1)] = 0 (A.128)

n5,1
k1,4 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · (−1)
+ (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · 1] = 0 (A.129)

n5,1
k1,5 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1
+ (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1)] = 1 (A.130)
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n5,1
k1,6 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)
+ (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1] = 0 (A.131)

n5,1
k1,7 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · 1
+ (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1] = 0 (A.132)

n5,1
k1,8 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)
+ (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1)] = 0 (A.133)

The decomposition is

Γk1,5 ⊗ Γk1,1 = Γk1,5 (A.134)

• Γk1,7 ⊗ Γk1,1

n7,1
k1,1 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1
+ 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1] = 0 (A.135)

n7,1
k1,2 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + 1 · 1 · (−1)
+ (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · (−1)] = 0 (A.136)

n7,1
k1,3 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + 1 · 1 · 1
+ (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)] = 0 (A.137)

n7,1
k1,4 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + 1 · 1 · (−1)
+ (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · 1] = 0 (A.138)

n7,1
k1,5 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1) + 1 · 1 · 1
+ (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)] = 0 (A.139)

n7,1
k1,6 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1) + 1 · 1 · (−1)
+ (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1] = 0 (A.140)
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n7,1
k1,7 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1 + 1 · 1 · 1
+ (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1] = 1 (A.141)

n7,1
k1,8 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1 + 1 · 1 · (−1)
+ (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1)] = 0 (A.142)

The decomposition is

Γk1,7 ⊗ Γk1,1 = Γk1,7 (A.143)

• Γk1,3 ⊗ Γk1,7

n3,7
k1,1 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · 1 · 1

+ 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1] = 0 (A.144)

n3,7
k1,2 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · 1 · (−1)

+ 1 · (−1) · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · (−1)] = 0 (A.145)

n3,7
k1,3 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1

+ 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1)] = 0 (A.146)

n3,7
k1,4 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · 1 · (−1)

+ 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · 1 · 1] = 0 (A.147)

n3,7
k1,5 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · 1 · 1

+ 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · 1 · (−1)] = 1 (A.148)

n3,7
k1,6 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)

+ 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.149)

n3,7
k1,7 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · 1 · 1

+ 1 · (−1) · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.150)
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n3,7
k1,8 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)

+ 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.151)

The decomposition is

Γk1,3 ⊗ Γk1,7 = Γk1,5 (A.152)

• Γk1,5 ⊗ Γk1,7

n5,7
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · 1 · 1

+ 1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · 1 · 1] = 0 (A.153)

n5,7
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · 1 · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · 1 · (−1)] = 0 (A.154)

n5,7
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1

+ (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1)] = 1 (A.155)

n5,7
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · 1 · 1] = 0 (A.156)

n5,7
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · 1 · (−1) + 1 · 1 · 1

+ (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.157)

n5,7
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.158)

n5,7
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · 1 · 1 + 1 · 1 · 1

+ (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.159)

n5,7
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.160)
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The decomposition is

Γk1,5 ⊗ Γk1,7 = Γk1,3 (A.161)

• Γk1,7 ⊗ Γk1,7

n7,7
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + 1 · 1 · 1

+ (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · 1 · 1] = 1 (A.162)

n7,7
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + (−1) · (−1) · (−1) + 1 · 1 · (−1)] = 0 (A.163)

n7,7
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + 1 · 1 · 1

+ (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1)] = 0 (A.164)

n7,7
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · 1 · 1] = 0 (A.165)

n7,7
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · 1 · (−1) + 1 · 1 · 1

+ (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · 1 · (−1)] = 0 (A.166)

n7,7
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · 1 · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1] = 0 (A.167)

n7,7
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · (−1) · (−1) + 1 · 1 · 1 + 1 · 1 · 1

+ (−1) · (−1) · (−1) + (−1) · (−1) · (−1) + 1 · 1 · 1] = 0 (A.168)

n7,7
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.169)

The decomposition is

Γk1,7 ⊗ Γk1,7 = Γk1,1 (A.170)
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• Γk1,3 ⊗ Γk1,2

n3,2
k1,1 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · (−1) · 1

+ 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · (−1) · 1] = 0 (A.171)

n3,2
k1,2 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · (−1) · (−1) + 1 · (−1) · (−1)

+ (−1) · (−1) · (−1) + (−1) · (−1) · (−1)] = 0 (A.172)

n3,2
k1,3 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1

+ 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · (−1) · (−1)] = 0 (A.173)

n3,2
k1,4 =

1

8
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · (−1) · (−1)

+ 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · (−1) · 1] = 1 (A.174)

n3,2
k1,5 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · (−1) · 1

+ 1 · (−1) · (−1) + (−1) · (−1) · 1 + (−1) · (−1) · (−1)] = 0 (A.175)

n3,2
k1,6 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1)

+ 1 · (−1) · 1 + (−1) · (−1) · (−1) + (−1) · (−1) · 1] = 0 (A.176)

n3,2
k1,7 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · (−1) · 1

+ 1 · (−1) · (−1) + (−1) · (−1) · (−1) + (−1) · (−1) · 1] = 0 (A.177)

n3,2
k1,8 =

1

8
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1)

+ 1 · (−1) · 1 + (−1) · (−1) · 1 + (−1) · (−1) · (−1)] = 0 (A.178)

The decomposition is

Γk1,3 ⊗ Γk1,2 = Γk1,4 (A.179)
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• Γk1,3 ⊗ Γk1,5

n3,5
k1,1 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1

+ 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1] = 0 (A.180)

n3,5
k1,2 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1)+

1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · (−1)] = 0 (A.181)

n3,5
k1,3 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · 1

+ 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · (−1)] = 0 (A.182)

n3,5
k1,4 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · (−1)

+ 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · 1] = 0 (A.183)

n3,5
k1,5 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1

+ 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · (−1)] = 0 (A.184)

n3,5
k1,6 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1)

+ 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · 1] = 0 (A.185)

n3,5
k1,7 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · 1 + 1 · 1 · 1

+ 1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · 1] = 1 (A.186)

n3,5
k1,8 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · 1 + 1 · 1 · (−1)

+ 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · (−1)] = 0 (A.187)

The decomposition is

Γk1,3 ⊗ Γk1,5 = Γk1,7 (A.188)
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• Γk1,3 ⊗ Γk1,6

n3,6
k1,1 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1

+ 1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1] = 0 (A.189)

n3,6
k1,2 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · (−1)

+ 1 · 1 · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · (−1)] = 0 (A.190)

n3,6
k1,3 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · (−1)

+ 1 · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1)] = 0

(A.191)

n3,6
k1,4 =

1

8
[1 · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1) + (−1) · (−1) · (−1) + 1 · (−1) · (−1)

+ 1 · 1 · (−1) + (−1) · (−1) · 1 + (−1) · 1 · 1] = 0 (A.192)

n3,6
k1,5 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · 1

+ 1 · 1 · (−1) + (−1) · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.193)

n3,6
k1,6 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1)

+ 1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.194)

n3,6
k1,7 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · 1 + 1 · (−1) · 1

+ 1 · 1 · (−1) + (−1) · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.195)

n3,6
k1,8 =

1

8
[1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1) + (−1) · (−1) · 1 + 1 · (−1) · (−1)

+ 1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1)] = 1 (A.196)

The decomposition is

Γk1,3 ⊗ Γk1,6 = Γk1,8 (A.197)
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• Γk1,5 ⊗ Γk1,2

n5,2
k1,1 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + 1 · (−1) · 1

+ (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · (−1) · 1] = 0 (A.198)

n5,2
k1,2 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + 1 · (−1) · (−1)

+ (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · (−1) · (−1)] = 0

(A.199)

n5,2
k1,3 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1

+ (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · (−1) · (−1)] = 0 (A.200)

n5,2
k1,4 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + 1 · (−1) · (−1)

+ (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · (−1) · 1] = 0 (A.201)

n5,2
k1,5 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1) + 1 · (−1) · 1

+ (−1) · (−1) · (−1) + 1 · (−1) · 1 + (−1) · (−1) · (−1)] = 0 (A.202)

n5,2
k1,6 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1)

+ (−1) · (−1) · 1 + 1 · (−1) · (−1) + (−1) · (−1) · 1] = 1 (A.203)

n5,2
k1,7 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1 + 1 · (−1) · 1

+ (−1) · (−1) · (−1) + 1 · (−1) · (−1) + (−1) · (−1) · 1] = 0 (A.204)

n5,2
k1,8 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1)

+ (−1) · (−1) · 1 + 1 · (−1) · 1 + (−1) · (−1) · (−1)] = 0 (A.205)

The decomposition is

Γk1,5 ⊗ Γk1,2 = Γk1,6 (A.206)
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• Γk1,5 ⊗ Γk1,5

n5,5
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1

+ (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1] = 1 (A.207)

n5,5
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · (−1)] = 0 (A.208)

n5,5
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · 1

+ (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · (−1)] = 0 (A.209)

n5,5
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · 1] = 0 (A.210)

n5,5
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1

+ (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · (−1)] = 0 (A.211)

n5,5
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · 1] = 0 (A.212)

n5,5
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · 1 + 1 · 1 · 1

+ (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · 1] = 0 (A.213)

n5,5
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · 1 + 1 · 1 · (−1)

+ (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · (−1)] = 0 (A.214)

The decomposition is

Γk1,5 ⊗ Γk1,5 = Γk1,1 (A.215)
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• Γk1,5 ⊗ Γk1,6

n5,6
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1

+ (−1) · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · 1] = 0 (A.216)

n5,6
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · (−1)

+ (−1) · 1 · (−1) + 1 · (−1) · (−1) + (−1) · 1 · (−1)] = 1 (A.217)

n5,6
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · (−1) + 1 · (−1) · 1

+ (−1) · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · (−1)] = 0 (A.218)

n5,6
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1) + (−1) · (−1) · (−1) + 1 · (−1) · (−1)

+ (−1) · 1 · (−1) + 1 · (−1) · 1 + (−1) · 1 · 1] = 0 (A.219)

n5,6
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · 1

+ (−1) · 1 · (−1) + 1 · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.220)

n5,6
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1)

+ (−1) · 1 · 1 + 1 · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.221)

n5,6
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · 1 + 1 · (−1) · 1

+ (−1) · 1 · (−1) + 1 · (−1) · (−1) + (−1) · 1 · 1] = 0 (A.222)

n5,6
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1) + (−1) · (−1) · 1 + 1 · (−1) · (−1)

+ (−1) · 1 · 1 + 1 · (−1) · 1 + (−1) · 1 · (−1)] = 0 (A.223)

The decomposition is

Γk1,5 ⊗ Γk1,6 = Γk1,1 (A.224)
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• Γk1,7 ⊗ Γk1,2

n7,2
k1,1 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + 1 · (−1) · 1
+ (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1] = 0 (A.225)

n7,2
k1,2 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + 1 · (−1) · (−1) + (−1) · (−1) · (−1)
+ (−1) · (−1) · (−1) + 1 · (−1) · (−1)] = 0 (A.226)

n7,2
k1,3 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + 1 · (−1) · 1
+ (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · (−1) · (−1)] = 0 (A.227)

n7,2
k1,4 =

1

8
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + 1 · (−1) · (−1)
+ (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · (−1) · 1] = 0 (A.228)

n7,2
k1,5 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1) + 1 · (−1) · 1
+ (−1) · (−1) · (−1) + (−1) · (−1) · 1 + 1 · (−1) · (−1)] = 0 (A.229)

n7,2
k1,6 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1) + 1 · (−1) · (−1)
+ (−1) · (−1) · 1 + (−1) · (−1) · (−1) + 1 · (−1) · 1] = 0 (A.230)

n7,2
k1,7 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1 + 1 · (−1) · 1
+ (−1) · (−1) · (−1) + (−1) · (−1) · (−1) + 1 · (−1) · 1] = 0 (A.231)

n7,2
k1,8 =

1

8
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1 + 1 · (−1) · (−1)
+ (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · (−1) · (−1)] = 1 (A.232)

The decomposition is

Γk1,7 ⊗ Γk1,2 = Γk1,8 (A.233)

• Γk1,7 ⊗ Γk1,5

n7,5
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1 + 1 · 1 · 1
+ (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1] = 0 (A.234)
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n7,5
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1 + 1 · 1 · (−1)
+ (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · (−1)] = 0 (A.235)

n7,5
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1) + 1 · 1 · 1
+ (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1)] = 1 (A.236)

n7,5
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1) + 1 · 1 · (−1)
+ (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · 1] = 0 (A.237)

n7,5
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1) + 1 · 1 · 1
+ (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1)] = 0 (A.238)

n7,5
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1) + 1 · 1 · (−1)
+ (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · 1] = 0 (A.239)

n7,5
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1 + 1 · 1 · 1
+ (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1] = 0 (A.240)

n7,5
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1 + 1 · 1 · (−1)
+ (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · (−1)] = 0 (A.241)

The decomposition is

Γk1,7 ⊗ Γk1,5 = Γk1,3 (A.242)

• Γk1,7 ⊗ Γk1,6

n7,6
k1,1 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1 + 1 · (−1) · 1
+ (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1] = 0 (A.243)

n7,6
k1,2 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1 + 1 · (−1) · (−1)
+ (−1) · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · (−1)] = 0 (A.244)
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n7,6
k1,3 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1) + 1 · (−1) · 1
+ (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · (−1)] = 0 (A.245)

n7,6
k1,4 =

1

8
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · (−1) + 1 · (−1) · (−1) + 1 · (−1) · (−1)
+ (−1) · 1 · (−1) + (−1) · (−1) · 1 + 1 · 1 · 1] = 1 (A.246)

n7,6
k1,5 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1) + 1 · 1 · 1
+ (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1)] = 0 (A.247)

n7,6
k1,6 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · 1 + 1 · (−1) · (−1) + 1 · (−1) · (−1)
+ (−1) · 1 · 1 + (−1) · (−1) · (−1) + 1 · 1 · 1] = 0 (A.248)

n7,6
k1,7 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1 + 1 · (−1) · 1
+ (−1) · 1 · (−1) + (−1) · (−1) · (−1) + 1 · 1 · 1] = 0 (A.249)

n7,6
k1,8 =

1

8
[1 · 1 · 1 + (−1) · (−1) · (−1) + (−1) · 1 · (−1) + 1 · (−1) · 1 + 1 · (−1) · (−1)
+ (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · (−1)] = 0 (A.250)

The decomposition is

Γk1,7 ⊗ Γk1,6 = Γk1,4 (A.251)

2. k2 = (ka∗ , 0, 0)

• Γk2,2 ⊗ Γk2,1

n2,1
k2,1 =

1

4
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1] = 0 (A.252)

n2,1
k2,2 =

1

4
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1)] = 1 (A.253)

n2,1
k2,3 =

1

4
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · 1 + (−1) · 1 · (−1)] = 0 (A.254)

n2,1
k2,4 =

1

4
[1 · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1) + (−1) · 1 · 1] = 0 (A.255)
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The decomposition is

Γk2,2 ⊗ Γk2,1 = Γk2,2 (A.256)

• Γk2,2 ⊗ Γk2,2

n2,2
k2,1 =

1

4
[1 · 1 · 1 + 1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · 1] = 1 (A.257)

n2,2
k2,2 =

1

4
[1 · 1 · 1+1 · 1 · 1+ (−1) · (−1) · (−1)+ (−1) · (−1) · (−1)] = 0 (A.258)

n2,2
k2,3 =

1

4
[1 · 1 · 1+1 · 1 · (−1)+ (−1) · (−1) · 1+ (−1) · (−1) · (−1)] = 0 (A.259)

n2,2
k2,4 =

1

4
[1 · 1 · 1+1 · 1 · (−1)+ (−1) · (−1) · (−1)+ (−1) · (−1) · 1] = 0 (A.260)

The decomposition is

Γk2,2 ⊗ Γk2,2 = Γk2,1 (A.261)

• Γk2,3 ⊗ Γk2,1

n3,1
k2,1 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1 + (−1) · 1 · 1] = 0 (A.262)

n3,1
k2,2 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · (−1) + (−1) · 1 · (−1)] = 0 (A.263)

n3,1
k2,3 =

1

4
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · 1 + (−1) · 1 · (−1)] = 1 (A.264)

n3,1
k2,4 =

1

4
[1 · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1) + (−1) · 1 · 1] = 0 (A.265)

The decomposition is

Γk2,3 ⊗ Γk2,1 = Γk2,3 (A.266)
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• Γk2,3 ⊗ Γk2,2

n3,2
k2,1 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + 1 · (−1) · 1 + (−1) · (−1) · 1] = 0 (A.267)

n3,2
k2,2 =

1

4
[1 · 1 · 1+ (−1) · 1 · 1+1 · (−1) · (−1)+ (−1) · (−1) · (−1)] = 0 (A.268)

n3,2
k2,3 =

1

4
[1 · 1 · 1+ (−1) · 1 · (−1)+1 · (−1) · 1+ (−1) · (−1) · (−1)] = 0 (A.269)

n3,2
k2,4 =

1

4
[1 · 1 · 1+ (−1) · 1 · (−1)+1 · (−1) · (−1)+ (−1) · (−1) · 1] = 1 (A.270)

The decomposition is

Γk2,3 ⊗ Γk2,2 = Γk2,4 (A.271)

• Γk2,4 ⊗ Γk2,1

n4,1
k2,1 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · 1 + 1 · 1 · 1] = 0 (A.272)

n4,1
k2,2 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · 1 · (−1) + 1 · 1 · (−1)] = 0 (A.273)

n4,1
k2,3 =

1

4
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · 1 + 1 · 1 · (−1)] = 0 (A.274)

n4,1
k2,4 =

1

4
[1 · 1 · 1 + (−1) · 1 · (−1) + (−1) · 1 · (−1) + 1 · 1 · 1] = 1 (A.275)

The decomposition is

Γk2,4 ⊗ Γk2,1 = Γk2,4 (A.276)

• Γk2,4 ⊗ Γk2,2

n4,2
k2,1 =

1

4
[1 · 1 · 1 + (−1) · 1 · 1 + (−1) · (−1) · 1 + 1 · (−1) · 1] = 0 (A.277)

n4,2
k2,2 =

1

4
[1 · 1 · 1+ (−1) · 1 · 1+ (−1) · (−1) · (−1)+1 · (−1) · (−1)] = 0 (A.278)

n4,2
k2,3 =

1

4
[1 · 1 · 1+ (−1) · 1 · (−1)+ (−1) · (−1) · 1+1 · (−1) · (−1)] = 1 (A.279)
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n4,2
k2,4 =

1

4
[1 · 1 · 1+ (−1) · 1 · (−1)+ (−1) · (−1) · (−1)+1 · (−1) · 1] = 0 (A.280)

The decomposition is

Γk2,4 ⊗ Γk2,2 = Γk2,3 (A.281)

• Γk2,3 ⊗ Γk2,3

n3,3
k2,1 =

1

4
[1 · 1 · 1 + (−1) · (−1) · 1 + 1 · 1 · 1 + (−1) · (−1) · 1] = 1 (A.282)

n3,3
k2,2 =

1

4
[1 · 1 · 1+ (−1) · (−1) · 1+1 · 1 · (−1)+ (−1) · (−1) · (−1)] = 0 (A.283)

n3,3
k2,3 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+1 · 1 · 1+ (−1) · (−1) · (−1)] = 0 (A.284)

n3,3
k2,4 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+1 · 1 · (−1)+ (−1) · (−1) · 1] = 0 (A.285)

The decomposition is

Γk2,3 ⊗ Γk2,3 = Γk2,1 (A.286)

• Γk2,4 ⊗ Γk2,3

n4,3
k2,1 =

1

4
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · 1 · 1 + 1 · (−1) · 1] = 0 (A.287)

n4,3
k2,2 =

1

4
[1 · 1 · 1+ (−1) · (−1) · 1+ (−1) · 1 · (−1)+1 · (−1) · (−1)] = 1 (A.288)

n4,3
k2,3 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+ (−1) · 1 · 1+1 · (−1) · (−1)] = 0 (A.289)

n4,3
k2,4 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+ (−1) · 1 · (−1)+1 · (−1) · 1] = 0 (A.290)

The decomposition is

Γk2,3 = Γk2,2 (A.291)
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• Γk2,4 ⊗ Γk2,4

n4,4
k2,1 =

1

4
[1 · 1 · 1 + (−1) · (−1) · 1 + (−1) · (−1) · 1 + 1 · 1 · 1] = 1 (A.292)

n4,4
k2,2 =

1

4
[1 · 1 · 1+ (−1) · (−1) · 1+ (−1) · (−1) · (−1)+1 · 1 · (−1)] = 0 (A.293)

n4,4
k2,3 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+ (−1) · (−1) · 1+1 · 1 · (−1)] = 0 (A.294)

n4,4
k2,4 =

1

4
[1 · 1 · 1+ (−1) · (−1) · (−1)+ (−1) · (−1) · (−1)+1 · 1 · 1] = 0 (A.295)

The decomposition is

Γk2,4 ⊗ Γk2,4 = Γk2,1 (A.296)

3. k3 = (0, kb∗ , 0)

The exponential term exp(πikb∗) shall be replaced by a.

• Γk3,1 ⊗ Γk3,1

n1,1
k3,1 =

1

4
[1 · 1 · 1 + a · a · (a)∗

+ (−a) · (−a) · (−a)∗

+ (−1) · (−1) · (−1)] = 0 (A.297)

n1,1
k3,2 =

1

4
[1 · 1 · 1 + a · a · (a)∗

+ (−a) · (−a) · (a)∗

+ (−1) · (−1) · 1] = 1 (A.298)

n1,1
k3,3 =

1

4
[1 · 1 · 1 + a · a · (−a)∗

+ (−a) · (−a) · (−a)∗

+ (−1) · (−1) · 1] = 0 (A.299)

n1,1
k3,4 =

1

4
[1 · 1 · 1 + a · a · (−a)∗

+ (−a) · (−a) · (a)∗

+ (−1) · (−1) · (−1)] = 0 (A.300)
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The decomposition is

Γk3,1 ⊗ Γk3,1 = Γk3,2 (A.301)

• Γk3,3 ⊗ Γk3,1

n3,1
k3,1 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ (−a) · (−a) · (−a)∗

+ 1 · (−1) · (−1)] = 0 (A.302)

n3,1
k3,2 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ (−a) · (−a) · (a)∗

+ 1 · (−1) · 1] = 0 (A.303)

n3,1
k3,3 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ (−a) · (−a) · (−a)∗

+ 1 · (−1) · 1] = 0 (A.304)

n3,1
k3,4 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ (−a) · (−a) · (a)∗

+ 1 · (−1) · (−1)] = 1 (A.305)

The decomposition is

Γk3,3 ⊗ Γk3,1 = Γk3,4 (A.306)

• Γk3,4 ⊗ Γk3,1

n4,1
k3,1 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ a · (−a) · (−a)∗

+ (−1) · (−1) · (−1)] = 0 (A.307)
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n4,1
k3,2 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ a · (−a) · (a)∗

+ (−1) · (−1) · 1] = 0 (A.308)

n4,1
k3,3 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ a · (−a) · (−a)∗

+ (−1) · (−1) · 1] = 1 (A.309)

n4,1
k3,4 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ a · (−a) · (a)∗

+ (−1) · (−1) · (−1)] = 0 (A.310)

The decomposition is

Γk3,4 ⊗ Γk3,1 = Γk3,1 (A.311)

• Γk3,1 ⊗ Γk3,2

n1,2
k3,1 =

1

4
[1 · 1 · 1 + a · a · (a)∗

+ (−a) · a · (−a)∗

+ (−1) · 1 · (−1)] = 1 (A.312)

n1,2
k3,2 =

1

4
[1 · 1 · 1 + a · a · (a)∗

+ (−a) · a · (a)∗

+ (−1) · 1 · 1] = 0 (A.313)

n1,2
k3,3 =

1

4
[1 · 1 · 1 + a · a · (−a)∗

+ (−a) · a · (−a)∗

+ (−1) · 1 · 1] = 0 (A.314)

n1,2
k3,4 =

1

4
[1 · 1 · 1 + a · a · (−a)∗

+ (−a) · (a) · (a)∗

+ (−1) · 1 · (−1)] = 0 (A.315)
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The decomposition is

Γk3,1 ⊗ Γk3,2 = Γk3,1 (A.316)

• Γk3,3 ⊗ Γk3,2

n3,2
k3,1 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ (−a) · a · (−a)∗

+ 1 · 1 · (−1)] = 0 (A.317)

n3,2
k3,2 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ (−a) · a · (a)∗

+ 1 · 1 · 1] = 0 (A.318)

n3,2
k3,3 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ (−a) · a · (−a)∗

+ 1 · 1 · 1] = 1 (A.319)

n3,2
k3,4 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ (−a) · (a) · (a)∗

+ 1 · 1 · (−1)] = 0 (A.320)

The decomposition is

Γk3,3 ⊗ Γk3,2 = Γk3,3 (A.321)

• Γk3,4 ⊗ Γk3,2

n4,2
k3,1 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ a · a · (−a)∗

+ (−1) · 1 · (−1)] = 0 (A.322)
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A. Group theory

n4,2
k3,2 =

1

4
[1 · 1 · 1 + (−a) · a · (a)∗

+ a · a · (a)∗

+ (−1) · 1 · 1] = 0 (A.323)

n4,2
k3,3 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ a · a · (−a)∗

+ (−1) · 1 · 1] = 0 (A.324)

n4,2
k3,4 =

1

4
[1 · 1 · 1 + (−a) · a · (−a)∗

+ a · (a) · (a)∗

+ (−1) · 1 · (−1)] = 1 (A.325)

The decomposition is

Γk3,4 ⊗ Γk3,2 = Γk3,4 (A.326)

• Γk3,3 ⊗ Γk3,3

n3,3
k3,1 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (a)∗

+ (−a) · (−a) · (−a)∗

+ 1 · 1 · (−1)] = 0 (A.327)

n3,3
k3,2 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (a)∗

+ (−a) · (−a) · (a)∗

+ 1 · 1 · 1] = 1 (A.328)

n3,3
k3,3 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (−a)∗

+ (−a) · (−a) · (−a)∗

+ 1 · 1 · 1] = 0 (A.329)

n3,3
k3,4 =

1

4
[1 · 1 · 1 + (−a)(− · a) · (−a)∗

+ (−a) · (−a) · (a)∗

+ 1 · 1 · (−1)] = 0 (A.330)
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A.2. Calculations

The decomposition is

Γk3,3 ⊗ Γk3,3 = Γk3,2 (A.331)

• Γk3,4 ⊗ Γk3,3

n4,3
k3,1 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (a)∗

+ a · (−a) · (−a)∗

+ (−1) · 1 · (−1)] = 1 (A.332)

n4,3
k3,2 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (a)∗

+ a · (−a) · (a)∗

+ (−1) · 1 · 1] = 0 (A.333)

n4,3
k3,3 =

1

4
[1 · 1 · 1 + (−a) · (−a) · (−a)∗

+ a · (−a) · (−a)∗

+ (−1) · 1 · 1] = 0 (A.334)

n4,3
k3,4 =

1

4
[1 · 1 · 1 + (−a)(− · a) · (−a)∗

+ a · (−a) · (a)∗

+ (−1) · 1 · (−1)] = 0 (A.335)

The decomposition is

Γk3,4 ⊗ Γk3,3 = Γk3,1 (A.336)

A.2.5. Deduction of the basis vectors

The calculation of the basis vectors for the irreducible representations Γ2 to Γ8 is shown

below.
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A. Group theory

1. k1 = 0

• Γk1,2 4a

ψk1,2
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













+
1

8






(−1) ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













= 0 (A.337)

As expected, because Γk1,2 is not contained in the decomposition of Γk1

4a .

• Γk1,2 8e

ψk1,2
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S1x

S1y

−S1z






+ 1 ·







S2x

−S2y

−S2z













+
1

8






(−1) ·







S3x

S3y

S3z






+ (−1) ·







−S4x

−S4y

S4z






+ (−1) ·







−S3x

S3y

−S3z






+ (−1) ·







S4x

−S4y

−S4z













=
1

4













0

S1y

0






−







0

S2y

0






−







0

S3y

0






+







0

S4y

0












. (A.338)

• Γk1,3 4a

ψk1,3
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













+
1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













=
1

2













0

S1y

S1z






+







0

−S2y

S2z












(A.339)
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• Γk1,3 8e

ψk1,3
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S1x

S1y

−S1z






+ (−1) ·







S2x

−S2y

−S2z













+
1

8






1 ·







S3x

S3y

S3z






+ 1 ·







−S4x

−S4y

S4z






+ (−1) ·







−S3x

S3y

−S3z






+ (−1) ·







S4x

−S4y

−S4z













=
1

4













S1x

0

S1z






+







−S2x

0

S2z






+







S3x

0

S3z






+







−S4x

0

S4z












. (A.340)

• Γk1,4 4a

ψk1,4
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













+
1

8






(−1) ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













= 0 (A.341)

As expected, because Γk1,4 is not contained in the decomposition of Γk1

4a .

• Γk1,4 8e

ψk1,4
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S1x

S1y

−S1z






+ (−1) ·







S2x

−S2y

−S2z













+
1

8






(−1) ·







S3x

S3y

S3z






+ (−1) ·







−S4x

−S4y

S4z






+ 1 ·







−S3x

S3y

−S3z






+ 1 ·







S4x

−S4y

−S4z













=
1

4













S1x

0

S1z






+







−S2x

0

S2z






+







−S3x

0

−S3z






+







S4x

0

−S4z












. (A.342)
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• Γk1,5 4a

ψk1,5
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













+
1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













=
1

2













0

S1y

S1z






+







0

S2y

−S2z












(A.343)

• Γk1,5 8e

ψk1,5
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S1x

S1y

−S1z






+ (−1) ·







S2x

−S2y

−S2z













+
1

8






1 ·







S3x

S3y

S3z






+ (−1) ·







−S4x

−S4y

S4z






+ 1 ·







−S3x

S3y

−S3z






+ (−1) ·







S4x

−S4y

−S4z













=
1

4













0

S1y

0






+







0

S2y

0






+







0

S3y

0






+







0

S4y

0












. (A.344)

• Γk1,6 4a

ψk1,6
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













+
1

8






(−1) ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













= 0 (A.345)

As expected, because Γk1,6 is not contained in the decomposition of Γk1

4a .
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• Γk1,6 8e

ψk1,6
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S1x

S1y

−S1z






+ (−1) ·







S2x

−S2y

−S2z













+
1

8






(−1) ·







S3x

S3y

S3z






+ 1 ·







−S4x

−S4y

S4z






+ (−1) ·







−S3x

S3y

−S3z






+ 1 ·







S4x

−S4y

−S4z













=
1

4













0

S1y

0






+







0

S2y

0






+







0

−S3y

0






+







0

−S4y

0












. (A.346)

• Γk1,7 4a

ψk1,7
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













+
1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













=
1

2













S1x

0

0






+







S2x

0

0












(A.347)

• Γk1,7 8e

ψk1,7
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S1x

S1y

−S1z






+ 1 ·







S2x

−S2y

−S2z













+
1

8






1 ·







S3x

S3y

S3z






+ (−1) ·







−S4x

−S4y

S4z






+ (−1) ·







−S3x

S3y

−S3z






+ 1 ·







S4x

−S4y

−S4z













=
1

4













S1x

0

S1z






+







S2x

0

−S2z






+







S3x

0

S3z






+







S4x

0

−S4z












. (A.348)
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• Γk1,8 4a

ψk1,8
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z






+ 1 ·







S1x

−S1y

−S1z













+
1

8






(−1) ·







S1x

S1y

S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z






+ (−1) ·







S1x

−S1y

−S1z













= 0 (A.349)

As expected, because Γk1,8 is not contained in the decomposition of Γk1

4a .

• Γk1,8 8e

ψk1,8
1,1 =

1

8






1 ·







S1x

S1y

S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S1x

S1y

−S1z






+ 1 ·







S2x

−S2y

−S2z













+
1

8






(−1) ·







S3x

S3y

S3z






+ 1 ·







−S4x

−S4y

S4z






+ 1 ·







−S3x

S3y

−S3z






+ (−1) ·







S4x

−S4y

−S4z













=
1

4













S1x

0

S1z






+







S2x

0

−S2z






+







−S3x

0

−S3z






+







−S4x

0

S4z












. (A.350)

2. k2 = (ka∗ , 0, 0)

• Γk2,1 4a

ψk2,1
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ 1 ·







S1x

−S1y

−S1z






+ 1 ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z













=
1

2













S1x

0

0






+







−S2x

0

0












. (A.351)

152



A.2. Calculations

• Γk2,1 8e

ψk2,1
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ 1 ·







S2′x

−S2′y

−S2′z






+ 1 ·







−S4x

−S4y

S4z






+ 1 ·







−S3′x

S3′y

−S3′z













=
1

4













S1x

S1y

S1z






+







S2′x

−S2′y

−S2′z






+







−S3′x

S3′y

−S3′z






+







−S4x

−S4y

S4z












(A.352)

• Γk2,2 4a

ψk2,2
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ 1 ·







S1x

−S1y

−S1z






+ (−1) ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z













=
1

2













S1x

0

0






+







S2x

0

0












. (A.353)

• Γk2,2 8e

ψk2,2
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ 1 ·







S2′x

−S2′y

−S2′z






+ (−1) ·







−S4x

−S4y

S4z






+ (−1) ·







−S3′x

S3′y

−S3′z













=
1

4













S1x

S1y

S1z






+







S2′x

−S2′y

−S2′z






+







S3′x

−S3′y

S3′z






+







S4x

S4y

−S4z












(A.354)

• Γk2,3 4a
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ψk2,3
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ (−1) ·







S1x

−S1y

−S1z






+ 1 ·







−S2x

−S2y

S2z






+ (−1) ·







−S2x

S2y

−S2z













=
1

2













0

S1y

S1z






+







0

−S2y

S2z












. (A.355)

• Γk2,3 8e

ψk2,3
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ (−1) ·







S2′x

−S2′y

−S2′z






+ 1 ·







−S4x

−S4y

S4z






+ (−1) ·







−S3′x

S3′y

−S3′z













=
1

4













S1x

S1y

S1z






+







−S2′x

S2′y

S2′z






+







S3′x

−S3′y

S3′z






+







−S4x

−S4y

S4z












(A.356)

• Γk2,4 4a

ψk2,4
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ (−1) ·







S1x

−S1y

−S1z






+ (−1) ·







−S2x

−S2y

S2z






+ 1 ·







−S2x

S2y

−S2z













=
1

2













0

S1y

S1z






+







0

S2y

−S2z












. (A.357)

• Γk2,4 8e

ψk2,4
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ (−1) ·







S2′x

−S2′y

−S2′z






+ (−1) ·







−S4x

−S4y

S4z






+ 1 ·







−S3′x

S3′y

−S3′z













=
1

4













S1x

S1y

S1z






+







−S2′x

S2′y

S2′z






+







−S3′x

S3′y

−S3′z






+







S4x

S4y

−S4z












(A.358)
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3. k3 = (0, kb∗ , 0)

• Γk3,1 4a

ψk3,1
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ a ·







−S2x

S2y

−S2z






+ (−a) ·







−S2x

−S2y

S2z






+ (−1) ·







S1x

−S1y

−S1z













=
1

2













0

S1y

S1z






+







0

aS2y

−aS2z












. (A.359)

• Γk3,1 o1

ψk3,1
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ a ·







−S1∗x

S1∗y

−S1∗z






+ (−a) ·







−S4x

−S4y

S4z






+ (−1) ·







S4∗x

−S4∗y

−S4∗













≡ 1

4













0

S1y

0






+ a ·







0

S4y

0












(A.360)

• Γk3,1 o2

ψk3,1
1,1 =

1

4






1 ·







S2x

S2y

S2z






+ a ·







−S2∗x

S2∗y

−S2∗z






+ (−a) ·







−S3x

−S3y

S3z






+ (−1) ·







S3∗x

−S3∗y

−S3∗z













≡ 1

4













0

S2y

0






+ a ·







0

S3y

0












(A.361)

• Γk3,2 4a

ψk3,2
1,1 =

1

4






1 ·







S1x

S1y

S1z






+ a ·







−S2x

S2y

−S2z






+ a ·







−S2x

−S2y

S2z






+ 1 ·







S1x

−S1y

−S1z













=
1

2













S1x

0

0






+ a ·







−S2x

0

0












. (A.362)
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• Γk3,2 o1

ψk3,2
1,1 =

1

4




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B. Ab initio calculations

B.1. Orbital exponents and contraction parameters

COBALT

S 6

1 65902.2082570 0.14284614936E-02

2 9895.3896027 0.10946072783E-01

3 2251.4305789 0.54285953890E-01

4 635.61097084 0.18885179079

5 206.78820681 0.38301634994

6 71.179242971 0.29443551266

S 3

1 137.77268040 -0.10990221736

2 16.118079243 0.64455537395

3 6.6030327710 0.45116787924

S 3

1 11.479915788 -0.22593846910

2 1.8956426324 0.72231409008

3 0.78466232067 0.44903812296

S 1

1 0.98425774432E-01 1.0000000000

S 1

1 0.35945741932E-01 1.0000000000

P 5

1 843.64358575 0.93866097254E-02

2 198.76386994 0.69880208716E-01

3 62.854963098 0.27037070345

4 22.562842280 0.52904786880

5 8.3713209127 0.34357029579

P 3

1 4.2858719800 0.34027999036

2 1.6508041817 0.56693392384
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B. Ab initio calculations

3 0.61834231096 0.23617979783

D 4

1 42.927867612 0.28487788365E-01

2 11.942533053 0.15206951283

3 4.0046495664 0.37310913999

4 1.3413193804 0.47549837676

D 1

1 0.40015009743 0.31346831424

P 1

1 0.1413080 1.0000000

OXYGEN

S 5

1 2266.1767785 -0.53431809926E-02

2 340.87010191 -0.39890039230E-01

3 77.363135167 -0.17853911985

4 21.479644940 -0.46427684959

5 6.6589433124 -0.44309745172

S 1

1 0.80975975668 1.0000000000

S 1

1 0.25530772234 1.0000000000

P 3

1 17.721504317 0.43394573193E-01

2 3.8635505440 0.23094120765

3 1.0480920883 0.51375311064

P 1

1 0.27641544411 1.0000000000

D 1

1 1.2000000 1.0000000

B.2. Calculation output

The output of the ab initio calculations of the respective clusters yield the energy levels and

AO coefficients for all MOs. The only ones which are of interest are those corresponding

to the Co3d levels and are enumerated from 40 to 44. Note that due to the fact that the

basal oxygen ions are not situated on the principal axes, the notation for the dx2−y2 and

160



B.2. Calculation output

dxy orbitals are swapped.

B.2.1. CocO6 cluster

40 41 42 43 44

-0.0841 -0.0839 -0.0708 -0.0249 -0.0186

A A A A A

1 CO 1 S 0.000000 -0.001202 -0.001543 0.000000 0.000670

2 CO 1 S 0.000000 0.003502 0.004640 0.000000 -0.002024

3 CO 1 S 0.000000 -0.015930 -0.019763 0.000000 0.008595

4 CO 1 S 0.000000 0.029985 0.022824 0.000000 -0.010252

5 CO 1 S 0.000000 -0.005206 0.031640 0.000000 0.014739

6 CO 1 X 0.000000 0.000000 0.000000 0.000000 0.000000

7 CO 1 Y 0.000000 0.000000 0.000000 0.000000 0.000000

8 CO 1 Z 0.000000 0.000000 0.000000 0.000000 0.000000

9 CO 1 X 0.000000 0.000000 0.000000 0.000000 0.000000

10 CO 1 Y 0.000000 0.000000 0.000000 0.000000 0.000000

11 CO 1 Z 0.000000 0.000000 0.000000 0.000000 0.000000

12 CO 1 XX 0.000000 -0.446416 -0.410215 0.000000 -0.558921

13 CO 1 YY 0.000000 0.634797 0.447145 0.000000 -0.253285

14 CO 1 ZZ 0.000000 -0.188381 -0.036930 0.000000 0.812206

15 CO 1 XY 0.187740 0.000000 0.000000 0.811189 0.000000

16 CO 1 XZ 0.782321 0.000000 0.000000 -0.193384 0.000000

17 CO 1 YZ 0.000000 -0.474882 0.665148 0.000000 -0.086530

18 CO 1 XX 0.000000 -0.187813 -0.157990 0.000000 -0.212289

19 CO 1 YY 0.000000 0.261747 0.170377 0.000000 -0.095866

20 CO 1 ZZ 0.000000 -0.073934 -0.012386 0.000000 0.308155

21 CO 1 XY 0.074985 0.000000 0.000000 0.302748 0.000000

22 CO 1 XZ 0.333625 0.000000 0.000000 -0.074428 0.000000

23 CO 1 YZ 0.000000 -0.201296 0.259832 0.000000 -0.032902

24 CO 1 X 0.000000 0.000000 0.000000 0.000000 0.000000

25 CO 1 Y 0.000000 0.000000 0.000000 0.000000 0.000000

26 CO 1 Z 0.000000 0.000000 0.000000 0.000000 0.000000

27 O 6 S 0.000000 0.010356 -0.004846 0.000000 -0.030205

28 O 6 S 0.000000 0.028272 -0.012953 0.000000 -0.075858

29 O 6 S 0.000000 0.002361 -0.007466 0.000000 -0.035948

30 O 6 X -0.085818 0.000000 0.000000 0.012209 0.000000
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B. Ab initio calculations

31 O 6 Y 0.000000 0.033748 -0.041375 0.000000 0.021131

32 O 6 Z 0.000000 -0.022855 -0.007770 0.000000 0.103307

33 O 6 X -0.069239 0.000000 0.000000 0.010512 0.000000

34 O 6 Y 0.000000 0.033462 -0.038286 0.000000 0.003621

35 O 6 Z 0.000000 -0.032234 0.000078 0.000000 0.129385

36 O 6 XX 0.000000 0.001134 -0.001429 0.000000 -0.003282

37 O 6 YY 0.000000 0.000149 0.002261 0.000000 -0.004046

38 O 6 ZZ 0.000000 -0.001284 -0.000833 0.000000 0.007328

39 O 6 XY 0.002352 0.000000 0.000000 0.000065 0.000000

40 O 6 XZ -0.007180 0.000000 0.000000 0.001360 0.000000

41 O 6 YZ 0.000000 0.005359 -0.005163 0.000000 -0.002428

42 O 5 S 0.000000 0.010356 -0.004846 0.000000 -0.030205

43 O 5 S 0.000000 0.028272 -0.012953 0.000000 -0.075858

44 O 5 S 0.000000 0.002361 -0.007466 0.000000 -0.035948

45 O 5 X 0.085818 0.000000 0.000000 -0.012209 0.000000

46 O 5 Y 0.000000 -0.033748 0.041375 0.000000 -0.021131

47 O 5 Z 0.000000 0.022855 0.007770 0.000000 -0.103307

48 O 5 X 0.069239 0.000000 0.000000 -0.010512 0.000000

49 O 5 Y 0.000000 -0.033462 0.038286 0.000000 -0.003621

50 O 5 Z 0.000000 0.032234 -0.000078 0.000000 -0.129385

51 O 5 XX 0.000000 0.001134 -0.001429 0.000000 -0.003282

52 O 5 YY 0.000000 0.000149 0.002261 0.000000 -0.004046

53 O 5 ZZ 0.000000 -0.001284 -0.000833 0.000000 0.007328

54 O 5 XY 0.002352 0.000000 0.000000 0.000065 0.000000

55 O 5 XZ -0.007180 0.000000 0.000000 0.001360 0.000000

56 O 5 YZ 0.000000 0.005359 -0.005163 0.000000 -0.002428

57 O 1 S -0.009909 -0.005577 -0.004033 -0.024040 0.014589

58 O 1 S -0.026101 -0.015635 -0.010565 -0.060037 0.036353

59 O 1 S -0.005015 -0.001939 -0.006890 -0.023712 0.013828

60 O 1 X 0.011522 0.042932 0.009015 0.068525 -0.037102

61 O 1 Y 0.025065 -0.044311 -0.028404 0.058142 -0.043756

62 O 1 Z -0.046446 0.037200 -0.022498 0.015846 -0.000711

63 O 1 X 0.019469 0.039741 0.010816 0.081394 -0.046210

64 O 1 Y 0.024294 -0.034741 -0.022386 0.060365 -0.044751

65 O 1 Z -0.040873 0.028286 -0.019947 0.006582 0.003145

66 O 1 XX 0.000831 0.005453 0.002047 0.005716 -0.002601

67 O 1 YY -0.001533 -0.002737 -0.002314 -0.002043 0.000555

68 O 1 ZZ 0.000702 -0.002716 0.000267 -0.003673 0.002047
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69 O 1 XY 0.001593 -0.003013 -0.001967 0.004399 -0.003328

70 O 1 XZ -0.005087 0.001694 -0.003378 -0.001113 0.001490

71 O 1 YZ -0.002838 0.001785 -0.000014 -0.001395 0.001501

72 O 2 S 0.009909 -0.005577 -0.004033 0.024040 0.014589

73 O 2 S 0.026101 -0.015635 -0.010565 0.060037 0.036353

74 O 2 S 0.005015 -0.001939 -0.006890 0.023712 0.013828

75 O 2 X -0.011522 0.042932 0.009015 -0.068525 -0.037102

76 O 2 Y 0.025065 0.044311 0.028404 0.058142 0.043756

77 O 2 Z -0.046446 -0.037200 0.022498 0.015846 0.000711

78 O 2 X -0.019469 0.039741 0.010816 -0.081394 -0.046210

79 O 2 Y 0.024294 0.034741 0.022386 0.060365 0.044751

80 O 2 Z -0.040873 -0.028286 0.019947 0.006582 -0.003145

81 O 2 XX -0.000831 0.005453 0.002047 -0.005716 -0.002601

82 O 2 YY 0.001533 -0.002737 -0.002314 0.002043 0.000555

83 O 2 ZZ -0.000702 -0.002716 0.000267 0.003673 0.002047

84 O 2 XY 0.001593 0.003012 0.001967 0.004399 0.003328

85 O 2 XZ -0.005087 -0.001694 0.003378 -0.001113 -0.001490

86 O 2 YZ 0.002838 0.001785 -0.000014 0.001395 0.001501

87 O 3 S -0.009909 -0.005577 -0.004033 -0.024040 0.014589

88 O 3 S -0.026101 -0.015635 -0.010565 -0.060037 0.036353

89 O 3 S -0.005015 -0.001939 -0.006890 -0.023712 0.013828

90 O 3 X -0.011522 -0.042932 -0.009015 -0.068525 0.037102

91 O 3 Y -0.025065 0.044311 0.028404 -0.058142 0.043756

92 O 3 Z 0.046446 -0.037200 0.022498 -0.015846 0.000711

93 O 3 X -0.019469 -0.039741 -0.010816 -0.081394 0.046210

94 O 3 Y -0.024294 0.034741 0.022386 -0.060365 0.044751

95 O 3 Z 0.040873 -0.028286 0.019947 -0.006582 -0.003145

96 O 3 XX 0.000831 0.005453 0.002047 0.005716 -0.002601

97 O 3 YY -0.001533 -0.002737 -0.002314 -0.002043 0.000555

98 O 3 ZZ 0.000702 -0.002716 0.000267 -0.003673 0.002047

99 O 3 XY 0.001593 -0.003013 -0.001967 0.004399 -0.003328

100 O 3 XZ -0.005087 0.001694 -0.003378 -0.001113 0.001490

101 O 3 YZ -0.002838 0.001785 -0.000014 -0.001395 0.001501

102 O 4 S 0.009909 -0.005577 -0.004033 0.024040 0.014589

103 O 4 S 0.026101 -0.015635 -0.010565 0.060037 0.036353

104 O 4 S 0.005015 -0.001939 -0.006890 0.023712 0.013828

105 O 4 X 0.011522 -0.042932 -0.009015 0.068525 0.037102

106 O 4 Y -0.025065 -0.044311 -0.028404 -0.058142 -0.043756
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B. Ab initio calculations

107 O 4 Z 0.046446 0.037200 -0.022498 -0.015846 -0.000711

108 O 4 X 0.019469 -0.039741 -0.010816 0.081394 0.046210

109 O 4 Y -0.024294 -0.034741 -0.022386 -0.060365 -0.044751

110 O 4 Z 0.040873 0.028286 -0.019947 -0.006582 0.003145

111 O 4 XX -0.000831 0.005453 0.002047 -0.005716 -0.002601

112 O 4 YY 0.001533 -0.002737 -0.002314 0.002043 0.000555

113 O 4 ZZ -0.000702 -0.002716 0.000267 0.003673 0.002047

114 O 4 XY 0.001593 0.003012 0.001967 0.004399 0.003328

115 O 4 XZ -0.005087 -0.001694 0.003378 -0.001113 -0.001490

116 O 4 YZ 0.002838 0.001785 -0.000014 0.001395 0.001501

B.2.2. CosO6 cluster

40 41 42 43 44

-0.1048 -0.1016 -0.0908 -0.0451 -0.0400

A A A A A

1 CO 2 S 0.000272 0.000000 -0.000039 -0.000112 0.000000

2 CO 2 S -0.000731 0.000000 0.000346 0.000390 0.000000

3 CO 2 S 0.003880 0.000000 0.000440 -0.001230 0.000000

4 CO 2 S -0.015267 0.000000 -0.017105 -0.001852 0.000000

5 CO 2 S 0.011406 0.000000 0.023079 -0.001440 0.000000

6 CO 2 X 0.000000 -0.002941 0.000000 0.000000 -0.001396

7 CO 2 Y -0.001889 0.000000 -0.002439 0.000976 0.000000

8 CO 2 Z 0.000000 0.002594 0.000000 0.000000 -0.002539

9 CO 2 X 0.000000 0.009239 0.000000 0.000000 0.004371

10 CO 2 Y 0.005968 0.000000 0.007573 -0.003090 0.000000

11 CO 2 Z 0.000000 -0.008015 0.000000 0.000000 0.008132

12 CO 2 XX 0.723807 0.000000 0.254039 -0.264299 0.000000

13 CO 2 YY -0.510175 0.000000 -0.358546 -0.534023 0.000000

14 CO 2 ZZ -0.213632 0.000000 0.104508 0.798323 0.000000

15 CO 2 XY 0.000000 0.080192 0.000000 0.000000 0.830146

16 CO 2 XZ -0.309196 0.000000 0.744489 -0.184840 0.000000

17 CO 2 YZ 0.000000 0.799100 0.000000 0.000000 -0.083985

18 CO 2 XX 0.305090 0.000000 0.099357 -0.096866 0.000000

19 CO 2 YY -0.221375 0.000000 -0.138094 -0.203145 0.000000

20 CO 2 ZZ -0.083715 0.000000 0.038737 0.300010 0.000000

21 CO 2 XY 0.000000 0.031715 0.000000 0.000000 0.315148
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22 CO 2 XZ -0.132497 0.000000 0.286345 -0.070200 0.000000

23 CO 2 YZ 0.000000 0.336276 0.000000 0.000000 -0.034257

24 CO 2 X 0.000000 -0.017696 0.000000 0.000000 0.006733

25 CO 2 Y -0.019323 0.000000 -0.016902 -0.002695 0.000000

26 CO 2 Z 0.000000 0.015531 0.000000 0.000000 -0.027039

27 O 7 S -0.010442 0.004032 -0.002069 0.014753 0.027566

28 O 7 S -0.029257 0.009966 -0.005405 0.037008 0.070101

29 O 7 S 0.000959 0.003484 -0.000837 0.018103 0.030168

30 O 7 X 0.034368 0.033033 0.012573 0.046398 0.069628

31 O 7 Y 0.044668 -0.024279 0.029005 -0.022327 -0.044763

32 O 7 Z -0.017993 -0.054331 0.043716 0.000640 0.013725

33 O 7 X 0.023815 0.032248 0.010261 0.051495 0.081432

34 O 7 Y 0.045522 -0.024284 0.025518 -0.037029 -0.071726

35 O 7 Z -0.017812 -0.042720 0.033658 0.005463 0.022636

36 O 7 XX -0.006161 -0.001587 -0.001761 -0.000893 0.000529

37 O 7 YY 0.006629 -0.001732 0.004375 -0.000860 -0.002363

38 O 7 ZZ -0.000468 0.003319 -0.002614 0.001753 0.001834

39 O 7 XY -0.000004 0.002372 -0.000412 0.003566 0.006461

40 O 7 XZ 0.000147 0.002110 -0.002288 -0.001603 -0.003221

41 O 7 YZ -0.004595 -0.003674 0.003277 0.000537 0.002817

42 O 8 S -0.010442 -0.004032 -0.002069 0.014753 -0.027566

43 O 8 S -0.029257 -0.009966 -0.005405 0.037008 -0.070101

44 O 8 S 0.000959 -0.003484 -0.000837 0.018103 -0.030168

45 O 8 X -0.034368 0.033033 -0.012573 -0.046398 0.069628

46 O 8 Y 0.044668 0.024279 0.029005 -0.022327 0.044763

47 O 8 Z 0.017993 -0.054331 -0.043716 -0.000640 0.013725

48 O 8 X -0.023815 0.032248 -0.010261 -0.051495 0.081432

49 O 8 Y 0.045522 0.024284 0.025518 -0.037029 0.071726

50 O 8 Z 0.017812 -0.042720 -0.033658 -0.005463 0.022636

51 O 8 XX -0.006161 0.001587 -0.001761 -0.000893 -0.000529

52 O 8 YY 0.006629 0.001732 0.004375 -0.000860 0.002363

53 O 8 ZZ -0.000468 -0.003319 -0.002614 0.001753 -0.001834

54 O 8 XY 0.000004 0.002372 0.000412 -0.003566 0.006461

55 O 8 XZ 0.000147 -0.002110 -0.002288 -0.001603 0.003221

56 O 8 YZ 0.004595 -0.003674 -0.003277 -0.000537 0.002817

57 O 9 S -0.005283 0.007690 -0.002138 0.013165 0.023125

58 O 9 S -0.012889 0.020645 -0.005885 0.032852 0.057946

59 O 9 S -0.007573 0.004982 -0.003273 0.012957 0.021555
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B. Ab initio calculations

60 O 9 X -0.036299 -0.020990 -0.020529 -0.050474 -0.072016

61 O 9 Y -0.061723 0.005899 -0.004070 0.029384 0.065161

62 O 9 Z 0.039366 0.041042 -0.029375 -0.000898 -0.014257

63 O 9 X -0.023966 -0.021699 -0.015204 -0.049345 -0.073809

64 O 9 Y -0.056100 0.014701 -0.005893 0.037317 0.075745

65 O 9 Z 0.028604 0.034803 -0.025313 0.002998 -0.002651

66 O 9 XX -0.003795 0.000680 -0.002067 -0.000756 0.000233

67 O 9 YY 0.005613 -0.000208 0.001303 -0.000787 -0.003147

68 O 9 ZZ -0.001817 -0.000473 0.000763 0.001544 0.002914

69 O 9 XY 0.000374 0.000975 0.000512 0.002791 0.004731

70 O 9 XZ 0.001414 0.002771 -0.000925 0.001401 0.001456

71 O 9 YZ -0.000234 -0.003246 0.003125 -0.001003 -0.001073

72 O 6 S -0.005283 -0.007690 -0.002138 0.013165 -0.023125

73 O 6 S -0.012889 -0.020645 -0.005885 0.032852 -0.057946

74 O 6 S -0.007573 -0.004982 -0.003273 0.012957 -0.021555

75 O 6 X 0.036299 -0.020990 0.020529 0.050474 -0.072016

76 O 6 Y -0.061723 -0.005899 -0.004070 0.029384 -0.065161

77 O 6 Z -0.039366 0.041042 0.029375 0.000898 -0.014257

78 O 6 X 0.023966 -0.021699 0.015204 0.049345 -0.073809

79 O 6 Y -0.056100 -0.014701 -0.005893 0.037317 -0.075745

80 O 6 Z -0.028604 0.034803 0.025313 -0.002998 -0.002651

81 O 6 XX -0.003795 -0.000680 -0.002067 -0.000756 -0.000233

82 O 6 YY 0.005613 0.000208 0.001303 -0.000787 0.003147

83 O 6 ZZ -0.001817 0.000473 0.000763 0.001544 -0.002914

84 O 6 XY -0.000374 0.000975 -0.000512 -0.002791 0.004731

85 O 6 XZ 0.001414 -0.002771 -0.000925 0.001401 -0.001456

86 O 6 YZ 0.000234 -0.003246 -0.003125 0.001003 -0.001073

87 O 10 S 0.011590 0.004184 -0.004681 -0.028931 0.001121

88 O 10 S 0.030499 0.011248 -0.012854 -0.072593 0.001460

89 O 10 S 0.005920 -0.000906 -0.002018 -0.028504 0.009182

90 O 10 X 0.026158 -0.000907 -0.041146 0.010272 0.002375

91 O 10 Y 0.002084 -0.086093 -0.000369 -0.019246 0.009178

92 O 10 Z -0.029469 -0.025145 -0.010509 0.102197 0.000874

93 O 10 X 0.026450 0.001252 -0.036474 -0.004138 0.002832

94 O 10 Y 0.005015 -0.068989 0.000526 -0.017159 0.008114

95 O 10 Z -0.037538 -0.024120 -0.005997 0.121023 -0.006096

96 O 10 XX -0.000248 0.000566 0.003126 -0.003886 -0.000220

97 O 10 YY 0.001301 0.001766 -0.001490 -0.003107 -0.000137
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98 O 10 ZZ -0.001053 -0.002332 -0.001636 0.006993 0.000357

99 O 10 XY -0.000632 0.003820 0.000585 0.001074 -0.000228

100 O 10 XZ 0.004839 0.001709 -0.004587 -0.004457 0.000322

101 O 10 YZ -0.000034 -0.006465 -0.000006 -0.001793 0.000929

102 O 1 S 0.011590 -0.004184 -0.004681 -0.028931 -0.001121

103 O 1 S 0.030499 -0.011248 -0.012854 -0.072593 -0.001460

104 O 1 S 0.005920 0.000906 -0.002018 -0.028504 -0.009182

105 O 1 X -0.026158 -0.000907 0.041146 -0.010272 0.002375

106 O 1 Y 0.002084 0.086093 -0.000369 -0.019246 -0.009178

107 O 1 Z 0.029469 -0.025145 0.010509 -0.102197 0.000874

108 O 1 X -0.026450 0.001252 0.036474 0.004138 0.002832

109 O 1 Y 0.005015 0.068989 0.000526 -0.017159 -0.008114

110 O 1 Z 0.037538 -0.024120 0.005997 -0.121023 -0.006096

111 O 1 XX -0.000248 -0.000566 0.003126 -0.003886 0.000220

112 O 1 YY 0.001301 -0.001766 -0.001490 -0.003107 0.000137

113 O 1 ZZ -0.001053 0.002332 -0.001636 0.006993 -0.000357

114 O 1 XY 0.000632 0.003820 -0.000585 -0.001074 -0.000228

115 O 1 XZ 0.004839 -0.001709 -0.004587 -0.004457 -0.000322

116 O 1 YZ 0.000034 -0.006465 0.000006 0.001793 0.000929
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romagnet. Phys. Rev. Lett. 84 2953 (2000).

[6] Y. Chen, J. W. Lynn, Q. Huang, F. M. Woodward, T. Yildirim, G. Lawes,

A. P. Ramirez, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman

and A. B. Harris. Complex magnetic order in the kagomé staircase compound
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moléculaires et aux aimants photo-commutables. In Neutrons Polarisés, edited by

N. Kernavanois, E. Ressouche, H. Schober and J. L. Soubeyroux, p. 13

(EDP Sciences, 2007).

[29] M. J. Cooper, P. E. Mijnarends, N. Shiotani, N. Sakai and A. Bansil, eds.

X-ray Compton Scattering (Oxford University Press, 2004).

[30] N. Sakai. Magnetic Compton Scattering and Measurements of Momentum Distri-

bution of Magnetic Electrons. J. Appl. Cryst. 29 81 (1996).

[31] P. Pattison and B. Williams. Fermi surface parameters from the Fourier analysis

of Compton profiles. Solid State Commun. 20 585 (1976).

[32] P. Pattison, W. Weyrich and B. Williams. Observation of ionic deformation

and bonding from compton profiles. Solid State Commun. 21 967 (1977).

171



Bibliography

[33] R. Suzuki, M. Osawa, S. Tanigawa, M. Matsumoto and N. Shiotani. Positron

Study of Electron Momentum Density and Fermi Surface in Titanium and Zirconium.

Journal of the Physical Society of Japan 58 3251 (1989).

[34] Y. Tanaka, Y. Sakurai, A. T. Stewart, N. Shiotani, P. E. Mijnarends,

S. Kaprzyk and A. Bansil. Reconstructed three-dimensional electron momentum

density in lithium: A Compton scattering study. Phys. Rev. B 63 045120 (2001).

[35] P. M. Platzman and N. Tsoar. Magnetic Scattering of X Rays from Electrons in

Molecules and Solids. Phys. Rev. B 2 3556 (1970).

[36] A. Koizumi, S. Miyaki, Y. Kakutani, H. Koizumi, N. Hiraoka, K. Makoshi,

N. Sakai, K. Hirota and Y. Murakami. Study of the eg Orbitals in the Bilayer

Manganite La2−2xSr1+2xMn2O7 by Using Magnetic Compton-Profile Measurement.

Phys. Rev. Lett. 86 5589 (2001).

[37] T. Inui, Y. Tanabe and Y. Onodera. Group Theory and Its Applications in

Physics (Springer-Verlag, 1990).

[38] R. Ballou and B. Ouladdiaf. Representation Analysis of Magnetic Structures.

In Neutron Scattering from Magnetic Materials, edited by T. Chatterji (Elsevier,

2006).

[39] T. Hahn, ed. International Tables for Crystallography, Volume A: Space Group

Symmetry (D. Reidel Publishing Company, 1983).

[40] E. F. Bertaut. Lattice Theory of Spin Configuration. J. Appl. Phys. Suppl. 33

1138 (1962).

[41] L. V. Azaroff. Elements of X-ray Crystallography (McGraw-Hill, 1968).

[42] C. G. Darwin. The Theory of X-ray Reflection. Phil. Mag. 27 315 (1914).

[43] C. G. Darwin. The Theory of X-ray Reflection. Part II. Phil. Mag. 27 675 (1914).

[44] P. P. Ewald. Zur Begründung der Kristalloptik. I. Dispersionstheorie. Ann. Physik

49 1 (1916).

[45] P. P. Ewald. Zur Begründung der Kristalloptik. II. Theorie der Reflexion und

Brechung. Ann. Physik 49 117 (1916).

[46] P. P. Ewald. Zur Begründung der Kristalloptik. III. Die Kristalloptik der
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Magnetic structure of the kagome mixed compound (Co0.5Ni0.5)3V2O8.

J. Phys.: Condens. Matter 20 235228 (2008).
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Ich erkläre hiermit, noch keinen Promotionsversuch unternommen zu haben.

Navid Qureshi


