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Abstrat
The hyperon-nuleon (Y N) low momentum e�etive interation (Vlow k ) allowsfor an extensive study of the behavior of hyperons in dense matter, together withan investigation of e�ets of the presene of hyperons on dense matter. The �rststep towards this goal is the onstrution of the matrix elements for the hyperon-nuleon low momentum potential. In ontrast to the nuleon-nuleon interation,the available experimental data for the Y N interation are sare. As a onse-quene, no unique Y N low-momentum potential Vlow k an be onstruted fromthe various bare potentials. Nevertheless we an still use these low-momentum
Y N potentials to �nd out what these di�erenes mean for the properties of densematter.In order to assess the di�erent properties of hyperons within these potentials wealulate the hyperon single-partile potentials in the Hartree-Fok approximationfor all of the interations. Their dependene on both momentum and density, isstudied. The single-partile potentials are then used to determine the hemialpotential of hyperons in neutron stars.For nuleoni properties, the nuleon-nuleon Vlow k an be used with the aveatthat the alulation of the ground-state energy of symmetri nulear matter doesnot orretly reprodue the properties of matter at saturation. Even when om-bined with the appropriate three-nuleon fores the results are still not satisfa-tory. Additionally, with the nuleon-nuleon Vlow k one is unable to reah thedensities needed for the alulation of neutron star masses. To irumvent thisproblem we use two approahes: in the �rst one, we parametrize the entire nu-leoni setor. In the seond one, we replae only the three-body fore. Theformer will enable us to study neutron star masses, and the latter for studyingthe medium's response to the external probe. In this thesis we take the externalprobe to be the neutrino.By ombining this parametrization with the Y N Vlow k potential, we alu-late the equation of state of equilibrated matter. Performing the alulation inthe Hartree-Fok approximation at zero temperature, the onentrations of allpartiles are alulated. From these we an asertain at whih densities hyperonsappear for a wide range of parameters. Finally, we alulate the masses of neutronstars with these onentrations.For the alulation of the medium's response to an external probe, we re-plae the three-body fore with a density-dependent interation. This density-dependent interation is �tted to the saturation properties of nulear matter and



used together with the Vlow k potential. The study of in-medium properties withthese interations is aomplished with a ombination of Fermi liquid theory andrandom phase approximation(RPA). The Fermi liquid theory is then used to ob-tain the strength of the partile-hole interations. The medium's response toneutrinos is represented via hanges of the polarization funtion in the randomphase approximation.The properties of neutrinos in dense matter are studied in both, Hartree-Fok and random phase, approximation. To understand how the hanges in themediums response alter the behavior of neutrinos in dense matter, we alulatethe neutrino ross setion and the neutrino mean free path. The neutrinos interatwith baryons and leptons through the weak interation, hene we alulate thesefor both neutral and harged urrents. The omparison between the Hartree-Fokapproximation and RPA plays a entral role in this work.



Zusammenfassung
Eine e�ektive Hyperon-Nukleon-(Y N)-Wehselwirkung im Bereih kleiner Im-pulse, bekannt als Vlow-k, ermögliht eine ausgiebige Studie des Hyperon-Verhaltensin dihter Materie, sowie der Auswirkungen, die die Präsenz der Hyperonen aufdie Eigenshaften dihter Materie hat. Dazu ist es zunähst notwendig, dieMatrixelemente der e�ektiven Hyperon-Nukleon-Wehselwirkung zu konstruieren.Im Gegensatz zur Nukleon-Nukleon-Wehselwirkung ist die Y N-Wehselwirkungdurh die geringen experimentellen Daten kaum eingeshränkt, so dass selbstmit Hilfe des Renormierungsgruppenzugangs von Vlow-k keine universelle Weh-selwirkung aus den vershiedenen `nakten' an die Streudaten angepassten Y N-Potentialen extrahiert werden kann. Trotzdem lohnt sih ein Vergleih der Vorher-sagen der untershiedlihen e�ektiven Wehselwirkungen zu den Eigenshaftendihter Materie.Um die Eigenshaften der Hyperonen für die vershiedenen Wehselwirkungenzu studieren, berehnen wir die Hyperon-Einteilhenpotentiale im Rahmen derHartree-Fok-Näherung und untersuhen ihre Impuls- und Dihteabhängigkeiten.Anhand der Einteilhenpotentiale kann anshlieÿend das hemishe Potential derHyperonen in einem Neutronenstern ermittelt werden.Da die Rehnungen stark vom Nukleonen-Sektor beein�usst werden, mussauh für nukleonishe Wehselwirkung eine angemessene Wahl getro�en werden.In diesem Zusammenhang liefert das universelle Nukleon-Nukleon-Vlow-k unglük-liherweise kein physikalish sinnvolles Sättigungverhalten für Kernmaterie. Selbstbei zusätzliher Verwendung einer Drei-Nukleon-Wehselwirkung werden die Sat-urationseigenshaften der Kernmaterie niht völlig korrekt beshrieben. Ein weit-eres Problem besteht darin, dass Vlow-k per Konstruktion niht bei den hohenDihten angewandt werden kann, welhe zur Berehnung der Massen von Neutro-nensternen erforderlih sind. Als Alternativen verwenden wir daher zwei Ansätze:eine angepasste Parametrisierung des gesamten nukleonishen Sektors, bzw. eineAnpassung der Parameter der 3N-Wehselwirkung. Der erstgenannte Zugang er-laubt die Untersuhung von Neutronenstern-Massen, während die zweite Methodezur Untersuhung der Antwort des Mediums auf externe Sonden � in unseremFall Neutrinos � verwendet werden kann.Die vollständige Parametrisierung der nukleonishen Wehselwirkung wird zu-sammen mit den Y N − Vlow-k zur Berehnung der Zustandsgleihung von Ma-terie im Gleihgewiht verwendet. Die Rehnungen werden in der Hartree-Fok-Näherung bei vershwindender Temperatur ausgeführt. Als Ergebnis erhalten wir



die Konzentrationen der vershiedenen Teilhenspezies und können bestimmen,bei welhen Dihten Hyperonen auftreten. Die ermittelten Konzentrationen wer-den anshlieÿend zur Berehnugn der Neutronenstern-Masse eingesetzt.Zur Untersuhung der Antwort des Mediums auf externe Sonden verwendenwir eine NN-Wehselwirkung zusammen mit einer angepassten dihteabhägigenNäherung für die 3N-Wehselwirkung. Als Hyperon-Nukleon-Wehselwirkungkommt wiederum das Y N − Vlow-k zum Einsatz. Auf dieser Grundlage berehnenwir die In-Medium-Eigenshaften mit Hilfe einer Kombination aus Fermi-Liquid-Theorie und Random Phase Approximation (RPA). Die Fermi-Liquid-Theorieliefert die Stärke der Teilhen-Loh-Wehselwirkungen, während sih die Antwortdes Mediums auf Neutrinos anhand von Änderungen der Polarisationsfunktion inder RPA bemerkbar maht.Die Neutrino-Eigenshaften in dihter Materie werden sowohl in der Hartree-Fok-Näherung als auh der RPA studiert. Um zu verstehen, wie sih Änderun-gen des Mediums auf das Verhalten der Neutrinos auswirken, berehnen wirWirkungsquershnitte und mittlere freie Weglänge. Da Neutrinos mit Baryonenund Leptonen shwah wehselwirken, betrahten wir in unseren Rehnungensowohl den neutralen als auh den geladenen Strom. Der Vergleih von Hartree-Fok-Näherung und RPA nimmt eine zentrale Rolle bei der Untersuhung ein.
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IntrodutionThe ore ollapse supernovae are some of the most spetaular events in the Uni-verse. These events have been studied for more than three deades mainly throughnumerial simulations. Despite the huge amount of physis involved and great un-ertainties, a kind of "standard model" exists: the inner iron ore of a massivestar overomes its hydrodynamial stability limit (the Chandrasekhar mass) andollapses, inreasing the density inside up to many times nulear saturation den-sity; the sti�ness of nulear matter then results in an elasti boune of the ore,reating a shok-wave. This wave propagates through the star, while losing energyby the dissoiation of nulei and prodution of neutrinos. If this wave had enoughenergy to reah the star's surfae and to ause an explosion one would refer tothis as a "prompt" explosion mehanism. Unfortunately in simulations this wavestalls at ∼ 200 km and does not lead to an explosion.In addition to the neutrinos produed by the shok-wave there is also a opiousamount of neutrinos produed deeper in the star behind the shok-wave front.These neutrinos are initially trapped in this proto-neutron star beause their meanfree path is smaller than the radius of the proto-neutron star. This is a uniquesituation for neutrinos as they are usually free to leave the system in whih theyare reated without obstale due to their very weak interation with all forms ofmatter.Modern-day simulations of ore ollapse supernovae rely on these neutrinosfor a suessful explosion. One the neutrinos are no longer trapped they start tostream out of the proto-neutron star in enormous quantities. Even if only a tinyfration of them deposits some of their energy in the shok-wave, this ould besu�ient to revive the shok-wave and enable it to reah the surfae of the star,thus ausing an explosion. Suh a mehanism of explosion is then referred to as"delayed" beause of the time lapse between the start of the shok-wave and thetime at whih neutrinos ease to be trapped. For reent reviews of ore ollapsesupernova simulations see [1, 2℄ and referenes therein.This makes the properties of neutrino interations in hot and dense mattera fundamental part of understanding supernova events. It is important bothto understand how neutrinos behave inside a proto-neutron star as well as howe�etively they transfer their energy to the shok-wave. In order to have an answerix



x INTRODUCTIONto these questions one should thus determine what are the neutrino ross setionand mean free path in suh dense environments.Of partiular interest, from a nulear physis point of view, is the behaviorof neutrinos at densities above the saturation density of nulear matter. It isobvious, if one onsiders the sales involved, that the strong interation will play animportant role in this ase sine the properties of baryons are hanged when theyare in-medium. These in-medium modi�ations an be studied with mean-�eld orFermi liquid theories and the random-phase approximation (RPA) [3, 4, 5℄; in thisthesis we will use a ombination of Fermi liquid theories and RPA. In additionto the desription of neutrino transport properties, numerial simulations of thesupernova evolution require knowledge of the equation of state of dense matter.These two aspets of nulear physis play an important role in understanding thephysis of the ore ollapse supernova.Another intriguing aspet of dense matter is then the in�uene of more exotiforms of matter, other than nuleons. Among suh exotia, whih one expetsto appear at suh high densities, are the hyperons. Other possibilities inludepion and kaon ondensates, super�uidity, and also quarks, f. [6℄. Sine hyperonsare the lightest baryons after nuleons they are onsidered as prime andidatesfor appearane in neutron stars. It is expeted that they appear at around twiethe nulear saturation density and form sizable onentrations in the inner oreof neutron stars. One they appear, hyperons introdue a host of new possibleproesses between them and the neutrinos in addition to the ones whih alreadyexist between neutrinos and nuleons. These new proesses an play a signi�antrole in the neutrino ross setion beause some of the nuleoni proesses mightbe forbidden due to Pauli bloking.In order to understand how hyperons, and strangeness in general, behavesin dense matter, the understanding of the hyperon-nuleon (Y N) interation isessential. Unfortunately, the details of the Y N interation are determined verypoorly by experiment and there are several di�erent potentials available. Thisthen poses a hallenge to see what results these di�erent potentials give. Ourapproah to this is the onstrution of an e�etive low momentum interationknown as Vlow k from these di�erent potentials. In this ase Vlow k o�ers a uniquepossibility to study all of these potentials sine it is relatively easy to perform aHartree-Fok alulation with them. This then allows for an extensive omparisonof the di�erent results involving these interations as well as for a robust study ofall possibilities that an arise.The formalism of the Fermi liquid theory in ombination with RPA an beeasily extended to the ase of hyperons. With this extension we will inludehyperons into the medium's response to the neutrino probe. Suh derived rosssetions and mean free paths will then tell us how the presene of hyperons in themedium alters the medium's response ompared to the response of pure nulear



ximatter.Additionally, the baryoni equation of state (EoS) is the fundamental inputfor the alulation of neutron star properties. It is partiularly important to knowhow the EoS behaves at densities above saturation density sine this will play themost important role in determining the maximum allowed mass of a neutron star.At about twie the saturation density one expets strange baryons to appear asnew hadroni degrees of freedom. Unfortunately the nuleon-nuleon (NN) Vlow kis not well suited for the study of neutron star masses. The reason for this lies inthe introdution of a sale that separates the low and high momenta. This saleimposes a limit on the densities whih an be studied with NN Vlow k and theseare too low for the study of neutron star masses. However Y N Vlow k, thanks tothe higher masses and lower onentrations of hyperons, an reah the densitiesof interest in neutrons stars. Hene we will replae the nuleoni part of the EoSwith a parameterization and use it in ombination with Y N Vlow k to study themasses of neutron stars.It is interesting to point out that many of the features mentioned in onnetionwith neutrinos oming from neutron stars an be measured pratially any givenday, with a bit of luk. Should an ourrene similar to that of the supernovaexplosion SN1987A repeat itself, present day detetors would ollet a sizableamount of data. It is not unreasonable to assume this will happen in the nearfuture as it is known from galaxy surveys that on average there are 3−4 supernovaper 100 years in galaxies similar to our own. Even bak in 1987 enough data wasolleted to disern some of the properties of supernova neutrinos. Today, afterthree deades of building ever larger neutrino detetors, a supernova explosionin our galaxy would provide enough information to disriminate between manymodel preditions.The struture of this thesis is as follows. Chapter 1 is devoted to the on-strution of the low momentum e�etive hyperon-nuleon interations and thedisussion of the resulting matrix elements. We also show and disuss some of thelow-energy observables diretly alulated from the interation.In hapter 2 we introdue the onept of in�nite nulear matter and use itin ombination with a Hartree-Fok approximation to alulate the ground-stateenergy. To ahieve this goal we de�ne and investigate the single-partile potential.This will enable us to desribe the in-medium properties of baryons. The failureto reprodue the properties of nulear matter by pure two-body fores leads tothe introdution of three-body fores.Chapter 3 disusses the equation of state for equilibrated matter. In thisontext we use the parametrization of the nuleoni part of equation of stateto investigate the in�uene of hanges in parameters on the hyperon setor. Weonlude this hapter by alulating the properties of neutron stars with hyperons.Properties of partile-hole exitations are examined in hapter 4. There we



xii INTRODUCTIONuse the Landau Fermi liquid theory in order to alulate the Landau-Migdal pa-rameters. In this hapter we also introdue the density-dependent fore aimedat replaing the three-body fore whih did not produe the orret values forsaturation density.Chapter 5 is devoted to the alulation of neutrino properties in dense matter.Results for the ross setion and mean free path in symmetri and equilibratedmatter are shown.In hapter 6 we summarize the results and o�er an outlook of possible exten-sions of this work.The appendies are devoted to the details of the expressions used. In Ap-pendix A we explain the details of the onstrution of the Vlow k potential, in-luding the transition from the plane-wave basis to the partial-wave basis. InAppendix B we present the alulation of the Hartree-Fok ground-state energyin in�nite nulear matter. Neutrino ross setions are alulated in Appendix C.Additionally, we use Appendix C to show the alulation of the RPA polarizationmatrix in the medium ontaining both nuleons and hyperons.



1 Hyperon-Nuleon interationOne of the greatest issues of nulear theory is that from a numerial point of viewthe bare nulear fores are ill behaved. This omes from the inability of many-body tehniques to treat in a straightforward way the hard-ore that bare nulearpotentials have. This hard ore is too strong to be treated perturbatively andmakes a diret self-onsistent approah impossible. However the nuleon in nuleior nulear matter do not feel this bare interation but an e�etive interationwhih arises when one onsiders all many-body e�ets present. This e�etiveinteration is muh better behaved and allows for the appliation of standardmany-body methods.One suh e�etive interation whih has appeared reently is the Vlow k [7℄. Byrequirement of phase shift equivalene Vlow k reates, from several di�erent startingpotentials, a pratially unique NN interation. This gives the impression ofuniversality of the e�etive interations.We extend this idea of onstruting an e�etive potential to the ase of thehyperon-nuleon (Y N) interation. The motivation is twofold: if the NN Vlow k isso universal then so should the Y N Vlow k be and the standard many-body methodsan then be applied to the Y N interation. Unfortunately, there exist only a verylimited amount of sattering and phase shift data for the ase of the Y N . Thisdata is not su�ient to uniquely onstrain the Y N potentials. Thus di�erent barepotentials, for the Y N Vlow k onstrution, exhibit di�erent phase shift results. Itis then not unexpeted that at present it is not possible to onstrut a unique Y Nlow-momentum e�etive interation.However forthoming experiments at the planned J-PARC and FAIR failitiesare expeted to add new data to the existing ones. This would then allow fora better treatment of the Y N interation. Additionally, �rst lattie QCD sim-ulations of the Y N interation have been performed [8℄. This, ombined withthe motivation to use many-body methods, has inspired us to develop the Y N
Vlow k in spite of the large unertainties present today. Beause one there is su�-ient data to onstrut a high-quality Y N potential the method for onstrutingthe Vlow k from it will be readily available. This thesis is thus mainly devoted tothe onstrution and omparison of various Vlow k Y N interations in the denseenvironment found in neutron stars. 1



2 CHAPTER 1. HYPERON-NUCLEON INTERACTIONThe outline of this hapter is as follows. The NN low-momentum e�etiveinteration is presented in Se. 1.1 as an introdution for the onstrution of the
Y N Vlow k whih is done in Se. 1.1.1. Se. 1.1.2 disuses the bare potentialsused while Se. 1.1.3 presents the results of the matrix elements of the Y N Vlow kin several partial wave hannels. In Se. 1.2 we show some of the low-energyobservables diretly alulated from the matrix elements of the potentials.1.1 Low-momentum interation
Vlow k is supposed to represent a �universal� low-momentum e�etive interation.It is derived by performing the renormalization group(RG) deimation startingfrom a �bare� interation. In the ase of the nuleon-nuleon(NN) interation, asshown in [9℄, this is indeed the ase. This agreement is shown in Fig. 1.1. Byusing several di�erent modern NN interations a low momentum interation wasonstruted and the agreement is obvious. For all partial waves the resulting Vlow kpotentials show exellent agreement.
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1.1. LOW-MOMENTUM INTERACTION 3The basi idea behind the Vlow k is that the short-range physis whih is rep-resented by a hard ore an be integrated out. The advantage is twofold. Firstly,sine this part of the interation is not well onstrained by phase shifts, removingit will redue the unertainty. Seondly, any e�et that the hard ore has on long-range (low-momentum) physis will be preserved. A further advantage is thatone reated, suh an interation simpli�es many nulear struture alulationsby virtue of the signi�antly smaller momentum range that needs to be taken intoaount.In this hapter we generalize the onstrution of the Vlow k to the Y N inter-ation. Ideally suh a potential would retain all of the advantages whih the NN
Vlow k has. As we shall show, however, while the short range e�ets and the sim-pli�ation remain as bonuses, the �universality� of the Y N Vlow k simply does notexist. The reasons for this lak of agreement between various Y N Vlow k potentialsshall be disussed in detail later.1.1.1 Constrution of Vlow kThe starting point for the onstrution of the Vlow k is the half-on-shell T -matrix,
T (q′, q; q2), whih is determined by the nonrelativisti Lippmann-Shwinger equa-tion Eq. (A.6) in momentum spae. The on-shell energy is denoted by q2 and q′,where q are the relative momenta between a hyperon and a nuleon. An e�e-tive low-momentum Tlow k-matrix is then obtained by introduing a ut-o� Λ inthe Lippmann-Shwinger kernel, thus integrating the intermediate state momentaup to this ut-o�. At the same time, the bare potential in the oupled-hannelpartial wave Lippmann-Shwinger equation is replaed with the orrespondinglow-momentum potential Vlow k. Thus from the usual Lippmann-Shwinger equa-tion Eq. (A.22) we get:

T α′αlow k,y′y(q
′, q; q2) = V α′αlow k,y′y(q

′, q)+

2

π

∑

β,z

P

Λ
∫

0

dl l2
V α′βlow k,y′z(q

′, l)T βαlow k,zy(l, q; q
2)

Ey(q) − Ez(l)
. (1.1)The e�etive low-momentum Vlow k is then de�ned by the requirement that the

T -matries are equivalent for all momenta below this ut-o�
T α′α(q′, q; q2) = T α′αlow k(q′, q; q2) , q′, q ≤ Λ . (1.2)Thus the obtained Vlow k is non-hermitian, nevertheless a phase-shift equiva-lent hermitian low-momentum Y N interations an be obtained. Sine the low-momentum T -matrix Tlow k must be ut-o�-independent, i.e. dTlow k/dΛ = 0, an



4 CHAPTER 1. HYPERON-NUCLEON INTERACTIONRG �ow equation for the Vlow k an immediately be derived:
dVlow k (k′, k)

dΛ
=

2

π

Vlow k (k′,Λ)T (Λ, k; Λ2)

1 − k2/Λ2
. (1.3)Instead of solving this �ow equation with standard numerial methods (e.g. Runge-Kutta) diretly, the so-alled ALS iteration method, pioneered by Andreozzi, Leeand Suzuki, is used [10, 11, 12℄. This iteration method is based on a similaritytransformation and its solution orresponds to solving the �ow equation. Detailsabout the onvergene of the ALS iteration method, applied to the oupled han-nel Y N interation, an be found in [13, 14℄. For the hyperon-nuleon interationwith strangeness S = −1 two di�erent bases, the isospin and the partile basis ofthe bare potentials, are available.While in the NN ase the only oupling whih appears is that of angularmomentum arising due to the tensor fore, in the Y N ase we have a more om-pliated situation. One di�erene is that there exists a singlet-triplet ouplingbetween di�erent spin states Eq. (A.24). However, this is pratially idential tothe tensor ouplings. So the inrease in omplexity is not signi�ant. A muhbigger di�erene arises when we onsider the isospin spae. In the ase of the on-strution of the Y N Vlow k there is an additional level of omplexity, as omparedto the NN ase, beause now we have a oupling whih we did not enounterin the NN ase. Eq. (A.25) desribes the situation if we onsider all partilesseparately. This is the partile basis whih we use. The biggest onsequene ofthis di�erene is that when searhing for the solution of the Lippmann-Shwingerequation Eq. (1.1) we have to keep in mind that this entire matrix has to beon-shell.1.1.2 Bare potentialsIn order to solve the �ow equation Eq.(1.3) a bare potential as initial onditionfor the �ow must be hosen. In this work several initial Y N potentials, theoriginal Nijmegen soft ore model NSC89 [15℄, the series of models NSC97a-f [16℄also by the Nijmegen group and a reent model proposed by the Jülih group[17℄, labeled as J04 in the following, are used. All above mentioned models areformulated in the onventional meson-exhange (OBE) framework. They involvea set of parameters whih have to be determined from the available satteringdata. These are the oupling onstants of the orresponding baryon-baryon-mesonverties and ut-o� parameters for the vertex form fators. Due to the limited

Y N sattering data these parameters annot be preisely �xed as opposed to the
NN interation where a lot of sattering data is available. In order to onsistentlyonstrut onventional OBE models for the Y N interation, one usually assumes�avor SU(3) onstraints or G-parity arguments on the oupling onstants, and



1.1. LOW-MOMENTUM INTERACTION 5in some ases even the SU(6) symmetry of the quark model and adjusts theirsize by �ts to NN data. The major oneptual di�erene between the variousonventional OBE models onsists in the treatment of the salar-meson setor,whih plays an important role in any baryon-baryon interation at intermediateranges. In ontrast to the pseudosalar and vetor meson setors, it is still anopen issue whih are the atual members of the lowest lying salar-meson SU(3)multiplet, what are the masses of the exhange partiles and how, if at all, therelations for the oupling onstant, obtained by SU(3) �avor symmetry, shouldbe applied. For example, in the older versions of the Y N models by the Jülihgroup [18, 19℄ a �titious σ meson with a mass of roughly 550 MeV arising fromorrelated ππ exhange was introdued. The oupling strength of this mesonto the baryons was treated as a free parameter and �nally �tted to the raredata. However, in the novel Jülih Y N potential [17℄ a mirosopi model of theorrelated ππ and KK̄ exhange is established in order to �x the ontributions inthe salar σ- and vetor ρ-hannel. This new model inorporates also the ommonone-boson exhange parts of the lowest pseudosalar and vetor meson multiplets.The orresponding oupling onstants are determined by SU(3) �avor symmetryand the so-alled F/(F +D) ratios are �xed to the pseudosalar and vetor mesonmultiplets by invoking SU(6) symmetry.In the Nijmegen Y N models, NSC89 [15℄, NSC97 [16℄ and in the reentlyextended soft ore model for strangeness S = −2 ESC04 [20, 21℄ this intera-tion is generated by a genuine salar SU(3) nonet meson exhange. Besides thissalar meson nonet two additional nonets, the pseudosalar and vetor SU(3)�avor nonets, are onsidered in all Nijmegen models. Additionally, the Pomeronexhange is also inluded whih provides an additional short-range repulsion. Nev-ertheless, there are a few oneptual di�erenes in the various mentioned models.In the NSC97 models the strength parameter for the spin-spin interation, themagneti F/(F + D) ratio is left as an open parameter and takes six di�erentvalues in a range of 0.4447 to 0.3647 for the six di�erent models NSC97a-f. In theoriginal Nijmegen SC89 model this parameter is onstrained by weak deay data.Furthermore, the NSC97 models inlude additional SU(3) �avor breaking whihis based on the so-alled 3P0 model [22℄.The preditions of the above mentioned models are ompared with anotherapproah, the so-alled hiral e�etive �eld theory (χEFT ) of nulear inter-ations whih is based on hiral perturbation theory. For reent reviews seee.g. [23, 24, 25℄. The major bene�t of the χEFT is the underlying power ountingsheme, proposed by Weinberg [26, 27℄, that allows one to improve the alu-lations systematially by going to higher orders in the expansion. Additionally,higher two- and three-body fores an be derived onsistently in this framework.Furthermore, the e�etive potential is expliitly energy-independent in ontrastto the original Weinberg sheme.



6 CHAPTER 1. HYPERON-NUCLEON INTERACTIONWithin χEFT the NN interation has been analyzed reently to a high prei-sion (N3LO) [28℄. To leading order (LO) the NN potential is omposed of pionexhanges and a series of ontat interations with an inreasing number of deriva-tives whih parameterize the singular short-range part of the NN fore. In orderto remove the high-energy omponents of the baryoni and pseudosalar meson�elds a ut-o� Λ dependent regulator funtion in the Lippmann-Shwinger (LS)equation is introdued. Then with this regularized LS equation observable quan-tities an be alulated. The ut-o� range is restrited from below by the massof the pseudosalar exhange mesons. Note that in onventional meson-exhangemodels the LS equation is not regularized and onvergene is ahieved by introdu-ing form fators with orresponding ut-o� masses for eah meson-baryon-baryonvertex.So far, the Y N interation has not been investigated in the ontext of the
χEFT as extensively as the NN interation. A reent appliation to the Y Ninteration by the Jülih group an be found e.g. in [29℄. Analogous to the NNase, the Y N potential, obtained in LO χEFT , onsists of four-baryon ontatterms and pseudosalar meson (Goldstone boson) exhanges whih are all relatedby SU(3)f symmetry. For the Y N interation typial values for the ut-o� lie inthe range between 550 and 700 MeV (see e.g. [28℄). At LO χEFT and for a �xedut-o� Λ and pseudosalar F/(F + D) ratio there are �ve free parameters. Theremaining interation in the other Y N hannels are then determined by SU(3)fsymmetry. A next-to-leading order (NLO) χEFT analysis of the Y N satteringand of the hyperon mass shifts in nulear matter was performed in [30℄. However,in this analysis the pseudosalar meson exhange ontributions were not taken intoaount expliitly but the Y N sattering data ould be desribed suessfully forlaboratory momenta below 200 MeV using 12 free parameters. One ambiguityin this approah for the Y N interation is the value of the η oupling whih isidenti�ed with the otet η8 meson oupling and not with the physial η meson.The in�uene of this ambiguity on the data desription an be disregarded [31℄.Sine data on Y N sattering is sare, it has not been possible yet to deter-mine uniquely the spin struture of the Y N interation. Nevertheless, all of theabove mentioned OBE models are onsistent with the measured Y N satteringobservables. Additionally, all of these potentials inlude the ΛN −ΣN onversionproess.1.1.3 Results of the potentialHere we will present the result of the onstrution of the Vlow k . The hyperonnuleon sattering of the form, Y + N → Y ′ + N ′, will be shown in the partialwave basis for several of the most dominant and representative ases. In generalwe have used the Lippman-Shwinger equation to onstrut waves up to L = 5,



1.1. LOW-MOMENTUM INTERACTION 7but as an be seen in the following �gures the S-wave is the most dominant oneand already the D-wave is almost an order of magnitude weaker.For all ases shown here we have used the ut-o� Λ = 500 MeV. We havehosen this partiular ut-o�, beause it is expeted that the Vlow k is only weaklydependent on the ut-o� in the range from ∼ 200 MeV to ∼ 600 MeV. Essentiallyat this value the short range (high momentum) e�ets have already been integratedout while at the same time the pion ontribution remains largely unhanged inthis interval.In all �gures of the potential we show both, the bare potential and the resulting
Vlow k potential. The bare potentials are shown with points while the Vlow k areindiated by lines.
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Figure 1.2: Bare and Vlow k potentials for 1S0,Σ
−n (left) and 3P0,Σ

+p (right).Fig. 1.2 shows the bare and Vlow k potentials for the 1S0,Σ
−n hannel on theleft hand side and the 3P0,Σ

+p hannel on the right-hand side. The potentials forthe VΣ−nΣ−n and VΣ+pΣ+p are almost the same in all partial wave hannels, theonly small di�erene omes from the di�erent redued masses of these systems. Asone an see, most of the Vlow k potentials are the same in these hannels showingthat Vlow k an produe a unique potential for the hyperons. This implies that theambiguous situation whih we will meet later on in the other hannels is not thefailing of the Vlow k method. Essentially as soon as there are enough onstraintson the phase shifts, Vlow k works well in alulating the orret low-momentumpotential.The only exeption to the good behavior of this hannel is the χEFT600 whih



8 CHAPTER 1. HYPERON-NUCLEON INTERACTIONby itself is not a realisti potential but a theoretially onstruted potential. Asa result, information regarding phase shifts annot be used as diretly as for theother potentials. Thus for the χEFT600, though some degree of improvementan be made on the theoretial side, ultimately it is also �tted, so inreased dataquality would bring improvements. However sine χEFT is also a low-momentumpotential, applying the Vlow k does not hange it by muh. This an be observedin Fig. 1.2. The points of the bare χEFT600 and the lines of the Vlow k are seento be very lose. A very simple explanation for this is that the ut-o� of the
χEFT is 600 MeV while the ut-o� of the Vlow k is 500 MeV so there are not somany �high� momentum e�ets whih an be transferred to the low momenta inthe RG deimation proedure.
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Figure 1.3: Bare and Vlow k potentials for 1S0,Λn (left) and 3P0,Λp (right).Fig. 1.2 also shows that in both hannels the Vlow k is more attrative than theorresponding bare potential. This serves to show that in the bare potential someof the attration would be provided by the momentum states above the Vlow kut-o�. It should also be said that these two �gures show the simplest hannelin the Y N setor sine there is no oupling to any other hannel. In general thiswould not be the ase sine most hannels are oupled, either in the isospin spaeor in the angular momentum spae.In Fig. 1.3 we show the bare and Vlow k potentials for the 1S0,Λn hannel onthe left-hand side and the 3P0,Λp hannel on the right-hand side. As an be seenhere, the resulting Vlow k do not show agreement with one another, although thedi�erenes are not as large as for the bare potentials. As mentioned before this is



1.1. LOW-MOMENTUM INTERACTION 9beause of the lak of data on phase shifts with whih one ould onstrut a highquality Y N potential. In this ase as well, isospin symmetry gives us a pratiallyidential potential for Λp and Λn for all partial waves.
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Figure 1.4: Bare and Vlow k potentials for 1S0,Σ
−p (left) and 3D1,Σ

0n (right).These hannels are oupled in the isospin, but not in the angular momentumspae. What is interesting to note is that sine this is a oupled hannel, greaterattration whih we an observe in the ase of the Vlow k ompared to the barepotentials, an also ome from the o� diagonal elements suh as the VΛpΣ+n. Thisgives us a muh more ompliated situation to interpret, sine the statement thathanges in the Vlow k of the VΛpΛp ome only from higher momentum ontributionsin this hannel is no longer true. Most obviously for the NSC97f, this omplex on-netion between the diagonal and non-diagonal elements for the 1S0,Λn hannelwill give rise to an attrative Vlow k potential from a repulsive bare potential.Fig. 1.4 shows the bare and Vlow k potentials for the 1S0,Σ
−p hannel on theleft-hand side and the 3P0,Σ

0n hannel on the right-hand side. In this hannel wehave both oupling of the isospin as well as oupling of the angular momentum.We an see that the ut-o� e�ets are more pronouned here than they are in theother hannels. One interesting feature of the 3D1 hannel is the non-zero valuefor the J04 and χEFT600 potentials at zero momentum. This an be interpretedas the presene of a bound state in these potentials in this hannel whih is notpresent in the other hannels. The repulsion of the 3S1 hannel whih an beseen for χEFT600, whereas the other potentials are attrative, will later lead toa profound di�erene in the value of the Σ single-partile potential.
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Figure 1.5: Bare and Vlow k potentials for 1P1,Σ
+n (left) and 3P1,Σ

0p (right).
Fig. 1.5 shows the bare and Vlow k potentials for the 1P1,Σ

+n hannel on theleft-hand side and the 3P1,Σ
0p hannel on the right-hand side. Like the previousase this is a fully oupled ase, but now in addition to the isospin oupling wehave a spin oupling. This hannel is than partiularly interesting beause suha oupling annot exist in the nuleon-nuleon ase. What we notie here in thispartial wave, and whih forms a trend that applies also to the higher waves, isthat the di�erenes between the bare potential and the Vlow k potential are smallerompared to the S-wave. This is understandable beause relative to the S-waves,these waves will have a smaller magnitude. So there will be less e�ets at highermomentum whih would lead to di�erenes between bare and Vlow k potentials dueto RG deimation.Overall these results show how the onstrution of the Vlow k hanges the Y Npotential ompared to the bare ase on produing an e�etive low-momentumpotential. The results themselves are only as good as the starting bare potentialsand they are heavily dependant on the quality and quantity of phase shift dataavailable for their onstrution. The few ases where we see agreement betweendi�erent models show that given a high-quality potential, the Vlow k proedureould produe the same uniqueness of the potential in the Y N setor as in the

NN setor. Unfortunately, with the situation being what it is, we will have toontend with the disagreement between models throughout this work.



1.2. LOW-ENERGY OBSERVABLES 111.2 Low-energy observablesIn order to obtain further insight into the separation of sales for the evolutionof the low-momentum Vlow k we investigate its ut-o� dependene. A ommonfeature of all Y N potentials is the long-range one-pion exhange (OPE) tail. Ingeneral, the RG deimation eliminates the short-distane part of the bare potentialand preserves the model-independent impat of the high-momentum omponentson low-momentum observables. In this sense, the ambiguities assoiated with theunresolved short-distane parts of the interation disappear and a universal low-momentum Y N interation Vlow k an be onstruted from phase shift equivalentbare Y N potentials.The mentioned hierarhy of sales an be seen e.g. in the Σ−n hannel, seeFig. 1.6. The Vlow k matrix elements for vanishing momenta are shown as funtionsof the ut-o� Λ for the 1S0 partial wave. When Λ is dereased, the resulting Vlow kbeomes more and more attrative. For 1S0 and a ut-o� Λ ∼ 500 − 250 MeVthe Vlow k beomes ut-o� independent. Dereasing the ut-o� further below the
2π exhange threshold, whih orresponds to a momentum k ≈ 280 MeV, theut-o� insensitivity disappears sine the pion ontributions are �nally integratedout.
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Figure 1.6: Left:Vlow k Λ(0) in 1S0 partial wave for various bare potentials as afuntion of the ut-o� Λ in the Σ−n hannel. Predition from e�etive rangetheory (lines) are added. Right:Vlow k Λ(0) for the 3S1 hannel.In the opposite diretion, i.e. for Λ → ∞ no �utuations have been integratedand the Vlow k tends to the bare potential.The limit Λ → 0 should yield the sattering length. In the limit of smallut-o�s an analyti solution obtained in the framework of the e�etive theory, see



12 CHAPTER 1. HYPERON-NUCLEON INTERACTION[32℄, is given by
Vy(0) =

[

2
µy

a0
− 2

Λ

π

]−1 for Λ → 0 , (1.4)where we have simpli�ed our notation in an obvious manner. Here, the satteringlength a0 is needed as an input whih we have alulated in the standard e�etiverange approximation diretly from the T -matrix for the 1S0 hannel from the
Vlow k potential. In this approximation the T -matrix for q ≤ Λ an be expandedas

q cot δ0 = − 1

2µyTy(q, q; q2)
= − 1

a0
+

1

2
r0q

2 , (1.5)where r0 is the e�etive range. The results for the di�erent Y N �avor hannelsand for all potentials used in this work (bare OBE potentials and χEFT potentialswith ut-o�s between 550 and 700 MeV) are listed in Tab. 1.1 for the satteringlength a0 in units of fm and in Tab. 1.2 for the e�etive range r0 also in fm.
Λp Λn Σ0p Σ0n Σ+p Σ+n Σ−p Σ−nNSC97a -0.71 -0.76 -2.46 -1.74 -6.06 -0.04 0.41 -6.13NSC97b -0.90 -0.96 -2.47 -1.72 -5.98 -0.04 0.41 -6.06NSC97 -1.20 -1.28 -2.41 -1.70 -5.90 -0.03 0.41 -5.98NSC97d -1.70 -1.82 -2.38 -1.68 -5.82 -0.03 0.41 -5.89NSC97e -2.10 -2.24 -2.38 -1.68 -5.82 -0.03 0.41 -5.90NSC97f -2.51 -2.68 -2.45 -1.74 -6.07 -0.05 0.42 -6.16NSC89 -2.70 -2.72 -2.12 -1.57 -4.79 -0.09 0.23 -4.85J04 -2.14 -2.11 -2.24 -1.63 -4.68 -0.18 0.04 -4.75

χEFT550 -1.80 -1.79 -1.76 -1.15 -3.82 0.12 0.31 -3.88
χEFT600 -1.80 -1.80 -1.25 -0.92 -2.70 0.10 0.20 -2.72
χEFT650 -1.80 -1.80 -1.43 -1.02 -3.06 0.09 0.21 -3.10
χEFT700 -1.80 -1.80 -1.50 -1.07 -3.19 0.06 0.20 -3.24Table 1.1: Sattering lengths a0 of Vlow k for di�erent �avor hannels in fm forthe 1S0 partial wave.As is visible in Fig. 1.6 for small ut-o�s Λ there is good agreement between theanalytial expansion and the full Vlow k solution obtained from the �ow equation.Unfortunately, no general quantitative onlusion an be drawn from Tab. 1.1and Tab. 1.2 due to the bad experimental situation for the Y N data. The Y Ninteration is yet largely unknown. However, agreement of the sattering lengthsof all NSC97 potentials exept for the Λp and Λn hannels is found. The latter
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Λp Λn Σ0p Σ0n Σ+p Σ+n Σ−p Σ−nNSC97a 5.87 6.12 4.58 0.60 3.28 -6602 24.8 3.27NSC97b 4.93 5.10 4.68 0.59 3.29 -8491 25.0 3.28NSC97 4.11 4.23 4.79 0.57 3.30 -10670 25.4 3.29NSC97d 3.46 3.53 4.91 0.54 3.30 -17115 25.4 3.29NSC97e 3.19 3.24 4.90 0.52 3.29 -17326 25.2 3.29NSC97f 3.03 3.09 4.60 0.51 3.25 -6341 24.1 3.24NSC89 2.86 2.98 5.76 0.74 3.35 -1478 58.0 3.33J04 2.93 3.09 3.76 1.04 3.32 -329 1232.0 3.30

χEFT550 1.73 1.84 6.10 -2.96 2.70 -825 34.1 2.68
χEFT600 1.77 1.88 5.32 -2.12 3.40 -780 10.2 3.39
χEFT650 1.75 1.86 5.10 -2.28 3.08 -1210 27.6 3.05
χEFT700 1.74 1.86 4.91 -2.17 2.97 -2450 34.8 2.95Table 1.2: E�etive range r0 of Vlow k for di�erent �avor hannels in fm for the

1S0 partial wave.deviation is related to the di�erent �ts of the magneti F/(F + D) ratio in theNijmegen potentials [16℄. The remaining two potentials, NSC89 and J04, havedi�erent but omparable values to those of the NSC97 ones. Unfortunately, thedi�erene between these potentials and the χEFT is large.The right part of Fig. 1.6 shows the same as the left panel for the 3S1 partialwave. Unlike the 1S0 hannel, Vlow k for the 3S1 hannel remains ut-o� dependent.On the one hand, in the 1S0 hannel, the potential has a strongly repulsive oreand on the other hand, in the 3S1 hannel, it has a strongly attrative ore. Hene,during the RG deimation towards smaller ut-o�s the potential gets more andmore attrative (or less repulsive).
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2 In�nite nulear matterIn�nite nulear matter represents a hypothetial system without surfae e�etsand Coulomb interation, whose relevant degrees of freedom are nuleons, or moregenerally baryons. It is a system that annot be studied experimentally in alaboratory, but it is nevertheless a very useful and broadly used onept beauseof its simpliity and its onnetion with the inner part of atomi nulei and neutronstars. Neutron stars support themselves against the gravitational ollapse mainlyby the degeneray pressure of neutrons. However, as the density of the systeminreases one must onsider the in�uene of the nulear interation as well as theappearane of other degrees of freedom like hyperons, or eventually even quarks.If we wish to examine the properties of in�nite nulear matter it is appropriateto onsider the single-partile wave funtions as plane waves. This is onvenientsine they are already the solutions in the Hartree-Fok approximation. This isanother motivation for using in�nite nulear matter, beause the starting wavefuntions are known and simple.In the following, in Se. 2.1, we will �rst present the Hartree-Fok approxima-tion whih is used to alulate the ground state of dense matter. The alulationitself and the results for the single-partile potential as well as several other re-lated quantities is presented in Se. 2.2. The results follow in Se. 2.2.2. At theend we will onsider the inlusion of three-body fores in Se. 2.3.2.1 Hartree-Fok approximationThe main feature of the Hartree-Fok method is that the interations among thebaryons an be represented by an average potential felt by eah of the baryonsdue to the presene of all other baryons. In the Hartree-Fok approximation theground state is represented by a Slater determinant whih is built from the single-partile wave funtions of all partiles. Thus, instead of a ompliated orrelatedset of many-body states we have a simple produt of the states.We now onsider an interating system of partiles desribed by a Hamiltonian
Ĥ = M̂ + T̂ + V̂ , (2.1)15



16 CHAPTER 2. INFINITE NUCLEAR MATTERwhere M̂ is the mass operator, T̂ the kineti energy operator and V̂ the two-bodyinteration. The total energy E of this system is then obtained as the expetationvalue of the Hamiltonian with respet to the ground state:
E = 〈Φ| Ĥ |Φ〉 = 〈Φ| M̂ |Φ〉 + 〈Φ| T̂ |Φ〉 + 〈Φ| V̂ |Φ〉 . (2.2)In the ase of a homogenous in�nite system, the appropriate single-partilestates are plane-wave states, f. Eq. (B.3). This property is the main appeal ofthis approximation. The starting single-partile wave funtions are known andsimple, whih is not the ase otherwise, suh as for nulei or atoms.If we assume that the temperature of the system is equal to zero we an usethese states to derive the usual onnetion between the density of the states andthe Fermi momentum of the partiles:

ρsmstmt
=

1

6π2
p3

Fsmstmt
. (2.3)In this expression spin is sms =↑, ↓ and isospin is tmt = p, n,Λ,Σ−,Σ0,Σ+. Thetotal baryoni density of the system is de�ned as the sum over all states.

ρB =
∑

smstmt

ρsmstmt
. (2.4)We note that in this thesis we will not deal with polarized matter, hene alldensities and momenta of partiles with di�erent spins will be equal. This yields

ρtmt
=

1

3π2
p3

Ftmt
, (2.5)

ρB =
∑

tmt

ρtmt
. (2.6)We an use the states de�ned by Eq. (B.3) diretly to alulate the mass(Eq. (B.7)) and the kineti (Eq. (B.8)) part of Eq. (2.2). As for the potentialpart, we annot use the plane wave states diretly sine the potential is usuallygiven in partial waves. Thus, we need to hange our basis �rst, whih is donein Appendix B.1.2. This will then give the potential part (Eq. (B.26)), and the



2.2. SINGLE-PARTICLE POTENTIAL 17resulting Hartree-Fok ground-state energy is �nally given by
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, (2.7)with the integration limits derived in Appendix B.When using the Vlow k potential in Eq. (2.7), we need to keep in mind that it islimited to the maximal momentum value of q = 500 MeV or slightly more in thease of heavier hannels, by the sharp uto�. This puts a restrition on the valuesof the densities we an have when using the Vlow k . In pure neutron matter thislimit will be around ∼ 3ρ0 while for symmetri nulear matter it would be ∼ 6ρ0.These restritions ome from onsidering the Fermi momentum of the neutronwhih is usually the highest. We also need to keep in mind that the e�ets of asharp ut-o� show up before the relative momentum q reahes the value of ut-o�.Thus it is best to keep the relative momentum somewhat lower.
2.2 Single-partile potentialGenerally, the single-partile potential is de�ned as the diagonal part in spin andisospin spae of the proper self-energy for the single-partile Green's funtion inthe Hartree-Fok approximation. It represents to �rst-order the interation energyof a partile with inoming momentum p and given spin and isospin with the �lledFermi sea. For an interation V the single-partile potential Ut1mt1

(p) desribesthe behavior of the inoming partile with momentum p in the dense medium,i.e. its interation with a �lled Fermi sea of all other partiles. Pitorially, thesingle-partile potential is represented by Goldstone diagrams as shown in Fig. 2.1.
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+U= Figure 2.1: Goldstone diagrams for single-partile potential.In the Hartree-Fok approximation the single-partile potential is de�ned as

Ut1mt1
(~p1) =

1

2

∑

s1ms1

∑

s2ms2
t2mt2

∫

d3~p2

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 |V |~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2) , (2.8)where the spin-averaging was performed to remove the spin-dependene of thesingle-partile potential. We have done this sine we will not be dealing withspin-polarized matter and the ontributions from the spin-up ↑ and spin-down ↓states are the same.Just as in the ase of the potential part of the ground-state energy in Eq. (2.8),we need to make a basis transformation from plane waves to partial waves. Thesingle-partile potential Ut1mt1
(p1) for a partile with momentum p1 = |~p1| isobtained from the diagonal elements of the potential matrix, where, as before forthe ground-state energy, we have two ontributions the (diret) Hartree- and the(exhange) Fok-term [33℄

Ut1mt1
(p1) =

∑

t2mt2

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

2π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (t))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)1−S+LV x

(LS)Jt1mt1
t2mt2

(q)
]

, (2.9)with the integration limits being the same as for the ground-state energy.2.2.1 Single-partile energy and the e�etive massThe single-partile energy for the states de�ned by Eq. (B.2) is
ǫsmstmt

(~p) = Msmstmt
+

p2

2Msmstmt

+ Usmstmt
(~p) . (2.10)



2.2. SINGLE-PARTICLE POTENTIAL 19

 0
 100 200 300

 400 500 0
 1

 2
 3

 4
 5

 6

-40
-20

 0
 20
 40
 60
 80

 100
 120
 140

UΛ(p) [MeV]

NSC97f

p[MeV]

ρB[ρ0]

UΛ(p) [MeV]

 0
 100

 200
 300

 400
 500 0

 1
 2

 3
 4

 5
 6

-16
-14
-12
-10
-8
-6
-4
-2
 0

UΣ-(p) [MeV]

NSC97f

p[MeV]

ρB[ρ0]

UΣ-(p) [MeV]

Figure 2.2: Momentum and density dependene of UΛ(p) (left), and for UΣ−(p)(right), for symmetri nulear matter. The NSC97f has been used as the barepotential.Mostly we will perform our nulear matter alulations at zero or very lowtemperatures, at least ompared to the Fermi energy, hene the potential will bein�uened most by the momenta at and around Fermi momentum. This gives riseto the quadrati approximation of the single-partile energy:
ǫsmstmt

(~p) = Msmstmt
+

p2

2M∗
smstmt

+ Ũsmstmt
(pFsmstmt

) , (2.11)where M∗
smstmt

is the e�etive mass. The advantage of suh an approximation istwofold. It retains the shape of the free single-partile energy spetrum and Ũ isindependent of the momentum p. This will enable us to perform some of the lateralulations analytially without losing muh auray.The e�etive mass an than be alulated as
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20 CHAPTER 2. INFINITE NUCLEAR MATTER2.2.2 Symmetri nulear matterAs an example, the numerial solution of Eq. (2.9) for the full momentum anddensity dependent single-partile potential of the Λ hyperon with momenta upto 500 MeV and nulear densities up to 6ρ0 is shown on the left-hand side ofFig. 2.2, where the NSC97f Y N potential of the Nijmegen group has been usedas the bare potential for the underlying Vlow k alulation, f. [34℄. One sees thatwith inreasing density, the momentum dependene beomes stronger, indiatinga derease of the e�etive mass as the density inreases.Similarly, the right-hand side of Fig. 2.2, shows the full momentum and densitydependene of the Σ− single-partile potential for symmetri nulear matter, basedon the NSC97f Y N potential. Here, the slope of the momentum dependene is lesspronouned whih leads to a weaker density-dependent e�etive mass. However,unlike in the Λ ase, the urvature beomes negative at higher densities, leadingto an e�etive mass whih is larger than the bare mass.
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Figure 2.3: UΛ(p = 0) as a funtion of density in symmetri nulear matter isshown in the left panel. The square represents the empirial point UΛ(p = 0) ≈
−30 MeV [35℄. The momentum dependene of UΛ(p) at saturation density insymmetri nulear matter is shown in the right panel.The density dependene for several Λ single-partile potentials at rest (i.e.
p = 0) in symmetri nulear matter is ompared in the left panel of Fig. 2.3.The square represents the generally aepted empirial potential depth of UΛ(p =
0) ≈ −30 MeV. This value has been on�rmed reently by an analysis of the(π−, K+) inlusive spetra on various target nulei as best �ts in a framework ofa distorted-wave approximation [35℄. While most potentials an reprodue this



2.2. SINGLE-PARTICLE POTENTIAL 21value, the Jülih potential (J04) yields a stronger binding and the old Nijmegenpotential (NSC89) underestimates the binding.With the exeption of the J04 and NSC89 potentials, all interations yieldidential single-partile potentials up to the saturation density. However, with in-reasing density, the di�erenes between these potentials grow, leading to di�erentbindings at rest. This will have onsequenes for the preditions of the Λ hyperononentration in dense nulear matter. In partiular, this will a�et the maxi-mum mass of neutron stars. It is interesting to observe that even the Nijmegenpotentials NSC97a-f di�er at higher densities. The only di�erene between thesepotentials is the magneti F/(F +D) ratio.In the past, the potentials NSC89, NSC97a and NSC97f have also been usedas a basis for a single-partile potential alulation in the G-matrix formalism[36, 37℄. These G-matrix alulations yield a more attrative Λ single-partilepotential. For example, at saturation density a potential depth of −29.8 MeV isfound for the NSC89 potential, the NSC97a gives −39.7 MeV, and the NSC97f
−36.6 MeV. On the other hand, a omparison with another G-matrix alulation[16℄, whih uses a di�erent presription for the intermediate spetra, yields similarresults to ours.In Fig. 2.3, on the right-hand side, the momentum dependene of the Λ single-partile potential at saturation density is shown for various Y N potentials. Whileall potentials inrease with inreasing momentum, the slopes deviate from eahother. Similar di�erenes in the momentum behavior of the single-partile poten-tial are also seen in other works, f. e.g. [36, 38℄.

1S0
3S1

1P1
3P0

3P1
3P2

3D1 UΛNSC97a -4.86 -27.79 1.70 -0.10 2.10 -2.03 -0.09 -32.12NSC97b -6.69 -27.40 1.86 0.05 2.53 -1.87 -0.09 -32.72NSC97 -9.06 -27.54 1.96 0.36 2.84 -1.72 -0.09 -34.42NSC97d -12.14 -26.05 2.22 0.64 3.54 -1.33 -0.08 -34.46NSC97e -13.92 -24.43 2.43 0.75 4.09 -1.03 -0.07 -33.50NSC97f -15.37 -20.85 2.85 0.68 5.09 -0.47 -0.05 -29.49NSC89 -15.73 4.52 2.00 0.52 2.55 -3.46 -0.07 -10.84J04 -9.55 -35.18 -0.15 -0.70 0.58 -3.17 -1.31 -50.28
χEFT550 -11.11 -15.46 1.50 -1.69 3.17 -0.07 -3.14 -27.14
χEFT600 -12.29 -11.39 1.50 -1.73 3.17 -0.07 -6.14 -27.37
χEFT650 -11.99 -6.70 1.50 -1.77 3.17 -0.07 -9.90 -26.27
χEFT700 -11.91 -1.77 1.50 -1.81 3.17 -0.08 -13.84 -25.35Table 2.1: Partial wave ontributions to the Λ single-partile potential UΛ(p = 0)at ρB = ρ0 in symmetri nulear matter.



22 CHAPTER 2. INFINITE NUCLEAR MATTERAdditionally, Eq. (2.9) annot only be used for the alulation of the single-partile potential, but also to extrat the individual partial wave ontributions tothe total single-partile potential. These ontributions are obtained by negletingthe summation over the LSJ quantum numbers in Eq. (2.9), and will be labeled
UY (2S+1LJ ) in the following.In Tab. 2.1 and Tab. 2.2 the resulting partial wave ontributions to the UΛ and
UΣ− single-partile potentials for zero momenta at saturation density are listedfor several Y N interations.

1S0
3S1

1P1
3P0

3P1
3P2

3D1 UΣ−NSC97a 3.51 -4.87 -2.16 0.59 1.46 -2.41 -0.01 -4.73NSC97b 3.58 -5.37 -2.14 0.63 1.54 -2.31 -0.01 -4.91NSC97 3.48 -6.50 -2.12 0.68 1.59 -2.18 0.00 -5.86NSC97d 3.50 -6.08 -2.02 0.71 1.70 -1.92 0.01 -4.88NSC97e 3.50 -5.24 -1.94 0.72 1.78 -1.75 0.02 -3.65NSC97f 3.51 -5.11 -1.85 0.71 1.90 -1.60 0.02 -3.14NSC89 -4.32 11.46 -0.77 0.93 2.27 -1.49 0.28 7.61J04 -7.63 1.84 -0.15 0.52 -0.70 -3.37 -3.65 -15.13
χEFT550 2.28 14.69 1.50 -0.20 0.09 -0.01 -2.73 14.11
χEFT600 -3.70 66.26 1.50 -0.28 0.06 -0.01 -5.36 56.89
χEFT650 -2.72 42.41 1.50 -0.35 0.01 -0.01 -8.60 30.38
χEFT700 -2.93 39.93 1.50 -0.41 -0.04 -0.02 -11.60 24.68Table 2.2: Partial wave ontributions to the Σ− single-partile potential UΣ−(p =

0) at ρB = ρ0.In these tables the partial waves up to L = 2 are shown and the last olumnontains the sum up to L = 5. As expeted, the in�uene of the S-wave is mostdominant. One an see that the ombination of the oupled 3S1 and 3D1 hannelsprovides most of the attration in the majority of the Λ single-partile potentials.These tables also illustrate the di�erent ontributions to the hyperon single-partile potential originating from the entral, spin-spin and spin-orbit parts of the
Y N interation. Furthermore, one reognizes from the di�erent bare NSC97a-fpotentials that a hange in the F/(F + D) ratio a�ets the single-partile po-tential for the Λ stronger than for the Σ. Another interesting feature is that
χEFT suessfully reprodues the potential depth at saturation density. For thisdensity, χEFT agrees well with the Nijmegen NSC97a-f potentials.On the left-hand side Fig. 2.4 shows a omparison of the UΛ(p = 0) densitydependene obtained from χEFT , with results from Ref. [39℄. Perfet agreementfor the UΛ(p = 0) is evident and the independene of the χEFT single-partile po-



2.2. SINGLE-PARTICLE POTENTIAL 23tential on the regulator uto� is also seen. This suggests that the two approahes,[39℄ and [40℄, to onstrut an χEFT are losely related. Furthermore, χEFT inleading order an already produe a reasonable ΛN potential.
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Figure 2.4: Left: Density dependene of UΛ(p = 0) for symmetri nulear matter.The full line is from [39℄ and the dashed lines represent χEFT for various regulatoruto�s. Right: Density dependene of UΣ(p = 0) for symmetri nulear matter.The full line is from [41℄ and the dashed lines represent χEFT for various valuesof regulator uto�.The left panel of Fig. 2.5 shows the density dependene for several Σ− po-tentials at rest in symmetri nulear matter like in Fig. 2.3 for Λ. The othermembers of the Σ triplet, Σ+ and Σ0, exhibit an almost idential behavior. Asmall di�erene ompared to the Σ− ase is seen due to a small di�erene in theirmasses. Therefore, we will disuss only the Σ− single-partile potential. For the
Σ− potential no density range is found where all, or even most, potentials agree.However, the di�erene between the NSC97a-f potentials is not signi�ant and isthe same over the entire density range shown. This on�rms that the in�ueneof the magneti F/(F + D) ratio on the ΣN interation is less important thanon the ΛN interation. Due to experimental unertainties in the ase of the Σ−potential, no generally aepted empirial point an be used as a referene. Onthe whole, the experimental situation onerning the Σ− ase is onfusing: on theone hand, reent results [35℄ based on a distorted wave impulse approximation,yield a repulsive potential of the order of 100 MeV; on the other hand, the analysisof the same data by Kohno et al. [42℄ in a semilassial distorted-wave model andan analysis by Maekawa et al. [43℄ within a distorted-wave impulse approxima-tion with a loal optimal Fermi-averaging T -matrix �nd a learly less repulsivepotential. Additionally, there also exists a bound state of 4

ΣHe [44℄, whih de�-nitely requires an attrative potential. Thus, neither theory nor experiment givea onlusive senario in this ase.
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Figure 2.5: U−
Σ (p = 0) as a funtion of density in symmetri nulear matteris shown in the left panel. The momentum dependene of U−

Σ (p) at saturationdensity in symmetri nulear matter is shown in the right panel.Compared to the G-matrix alulation a stronger binding of the Σ− single-partile potential is found. In partiular, the NSC89 potential yields a bindingenergy of −15.3 MeV [36℄, while −29.7 MeV and −25.5 MeV are found for theNSC97a and the NSC97f potential, respetively [37℄. In order to understand theorigin of suh a signi�ant di�erene, the single partial wave ontributions tothe single-partile potential of Ref. [36℄ are ompared to eah other. The 1S0hannel ontributions are approximately the same while those for the 3S1 hannelare signi�antly di�erent. This di�erene in the 3S1 hannel is present for both,the Λ and Σ− potentials, and is the result of a di�erene in the treatment ofthe 3S1 ΛN − ΣN hannel. Sine both, the Vlow k and the G-matrix formalisms,onstrut the e�etive interation out of the same bare interation, the di�ereneomes from the treatment of the attrative part of the bare potentials whih isfound above the uto�. Essentially the di�erene is in how muh �attration� istransferred when onstruting the e�etive interation. This is similar to the aseshown in Fig. 1.6 (right), where a uto� dependene is visible: for eah loweruto� more �attration� is e�etively added to the interation.However, it is interesting to note that the e�etive potentials onstruted in the
G-matrix alulations for the NSC89, NSC97a and NSC97f potentials depend onthe underlying bare potentials in a similar way as the potentials shown here. Thisis another sign that the unertainties are inherent in the underlying potentials.Going bak to Fig. 2.5 one more, the momentum dependene of the Σ− single-partile potential at saturation density for various Y N potentials is displayed on



2.3. THREE-NUCLEON FORCE 25the right-hand side. This �gure illustrates how strong the parameterization ofthe Y N interation deviates. The potentials at zero momentum as well as theirmomentum dependene are very di�erent. This demonstrates how poorly the ΣNinteration is onstrained.The right panel of Fig. 2.4 shows the density dependene of the real part
UΣ(p = 0) and the imaginary part WΣ(p = 0) of the single-partile potential in anoptial potential alulation [41℄ together with the results obtained from χEFT .The most interesting feature here is that all single-partile potentials are positiveand grow with inreasing density in ontrast to the other potentials. However,unlike in the ase of the Λ potential, the Σ− single-partile potential depends onthe regulator uto� and only χEFT with a uto� of 600 MeV agrees with theresults of Ref. [41℄ quantitatively. As already mentioned, the repulsive Σ− single-partile potential, whih grows with density, has been suggested by Saha et al. [35℄by means of an analysis of (π−, K+) inlusive spetra.Reently, a alulation of the binding energy of the Λ hyperon in nulear matterwithin a Dira-Bruekner-Hartree-Fok framework was performed using the mostreent Jülih meson exhange Y N potential [45℄. The reported values of the Λsingle-partile potential, −51.27 MeV (−47.4 MeV) in the Bruekner-Hartree-Fok (Dira-Bruekner-Hartree-Fok) framework agree well with our predition of
−50.28 MeV.2.3 Three-nuleon foreIt has long been known that soft nuleon-nuleon potentials without a hard oredo not reprodue the saturation properties of nulear matter orretly [46℄. Fromthe perspetive of an e�etive potential this is not a failure but an expetedfeature whih suggests that to obtain saturation in nulear matter three or highermany-nuleon fores are required. Unfortunately, an RG based approah for theombined two- and three-body potential is not yet available, but an approximationan be made in whih the three-body ontributions are replaed by leading-orderthree-nuleon fore from hiral e�etive �eld theory [47℄.Thus we add the three-nuleon fore from [47℄ to our Vlow k potential. Thisthree-nuleon fore ontains a long-range 2π-exhange part Vc, an intermediate-range 1π-exhange part VD and a short-range ontat part VE. The 2π-exhangeinteration is given by

Vc =
1

2

(

gA

2fπ

)2
∑

i6=j 6=k

(~σi · ~qi)(~σj · ~qj)
(q2

i +m2
π)(q2

j +m2
π)
F αβ

ijkτ
α
i τ

β
j , (2.14)where ~qi = ~k′i − ~k denotes the di�erene of initial and �nal nuleon momentum



26 CHAPTER 2. INFINITE NUCLEAR MATTERand
F αβ

ijk = δαβ

[

−4c1m
2
π

f 2
π

+
2c3
f 2

π

~qi · ~qj
]

+
∑

γ

c4
f 2

π

ǫαβγτγ
k · (~qi × ~qj) , (2.15)while the 1π-exhange and the ontat interation are given respetively by

VD = − gA

8f 2
π

cD
f 2

π

Λχ

∑

i6=j 6=k

~σj · ~qj
q2
j +m2

π

(~τi · ~τj)(~σi~qj) , (2.16)
VE =

cE
2f 4

πΛχ

∑

i6=j 6=k

(~τj · ~τk) , (2.17)where gA = 1.29, fπ = 92.4 MeV andmπ = 138.04 MeV. The low-energy onstantsare c1 = −0.76 GeV−1, c3 = −4.78 GeV−1 and c4 = 3.96 MeV−1. For Λχ a valueof 700 MeV has been hosen [48℄. In addition, all three ontributions need to bemultiplied with the square of the regulator used in three-nuleon fore �ts:
fR(p, q) = exp

[

−
(

p2 + 3q2/4

Λ2
R

)4
]

, (2.18)where p and q are the Jaobi momenta and ΛR is the regulator uto�.The low-energy onstants cD and cE need to be �tted to some experimentaldata. The �t in Ref. [47℄ is to the experimental binding energies of 3H and 4He,but we also attempted a �t to the nulear saturation energy and inompressibility.We refer to the �rst �t as �nulei �t� while we label the seond one with the valueof inompressibility used to �t it. The values of the low-energy onstants cD and
cE at ΛR = 500 MeV = 2.534 fm−1 are for the �nulei �t� cD = −3.9268 and cE =
−1.1288 [47℄, while for the nulear �t with K0 = 220 MeV we have cD = 54.9241and cE = 16.343. However, sine it is expeted that both onstants cD and cE areof �natural� size, i.e. of order one, the �nulei �t� should be onsidered somewhatsuperior.Sine the three-nuleon fore is given in operator form, there is no need totransform it to the partial wave basis. Thus, the three-body fore ontribution tothe total energy is

〈Φ|V3NF |Φ〉 =
Ω

6(2π)9

∑

s1ms1

∑

s2ms2

∑

s3ms3

∑

t1mt1

∑

t2mt2

∑

t3mt3

∫

d3~p1

∫

d3~p2

∫

d3~p3

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 ; ~p3, s3ms3
, t3mt3 |V3NF

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 ; ~p3, s3ms3
, t3mt3) , (2.19)



2.3. THREE-NUCLEON FORCE 27where the states have been fully antisymmetrized as in the ase of two body fore,and are thus:
|~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 ; ~p3, s3ms3

, t3mt3)

=
1√
6
A123 |~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 |~p3, s3ms3

, t3mt3〉 , (2.20)where A123 = 1 − P12 − P13 − P23 + P12P23 + P13P23 is de�ned with the standardexhange operators introdued in Appendix B.1.2.
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Figure 2.6: Energy per partile as a funtion of density in symmetri nulearmatter.Fig. 2.6 shows the energy per partile for symmetri nulear matter for severalmirosopi nuleon potentials. For omparison we also show the result for AV 18+
dv + UIX from Ref. [49℄ whih reprodues the properties of nulear matterat saturation niely and is urrently aepted as the most aurate nuleonipotential. If we ompare its values, represented by points, and those of Vlow k, ourstatement from the beginning of this setion about the lak of saturation and theneed for a three body fore beomes lear. As is evident Vlow k shows no saturationin the density range shown here, but as noted before, this is not unexpeted.In addition, we also ompare the results with the VUCOM nuleon-nuleonpotential from [50℄. The VUCOM makes use of unitary orrelation operators todeouple the energy sales and thus transfers the high momentum e�ets to thelow momenta. This property and the fat that both, Vlow k and VUCOM , preserve



28 CHAPTER 2. INFINITE NUCLEAR MATTERthe phase shifts makes these two e�etive NN potentials similar, but di�erenes inthe onstrution lead to su�ient di�erenes for these potentials to onsider themdistint from one another. As visible in Fig. 2.6 they produe di�erent resultsfor nulear matter, the biggest di�erene being that VUCOM exhibits saturation athigher densities, but interestingly has almost the orret binding energy.As for the ombinations of the Vlow k with a three-nuleon fore it is lear thatfor both, the nulei �t as well as the nulear �t, there is saturation, but it is notat the orret point. The �t to �nite nulei is espeially bad for the alulations ofnulear matter beause of its enormous sti�ness. The nulear matter �t has a moreappropriate sti�ness, but the asymmetry energy is muh too large, at = 42.46 MeVand as mentioned before the values of cD and cE are too large. Unfortunately atthis time there still does not exist a mirosopi three-body fore whih an beused in ombination with VUCOM in nulear matter alulations.What we have seen here is that two-body interations suh as the Vlow k and
VUCOM alone are learly not useful for standard many-body theory alulations ofnulear matter. While they improve the situation, the three-body fores omingfrom hiral perturbation theory do not reprodue the saturation properties ofnulear matter orretly. Sine we are interested in investigating the properties ofhyperons in nulear matter we have to be sure that our nuleoni setor is as goodas possible so that any onlusions made in the hyperoni setor are independentof it. This leads to the onlusion that we have to replae either the nuleonisetor with a suitable parameterization or to replae the three-body fore withanother one whih in ombination with two-body fores is apable of auratelyreproduing the properties of nulear matter.We will explore both options in the following. In the next hapter we willreplae the nuleoni part with a orresponding parameterization of the energyper partile. In the remaining hapters we will use a density-dependent Yukawa-like fore to mimi the e�et of the three-body fore. Both of these substitutionshave parameters whih are �tted to the properties of nulear matter. This makesthem as reliable as possible for further alulations regarding the hyperons. Thereason for using both is that they o�er di�erent insights into nulear matter withhyperons.



3 EOS and β-equilibrium
An important appliation of in�nite nulear systems introdued in the previoushapter is the study of dense baryoni systems whih an be found in astrophysialontexts suh as the interior of neutron stars. Like all stars, a neutron star is a�battle� between the pull exerted by gravitation and a pressure generated insidethe star. In the ase of a neutron star, this pressure omes from the degeneraypressure of the baryons. This makes a neutron star a unique struture wheregravitational and nulear fores are both of equal interest. While the low-densitysurfae of a neutron star is explained in terms of nulei and neutrons, the interior ofit remains largely a mystery with many possibilities. These possibilities range fromalmost pure neutron matter with a few eletrons and protons, through inlusionof exoti states suh as hyperons, pions, kaons as well as various ondensates, allthe way to the possible realization of pure quark matter.Inside a neutron star at densities above the �neutron drip line� we �rst expetto �nd the form of matter in whih neutrons, protons and eletrons exist in anequilibrium regulated by the weak fore. This equilibrium is referred to as β-equilibrium beause the β-deay and similar proesses dominate. However, sinethe density inreases as we go deeper into the star we expet other partiles suhas the hyperons to appear. It is reasonable to expet hyperons to appear �rstsine they are the lightest baryons after the nuleons. Other possibilities inludevarious ondensates and quarks.This hapter is organized as follows: Se. 3.1 presents the formalism of theequation of state and other related quantities. In Se. 3.2 we introdue and showresults for the parametri equation of state. Se. 3.3 is devoted to the alu-lation of β-equilibrium and the stellar omposition. The resulting ompositionand threshold densities of hyperons are shown in Se. 3.3.1 and Se. 3.3.2, respe-tively. Finally, in Se. 3.4, we show results and disus the onsequenes of hyperonemergene on the maximum mass of neutrons stars.29



30 CHAPTER 3. EOS AND β-EQUILIBRIUM3.1 Equation of stateThe equation of state (EoS) of nulear matter relates pressure or energy withdensity and temperature for equilibrated nulear matter. The quantity whih oneneeds is the energy per partile, given by Eq. (2.7). Additional information whihis needed is the omposition whih is determined by β-equilibrium. This will beexplained later. The total energy an then be written as 1
E/A =

2

ρB

∑

b

pFb
∫

0

d3p

(2π)3

(

Mb +
p2

2Mb

+
1

2
Ub(p)

)

, (3.1)where we have used the single-partile potential.With the help of the baryon density fration, xb = ρb/ρB, whih relates to theFermi momentum as
p3

Fb
= 3π2xbρB , (3.2)we an then express the EoS as

E/A =
∑

b



Mbxb +
3

5

p2
Fb

2Mb
xb +

1

ρB

pFb
∫

0

p2dp

2π2
Ub(p)



 . (3.3)In symmetri nulear matter the lowest energy is obtained by minimizing E =
E/A. This quantity then de�nes the saturation density ρ0 (equivalently, pF0

) andthe energy E0 via
∂E
∂ρB

∣

∣

∣

∣

sat.

= 0 . (3.4)The urvature at the saturation point with respet to ρB is proportional tothe inompressibility,
K0 = p2

F

∂2E
∂p2

F

∣

∣

∣

∣

sat.

= 9ρ2
B

∂2E
∂ρ2

B

∣

∣

∣

∣

sat.

, (3.5)where we have de�ned the Fermi momentum pF of nulear matter omposed ofan equal number of protons and neutrons as pF = 3π2ρB/2.The volume symmetry energy orresponds to the urvature of E with respetto ηt,
at =

1

2

∂2E
∂η2

t

∣

∣

∣

∣

sat.

=
1

8

∂2E
∂x2

p

∣

∣

∣

∣

sat.

, (3.6)1For the sake of larity and brevity we have hanged the notation somewhat. Now insteadof expliit isospin indies tmt we use an abbreviation b (b ≡ tmt)



3.1. EQUATION OF STATE 31where η2
t = (ρp − ρn)/ρB .For the experimental values of these quantities one an �nd the following valuesin the literature, f. [51, 52℄. For the saturation density one �nds

ρ0 = 0.16 ± 0.02 fm−3 . (3.7)The value of the energy per nuleon at saturation density, whih in symmetrimatter represents the lowest energy, is
E =

E

A
= −15.6 ± 0.2 MeV , (3.8)the inompressibility at the same density is

K ≈ 220 ± 30 MeV , (3.9)and the symmetry energy is
at ≈ 30 MeV . (3.10)3.1.1 Chemial potentialThe hemial potential of a fermion at zero temperature is equal to its Fermienergy. Depending on the approximations we use there are two ases of interest,that of nonrelativisti interating partiles, baryons:

µb = Mb +
p2

Fb

2Mb
+ Ub(pFb

) . (3.11)and that of relativisti noninterating partiles, in the form of leptons:
µl =

√

m2
l + (3π2ρl)

1
3 , (3.12)where ρl is the lepton density.At �nite temperature the hemial potential of fermions for a given density isfound as a solution of the equation

ρi =
1

π2

∫ ∞

0

p2dp
1

1 + exp ((ǫi − µi)/T )
, (3.13)where ǫi is the single-partile energy of either leptons or baryons.



32 CHAPTER 3. EOS AND β-EQUILIBRIUM3.2 Parametri NN equation of stateIt is well known that non-relativisti many-body alulations, based purely ontwo-body fores, fail to reprodue the empirial saturation point for symmetrinulear matter. The usual solution to this problem is the introdution of three-body fores. However a three-body fore whih would omplement the Vlow k ,while providing the orret binding properties of light nulei, does not reproduethe properties of nulear matter at saturation density [47℄, f. Fig. 2.6. Beauseof this we will �rst attempt to inlude the higher-order e�ets by replaing thepurely nuleoni ontribution to the energy per partile
ENN/AN =

2

ρN

∑

N

pFN
∫

0

d3p

(2π)3

(

MN +
p2

2MN

+
1

2
UN

N (p)

)

, (3.14)by an analyti parameterization developed by Heiselberg and Hjort-Jensen [6℄
ENN/AN = MN − E0u

u− 2 − δ

1 + uδ
+ S0u

γ(1 − 2xp)
2 , (3.15)where u = ρN/ρ0 is the ratio of the total nuleoni density ρN = (xp + xn)ρB tothe nulear saturation density.In Eq. (3.14) we have separated the potential ontribution of nuleons into oneoming from the interation with other nuleons, UN

N (p), and one oming from theinteration with hyperons, UY
N (p). The separation an be written as
Ub(p) = UN

b (p) + UY
b (p) , (3.16)where we de�ne the nuleoni ontribution from Eq. (2.9), with the isospin sub-stitution (b ≡ tmt). The latter part, UY

N (p), does not ontribute to the purenuleoni EoS and was thus not inludes in the replaement.
UN

b (p) =
∑

b′=p,n

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

2π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (t))2

[

V di
(LS)Jbb′(q) − (−1)1−S+LV xc

(LS)Jbb′(q)
]

. (3.17)An analogous de�nition an be introdued for the hyperoni ontribution. Wealso note that due to the lak of the Y Y interation the single-partile potentialontributions of the form UY
Y (p) will be negleted throughout this work.



3.2. PARAMETRIC NN EQUATION OF STATE 33The used parameterization was �tted to the energy per partile obtained fromvariational alulations using the Argonne V18 nuleon-nuleon interation withthree-body fores and relativisti boost orretions. The best �t parameters are
E0 = −15.8 MeV, S0 = 32 MeV, γ = 0.6 and δ = 0.2 [49℄.The advantage of using this parameterization is that, sine we are primarilyinterested in the behavior of the hyperons, we want our nuleoni part of theEoS to be as reliable as possible. Sine the EoS from [49℄ is onsidered as oneof the most reliable ones avaliable, the usage of it removes as muh as possibleunertainties oming from the nuleoni EoS. Thus we an be reasonably surethat any onlusion we make about the hyperons is not subjet to e�ets omingfrom the nuleoni part.Additionally this approximation will allow us to use the density range wellabove the range of validity of the NN Vlow k, whih is limited by the ut-o�. Inthe ase of symmetri matter at zero temperature the limit is ∼ 6ρ0 while forpure neutron matter that limit is ∼ 3ρ0. The extension of the density range willenable us to study the masses of neutrons stars with hyperons, sine the maximummass is usually reahed at densities ∼ 7− 10ρ0. The ut-o� of the Y N Vlow k willnot pose a problem, sine the onentrations of hyperons in neutron stars are notvery large. The drawbak is that our approah is no longer mirosopi and notappliable for a Landau Fermi liquid alulation that we want to perform lateron. For this reason in the next hapter we will go bak to a more mirosopiapproah.The parameters E0, δ, S0 are related to properties of nulear matter at satura-tion density, i.e. E0 is the binding energy per nuleon at saturation density while
S0 and δ are onneted to the symmetry energy and the inompressibility, respe-tively. Sine there are no hyperons at saturation density we an use Eq. (3.15)diretly to �nd at = S0 and K0 = −18E0/(1 + δ).This parameterization should then enable us to study the e�ets of the hyper-ons without having to question the validity of the NN interation. It also a�ordsus the opportunity to hange the inompressibility and symmetry energy in a gen-erally aepted range of values. From experimental onstraints an aepted rangeof values for K0 is 200 MeV to 300 MeV and for at it is 28 MeV to 36 MeV, see[53℄ and referenes therein. We aim to use the parameterization and modify K0and at within this range. The goal is to study the e�et of these two parameterson the appearane and onentrations of hyperons in dense matter. While thesetwo parameters do not in�uene diretly the onentration of partiles, they dohange the omposition of the matter indiretly by hanging the energy available,thus regulating the point at whih the hyperons will appear.In Fig. 3.1 the total energy per partile as a funtion of density is shown forsymmetri nulear matter, where only the result of the pure nuleoni part ofthe EoS from the parameterization Eq. (3.15) is used. In symmetri matter the
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Figure 3.1: Parametri EoS in symmetri nulear matter.
energy per partile is only sensitive to the inompressibility, whih an be seen inthe �gure for values between K0 = 200 MeV and K0 = 300 MeV. The various EoSreprodue the saturation point at E/A = −16 MeV. The parameter K0 allows usto lassify the EoS as a sti�er (K0 = 300 MeV) or a softer (K0 = 200 MeV) one.Additionally, the inompressibility will diretly ontrol the maximum allowedmass of a neutron star whih is supported by the orresponding EoS. However,if hyperons are present this onlusion is no longer straightforward. The reasonis that by inreasing the inompressibility the energy of the system is also in-reased and as a onsequene, more hyperons an be produed. This in turn willderease the allowed maximum mass of a neutron star. However suh a nontrivialonnetion reates a onundrum: if we use a sti�er EoS by inreasing the inom-pressibility we then allow for higher hyperon onentrations whih immediatelysoftens the EoS again.With the help of Eq. (3.14) we have separated the energy per partile inEq. (3.1) into a purely nuleoni part and a remainder as

E/A =
ρN

ρB
ENN/A+ E ′/A , (3.18)



3.3. β-EQUILIBRIUM 35where the remainder is given by
E ′/A =

2

ρ

∑
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∫
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+
2

ρ

∑

Y

pFY
∫

0

d3p

(2π)3

(

MY +
p2
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Y (p) +
1

2
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Y (p)

)

. (3.19)In symmetri matter omposed only of nuleons the E ′/A will be equal tozero, but with this separation we are now able to alulate E/A with an arbitraryonentration of hyperons. In the following setion, after we have determined theonentrations through the requirement of equilibrium, we will use it to alulatethe equation of state with hyperons.3.3 β-equilibrium
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Figure 3.2: Shemati hemial equilibrium.The onentrations of di�erent onstituents in stars are determined by therequirements of eletri harge neutrality and equilibrium under weak and stronginteration proesses. If we onsider a general proess with baryons B2 and B4, alepton l and its orresponding neutrino νl, we have [54℄
B2 → B4 + l + ν̄l; B4 + l → B2 + νl , (3.20)



36 CHAPTER 3. EOS AND β-EQUILIBRIUMwhere l ∈ {e−, µ−, τ−} are the negatively harged leptons and ν̄l the orrespondingantineutrinos. For the ondition of harge neutrality we require that
∑

b

ρ
(+)
b +

∑

l

ρ
(+)
l =

∑

b

ρ
(−)
b +

∑

l

ρ
(−)
l , (3.21)where the densities of positively and negatively harged baryons and leptons aredenoted by ρ(±)

b and ρ(±)
l , respetively. For the equivalene of hemial potentialswe require

µb = bbµn − qb(µl − µνl
) , (3.22)where the hemial potentials µ are labeled by the orresponding partile and bbis its baryon number and qb is its harge.In the ase of a medium omposed of nuleons, hyperon and leptons wherethe neutrinos have left the system (µν = 0) all lepton and all antilepton hemialpotentials are equal. The β-equilibrium ondition an then be written as expliitly:

µΣ− = µn + µe , (3.23)
µΛ = µΣ0 = µn , (3.24)
µΣ+ = µp = µn − µe . (3.25)For a given total baryon density ρB Eq. (3.21) and Eq. (3.22) govern the om-position of the matter, i.e. the baryoni and leptoni onentrations. The orre-sponding solution is referred to as β-stable matter.Fig. 3.3 shows the neutron hemial potential in β-equilibrated matter for allmodels. The hyperons start to appear at the point at whih the lines representingthe models with hyperons deviate from the pure NN line. As an be seen, onethe hyperons appear, the slope of the urves hanges, and the inrease of theneutron hemial potential slows down. The seond in�etion point, whih anbe most learly seen in the urve for NSC89 on the right-hand side, is a signatureof the appearane of the seond hyperon.3.3.1 Composition of matterFor the sake of onsisteny we now have to treat the nuleoni part of the hemialpotential µN in the same way as the orresponding energy per partile. Sine thehemial potential an be obtained as a derivative of the energy density ǫ and isrelated to the energy per partile via ǫ = ρBE/A, we use the de�nition

µb =
∂ǫ

∂ρb
, (3.26)
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Figure 3.3: Neutron hemial potential in β-equilibratedmatter for all models withtwo di�erent values for the inompressibility. On the left-hand sideK0 = 200 MeV,on the right-hand side K0 = 300 MeV and for both at = 32 MeV.to yield the appropriate replaement in the nuleoni hemial potential. Finally,we arrive at the expression
µN =

∂ǫNN

∂ρN

+ UY
N (kFY

), (3.27)where we have e�etively replaed MN +
k2

FN

2MN
+ UN

N (kFN
) of Eq. (3.11) with thederivative ∂ǫNN/∂ρN . In this way the parameterization Eq. (3.15) enters into thenuleoni part of the hemial potential.Sine we are only parameterizing the nuleoni setor, no suh replaement isneessary for the hyperons. However, sine we have negleted the Y Y interation,

UY
Y (kFY

) is zero and Eq. (3.11) redues to
µY = MY +

k2
FY

2MY
+ UN

Y (kFY
) . (3.28)As an indiator for the densities at whih hyperons start to appear we showthe onentrations of all partiles for two di�erent values of K0. The resultsare presented in Figs. 3.4 and 3.5. In Fig. 3.4 a �soft� EoS is used, while inFig. 3.5 a �sti�� EoS is used. The point of the hyperon appearane an easily
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Figure 3.4: Partile fration for a "soft" EoS with all Y N interations.be estimated from these �gures. Sine the logarithmi sale begins at rather lowonentrations all we need to do is to take the intersetion of the density-axiswith the appropriate urve desribing the hyperon onentration and we get thehyperon threshold density. In all of the �gures we an see how at the onset of thehyperon appearane their onentration rises quikly and then reahes a plateauafter whih the onentration hanges very slowly.It is notable that with the appearane of the Σ− hyperon the density of thenegatively harged leptons starts to drop immediately. This is beause their rolein the harge neutrality ondition, Eq. (3.21), is now being taken over by the Σ−.Similarly, the appearane of the Λ hyperon will aelerate the disappearane ofneutrons sine both are neutral partiles.One the omposition of matter has been determined by demanding β-equilibrium we an alulate the energy per partile. For this purpose, we annot useEq. (3.1), but have to use Eq. (3.18) and Eq.(3.15). The result is presented inFig. 3.6 where the energy per partile in β-stable matter is shown as a funtion ofdensity for the di�erent Y N models. The symmetry energy is �xed to at = 32 MeVwhile the inompressibility is set to K0 = 200 MeV (left panel in the �gure) and
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Figure 3.6: EoS for β-equilibrated matter for all models with two di�erent valuesfor inompressibility. The one on the left-hand side is "soft" and the one on theright-hand side is "sti�".
di�erent Y N interations. Similarly, the threshold densities for the Λ hyperon areshown in Fig. 3.8.In these �gures one sees how the single-partile potentials for various Y Ninterations modify the threshold densities. In this way, the properties of the Y Ninteration in Fig. 2.3 and Fig. 2.5 an be attributed to the hyperon appearanes.From Fig. 3.7 one sees that the Σ− hyperon appears in between 1.4ρ0 and 2.4ρ0with the exeption of the χEFT600 model. For almost all used Y N interationsthe Σ− is the �rst hyperon whih will appear even though the Λ hyperon is thelighter one. The reason is that the heavier mass of the Σ− is o�set by the preseneof the e− hemial potential, f. Eq. (3.23). In general, heavier and more positivelyharged partiles appear later. In the ase of the Σ−, ompared to the Λ, the e�etaused by the eletri harge dominates the one oming from the mass in almostall ases.For the Σ− hyperon a further modi�ation aused by the eletri harge, is thein�uene of the symmetry energy on the threshold density beause the eletronhemial potential is modi�ed by the symmetry energy. Thus, the derease of thethreshold densities due to the inrease of K0 is analogous to the derease due to
at. For the Λ hyperon the range of threshold densities is between 1.7ρ0 to 4.5ρ0,
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3.4. STRUCTURE OF NEUTRON STARS 43hyperon towards higher values. Through this mehanism a delay of the appearaneof the next speies of hyperons is ahieved.This e�et explains why the threshold densities of the Λ are so similar forthe NSC97f and NSC89 interations. Furthermore, it also makes lear why the
Λ threshold densities for the χEFT600 interation are smaller than those of theNSC97a, NSC97 and NSC97f interations even though their Λ single-partilepotentials are almost the same, f. Fig. 2.3.In the ase of the J04 model the above desribed delay mehanism beomesvery interesting. For this Y N interation the Λ and Σ− hyperon appear almostat the same density. In this ase the neutron hemial potential stagnates but the
Λ and the Σ− single-partile potentials are attrative enough to ompensate thise�et. However the e�et of a slower inrease of the neutron hemial potentialould be seen in the slower initial inrease of the densities of hyperons as well asthe later onset of the plateau. This explains why in Fig. 3.3 the J04 is the lowesturve.To summarize this setion, we observe that strangeness appears around ∼ 2ρ0in all used Y N models and parameter sets. Note, that the appearane of the �rsthyperon, be it the Σ− or the Λ, annot be further altered by taking higher Y Yinterations into aount whih have been negleted in this work. The presentstudy in terms of the broad parameter ranges as well as the multitude of the used
Y N interation models reveals that strangeness in the interior of neutron starsannot be ignored. This will be further analyzed in the following. The resultsof this study where presented in [55℄ and similar onlusions are obtained in theBruekner-Hartree-Fok theory [56℄.3.4 Struture of neutron starsThe last statement an be further underlined by an investigation of the EoS in-luding hyperons on neutron stars. We fous on non-rotating stars, thus ignoringany hanges, aused by the rotation, on the e.g. entral pressure or energy density.For a given EoS, the mass-radius relation of a NS an be determine by solvingthe familiar Tolman-Oppenheimer-Volko� equation (TOV) [57℄. To desribe theouter rust and atmosphere of the star i.e., the region of very small baryon den-sities below ρB < 0.001 fm−3, we have used the EoS of Baym, Pethik, andSutherland [58℄, whih relies on properties of heavy nulei. For densities between
0.001 fm−3 ≤ ρB ≤ 0.08 fm−3, i.e. for the inner rust, we have used the EoS ofNegele and Vautherin [59℄ who have performed a Hartree-Fok alulation of thenulear struture in the ground state. Details on rust properties an be founde.g. in [60, 61℄, while reent state-of-the-art approahes are disussed in [62℄.As input for the TOV equation we need the relationship between the total



44 CHAPTER 3. EOS AND β-EQUILIBRIUMenergy density and the pressure. The total energy density is obtained by addingbaryoni and the leptoni ontributions,
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. (3.29)The leptoni ontribution is that of a free gas and an be alulated analytially
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. (3.30)The resulting solution of the TOV equation an then be used to ompare theresults of our EoS to observations of masses and radii of pulsars.The most aurately measured masses of neutron stars are from timing obser-vations of radio binary pulsars. These binaries inlude a neutron star orbiting aneutron star or a white dwarf of an ordinary main-sequene star. With su�ientobservation time an astounding auray an be ahieved. For example in thebinary pulsar PSR 1913+16 the masses are measured to be 1.3867 ± 0.0002 and
1.4414 ± 0.0002 M⊙ respetively [63℄. It is signi�ant to note that while doubleneutron star binaries have a mean mass lose to the anonial 1.4 M⊙, binarieswith white a dwarf have a broader range of masses. Some ases have been reportedwhere even a mass of pulsar larger than 2 M⊙ was observed, but most have beenrefuted or are under suspiion. A reent review of neutron star observations anbe found in [53℄.
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Figure 3.9: Dependene of mass of neutrons star on entral density for soft EoS,shown on the left-hand side and sti� EoS on the right-hand side. The urves areshown for a symmetry energy at = 32 MeV and di�erent Y N interations. Valuesof pure NN interation is also shown.



3.4. STRUCTURE OF NEUTRON STARS 45In Fig. 3.9 we show the dependene of neutrons star masses on entral density,where both baryon and lepton densities have been taken into aount, for several
Y N interation models and two values of K0. The masses are given in units ofsolar mass and the entral density in units of saturation density. The previouslymentioned advantage of using the parametri equation of state in now obvious aswe an see here that the maximum of neutron star mass is realized for densitiesabove 6ρ0.
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Figure 3.10: Mass-radius relation of a neutron star for a symmetry energy at =
32 MeV and di�erent Y N interations. For omparison the mass-radius urveobtained for the pure NN interation is also shown. Left panel: soft EoS, rightpanel: sti� EoS.In Fig. 3.10 the mass-radius relation of a NS for a soft EoS (left panel) andfor a sti� EoS (right panel) is shown. The symmetry energy at = 32 MeV iskept �xed in both alulations and the resulting mass-radius relation without anystrangeness in�uene is also added for omparison.As an be seen from Fig. 3.10 the appearane of hyperons redues the massof a NS drastially ompared to the pure NN ase. Even for larger values of theinompressibility, i.e. K0 = 300 MeV, the maximum mass, obtained for all used
Y N interations, is still below the anonially aepted 1.4 M⊙. This is not anunusual result and is also seen in other related works suh as e.g. [64, 65, 66, 67℄.In general, any inlusion of further degrees of freedom will redue the NS mass.Furthermore, we have to keep in mind that only the Y N interation has beentaken into aount and if Y Y interations were onsidered the mass-radius re-lation would also hange. However, in order to alulate the maximum mass ofa NS large densities of the order of ∼ 5ρ0 are needed. For these densities it isexpeted that the Y Y interation will provide some repulsions whih in turn leadsto higher allowed maximum NS masses. This behavior was found in [67℄ where



46 CHAPTER 3. EOS AND β-EQUILIBRIUMan extensive study of Skyrme models inluding only the Λ hyperon reveals aninrease of the maximum mass. In almost all onsidered ases the inrease wasstrong enough to �nd maximum masses above 1.44M⊙. On the other hand, ifthe Y Y interation is attrative like in the ase of [64℄ this will lead to smallermaximum masses. Additionally, for suh high densities or hyperon onentrationshigher order interations suh as the Y NN , Y Y N and Y Y Y interations mightalso beome important.



4 Landau Fermi liquid theoryLandau developed Fermi liquid theory in order to desribe strongly interatingsystems at low temperatures. In this theory, elementary exitations of a stronglyinterating system are desribed by quasipartiles. If the low temperature as-sumption holds these quasipartiles are long-lived and interat only weakly. If weuse the Fermi momentum of the system to de�ne the ground state, all exitationsabove it are quasipartiles and below are quasiholes. The in-medium interationis then used to �dress� the free partiles and turn them into quasipartiles andquasiholes.So long as these assumptions hold, we an treat the quasipartiles as thefundamental degrees of freedom whih then interat with eah other. Althoughthis theory annot desribe the ground state itself, it will enable us to studyexitations from it and how the medium responds to these exitations. Thiswill lead to the onept of the response funtion of the medium whih we willalulate mirosopially. Subsequently, we an study the transport properties ofthe medium suh as ross setions and mean free paths.After the introdution of the Landau-Migdal parameters in Se. 4.1 we willdisuss the replaement of the three-body fore with a density-dependent inter-ation in Se. 4.2. In Se. 4.2.1 we will repeat some of the results of the equationof state (EoS) and omposition of matter similar to the previous hapter but nowwith the usage of a density-dependent interation. In the �nal setion, Se. 4.3, wewill show results for the Landau-Migdal parameters, mainly in symmetri matter,but also for the equilibrated matter.
4.1 Landau-Migdal parametersA simple and instrutive desription of the residual interation in homogenousin�nite nulear matter is given by the Landau interation developed in the ontextof the Fermi liquid theory. Starting from the full density matrix in (relative)47



48 CHAPTER 4. LANDAU FERMI LIQUID THEORYmomentum spae ρ̃(~kστσ′τ ′), the various densities are de�ned as [68℄
ρ̃00(~k) =
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∑
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ρ̃(~kστστ) , (4.1)
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ττ ′ , (4.4)where the ρ̃(~kστσ′τ ′) is the density matrix de�ned in [68℄ and referenes therein.The quantities σ and τ are the spin and isospin oordinates of the wave funtionwhile ~k is its momentum. The quantities ~σσσ′ and τ t3

ττ ′ are matrix elements ofthe Pauli matries in spin and isospin spae. The Landau-Migdal interation isde�ned as
Ṽ (~k1σ1τ1σ

′

1τ
′

1;
~k2σ2τ2σ

′

2τ
′

2) =
δ2V

δρ̃(~k1σ1τ1σ
′

1τ
′

1)δρ̃(
~k2σ2τ2σ

′

2τ
′

2)

= f̃(~k1, ~k2) + f̃ ′(~k1, ~k2)~τ1 · ~τ2 + g̃(~k1, ~k2)~σ1 · ~σ2 + g̃′(~k1, ~k2)(~σ1 · ~σ2)(~τ1 · ~τ2) , (4.5)where V is the potential part of the energy per partile. The isosalar-salar,isovetor-salar, isosalar-vetor, and isovetor-vetor hannels of the residual in-teration are given by
f̃(~k1, ~k2) =

δ2V
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, (4.6)
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. (4.9)Assuming that only states at the Fermi surfae ontribute, f̃ , f̃ ′, g̃ and g̃′ de-pend only on the angle θ between ~k1 and ~k2, and an be expanded in Legendrepolynomials, e.g.
f̃(~k1, ~k2) =

1

N0

∞
∑

l=0

F̃lPl(cos θ) . (4.10)



4.1. LANDAU-MIGDAL PARAMETERS 49The oe�ient F̃l is alled the Landau oe�ient. Other Landau oe�ientsappear in the expansion of the other hannels, so we also have F̃ ′
l in the expansionof f̃ ′, G̃l in the expansion of g̃ and G̃′

l in the expansion of g̃′. The normalizationfator N0 representing the level density at the Fermi surfae is given by,
N0 =

2M∗kF

π2
, (4.11)for a two-omponent system. It is used to make the Landau oe�ient dimen-sionless.If we now apply the orthogonality relations for Legendre polynomials,

∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ , (4.12)we obtain
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2
N0
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−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)f̃(~k1, ~k2) , (4.13)where ~̂k = ~k/|~k|.Sine we are studying in�nite nulear matter we an hoose pure neutron andproton states, whih leads to ρ̃1,±1 = 0 and ρt = ρ̃10 and similarly for all otherdensities. This means that we an keep only the diagonal elements of the densitymatrix and we have
ρ(~k) = ρp↑ + ρp↓ + ρn↑ + ρn↓ , (4.14)
ρs(~k) = ρp↑ − ρp↓ + ρn↑ − ρn↓ , (4.15)
ρt(~k) = ρp↑ + ρp↓ − ρn↑ − ρn↓ , (4.16)
ρst(~k) = ρp↑ − ρp↓ − ρn↑ + ρn↓ , (4.17)and
f(~k1, ~k2) =

∂2V
∂ρ(~k1)∂ρ(~k2)

, (4.18)
f ′(~k1, ~k2) =
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∂ρt(~k1)∂ρt(~k2)

, (4.19)
g(~k1, ~k2) =
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∂ρs(~k1)∂ρs(~k2)

, (4.20)
g′(~k1, ~k2) =

∂2V
∂ρst(~k1)∂ρst(~k2)

. (4.21)



50 CHAPTER 4. LANDAU FERMI LIQUID THEORYFor the dimensionless Landau Fermi liquid parameters we have
Fl =

2l + 1

2
N0

∫ 1

−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)f(~k1, ~k2) . (4.22)The e�etive mass M∗ for symmetri nulear matter an be alulated viaEq. (2.12). For an isotropi system, Landau showed that [69℄
M∗

M
= 1 +

F1

3
, (4.23)by using Galilean invariane, where M is the free mass. The parameter F1 is theseond oe�ient in the Legendre expansion of the isosalar-salar hannel of theresidual interation.The Landau-Migdal approximation is often used in onnetion with RPA al-ulations beause it greatly simpli�es the alulation of the RPA response fun-tion. The approximation onsists of assuming that the interating partiles andholes are on the Fermi surfae and that the interation takes plae only in thelimit where the transferred momentum q = 0. Thus it is obvious that this ap-proximation is only valid for small q. For this purpose we will also introdue theLandau-Migdal parameters, in addition to the Landau Fermi liquid parametersthat we have introdued thus far. It will beome lear in the next hapter whywe need these parameters [70℄.The Landau-Migdal parameters are de�ned as follows
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, (4.24)and an, in the Hartree-Fok approximation, be easily onneted to the diret andexhange terms of the interation
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. (4.25)The onnetion between the residual interation hannels and Landau-Migdalparameters is quite obvious and straightforward. For the isosalar-salar hannelwe have
f(~k1, ~k2) =
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ρ(~k)
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. (4.26)The same onnetion an be established for all other hannels with the aid ofthe inverse of the relationships Eq. (4.14)-Eq. (4.17) and the expressions Eq.



4.1. LANDAU-MIGDAL PARAMETERS 51(4.18)-Eq. (4.21). Additionally, the onnetion between the Landau Fermi liquidparameters and the Landau-Migdal parameters an easily be established.We an also de�ne both zeroth and higher order Landau-Migdal parameters,in a similar fashion as in Eq. (4.13):
f τστ ′σ′

l (k1, k2) =
2l + 1

2

∫ 1

−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)
∂2V

∂ρτσ(~k1)∂ρτ ′σ′(~k2)
. (4.27)In the ase of unpolarized nulear matter, we will suppress the spin indiesand use a simpli�ed notation suh that:

f ττ ′

l (k1, k2) = f τστ ′σ′

l (k1, k2) . (4.28)Unlike the Landau Fermi liquid parameters, the Landau-Migdal parameters arenot dimensionless but have the dimension [MeV−2] in natural units.The alulation of the e�etive mass has to be extended in the ase of asym-metri nulear matter to allow for di�erent masses of di�erent partiles. Sine wehave already de�ned the Landau-Migdal parameters, we an use them and de�nethe e�etive mass in a similar fashion to Eq. (4.23) [69℄:
M∗

p

M
= 1 +

1

3
F p

1 , (4.29)
M∗

n

M
= 1 +

1

3
F n

1 , (4.30)where
F p

l = Np
0

(

f pp
l + (kn/kp)

2f pn
l

)

, (4.31)
F n

l = Nn
0

(

fnn
l + (kp/kn)

2f pn
l

)

. (4.32)Here we have introdued the proton and neutron density of states via
Np

0 =
M∗

pkp

π2
, Nn

0 =
M∗

nkn

π2
. (4.33)In addition to the onnetion between the e�etive mass and the Landau Fermiliquid parameters there are other onnetions between these parameters and prop-erties of nulear matter. For the inompressibility in symmetri matter, we have

K =
3k2

F

M∗
(1 + F0) , (4.34)and the symmetry energy is

at =
k2

F

6M∗
(1 + F ′

0) . (4.35)



52 CHAPTER 4. LANDAU FERMI LIQUID THEORY4.2 Density-dependent foreJust as in the previous hapter, we supplement the NN interation with e�etswhih ome from higher many-body fores. Unfortunately, the parametri EoSof the previous hapter has only a limited appliability. The major limit is thatwe are unable to disentangle the momentum dependene of the original potential(i.e. we annot take the seond derivative with respet to momentum). In orderto be able to do this and reprodue the properties of nulear matter, we need tointrodue a mirosopi potential whih mimis the e�et of higher-order ontri-butions, primarily the three-body fore. This potential is than ombined with thetwo-body e�etive fore (i.e. Vlow k and VUCOM) and its parameters are �tted toreprodue the properties of nulear matter at saturation, suh as the saturationdensity, binding energy, inompressibility and symmetry energy. For this purposewe use a density-dependent Yukawa-like fore [71℄:
VDD(q) = α1ρ̂

λ1
µ2

1

q2 + µ2
1

+ α2ρ̂
λ2

µ2
2

q2 + µ2
2

(~τ1 · ~τ2) + α3ρ̂
λ3

µ2
3

q2 + µ2
3

, (4.36)where τ is the Pauli matrix ating in isospin spae, q is the transferred momentumbetween in and out states and ρ̂ = ρ/ρ0. The range parameters of the density-dependent fore are µ1 = µ2 = 1.42 fm−1, µ3 = 2.5 fm−1. The matrix elements ofthe density-dependent fore in the plane-wave basis an be found in [72℄.
Vlow k +DDa Vlow k +DDb VUCOM +DDa VUCOM +DDb

λ1 0.08 0.10 0.05 0.12
λ2 0.08 0.10 0.05 0.12
λ3 0.20 0.65 0.20 0.65

α1[fm2] -2089.98 -529.90 -1311.91 -498.13
α2[fm2] 202.64 99.74 86.51 31.68
α3[fm2] 2753.12 1347.86 1798.65 1190.37
K0[MeV] 240 300 240 300Table 4.1: Table of oe�ients for the nulear potential VDD (f. [71℄ and [73℄)In general we will favor the DDa version of the density-dependent fore to

DDb. We do this beause the inompressibility value of 300 MeV is onsideredtoo large and the value of 240 MeV is favored as being loser to the atual physialvalue. However for some of the results we will also show the DDb parametrizationas well for the sake of omparison.



4.2. DENSITY-DEPENDENT FORCE 534.2.1 Equation of stateAs in the previous hapter we need to satisfy the onditions of the β-equilibriumin order to alulate the EoS of equilibrated matter. Thus, we again use Eq. (3.21)and Eq. (3.22). As for the hemial potential in this ase there is no need to sub-stitute anything, like in the previous hapter, so we use Eq. (3.12) and Eq. (3.11)in their unmodi�ed form. One we determine the β-equilibrium we use Eq. (3.3)to alulate the energy per partile.One signi�ant di�erene, ompared to the previous hapter is the introdutionof a non-zero temperature through Eq. (3.13). This also means that we have tomodify Eq. (3.3) suh that we have
E/A=

2

ρB

∑

b

∞
∫

0

d3~p

(2π)3

(

Mb +
p2

2Mb
+

1

2
Ub(~p)

)

1

1 + exp ((ǫb − µb)/T )
, (4.37)where ǫb is given by:

ǫb(~p) = Mb +
p2

2Mb
+ Ub(~p) . (4.38)Fig. 4.1 shows the partile onentrations for the various hyperon interationsin ombination with the NN-model Vlow k + DDa at zero temperature. As forsimilar �gures in the previous hapter we see how sharp the appearane of thehyperons is, i.e. how quikly their onentration rises initially after their appear-ane. Here again we see that the �rst hyperon appears around ∼ 2ρ0 and howthe appearane of Σ− lowers the onentration of negatively harged leptons. Inessene, all of the behavior of hyperon appearane and onentration remainssimilar to that of the parametri EoS with the same K0.As already mentioned, the usage of Vlow k imposes a restrition on the alloweddensity range. In the ase of β-equilibrated matter with only protons and neutronsand no hyperons it would be ∼ 4ρ0. However the introdution of hyperons lowersthe Fermi momentum of the neutrons su�iently to make the alulation possibleup to ∼ 5ρ0. Additionally the smoothness of the urves indiates that there areno artifats due to the sharp ut-o� in this alulation.Like Fig. 4.1, Fig. 4.2 shows the partile onentrations for all hyperon intera-tions in ombination with the NN-model Vlow k +DDa, but now at a temperatureof T = 10 MeV. While most of the features of these two �gures are the same, thereare several notable di�erenes whih are to be expeted. The biggest one is thatthe density at whih hyperons appear is shifted to lower values and for most mod-els we already have a small amount of hyperons at saturation density. The othernotieable e�et is a signi�antly slower rate of inrease of the hyperon densitiesin the initial stages of their appearane.
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Figure 4.1: Composition of matter at T = 0 MeV for several hyperon interationswith Vlow k +DDa.
With the omposition of matter �xed, we an now move on to the alulationof the EoS in the equilibrium. Fig. 4.3 shows the EoS for the Vlow k + DDa(upper panels) and VUCOM + DDa (lower panels). It also displays the EoS fortwo di�erent temperatures: T = 0 MeV on the right and T = 10 MeV on the left.The onentrations of hyperons are not shown for VUCOM +DDa sine they aresimilar to those of Vlow k +DDa.One again the appearane of hyperons is evident in the deviation of the urvesfrom the ones without any hyperons. We also notie the softening of the EoS athigher densities as the hyperons are introdued. This is the same result whihwe had for the parametri EoS so it is reasonable to onlude that the e�et ofthe redution of the maximum of the neutron stars mass are the same here, eventhough we annot alulate them in this ase.As for the e�ets of the non-zero temperature, it is lear from Fig. 4.3 that theyare present at lower densities and strongest at the very beginning of the urves.However, as the density inreases the in�uene of temperature beomes smaller
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Figure 4.2: Composition of matter at T = 10 MeV for several hyperon interationswith Vlow k +DDa.and by the end of the urves it is pratially impossible to tell the di�erenebetween the two temperatures. This observation is easily explainable if we notethat the Fermi momentum of the partiles inreases with density, as does the Fermienergy. As the Fermi energy inreases the ratio between the system temperatureand it dereases. By the time the density reahes values of ∼ 4ρ0, for a systemtemperature of T = 10 MeV, this ratio is lose to zero. Hene at suh densities wean neglet even the temperature of T = 10 MeV. Therefore in order see an e�etat high densities one would have to inrease the temperature to levels whih arenot expeted to be found even in newly born neutron stars.4.3 ResultsIn this setion we will show results for the Landau-Migdal parameters. Althoughone �nds the Landau Fermi liquid parameters more often in the literature thanthe Landau-Migdal parameters, we show the latter as well. We do this beause
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Figure 4.3: Equations of state for mirosopi interations with hyperons. Upperpanels are with Vlow k + DDa and lower with VUCOM + DDa while for the leftpanels we have T = 0 MeV for the right we have T = 10 MeV.
they serve as an input for the alulations within the framework of the RPA whihwe will perform in the next hapter.Most of the �gures display results for symmetri matter, beause there areonly a few di�erenes ompared to the results in β-equilibrium. Sine the Landau-Migdal parameters do not depend diretly on the temperature we will not showany of the results for non-zero temperatures, even though β-equilibrium indiretlyintrodues a dependene on temperature. However in the next hapter we performour alulation onsistently and use the appropriate parameters as input.
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Figure 4.4: The e�etive mass of nuleons in symmetri nulear matter.
4.3.1 Symmetri matterFig. 4.4 shows the e�etive mass of nuleons in symmetri nulear matter; the val-ues for several interation are shown. The �gure learly shows how the in-mediummass of nuleons dereases with density, on�rming that the NN interation isindeed attrative. As expeted, as the nuleons beome more tightly paked theyattrat eah other more strongly, thus ontinuously dereasing the e�etive massas the density inreases. It is interesting to note that the e�ets of the density-dependent fore are not large in the ase of the e�etive mass and that there isa larger di�erene due to di�erenes in the mirosopi two-body interations.Additionally it is evident that these two-body interations produe an e�etivemass value at saturation density whih is in the usual range of expeted values.The density dependene of the Landau Fermi liquid parameters F0, F ′

0, G0 and
G′

0 in symmetri nulear matter is shown in Fig. 4.5. As expeted, F0, representingthe entral part of the fore, is usually the most dominant. For values below −1the system beomes unstable under density osillations. One expets that atdensities where F0 ≤ −1 the approximations underlying nulear matter start to
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ρB[ρ0]Figure 4.5: Landau Fermi liquid parameters in symmetri nulear matter for l = 0.
breakdown and the nuleons start to form nulei. Evidently the Vlow k withoutany density dependent fore is never above −1, while for the VUCOM the stabilityis reahed at ∼ 1.5ρ0. For the orreted potentials, the usual value of ∼ 0.6ρ0 insymmetri nulear matter is obtained. The ferromagneti instability, G0 ≤ −1,whih is observed in Skyrme models [5, 67℄ does not our in any of our models.Fig. 4.6 shows the density dependene of the Landau parameters F1, F ′

1, G1 and
G′

1 in symmetri nulear matter. The most important of them, F1, losely mimisthe behavior of the e�etive mass whih it is onneted to through Eq. (4.23).Like in the ase of the e�etive mass we observe that the in�uene of the density-dependent fore is not large. As for the remaining parameters, very little reliableinformation exists about them whih makes them di�ult to interpret. As ex-peted, all of the l = 1 parameters are, for the most part, smaller than theirorresponding l = 0 parameter and while it is also possible to alulate the Lan-dau Fermi liquid parameters with larger l from Eq. (4.22), they would be even
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smaller and thus ontribute less.Fig. 4.7 and Fig. 4.8 show the density dependene of the Landau-Migdal pa-rameters in symmetri nulear matter. The values for the neutron-neutron in-terations are not shown sine they are idential to those of the proton-protoninteration. The reason for this lies in the fat that we have negleted the ele-tromagneti fore whih leaves only the strong fore to onsider.In the left olumn of Fig. 4.7 and Fig. 4.8, fpp and fpn, represent the spin-independent interation while those on the right side, gpp and gpn, represent thespin-dependent interation. One should also keep in mind that in reality theseparameters do not represent the partile-partile interations but are in-fat in-diative of the in-medium partile-hole interation. Thus, for fpp (gpp) we arein-fat showing the strength of the interation between two pp−1 states with like(unlike) spins, while fpn (gpn) indiates the matrix elements between nn−1 and
pp−1 states with like (unlike) spins.
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Figure 4.7: Landau-Migdal parameters in symmetri nulear matter desribingthe proton-proton interation.
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4.3. RESULTS 61The generalization of Eq. (4.27) is straightforward. In the ase of symmetri mat-ter we an alulate these hyperon Landau-Migdal parameters if we use Eq. (4.25)where the momentum of the hyperon is set to zero.We have hosen to show only the symmetri matter results, again beause theresults in β-equilibrium are not very di�erent. Additionally, in symmetri matterthese parameters are not in�uened by the NN interation in any way and evenin equilibrated matter they are only weakly dependent on them.
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Figure 4.9: Λ Landau-Migdal parameters in symmetri nulear matter.In this setion we will show the results only for the Y N ombinations, beausewe do not use a Y Y interation. In the next hapter we will take all suh Y Yombinations as being equal to zero. Like in the ase of pn these Y N ombina-tions indiate the matrix elements between NN−1 states and Y Y −1 state withlike (unlike) spins. Thus we have fΛp (gΛp) desribing in-medium partile-holeinterations between pp−1 and ΛΛ−1 states with like (unlike) spins, et.Fig. 4.9 to Fig. 4.12 show all Y N ombinations of the hyperon Landau-Migdal



62 CHAPTER 4. LANDAU FERMI LIQUID THEORYparameters. (Fig. 4.9 is devoted to the Λ, Fig. 4.10 to the Σ−, Fig. 4.11 tothe Σ0 and Fig. 4.11 to the Σ+.) It is evident (and expeted) that several ofthese ombinations are equal to eah other in symmetri matter. So we have(in symmetri matter) fΛp = fΛn, fΣ0p = fΣ0n, fΣ−p = fΣ+n and fΣ−n = fΣ+p,and there are analogous relations for the g′s. The reason is merely the isospinindependene of strong interations. Small di�erenes, whih are hard to notiein these �gures, are present due to the di�erent masses of these partiles.
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Figure 4.11: Σ0 Landau-Migdal parameters in symmetri nulear matter.In Fig. 4.10, we display the Σ− Landau-Migdal parameters. The density de-pendene of the Σ−, as well as the Landau-Migdal parameters for the other Σhyperons, is very weak and some of them are pratially onstant. The reasonbehind this behavior is that the values of the relative momentum on whih the
Y N Vlow k depends are restrited to low values where the momentum dependeneof the potential is weak.In this ase all interations, exept J04, show remarkably similar results forthe fΣ−p, parameter suggesting a reliable result pointing towards attration in thishannel. Similar agreement exists for the gΣ−n parameter suggesting repulsion inthis ase, with the χEFT600 being the notable exeption in this hannel. Whilethere isn't suh agreement in the other hannels, we an at least laim that fΣ−nand gΣ−p are attrative.
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Figure 4.12: Σ+ Landau-Migdal parameters in symmetri nulear matter.
The Σ0 Landau-Migdal parameters, shown in Fig. 4.11, indiate that for thelike spins most interations are attrative. Fig. 4.12 �nally shows the Σ+ Landau-Migdal parameters whose behavior is determined by the relationships mentionedearlier, linking then to the behavior of the Σ− parameters whih we have alreadydisussed.4.3.2 β-equilibriumFor ompleteness we show the Landau Fermi liquid parameters for l = 0 in β-equilibrium. Fig. 4.13 shows that the di�erenes ompared to the ase of sym-metri matter are not that large for F0 and G0 while they an be notied for F ′

0and G′
0. This is expeted sine the later two quantities are sensitive to di�erenesin the proton to neutron ratio while the former are not. Sine this statement istrue in general, we do not need to show the other parameters in β-equilibrium.
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5 Neutrino interations
The neutrino opaity of dense matter plays an important role in the ore ollapsesupernova theory and in the theory of the development of a newly formed neutronstar. In fat, it is believed that neutrinos are intimately involved in the mehanismbehind supernovae explosions. Neutrino opaity in neutron stars has two soures:neutral urrent and harged urrent interations of neutrinos with the medium.The alulation of these opaities is a ompliated problem. A simple estimateshows that neutrinos in suh a dense environment interat with multiple baryonssimultaneously [74℄ as well as that the baryons themselves are interating withother baryons present in the medium.Various approximations have been used to address these issues: the e�ets ofrelativity; the matter omposition; and e�ets of the baryon-baryon interation. Insuh alulations it is not unexpeted to �nd enhanements of the neutrino meanpath by fators of∼ 2−3. One of the most ommon approahes is the modi�ationof the baryon response funtions due to the in-medium modi�ations.There are many physial issues that require the knowledge of the responsefuntion of the medium to an external probe. Well-known examples are eletronsattering by nulei or the propagation of neutrinos in nulear matter. In themean-�eld framework, the response funtion must take into aount the e�ets oflong-range orrelations by the RPA, whih is the small amplitude limit of a time-dependent mean-�eld approah. The approximation is obtained when the partile-hole interations are approximated with the Landau-Migdal interation from theprevious hapters. The diagrammati representation of the approximation is showin Fig. 5.2.This hapter is organized in the following way; in Se. 5.1 we will introduethe weak interation, the harged and neutral urrent proess and alulate theross setion. In Se. 5.2 we introdue the random phase approximation (RPA)and show the resulting ross setions. Se. 5.3 is devoted to the results. Thosefor the neutral urrent ross setion are found in Se. 5.3.1, the harged urrentross setion in Se. 5.3.2 and the mean free path is given in Se. 5.3.3.67



68 CHAPTER 5. NEUTRINO INTERACTIONS5.1 Weak interation

Figure 5.1: Weak interations for β-equilibrium.The uni�ed model of the eletroweak interation allows for the derivation ofaurate ross setions for weak proesses between elementary partiles [75℄. TheLagrangian of suh interations has the form:
Ll = − g

2
√

2

∑

l=e,µ,τ

[

ψ̄νl
γλ(1 − γ5)ψlW

+
λ + ψ̄ − g

2
√

2

∑

l=e,λ,τ

ψ̄νl
γλ(1 − γ5)ψlW

−
λ

]

− g

4 cos θW

[

ψ̄νl
γλ(1 − γ5)ψνl

− ψ̄lγ
λ(1 − γ5)ψl

]

Zλ , (5.1)
Lq = − g

2
√

2
ψ̄Pγ

λ(1 − γ5)UCKMψNW
+
λ − g

2
√

2
ψ̄NU

†
CKMγ

λ(1 − γ5)ψP W−
λ

− g

4 cos θW

[

ψ̄Pγ
λ(1−8

3
sin2 θW −γ5)ψP −ψ̄Nγ

λ(1−4

3
sin2 θW −γ5)ψN

]

Z0
λ ,(5.2)where Ll ontains the leptoni part and Lq ontains the quark part of the La-grangian. The positive quarks are olleted in ψ̄P = (ψ̄u ψ̄c ψ̄t) and the negativeare found in ψ̄N = (ψ̄d ψ̄s ψ̄b). The standard Cabibbo-Kobayashi-Maskawa mixingmatrix is represented by UCKM [76℄. The parameters in the eletroweak La-grangian are the oupling onstant g = 0.231, the masses of the W± mW =

78 GeV, and the Z0, mZ = 89 GeV, bosons and the weak Weinberg angle
sin2 θW = 0.23.However, sine the momenta of all partiles whih we onsider are far belowthe masses of the vetor bosons (Z andW±) we an take the lowest-order approx-imation to the weak interation. Thus the interation Lagrangian is not the full



5.1. WEAK INTERACTION 69eletroweak Lagrangian, but instead we will have a Fermi-like weak Lagrangian,(masses of the vetor bosons are onsidered in�nite), whih an be written interms of urrent-urrent interations as [77℄:
Lcc

int =
GFC√

2
jµJ

µ
W , (5.3)

Lnc
int =

GF√
2
jν
µJ

µ
Z , (5.4)where GF = 1.166 × 10−11MeV−2 is Fermi weak oupling onstant, and C is theCabibbo fator: C = cos θc for strangeness hanging reations and ∆S = 0 and

C = sin θc for ∆S = 1. The �rst Lagrangian Eq. (5.3) desribes the hargedurrent proess mediated by the W-boson, the left-hand side of Fig. 5.1,
νl +B2 → l +B4 , (5.5)while the seond Eq. (5.4) desribes neutral urrent proesses mediated by theZ-boson, the right-hand side of Fig. 5.1,
νl +B2 → νl +B4 . (5.6)The orresponding harged urrents are:

jµ = ψ̄lγµ(1 − γ5)ψν , (5.7)
Jµ

W = ψ̄4γ
µ(gV − gAγ5)ψ2 , (5.8)for Eq. (5.3), while for Eq. (5.4) the neutral urrents are:

jν
µ = ψ̄νγµ(1 − γ5)ψν , (5.9)
Jµ

Z = ψ̄2γ
µ(cV − cAγ5)ψ2 . (5.10)The �elds ψl, ψν , ψ2 and ψ4 are quantized �elds of leptons, neutrinos, inomingbaryons and outgoing baryons. Sine they all are fermions they an be desribedin terms of quantized Dira �elds. We expand them in terms of a omplete set ofplane-wave states

ψ(x) =
∑

sp

(

m

ΩEp

)
1
2

cs(p)us(p)e
−ipx , (5.11)where cs(p) is a reation operator and us(p) denotes the spinor of a partile withspin s and four-momentum p. The normalization in this ase is for a box ofvolume Ω , but as usual we will take the limit Ω → ∞. The vetor and axial-vetor oupling onstants gV and gA for harged urrents and cV and cA for neutralurrents are listed in Tab. 5.2 and Tab. 5.1 for the partiles of interest, see Ref.[77℄.
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gV gA

νl + n→ l− + p 1 D + F = 1.23

νl + Σ− → l− + Λ 0
√

2/3D = 0.62

νl + Σ− → l− + Σ0
√

2
√

2F = 0.67

νl + Σ0 → l− + Σ+ −
√

2 −
√

2F = −0.67

νl + Λ → l− + Σ+ 0 −
√

2/3D = −0.62

νl + Λ → l− + p
√

3/2 −
√

3/2(F +D/3) = 0.89

νl + Σ0 → l− + p 1
√

1/2D = 0.54
νl + Σ− → l− + p −1 D − F = 0.28
νe + µ− → ν−µ + e− 1 1Table 5.1: Charged urrent vetor and axial vetor ouplings [77℄. Numerialvalues are quoted using D = 0.756, F = 0.477, sin2 θW = 0.23 and sin2 θc = 0.053(see Ref.[78℄). As usual νl(l) stands for all neutrinos (leptons). For orretionsarising due to expliit SU(3) breaking terms, see Ref.[79℄.

cV cA

νe + e− → νe + e− 0.5 + 2 sin2 θW = 0.96 0.5
νµ + µ− → νµ + µ− 0.5 + 2 sin2 θW = 0.96 0.5
νe + µ → νe + µ− −0.5 + 2 sin2 θW = −0.04 −0.5

νµ,τ + e− → νµ,τ + e− −0.5 + 2 sin2 θW = −0.04 −0.5
νl + n→ νl + n −0.5 −D − F = −0.62
νl + p→ νl + p 0.5 − 2 sin2 θW = 0.04 D + F = 0.62
νl + Λ → νΛ −0.5 −F −D/3 = −0.36

νl + Σ− → νl + Σ− −1.5 + 2 sin2 θW = −1.04 D − 3F = −0.34
νl + Σ+ → νl + Σ+ 0.5 − 2 sin2 θW = 0.04 D + F = 0.62
νl + Σ0 → νl + Σ0 −0.5 D − F = 0.14

νl + Σ0 → νl + Λ 0 2D/
√

3 = 0.44Table 5.2: Neutral urrent vetor and axial vetor ouplings [77℄. Numerial valuesare quoted using D = 0.756, F = 0.477, sin2 θW = 0.23 and sin2 θc = 0.053 (seeRef.[78℄). As usual νl(l) stands for all neutrinos (leptons). For orretions arisingdue to expliit SU(3) breaking terms, see Ref.[79℄.One the urrents and the states have been de�ned one is able to proeed withthe alulation of the proesses shown in Fig. 5.1. In a vauum suh alulationsare most ommonly performed by alulating the expetation value of the transi-tion operator Eq. (C.1). However, in the medium it is more onvenient to use the



5.1. WEAK INTERACTION 71optial theorem and alulate the ross setion. In this work we have used thisapproah and alulated the ross setions. In Appendix C some details of thealulation are shown, the end result for the di�erential ross setion is found asEq. (C.29).For the derivation in Appendix C we have used several approximations thatare justi�ed if one onsiders the typial energy sales involved. The �rst one re-lates to the properties of baryons in a dense medium. The temperature rangewe are interested in is of the order 10 MeV thus we an safely assume that thebaryons we are onsidering (nuleons and hyperons) due to their mass ∼ 1 GeV,whih is far greater than the temperature range (T ≪ Mb), are non-relativisti.Hene in Eq. (C.38) we use the nonrelativisti propagators of Eq. (C.36) insteadof the relativisti ones Eq. (C.18). The approximation an also be expressed asdisregarding the baryon momentum ompared to its energy |pb|
Eb

≪ 1. The seondapproximation onerns the leptons (eletrons and neutrinos) whose hemial po-tential, in neutron stars, is far greater than the mass of the eletron or neutrino(ml ≪ µl). Hene we onsider the leptons as being fully relativisti, whih gives
~pl

El
= ~̂pl and Eq. (C.27).With these approximations it is natural to use the laboratory referene framein whih, for the relative veloity, we have

vrel =
|~ki|
ǫi

. (5.12)Thus we have all of the information needed to perform the alulation of thedi�erential ross setion in-medium and the result alulated in Appendix C is:
1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

3 (1 − f(E3) [(1 + cos θ)SV (q0, q) + (3 − cos θ)SA(q0, q)] .(5.13)This equation works both for the harged urrent and the neutral urrent rosssetion. In the �rst ase the Fermi funtion f and energy E3 will be those of theleptons while in the seond ase it will be the neutrinos. Obviously in both aseswe have to take are to use the appropriate struture funtions.Sine in setion Se. 5.3 we will be interested in the dependene of the dif-ferential ross setion on the transferred energy it is useful to see whih range ofvalues is allowed by the kinematis for the transferred energy given these approx-imations. The limiting fator will be the value of the angle θ (equivalently cos θ).From the de�nition of transferred momentum ~q = ~pν − ~pl one gets
~pν · ~pl

EνEl

= cos θ =
E2

ν + E2
l − q2

2 − ElEν

. (5.14)



72 CHAPTER 5. NEUTRINO INTERACTIONSThe limits are | cos θ| ≤ 1. From this with the aid of the relation for the transferredenergy q0 = Eν − El we get two onditions |q0| ≤ q and q0 ≤ 2Eν − q. Sine inmost ases for the di�erential ross setion we �x |~q| = Eν , these two onditionswill be one and the same.From the di�erential ross setion we an alulate the total ross setion andthe mean free path. The total ross setion per unit volume is easily alulatedby integrating over all of the remaining variables by
σ(Eν)

Ω
=

∫

1

Ω

d3σ(Eν)

d2Ω dq0
dΩdq0 . (5.15)The mean free path is just the inverse of the total ross setion

λ(Eν) =

(

σ(Eν)

Ω

)−1

. (5.16)5.2 Random phase approximation

Figure 5.2: Higher-order loop orretions to the weak interation in dense matter.In Appendix C we have introdued the struture (S) and polarization (Π̃)funtions in Eq. (C.28) and Eq. (C.25), respetively. The Hartree-Fok approxi-mation of the polarization funtion ontains only one loop. However in the aseof dense matter we must also onsider interations with a higher number of loops.Essentially, a neutrino propagating in dense matter will reate an exitation whihan propagate via the interation with matter thus modifying the response of thematter. This an be represented shematially as in Fig. 5.2.



5.2. RANDOM PHASE APPROXIMATION 73The inlusion of a higher number of loops orresponds to the ring approxima-tion or random phase approximation1 [33℄. The key point that must be stressedout about these graphs is that there are exatly two partiles partiipating ineah loop, that is if we were to ut the graph vertially we would only ross twopropagator lines. These propagator pairs in the loop are those of partiles andholes and not partiles and antipartiles. One an also note that this is in fat aquasipartile RPA sine we are using the quasipartile approximation whih re-plaes the bare mass and hemial potentials of partiles with the e�etive ones.Putting it in another way, the propagators entering the zeroth-order polarizationfuntion Π̃0(~q, q0) de�ned by Eq. (C.38), are not of free partiles and holes, butare themselves dressed.In pratial terms the RPA relies on summing all of the ring diagrams inFig. 5.2. The summing of these ring diagrams yields then the Bethe-Salpeterequation2 for the partile-hole polarization funtion [33℄,
Π̃ηλϕχ(~q, q0) = Π0

ηλϕχ(~q, q0) +
∑

αβγδ

Π0
ηλαδ(~q, q0)Kαδ;βγ(~q, q0)Π̃βγϕχ(~q, q0) , (5.17)where Π̃(~q, q0) is the full polarization funtion and Kαδ;βγ(~q, q0) is a kernel de�nedby the interation. The indies α, β,γ and δ run over both spin and isospin spaeand in our ase also involve hyperons. For the RPA the kernel takes the form

K
(1)
αβ;γδ ≡ 〈γ β | V | α δ〉 − 〈β γ | V | α δ〉 , (5.18)where V is a potential, whih de�nes the interation. It has been shown [33℄ thatsuh a de�nition of the kernel indeed orresponds to the RPA, sine it produesthe same equations of motion.We will not go further here into the details about various kernels and the solu-tion of Eq. (5.17) but refer the reader to Appendix C. Additionally more detailson the RPA itself, espeially for �nite systems, an be found in [33℄. However wenote that for a truly self-onsistent alulation one should interpret the RPA asthe small limit of time-dependent Hartree-Fok-Bogoliubov theory.5.2.1 Cross setions within the random phase approxima-tionWith the knowledge of the RPA polarization funtion we an see how the rosssetion hanges with the inlusion of it. The RPA is simply aounted for as the1This name has histori reasons and it is not very illuminating here. For our ase the termring approximation arries muh more meaning.2In our approah, sine we will be dealing with nonrelativisti partiles this should be alledthe Salpeter equation, but at this level Eq. (5.17) is general and ould also be used for relativistipartiles.



74 CHAPTER 5. NEUTRINO INTERACTIONSreplaement of the struture funtions S with the RPA struture funtions SRPAobtained in Appendix C. The distintion between the vetor and axial struturefuntion is more obvious in this ase as we annot just fatorize out the ouplingonstant and get the same funtion. Thus for the ross setion in the RPA wehave, as in [5℄
1

Ω

d3σ(E1)

dΩ2dq0
=
G2

F

8π3
E2

3 [1 − f(E3)]
[

(1 + cos θ)SRPA
V (q0, q)

+(3 − cos θ)SRPA
A (q0, q)

]

. (5.19)Again, like Eq. (5.13), the formula is general enough to be used in both the hargedurrent and the neutral urrent ase. All we have to be areful about is whihstruture funtion we use and whih partile is the outgoing one.5.3 ResultsLet us now turn to the quantitative results of neutrino reation rates. For the dif-ferential ross setion and the mean free path the ontributions from eah partiletype need to be aounted for. For the alulation of the di�erential ross setionEq. (5.13), the hemial potentials, Fermi momenta and the temperature need tobe spei�ed. For symmetri matter these quantities are set by hand while, in thease of β-equilibrated matter, they are provided by the alulation explained inhapter 3. The partile-hole parameters are alulated as in hapter 4. The e�etsof temperature, like the e�ets of the strong interation, mainly a�et the resultspresented here through the polarization (struture) funtions.In the ase where only nuleons are present, we will fous on showing results at
0.5ρ0 and ρ0. For the ases with hyperons we will show results at 2ρ0 and 3ρ0 sineat these densities the onentrations of hyperons are sizable. For the temperaturewe will fous on T = 0 MeV, whih should best desribe older and older neutronstars while T = 10 MeV represents neutron stars soon after reation.For all ross setions presented below we have �xed the neutrino energy at
Eν = 25 MeV and �xed the momentum transfer to q = Eν for the neutral urrentross setions and to q = Eν + µe for the harged urrent ross setions. For themean free path we take the neutrino energy to be Eν = πT sine this is the meanenergy of untrapped neutrinos [80℄.5.3.1 The neutral urrent ross setionAn indiation of interation orretions is �rst shown in Fig. 5.3. This �gureshows arguably the simplest ase of all those investigated here, the neutrino neu-tral urrent ross setion in symmetri nulear matter with just two-body NN



5.3. RESULTS 75interations. Two densities and two temperatures are shown. The results of theHartree-Fok and RPA alulations for both the Vlow k and VUCOM are ompared.
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Figure 5.3: Neutrino neutral urrent ross setion in symmetri nulear matterwith just two-body NN interations.At zero temperature (upper panels) we an learly see the e�ets of the di�erente�etive masses of a nuleon in the Vlow k and VUCOM as the di�erene in endpointsof the ross setions. If we now ompare this result with Fig. 5.4 we see the samevalues for the endpoints with and without the density-dependent fore. This isobvious beause, in the quadrati approximation for the energy, the endpoint isdetermined by the ratio kF

M∗ whih is di�erent for the Vlow k and VUCOM potentialsbut the same with and without the density-dependent fore, f. Fig. 4.4.The bottom panels illustrate the e�et of temperature on the di�erential rosssetion. At zero temperature only positive energies are present, beause of Paulibloking, but at non-zero temperature there is a su�ient number of exited statesto allow suh transitions. This is an e�et present at any temperature. For lowbaryon densities even low temperatures render the system non-degenerate. Forthe temperature of T = 10 MeV, and in general for all �nite temperatures, the



76 CHAPTER 5. NEUTRINO INTERACTIONSross setion is dominated by a region for whih q0 < T .The biggest di�erene between the Hartree-Fok and RPA alulation is theenhanement apparent at the end of the allowed energy interval. This enhane-ment is easiest understood if we onsider the neutral urrent vetor polarizationfuntion. In symmetri nulear matter, where only nuleons ontribute and pro-ton and neutron zeroth-order polarization funtions are the same and Eq. (C.73)simpli�es to
Π̃NC

V = Π̃0
[

(

(cVpp)
2 + (cVnn)2

)

(

1 − fppΠ̃
0
)

+ 2cVppc
V
nnfpnΠ̃

0
]

/DV
NC , (5.20)where the denominator DV

NC simpli�es to
DV

NC =
[

1 − (fpp + fpn) Π̃0
] [

1 − (fpp − fpn) Π̃0
]

=

[

1 − 2F0
Π̃0

N0

][

1 − 2F ′
0

Π̃0

N0

]

, (5.21)where the F0 and F ′
0 are the Landau parameters and N0 is the density of states,see hapter 4. In the ase of the Hartree-Fok alulation the determinant DV

NC isequal to one. When it approahes zero in the ase of the RPA it auses preiselythe enhanement seen in Fig. 5.4 and all similar enhanements in subsequent�gures. This behavior is usually referred to as the zero-sound beause it representsa resonane orresponding to a olletive motion of the system.If we neglet the zero-sound enhanement, the e�et of the medium orretionseen in the RPA urves is that of damping. From looking at Eq. (C.59) we an seethat whenever the kernel Kαβ;δγ is a positive-de�nite matrix (an overall repulsiveinteration) we will have a suppression and when we have negative-de�nite matrix(attrative interation) we will have an enhanement. If the nature of the spin-like and spin-unlike interation is di�erent, i.e. one is repulsive and the otherattrative, than we have a omposite e�et whose nature will depend on whihhannel (vetor or axial) dominates. It is in fat often the ase that spin-like andspin-unlike interations are di�erent, f. Fig. 4.13. In the ase of Fig. 5.3, and forall other neutral urrent ross setions with only nuleons, the repulsive interationin the vetor hannel mostly dominates the response. The only exeption is theenhanement at zero energy transfer at �nite temperature whih is aused by theaxial hannel.In Fig. 5.4 the neutrino neutral urrent ross setion in symmetri nulear mat-ter with density-dependent interations is shown. It is evident that the inlusionof density-dependent interations enhanes the olletive behavior of the system.Hene the peaks we see at zero temperature are muh more pronouned. It alsosigni�antly alters the �nite temperature response, although the Hartree-Fok al-ulation, whih is only in�uened by the e�etive mass, stays largely unhanged.
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Figure 5.4: Neutrino neutral urrent ross setion in symmetri nulear matterwith density-dependent interations.
Large e�ets for the RPA alulation are the result of signi�antly altered inter-ations in both like spin (F0) and the unlike spin (G0) hannels whih we saw inFig. 4.5.The neutrino neutral urrent ross setion in β-equilibrated dense matter withdensity-dependent interations is shown in Fig. 5.5. The appearane of two dis-tint Fermi surfaes is now learly visible. Hene we now have two Fermi momentaand two e�etive masses to onsider. In the ase of the lower panels (ρ0/2) we seean extremely strong peak lose to zero. This peak is aused by the determinantof the vetor response whih appears when solving Eq. (5.18). Obviously at thisdensity the interation is attrative enough to ause suh an e�et. This is some-what unusual sine most other peaks at zero energy transfer are produed by thedeterminant of the axial response, as we will see in the following �gures.In the ase of dense matter with hyperons we have a omplex multiompo-nent system whose response is di�erent from a response of the relatively simplenuleoni system we showed so far. At any given density the onentrations and
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Figure 5.5: Neutrino neutral urrent ross setion in β-equilibrated dense matterwith density-dependent interations.
the e�etive masses as well as the strength of the oupling to the medium willplay a signi�ant role. In addition to the Fermi spheres of nuleons we also haveto onsider those of hyperons and for the RPA we now have a more omplexmatrix whih enters the kernel. All of these e�ets will be entangled when wesolve the matrix equation Eq. (C.59) whih will make the study of individual ef-fets di�ult. However some of the leading e�ets an be reognized due to theirmagnitude.Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the neutrino neutral urrent ross setionin β-equilibrated dense matter with density-dependent interations and the Y Ninteration for NSC97f, χEFT 600 and J04 models, respetively. The upper panelsshow results at 2ρ0 and the lower panels show those at 3ρ0. On the left-hand sidesof these three �gures we plot the Vlow k + DDa and on the right-hand sides
VUCOM +DDa.At zero temperature we see the �rst drop after the initial rise whih omesfrom the hyperons, the seond derease omes from protons and is muh less



5.3. RESULTS 79

0

2

4

6

8

10

12

14

V
-1

  d
3 σ 

/ d
Ω

2  d
q 0

   
[1

0-6
 M

eV
-1

cm
-1

]

Vlowk+DDa,2ρ0RPA,T=0 MeV
RPA,T=10 MeV

HF,T=0 MeV
HF,T=10 MeV

VUCOM+DDa,2ρ0

0

10

20

30

40

50

60

-25 -20 -15 -10 -5 0 5 10 15 20
q0[MeV]

Vlowk+DDa,3ρ0

-25 -20 -15 -10 -5 0 5 10 15 20 25
q0[MeV]

VUCOM+DDa,3ρ0

Figure 5.6: Neutrino neutral urrent ross setion in β-equilibrated dense matterwith density-dependent interations and Y N interation from the NSC97f model.
pronouned and the last drop is from neutrons. This learly binds the e�et ofhyperons to low energy transfers whih is also true for �nite temperatures. Thebest example for e�ets at higher energy transfer oming from nuleons is theappearane of the peak on the left end of the T = 10 MeV urves. This peakomes only from neutrons but it is strongly enhaned by the determinant of thevetor response. The only reason why we do not have a stronger peak at thispoint is that at these energies the Pauli bloking e�et is rather strong. Suh apeak is ommonly referred to as the zero-sound peak. We an also notie that asthe density inreases the peak moves out towards higher energy transfers, and onsome oasions is ompletely outside of the main part of the ross setion.The biggest di�erene between the three �gures, Fig. 5.6, Fig. 5.7 and Fig. 5.8lies in their behavior at zero energy transfer. At this point the NSC97f modelshows a peak oming from the approah to zero of the axial response determinantwhose magnitude as this point is ∼ 0.1 at 2ρ0 leading to an order of magnitudeinrease in the ross setion. For χEFT 600 at the same density it has the value of
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Figure 5.7: Neutrino neutral urrent ross setion in β-equilibrated dense matterwith density-dependent interations and the Y N interation from the χEFT 600model.
∼ 0.5 making the peak non-existent. The same value for the J04 lies between thesetwo at ∼ 0.25 whih results in a visible, but signi�antly less pronouned peak forthis model. While these observations were made for the ase of Vlow k +DDa anidential hierarhy is observed for VUCOM +DDa but in this ase all peaks are lesspronouned. They are less pronouned beause the axial response determinant issystematially larger in these ases.The last �gure in this setion, Fig. 5.9, is devoted to displaying the omparisonof all neutrino neutral urrent ross setions in β-equilibrated dense matter withdensity-dependent interations at a density of 3ρ0 and a temperature of T = 10MeV. This omparison shows in a systemati way some of observations made inspei� ases before. The upper panels show the omparison of the Hartree-Fokalulation while the lower shows the same for the RPA. The limitation of hyperone�ets to small energy transfers is evident if we take a look at the Hartree-Fokalulation. Small di�erenes at higher energy transfers ome from hanges in the
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Figure 5.8: Neutrino neutral urrent ross setion in β-equilibrated dense matterwith density-dependent interations and the Y N interation from the J04 model.
neutron Fermi momentum introdued by β-equilibrium. The zero-sound e�etsas well as the di�erenes in the peaks at zero energy transfer are apparent in thelower left panel displaying the Vlow k + DDa. The absene of suh an e�et for
VUCOM +DDa shows the sensitivity to the parameters in the kernel of Eq. (5.18).5.3.2 The harged urrent ross setionFig. 5.10 shows the harged urrent ross setion in symmetri nulear matterwith inlusion of density-dependent interations. As ould have been expetedthese graphs are very similar to those for the neutral urrent beause the polar-ization funtions of the nn and the pn system in symmetri matter are pratiallyidential. They are alike beause the kinematial di�erenes whih arise in β-equilibrium due to the presene of the eletron hemial potential are not therein symmetri matter. The small di�erene seen in the upper panels, is that theross setion urves do not start at zero but at a small negative value. The reason
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Figure 5.9: Neutrino neutral urrent ross setion in β-equilibrated dense matterwith density-dependent interations and various the Y N interation at a densityof 3ρ0 and a temperature of T = 10 MeV.
behind this is the small di�erene in mass of the proton and neutron. The samepeak struture at the end of the energy range as well as the suppression for lowerenergy transfers, for the RPA alulations, is seen here just like in the ase of theneutral urrent and the reasons for them are the same.In the Fig. 5.11 we display the neutrino harged urrent ross setion in β-equilibrated dense matter with density-dependent interations. These results aresigni�antly di�erent ompared to the neutral urrent ase beause of the preseneof the eletron hemial potential in the ross setion. We see that the entireross setion has been shifted towards negative values of the energy transfer. Theamount of the shift is losely linked to the value of the eletron hemial potential.As for the phase spae available for these ross setions it is easy to see that onthe left-hand side they are dominated by Pauli bloking while on the right-handside they are determined by the kinematial limits.For the ase of the harged urrent ross setion with hyperons we only show,
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Figure 5.10: Neutrino harged urrent ross setion in symmetri nulear matterwith density-dependent interations.
Fig. 5.12, beause all e�ets seen in this model an be also seen in all others. Thegeneral feature of suppression in the RPA alulations ompared to the Hartree-Fok ones is here just like for Fig. 5.11, whih showed the ross setion withouthyperons. The limitations on the phase spae are the result of the same e�et.The only small di�erene is that the value of the eletron hemial potential isdi�erent due to di�erenes in the β-equilibrium. Even the magnitudes of the rosssetion stay the same beause by far the most dominate part is the pn polarizationloop. A small e�et of the hyperon polarization funtions an be seen in the lowerright �gure as a small indentation in the middle of the RPA urve for T = 10MeV.5.3.3 Mean free pathBoth neutral urrent (left) and harged urrent (right) neutrino mean free paths,in symmetri nulear matter with density-dependent interations for several tem-
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Figure 5.11: Neutrino harged urrent ross setion in β-equilibrated dense matterwith density-dependent interations.
peratures, are shown in Fig. 5.13. In this �gure it is easy to see that, as theinrease of temperature opens up the phase spae available for the ross setions,the mean free path dereases. The resulting inrease will eventually lead to neu-trinos being trapped inside the neutron star. However, it is lear to see that asthe neutron star grows older and ools, the neutrinos will start to free streamout of it. Hene only young and hot neutron stars an be onsidered as possibleenvironments for neutrino trapping.The omparison between the left and the right side of Fig. 5.13 tells us thatwhile the harged urrent ontribution to the mean free path is slightly larger thanthe ontribution of the neutral urrent they are of the same order of magnitude andboth are equally important for the study of neutrino transport in dense matter.As for the di�erenes between the Hartree-Fok and RPA alulations it is evenmore obvious than before that the main e�et of the medium's response is thesuppression of the ross setion. One exeption is the ase for low densities in theneutral urrent where we see an enhanement in the RPA alulation. However
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Figure 5.12: Neutrino harged urrent ross setion in β-equilibrated dense matterwith density-dependent interations with the Y N interation from the NSC97amodel.
if we reall that this is preisely the density at whih F0 beomes smaller than
−1, f. Fig. 4.5, we realize that this is where the approximation of in�nite nulearmatter starts to breakdown. Hene, this e�et should be onsidered with someseptiism and one wonders if Fermi liquid theory is valid in this density range.The e�ets of hyperons on the neutrino mean free path in β-equilibrated densematter with density-dependent interations for several temperatures an be seenin Fig. 5.14. The results shown in this �gure represent the Hartree-Fok alu-lation. It is learly seen how the appearane of hyperons dereases the neutralurrent neutrino mean free path. Obviously di�erent models with di�erent hy-peron threshold densities will start to a�et the mean free path at di�erent stages.By the time the density reahes 3ρ0 all models for whih both Λ and Σ− appearbelow this density give the same result. The model whih only has a Λ at this den-sity, χEFT600, is also the only model whih di�ers from all others. If we exludethis model from our onsiderations we an onlude that at 3ρ0 the introdution
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5.3. RESULTS 87of hyperons leads to the fator of ∼ 2 derease in the mean free path ompared tothe pure nuleon ase. This makes the neutrinos whih are trapped at densitiesabove whih hyperons appear slightly longer trapped as the neutron star ools.
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with density-dependent interation DDa is di�erent even when ombining themwith hyperon interations. It is obvious that the response of the medium withand without hyperons an be signi�antly dependent on the exat values of theLandau-Migdal parameters entering the kernel. For the most part in nuleonimatter the neutrino mean free path is suppressed but when we inlude hyperonsthis an learly lead to signi�ant enhanements. In fat, in the ase of Vlow k somemodels lead to a drop in the mean free path between (2 − 3)ρ0 by an order ofmagnitude. Suh a large hange, with the peak-like shape seen in Fig. 5.15, wouldlead to an aumulation of trapped neutrinos at this density range oming fromdeeper inside the neutron star. However as we did not study trapped neutrinos itis possible that one they are inluded suh strutures would disappear.Fig. 5.17 shows the harged urrent neutrino mean free path in β-equilibrateddense matter with density-dependent interations for various Y N interations.The alulation displayed was preformed in the RPA. The e�ets here are nowherenearly as dramati as in the ase of the neutral urrent. Hene we do not show theresult of the Hartree-Fok alulation, but refer to the same result for the symmet-ri matter shown in Fig. 5.13. The e�et seen there is also true in β-equilibrateddense matter. The medium's response inreases the mean free path through thesuppression of the ross setion. As for the e�et of hyperon appearane, unlike
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6 Summary and ConlusionThe onstrution of the hyperon-nuleon low-momentum e�etive potential, Vlow k,allowed us to study the properties of hyperons in dense matter, together withproperties of dense matter ontaining hyperons. The Y N Vlow k potentials wereonstruted in a RG formalism from several bare potentials and applied to a nu-lear matter alulation. The starting point of the nulear matter alulation,after determination of the matrix elements of Vlow k , was the single-partile po-tential of hyperons. Sine Vlow k is an e�etive interation, standard many-bodytehnique an be diretly applied.As expeted the results show only a limited degree of agreement and we wereable to make only a few onlusions regarding the single-partile potential. Onede�nite result was the attrative nature of the Λ single-partile potential in nulearmatter, although its exat behavior ould not be asertained. The di�erenesin the results ame from the inability to onstrut a unique Y N interation.This inability is not the fault of the Vlow k method, but the rather unfortunateonsequene of inomplete and low preision of data available for Y N sattering.However, we took this situation as an opportunity to study all possible out-omes of di�erent hyperon single-partile potentials. In essene it is highly unlikelythat all of the potentials presented here will turn out to be inorret, hene thetruth de�nitely lies within the range of possibilities explored in this thesis. Whihof these potentials gives a true desription will hopefully be deided in the not-so-distant future. The planned experiments at the J-PARC and FAIR failities areertainly going to give us some signi�ant pointers in this diretion. The simpleaddition of some muh needed sattering data would bring us, in the Y N setor,loser to the high quality situation whih already exists for the NN setor. Anyfurther development in this area is then dependent on more experimental data,but we have developed a reliable method whih an be easily implemented as soonas suh data is available.After the introdution of the Y N single-partile potential we proeeded to thealulation of the energy per partile in nulear matter. In this ase it turned outthat the NN Vlow k potential was not well suited for the study of dense matter.Even when ombining it with an appropriate three-body fore from hiral pertur-bation theory, the properties of nulear matter were not reprodued with su�ient91



92 CHAPTER 6. SUMMARY AND CONCLUSIONquality. Thus we proeeded to replae the nuleoni part of the equation of statewith a parametrization. The parameters made it possible to study a wide rangeof equations of state. This broadness, in addition to the multitude of di�erent
Y N potentials used makes us on�dent that the onlusions drawn here are asreliable as possible.The primary result of this study is that strangeness will appear, via either the
Σ− or Λ, at around twie the saturation density of nulear matter. This is not anunexpeted result sine other studies in this area drew the same onlusion, butnever before has anyone studied suh a range of equations of state in ombinationwith so many di�erent potentials. Hene, any study of neutron stars must �nda way to either inlude hyperons or to �nd a solid reason for exluding them.Unfortunately the results on neutron star masses were not in agreement with theobserved masses of known pulsars. However, this is a known side-e�et of neglet-ing Y Y interations and does not make our statement of hyperon appearane anyless orret.However, the parametrization introdued made it impossible to study the re-sponses of matter to the neutrino probe. Hene we returned bak to the mi-rosopi interation for the NN interation and introdued a density-dependentfore in order to mimi the e�ets of higher-order ontributions. This fore wasthen used in ombination with the e�etive NN potentials (Vlow k and VUCOM)and �tted to the properties of nulear matter. One �xed, the density-dependentfore was used to alulate the Landau-Migdal parameters. These parametersserved as input to the alulation of the medium's response to an external probe.They desribe the strength of the interation between the interating partile-holestates.A straightforward extension to the nulear matter alulations performed inthis thesis, whih would apply to all onsidered quantities, is the inlusion ofhigher order terms in the perturbative expansion. Suh an extension is naturalgiven the fat that we are using soft e�etive potentials and should thus be de-sribed perturbatively. This would give ontributions beyond that of Hartree-Fokfor all quantities, ranging from the energy per partile over the single-partile po-tential, to the Landau-Migdal parameters. In this way a residual interation anbe reated whih would surpass the alulation presented here and ould be easilyused for the study of the matter's response to neutrinos.One we determined the strength of the interation we were able to alulatethe response of the medium to an external probe. The external probe used wasthe neutrino and the medium's response was studied in two approximations: theHartree-Fok approximation; and the RPA. In both ases we inluded hyperonsand saw how the ross setion for both neutral and harged urrents was modi�ed.In the ase of the neutral urrent, the biggest e�et was the opening up of newreation hannels leading to an inrease of the ross setion at small energy trans-



93fers. At the same time the e�et of hyperons on the harged ross setion werenot large. The only e�ets were indiret ones through the hange of the eletronhemial potential due to β-equilibrium.For the di�erene between the medium's response in the Hartree-Fok approxi-mation and the RPA, we saw how for the most part in the latter ase the mediumsuppresses the ross setion. The only exeption was the appearane of strongpeaks in the neutral urrent ross setion. Those on the edge of the energy rangeame from the vetor response and were signals of zero sound; while those at zeroenergy transfer ame mostly from the axial response. The latter peaks from theaxial response were only notieable in the ase of �nite temperature, sine for zerotemperature Pauli bloking leads to a omplete suppression.Finally, we used the neutrino mean free path to examine how it was in�uenedby hanges in the ross setion. As expeted, the inlusion of hyperons led to aderease of the mean free path. The onlusions when the RPA was inluded werenot so lear, but for the most part it led to a derease of the mean free path. Thiswas not unexpeted sine we notied the suppression as the dominate e�et of theRPA for ross setions. However in the ases where an axial response led to greatinrease of hyperon ontributions to the ross setion, we saw a strong derease ofthe mean free path. Suh e�ets ould be signi�ant for neutron stars as it wouldmean that neutrinos stay trapped inside the star for longer times, i.e until lowertemperatures.
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A Appendix A
A.1 Lippmann-Shwinger equationIn order to mathematially formulate the sattering proess we start from thetotal Hamiltonian H and assume that it an be separated as

H = H0 + V , (A.1)where H0 is the free (unperturbed) Hamiltonian. We will apply H to states whihhave the same energy spetrum as free states, i.e.
H0 |φ〉 = E |φ〉 . (A.2)Then the Shrödinger equation we have to solve is

H |ψ〉 = (H0 + V ) |ψ〉 = E |ψ〉 , (A.3)where |φ〉 is the eigenvetor of H0, |ψ〉 is eigenvetor of H , and E is an eigenvalueof both H and H0.The desired solution of Eq. (A.3) is then
|ψ〉 =

1

E −H0
V |ψ〉 + |φ〉 , (A.4)and is known as the Lippmann-Shwinger equation [81℄.The transition operator T is de�ned suh that

V |ψ〉 = T |φ〉 . (A.5)If we multiply Eq. (A.4) with V and apply Eq. (A.5) we obtain
T |φ〉 = V |φ〉 + V

1

E −H0 + iǫ
T |φ〉 (A.6)whih is the operator form of the Lippmann-Shwinger equation sine it is validfor any omplete set of orthogonal states |φ〉.95



96 APPENDIX A. APPENDIX AA.2 Single partile statesA single-partile state of a fermion is denoted by |i〉 where i represents the om-plete set of quantum numbers (spin, isospin momentum, et.). They are normal-ized suh that
〈i|j〉 = δij . (A.7)The ompleteness relationship of single-partile states is expressed by the outerprodut
∑

i

|i〉 〈i| = 1 . (A.8)In the ase of ontinuous quantum numbers one must use the Dira delta funtioninstead of the Kroneker delta and replae the summation with the integrationor a ombination of both in the ase of mixed disret and ontinuous quantumnumbers.A.3 Plane wavesAn appropriate one-partile plane wave state an be labeled by momentum ~p,spin(isospin) s(t) and spin(isospin) projetion ms(mt). Thus we have
|~p, sms, tmt〉 = |~p〉 ⊗ |sms〉 ⊗ |tmt〉 , (A.9)with the normalization and ompleteness as de�ned above with momentum beingontinuous. A fully antisymmetrized two-partile state an then be onstrutedas:

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2〉 = (A.10)
|~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 − |~p2, s2ms2

, t2mt2〉 |~p1, s1ms1
, t1mt1〉√

2
.A.4 Partial wavesIn the partial-wave basis a two-partile state an be expressed as:

∣

∣

∣

~Pp(LS)JMJ t1mt1t2mt2

〉

=
∣

∣

∣

~Pp(LS)JMJ

〉

⊗ |t1mt1t2mt2〉 , (A.11)where the ~P is the total momentum of the system, p = |~p| is the magnitude ofthe relative momentum, L is the orbital angular momentum, S is the total spin,
J is the total angular momentum and MJ is its projetion. 11Isospin an be oupled in a similar fashion but we refrain from doing it sine we want tokeep the isospin dependene expliit.



A.5. CHANGE OF BASIS (PLANE WAVE TO PARTIAL WAVE) 97Sine the total momentum is always onserved we will drop it from the furtheronsiderations. The partial-wave states are normalized as
〈

p(LS)JMJ t1mt1t2mt2 |p′(L′S ′)J ′MJ ′t′1mt′1
t′2mt′2

〉

=
π

2pp′
δ(p− p′)δLL′δSS′δJJ ′δMJM ′

J
δt1t′1

δmt1
mt′

1

δt2t′2
δmt2

mt′
2

, (A.12)with the ompleteness relation as
2

π

∑

(LS)JMJ t1mt1
t2mt2

∫

p2dp |p(LS)JMJt1mt1t2mt2〉

〈p(LS)JMJ t1mt1t2mt2 | = 1 . (A.13)A.5 Change of basis (plane wave to partial wave)We an take two single-partile states desribed by Eq. (A.9) and ouple them toreate the above de�ned two-partile state in the partial-wave basis Eq. (A.11).We �rst ouple the momenta by transferring to the enter of mass referene frame.The total and the relative momenta of a system of two partiles, in the enter ofmass frame, are given by
~P = ~p1 + ~p2 , (A.14)
~p =

m1

m1 +m2
~p2 −

m2

m1 +m2
~p1 , (A.15)wherem1 andm2 are the masses of the partiles. The inverse of these relationshipsis than given by

~p1 =
m1

m1 +m2

~P − ~p , (A.16)
~p2 =

m2

m1 +m2

~P + ~p , . (A.17)The oupling of spins proeeds in the usual fashion through the Clebsh-Gordanoe�ients:
|SMS〉 =

∑

ms1
ms2

(

s1 s2 S
ms1

ms2
MS

)

|s1ms1
〉 |s2ms2

〉 , (A.18)
|s1ms1

〉 |s2ms2
〉 =

∑

SMS

(

s1 s2 S
ms1

ms2
MS

)

|SMS〉 . (A.19)



98 APPENDIX A. APPENDIX AWe then transform the relative momentum to a basis involving the magnitude ofthis momentum, orbital angular momentum and its projetion.
|~p〉 =

√

2

π

∑

LML

|pLML〉
〈

LML|~̂p
〉

=

√

2

π

∑

LML

|p LML〉Y ∗
LML

(~̂p) , (A.20)where YLML
(~̂p) are spherial harmonis and ~̂p is a unit vetor in the diretion of

~p. What remains is to ouple the orbital angular momentum and the total spininto total angular momentum. Then we have
|~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 =

√

2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)

Y ∗
LML

(~̂p)

(

L S J
ML MS ML +MS

)

|p(LS)JMJt1mt1t2mt2〉 . (A.21)The sum over MJ has been suppressed beause of the relation MJ = ML +MS.A.6 Lippmann-Shwinger equation in the partial-wave basisIf we use the partial wave states de�ned by Eq. (A.12) and Eq. (A.13) and evaluatethe operator form of the Lippmann-Shwinger equation Eq. (A.6) we arrive at theform of the Lippmann-Shwinger equation in partial wave basis:
T α′α

k,y′y(q
′, q; q2) = V α′α

k,y′y(q
′, q)+

2

π

∑

β,z

P

inf
∫

0

dl l2
V α′β

k,y′z(q
′, l)T βα

k,zy(l, q; q
2)

Ey(q) − Ez(l)
. (A.22)The labels y, z indiate the partile hannels, e.g. y = Y N , and α, β denotethe partial waves, e.g. α = LSJ where L is the angular momentum, J the totalmomentum and S the spin. In this equation the energies are given by

Ey(q) = My +
q2

2µy

, (A.23)with the redued mass µy = MYMN/My and the total mass My = MY + MN ofthe hyperon MY and the nuleon MN .In the basis de�ned by Eq. (A.12) the transition operator is seen to ouple var-ious spin and isospin hannels. However we are not ompletely free in the hoie



A.7. NUMERICS 99of these ouplings. Our hoies are limited by the need to satisfy various onser-vation laws. This will redue the omplete matrix, whih one an onstrut withdisret indies, into several smaller parts whih do not ouple with one another.Let us �rst examine all possible states we have. Obviously one does not needto onsider the total angular momentum J sine it is onserved. But for the totalspin and angular momentum we have the spin singlet states S = 0 with L = Jand the spin triplet states S = 1 with L = J + 1 or L = J or L = J − 1. Thiswould then give a 4 × 4 matrix in this spae but parity onservation redues thisto two 2 × 2 matries. If we suppress all other indies in addition to momentumwe an write them as:
(

T 0J0J T 0J1J

T 1J0J T 1J1J

)

,

(

T 1J−11J−1 T 1J−11J+1

T 1J+11J−1 T 1J+1J+1

)

. (A.24)Here the �rst matrix represents the singlet-triplet oupling and the seond one isthe triplet-triplet oupling 2.As for the isospin indies y, if we restrit ourselves to ombinations of theform Y N , we have four possibilities for Y and two for N , whih give us eightpossibilities for y. This would result in an 8×8 matrix in this representation, butlike in the previous ase we also have a onservation law to onsider. Here it isthe onservation of harge whih limits the possible ouplings, so instead of one
8 × 8 matrix we have two 1 × 1 matries, for harge +2 and −1, and two 3 × 3matries, for harge 1 and 0. Now, if we suppress all indies exept isospin we anwrite these matries as:

(TΣ+pΣ+p),





TΛpΛp TΛpΣ+n TΛpΣ0p

TΣ+nΛp TΣ+nΣ+n TΣ+nΣ0p

TΣ0pΛp TΣ0pΣ+n TΣ0pΣ0p



 ,





TΛnΛn TΛnΣ0n TΛnΣ−p

TΣ0nΛn TΣ0nΣ0n TΣ0nΣ−p

TΣ−pΛn TΣ−pΣ0n TΣ−pΣ−p



, (TΣ−nΣ−n) . (A.25)A.7 NumerisHere we show a few details regarding the numerial solution of Eq. (1.1). In thissetion for the sake of brevity we will suppress the subsript low k for all operatorssine from this point on all operators will be those of low momentum.In order to be able to alulate the T -matrix numerially it is neessary thatwe derive an expression for it whih is suitable for a numerial use. Here several2For the NN potential there is no singlet-triplet oupling sine the o�-diagonal matrix ele-ments T 0J1J and T 1J0J do not exist.



100 APPENDIX A. APPENDIX Aproblems arise, but two are the main ones: the reurrent nature of the Lippmann-Shwinger equation and the prinipal value nature of the integral that appears.There are several ways to do this. Here we will essentially follow the presrip-tion used in [82℄ with neessary hanges made to aount for the multihannelLippmann-Shwinger equation that we have instead of the single-hannel equa-tion used in [82℄.Starting from Eq. (A.22), �rst we add and subtrat an expression whih isonveniently designed so we get rid of the prinipal value integral. This additionalexpression is easily simpli�ed
T α′α

y′y (q′, q; q2) = V α′α
y′y (q′, q)

+
2

π

∑

β,z

Λ
∫

0

dl
l2V α′β

y′z (q′, l)T βα
zy (l, q; q2) − E2

0V
α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)

Ey(q) −Ez(l)

+
2

π

∑

β,z

V α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)P

Λ
∫

0

dl
E2

0

Ey(q) −Ez(l)
, (A.26)where we use the abbreviation E2

0 = 2µz

(

My + q2

2µy
−Mz

). As one an notiethe �rst integral is no longer a prinipal value integral, but an ordinary integral,and the seond one is analytially solvable. First let us solve the seond integral,
P

Λ
∫

0

E2
0dl

Ey(q) − Ez(l)
= −P

Λ
∫

0

2µzE
2
0dl

l2 −E2
0

= −µzE0 ln
Λ − E0

Λ + E0
. (A.27)The other integral needs to be solved numerially so we use Gaussian quadra-ture

Λ
∫

0

dlF (l) =

N
∑

j=1

F (lj)ωj , (A.28)to represent the integration as a disrete sum, where ωj are the appropriateweights. Now we use these two results in Eq. (A.26) to yield:
T α′α

y′y (q′, q; q2) = V α′α
y′y (q′, q)

+
2

π

∑

β,z

N
∑

j=1

l2jV
α′β
y′z (q′, lj)T

βα
zy (lj, q; q

2) −E2
0V

α′β
y′z (q′, E0)T

α′α
zy (E0, q; q

2)

Ey(q) − Ez(lj)
ωj

−
∑

β,z

V α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)
2µz

π
E0 ln

Λ −E0

Λ + E0

. (A.29)



A.7. NUMERICS 101From here we easily �nd
V α′α

y′y (q′, q) =

N+1
∑

j=1

∑

β,z

[

δijδy′zδα′β + ω′
jV

α′β
y′z (q′, lj)

+ δjN+1V
α′β
y′z (q′, lj)

2µz

π
kN+1 ln

Λ − kN+1

Λ + kN+1

]

T βα
zy (lj, q) , (A.30)where we de�ne the new weights ω′

j as:
ω′

j =







− 2
π

l2j ωj

Ey(q)−Ez(lj)
for j 6= N + 1

2
π

∑N
m=1

k2
N+1

ωm

Ey(q)−Ez(lm)
for j = N + 1

, (A.31)and replaed E0 = kN+1.Hene through matrix inversion we an alulate the T -matrix as
T α′α

y′y (q′, q; q2) =
N+1
∑

j=1

∑

β,z

(

F α′β
y′z (q′, lj)

)−1

V βα
zy (lj, q) , (A.32)where

F α′β
y′z (q′, lj) = δijδy′zδα′β + ω′

jV
α′β
y′z (q′, lj)

+ δjN+1V
α′β
y′z (q′, lj)

2µz

π
kN+1 ln

Λ − kN+1

Λ + kN+1
. (A.33)We also note that sine we are dealing with the half-on-shell T -matrix we haveto keep in mind that the entire matrix needs to be on-shell simultaneously andthat there is a ommon energy E to whih all energies of the individual hannelsare equal to. This will have no in�uene on oupled hannels in whih the massesare equal suh as Eq. (A.24), but in hannels where the masses are not equalsuh as Eq. (A.25) we have to orret the on-shell value of the orrespondingmomentum. Thus our ut-o� Λ will not be the same for all hannels. If we usethe lightest hannel to set the ut-o�, then the other hannels have to be hangedaording to the following formula

Λy =
√

2µy(E −My) =

√

2µy(My′ +
Λ2

2µy′

−My′) . (A.34)For the harge equal to zero the lightest hannel is Λn, so we have ΛΛn = Λ. Forharge equal one we have ΛΛp = Λ.This e�et is easy to understand if one onsiders the o�-diagonal elementsof the T -matrix in Eq. (A.25) suh as TΛpΣ+n. Here it is obvious that it is theenergy and not the momentum whih is onserved by the transition operator.More details on solving a multi-hannel integral equation of Fredholm type anbe found in [83℄.



102 APPENDIX A. APPENDIX A



B Appendix B
B.1 Hartree-Fok ground-state energyIn the Hartree-Fok approximation the Hamiltonian of the system is omposed ofthe mass, a kineti and a potential part [84℄:

Ĥ = M̂ + T̂ + V̂ . (B.1)In Hartree-Fok theory, the states of a homogenous and isotropi system are givenby plane waves
〈

~ki|~r
〉

=
1√
Ω
e−i~ki·~r , (B.2)where ~ki is the momentum and ~r is the position of the system. Ω represents thevolume of the system. The omplete set of states is then

|νi〉 =
∣

∣

∣

~ki

〉

⊗ |sms〉 ⊗ |tmt〉 =
1√
Ω
ei~p·~rχsms

χtmt
, (B.3)where χsms

(χtmt
) denotes the spin (isospin) wave-funtion. For the volume of thesystem Ω we will take the Ω → ∞ limit. From the disrete momentum basisde�ned by Eq. (B.2) we need to go to a ontinuous basis de�ned by

〈~p|~r〉 =
1

(2π)3/2
e−i~p·~r , (B.4)103



104 APPENDIX B. APPENDIX BB.1.1 Mass and kineti termWith these de�nitions of a ontinuous and disrete basis we now evaluate theone-body operators of mass and kineti energy:
〈

Φ|M̂ |Φ
〉

=
Ω

(2π)3

∑

s1ms1
t1mt1

Ms1ms1
t1mt1

∫

d3~p1

=
Ω

2π2

∑

s1ms1

∑

t1mt1

Ms1ms1
t1mt1

p3
Fs1ms1

t1mt1

3
(B.5)

〈

Φ|T̂ |Φ
〉

=
Ω

(2π)3

∑

s1ms1

∑

t1mt1

∫

d3~p1
~p2

1

2Ms1ms1
t1mt1

=
Ω

4π2

∑

s1ms1

∑

t1mt1

p5
Fs1ms1

t1mt1

5Ms1ms1
t1mt1

. (B.6)We an simplify this expression if we take into aount that our environmentis unpolarized and that it onsists of nuleons and hyperons:
〈

Φ|M̂ |Φ
〉

=
Ω

π2



M00

p3
F00

3
+
∑

1
2
mt1

M 1
2
mt1

p3
F 1

2
mt1

3

∑

1mt1

M1mt1

p3
F1mt1

3





=
Ω

π2

(

MΛ

p3
FΛ

3
+
∑

N

MN

p3
FN

3

∑

Σ

MΣ

p3
FΣ

3

) (B.7)
〈

Φ|T̂ |Φ
〉

=
Ω

2π2





p5
F00

5M00
+
∑

1
2
mt1

p5
F 1

2
mt1

5M 1
2
mt1

+
∑

1mt1

p5
F1mt1

5M1mt1





=
Ω

2π2

(

p5
FΛ

5MΛ

+
∑

N

p5
FN

5MN

+
∑

Σ

p5
FΣ

5MΣ

)

. (B.8)B.1.2 Potential termThe potential part is a two-body operator whih, in the plane-wave basis, is eval-uated as:
〈

V̂
〉

=
1

2

∑

s1ms1

∑

s2ms2

∑

t1mt1

∑

t2mt2

∑

~p1

∑

~p2

(B.9)
(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 | V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2) ,



B.1. HARTREE-FOCK GROUND-STATE ENERGY 105where the fully antisymmetri state an be expressed with the help of an exhangeoperator Pij as
|~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2) =

(1 − P12)√
2

|~p1, s1ms1
, t1mt1〉 |~p2, s2ms2

, t2mt2〉 .(B.10)We note that sine P 2
ij = 1 we have (1 − P12)

2 = 2(1 − P12).With help of [85℄
(

L S J
ML MS MJ

)

= (−1)S+L−J

(

S L J
MS ML MJ

)

, (B.11)and
Y ∗

LML
(−~̂q) = (−1)LY ∗

LML
(~̂q) , (B.12)we an easily derive, from Eq. (A.21),

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2) =

1√
2

√

2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)

Y ∗
LML

(~̂q)

(

L S J
ML MS ML +MS

)

[

|p(LS)JMJt1mt1t2mt2〉 − (−1)1−S+L |p(LS)JMJ t2mt2t1mt1〉
]

. (B.13)Now we an make a onnetion between the expetation value of the potential inthe plane-wave basis and in the partial-wave basis as
(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 |V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2)

=
2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)2(
L S J
ML MS ML +MS

)2

YLML
(~̂q)Y ∗

LML
(~̂q) [〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJt1mt1t2mt2〉

− (−1)1−S+L 〈q(LS)JMJt1mt1t2mt2 |V |q(LS)JMJt2mt2t1mt1〉
]

. (B.14)In the end going from the disrete to the ontinuous basis,
〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJ t1mt1t2mt2〉 =

(2π)3

Ω
V di

(LS)Jt1mt1
t2mt2

(q) ,(B.15)
〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJ t2mt2t1mt1〉 =

(2π)3

Ω
V xc

(LS)Jt1mt1
t2mt2

(q) ,(B.16)
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(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 | V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2)

=
(2π)3

Ω

2

π

∑

SMS

∑

LML

∑

J

(

1/2 1/2 S
ms1

ms2
MS

)2(
L S J
ML MS ML +MS

)2

YLML
(~̂q)Y ∗

LML
(~̂q)
[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)1−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.17)From here, by summing over spins and using
YLML

(θ, φ) = (−1)ML

√

2L+ 1

4π

(L−ML)!

(L+ML)!
PML

L (cos θ)eiMLφ , (B.18)we �nd,
∑

s1ms1

∑

s2ms2

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 |V |~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2)

=
(2π)3

Ω

2

π

∑

SMS

∑

LML

∑

J

(

L S J
ML MS ML +MS

)2
2L+ 1

4π

(L−ML)!

(L+ML)!
(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.19)Combining Eq. (B.9) and Eq. (B.19), as well as going from summation to integra-tion ∑→ Ω/(2π)3
∫ , we obtain

〈V 〉 =
Ω

π(2π)3

∑

t1mt1

(

M

m1

)3
∑

t2mt2

∫

d3~p1

∫

d3~p2

∑

SMS

∑

LML

∑

J

2L+ 1

4π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.20)Finally we go from the integration over the single-partile momentum
∫

d3~p1

∫

d3~p2 = (B.21)
∫ pF1

0

dp1p
2
1

∫ π

0

dθ1 sin θ1

∫ 2π

0

dφ1

∫ pF2

0

dp2p
2
2

∫ π

0

dθ2 sin θ2

∫ 2π

0

dφ2 ,to relative momentum with the transition from (p2, θ2, φ2) to (q, θ, φ). This hoieis arbitrary and we ould equivalently have hosen to go from (p1, θ1, φ1) to (q, θ, φ)
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p2 cos θ2 =

m1 +m2

m1
q cos θ − m2

m1
p1 , (B.22)

p2 sin θ2 =
m1 +m2

m1

q sin θ , (B.23)
φ2 = φ , (B.24)and this then gives

p2
2dp2 sin θ2dθ2dφ2 =

(

M

m1

)3

q2dq sin θdθdφ . (B.25)The integrand in Eq. (B.20) is independent of all but one angle so we anperform the integration over θ1, φ1 and φ analytially whih yields a fator of 8π2.Finally
〈V 〉 =

Ω

π2

∑

t1mt1

∑

t2mt2

pF1
∫

0

dp1p
2
1

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

4π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.26)Limits of integrationThe integration limits of relative momentum in Eq. (B.26) are derived from the re-quirement that the seond partile momentum at vanishing temperature is smallerthen the orresponding Fermi momentum (|~p2| ≤ pF2
). Then from Eq. (A.15) aftersome algebra we �nd:

M2q2 +m2
2p

2
1 + 2Mm2qp1t−m2

1p
2
F2

≤ 0 , (B.27)whih has the solution for the relative momentum q

q−(pF2
, p1, t) ≤ q ≤ q+(pF2

, p1, t) ,with the de�nitions
q±(pF2

, p1, t) =
m2

M

[

p1 · t±
√

m2
2

m2
1

p2
F2

− p2
1(1 − t2)

]

. (B.28)



108 APPENDIX B. APPENDIX B
t

q±(t)

q
+ ,

p
<

M
Y

M
N

kF

q
+ ,

p
=

M
Y

M
N

kF

q
+ ,

p
>

M
Y

M
N

kF

q
− ,

p
<

M
Y

M
N

kF

q
− ,

p
=

M
Y

M
N

kF

q
− ,

p
>

M
Y

M
N

kF

θ

MN

MY N
~p

MY

MY N

~k

MY

MY N

~kF

~q

Figure B.1: Left: q±(pF2
, p1, t) as a funtion of t for di�erent hoies of p1 and�xed pF2

. Right: Shemati representation of the onstrution of the relativemomentum ~q and its limits.Sine the relative momentum q is a real quantity this further onstrains theintegration variable t to
t ≥

√

1 −
(

m1

m2

pF2

p1

)2

, (B.29)whih is only valid if the hyperon momentum is p1 ≥ m1

m2
pF2

. In this ase we �nallydetermine the integration limits to be
tmin =

√

1 −
(

m1

m2

pF2

p1

)2

; tmax = 1 ;

qmin =q−(pF2
, p1, t) ; qmax = q+(pF2

, p1, t) , (B.30)beause the modulus of t is always smaller than or equal to one.For the ase that the hyperon momenta p1 ≤ m1

m2
pF2

, the funtions q±(pF2
, p1, t)are always real whih then yields the integration limits

tmin = − 1 ; tmax = 1 , ;

qmin =0 ; qmax = q+(pF2
, p1, t) . (B.31)In Fig. B.1 the integration limit funtions q± are shown as funtions of t forthree di�erent hoies of the hyperon momentum (p1 <

m1

m2
pF2

, p1 >
m1

m2
pF2

, p1 =
m1

m2
pF2

) and a �xed kF .



C Appendix C
C.1 Cross setionA ross setion is de�ned by the probability to observe a partile in a givenquantum state per unit solid angle if the target is irradiated by a �ux of onepartile per surfae unit. To ompute the ross setion we need the transitionprobability.C.2 Charge urrent ross setionThe transition probability for a harged urrent proess shown on the left ofFig. 5.1 is

Tfi = 〈φl;φν| T̂ |φB2
;φB4

〉 . (C.1)The transition matrix onsists of the lepton and hadron urrents
T̂ = ĵµ(x)Ĵµ(x) , (C.2)where the lepton urrent is given by

ĵµ(kf , sf , ki, si) = ˆ̄ψ′(kf , sf)γµ(1 − γ5)ψ̂(ki, si) , (C.3)and equivalently the hadron urrent is:
Ĵµ(pf , Sf , pi, Si) = ˆ̄Ψ′(pf , Sf)γ

µ(V −Aγ5)Ψ̂(pi, Si) . (C.4)The notation here is somewhat more general than in Chapter 5 beause we willlater refer to the same equation for the neutral urrent ase.The wave funtions of the fermions are given by
ψ̂i(x) =

∑

pi

ψ̂i(pi)e
−ipi·x =

∑

sipi

(

mi

ΩEi

)1/2

csi
(pi)usi

(pi)e
−ipi·x , (C.5)109



110 APPENDIX C. APPENDIX Cwhere the spin sum results in the spinor ompleteness relation:
∑

s

[us(p)]f [ūs(p)]a =

(

p/+m

2m

)

fa

. (C.6)The alulation of the ross setion would than require the alulation of thesquare of the transition matrix. However in our ase it is useful to use the optialtheorem instead the diretly squaring the transition matrix.C.2.1 Optial theoremThe optial theorem is a straightforward onsequene of the unitarity of the S-matrix: Ŝ†Ŝ = ŜŜ† = 1. Inserting Ŝ = 1 + iT̂ we have
−i
(

T̂ − T̂ †
)

= T̂ T . (C.7)We use a omplete set of states to evaluate the right-hand side:
〈φl;φν| T̂ T |φ′

l;φ
′
ν〉 =

∑

n

(

n
∏

i=1

∑

φi

)

〈φl;φν| T̂ |φi〉 〈φi| T |φ′
l;φ

′
ν ; 〉 . (C.8)For the ase of forward sattering the optial theorem than has the form

ImM (φl;φν → φl;φν) = 2EAEBvrelσtot (φl;φν → all) , (C.9)where the invariant matrix element M is de�ned by
〈φl;φν |T |φ′

l;φ
′
ν〉 = (2π)(4)δ4(pl + pν − p′l − p′ν)M (φl;φν → φ′

l;φ
′
ν) . (C.10)The diagrammatial representation of the optial theorem is shown in Fig. C.1.

2

= 2Im

Figure C.1: Diagrammatial representation of the optial theorem.



C.2. CHARGE CURRENT CROSS SECTION 111C.2.2 Invariant matrix elementLet us now proeed with the alulation of the ross setion. The quantity whihwe �rst need to alulate is the invariant matrix element of the proess shown onthe right-hand side of Fig. C.1. The momenta and energies of the partiles aregiven by:
~pB4

= ~pB2
+ ~q , (C.11)

~pl = ~pν − ~q , (C.12)
ıωB4

= ıωB2
+ ıq0 , (C.13)

ıωl = ıων − ıq0 . (C.14)The labeling of the partile momenta and energy is obvious, with ~q the transferredmomentum and q0 the transferred energy.Using the Feynman rules for momentum spae from [33℄ we an immediatelywrite down:
M (φl;φν → φl;φν)=−G

2
F

2

mν

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
(C.15)

∑

sν

{

[ūsν
(iων , ~pν)]γ[γµ(1 − γ5)]γδ

[

Sl(iωl, ~pl)
]

δǫ
[γλ(1 − γ5)]ǫη[usν

(iων , ~pν)]η
}

{

[γµ(V − Aγ5)]α′α[SB4(ıωB4
, ~pB4

)]αβ [γλ(V −Aγ5)]ββ′ [SB2(ıωB2
, ~pB2

)]β′α′

}

= −G
2
F

4

1

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
LµλW

µλ . (C.16)The lepton tensor is
Lµλ = Tr [Sl(iωl, ~pl)γµ(1 − γ5)p/νγλ(1 − γ5)

]

, (C.17)where we have used the fat that the neutrino masses are pratially zero.If we neglet orrelations between the leptons, or later for the neutral urrentneutrinos, we an use the relativisti propagator
Sl(iωl, ~pl) =

p/l +m

p2
l −m2 + iǫ

, (C.18)to evaluate the trae and write the leptoni tensor as:
Lµλ = 8

[(pν)µ(pl)λ + (pl)µ(pν)λ − gµλ(pl · pν) − i(pl)α(pν)βǫαµβλ]

p2
l −m2 + iǫ

. (C.19)The hadroni tensor is given by
W µλ = Tr [γµ(V − Aγ5)SB4(ıωB4

, ~pB4
)γλ(V − Aγ5)SB2(ıωB2

, ~pB2
)
]

. (C.20)



112 APPENDIX C. APPENDIX CFrom here it is easy to make the nonrelativisti approximation by:
[γλ(V − Aγ5)]ββ′ ∼ [gV δ0λ + gAσ

iδiλ]ββ′ . (C.21)We note that the indies β and β ′ on the left side run through the values 1 to 4while in the nonrelativisti ase on the left side they go from 1 to 2.The integral and the sum over partile B2 in Eq. (C.16) an than be used tode�ne the vetor polarization funtion
Πµλ

V (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

V Tr[SB4(ıωB4
, ~pB4

)SB2(ıωB2
, ~pB2

)
]

δ0µδ0λ , (C.22)and the axial polarization funtion
Πµλ

A (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

ATr[SB4(ıωB4
, ~pB4

)σiSB2(ıωB2
, ~pB2

)σj
]

δiµδjλ .(C.23)For the the axial polarization funtion one an show that for spin-symmetrimatter it simpli�es to
Πµλ

A (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

ATr[SB4(ıωB4
, ~pB4

)SB2(ıωB2
, ~pB2

)
]

δijδ
iµδjλ .(C.24)We an thus de�ne a polarization funtion ommon to both vetor and axialpolarization funtions as:

Π̃(iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
Tr[SB4(ıωB4

, ~pB4
)SB2(ıωB2

, ~pB2
)
]

. (C.25)Combining all of these results and putting them in the invariant matrix elementEq. (C.16) we �nd:
M (φl;φν → φl;φν)=−G2

F

∫

d3~q

(2π)3
(1−fl(El)

(

1−exp (
−q0 + µ2 − µ4

T

)−1

[(1 + cos θ)ΠV (iq0, ~q) + (3 − cos θ)ΠA(iq0, ~q)] , (C.26)where we have used the approximation in whih we neglet the masses of leptonsompared to their momentum
(pν)

µ(pl)µ = Eν El

(

1 − ~pν · ~pl

Eν El

)

= Eν El(1 − cos θ) . (C.27)



C.2. CHARGE CURRENT CROSS SECTION 113With the aid of the onversion fator (1 − exp ((−q0 + µ2 − µ4)/T ))−1 we de�nethe struture funtion
ImΠ̃(q0, q) = −1

2
(1 − exp ((−q0 + µ2 − µ4)/T ))S(q0, q) , (C.28)and the di�erential ross setion is

1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

l (1 − fl(El) [(1 + cos θ)Scc
V (q0, q) + (3 − cos θ)Scc

A (q0, q)] .(C.29)Finally, the total ross setion is de�ned by
σ(E1)

Ω
=

∫

dΩ2q2
0dq0

1

Ω

d3σ(Eν)

dΩ2dq0
. (C.30)C.2.3 Neutral urrent ross setionThe ase for the neutral urrent is somewhat simpler sine the inoming andoutgoing partiles are the same. The transition matrix element is then given by

Tfi = 〈φν ;φν′| T̂ |φB;φB′〉 , (C.31)Using the Feynman rules again we get:
M (φν ;φν → φν ;φν)=−G

2
F

2

mν

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
(C.32)

∑

sν

{

[ūsν
(iων , ~pν)]γ[γµ(1 − γ5)]γδ

[

Sl(iωl, ~pl)
]

δǫ
[γλ(1 − γ5)]ǫη[usν

(iων , ~pν)]η
}

{

[γµ(V − Aγ5)]α′α[SB4(ıωB4
, ~pB4

)]αβ [γλ(V −Aγ5)]ββ′ [SB2(ıωB2
, ~pB2

)]β′α′

}

= −G
2
F

4

1

Eν
T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
LµλW

µλ , (C.33)with the polarization funtion:
Π̃(iq0, ~q)=T

∑

ωB(odd)

∫

d3~pB

(2π)3
Tr[SB(ıωB, ~pB)SB′

(ıωB′ , ~pB′)
]

. (C.34)The di�erential ross setion is than de�ned as
1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

l (1 − fl(El) [(1 + cos θ)Snc
V (q0, q) + (3 − cos θ)Snc

A (q0, q)] .(C.35)



114 APPENDIX C. APPENDIX CC.3 Struture funtion in the Hartree-Fok ap-proximationIn the Hartree-Fok approximation the baryoni propagator Sb is
[

Sb(ıωb, ~p)
]

αβ
=

δαβ

ıωn + µ− Eb(p)
, (C.36)where the energy is

Eb(p) = Mb +
p2

2M∗
b

+ Ũb . (C.37)As noted in Se. 2.2 this is the quadrati approximation for the single-partilespetrum. Thus, we have the polarization funtion for two di�erent nonrelativistiinterating baryons:
Π̃0(iq0, ~q)=T

∑

ωB2
(odd)

∫

d3~pB2

(2π)3
2

[

1

ıωB2
+µB2

−EB2
(pB2

)

1

ıωB4
+µB4

−EB4
(pB4

)

]

,(C.38)whih we now label with a zero sine this is the zeroth-order Lindhard funtion[33℄.The onnetion established earlier with the struture funtion Eq. (C.28) givesus
S0(q0, q) =

1

2π2

∫

d3p2δ(q0 + E2 − E4)f2(E2)(1 − f4(E4)) . (C.39)where E4 = M4 + (~p2 + ~q)2/2M∗
4 + U4.We rewrite the energy delta funtion in terms of the angle between ~p2 and ~qas:

δ(q0 + E2 − E4) =
M∗

4

p2q
δ(cos θ − cos θ0)Θ(E2 − e−)Θ(e+ − E2) , (C.40)where

cos θ0 =
M∗

4

p2q

(

c− χp2
2

2M∗
4

)

, p2
± =

2q2

χ2

[

(

1 +
χM∗

4 c

q2

)

±
√

1 +
2χM∗

4 c

q2

]

, (C.41)
e± =

p2
±

2M∗
2

;
(~p2 + ~q)2

2M∗
4

=
p2

2

2M∗
2

+ q0 +M2 −M4 + U2 − U4 , (C.42)
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χ = 1 − M∗

4

M∗
2

; c = q0 +M2 −M4 + U2 − U4 −
q2

2M∗
4

. (C.43)The fators M2 −M4 and U2 − U4 are the onversion energy gained due to thedi�erene in mass and potential. Substituting these results into Eq.(C.39) andperforming the angular integrals we obtain
S0(q0, q) =

M∗
4

πq

∫

p2dp2f2(E2)(1 − f4(E4)) . (C.44)With the substitution E2 = M2 +
p2
2

2M∗
2

+ U2 we get
S0(q0, q) =

M∗
2M

∗
4

πq

e+
∫

e−

dE2f(E2)(1 − f(E2 + q0)) (C.45)
=
M∗

2M
∗
4

πq

e+
∫

e−

dE2
1

1 + exp
(

E2−µ2

T

)

exp
(

E2+q0−µ4

T

)

1 + exp
(

E2+q0−µ4

T

) . (C.46)By using
∫

dx

1 + exp (x)

1

1 + exp (−x− z)
=− 1

1 − exp (−z) ln
1 + exp (x)

1 + exp (x+ z)
, (C.47)we have

S(q0, q) =
M∗

2M
∗
4T

πq

ξ− − ξ+
1 − exp(−z) , (C.48)where

z =
q0 + µ2 − µ4

T
, (C.49)

ξ± = ln

[

1 + exp e±−µ2+M2+U2

T

1 + exp e±+q0−µ4+M2+U2

T

]

. (C.50)The most general ase, whih we have presented so far, will also apply to thease of a harged urrent. For neutral urrents, sine the initial and �nal statepartiles are idential for both leptons and baryons, we have the simpli�ations
M2 = M4, µ2 = µ4, M

∗
2 = M∗

4 , U2 = U4 , (C.51)
z =

q0
T
, e− =

M∗
2

2q2

(

q0 −
q2

2M∗
2

)2

, e+ = ∞ . (C.52)



116 APPENDIX C. APPENDIX CThus, ξ+ = −z, and one �nds the following result for the neutral urrent struturefuntion:
S0(q0, q) =

M∗2
2 T

πq

[

z

1 − exp(−z)

(

1 +
ξ−
z

)]

. (C.53)For the ase of a free gas all one has to do is to replae all e�etive masseswith bare masses and take all single-partile potentials to be equal to zero.C.4 Struture funtions in the RPAIf we onsider the full form of the baryoni neutral urrent in the presene of bothnuleons and hyperons we an write it in the following way 1
Jµ

n =
∑

f=p,n,Λ,Σ−,...

f̄γµ(g
ff
V − cff

A )f + Λ̄γµ(g
ΛΣ0

V − cΛΣ0

A )Σ0 . (C.54)From this form of the urrent it is obvious that we need to expand our notation toinlude the isospin indies. This in ombination with the aim to study the in�u-ene of matter on the polarization funtions of the RPA leads to the introdutionof the full polarization matrix, Π̃λµ;αβ(q0, ~q). Additionally at this point we relaxour restrition to spin unpolarized matter and onsider also the spin indies. Ingeneral the full polarization funtion is given by [33℄:
Π̃λµ;αβ(q0, ~q)=Π̃0

λµ;αβ(q0, ~q)+
∑

ηνρσ

Π̃0
λµ;ρν(q0, ~q)Kρν;ησ(q0, ~q)Π̃ησ;αβ(q0, ~q) . (C.55)The indies here should not be onfused with Lorentz indies of the γ-matriessine these indies are from the spin and �avor spae. Shematially this an berepresented as in Fig. C.2.

Figure C.2: Salpether equation in RPA.The kernel K allows the alulation of polarization funtion to all orders. It issimple to see that in the lowest order ase where there is no interation, K wouldbe zero and we would immediately reover the Hartree-Fok approximation. The�rst-order approximation is then:
Kρν;ησ(q0, ~q) = −〈ρ σ | V | η ν〉 + 〈σ ρ | V | η ν〉 , (C.56)1The weak neutral urrent has no strangeness hanging omponents.



C.4. STRUCTURE FUNCTIONS IN THE RPA 117whih is exatly the RPA approximation.The zeroth-order polarization funtion Π0 is diagonal so we an write:
Π̃0

λµ;αβ(q0, ~q) = δλαδµβΠ̃0
λµ(q0, ~q) . (C.57)Note that there is no integral in equation Eq. (C.55) thus making the equationjust a system of algebrai equations. Thus Eq. (C.55) beomes a matrix equation(further on we suppress (q0, ~q) but it is always implied):

Π = Π
0 + Π

0
KΠ . (C.58)The solution of this matrix equation is then

Π = (1 − Π
0
K)−1

Π
0 . (C.59)C.4.1 Single-partile aseLet us �rst onsider the ase of single omponent matter ontaining only partile

i, where we have only the spin indies. In this ase the Π
0-matrix is a unit-matrixmultiplied with the polarization funtion Π̃0. As for the kernel K in spin spaewe an, with the aid of Eq. (4.25), write:

Kii =









fii + gii 0 0 fii − gii

0 2gii 0 0
0 0 2gii 0

fii − gii 0 0 fii + gii









, (C.60)where the (1, 1) element of the matrix is <↑↑ |V | ↑↑> and the (4, 4) element is
<↓↓ |V | ↓↓>. The K-matrix an be diagonalized and we get:

Kii =









2fii 0 0 0
0 2gii 0 0
0 0 2gii 0
0 0 0 2gii









. (C.61)If we now use this in Eq. (C.59). Keeping in mind the unitary matrix used todiagonalize K we �nd̃
Π11ii

= Π̃Vii
=

Π̃0
ii

1 − fiiΠ̃0
ii

(C.62)
Π̃22ii

= Π̃33ii
= Π̃44ii

= Π̃Aii
=

Π̃0
ii

1 − giiΠ̃0
ii

. (C.63)



118 APPENDIX C. APPENDIX CThe imaginary part of the polarization funtion is then
ImΠ̃Vii

=
ImΠ̃0

ii

(1 − fiiReΠ̃0
ii)

2 + (fiiImΠ̃0
ii)

2
. (C.64)If the denominator is larger than one then the medium's response is suppressed,while if it is smaller it is enhaned.We note that we will always use the diagonalized version of the kernel, beausethat way the vetor and axial part an be solved separately.C.4.2 Neutral urrent aseFor the ase of the neutral urrent we an write the vetor oupling onstants as

(cNC
V )† =

(

cpp
V cnn

V cΛΛ
V cΣ

−Σ−

V cΣ
0Σ0

V cΣ
+Σ+

V cΛΣ0

V

)

, (C.65)whose values an be found in Tab. 5.2. Then with the knowledge of the RPApolarization matrix from Eq. (C.55) we obtain the polarization funtion
Π̃NC

V = (cNC
V )†ΠNC

V (cNC
V ) . (C.66)For the alulation of the neutral urrent RPA polarization matrix Π

NC
V weneed the zeroth order polarization matrix:

Π
0
NC =























Π̃0
pp 0 0 0 0 0 0

0 Π̃0
nn 0 0 0 0 0

0 0 Π̃0
ΛΛ 0 0 0 0

0 0 0 Π̃0
Σ−Σ− 0 0 0

0 0 0 0 Π̃0
Σ0Σ0 0 0

0 0 0 0 0 Π̃0
Σ+Σ+ 0

0 0 0 0 0 0 Π̃0
ΛΣ0























, (C.67)
and the appropriate kernel:

K
V
NC =





















fpp fpn fpΛ fpΣ− fpΣ0 fpΣ+ fppΛΣ0

fpn fnn fnΛ fnΣ− fnΣ0 fnΣ+ fnnΛΣ0

fpΛ fnΛ 0 0 0 0 0
fpΣ− fnΣ− 0 0 0 0 0
fpΣ0 fnΣ0 0 0 0 0 0
fpΣ+ fnΣ+ 0 0 0 0 0
fppΛΣ0 fnnΛΣ0 0 0 0 0 0





















. (C.68)
From this point on the alulation is straightforward matrix multipliation. Thus,and beause of its size and omplexity, we do not show the omplete polarization
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V or any of the matrix elements of Π

NC
V . However for the sake ofillustration and omparison we show this for the ase of matter omposed only ofnuleons. In this ase the matrix elements of the polarization funtion are:

Π̃Vpp
= Π̃0

pp

(

1 − fnnΠ̃0
nn

)

/DV
NC , (C.69)

Π̃Vpn
= fpnΠ̃0

nnΠ̃0
pp/D

V
NC , (C.70)

Π̃Vnn
= Π̃0

nn

(

1 − fppΠ̃
0
pp

)

/DV
NC , (C.71)where

DV
NC = 1 − Π̃0

ppfpp − Π̃0
nnfnn + Π̃0

ppΠ̃
0
nn

(

fnnfpp − f 2
pn

)

, (C.72)whih when ombined with the oupling onstants gives the vetor polarizationfuntion as:
Π̃NC

V =
[

(cVpp)
2Π̃0

pp

(

1 − fnnΠ̃0
nn

)

+ 2cVppc
V
nnfpnΠ̃0

nnΠ̃0
pp

+ (cVnn)
2Π̃0

nn

(

1 − fppΠ̃
0
pp

)]

/DV
NC , (C.73)whih is idential to the result from [5℄.The same result an be found for the axial polarization funtion if we replaethe oupling onstants and make the following substitution f → g in the kernel.C.4.3 Charge urrent aseFor the harged urrent we have the following oupling onstants

(gV )† =
(

gpn
V gpΛ

V gnΣ−

V gpΣ0

V gΛΣ−

V gΛΣ+

V gΣ−Σ0

V gΣ0Σ+

V

)

, (C.74)whose values an be found in Tab. 5.1. However, due to the onservation lawssome of the proesses are forbidden suh that the polarization matrix deouplesinto two parts. Thus we separate the oupling onstants into two parts
(g′V )† =

(

gpn
V gΛΣ−

V gΛΣ+

V gΣ−Σ0

V gΣ0Σ+

V

)

, (C.75)
(g

′′

V )† =
(

gpΛ
V gnΣ−

V gpΣ0

V

)

. (C.76)The harged urrent RPA polarization funtion is then
Π̃CC

V = (g′V )†ΠV ′

CC(g′V ) + (g
′′

V )†ΠV
′′

CC(g
′′

V ) . (C.77)



120 APPENDIX C. APPENDIX CWe now have to alulate two polarization matries Π
V ′

CC and Π
V

′′

CC . We will alsoneed two zero-order polarization matries
Π

0′

CC =













Π̃0
pn 0 0 0 0

0 Π̃0
ΛΣ− 0 0 0

0 0 Π̃0
Σ+Λ 0 0

0 0 0 Π̃0
Σ0Σ− 0

0 0 0 0 Π̃0
Σ+Σ0













, (C.78)and
Π

0′′

CC =





Π̃0
pΛ 0 0

0 Π̃0
nΣ− 0

0 0 Π̃0
pΣ0



 . (C.79)Obviously two kernels are also required
K

V ′

CC =













fpnpn fpnΛΣ− fpnΣ+Λ fpnΣ0Σ− fpnΣ+Σ0

fpnΛΣ− 0 0 0 0
fpnΣ+Λ 0 0 0 0
fpnΣ0Σ− 0 0 0 0
fpnΣ+Σ0 0 0 0 0













, (C.80)and
K

V “
CC =







K̃V
pΛpΛ K̃V

pΛnΣ− K̃V
pΛpΣ0

K̃V
nΣ−pΛ K̃V

nΣ−nΣ− K̃V
nΣ−pΣ0

K̃V
pΣ0pΛ K̃V

pΣ0nΣ− K̃V
pΣ0pΣ0






. (C.81)Here for the kernel elements we have adopted a similar notation as for the ase ofthe Landau-Migdal parameters although we have used Eq. (C.56) to de�ne them.
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