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Abstra
t
The hyperon-nu
leon (Y N) low momentum e�e
tive intera
tion (Vlow k ) allowsfor an extensive study of the behavior of hyperons in dense matter, together withan investigation of e�e
ts of the presen
e of hyperons on dense matter. The �rststep towards this goal is the 
onstru
tion of the matrix elements for the hyperon-nu
leon low momentum potential. In 
ontrast to the nu
leon-nu
leon intera
tion,the available experimental data for the Y N intera
tion are s
ar
e. As a 
onse-quen
e, no unique Y N low-momentum potential Vlow k 
an be 
onstru
ted fromthe various bare potentials. Nevertheless we 
an still use these low-momentum
Y N potentials to �nd out what these di�eren
es mean for the properties of densematter.In order to assess the di�erent properties of hyperons within these potentials we
al
ulate the hyperon single-parti
le potentials in the Hartree-Fo
k approximationfor all of the intera
tions. Their dependen
e on both momentum and density, isstudied. The single-parti
le potentials are then used to determine the 
hemi
alpotential of hyperons in neutron stars.For nu
leoni
 properties, the nu
leon-nu
leon Vlow k 
an be used with the 
aveatthat the 
al
ulation of the ground-state energy of symmetri
 nu
lear matter doesnot 
orre
tly reprodu
e the properties of matter at saturation. Even when 
om-bined with the appropriate three-nu
leon for
es the results are still not satisfa
-tory. Additionally, with the nu
leon-nu
leon Vlow k one is unable to rea
h thedensities needed for the 
al
ulation of neutron star masses. To 
ir
umvent thisproblem we use two approa
hes: in the �rst one, we parametrize the entire nu-
leoni
 se
tor. In the se
ond one, we repla
e only the three-body for
e. Theformer will enable us to study neutron star masses, and the latter for studyingthe medium's response to the external probe. In this thesis we take the externalprobe to be the neutrino.By 
ombining this parametrization with the Y N Vlow k potential, we 
al
u-late the equation of state of equilibrated matter. Performing the 
al
ulation inthe Hartree-Fo
k approximation at zero temperature, the 
on
entrations of allparti
les are 
al
ulated. From these we 
an as
ertain at whi
h densities hyperonsappear for a wide range of parameters. Finally, we 
al
ulate the masses of neutronstars with these 
on
entrations.For the 
al
ulation of the medium's response to an external probe, we re-pla
e the three-body for
e with a density-dependent intera
tion. This density-dependent intera
tion is �tted to the saturation properties of nu
lear matter and



used together with the Vlow k potential. The study of in-medium properties withthese intera
tions is a

omplished with a 
ombination of Fermi liquid theory andrandom phase approximation(RPA). The Fermi liquid theory is then used to ob-tain the strength of the parti
le-hole intera
tions. The medium's response toneutrinos is represented via 
hanges of the polarization fun
tion in the randomphase approximation.The properties of neutrinos in dense matter are studied in both, Hartree-Fo
k and random phase, approximation. To understand how the 
hanges in themediums response alter the behavior of neutrinos in dense matter, we 
al
ulatethe neutrino 
ross se
tion and the neutrino mean free path. The neutrinos intera
twith baryons and leptons through the weak intera
tion, hen
e we 
al
ulate thesefor both neutral and 
harged 
urrents. The 
omparison between the Hartree-Fo
kapproximation and RPA plays a 
entral role in this work.



Zusammenfassung
Eine e�ektive Hyperon-Nukleon-(Y N)-We
hselwirkung im Berei
h kleiner Im-pulse, bekannt als Vlow-k, ermögli
ht eine ausgiebige Studie des Hyperon-Verhaltensin di
hter Materie, sowie der Auswirkungen, die die Präsenz der Hyperonen aufdie Eigens
haften di
hter Materie hat. Dazu ist es zunä
hst notwendig, dieMatrixelemente der e�ektiven Hyperon-Nukleon-We
hselwirkung zu konstruieren.Im Gegensatz zur Nukleon-Nukleon-We
hselwirkung ist die Y N-We
hselwirkungdur
h die geringen experimentellen Daten kaum einges
hränkt, so dass selbstmit Hilfe des Renormierungsgruppenzugangs von Vlow-k keine universelle We
h-selwirkung aus den vers
hiedenen `na
kten' an die Streudaten angepassten Y N-Potentialen extrahiert werden kann. Trotzdem lohnt si
h ein Verglei
h der Vorher-sagen der unters
hiedli
hen e�ektiven We
hselwirkungen zu den Eigens
haftendi
hter Materie.Um die Eigens
haften der Hyperonen für die vers
hiedenen We
hselwirkungenzu studieren, bere
hnen wir die Hyperon-Einteil
henpotentiale im Rahmen derHartree-Fo
k-Näherung und untersu
hen ihre Impuls- und Di
hteabhängigkeiten.Anhand der Einteil
henpotentiale kann ans
hlieÿend das 
hemis
he Potential derHyperonen in einem Neutronenstern ermittelt werden.Da die Re
hnungen stark vom Nukleonen-Sektor beein�usst werden, mussau
h für nukleonis
he We
hselwirkung eine angemessene Wahl getro�en werden.In diesem Zusammenhang liefert das universelle Nukleon-Nukleon-Vlow-k unglü
k-li
herweise kein physikalis
h sinnvolles Sättigungverhalten für Kernmaterie. Selbstbei zusätzli
her Verwendung einer Drei-Nukleon-We
hselwirkung werden die Sat-urationseigens
haften der Kernmaterie ni
ht völlig korrekt bes
hrieben. Ein weit-eres Problem besteht darin, dass Vlow-k per Konstruktion ni
ht bei den hohenDi
hten angewandt werden kann, wel
he zur Bere
hnung der Massen von Neutro-nensternen erforderli
h sind. Als Alternativen verwenden wir daher zwei Ansätze:eine angepasste Parametrisierung des gesamten nukleonis
hen Sektors, bzw. eineAnpassung der Parameter der 3N-We
hselwirkung. Der erstgenannte Zugang er-laubt die Untersu
hung von Neutronenstern-Massen, während die zweite Methodezur Untersu
hung der Antwort des Mediums auf externe Sonden � in unseremFall Neutrinos � verwendet werden kann.Die vollständige Parametrisierung der nukleonis
hen We
hselwirkung wird zu-sammen mit den Y N − Vlow-k zur Bere
hnung der Zustandsglei
hung von Ma-terie im Glei
hgewi
ht verwendet. Die Re
hnungen werden in der Hartree-Fo
k-Näherung bei vers
hwindender Temperatur ausgeführt. Als Ergebnis erhalten wir



die Konzentrationen der vers
hiedenen Teil
henspezies und können bestimmen,bei wel
hen Di
hten Hyperonen auftreten. Die ermittelten Konzentrationen wer-den ans
hlieÿend zur Bere
hnugn der Neutronenstern-Masse eingesetzt.Zur Untersu
hung der Antwort des Mediums auf externe Sonden verwendenwir eine NN-We
hselwirkung zusammen mit einer angepassten di
hteabhägigenNäherung für die 3N-We
hselwirkung. Als Hyperon-Nukleon-We
hselwirkungkommt wiederum das Y N − Vlow-k zum Einsatz. Auf dieser Grundlage bere
hnenwir die In-Medium-Eigens
haften mit Hilfe einer Kombination aus Fermi-Liquid-Theorie und Random Phase Approximation (RPA). Die Fermi-Liquid-Theorieliefert die Stärke der Teil
hen-Lo
h-We
hselwirkungen, während si
h die Antwortdes Mediums auf Neutrinos anhand von Änderungen der Polarisationsfunktion inder RPA bemerkbar ma
ht.Die Neutrino-Eigens
haften in di
hter Materie werden sowohl in der Hartree-Fo
k-Näherung als au
h der RPA studiert. Um zu verstehen, wie si
h Änderun-gen des Mediums auf das Verhalten der Neutrinos auswirken, bere
hnen wirWirkungsquers
hnitte und mittlere freie Weglänge. Da Neutrinos mit Baryonenund Leptonen s
hwa
h we
hselwirken, betra
hten wir in unseren Re
hnungensowohl den neutralen als au
h den geladenen Strom. Der Verglei
h von Hartree-Fo
k-Näherung und RPA nimmt eine zentrale Rolle bei der Untersu
hung ein.
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Introdu
tionThe 
ore 
ollapse supernovae are some of the most spe
ta
ular events in the Uni-verse. These events have been studied for more than three de
ades mainly throughnumeri
al simulations. Despite the huge amount of physi
s involved and great un-
ertainties, a kind of "standard model" exists: the inner iron 
ore of a massivestar over
omes its hydrodynami
al stability limit (the Chandrasekhar mass) and
ollapses, in
reasing the density inside up to many times nu
lear saturation den-sity; the sti�ness of nu
lear matter then results in an elasti
 boun
e of the 
ore,
reating a sho
k-wave. This wave propagates through the star, while losing energyby the disso
iation of nu
lei and produ
tion of neutrinos. If this wave had enoughenergy to rea
h the star's surfa
e and to 
ause an explosion one would refer tothis as a "prompt" explosion me
hanism. Unfortunately in simulations this wavestalls at ∼ 200 km and does not lead to an explosion.In addition to the neutrinos produ
ed by the sho
k-wave there is also a 
opiousamount of neutrinos produ
ed deeper in the star behind the sho
k-wave front.These neutrinos are initially trapped in this proto-neutron star be
ause their meanfree path is smaller than the radius of the proto-neutron star. This is a uniquesituation for neutrinos as they are usually free to leave the system in whi
h theyare 
reated without obsta
le due to their very weak intera
tion with all forms ofmatter.Modern-day simulations of 
ore 
ollapse supernovae rely on these neutrinosfor a su

essful explosion. On
e the neutrinos are no longer trapped they start tostream out of the proto-neutron star in enormous quantities. Even if only a tinyfra
tion of them deposits some of their energy in the sho
k-wave, this 
ould besu�
ient to revive the sho
k-wave and enable it to rea
h the surfa
e of the star,thus 
ausing an explosion. Su
h a me
hanism of explosion is then referred to as"delayed" be
ause of the time lapse between the start of the sho
k-wave and thetime at whi
h neutrinos 
ease to be trapped. For re
ent reviews of 
ore 
ollapsesupernova simulations see [1, 2℄ and referen
es therein.This makes the properties of neutrino intera
tions in hot and dense mattera fundamental part of understanding supernova events. It is important bothto understand how neutrinos behave inside a proto-neutron star as well as howe�e
tively they transfer their energy to the sho
k-wave. In order to have an answerix



x INTRODUCTIONto these questions one should thus determine what are the neutrino 
ross se
tionand mean free path in su
h dense environments.Of parti
ular interest, from a nu
lear physi
s point of view, is the behaviorof neutrinos at densities above the saturation density of nu
lear matter. It isobvious, if one 
onsiders the s
ales involved, that the strong intera
tion will play animportant role in this 
ase sin
e the properties of baryons are 
hanged when theyare in-medium. These in-medium modi�
ations 
an be studied with mean-�eld orFermi liquid theories and the random-phase approximation (RPA) [3, 4, 5℄; in thisthesis we will use a 
ombination of Fermi liquid theories and RPA. In additionto the des
ription of neutrino transport properties, numeri
al simulations of thesupernova evolution require knowledge of the equation of state of dense matter.These two aspe
ts of nu
lear physi
s play an important role in understanding thephysi
s of the 
ore 
ollapse supernova.Another intriguing aspe
t of dense matter is then the in�uen
e of more exoti
forms of matter, other than nu
leons. Among su
h exoti
a, whi
h one expe
tsto appear at su
h high densities, are the hyperons. Other possibilities in
ludepion and kaon 
ondensates, super�uidity, and also quarks, 
f. [6℄. Sin
e hyperonsare the lightest baryons after nu
leons they are 
onsidered as prime 
andidatesfor appearan
e in neutron stars. It is expe
ted that they appear at around twi
ethe nu
lear saturation density and form sizable 
on
entrations in the inner 
oreof neutron stars. On
e they appear, hyperons introdu
e a host of new possiblepro
esses between them and the neutrinos in addition to the ones whi
h alreadyexist between neutrinos and nu
leons. These new pro
esses 
an play a signi�
antrole in the neutrino 
ross se
tion be
ause some of the nu
leoni
 pro
esses mightbe forbidden due to Pauli blo
king.In order to understand how hyperons, and strangeness in general, behavesin dense matter, the understanding of the hyperon-nu
leon (Y N) intera
tion isessential. Unfortunately, the details of the Y N intera
tion are determined verypoorly by experiment and there are several di�erent potentials available. Thisthen poses a 
hallenge to see what results these di�erent potentials give. Ourapproa
h to this is the 
onstru
tion of an e�e
tive low momentum intera
tionknown as Vlow k from these di�erent potentials. In this 
ase Vlow k o�ers a uniquepossibility to study all of these potentials sin
e it is relatively easy to perform aHartree-Fo
k 
al
ulation with them. This then allows for an extensive 
omparisonof the di�erent results involving these intera
tions as well as for a robust study ofall possibilities that 
an arise.The formalism of the Fermi liquid theory in 
ombination with RPA 
an beeasily extended to the 
ase of hyperons. With this extension we will in
ludehyperons into the medium's response to the neutrino probe. Su
h derived 
rossse
tions and mean free paths will then tell us how the presen
e of hyperons in themedium alters the medium's response 
ompared to the response of pure nu
lear



ximatter.Additionally, the baryoni
 equation of state (EoS) is the fundamental inputfor the 
al
ulation of neutron star properties. It is parti
ularly important to knowhow the EoS behaves at densities above saturation density sin
e this will play themost important role in determining the maximum allowed mass of a neutron star.At about twi
e the saturation density one expe
ts strange baryons to appear asnew hadroni
 degrees of freedom. Unfortunately the nu
leon-nu
leon (NN) Vlow kis not well suited for the study of neutron star masses. The reason for this lies inthe introdu
tion of a s
ale that separates the low and high momenta. This s
aleimposes a limit on the densities whi
h 
an be studied with NN Vlow k and theseare too low for the study of neutron star masses. However Y N Vlow k, thanks tothe higher masses and lower 
on
entrations of hyperons, 
an rea
h the densitiesof interest in neutrons stars. Hen
e we will repla
e the nu
leoni
 part of the EoSwith a parameterization and use it in 
ombination with Y N Vlow k to study themasses of neutron stars.It is interesting to point out that many of the features mentioned in 
onne
tionwith neutrinos 
oming from neutron stars 
an be measured pra
ti
ally any givenday, with a bit of lu
k. Should an o

urren
e similar to that of the supernovaexplosion SN1987A repeat itself, present day dete
tors would 
olle
t a sizableamount of data. It is not unreasonable to assume this will happen in the nearfuture as it is known from galaxy surveys that on average there are 3−4 supernovaper 100 years in galaxies similar to our own. Even ba
k in 1987 enough data was
olle
ted to dis
ern some of the properties of supernova neutrinos. Today, afterthree de
ades of building ever larger neutrino dete
tors, a supernova explosionin our galaxy would provide enough information to dis
riminate between manymodel predi
tions.The stru
ture of this thesis is as follows. Chapter 1 is devoted to the 
on-stru
tion of the low momentum e�e
tive hyperon-nu
leon intera
tions and thedis
ussion of the resulting matrix elements. We also show and dis
uss some of thelow-energy observables dire
tly 
al
ulated from the intera
tion.In 
hapter 2 we introdu
e the 
on
ept of in�nite nu
lear matter and use itin 
ombination with a Hartree-Fo
k approximation to 
al
ulate the ground-stateenergy. To a
hieve this goal we de�ne and investigate the single-parti
le potential.This will enable us to des
ribe the in-medium properties of baryons. The failureto reprodu
e the properties of nu
lear matter by pure two-body for
es leads tothe introdu
tion of three-body for
es.Chapter 3 dis
usses the equation of state for equilibrated matter. In this
ontext we use the parametrization of the nu
leoni
 part of equation of stateto investigate the in�uen
e of 
hanges in parameters on the hyperon se
tor. We
on
lude this 
hapter by 
al
ulating the properties of neutron stars with hyperons.Properties of parti
le-hole ex
itations are examined in 
hapter 4. There we



xii INTRODUCTIONuse the Landau Fermi liquid theory in order to 
al
ulate the Landau-Migdal pa-rameters. In this 
hapter we also introdu
e the density-dependent for
e aimedat repla
ing the three-body for
e whi
h did not produ
e the 
orre
t values forsaturation density.Chapter 5 is devoted to the 
al
ulation of neutrino properties in dense matter.Results for the 
ross se
tion and mean free path in symmetri
 and equilibratedmatter are shown.In 
hapter 6 we summarize the results and o�er an outlook of possible exten-sions of this work.The appendi
es are devoted to the details of the expressions used. In Ap-pendix A we explain the details of the 
onstru
tion of the Vlow k potential, in-
luding the transition from the plane-wave basis to the partial-wave basis. InAppendix B we present the 
al
ulation of the Hartree-Fo
k ground-state energyin in�nite nu
lear matter. Neutrino 
ross se
tions are 
al
ulated in Appendix C.Additionally, we use Appendix C to show the 
al
ulation of the RPA polarizationmatrix in the medium 
ontaining both nu
leons and hyperons.



1 Hyperon-Nu
leon intera
tionOne of the greatest issues of nu
lear theory is that from a numeri
al point of viewthe bare nu
lear for
es are ill behaved. This 
omes from the inability of many-body te
hniques to treat in a straightforward way the hard-
ore that bare nu
learpotentials have. This hard 
ore is too strong to be treated perturbatively andmakes a dire
t self-
onsistent approa
h impossible. However the nu
leon in nu
leior nu
lear matter do not feel this bare intera
tion but an e�e
tive intera
tionwhi
h arises when one 
onsiders all many-body e�e
ts present. This e�e
tiveintera
tion is mu
h better behaved and allows for the appli
ation of standardmany-body methods.One su
h e�e
tive intera
tion whi
h has appeared re
ently is the Vlow k [7℄. Byrequirement of phase shift equivalen
e Vlow k 
reates, from several di�erent startingpotentials, a pra
ti
ally unique NN intera
tion. This gives the impression ofuniversality of the e�e
tive intera
tions.We extend this idea of 
onstru
ting an e�e
tive potential to the 
ase of thehyperon-nu
leon (Y N) intera
tion. The motivation is twofold: if the NN Vlow k isso universal then so should the Y N Vlow k be and the standard many-body methods
an then be applied to the Y N intera
tion. Unfortunately, there exist only a verylimited amount of s
attering and phase shift data for the 
ase of the Y N . Thisdata is not su�
ient to uniquely 
onstrain the Y N potentials. Thus di�erent barepotentials, for the Y N Vlow k 
onstru
tion, exhibit di�erent phase shift results. Itis then not unexpe
ted that at present it is not possible to 
onstru
t a unique Y Nlow-momentum e�e
tive intera
tion.However forth
oming experiments at the planned J-PARC and FAIR fa
ilitiesare expe
ted to add new data to the existing ones. This would then allow fora better treatment of the Y N intera
tion. Additionally, �rst latti
e QCD sim-ulations of the Y N intera
tion have been performed [8℄. This, 
ombined withthe motivation to use many-body methods, has inspired us to develop the Y N
Vlow k in spite of the large un
ertainties present today. Be
ause on
e there is su�-
ient data to 
onstru
t a high-quality Y N potential the method for 
onstru
tingthe Vlow k from it will be readily available. This thesis is thus mainly devoted tothe 
onstru
tion and 
omparison of various Vlow k Y N intera
tions in the denseenvironment found in neutron stars. 1



2 CHAPTER 1. HYPERON-NUCLEON INTERACTIONThe outline of this 
hapter is as follows. The NN low-momentum e�e
tiveintera
tion is presented in Se
. 1.1 as an introdu
tion for the 
onstru
tion of the
Y N Vlow k whi
h is done in Se
. 1.1.1. Se
. 1.1.2 dis
uses the bare potentialsused while Se
. 1.1.3 presents the results of the matrix elements of the Y N Vlow kin several partial wave 
hannels. In Se
. 1.2 we show some of the low-energyobservables dire
tly 
al
ulated from the matrix elements of the potentials.1.1 Low-momentum intera
tion
Vlow k is supposed to represent a �universal� low-momentum e�e
tive intera
tion.It is derived by performing the renormalization group(RG) de
imation startingfrom a �bare� intera
tion. In the 
ase of the nu
leon-nu
leon(NN) intera
tion, asshown in [9℄, this is indeed the 
ase. This agreement is shown in Fig. 1.1. Byusing several di�erent modern NN intera
tions a low momentum intera
tion was
onstru
ted and the agreement is obvious. For all partial waves the resulting Vlow kpotentials show ex
ellent agreement.
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1.1. LOW-MOMENTUM INTERACTION 3The basi
 idea behind the Vlow k is that the short-range physi
s whi
h is rep-resented by a hard 
ore 
an be integrated out. The advantage is twofold. Firstly,sin
e this part of the intera
tion is not well 
onstrained by phase shifts, removingit will redu
e the un
ertainty. Se
ondly, any e�e
t that the hard 
ore has on long-range (low-momentum) physi
s will be preserved. A further advantage is thaton
e 
reated, su
h an intera
tion simpli�es many nu
lear stru
ture 
al
ulationsby virtue of the signi�
antly smaller momentum range that needs to be taken intoa

ount.In this 
hapter we generalize the 
onstru
tion of the Vlow k to the Y N inter-a
tion. Ideally su
h a potential would retain all of the advantages whi
h the NN
Vlow k has. As we shall show, however, while the short range e�e
ts and the sim-pli�
ation remain as bonuses, the �universality� of the Y N Vlow k simply does notexist. The reasons for this la
k of agreement between various Y N Vlow k potentialsshall be dis
ussed in detail later.1.1.1 Constru
tion of Vlow kThe starting point for the 
onstru
tion of the Vlow k is the half-on-shell T -matrix,
T (q′, q; q2), whi
h is determined by the nonrelativisti
 Lippmann-S
hwinger equa-tion Eq. (A.6) in momentum spa
e. The on-shell energy is denoted by q2 and q′,where q are the relative momenta between a hyperon and a nu
leon. An e�e
-tive low-momentum Tlow k-matrix is then obtained by introdu
ing a 
ut-o� Λ inthe Lippmann-S
hwinger kernel, thus integrating the intermediate state momentaup to this 
ut-o�. At the same time, the bare potential in the 
oupled-
hannelpartial wave Lippmann-S
hwinger equation is repla
ed with the 
orrespondinglow-momentum potential Vlow k. Thus from the usual Lippmann-S
hwinger equa-tion Eq. (A.22) we get:

T α′αlow k,y′y(q
′, q; q2) = V α′αlow k,y′y(q

′, q)+

2

π

∑

β,z

P

Λ
∫

0

dl l2
V α′βlow k,y′z(q

′, l)T βαlow k,zy(l, q; q
2)

Ey(q) − Ez(l)
. (1.1)The e�e
tive low-momentum Vlow k is then de�ned by the requirement that the

T -matri
es are equivalent for all momenta below this 
ut-o�
T α′α(q′, q; q2) = T α′αlow k(q′, q; q2) , q′, q ≤ Λ . (1.2)Thus the obtained Vlow k is non-hermitian, nevertheless a phase-shift equiva-lent hermitian low-momentum Y N intera
tions 
an be obtained. Sin
e the low-momentum T -matrix Tlow k must be 
ut-o�-independent, i.e. dTlow k/dΛ = 0, an



4 CHAPTER 1. HYPERON-NUCLEON INTERACTIONRG �ow equation for the Vlow k 
an immediately be derived:
dVlow k (k′, k)

dΛ
=

2

π

Vlow k (k′,Λ)T (Λ, k; Λ2)

1 − k2/Λ2
. (1.3)Instead of solving this �ow equation with standard numeri
al methods (e.g. Runge-Kutta) dire
tly, the so-
alled ALS iteration method, pioneered by Andreozzi, Leeand Suzuki, is used [10, 11, 12℄. This iteration method is based on a similaritytransformation and its solution 
orresponds to solving the �ow equation. Detailsabout the 
onvergen
e of the ALS iteration method, applied to the 
oupled 
han-nel Y N intera
tion, 
an be found in [13, 14℄. For the hyperon-nu
leon intera
tionwith strangeness S = −1 two di�erent bases, the isospin and the parti
le basis ofthe bare potentials, are available.While in the NN 
ase the only 
oupling whi
h appears is that of angularmomentum arising due to the tensor for
e, in the Y N 
ase we have a more 
om-pli
ated situation. One di�eren
e is that there exists a singlet-triplet 
ouplingbetween di�erent spin states Eq. (A.24). However, this is pra
ti
ally identi
al tothe tensor 
ouplings. So the in
rease in 
omplexity is not signi�
ant. A mu
hbigger di�eren
e arises when we 
onsider the isospin spa
e. In the 
ase of the 
on-stru
tion of the Y N Vlow k there is an additional level of 
omplexity, as 
omparedto the NN 
ase, be
ause now we have a 
oupling whi
h we did not en
ounterin the NN 
ase. Eq. (A.25) des
ribes the situation if we 
onsider all parti
lesseparately. This is the parti
le basis whi
h we use. The biggest 
onsequen
e ofthis di�eren
e is that when sear
hing for the solution of the Lippmann-S
hwingerequation Eq. (1.1) we have to keep in mind that this entire matrix has to beon-shell.1.1.2 Bare potentialsIn order to solve the �ow equation Eq.(1.3) a bare potential as initial 
onditionfor the �ow must be 
hosen. In this work several initial Y N potentials, theoriginal Nijmegen soft 
ore model NSC89 [15℄, the series of models NSC97a-f [16℄also by the Nijmegen group and a re
ent model proposed by the Jüli
h group[17℄, labeled as J04 in the following, are used. All above mentioned models areformulated in the 
onventional meson-ex
hange (OBE) framework. They involvea set of parameters whi
h have to be determined from the available s
atteringdata. These are the 
oupling 
onstants of the 
orresponding baryon-baryon-mesonverti
es and 
ut-o� parameters for the vertex form fa
tors. Due to the limited

Y N s
attering data these parameters 
annot be pre
isely �xed as opposed to the
NN intera
tion where a lot of s
attering data is available. In order to 
onsistently
onstru
t 
onventional OBE models for the Y N intera
tion, one usually assumes�avor SU(3) 
onstraints or G-parity arguments on the 
oupling 
onstants, and



1.1. LOW-MOMENTUM INTERACTION 5in some 
ases even the SU(6) symmetry of the quark model and adjusts theirsize by �ts to NN data. The major 
on
eptual di�eren
e between the various
onventional OBE models 
onsists in the treatment of the s
alar-meson se
tor,whi
h plays an important role in any baryon-baryon intera
tion at intermediateranges. In 
ontrast to the pseudos
alar and ve
tor meson se
tors, it is still anopen issue whi
h are the a
tual members of the lowest lying s
alar-meson SU(3)multiplet, what are the masses of the ex
hange parti
les and how, if at all, therelations for the 
oupling 
onstant, obtained by SU(3) �avor symmetry, shouldbe applied. For example, in the older versions of the Y N models by the Jüli
hgroup [18, 19℄ a �
titious σ meson with a mass of roughly 550 MeV arising from
orrelated ππ ex
hange was introdu
ed. The 
oupling strength of this mesonto the baryons was treated as a free parameter and �nally �tted to the raredata. However, in the novel Jüli
h Y N potential [17℄ a mi
ros
opi
 model of the
orrelated ππ and KK̄ ex
hange is established in order to �x the 
ontributions inthe s
alar σ- and ve
tor ρ-
hannel. This new model in
orporates also the 
ommonone-boson ex
hange parts of the lowest pseudos
alar and ve
tor meson multiplets.The 
orresponding 
oupling 
onstants are determined by SU(3) �avor symmetryand the so-
alled F/(F +D) ratios are �xed to the pseudos
alar and ve
tor mesonmultiplets by invoking SU(6) symmetry.In the Nijmegen Y N models, NSC89 [15℄, NSC97 [16℄ and in the re
entlyextended soft 
ore model for strangeness S = −2 ESC04 [20, 21℄ this intera
-tion is generated by a genuine s
alar SU(3) nonet meson ex
hange. Besides thiss
alar meson nonet two additional nonets, the pseudos
alar and ve
tor SU(3)�avor nonets, are 
onsidered in all Nijmegen models. Additionally, the Pomeronex
hange is also in
luded whi
h provides an additional short-range repulsion. Nev-ertheless, there are a few 
on
eptual di�eren
es in the various mentioned models.In the NSC97 models the strength parameter for the spin-spin intera
tion, themagneti
 F/(F + D) ratio is left as an open parameter and takes six di�erentvalues in a range of 0.4447 to 0.3647 for the six di�erent models NSC97a-f. In theoriginal Nijmegen SC89 model this parameter is 
onstrained by weak de
ay data.Furthermore, the NSC97 models in
lude additional SU(3) �avor breaking whi
his based on the so-
alled 3P0 model [22℄.The predi
tions of the above mentioned models are 
ompared with anotherapproa
h, the so-
alled 
hiral e�e
tive �eld theory (χEFT ) of nu
lear inter-a
tions whi
h is based on 
hiral perturbation theory. For re
ent reviews seee.g. [23, 24, 25℄. The major bene�t of the χEFT is the underlying power 
ountings
heme, proposed by Weinberg [26, 27℄, that allows one to improve the 
al
u-lations systemati
ally by going to higher orders in the expansion. Additionally,higher two- and three-body for
es 
an be derived 
onsistently in this framework.Furthermore, the e�e
tive potential is expli
itly energy-independent in 
ontrastto the original Weinberg s
heme.



6 CHAPTER 1. HYPERON-NUCLEON INTERACTIONWithin χEFT the NN intera
tion has been analyzed re
ently to a high pre
i-sion (N3LO) [28℄. To leading order (LO) the NN potential is 
omposed of pionex
hanges and a series of 
onta
t intera
tions with an in
reasing number of deriva-tives whi
h parameterize the singular short-range part of the NN for
e. In orderto remove the high-energy 
omponents of the baryoni
 and pseudos
alar meson�elds a 
ut-o� Λ dependent regulator fun
tion in the Lippmann-S
hwinger (LS)equation is introdu
ed. Then with this regularized LS equation observable quan-tities 
an be 
al
ulated. The 
ut-o� range is restri
ted from below by the massof the pseudos
alar ex
hange mesons. Note that in 
onventional meson-ex
hangemodels the LS equation is not regularized and 
onvergen
e is a
hieved by introdu
-ing form fa
tors with 
orresponding 
ut-o� masses for ea
h meson-baryon-baryonvertex.So far, the Y N intera
tion has not been investigated in the 
ontext of the
χEFT as extensively as the NN intera
tion. A re
ent appli
ation to the Y Nintera
tion by the Jüli
h group 
an be found e.g. in [29℄. Analogous to the NN
ase, the Y N potential, obtained in LO χEFT , 
onsists of four-baryon 
onta
tterms and pseudos
alar meson (Goldstone boson) ex
hanges whi
h are all relatedby SU(3)f symmetry. For the Y N intera
tion typi
al values for the 
ut-o� lie inthe range between 550 and 700 MeV (see e.g. [28℄). At LO χEFT and for a �xed
ut-o� Λ and pseudos
alar F/(F + D) ratio there are �ve free parameters. Theremaining intera
tion in the other Y N 
hannels are then determined by SU(3)fsymmetry. A next-to-leading order (NLO) χEFT analysis of the Y N s
atteringand of the hyperon mass shifts in nu
lear matter was performed in [30℄. However,in this analysis the pseudos
alar meson ex
hange 
ontributions were not taken intoa

ount expli
itly but the Y N s
attering data 
ould be des
ribed su

essfully forlaboratory momenta below 200 MeV using 12 free parameters. One ambiguityin this approa
h for the Y N intera
tion is the value of the η 
oupling whi
h isidenti�ed with the o
tet η8 meson 
oupling and not with the physi
al η meson.The in�uen
e of this ambiguity on the data des
ription 
an be disregarded [31℄.Sin
e data on Y N s
attering is s
ar
e, it has not been possible yet to deter-mine uniquely the spin stru
ture of the Y N intera
tion. Nevertheless, all of theabove mentioned OBE models are 
onsistent with the measured Y N s
atteringobservables. Additionally, all of these potentials in
lude the ΛN −ΣN 
onversionpro
ess.1.1.3 Results of the potentialHere we will present the result of the 
onstru
tion of the Vlow k . The hyperonnu
leon s
attering of the form, Y + N → Y ′ + N ′, will be shown in the partialwave basis for several of the most dominant and representative 
ases. In generalwe have used the Lippman-S
hwinger equation to 
onstru
t waves up to L = 5,



1.1. LOW-MOMENTUM INTERACTION 7but as 
an be seen in the following �gures the S-wave is the most dominant oneand already the D-wave is almost an order of magnitude weaker.For all 
ases shown here we have used the 
ut-o� Λ = 500 MeV. We have
hosen this parti
ular 
ut-o�, be
ause it is expe
ted that the Vlow k is only weaklydependent on the 
ut-o� in the range from ∼ 200 MeV to ∼ 600 MeV. Essentiallyat this value the short range (high momentum) e�e
ts have already been integratedout while at the same time the pion 
ontribution remains largely un
hanged inthis interval.In all �gures of the potential we show both, the bare potential and the resulting
Vlow k potential. The bare potentials are shown with points while the Vlow k areindi
ated by lines.
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Figure 1.2: Bare and Vlow k potentials for 1S0,Σ
−n (left) and 3P0,Σ

+p (right).Fig. 1.2 shows the bare and Vlow k potentials for the 1S0,Σ
−n 
hannel on theleft hand side and the 3P0,Σ

+p 
hannel on the right-hand side. The potentials forthe VΣ−nΣ−n and VΣ+pΣ+p are almost the same in all partial wave 
hannels, theonly small di�eren
e 
omes from the di�erent redu
ed masses of these systems. Asone 
an see, most of the Vlow k potentials are the same in these 
hannels showingthat Vlow k 
an produ
e a unique potential for the hyperons. This implies that theambiguous situation whi
h we will meet later on in the other 
hannels is not thefailing of the Vlow k method. Essentially as soon as there are enough 
onstraintson the phase shifts, Vlow k works well in 
al
ulating the 
orre
t low-momentumpotential.The only ex
eption to the good behavior of this 
hannel is the χEFT600 whi
h



8 CHAPTER 1. HYPERON-NUCLEON INTERACTIONby itself is not a realisti
 potential but a theoreti
ally 
onstru
ted potential. Asa result, information regarding phase shifts 
annot be used as dire
tly as for theother potentials. Thus for the χEFT600, though some degree of improvement
an be made on the theoreti
al side, ultimately it is also �tted, so in
reased dataquality would bring improvements. However sin
e χEFT is also a low-momentumpotential, applying the Vlow k does not 
hange it by mu
h. This 
an be observedin Fig. 1.2. The points of the bare χEFT600 and the lines of the Vlow k are seento be very 
lose. A very simple explanation for this is that the 
ut-o� of the
χEFT is 600 MeV while the 
ut-o� of the Vlow k is 500 MeV so there are not somany �high� momentum e�e
ts whi
h 
an be transferred to the low momenta inthe RG de
imation pro
edure.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

V
(k

,k
) 

[1
0-6

M
eV

-2
]

k [MeV]

1S0, Λn

NSC89
NSC97a
NSC97c
NSC97f

J04
χEFT600

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  100  200  300  400  500

V
(k

,k
) 

[1
0-6

M
eV

-2
]

k [MeV]

3P0, Λp

NSC89
NSC97a
NSC97c
NSC97f

J04
χEFT600

Figure 1.3: Bare and Vlow k potentials for 1S0,Λn (left) and 3P0,Λp (right).Fig. 1.2 also shows that in both 
hannels the Vlow k is more attra
tive than the
orresponding bare potential. This serves to show that in the bare potential someof the attra
tion would be provided by the momentum states above the Vlow k
ut-o�. It should also be said that these two �gures show the simplest 
hannelin the Y N se
tor sin
e there is no 
oupling to any other 
hannel. In general thiswould not be the 
ase sin
e most 
hannels are 
oupled, either in the isospin spa
eor in the angular momentum spa
e.In Fig. 1.3 we show the bare and Vlow k potentials for the 1S0,Λn 
hannel onthe left-hand side and the 3P0,Λp 
hannel on the right-hand side. As 
an be seenhere, the resulting Vlow k do not show agreement with one another, although thedi�eren
es are not as large as for the bare potentials. As mentioned before this is



1.1. LOW-MOMENTUM INTERACTION 9be
ause of the la
k of data on phase shifts with whi
h one 
ould 
onstru
t a highquality Y N potential. In this 
ase as well, isospin symmetry gives us a pra
ti
allyidenti
al potential for Λp and Λn for all partial waves.
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Figure 1.4: Bare and Vlow k potentials for 1S0,Σ
−p (left) and 3D1,Σ

0n (right).These 
hannels are 
oupled in the isospin, but not in the angular momentumspa
e. What is interesting to note is that sin
e this is a 
oupled 
hannel, greaterattra
tion whi
h we 
an observe in the 
ase of the Vlow k 
ompared to the barepotentials, 
an also 
ome from the o� diagonal elements su
h as the VΛpΣ+n. Thisgives us a mu
h more 
ompli
ated situation to interpret, sin
e the statement that
hanges in the Vlow k of the VΛpΛp 
ome only from higher momentum 
ontributionsin this 
hannel is no longer true. Most obviously for the NSC97f, this 
omplex 
on-ne
tion between the diagonal and non-diagonal elements for the 1S0,Λn 
hannelwill give rise to an attra
tive Vlow k potential from a repulsive bare potential.Fig. 1.4 shows the bare and Vlow k potentials for the 1S0,Σ
−p 
hannel on theleft-hand side and the 3P0,Σ

0n 
hannel on the right-hand side. In this 
hannel wehave both 
oupling of the isospin as well as 
oupling of the angular momentum.We 
an see that the 
ut-o� e�e
ts are more pronoun
ed here than they are in theother 
hannels. One interesting feature of the 3D1 
hannel is the non-zero valuefor the J04 and χEFT600 potentials at zero momentum. This 
an be interpretedas the presen
e of a bound state in these potentials in this 
hannel whi
h is notpresent in the other 
hannels. The repulsion of the 3S1 
hannel whi
h 
an beseen for χEFT600, whereas the other potentials are attra
tive, will later lead toa profound di�eren
e in the value of the Σ single-parti
le potential.
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Figure 1.5: Bare and Vlow k potentials for 1P1,Σ
+n (left) and 3P1,Σ

0p (right).
Fig. 1.5 shows the bare and Vlow k potentials for the 1P1,Σ

+n 
hannel on theleft-hand side and the 3P1,Σ
0p 
hannel on the right-hand side. Like the previous
ase this is a fully 
oupled 
ase, but now in addition to the isospin 
oupling wehave a spin 
oupling. This 
hannel is than parti
ularly interesting be
ause su
ha 
oupling 
annot exist in the nu
leon-nu
leon 
ase. What we noti
e here in thispartial wave, and whi
h forms a trend that applies also to the higher waves, isthat the di�eren
es between the bare potential and the Vlow k potential are smaller
ompared to the S-wave. This is understandable be
ause relative to the S-waves,these waves will have a smaller magnitude. So there will be less e�e
ts at highermomentum whi
h would lead to di�eren
es between bare and Vlow k potentials dueto RG de
imation.Overall these results show how the 
onstru
tion of the Vlow k 
hanges the Y Npotential 
ompared to the bare 
ase on produ
ing an e�e
tive low-momentumpotential. The results themselves are only as good as the starting bare potentialsand they are heavily dependant on the quality and quantity of phase shift dataavailable for their 
onstru
tion. The few 
ases where we see agreement betweendi�erent models show that given a high-quality potential, the Vlow k pro
edure
ould produ
e the same uniqueness of the potential in the Y N se
tor as in the

NN se
tor. Unfortunately, with the situation being what it is, we will have to
ontend with the disagreement between models throughout this work.



1.2. LOW-ENERGY OBSERVABLES 111.2 Low-energy observablesIn order to obtain further insight into the separation of s
ales for the evolutionof the low-momentum Vlow k we investigate its 
ut-o� dependen
e. A 
ommonfeature of all Y N potentials is the long-range one-pion ex
hange (OPE) tail. Ingeneral, the RG de
imation eliminates the short-distan
e part of the bare potentialand preserves the model-independent impa
t of the high-momentum 
omponentson low-momentum observables. In this sense, the ambiguities asso
iated with theunresolved short-distan
e parts of the intera
tion disappear and a universal low-momentum Y N intera
tion Vlow k 
an be 
onstru
ted from phase shift equivalentbare Y N potentials.The mentioned hierar
hy of s
ales 
an be seen e.g. in the Σ−n 
hannel, seeFig. 1.6. The Vlow k matrix elements for vanishing momenta are shown as fun
tionsof the 
ut-o� Λ for the 1S0 partial wave. When Λ is de
reased, the resulting Vlow kbe
omes more and more attra
tive. For 1S0 and a 
ut-o� Λ ∼ 500 − 250 MeVthe Vlow k be
omes 
ut-o� independent. De
reasing the 
ut-o� further below the
2π ex
hange threshold, whi
h 
orresponds to a momentum k ≈ 280 MeV, the
ut-o� insensitivity disappears sin
e the pion 
ontributions are �nally integratedout.
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Figure 1.6: Left:Vlow k Λ(0) in 1S0 partial wave for various bare potentials as afun
tion of the 
ut-o� Λ in the Σ−n 
hannel. Predi
tion from e�e
tive rangetheory (lines) are added. Right:Vlow k Λ(0) for the 3S1 
hannel.In the opposite dire
tion, i.e. for Λ → ∞ no �u
tuations have been integratedand the Vlow k tends to the bare potential.The limit Λ → 0 should yield the s
attering length. In the limit of small
ut-o�s an analyti
 solution obtained in the framework of the e�e
tive theory, see



12 CHAPTER 1. HYPERON-NUCLEON INTERACTION[32℄, is given by
Vy(0) =

[

2
µy

a0
− 2

Λ

π

]−1 for Λ → 0 , (1.4)where we have simpli�ed our notation in an obvious manner. Here, the s
atteringlength a0 is needed as an input whi
h we have 
al
ulated in the standard e�e
tiverange approximation dire
tly from the T -matrix for the 1S0 
hannel from the
Vlow k potential. In this approximation the T -matrix for q ≤ Λ 
an be expandedas

q cot δ0 = − 1

2µyTy(q, q; q2)
= − 1

a0
+

1

2
r0q

2 , (1.5)where r0 is the e�e
tive range. The results for the di�erent Y N �avor 
hannelsand for all potentials used in this work (bare OBE potentials and χEFT potentialswith 
ut-o�s between 550 and 700 MeV) are listed in Tab. 1.1 for the s
atteringlength a0 in units of fm and in Tab. 1.2 for the e�e
tive range r0 also in fm.
Λp Λn Σ0p Σ0n Σ+p Σ+n Σ−p Σ−nNSC97a -0.71 -0.76 -2.46 -1.74 -6.06 -0.04 0.41 -6.13NSC97b -0.90 -0.96 -2.47 -1.72 -5.98 -0.04 0.41 -6.06NSC97
 -1.20 -1.28 -2.41 -1.70 -5.90 -0.03 0.41 -5.98NSC97d -1.70 -1.82 -2.38 -1.68 -5.82 -0.03 0.41 -5.89NSC97e -2.10 -2.24 -2.38 -1.68 -5.82 -0.03 0.41 -5.90NSC97f -2.51 -2.68 -2.45 -1.74 -6.07 -0.05 0.42 -6.16NSC89 -2.70 -2.72 -2.12 -1.57 -4.79 -0.09 0.23 -4.85J04 -2.14 -2.11 -2.24 -1.63 -4.68 -0.18 0.04 -4.75

χEFT550 -1.80 -1.79 -1.76 -1.15 -3.82 0.12 0.31 -3.88
χEFT600 -1.80 -1.80 -1.25 -0.92 -2.70 0.10 0.20 -2.72
χEFT650 -1.80 -1.80 -1.43 -1.02 -3.06 0.09 0.21 -3.10
χEFT700 -1.80 -1.80 -1.50 -1.07 -3.19 0.06 0.20 -3.24Table 1.1: S
attering lengths a0 of Vlow k for di�erent �avor 
hannels in fm forthe 1S0 partial wave.As is visible in Fig. 1.6 for small 
ut-o�s Λ there is good agreement between theanalyti
al expansion and the full Vlow k solution obtained from the �ow equation.Unfortunately, no general quantitative 
on
lusion 
an be drawn from Tab. 1.1and Tab. 1.2 due to the bad experimental situation for the Y N data. The Y Nintera
tion is yet largely unknown. However, agreement of the s
attering lengthsof all NSC97 potentials ex
ept for the Λp and Λn 
hannels is found. The latter
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Λp Λn Σ0p Σ0n Σ+p Σ+n Σ−p Σ−nNSC97a 5.87 6.12 4.58 0.60 3.28 -6602 24.8 3.27NSC97b 4.93 5.10 4.68 0.59 3.29 -8491 25.0 3.28NSC97
 4.11 4.23 4.79 0.57 3.30 -10670 25.4 3.29NSC97d 3.46 3.53 4.91 0.54 3.30 -17115 25.4 3.29NSC97e 3.19 3.24 4.90 0.52 3.29 -17326 25.2 3.29NSC97f 3.03 3.09 4.60 0.51 3.25 -6341 24.1 3.24NSC89 2.86 2.98 5.76 0.74 3.35 -1478 58.0 3.33J04 2.93 3.09 3.76 1.04 3.32 -329 1232.0 3.30

χEFT550 1.73 1.84 6.10 -2.96 2.70 -825 34.1 2.68
χEFT600 1.77 1.88 5.32 -2.12 3.40 -780 10.2 3.39
χEFT650 1.75 1.86 5.10 -2.28 3.08 -1210 27.6 3.05
χEFT700 1.74 1.86 4.91 -2.17 2.97 -2450 34.8 2.95Table 1.2: E�e
tive range r0 of Vlow k for di�erent �avor 
hannels in fm for the

1S0 partial wave.deviation is related to the di�erent �ts of the magneti
 F/(F + D) ratio in theNijmegen potentials [16℄. The remaining two potentials, NSC89 and J04, havedi�erent but 
omparable values to those of the NSC97 ones. Unfortunately, thedi�eren
e between these potentials and the χEFT is large.The right part of Fig. 1.6 shows the same as the left panel for the 3S1 partialwave. Unlike the 1S0 
hannel, Vlow k for the 3S1 
hannel remains 
ut-o� dependent.On the one hand, in the 1S0 
hannel, the potential has a strongly repulsive 
oreand on the other hand, in the 3S1 
hannel, it has a strongly attra
tive 
ore. Hen
e,during the RG de
imation towards smaller 
ut-o�s the potential gets more andmore attra
tive (or less repulsive).
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2 In�nite nu
lear matterIn�nite nu
lear matter represents a hypotheti
al system without surfa
e e�e
tsand Coulomb intera
tion, whose relevant degrees of freedom are nu
leons, or moregenerally baryons. It is a system that 
annot be studied experimentally in alaboratory, but it is nevertheless a very useful and broadly used 
on
ept be
auseof its simpli
ity and its 
onne
tion with the inner part of atomi
 nu
lei and neutronstars. Neutron stars support themselves against the gravitational 
ollapse mainlyby the degenera
y pressure of neutrons. However, as the density of the systemin
reases one must 
onsider the in�uen
e of the nu
lear intera
tion as well as theappearan
e of other degrees of freedom like hyperons, or eventually even quarks.If we wish to examine the properties of in�nite nu
lear matter it is appropriateto 
onsider the single-parti
le wave fun
tions as plane waves. This is 
onvenientsin
e they are already the solutions in the Hartree-Fo
k approximation. This isanother motivation for using in�nite nu
lear matter, be
ause the starting wavefun
tions are known and simple.In the following, in Se
. 2.1, we will �rst present the Hartree-Fo
k approxima-tion whi
h is used to 
al
ulate the ground state of dense matter. The 
al
ulationitself and the results for the single-parti
le potential as well as several other re-lated quantities is presented in Se
. 2.2. The results follow in Se
. 2.2.2. At theend we will 
onsider the in
lusion of three-body for
es in Se
. 2.3.2.1 Hartree-Fo
k approximationThe main feature of the Hartree-Fo
k method is that the intera
tions among thebaryons 
an be represented by an average potential felt by ea
h of the baryonsdue to the presen
e of all other baryons. In the Hartree-Fo
k approximation theground state is represented by a Slater determinant whi
h is built from the single-parti
le wave fun
tions of all parti
les. Thus, instead of a 
ompli
ated 
orrelatedset of many-body states we have a simple produ
t of the states.We now 
onsider an intera
ting system of parti
les des
ribed by a Hamiltonian
Ĥ = M̂ + T̂ + V̂ , (2.1)15



16 CHAPTER 2. INFINITE NUCLEAR MATTERwhere M̂ is the mass operator, T̂ the kineti
 energy operator and V̂ the two-bodyintera
tion. The total energy E of this system is then obtained as the expe
tationvalue of the Hamiltonian with respe
t to the ground state:
E = 〈Φ| Ĥ |Φ〉 = 〈Φ| M̂ |Φ〉 + 〈Φ| T̂ |Φ〉 + 〈Φ| V̂ |Φ〉 . (2.2)In the 
ase of a homogenous in�nite system, the appropriate single-parti
lestates are plane-wave states, 
f. Eq. (B.3). This property is the main appeal ofthis approximation. The starting single-parti
le wave fun
tions are known andsimple, whi
h is not the 
ase otherwise, su
h as for nu
lei or atoms.If we assume that the temperature of the system is equal to zero we 
an usethese states to derive the usual 
onne
tion between the density of the states andthe Fermi momentum of the parti
les:

ρsmstmt
=

1

6π2
p3

Fsmstmt
. (2.3)In this expression spin is sms =↑, ↓ and isospin is tmt = p, n,Λ,Σ−,Σ0,Σ+. Thetotal baryoni
 density of the system is de�ned as the sum over all states.

ρB =
∑

smstmt

ρsmstmt
. (2.4)We note that in this thesis we will not deal with polarized matter, hen
e alldensities and momenta of parti
les with di�erent spins will be equal. This yields

ρtmt
=

1

3π2
p3

Ftmt
, (2.5)

ρB =
∑

tmt

ρtmt
. (2.6)We 
an use the states de�ned by Eq. (B.3) dire
tly to 
al
ulate the mass(Eq. (B.7)) and the kineti
 (Eq. (B.8)) part of Eq. (2.2). As for the potentialpart, we 
annot use the plane wave states dire
tly sin
e the potential is usuallygiven in partial waves. Thus, we need to 
hange our basis �rst, whi
h is donein Appendix B.1.2. This will then give the potential part (Eq. (B.26)), and the
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k ground-state energy is �nally given by
E =

Ω

π2

(

MΛ

p3
FΛ

3
+
∑

N

MN

p3
FN

3

∑

Σ

MΣ

p3
FΣ

3

)

+
Ω

2π2

(

p5
FΛ

5MΛ
+
∑

N

p5
FN

5MN
+
∑

Σ

p5
FΣ

5MΣ

)

+
Ω

π2

∑

t1mt1

∑

t2mt2

(

M

mt1mt1

)3
pFt1mt1
∫

0

dp1p
2
1

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

4π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (t))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)1−S+LV x


(LS)Jt1mt1
t2mt2

(q)
]

, (2.7)with the integration limits derived in Appendix B.When using the Vlow k potential in Eq. (2.7), we need to keep in mind that it islimited to the maximal momentum value of q = 500 MeV or slightly more in the
ase of heavier 
hannels, by the sharp 
uto�. This puts a restri
tion on the valuesof the densities we 
an have when using the Vlow k . In pure neutron matter thislimit will be around ∼ 3ρ0 while for symmetri
 nu
lear matter it would be ∼ 6ρ0.These restri
tions 
ome from 
onsidering the Fermi momentum of the neutronwhi
h is usually the highest. We also need to keep in mind that the e�e
ts of asharp 
ut-o� show up before the relative momentum q rea
hes the value of 
ut-o�.Thus it is best to keep the relative momentum somewhat lower.
2.2 Single-parti
le potentialGenerally, the single-parti
le potential is de�ned as the diagonal part in spin andisospin spa
e of the proper self-energy for the single-parti
le Green's fun
tion inthe Hartree-Fo
k approximation. It represents to �rst-order the intera
tion energyof a parti
le with in
oming momentum p and given spin and isospin with the �lledFermi sea. For an intera
tion V the single-parti
le potential Ut1mt1

(p) des
ribesthe behavior of the in
oming parti
le with momentum p in the dense medium,i.e. its intera
tion with a �lled Fermi sea of all other parti
les. Pi
torially, thesingle-parti
le potential is represented by Goldstone diagrams as shown in Fig. 2.1.
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+U= Figure 2.1: Goldstone diagrams for single-parti
le potential.In the Hartree-Fo
k approximation the single-parti
le potential is de�ned as

Ut1mt1
(~p1) =

1

2

∑

s1ms1

∑

s2ms2
t2mt2

∫

d3~p2

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 |V |~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2) , (2.8)where the spin-averaging was performed to remove the spin-dependen
e of thesingle-parti
le potential. We have done this sin
e we will not be dealing withspin-polarized matter and the 
ontributions from the spin-up ↑ and spin-down ↓states are the same.Just as in the 
ase of the potential part of the ground-state energy in Eq. (2.8),we need to make a basis transformation from plane waves to partial waves. Thesingle-parti
le potential Ut1mt1
(p1) for a parti
le with momentum p1 = |~p1| isobtained from the diagonal elements of the potential matrix, where, as before forthe ground-state energy, we have two 
ontributions the (dire
t) Hartree- and the(ex
hange) Fo
k-term [33℄

Ut1mt1
(p1) =

∑

t2mt2

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

2π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (t))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)1−S+LV x


(LS)Jt1mt1
t2mt2

(q)
]

, (2.9)with the integration limits being the same as for the ground-state energy.2.2.1 Single-parti
le energy and the e�e
tive massThe single-parti
le energy for the states de�ned by Eq. (B.2) is
ǫsmstmt

(~p) = Msmstmt
+

p2

2Msmstmt

+ Usmstmt
(~p) . (2.10)
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Figure 2.2: Momentum and density dependen
e of UΛ(p) (left), and for UΣ−(p)(right), for symmetri
 nu
lear matter. The NSC97f has been used as the barepotential.Mostly we will perform our nu
lear matter 
al
ulations at zero or very lowtemperatures, at least 
ompared to the Fermi energy, hen
e the potential will bein�uen
ed most by the momenta at and around Fermi momentum. This gives riseto the quadrati
 approximation of the single-parti
le energy:
ǫsmstmt

(~p) = Msmstmt
+

p2

2M∗
smstmt

+ Ũsmstmt
(pFsmstmt

) , (2.11)where M∗
smstmt

is the e�e
tive mass. The advantage of su
h an approximation istwofold. It retains the shape of the free single-parti
le energy spe
trum and Ũ isindependent of the momentum p. This will enable us to perform some of the later
al
ulations analyti
ally without losing mu
h a

ura
y.The e�e
tive mass 
an than be 
al
ulated as
1

M∗
smstmt

=
1

pFsmstmt

∂ǫsmstmt
(~p)

∂p

∣

∣

∣

∣

p=pFsmstmt

=
∂2ǫsmstmt

(~p)

∂p2

∣

∣

∣

∣

p=pFsmstmt

, (2.12)and Ũ is
Ũsmstmt

(pFsmstmt
) =

p2
Fsmstmt

2

(

1

Msmstmt

− 1

M∗
smstmt

)

+ U(pFsmstmt
). (2.13)
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 nu
lear matterAs an example, the numeri
al solution of Eq. (2.9) for the full momentum anddensity dependent single-parti
le potential of the Λ hyperon with momenta upto 500 MeV and nu
lear densities up to 6ρ0 is shown on the left-hand side ofFig. 2.2, where the NSC97f Y N potential of the Nijmegen group has been usedas the bare potential for the underlying Vlow k 
al
ulation, 
f. [34℄. One sees thatwith in
reasing density, the momentum dependen
e be
omes stronger, indi
atinga de
rease of the e�e
tive mass as the density in
reases.Similarly, the right-hand side of Fig. 2.2, shows the full momentum and densitydependen
e of the Σ− single-parti
le potential for symmetri
 nu
lear matter, basedon the NSC97f Y N potential. Here, the slope of the momentum dependen
e is lesspronoun
ed whi
h leads to a weaker density-dependent e�e
tive mass. However,unlike in the Λ 
ase, the 
urvature be
omes negative at higher densities, leadingto an e�e
tive mass whi
h is larger than the bare mass.
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Figure 2.3: UΛ(p = 0) as a fun
tion of density in symmetri
 nu
lear matter isshown in the left panel. The square represents the empiri
al point UΛ(p = 0) ≈
−30 MeV [35℄. The momentum dependen
e of UΛ(p) at saturation density insymmetri
 nu
lear matter is shown in the right panel.The density dependen
e for several Λ single-parti
le potentials at rest (i.e.
p = 0) in symmetri
 nu
lear matter is 
ompared in the left panel of Fig. 2.3.The square represents the generally a

epted empiri
al potential depth of UΛ(p =
0) ≈ −30 MeV. This value has been 
on�rmed re
ently by an analysis of the(π−, K+) in
lusive spe
tra on various target nu
lei as best �ts in a framework ofa distorted-wave approximation [35℄. While most potentials 
an reprodu
e this
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h potential (J04) yields a stronger binding and the old Nijmegenpotential (NSC89) underestimates the binding.With the ex
eption of the J04 and NSC89 potentials, all intera
tions yieldidenti
al single-parti
le potentials up to the saturation density. However, with in-
reasing density, the di�eren
es between these potentials grow, leading to di�erentbindings at rest. This will have 
onsequen
es for the predi
tions of the Λ hyperon
on
entration in dense nu
lear matter. In parti
ular, this will a�e
t the maxi-mum mass of neutron stars. It is interesting to observe that even the Nijmegenpotentials NSC97a-f di�er at higher densities. The only di�eren
e between thesepotentials is the magneti
 F/(F +D) ratio.In the past, the potentials NSC89, NSC97a and NSC97f have also been usedas a basis for a single-parti
le potential 
al
ulation in the G-matrix formalism[36, 37℄. These G-matrix 
al
ulations yield a more attra
tive Λ single-parti
lepotential. For example, at saturation density a potential depth of −29.8 MeV isfound for the NSC89 potential, the NSC97a gives −39.7 MeV, and the NSC97f
−36.6 MeV. On the other hand, a 
omparison with another G-matrix 
al
ulation[16℄, whi
h uses a di�erent pres
ription for the intermediate spe
tra, yields similarresults to ours.In Fig. 2.3, on the right-hand side, the momentum dependen
e of the Λ single-parti
le potential at saturation density is shown for various Y N potentials. Whileall potentials in
rease with in
reasing momentum, the slopes deviate from ea
hother. Similar di�eren
es in the momentum behavior of the single-parti
le poten-tial are also seen in other works, 
f. e.g. [36, 38℄.

1S0
3S1

1P1
3P0

3P1
3P2

3D1 UΛNSC97a -4.86 -27.79 1.70 -0.10 2.10 -2.03 -0.09 -32.12NSC97b -6.69 -27.40 1.86 0.05 2.53 -1.87 -0.09 -32.72NSC97
 -9.06 -27.54 1.96 0.36 2.84 -1.72 -0.09 -34.42NSC97d -12.14 -26.05 2.22 0.64 3.54 -1.33 -0.08 -34.46NSC97e -13.92 -24.43 2.43 0.75 4.09 -1.03 -0.07 -33.50NSC97f -15.37 -20.85 2.85 0.68 5.09 -0.47 -0.05 -29.49NSC89 -15.73 4.52 2.00 0.52 2.55 -3.46 -0.07 -10.84J04 -9.55 -35.18 -0.15 -0.70 0.58 -3.17 -1.31 -50.28
χEFT550 -11.11 -15.46 1.50 -1.69 3.17 -0.07 -3.14 -27.14
χEFT600 -12.29 -11.39 1.50 -1.73 3.17 -0.07 -6.14 -27.37
χEFT650 -11.99 -6.70 1.50 -1.77 3.17 -0.07 -9.90 -26.27
χEFT700 -11.91 -1.77 1.50 -1.81 3.17 -0.08 -13.84 -25.35Table 2.1: Partial wave 
ontributions to the Λ single-parti
le potential UΛ(p = 0)at ρB = ρ0 in symmetri
 nu
lear matter.



22 CHAPTER 2. INFINITE NUCLEAR MATTERAdditionally, Eq. (2.9) 
annot only be used for the 
al
ulation of the single-parti
le potential, but also to extra
t the individual partial wave 
ontributions tothe total single-parti
le potential. These 
ontributions are obtained by negle
tingthe summation over the LSJ quantum numbers in Eq. (2.9), and will be labeled
UY (2S+1LJ ) in the following.In Tab. 2.1 and Tab. 2.2 the resulting partial wave 
ontributions to the UΛ and
UΣ− single-parti
le potentials for zero momenta at saturation density are listedfor several Y N intera
tions.

1S0
3S1

1P1
3P0

3P1
3P2

3D1 UΣ−NSC97a 3.51 -4.87 -2.16 0.59 1.46 -2.41 -0.01 -4.73NSC97b 3.58 -5.37 -2.14 0.63 1.54 -2.31 -0.01 -4.91NSC97
 3.48 -6.50 -2.12 0.68 1.59 -2.18 0.00 -5.86NSC97d 3.50 -6.08 -2.02 0.71 1.70 -1.92 0.01 -4.88NSC97e 3.50 -5.24 -1.94 0.72 1.78 -1.75 0.02 -3.65NSC97f 3.51 -5.11 -1.85 0.71 1.90 -1.60 0.02 -3.14NSC89 -4.32 11.46 -0.77 0.93 2.27 -1.49 0.28 7.61J04 -7.63 1.84 -0.15 0.52 -0.70 -3.37 -3.65 -15.13
χEFT550 2.28 14.69 1.50 -0.20 0.09 -0.01 -2.73 14.11
χEFT600 -3.70 66.26 1.50 -0.28 0.06 -0.01 -5.36 56.89
χEFT650 -2.72 42.41 1.50 -0.35 0.01 -0.01 -8.60 30.38
χEFT700 -2.93 39.93 1.50 -0.41 -0.04 -0.02 -11.60 24.68Table 2.2: Partial wave 
ontributions to the Σ− single-parti
le potential UΣ−(p =

0) at ρB = ρ0.In these tables the partial waves up to L = 2 are shown and the last 
olumn
ontains the sum up to L = 5. As expe
ted, the in�uen
e of the S-wave is mostdominant. One 
an see that the 
ombination of the 
oupled 3S1 and 3D1 
hannelsprovides most of the attra
tion in the majority of the Λ single-parti
le potentials.These tables also illustrate the di�erent 
ontributions to the hyperon single-parti
le potential originating from the 
entral, spin-spin and spin-orbit parts of the
Y N intera
tion. Furthermore, one re
ognizes from the di�erent bare NSC97a-fpotentials that a 
hange in the F/(F + D) ratio a�e
ts the single-parti
le po-tential for the Λ stronger than for the Σ. Another interesting feature is that
χEFT su

essfully reprodu
es the potential depth at saturation density. For thisdensity, χEFT agrees well with the Nijmegen NSC97a-f potentials.On the left-hand side Fig. 2.4 shows a 
omparison of the UΛ(p = 0) densitydependen
e obtained from χEFT , with results from Ref. [39℄. Perfe
t agreementfor the UΛ(p = 0) is evident and the independen
e of the χEFT single-parti
le po-



2.2. SINGLE-PARTICLE POTENTIAL 23tential on the regulator 
uto� is also seen. This suggests that the two approa
hes,[39℄ and [40℄, to 
onstru
t an χEFT are 
losely related. Furthermore, χEFT inleading order 
an already produ
e a reasonable ΛN potential.
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Figure 2.4: Left: Density dependen
e of UΛ(p = 0) for symmetri
 nu
lear matter.The full line is from [39℄ and the dashed lines represent χEFT for various regulator
uto�s. Right: Density dependen
e of UΣ(p = 0) for symmetri
 nu
lear matter.The full line is from [41℄ and the dashed lines represent χEFT for various valuesof regulator 
uto�.The left panel of Fig. 2.5 shows the density dependen
e for several Σ− po-tentials at rest in symmetri
 nu
lear matter like in Fig. 2.3 for Λ. The othermembers of the Σ triplet, Σ+ and Σ0, exhibit an almost identi
al behavior. Asmall di�eren
e 
ompared to the Σ− 
ase is seen due to a small di�eren
e in theirmasses. Therefore, we will dis
uss only the Σ− single-parti
le potential. For the
Σ− potential no density range is found where all, or even most, potentials agree.However, the di�eren
e between the NSC97a-f potentials is not signi�
ant and isthe same over the entire density range shown. This 
on�rms that the in�uen
eof the magneti
 F/(F + D) ratio on the ΣN intera
tion is less important thanon the ΛN intera
tion. Due to experimental un
ertainties in the 
ase of the Σ−potential, no generally a

epted empiri
al point 
an be used as a referen
e. Onthe whole, the experimental situation 
on
erning the Σ− 
ase is 
onfusing: on theone hand, re
ent results [35℄ based on a distorted wave impulse approximation,yield a repulsive potential of the order of 100 MeV; on the other hand, the analysisof the same data by Kohno et al. [42℄ in a semi
lassi
al distorted-wave model andan analysis by Maekawa et al. [43℄ within a distorted-wave impulse approxima-tion with a lo
al optimal Fermi-averaging T -matrix �nd a 
learly less repulsivepotential. Additionally, there also exists a bound state of 4

ΣHe [44℄, whi
h de�-nitely requires an attra
tive potential. Thus, neither theory nor experiment givea 
on
lusive s
enario in this 
ase.
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Figure 2.5: U−
Σ (p = 0) as a fun
tion of density in symmetri
 nu
lear matteris shown in the left panel. The momentum dependen
e of U−

Σ (p) at saturationdensity in symmetri
 nu
lear matter is shown in the right panel.Compared to the G-matrix 
al
ulation a stronger binding of the Σ− single-parti
le potential is found. In parti
ular, the NSC89 potential yields a bindingenergy of −15.3 MeV [36℄, while −29.7 MeV and −25.5 MeV are found for theNSC97a and the NSC97f potential, respe
tively [37℄. In order to understand theorigin of su
h a signi�
ant di�eren
e, the single partial wave 
ontributions tothe single-parti
le potential of Ref. [36℄ are 
ompared to ea
h other. The 1S0
hannel 
ontributions are approximately the same while those for the 3S1 
hannelare signi�
antly di�erent. This di�eren
e in the 3S1 
hannel is present for both,the Λ and Σ− potentials, and is the result of a di�eren
e in the treatment ofthe 3S1 ΛN − ΣN 
hannel. Sin
e both, the Vlow k and the G-matrix formalisms,
onstru
t the e�e
tive intera
tion out of the same bare intera
tion, the di�eren
e
omes from the treatment of the attra
tive part of the bare potentials whi
h isfound above the 
uto�. Essentially the di�eren
e is in how mu
h �attra
tion� istransferred when 
onstru
ting the e�e
tive intera
tion. This is similar to the 
aseshown in Fig. 1.6 (right), where a 
uto� dependen
e is visible: for ea
h lower
uto� more �attra
tion� is e�e
tively added to the intera
tion.However, it is interesting to note that the e�e
tive potentials 
onstru
ted in the
G-matrix 
al
ulations for the NSC89, NSC97a and NSC97f potentials depend onthe underlying bare potentials in a similar way as the potentials shown here. Thisis another sign that the un
ertainties are inherent in the underlying potentials.Going ba
k to Fig. 2.5 on
e more, the momentum dependen
e of the Σ− single-parti
le potential at saturation density for various Y N potentials is displayed on



2.3. THREE-NUCLEON FORCE 25the right-hand side. This �gure illustrates how strong the parameterization ofthe Y N intera
tion deviates. The potentials at zero momentum as well as theirmomentum dependen
e are very di�erent. This demonstrates how poorly the ΣNintera
tion is 
onstrained.The right panel of Fig. 2.4 shows the density dependen
e of the real part
UΣ(p = 0) and the imaginary part WΣ(p = 0) of the single-parti
le potential in anopti
al potential 
al
ulation [41℄ together with the results obtained from χEFT .The most interesting feature here is that all single-parti
le potentials are positiveand grow with in
reasing density in 
ontrast to the other potentials. However,unlike in the 
ase of the Λ potential, the Σ− single-parti
le potential depends onthe regulator 
uto� and only χEFT with a 
uto� of 600 MeV agrees with theresults of Ref. [41℄ quantitatively. As already mentioned, the repulsive Σ− single-parti
le potential, whi
h grows with density, has been suggested by Saha et al. [35℄by means of an analysis of (π−, K+) in
lusive spe
tra.Re
ently, a 
al
ulation of the binding energy of the Λ hyperon in nu
lear matterwithin a Dira
-Brue
kner-Hartree-Fo
k framework was performed using the mostre
ent Jüli
h meson ex
hange Y N potential [45℄. The reported values of the Λsingle-parti
le potential, −51.27 MeV (−47.4 MeV) in the Brue
kner-Hartree-Fo
k (Dira
-Brue
kner-Hartree-Fo
k) framework agree well with our predi
tion of
−50.28 MeV.2.3 Three-nu
leon for
eIt has long been known that soft nu
leon-nu
leon potentials without a hard 
oredo not reprodu
e the saturation properties of nu
lear matter 
orre
tly [46℄. Fromthe perspe
tive of an e�e
tive potential this is not a failure but an expe
tedfeature whi
h suggests that to obtain saturation in nu
lear matter three or highermany-nu
leon for
es are required. Unfortunately, an RG based approa
h for the
ombined two- and three-body potential is not yet available, but an approximation
an be made in whi
h the three-body 
ontributions are repla
ed by leading-orderthree-nu
leon for
e from 
hiral e�e
tive �eld theory [47℄.Thus we add the three-nu
leon for
e from [47℄ to our Vlow k potential. Thisthree-nu
leon for
e 
ontains a long-range 2π-ex
hange part Vc, an intermediate-range 1π-ex
hange part VD and a short-range 
onta
t part VE. The 2π-ex
hangeintera
tion is given by

Vc =
1

2

(

gA

2fπ

)2
∑

i6=j 6=k

(~σi · ~qi)(~σj · ~qj)
(q2

i +m2
π)(q2

j +m2
π)
F αβ

ijkτ
α
i τ

β
j , (2.14)where ~qi = ~k′i − ~k denotes the di�eren
e of initial and �nal nu
leon momentum
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F αβ

ijk = δαβ

[

−4c1m
2
π

f 2
π

+
2c3
f 2

π

~qi · ~qj
]

+
∑

γ

c4
f 2

π

ǫαβγτγ
k · (~qi × ~qj) , (2.15)while the 1π-ex
hange and the 
onta
t intera
tion are given respe
tively by

VD = − gA

8f 2
π

cD
f 2

π

Λχ

∑

i6=j 6=k

~σj · ~qj
q2
j +m2

π

(~τi · ~τj)(~σi~qj) , (2.16)
VE =

cE
2f 4

πΛχ

∑

i6=j 6=k

(~τj · ~τk) , (2.17)where gA = 1.29, fπ = 92.4 MeV andmπ = 138.04 MeV. The low-energy 
onstantsare c1 = −0.76 GeV−1, c3 = −4.78 GeV−1 and c4 = 3.96 MeV−1. For Λχ a valueof 700 MeV has been 
hosen [48℄. In addition, all three 
ontributions need to bemultiplied with the square of the regulator used in three-nu
leon for
e �ts:
fR(p, q) = exp

[

−
(

p2 + 3q2/4

Λ2
R

)4
]

, (2.18)where p and q are the Ja
obi momenta and ΛR is the regulator 
uto�.The low-energy 
onstants cD and cE need to be �tted to some experimentaldata. The �t in Ref. [47℄ is to the experimental binding energies of 3H and 4He,but we also attempted a �t to the nu
lear saturation energy and in
ompressibility.We refer to the �rst �t as �nu
lei �t� while we label the se
ond one with the valueof in
ompressibility used to �t it. The values of the low-energy 
onstants cD and
cE at ΛR = 500 MeV = 2.534 fm−1 are for the �nu
lei �t� cD = −3.9268 and cE =
−1.1288 [47℄, while for the nu
lear �t with K0 = 220 MeV we have cD = 54.9241and cE = 16.343. However, sin
e it is expe
ted that both 
onstants cD and cE areof �natural� size, i.e. of order one, the �nu
lei �t� should be 
onsidered somewhatsuperior.Sin
e the three-nu
leon for
e is given in operator form, there is no need totransform it to the partial wave basis. Thus, the three-body for
e 
ontribution tothe total energy is

〈Φ|V3NF |Φ〉 =
Ω

6(2π)9

∑

s1ms1

∑

s2ms2

∑

s3ms3

∑

t1mt1

∑

t2mt2

∑

t3mt3

∫

d3~p1

∫

d3~p2

∫

d3~p3

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 ; ~p3, s3ms3
, t3mt3 |V3NF

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 ; ~p3, s3ms3
, t3mt3) , (2.19)



2.3. THREE-NUCLEON FORCE 27where the states have been fully antisymmetrized as in the 
ase of two body for
e,and are thus:
|~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 ; ~p3, s3ms3

, t3mt3)

=
1√
6
A123 |~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 |~p3, s3ms3

, t3mt3〉 , (2.20)where A123 = 1 − P12 − P13 − P23 + P12P23 + P13P23 is de�ned with the standardex
hange operators introdu
ed in Appendix B.1.2.
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Figure 2.6: Energy per parti
le as a fun
tion of density in symmetri
 nu
learmatter.Fig. 2.6 shows the energy per parti
le for symmetri
 nu
lear matter for severalmi
ros
opi
 nu
leon potentials. For 
omparison we also show the result for AV 18+
dv + UIX from Ref. [49℄ whi
h reprodu
es the properties of nu
lear matterat saturation ni
ely and is 
urrently a

epted as the most a

urate nu
leoni
potential. If we 
ompare its values, represented by points, and those of Vlow k, ourstatement from the beginning of this se
tion about the la
k of saturation and theneed for a three body for
e be
omes 
lear. As is evident Vlow k shows no saturationin the density range shown here, but as noted before, this is not unexpe
ted.In addition, we also 
ompare the results with the VUCOM nu
leon-nu
leonpotential from [50℄. The VUCOM makes use of unitary 
orrelation operators tode
ouple the energy s
ales and thus transfers the high momentum e�e
ts to thelow momenta. This property and the fa
t that both, Vlow k and VUCOM , preserve



28 CHAPTER 2. INFINITE NUCLEAR MATTERthe phase shifts makes these two e�e
tive NN potentials similar, but di�eren
es inthe 
onstru
tion lead to su�
ient di�eren
es for these potentials to 
onsider themdistin
t from one another. As visible in Fig. 2.6 they produ
e di�erent resultsfor nu
lear matter, the biggest di�eren
e being that VUCOM exhibits saturation athigher densities, but interestingly has almost the 
orre
t binding energy.As for the 
ombinations of the Vlow k with a three-nu
leon for
e it is 
lear thatfor both, the nu
lei �t as well as the nu
lear �t, there is saturation, but it is notat the 
orre
t point. The �t to �nite nu
lei is espe
ially bad for the 
al
ulations ofnu
lear matter be
ause of its enormous sti�ness. The nu
lear matter �t has a moreappropriate sti�ness, but the asymmetry energy is mu
h too large, at = 42.46 MeVand as mentioned before the values of cD and cE are too large. Unfortunately atthis time there still does not exist a mi
ros
opi
 three-body for
e whi
h 
an beused in 
ombination with VUCOM in nu
lear matter 
al
ulations.What we have seen here is that two-body intera
tions su
h as the Vlow k and
VUCOM alone are 
learly not useful for standard many-body theory 
al
ulations ofnu
lear matter. While they improve the situation, the three-body for
es 
omingfrom 
hiral perturbation theory do not reprodu
e the saturation properties ofnu
lear matter 
orre
tly. Sin
e we are interested in investigating the properties ofhyperons in nu
lear matter we have to be sure that our nu
leoni
 se
tor is as goodas possible so that any 
on
lusions made in the hyperoni
 se
tor are independentof it. This leads to the 
on
lusion that we have to repla
e either the nu
leoni
se
tor with a suitable parameterization or to repla
e the three-body for
e withanother one whi
h in 
ombination with two-body for
es is 
apable of a

uratelyreprodu
ing the properties of nu
lear matter.We will explore both options in the following. In the next 
hapter we willrepla
e the nu
leoni
 part with a 
orresponding parameterization of the energyper parti
le. In the remaining 
hapters we will use a density-dependent Yukawa-like for
e to mimi
 the e�e
t of the three-body for
e. Both of these substitutionshave parameters whi
h are �tted to the properties of nu
lear matter. This makesthem as reliable as possible for further 
al
ulations regarding the hyperons. Thereason for using both is that they o�er di�erent insights into nu
lear matter withhyperons.



3 EOS and β-equilibrium
An important appli
ation of in�nite nu
lear systems introdu
ed in the previous
hapter is the study of dense baryoni
 systems whi
h 
an be found in astrophysi
al
ontexts su
h as the interior of neutron stars. Like all stars, a neutron star is a�battle� between the pull exerted by gravitation and a pressure generated insidethe star. In the 
ase of a neutron star, this pressure 
omes from the degenera
ypressure of the baryons. This makes a neutron star a unique stru
ture wheregravitational and nu
lear for
es are both of equal interest. While the low-densitysurfa
e of a neutron star is explained in terms of nu
lei and neutrons, the interior ofit remains largely a mystery with many possibilities. These possibilities range fromalmost pure neutron matter with a few ele
trons and protons, through in
lusionof exoti
 states su
h as hyperons, pions, kaons as well as various 
ondensates, allthe way to the possible realization of pure quark matter.Inside a neutron star at densities above the �neutron drip line� we �rst expe
tto �nd the form of matter in whi
h neutrons, protons and ele
trons exist in anequilibrium regulated by the weak for
e. This equilibrium is referred to as β-equilibrium be
ause the β-de
ay and similar pro
esses dominate. However, sin
ethe density in
reases as we go deeper into the star we expe
t other parti
les su
has the hyperons to appear. It is reasonable to expe
t hyperons to appear �rstsin
e they are the lightest baryons after the nu
leons. Other possibilities in
ludevarious 
ondensates and quarks.This 
hapter is organized as follows: Se
. 3.1 presents the formalism of theequation of state and other related quantities. In Se
. 3.2 we introdu
e and showresults for the parametri
 equation of state. Se
. 3.3 is devoted to the 
al
u-lation of β-equilibrium and the stellar 
omposition. The resulting 
ompositionand threshold densities of hyperons are shown in Se
. 3.3.1 and Se
. 3.3.2, respe
-tively. Finally, in Se
. 3.4, we show results and dis
us the 
onsequen
es of hyperonemergen
e on the maximum mass of neutrons stars.29



30 CHAPTER 3. EOS AND β-EQUILIBRIUM3.1 Equation of stateThe equation of state (EoS) of nu
lear matter relates pressure or energy withdensity and temperature for equilibrated nu
lear matter. The quantity whi
h oneneeds is the energy per parti
le, given by Eq. (2.7). Additional information whi
his needed is the 
omposition whi
h is determined by β-equilibrium. This will beexplained later. The total energy 
an then be written as 1
E/A =

2

ρB

∑

b

pFb
∫

0

d3p

(2π)3

(

Mb +
p2

2Mb

+
1

2
Ub(p)

)

, (3.1)where we have used the single-parti
le potential.With the help of the baryon density fra
tion, xb = ρb/ρB, whi
h relates to theFermi momentum as
p3

Fb
= 3π2xbρB , (3.2)we 
an then express the EoS as

E/A =
∑

b



Mbxb +
3

5

p2
Fb

2Mb
xb +

1

ρB

pFb
∫

0

p2dp

2π2
Ub(p)



 . (3.3)In symmetri
 nu
lear matter the lowest energy is obtained by minimizing E =
E/A. This quantity then de�nes the saturation density ρ0 (equivalently, pF0

) andthe energy E0 via
∂E
∂ρB

∣

∣

∣

∣

sat.

= 0 . (3.4)The 
urvature at the saturation point with respe
t to ρB is proportional tothe in
ompressibility,
K0 = p2

F

∂2E
∂p2

F

∣

∣

∣

∣

sat.

= 9ρ2
B

∂2E
∂ρ2

B

∣

∣

∣

∣

sat.

, (3.5)where we have de�ned the Fermi momentum pF of nu
lear matter 
omposed ofan equal number of protons and neutrons as pF = 3π2ρB/2.The volume symmetry energy 
orresponds to the 
urvature of E with respe
tto ηt,
at =

1

2

∂2E
∂η2

t

∣

∣

∣

∣

sat.

=
1

8

∂2E
∂x2

p

∣

∣

∣

∣

sat.

, (3.6)1For the sake of 
larity and brevity we have 
hanged the notation somewhat. Now insteadof expli
it isospin indi
es tmt we use an abbreviation b (b ≡ tmt)



3.1. EQUATION OF STATE 31where η2
t = (ρp − ρn)/ρB .For the experimental values of these quantities one 
an �nd the following valuesin the literature, 
f. [51, 52℄. For the saturation density one �nds

ρ0 = 0.16 ± 0.02 fm−3 . (3.7)The value of the energy per nu
leon at saturation density, whi
h in symmetri
matter represents the lowest energy, is
E =

E

A
= −15.6 ± 0.2 MeV , (3.8)the in
ompressibility at the same density is

K ≈ 220 ± 30 MeV , (3.9)and the symmetry energy is
at ≈ 30 MeV . (3.10)3.1.1 Chemi
al potentialThe 
hemi
al potential of a fermion at zero temperature is equal to its Fermienergy. Depending on the approximations we use there are two 
ases of interest,that of nonrelativisti
 intera
ting parti
les, baryons:

µb = Mb +
p2

Fb

2Mb
+ Ub(pFb

) . (3.11)and that of relativisti
 nonintera
ting parti
les, in the form of leptons:
µl =

√

m2
l + (3π2ρl)

1
3 , (3.12)where ρl is the lepton density.At �nite temperature the 
hemi
al potential of fermions for a given density isfound as a solution of the equation

ρi =
1

π2

∫ ∞

0

p2dp
1

1 + exp ((ǫi − µi)/T )
, (3.13)where ǫi is the single-parti
le energy of either leptons or baryons.



32 CHAPTER 3. EOS AND β-EQUILIBRIUM3.2 Parametri
 NN equation of stateIt is well known that non-relativisti
 many-body 
al
ulations, based purely ontwo-body for
es, fail to reprodu
e the empiri
al saturation point for symmetri
nu
lear matter. The usual solution to this problem is the introdu
tion of three-body for
es. However a three-body for
e whi
h would 
omplement the Vlow k ,while providing the 
orre
t binding properties of light nu
lei, does not reprodu
ethe properties of nu
lear matter at saturation density [47℄, 
f. Fig. 2.6. Be
auseof this we will �rst attempt to in
lude the higher-order e�e
ts by repla
ing thepurely nu
leoni
 
ontribution to the energy per parti
le
ENN/AN =

2

ρN

∑

N

pFN
∫

0

d3p

(2π)3

(

MN +
p2

2MN

+
1

2
UN

N (p)

)

, (3.14)by an analyti
 parameterization developed by Heiselberg and Hjort-Jensen [6℄
ENN/AN = MN − E0u

u− 2 − δ

1 + uδ
+ S0u

γ(1 − 2xp)
2 , (3.15)where u = ρN/ρ0 is the ratio of the total nu
leoni
 density ρN = (xp + xn)ρB tothe nu
lear saturation density.In Eq. (3.14) we have separated the potential 
ontribution of nu
leons into one
oming from the intera
tion with other nu
leons, UN

N (p), and one 
oming from theintera
tion with hyperons, UY
N (p). The separation 
an be written as
Ub(p) = UN

b (p) + UY
b (p) , (3.16)where we de�ne the nu
leoni
 
ontribution from Eq. (2.9), with the isospin sub-stitution (b ≡ tmt). The latter part, UY

N (p), does not 
ontribute to the purenu
leoni
 EoS and was thus not in
ludes in the repla
ement.
UN

b (p) =
∑

b′=p,n

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

2π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (t))2

[

V di
(LS)Jbb′(q) − (−1)1−S+LV xc

(LS)Jbb′(q)
]

. (3.17)An analogous de�nition 
an be introdu
ed for the hyperoni
 
ontribution. Wealso note that due to the la
k of the Y Y intera
tion the single-parti
le potential
ontributions of the form UY
Y (p) will be negle
ted throughout this work.



3.2. PARAMETRIC NN EQUATION OF STATE 33The used parameterization was �tted to the energy per parti
le obtained fromvariational 
al
ulations using the Argonne V18 nu
leon-nu
leon intera
tion withthree-body for
es and relativisti
 boost 
orre
tions. The best �t parameters are
E0 = −15.8 MeV, S0 = 32 MeV, γ = 0.6 and δ = 0.2 [49℄.The advantage of using this parameterization is that, sin
e we are primarilyinterested in the behavior of the hyperons, we want our nu
leoni
 part of theEoS to be as reliable as possible. Sin
e the EoS from [49℄ is 
onsidered as oneof the most reliable ones avaliable, the usage of it removes as mu
h as possibleun
ertainties 
oming from the nu
leoni
 EoS. Thus we 
an be reasonably surethat any 
on
lusion we make about the hyperons is not subje
t to e�e
ts 
omingfrom the nu
leoni
 part.Additionally this approximation will allow us to use the density range wellabove the range of validity of the NN Vlow k, whi
h is limited by the 
ut-o�. Inthe 
ase of symmetri
 matter at zero temperature the limit is ∼ 6ρ0 while forpure neutron matter that limit is ∼ 3ρ0. The extension of the density range willenable us to study the masses of neutrons stars with hyperons, sin
e the maximummass is usually rea
hed at densities ∼ 7− 10ρ0. The 
ut-o� of the Y N Vlow k willnot pose a problem, sin
e the 
on
entrations of hyperons in neutron stars are notvery large. The drawba
k is that our approa
h is no longer mi
ros
opi
 and notappli
able for a Landau Fermi liquid 
al
ulation that we want to perform lateron. For this reason in the next 
hapter we will go ba
k to a more mi
ros
opi
approa
h.The parameters E0, δ, S0 are related to properties of nu
lear matter at satura-tion density, i.e. E0 is the binding energy per nu
leon at saturation density while
S0 and δ are 
onne
ted to the symmetry energy and the in
ompressibility, respe
-tively. Sin
e there are no hyperons at saturation density we 
an use Eq. (3.15)dire
tly to �nd at = S0 and K0 = −18E0/(1 + δ).This parameterization should then enable us to study the e�e
ts of the hyper-ons without having to question the validity of the NN intera
tion. It also a�ordsus the opportunity to 
hange the in
ompressibility and symmetry energy in a gen-erally a

epted range of values. From experimental 
onstraints an a

epted rangeof values for K0 is 200 MeV to 300 MeV and for at it is 28 MeV to 36 MeV, see[53℄ and referen
es therein. We aim to use the parameterization and modify K0and at within this range. The goal is to study the e�e
t of these two parameterson the appearan
e and 
on
entrations of hyperons in dense matter. While thesetwo parameters do not in�uen
e dire
tly the 
on
entration of parti
les, they do
hange the 
omposition of the matter indire
tly by 
hanging the energy available,thus regulating the point at whi
h the hyperons will appear.In Fig. 3.1 the total energy per parti
le as a fun
tion of density is shown forsymmetri
 nu
lear matter, where only the result of the pure nu
leoni
 part ofthe EoS from the parameterization Eq. (3.15) is used. In symmetri
 matter the
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Figure 3.1: Parametri
 EoS in symmetri
 nu
lear matter.
energy per parti
le is only sensitive to the in
ompressibility, whi
h 
an be seen inthe �gure for values between K0 = 200 MeV and K0 = 300 MeV. The various EoSreprodu
e the saturation point at E/A = −16 MeV. The parameter K0 allows usto 
lassify the EoS as a sti�er (K0 = 300 MeV) or a softer (K0 = 200 MeV) one.Additionally, the in
ompressibility will dire
tly 
ontrol the maximum allowedmass of a neutron star whi
h is supported by the 
orresponding EoS. However,if hyperons are present this 
on
lusion is no longer straightforward. The reasonis that by in
reasing the in
ompressibility the energy of the system is also in-
reased and as a 
onsequen
e, more hyperons 
an be produ
ed. This in turn willde
rease the allowed maximum mass of a neutron star. However su
h a nontrivial
onne
tion 
reates a 
onundrum: if we use a sti�er EoS by in
reasing the in
om-pressibility we then allow for higher hyperon 
on
entrations whi
h immediatelysoftens the EoS again.With the help of Eq. (3.14) we have separated the energy per parti
le inEq. (3.1) into a purely nu
leoni
 part and a remainder as

E/A =
ρN

ρB
ENN/A+ E ′/A , (3.18)
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E ′/A =

2

ρ

∑

N

pFN
∫

0

d3p

(2π)3

1

2
UY

N (p)

+
2

ρ

∑

Y

pFY
∫

0

d3p

(2π)3

(

MY +
p2

2MY

+
1

2
UN

Y (p) +
1

2
UY

Y (p)

)

. (3.19)In symmetri
 matter 
omposed only of nu
leons the E ′/A will be equal tozero, but with this separation we are now able to 
al
ulate E/A with an arbitrary
on
entration of hyperons. In the following se
tion, after we have determined the
on
entrations through the requirement of equilibrium, we will use it to 
al
ulatethe equation of state with hyperons.3.3 β-equilibrium

µn(pFn
) < µB(0)

µn(0)

µn(pFn
)

µB(0)

n B

µn(pFn
) > µB(0)

µn(0)

µn(pFn
) µB(pFB

)

µB(0)

n B

Figure 3.2: S
hemati
 
hemi
al equilibrium.The 
on
entrations of di�erent 
onstituents in stars are determined by therequirements of ele
tri
 
harge neutrality and equilibrium under weak and strongintera
tion pro
esses. If we 
onsider a general pro
ess with baryons B2 and B4, alepton l and its 
orresponding neutrino νl, we have [54℄
B2 → B4 + l + ν̄l; B4 + l → B2 + νl , (3.20)



36 CHAPTER 3. EOS AND β-EQUILIBRIUMwhere l ∈ {e−, µ−, τ−} are the negatively 
harged leptons and ν̄l the 
orrespondingantineutrinos. For the 
ondition of 
harge neutrality we require that
∑

b

ρ
(+)
b +

∑

l

ρ
(+)
l =

∑

b

ρ
(−)
b +

∑

l

ρ
(−)
l , (3.21)where the densities of positively and negatively 
harged baryons and leptons aredenoted by ρ(±)

b and ρ(±)
l , respe
tively. For the equivalen
e of 
hemi
al potentialswe require

µb = bbµn − qb(µl − µνl
) , (3.22)where the 
hemi
al potentials µ are labeled by the 
orresponding parti
le and bbis its baryon number and qb is its 
harge.In the 
ase of a medium 
omposed of nu
leons, hyperon and leptons wherethe neutrinos have left the system (µν = 0) all lepton and all antilepton 
hemi
alpotentials are equal. The β-equilibrium 
ondition 
an then be written as expli
itly:

µΣ− = µn + µe , (3.23)
µΛ = µΣ0 = µn , (3.24)
µΣ+ = µp = µn − µe . (3.25)For a given total baryon density ρB Eq. (3.21) and Eq. (3.22) govern the 
om-position of the matter, i.e. the baryoni
 and leptoni
 
on
entrations. The 
orre-sponding solution is referred to as β-stable matter.Fig. 3.3 shows the neutron 
hemi
al potential in β-equilibrated matter for allmodels. The hyperons start to appear at the point at whi
h the lines representingthe models with hyperons deviate from the pure NN line. As 
an be seen, on
ethe hyperons appear, the slope of the 
urves 
hanges, and the in
rease of theneutron 
hemi
al potential slows down. The se
ond in�e
tion point, whi
h 
anbe most 
learly seen in the 
urve for NSC89 on the right-hand side, is a signatureof the appearan
e of the se
ond hyperon.3.3.1 Composition of matterFor the sake of 
onsisten
y we now have to treat the nu
leoni
 part of the 
hemi
alpotential µN in the same way as the 
orresponding energy per parti
le. Sin
e the
hemi
al potential 
an be obtained as a derivative of the energy density ǫ and isrelated to the energy per parti
le via ǫ = ρBE/A, we use the de�nition

µb =
∂ǫ

∂ρb
, (3.26)
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Figure 3.3: Neutron 
hemi
al potential in β-equilibratedmatter for all models withtwo di�erent values for the in
ompressibility. On the left-hand sideK0 = 200 MeV,on the right-hand side K0 = 300 MeV and for both at = 32 MeV.to yield the appropriate repla
ement in the nu
leoni
 
hemi
al potential. Finally,we arrive at the expression
µN =

∂ǫNN

∂ρN

+ UY
N (kFY

), (3.27)where we have e�e
tively repla
ed MN +
k2

FN

2MN
+ UN

N (kFN
) of Eq. (3.11) with thederivative ∂ǫNN/∂ρN . In this way the parameterization Eq. (3.15) enters into thenu
leoni
 part of the 
hemi
al potential.Sin
e we are only parameterizing the nu
leoni
 se
tor, no su
h repla
ement isne
essary for the hyperons. However, sin
e we have negle
ted the Y Y intera
tion,

UY
Y (kFY

) is zero and Eq. (3.11) redu
es to
µY = MY +

k2
FY

2MY
+ UN

Y (kFY
) . (3.28)As an indi
ator for the densities at whi
h hyperons start to appear we showthe 
on
entrations of all parti
les for two di�erent values of K0. The resultsare presented in Figs. 3.4 and 3.5. In Fig. 3.4 a �soft� EoS is used, while inFig. 3.5 a �sti�� EoS is used. The point of the hyperon appearan
e 
an easily
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Figure 3.4: Parti
le fra
tion for a "soft" EoS with all Y N intera
tions.be estimated from these �gures. Sin
e the logarithmi
 s
ale begins at rather low
on
entrations all we need to do is to take the interse
tion of the density-axiswith the appropriate 
urve des
ribing the hyperon 
on
entration and we get thehyperon threshold density. In all of the �gures we 
an see how at the onset of thehyperon appearan
e their 
on
entration rises qui
kly and then rea
hes a plateauafter whi
h the 
on
entration 
hanges very slowly.It is notable that with the appearan
e of the Σ− hyperon the density of thenegatively 
harged leptons starts to drop immediately. This is be
ause their rolein the 
harge neutrality 
ondition, Eq. (3.21), is now being taken over by the Σ−.Similarly, the appearan
e of the Λ hyperon will a

elerate the disappearan
e ofneutrons sin
e both are neutral parti
les.On
e the 
omposition of matter has been determined by demanding β-equilibrium we 
an 
al
ulate the energy per parti
le. For this purpose, we 
annot useEq. (3.1), but have to use Eq. (3.18) and Eq.(3.15). The result is presented inFig. 3.6 where the energy per parti
le in β-stable matter is shown as a fun
tion ofdensity for the di�erent Y N models. The symmetry energy is �xed to at = 32 MeVwhile the in
ompressibility is set to K0 = 200 MeV (left panel in the �gure) and
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Figure 3.5: Parti
le fra
tion for a "sti�" EoS and all Y N intera
tions.to K0 = 300 MeV (right panel). In addition, the EoS with hyperons is 
omparedwith the purely nu
leoni
 one.One easily observes the onset of hyperon appearan
e as the point at whi
hthe 
urves start to deviate. As expe
ted the di�eren
es between the various Y Nintera
tions do not modify the EoS for very small densities. In the range between
(2− 3)ρ0, all EoSs are similar to ea
h other. However, for in
reasing densities thein�uen
e of hyperons be
omes more signi�
ant resulting in rather di�erent EoSs.This 
on
erns not only the magnitudes of the di�erent energies per parti
le butalso their slopes at higher densities. These variations will lead to di�eren
es inthe pressure and �nally to signi�
ant 
hanges in the possible maximum mass of aneutron star.3.3.2 Threshold densitiesThe onset of a given hyperon spe
ies 
an be determined by in
reasing the densityfor �xed K0 and at. The resulting threshold densities for the Σ− hyperon for
ertain in
ompressibilities and symmetry energies are 
olle
ted in Fig. 3.7 for six
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Figure 3.6: EoS for β-equilibrated matter for all models with two di�erent valuesfor in
ompressibility. The one on the left-hand side is "soft" and the one on theright-hand side is "sti�".
di�erent Y N intera
tions. Similarly, the threshold densities for the Λ hyperon areshown in Fig. 3.8.In these �gures one sees how the single-parti
le potentials for various Y Nintera
tions modify the threshold densities. In this way, the properties of the Y Nintera
tion in Fig. 2.3 and Fig. 2.5 
an be attributed to the hyperon appearan
es.From Fig. 3.7 one sees that the Σ− hyperon appears in between 1.4ρ0 and 2.4ρ0with the ex
eption of the χEFT600 model. For almost all used Y N intera
tionsthe Σ− is the �rst hyperon whi
h will appear even though the Λ hyperon is thelighter one. The reason is that the heavier mass of the Σ− is o�set by the presen
eof the e− 
hemi
al potential, 
f. Eq. (3.23). In general, heavier and more positively
harged parti
les appear later. In the 
ase of the Σ−, 
ompared to the Λ, the e�e
t
aused by the ele
tri
 
harge dominates the one 
oming from the mass in almostall 
ases.For the Σ− hyperon a further modi�
ation 
aused by the ele
tri
 
harge, is thein�uen
e of the symmetry energy on the threshold density be
ause the ele
tron
hemi
al potential is modi�ed by the symmetry energy. Thus, the de
rease of thethreshold densities due to the in
rease of K0 is analogous to the de
rease due to
at. For the Λ hyperon the range of threshold densities is between 1.7ρ0 to 4.5ρ0,



3.3. β-EQUILIBRIUM 41
 200

 220

 240

 260

 280

 300

 1.4  1.5  1.6  1.7  1.8  1.9  2  2.1

K
0[

M
eV

]

ρB[ρ0]

NSC97a

at=28 MeV
at=30 MeV
at=32 MeV
at=34 MeV
at=36 MeV

 1.4  1.5  1.6  1.7  1.8  1.9  2  2.1
ρB[ρ0]

NSC97c

 1.4  1.5  1.6  1.7  1.8  1.9  2  2.1  2.2
ρB[ρ0]

NSC97f

 200

 220

 240

 260

 280

 300

 1.6  1.8  2  2.2  2.4

K
0[

M
eV

]

ρB[ρ0]

NSC89

at=28 MeV
at=30 MeV
at=32 MeV
at=34 MeV
at=36 MeV

 1.6  1.8  2  2.2  2.4
ρB[ρ0]

J04

 4.5  5  5.5  6  6.5  7  7.5
ρB[ρ0]

χEFT600Figure 3.7: Threshold densities of Σ− depending on the in
ompressibility and thesymmetry parameter for di�erent YN intera
tions.depending on the in
ompressibility, symmetry energy and the used Y N intera
-tion, 
f. Fig. 3.8. The in�uen
e of the in
ompressibility on the threshold densityfor this hyperon is larger than the one from the symmetry energy. This is rea-sonable sin
e the in
ompressibility 
ontrols the rate of the energy in
rease withdensity more dire
tly, while the symmetry energy a�e
ts only the details of the β-equilibrium. One 
learly re
ognizes in Fig. 3.8 that the Λ appears earlier for largerin
ompressibilities. Thus, in general we see that for in
reasing in
ompressibilitiesthe threshold densities de
rease for both hyperons.In 
ontrast to the in�uen
e of K0 and at, the in�uen
e of the single-parti
lepotentials on the threshold densities is harder to analyze.The threshold densities for the Σ− are largest for the χEFT600 intera
tionsin
e it is obtained with the most repulsive Σ− single-parti
le potential. In gen-eral, hyperons will appear earlier for a more attra
tive single-parti
le potential.This be
omes obvious from Eq. (3.11): the 
hemi
al potential de
reases for amore negative Ub(kFb
) and, 
onsequently, the threshold density will also de
rease.
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χEFT600Figure 3.8: Threshold densities of Λ depending on the in
ompressibility and thesymmetry parameter for di�erent YN intera
tions.Thus, in this way, the most repulsive single-parti
le potential like the one for the
χEFT600 leads to the largest threshold density.For the Λ hyperon the threshold densities are smallest for the most attra
tivesingle-parti
le potential obtained with the J04 model, 
f. Fig. 3.8. On the otherhand, they are largest for the most repulsive NSC89 intera
tion. For the NSC97fintera
tion whi
h is in between these extrema the Λ threshold densities are very
lose to those of the most repulsive NSC89 one, 
f. Fig. 3.8. The reason why theyare so 
lose lies in the appearan
e of the Σ− hyperon. The e�e
t is 
aused by theslowdown of the in
rease of the neutron 
hemi
al potential and is further relatedto the rapid in
rease of the Σ− density just after its appearan
e, 
f. Fig. 3.5.Basi
ally, the slowdown o

urs as soon as a new hyperon appears be
ause mostof the energy is used for its 
reation. On
e the 
on
entration of the hyperonhas rea
hed a plateau, the neutron 
hemi
al potential resumes its in
rease anda further hyperon might appear if the 
onditions for its appearan
e are ful�lled.Thus, the appearan
e of the �rst hyperon shifts the threshold density of the next



3.4. STRUCTURE OF NEUTRON STARS 43hyperon towards higher values. Through this me
hanism a delay of the appearan
eof the next spe
ies of hyperons is a
hieved.This e�e
t explains why the threshold densities of the Λ are so similar forthe NSC97f and NSC89 intera
tions. Furthermore, it also makes 
lear why the
Λ threshold densities for the χEFT600 intera
tion are smaller than those of theNSC97a, NSC97
 and NSC97f intera
tions even though their Λ single-parti
lepotentials are almost the same, 
f. Fig. 2.3.In the 
ase of the J04 model the above des
ribed delay me
hanism be
omesvery interesting. For this Y N intera
tion the Λ and Σ− hyperon appear almostat the same density. In this 
ase the neutron 
hemi
al potential stagnates but the
Λ and the Σ− single-parti
le potentials are attra
tive enough to 
ompensate thise�e
t. However the e�e
t of a slower in
rease of the neutron 
hemi
al potential
ould be seen in the slower initial in
rease of the densities of hyperons as well asthe later onset of the plateau. This explains why in Fig. 3.3 the J04 is the lowest
urve.To summarize this se
tion, we observe that strangeness appears around ∼ 2ρ0in all used Y N models and parameter sets. Note, that the appearan
e of the �rsthyperon, be it the Σ− or the Λ, 
annot be further altered by taking higher Y Yintera
tions into a

ount whi
h have been negle
ted in this work. The presentstudy in terms of the broad parameter ranges as well as the multitude of the used
Y N intera
tion models reveals that strangeness in the interior of neutron stars
annot be ignored. This will be further analyzed in the following. The resultsof this study where presented in [55℄ and similar 
on
lusions are obtained in theBrue
kner-Hartree-Fo
k theory [56℄.3.4 Stru
ture of neutron starsThe last statement 
an be further underlined by an investigation of the EoS in-
luding hyperons on neutron stars. We fo
us on non-rotating stars, thus ignoringany 
hanges, 
aused by the rotation, on the e.g. 
entral pressure or energy density.For a given EoS, the mass-radius relation of a NS 
an be determine by solvingthe familiar Tolman-Oppenheimer-Volko� equation (TOV) [57℄. To des
ribe theouter 
rust and atmosphere of the star i.e., the region of very small baryon den-sities below ρB < 0.001 fm−3, we have used the EoS of Baym, Pethi
k, andSutherland [58℄, whi
h relies on properties of heavy nu
lei. For densities between
0.001 fm−3 ≤ ρB ≤ 0.08 fm−3, i.e. for the inner 
rust, we have used the EoS ofNegele and Vautherin [59℄ who have performed a Hartree-Fo
k 
al
ulation of thenu
lear stru
ture in the ground state. Details on 
rust properties 
an be founde.g. in [60, 61℄, while re
ent state-of-the-art approa
hes are dis
ussed in [62℄.As input for the TOV equation we need the relationship between the total



44 CHAPTER 3. EOS AND β-EQUILIBRIUMenergy density and the pressure. The total energy density is obtained by addingbaryoni
 and the leptoni
 
ontributions,
ET

Ω
= ρB

E

A
+
El

Ω
. (3.29)The leptoni
 
ontribution is that of a free gas and 
an be 
al
ulated analyti
ally

El

Ω
=

1

8π2

∑

l=e,µ,τ

[

pFl

(

2µ2
l −m2

l

)

µ2
l −m4

l ln

(

pFl
+ µl

ml

)]

. (3.30)The resulting solution of the TOV equation 
an then be used to 
ompare theresults of our EoS to observations of masses and radii of pulsars.The most a

urately measured masses of neutron stars are from timing obser-vations of radio binary pulsars. These binaries in
lude a neutron star orbiting aneutron star or a white dwarf of an ordinary main-sequen
e star. With su�
ientobservation time an astounding a

ura
y 
an be a
hieved. For example in thebinary pulsar PSR 1913+16 the masses are measured to be 1.3867 ± 0.0002 and
1.4414 ± 0.0002 M⊙ respe
tively [63℄. It is signi�
ant to note that while doubleneutron star binaries have a mean mass 
lose to the 
anoni
al 1.4 M⊙, binarieswith white a dwarf have a broader range of masses. Some 
ases have been reportedwhere even a mass of pulsar larger than 2 M⊙ was observed, but most have beenrefuted or are under suspi
ion. A re
ent review of neutron star observations 
anbe found in [53℄.
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Figure 3.9: Dependen
e of mass of neutrons star on 
entral density for soft EoS,shown on the left-hand side and sti� EoS on the right-hand side. The 
urves areshown for a symmetry energy at = 32 MeV and di�erent Y N intera
tions. Valuesof pure NN intera
tion is also shown.



3.4. STRUCTURE OF NEUTRON STARS 45In Fig. 3.9 we show the dependen
e of neutrons star masses on 
entral density,where both baryon and lepton densities have been taken into a

ount, for several
Y N intera
tion models and two values of K0. The masses are given in units ofsolar mass and the 
entral density in units of saturation density. The previouslymentioned advantage of using the parametri
 equation of state in now obvious aswe 
an see here that the maximum of neutron star mass is realized for densitiesabove 6ρ0.
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Figure 3.10: Mass-radius relation of a neutron star for a symmetry energy at =
32 MeV and di�erent Y N intera
tions. For 
omparison the mass-radius 
urveobtained for the pure NN intera
tion is also shown. Left panel: soft EoS, rightpanel: sti� EoS.In Fig. 3.10 the mass-radius relation of a NS for a soft EoS (left panel) andfor a sti� EoS (right panel) is shown. The symmetry energy at = 32 MeV iskept �xed in both 
al
ulations and the resulting mass-radius relation without anystrangeness in�uen
e is also added for 
omparison.As 
an be seen from Fig. 3.10 the appearan
e of hyperons redu
es the massof a NS drasti
ally 
ompared to the pure NN 
ase. Even for larger values of thein
ompressibility, i.e. K0 = 300 MeV, the maximum mass, obtained for all used
Y N intera
tions, is still below the 
anoni
ally a

epted 1.4 M⊙. This is not anunusual result and is also seen in other related works su
h as e.g. [64, 65, 66, 67℄.In general, any in
lusion of further degrees of freedom will redu
e the NS mass.Furthermore, we have to keep in mind that only the Y N intera
tion has beentaken into a

ount and if Y Y intera
tions were 
onsidered the mass-radius re-lation would also 
hange. However, in order to 
al
ulate the maximum mass ofa NS large densities of the order of ∼ 5ρ0 are needed. For these densities it isexpe
ted that the Y Y intera
tion will provide some repulsions whi
h in turn leadsto higher allowed maximum NS masses. This behavior was found in [67℄ where



46 CHAPTER 3. EOS AND β-EQUILIBRIUMan extensive study of Skyrme models in
luding only the Λ hyperon reveals anin
rease of the maximum mass. In almost all 
onsidered 
ases the in
rease wasstrong enough to �nd maximum masses above 1.44M⊙. On the other hand, ifthe Y Y intera
tion is attra
tive like in the 
ase of [64℄ this will lead to smallermaximum masses. Additionally, for su
h high densities or hyperon 
on
entrationshigher order intera
tions su
h as the Y NN , Y Y N and Y Y Y intera
tions mightalso be
ome important.



4 Landau Fermi liquid theoryLandau developed Fermi liquid theory in order to des
ribe strongly intera
tingsystems at low temperatures. In this theory, elementary ex
itations of a stronglyintera
ting system are des
ribed by quasiparti
les. If the low temperature as-sumption holds these quasiparti
les are long-lived and intera
t only weakly. If weuse the Fermi momentum of the system to de�ne the ground state, all ex
itationsabove it are quasiparti
les and below are quasiholes. The in-medium intera
tionis then used to �dress� the free parti
les and turn them into quasiparti
les andquasiholes.So long as these assumptions hold, we 
an treat the quasiparti
les as thefundamental degrees of freedom whi
h then intera
t with ea
h other. Althoughthis theory 
annot des
ribe the ground state itself, it will enable us to studyex
itations from it and how the medium responds to these ex
itations. Thiswill lead to the 
on
ept of the response fun
tion of the medium whi
h we will
al
ulate mi
ros
opi
ally. Subsequently, we 
an study the transport properties ofthe medium su
h as 
ross se
tions and mean free paths.After the introdu
tion of the Landau-Migdal parameters in Se
. 4.1 we willdis
uss the repla
ement of the three-body for
e with a density-dependent inter-a
tion in Se
. 4.2. In Se
. 4.2.1 we will repeat some of the results of the equationof state (EoS) and 
omposition of matter similar to the previous 
hapter but nowwith the usage of a density-dependent intera
tion. In the �nal se
tion, Se
. 4.3, wewill show results for the Landau-Migdal parameters, mainly in symmetri
 matter,but also for the equilibrated matter.
4.1 Landau-Migdal parametersA simple and instru
tive des
ription of the residual intera
tion in homogenousin�nite nu
lear matter is given by the Landau intera
tion developed in the 
ontextof the Fermi liquid theory. Starting from the full density matrix in (relative)47



48 CHAPTER 4. LANDAU FERMI LIQUID THEORYmomentum spa
e ρ̃(~kστσ′τ ′), the various densities are de�ned as [68℄
ρ̃00(~k) =

∑

σ

∑

τ

ρ̃(~kστστ) , (4.1)
ρ̃1t3(

~k) =
∑

σ

∑

ττ ′

ρ̃(~kστστ ′)τ t3
ττ ′ , (4.2)

~̃s00(~k) =
∑

σσ′

∑

τ

ρ̃(~kστσ′τ)~σσσ′ , (4.3)
~̃s1t3(

~k) =
∑

σσ′

∑

ττ ′

ρ̃(~kστσ′τ ′)~σσσ′τ t3
ττ ′ , (4.4)where the ρ̃(~kστσ′τ ′) is the density matrix de�ned in [68℄ and referen
es therein.The quantities σ and τ are the spin and isospin 
oordinates of the wave fun
tionwhile ~k is its momentum. The quantities ~σσσ′ and τ t3

ττ ′ are matrix elements ofthe Pauli matri
es in spin and isospin spa
e. The Landau-Migdal intera
tion isde�ned as
Ṽ (~k1σ1τ1σ

′

1τ
′

1;
~k2σ2τ2σ

′

2τ
′

2) =
δ2V

δρ̃(~k1σ1τ1σ
′

1τ
′

1)δρ̃(
~k2σ2τ2σ

′

2τ
′

2)

= f̃(~k1, ~k2) + f̃ ′(~k1, ~k2)~τ1 · ~τ2 + g̃(~k1, ~k2)~σ1 · ~σ2 + g̃′(~k1, ~k2)(~σ1 · ~σ2)(~τ1 · ~τ2) , (4.5)where V is the potential part of the energy per parti
le. The isos
alar-s
alar,isove
tor-s
alar, isos
alar-ve
tor, and isove
tor-ve
tor 
hannels of the residual in-tera
tion are given by
f̃(~k1, ~k2) =

δ2V
δρ̃00(~k1)δρ̃00(~k2)

, (4.6)
f̃ ′(~k1, ~k2) =

δ2V
δρ̃1t3(

~k1)δρ̃1t3(
~k2)

, (4.7)
g̃(~k1, ~k2) =

δ2V
δ~̃s00(~k1)δ~̃s00(~k2)

, (4.8)
g̃′(~k1, ~k2) =

δ2V
δ~̃s1t3(

~k1)δ~̃s1t3(
~k2)

. (4.9)Assuming that only states at the Fermi surfa
e 
ontribute, f̃ , f̃ ′, g̃ and g̃′ de-pend only on the angle θ between ~k1 and ~k2, and 
an be expanded in Legendrepolynomials, e.g.
f̃(~k1, ~k2) =

1

N0

∞
∑

l=0

F̃lPl(cos θ) . (4.10)



4.1. LANDAU-MIGDAL PARAMETERS 49The 
oe�
ient F̃l is 
alled the Landau 
oe�
ient. Other Landau 
oe�
ientsappear in the expansion of the other 
hannels, so we also have F̃ ′
l in the expansionof f̃ ′, G̃l in the expansion of g̃ and G̃′

l in the expansion of g̃′. The normalizationfa
tor N0 representing the level density at the Fermi surfa
e is given by,
N0 =

2M∗kF

π2
, (4.11)for a two-
omponent system. It is used to make the Landau 
oe�
ient dimen-sionless.If we now apply the orthogonality relations for Legendre polynomials,

∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ , (4.12)we obtain

F̃l =
2l + 1

2
N0

∫ 1

−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)f̃(~k1, ~k2) , (4.13)where ~̂k = ~k/|~k|.Sin
e we are studying in�nite nu
lear matter we 
an 
hoose pure neutron andproton states, whi
h leads to ρ̃1,±1 = 0 and ρt = ρ̃10 and similarly for all otherdensities. This means that we 
an keep only the diagonal elements of the densitymatrix and we have
ρ(~k) = ρp↑ + ρp↓ + ρn↑ + ρn↓ , (4.14)
ρs(~k) = ρp↑ − ρp↓ + ρn↑ − ρn↓ , (4.15)
ρt(~k) = ρp↑ + ρp↓ − ρn↑ − ρn↓ , (4.16)
ρst(~k) = ρp↑ − ρp↓ − ρn↑ + ρn↓ , (4.17)and
f(~k1, ~k2) =

∂2V
∂ρ(~k1)∂ρ(~k2)

, (4.18)
f ′(~k1, ~k2) =

∂2V
∂ρt(~k1)∂ρt(~k2)

, (4.19)
g(~k1, ~k2) =

∂2V
∂ρs(~k1)∂ρs(~k2)

, (4.20)
g′(~k1, ~k2) =

∂2V
∂ρst(~k1)∂ρst(~k2)

. (4.21)



50 CHAPTER 4. LANDAU FERMI LIQUID THEORYFor the dimensionless Landau Fermi liquid parameters we have
Fl =

2l + 1

2
N0

∫ 1

−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)f(~k1, ~k2) . (4.22)The e�e
tive mass M∗ for symmetri
 nu
lear matter 
an be 
al
ulated viaEq. (2.12). For an isotropi
 system, Landau showed that [69℄
M∗

M
= 1 +

F1

3
, (4.23)by using Galilean invarian
e, where M is the free mass. The parameter F1 is these
ond 
oe�
ient in the Legendre expansion of the isos
alar-s
alar 
hannel of theresidual intera
tion.The Landau-Migdal approximation is often used in 
onne
tion with RPA 
al-
ulations be
ause it greatly simpli�es the 
al
ulation of the RPA response fun
-tion. The approximation 
onsists of assuming that the intera
ting parti
les andholes are on the Fermi surfa
e and that the intera
tion takes pla
e only in thelimit where the transferred momentum q = 0. Thus it is obvious that this ap-proximation is only valid for small q. For this purpose we will also introdu
e theLandau-Migdal parameters, in addition to the Landau Fermi liquid parametersthat we have introdu
ed thus far. It will be
ome 
lear in the next 
hapter whywe need these parameters [70℄.The Landau-Migdal parameters are de�ned as follows

f τσ τ ′σ′

(~k1, ~k2) =
∂2V

∂ρτσ(~k1)∂ρτ ′σ′(~k2)
, (4.24)and 
an, in the Hartree-Fo
k approximation, be easily 
onne
ted to the dire
t andex
hange terms of the intera
tion

f τσ τ ′σ′

(~k1, ~k2) =
〈

~k1τσ;~k2τ
′σ′
∣

∣

∣
V
∣

∣

∣

~k1τσ;~k2τ
′σ′
〉

−
〈

~k1τσ;~k2τ
′σ′
∣

∣

∣
V
∣

∣

∣

~k2τ
′σ′;~k1τσ

〉

. (4.25)The 
onne
tion between the residual intera
tion 
hannels and Landau-Migdalparameters is quite obvious and straightforward. For the isos
alar-s
alar 
hannelwe have
f(~k1, ~k2) =

∑

τστ ′

σ′

f τσ τ ′σ′

(~k1, ~k2)
ρτσ(~k1)

ρ(~k)

ρτ ′σ′(~k2)

ρ(~k)
. (4.26)The same 
onne
tion 
an be established for all other 
hannels with the aid ofthe inverse of the relationships Eq. (4.14)-Eq. (4.17) and the expressions Eq.



4.1. LANDAU-MIGDAL PARAMETERS 51(4.18)-Eq. (4.21). Additionally, the 
onne
tion between the Landau Fermi liquidparameters and the Landau-Migdal parameters 
an easily be established.We 
an also de�ne both zeroth and higher order Landau-Migdal parameters,in a similar fashion as in Eq. (4.13):
f τστ ′σ′

l (k1, k2) =
2l + 1

2

∫ 1

−1

d(~̂k1 · ~̂k2)Pl(~̂k1 · ~̂k2)
∂2V

∂ρτσ(~k1)∂ρτ ′σ′(~k2)
. (4.27)In the 
ase of unpolarized nu
lear matter, we will suppress the spin indi
esand use a simpli�ed notation su
h that:

f ττ ′

l (k1, k2) = f τστ ′σ′

l (k1, k2) . (4.28)Unlike the Landau Fermi liquid parameters, the Landau-Migdal parameters arenot dimensionless but have the dimension [MeV−2] in natural units.The 
al
ulation of the e�e
tive mass has to be extended in the 
ase of asym-metri
 nu
lear matter to allow for di�erent masses of di�erent parti
les. Sin
e wehave already de�ned the Landau-Migdal parameters, we 
an use them and de�nethe e�e
tive mass in a similar fashion to Eq. (4.23) [69℄:
M∗

p

M
= 1 +

1

3
F p

1 , (4.29)
M∗

n

M
= 1 +

1

3
F n

1 , (4.30)where
F p

l = Np
0

(

f pp
l + (kn/kp)

2f pn
l

)

, (4.31)
F n

l = Nn
0

(

fnn
l + (kp/kn)

2f pn
l

)

. (4.32)Here we have introdu
ed the proton and neutron density of states via
Np

0 =
M∗

pkp

π2
, Nn

0 =
M∗

nkn

π2
. (4.33)In addition to the 
onne
tion between the e�e
tive mass and the Landau Fermiliquid parameters there are other 
onne
tions between these parameters and prop-erties of nu
lear matter. For the in
ompressibility in symmetri
 matter, we have

K =
3k2

F

M∗
(1 + F0) , (4.34)and the symmetry energy is

at =
k2

F

6M∗
(1 + F ′

0) . (4.35)



52 CHAPTER 4. LANDAU FERMI LIQUID THEORY4.2 Density-dependent for
eJust as in the previous 
hapter, we supplement the NN intera
tion with e�e
tswhi
h 
ome from higher many-body for
es. Unfortunately, the parametri
 EoSof the previous 
hapter has only a limited appli
ability. The major limit is thatwe are unable to disentangle the momentum dependen
e of the original potential(i.e. we 
annot take the se
ond derivative with respe
t to momentum). In orderto be able to do this and reprodu
e the properties of nu
lear matter, we need tointrodu
e a mi
ros
opi
 potential whi
h mimi
s the e�e
t of higher-order 
ontri-butions, primarily the three-body for
e. This potential is than 
ombined with thetwo-body e�e
tive for
e (i.e. Vlow k and VUCOM) and its parameters are �tted toreprodu
e the properties of nu
lear matter at saturation, su
h as the saturationdensity, binding energy, in
ompressibility and symmetry energy. For this purposewe use a density-dependent Yukawa-like for
e [71℄:
VDD(q) = α1ρ̂

λ1
µ2

1

q2 + µ2
1

+ α2ρ̂
λ2

µ2
2

q2 + µ2
2

(~τ1 · ~τ2) + α3ρ̂
λ3

µ2
3

q2 + µ2
3

, (4.36)where τ is the Pauli matrix a
ting in isospin spa
e, q is the transferred momentumbetween in and out states and ρ̂ = ρ/ρ0. The range parameters of the density-dependent for
e are µ1 = µ2 = 1.42 fm−1, µ3 = 2.5 fm−1. The matrix elements ofthe density-dependent for
e in the plane-wave basis 
an be found in [72℄.
Vlow k +DDa Vlow k +DDb VUCOM +DDa VUCOM +DDb

λ1 0.08 0.10 0.05 0.12
λ2 0.08 0.10 0.05 0.12
λ3 0.20 0.65 0.20 0.65

α1[fm2] -2089.98 -529.90 -1311.91 -498.13
α2[fm2] 202.64 99.74 86.51 31.68
α3[fm2] 2753.12 1347.86 1798.65 1190.37
K0[MeV] 240 300 240 300Table 4.1: Table of 
oe�
ients for the nu
lear potential VDD (
f. [71℄ and [73℄)In general we will favor the DDa version of the density-dependent for
e to

DDb. We do this be
ause the in
ompressibility value of 300 MeV is 
onsideredtoo large and the value of 240 MeV is favored as being 
loser to the a
tual physi
alvalue. However for some of the results we will also show the DDb parametrizationas well for the sake of 
omparison.



4.2. DENSITY-DEPENDENT FORCE 534.2.1 Equation of stateAs in the previous 
hapter we need to satisfy the 
onditions of the β-equilibriumin order to 
al
ulate the EoS of equilibrated matter. Thus, we again use Eq. (3.21)and Eq. (3.22). As for the 
hemi
al potential in this 
ase there is no need to sub-stitute anything, like in the previous 
hapter, so we use Eq. (3.12) and Eq. (3.11)in their unmodi�ed form. On
e we determine the β-equilibrium we use Eq. (3.3)to 
al
ulate the energy per parti
le.One signi�
ant di�eren
e, 
ompared to the previous 
hapter is the introdu
tionof a non-zero temperature through Eq. (3.13). This also means that we have tomodify Eq. (3.3) su
h that we have
E/A=

2

ρB

∑

b

∞
∫

0

d3~p

(2π)3

(

Mb +
p2

2Mb
+

1

2
Ub(~p)

)

1

1 + exp ((ǫb − µb)/T )
, (4.37)where ǫb is given by:

ǫb(~p) = Mb +
p2

2Mb
+ Ub(~p) . (4.38)Fig. 4.1 shows the parti
le 
on
entrations for the various hyperon intera
tionsin 
ombination with the NN-model Vlow k + DDa at zero temperature. As forsimilar �gures in the previous 
hapter we see how sharp the appearan
e of thehyperons is, i.e. how qui
kly their 
on
entration rises initially after their appear-an
e. Here again we see that the �rst hyperon appears around ∼ 2ρ0 and howthe appearan
e of Σ− lowers the 
on
entration of negatively 
harged leptons. Inessen
e, all of the behavior of hyperon appearan
e and 
on
entration remainssimilar to that of the parametri
 EoS with the same K0.As already mentioned, the usage of Vlow k imposes a restri
tion on the alloweddensity range. In the 
ase of β-equilibrated matter with only protons and neutronsand no hyperons it would be ∼ 4ρ0. However the introdu
tion of hyperons lowersthe Fermi momentum of the neutrons su�
iently to make the 
al
ulation possibleup to ∼ 5ρ0. Additionally the smoothness of the 
urves indi
ates that there areno artifa
ts due to the sharp 
ut-o� in this 
al
ulation.Like Fig. 4.1, Fig. 4.2 shows the parti
le 
on
entrations for all hyperon intera
-tions in 
ombination with the NN-model Vlow k +DDa, but now at a temperatureof T = 10 MeV. While most of the features of these two �gures are the same, thereare several notable di�eren
es whi
h are to be expe
ted. The biggest one is thatthe density at whi
h hyperons appear is shifted to lower values and for most mod-els we already have a small amount of hyperons at saturation density. The othernoti
eable e�e
t is a signi�
antly slower rate of in
rease of the hyperon densitiesin the initial stages of their appearan
e.
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Figure 4.1: Composition of matter at T = 0 MeV for several hyperon intera
tionswith Vlow k +DDa.
With the 
omposition of matter �xed, we 
an now move on to the 
al
ulationof the EoS in the equilibrium. Fig. 4.3 shows the EoS for the Vlow k + DDa(upper panels) and VUCOM + DDa (lower panels). It also displays the EoS fortwo di�erent temperatures: T = 0 MeV on the right and T = 10 MeV on the left.The 
on
entrations of hyperons are not shown for VUCOM +DDa sin
e they aresimilar to those of Vlow k +DDa.On
e again the appearan
e of hyperons is evident in the deviation of the 
urvesfrom the ones without any hyperons. We also noti
e the softening of the EoS athigher densities as the hyperons are introdu
ed. This is the same result whi
hwe had for the parametri
 EoS so it is reasonable to 
on
lude that the e�e
t ofthe redu
tion of the maximum of the neutron stars mass are the same here, eventhough we 
annot 
al
ulate them in this 
ase.As for the e�e
ts of the non-zero temperature, it is 
lear from Fig. 4.3 that theyare present at lower densities and strongest at the very beginning of the 
urves.However, as the density in
reases the in�uen
e of temperature be
omes smaller
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Figure 4.2: Composition of matter at T = 10 MeV for several hyperon intera
tionswith Vlow k +DDa.and by the end of the 
urves it is pra
ti
ally impossible to tell the di�eren
ebetween the two temperatures. This observation is easily explainable if we notethat the Fermi momentum of the parti
les in
reases with density, as does the Fermienergy. As the Fermi energy in
reases the ratio between the system temperatureand it de
reases. By the time the density rea
hes values of ∼ 4ρ0, for a systemtemperature of T = 10 MeV, this ratio is 
lose to zero. Hen
e at su
h densities we
an negle
t even the temperature of T = 10 MeV. Therefore in order see an e�e
tat high densities one would have to in
rease the temperature to levels whi
h arenot expe
ted to be found even in newly born neutron stars.4.3 ResultsIn this se
tion we will show results for the Landau-Migdal parameters. Althoughone �nds the Landau Fermi liquid parameters more often in the literature thanthe Landau-Migdal parameters, we show the latter as well. We do this be
ause
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Figure 4.3: Equations of state for mi
ros
opi
 intera
tions with hyperons. Upperpanels are with Vlow k + DDa and lower with VUCOM + DDa while for the leftpanels we have T = 0 MeV for the right we have T = 10 MeV.
they serve as an input for the 
al
ulations within the framework of the RPA whi
hwe will perform in the next 
hapter.Most of the �gures display results for symmetri
 matter, be
ause there areonly a few di�eren
es 
ompared to the results in β-equilibrium. Sin
e the Landau-Migdal parameters do not depend dire
tly on the temperature we will not showany of the results for non-zero temperatures, even though β-equilibrium indire
tlyintrodu
es a dependen
e on temperature. However in the next 
hapter we performour 
al
ulation 
onsistently and use the appropriate parameters as input.
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tive mass of nu
leons in symmetri
 nu
lear matter.
4.3.1 Symmetri
 matterFig. 4.4 shows the e�e
tive mass of nu
leons in symmetri
 nu
lear matter; the val-ues for several intera
tion are shown. The �gure 
learly shows how the in-mediummass of nu
leons de
reases with density, 
on�rming that the NN intera
tion isindeed attra
tive. As expe
ted, as the nu
leons be
ome more tightly pa
ked theyattra
t ea
h other more strongly, thus 
ontinuously de
reasing the e�e
tive massas the density in
reases. It is interesting to note that the e�e
ts of the density-dependent for
e are not large in the 
ase of the e�e
tive mass and that there isa larger di�eren
e due to di�eren
es in the mi
ros
opi
 two-body intera
tions.Additionally it is evident that these two-body intera
tions produ
e an e�e
tivemass value at saturation density whi
h is in the usual range of expe
ted values.The density dependen
e of the Landau Fermi liquid parameters F0, F ′

0, G0 and
G′

0 in symmetri
 nu
lear matter is shown in Fig. 4.5. As expe
ted, F0, representingthe 
entral part of the for
e, is usually the most dominant. For values below −1the system be
omes unstable under density os
illations. One expe
ts that atdensities where F0 ≤ −1 the approximations underlying nu
lear matter start to
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ρB[ρ0]Figure 4.5: Landau Fermi liquid parameters in symmetri
 nu
lear matter for l = 0.
breakdown and the nu
leons start to form nu
lei. Evidently the Vlow k withoutany density dependent for
e is never above −1, while for the VUCOM the stabilityis rea
hed at ∼ 1.5ρ0. For the 
orre
ted potentials, the usual value of ∼ 0.6ρ0 insymmetri
 nu
lear matter is obtained. The ferromagneti
 instability, G0 ≤ −1,whi
h is observed in Skyrme models [5, 67℄ does not o

ur in any of our models.Fig. 4.6 shows the density dependen
e of the Landau parameters F1, F ′

1, G1 and
G′

1 in symmetri
 nu
lear matter. The most important of them, F1, 
losely mimi
sthe behavior of the e�e
tive mass whi
h it is 
onne
ted to through Eq. (4.23).Like in the 
ase of the e�e
tive mass we observe that the in�uen
e of the density-dependent for
e is not large. As for the remaining parameters, very little reliableinformation exists about them whi
h makes them di�
ult to interpret. As ex-pe
ted, all of the l = 1 parameters are, for the most part, smaller than their
orresponding l = 0 parameter and while it is also possible to 
al
ulate the Lan-dau Fermi liquid parameters with larger l from Eq. (4.22), they would be even
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smaller and thus 
ontribute less.Fig. 4.7 and Fig. 4.8 show the density dependen
e of the Landau-Migdal pa-rameters in symmetri
 nu
lear matter. The values for the neutron-neutron in-tera
tions are not shown sin
e they are identi
al to those of the proton-protonintera
tion. The reason for this lies in the fa
t that we have negle
ted the ele
-tromagneti
 for
e whi
h leaves only the strong for
e to 
onsider.In the left 
olumn of Fig. 4.7 and Fig. 4.8, fpp and fpn, represent the spin-independent intera
tion while those on the right side, gpp and gpn, represent thespin-dependent intera
tion. One should also keep in mind that in reality theseparameters do not represent the parti
le-parti
le intera
tions but are in-fa
t in-di
ative of the in-medium parti
le-hole intera
tion. Thus, for fpp (gpp) we arein-fa
t showing the strength of the intera
tion between two pp−1 states with like(unlike) spins, while fpn (gpn) indi
ates the matrix elements between nn−1 and
pp−1 states with like (unlike) spins.
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Figure 4.7: Landau-Migdal parameters in symmetri
 nu
lear matter des
ribingthe proton-proton intera
tion.
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Figure 4.8: Landau-Migdal parameters in symmetri
 nu
lear matter des
ribingthe proton-neutron intera
tion.Hyperon-Nu
leon Landau-Migdal parametersJust as for the NN intera
tion, one 
an introdu
e Landau-Migdal parameters forhyperons Eq. (4.27). The only di�eren
e is that the isospin 
an take more values.



4.3. RESULTS 61The generalization of Eq. (4.27) is straightforward. In the 
ase of symmetri
 mat-ter we 
an 
al
ulate these hyperon Landau-Migdal parameters if we use Eq. (4.25)where the momentum of the hyperon is set to zero.We have 
hosen to show only the symmetri
 matter results, again be
ause theresults in β-equilibrium are not very di�erent. Additionally, in symmetri
 matterthese parameters are not in�uen
ed by the NN intera
tion in any way and evenin equilibrated matter they are only weakly dependent on them.
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Figure 4.9: Λ Landau-Migdal parameters in symmetri
 nu
lear matter.In this se
tion we will show the results only for the Y N 
ombinations, be
ausewe do not use a Y Y intera
tion. In the next 
hapter we will take all su
h Y Y
ombinations as being equal to zero. Like in the 
ase of pn these Y N 
ombina-tions indi
ate the matrix elements between NN−1 states and Y Y −1 state withlike (unlike) spins. Thus we have fΛp (gΛp) des
ribing in-medium parti
le-holeintera
tions between pp−1 and ΛΛ−1 states with like (unlike) spins, et
.Fig. 4.9 to Fig. 4.12 show all Y N 
ombinations of the hyperon Landau-Migdal



62 CHAPTER 4. LANDAU FERMI LIQUID THEORYparameters. (Fig. 4.9 is devoted to the Λ, Fig. 4.10 to the Σ−, Fig. 4.11 tothe Σ0 and Fig. 4.11 to the Σ+.) It is evident (and expe
ted) that several ofthese 
ombinations are equal to ea
h other in symmetri
 matter. So we have(in symmetri
 matter) fΛp = fΛn, fΣ0p = fΣ0n, fΣ−p = fΣ+n and fΣ−n = fΣ+p,and there are analogous relations for the g′s. The reason is merely the isospinindependen
e of strong intera
tions. Small di�eren
es, whi
h are hard to noti
ein these �gures, are present due to the di�erent masses of these parti
les.
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gΣ-nFigure 4.10: Σ− Landau-Migdal parameters in symmetri
 nu
lear matter.Fig. 4.9 shows the Λ Landau-Migdal parameters in symmetri
 nu
lear matter.The 
urves exhibit a very similar density dependen
e whi
h is stronger (weaker)for the like (unlike) spins. The main di�eren
e lies in the starting point, but thisis an expe
ted result given the di�eren
es between the potentials we have seenin the previous 
hapters. This is a general feature whi
h 
an be observed in allhyperon Landau-Migdal parameters. It is interesting to note that almost all Y Nintera
tions give negative results for the like-spin intera
tions, implying that this



4.3. RESULTS 63part of the ΛN intera
tion is genuinely attra
tive. For the unlike-spin intera
tionsthere is no 
onsensus on attra
tion or repulsion.
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Figure 4.11: Σ0 Landau-Migdal parameters in symmetri
 nu
lear matter.In Fig. 4.10, we display the Σ− Landau-Migdal parameters. The density de-penden
e of the Σ−, as well as the Landau-Migdal parameters for the other Σhyperons, is very weak and some of them are pra
ti
ally 
onstant. The reasonbehind this behavior is that the values of the relative momentum on whi
h the
Y N Vlow k depends are restri
ted to low values where the momentum dependen
eof the potential is weak.In this 
ase all intera
tions, ex
ept J04, show remarkably similar results forthe fΣ−p, parameter suggesting a reliable result pointing towards attra
tion in this
hannel. Similar agreement exists for the gΣ−n parameter suggesting repulsion inthis 
ase, with the χEFT600 being the notable ex
eption in this 
hannel. Whilethere isn't su
h agreement in the other 
hannels, we 
an at least 
laim that fΣ−nand gΣ−p are attra
tive.
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Figure 4.12: Σ+ Landau-Migdal parameters in symmetri
 nu
lear matter.
The Σ0 Landau-Migdal parameters, shown in Fig. 4.11, indi
ate that for thelike spins most intera
tions are attra
tive. Fig. 4.12 �nally shows the Σ+ Landau-Migdal parameters whose behavior is determined by the relationships mentionedearlier, linking then to the behavior of the Σ− parameters whi
h we have alreadydis
ussed.4.3.2 β-equilibriumFor 
ompleteness we show the Landau Fermi liquid parameters for l = 0 in β-equilibrium. Fig. 4.13 shows that the di�eren
es 
ompared to the 
ase of sym-metri
 matter are not that large for F0 and G0 while they 
an be noti
ed for F ′

0and G′
0. This is expe
ted sin
e the later two quantities are sensitive to di�eren
esin the proton to neutron ratio while the former are not. Sin
e this statement istrue in general, we do not need to show the other parameters in β-equilibrium.
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ρB[ρ0]Figure 4.13: Landau Fermi liquid parameters in equilibrated matter for l = 0.One small di�eren
e that 
an be seen for F0 is that the point at whi
h the matterbe
omes unstable, F0 ≤ −1, has moved to smaller values and is now found at
∼ 0.4ρ0.In Fig. 4.13 we have not shown the pure Vlow k and VUCOM sin
e the equilibriumis unrealisti
 in this 
ase and often impossible to a
hieve. However, we haveinstead shown values for the higher K0 whi
h display some di�eren
e 
omparedto the lower K0 
ase. The most striking di�eren
es are the mu
h larger value of
F0 towards higher densities and the very repulsive nature of the spin part of thefor
e seen through the large G0 values.
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5 Neutrino intera
tions
The neutrino opa
ity of dense matter plays an important role in the 
ore 
ollapsesupernova theory and in the theory of the development of a newly formed neutronstar. In fa
t, it is believed that neutrinos are intimately involved in the me
hanismbehind supernovae explosions. Neutrino opa
ity in neutron stars has two sour
es:neutral 
urrent and 
harged 
urrent intera
tions of neutrinos with the medium.The 
al
ulation of these opa
ities is a 
ompli
ated problem. A simple estimateshows that neutrinos in su
h a dense environment intera
t with multiple baryonssimultaneously [74℄ as well as that the baryons themselves are intera
ting withother baryons present in the medium.Various approximations have been used to address these issues: the e�e
ts ofrelativity; the matter 
omposition; and e�e
ts of the baryon-baryon intera
tion. Insu
h 
al
ulations it is not unexpe
ted to �nd enhan
ements of the neutrino meanpath by fa
tors of∼ 2−3. One of the most 
ommon approa
hes is the modi�
ationof the baryon response fun
tions due to the in-medium modi�
ations.There are many physi
al issues that require the knowledge of the responsefun
tion of the medium to an external probe. Well-known examples are ele
trons
attering by nu
lei or the propagation of neutrinos in nu
lear matter. In themean-�eld framework, the response fun
tion must take into a

ount the e�e
ts oflong-range 
orrelations by the RPA, whi
h is the small amplitude limit of a time-dependent mean-�eld approa
h. The approximation is obtained when the parti
le-hole intera
tions are approximated with the Landau-Migdal intera
tion from theprevious 
hapters. The diagrammati
 representation of the approximation is showin Fig. 5.2.This 
hapter is organized in the following way; in Se
. 5.1 we will introdu
ethe weak intera
tion, the 
harged and neutral 
urrent pro
ess and 
al
ulate the
ross se
tion. In Se
. 5.2 we introdu
e the random phase approximation (RPA)and show the resulting 
ross se
tions. Se
. 5.3 is devoted to the results. Thosefor the neutral 
urrent 
ross se
tion are found in Se
. 5.3.1, the 
harged 
urrent
ross se
tion in Se
. 5.3.2 and the mean free path is given in Se
. 5.3.3.67
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tion

Figure 5.1: Weak intera
tions for β-equilibrium.The uni�ed model of the ele
troweak intera
tion allows for the derivation ofa

urate 
ross se
tions for weak pro
esses between elementary parti
les [75℄. TheLagrangian of su
h intera
tions has the form:
Ll = − g

2
√

2

∑

l=e,µ,τ

[

ψ̄νl
γλ(1 − γ5)ψlW

+
λ + ψ̄ − g

2
√

2

∑

l=e,λ,τ

ψ̄νl
γλ(1 − γ5)ψlW

−
λ

]

− g

4 cos θW

[

ψ̄νl
γλ(1 − γ5)ψνl

− ψ̄lγ
λ(1 − γ5)ψl

]

Zλ , (5.1)
Lq = − g

2
√

2
ψ̄Pγ

λ(1 − γ5)UCKMψNW
+
λ − g

2
√

2
ψ̄NU

†
CKMγ

λ(1 − γ5)ψP W−
λ

− g

4 cos θW

[

ψ̄Pγ
λ(1−8

3
sin2 θW −γ5)ψP −ψ̄Nγ

λ(1−4

3
sin2 θW −γ5)ψN

]

Z0
λ ,(5.2)where Ll 
ontains the leptoni
 part and Lq 
ontains the quark part of the La-grangian. The positive quarks are 
olle
ted in ψ̄P = (ψ̄u ψ̄c ψ̄t) and the negativeare found in ψ̄N = (ψ̄d ψ̄s ψ̄b). The standard Cabibbo-Kobayashi-Maskawa mixingmatrix is represented by UCKM [76℄. The parameters in the ele
troweak La-grangian are the 
oupling 
onstant g = 0.231, the masses of the W± mW =

78 GeV, and the Z0, mZ = 89 GeV, bosons and the weak Weinberg angle
sin2 θW = 0.23.However, sin
e the momenta of all parti
les whi
h we 
onsider are far belowthe masses of the ve
tor bosons (Z andW±) we 
an take the lowest-order approx-imation to the weak intera
tion. Thus the intera
tion Lagrangian is not the full
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troweak Lagrangian, but instead we will have a Fermi-like weak Lagrangian,(masses of the ve
tor bosons are 
onsidered in�nite), whi
h 
an be written interms of 
urrent-
urrent intera
tions as [77℄:
Lcc

int =
GFC√

2
jµJ

µ
W , (5.3)

Lnc
int =

GF√
2
jν
µJ

µ
Z , (5.4)where GF = 1.166 × 10−11MeV−2 is Fermi weak 
oupling 
onstant, and C is theCabibbo fa
tor: C = cos θc for strangeness 
hanging rea
tions and ∆S = 0 and

C = sin θc for ∆S = 1. The �rst Lagrangian Eq. (5.3) des
ribes the 
harged
urrent pro
ess mediated by the W-boson, the left-hand side of Fig. 5.1,
νl +B2 → l +B4 , (5.5)while the se
ond Eq. (5.4) des
ribes neutral 
urrent pro
esses mediated by theZ-boson, the right-hand side of Fig. 5.1,
νl +B2 → νl +B4 . (5.6)The 
orresponding 
harged 
urrents are:

jµ = ψ̄lγµ(1 − γ5)ψν , (5.7)
Jµ

W = ψ̄4γ
µ(gV − gAγ5)ψ2 , (5.8)for Eq. (5.3), while for Eq. (5.4) the neutral 
urrents are:

jν
µ = ψ̄νγµ(1 − γ5)ψν , (5.9)
Jµ

Z = ψ̄2γ
µ(cV − cAγ5)ψ2 . (5.10)The �elds ψl, ψν , ψ2 and ψ4 are quantized �elds of leptons, neutrinos, in
omingbaryons and outgoing baryons. Sin
e they all are fermions they 
an be des
ribedin terms of quantized Dira
 �elds. We expand them in terms of a 
omplete set ofplane-wave states

ψ(x) =
∑

sp

(

m

ΩEp

)
1
2

cs(p)us(p)e
−ipx , (5.11)where cs(p) is a 
reation operator and us(p) denotes the spinor of a parti
le withspin s and four-momentum p. The normalization in this 
ase is for a box ofvolume Ω , but as usual we will take the limit Ω → ∞. The ve
tor and axial-ve
tor 
oupling 
onstants gV and gA for 
harged 
urrents and cV and cA for neutral
urrents are listed in Tab. 5.2 and Tab. 5.1 for the parti
les of interest, see Ref.[77℄.
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gV gA

νl + n→ l− + p 1 D + F = 1.23

νl + Σ− → l− + Λ 0
√

2/3D = 0.62

νl + Σ− → l− + Σ0
√

2
√

2F = 0.67

νl + Σ0 → l− + Σ+ −
√

2 −
√

2F = −0.67

νl + Λ → l− + Σ+ 0 −
√

2/3D = −0.62

νl + Λ → l− + p
√

3/2 −
√

3/2(F +D/3) = 0.89

νl + Σ0 → l− + p 1
√

1/2D = 0.54
νl + Σ− → l− + p −1 D − F = 0.28
νe + µ− → ν−µ + e− 1 1Table 5.1: Charged 
urrent ve
tor and axial ve
tor 
ouplings [77℄. Numeri
alvalues are quoted using D = 0.756, F = 0.477, sin2 θW = 0.23 and sin2 θc = 0.053(see Ref.[78℄). As usual νl(l) stands for all neutrinos (leptons). For 
orre
tionsarising due to expli
it SU(3) breaking terms, see Ref.[79℄.

cV cA

νe + e− → νe + e− 0.5 + 2 sin2 θW = 0.96 0.5
νµ + µ− → νµ + µ− 0.5 + 2 sin2 θW = 0.96 0.5
νe + µ → νe + µ− −0.5 + 2 sin2 θW = −0.04 −0.5

νµ,τ + e− → νµ,τ + e− −0.5 + 2 sin2 θW = −0.04 −0.5
νl + n→ νl + n −0.5 −D − F = −0.62
νl + p→ νl + p 0.5 − 2 sin2 θW = 0.04 D + F = 0.62
νl + Λ → νΛ −0.5 −F −D/3 = −0.36

νl + Σ− → νl + Σ− −1.5 + 2 sin2 θW = −1.04 D − 3F = −0.34
νl + Σ+ → νl + Σ+ 0.5 − 2 sin2 θW = 0.04 D + F = 0.62
νl + Σ0 → νl + Σ0 −0.5 D − F = 0.14

νl + Σ0 → νl + Λ 0 2D/
√

3 = 0.44Table 5.2: Neutral 
urrent ve
tor and axial ve
tor 
ouplings [77℄. Numeri
al valuesare quoted using D = 0.756, F = 0.477, sin2 θW = 0.23 and sin2 θc = 0.053 (seeRef.[78℄). As usual νl(l) stands for all neutrinos (leptons). For 
orre
tions arisingdue to expli
it SU(3) breaking terms, see Ref.[79℄.On
e the 
urrents and the states have been de�ned one is able to pro
eed withthe 
al
ulation of the pro
esses shown in Fig. 5.1. In a va
uum su
h 
al
ulationsare most 
ommonly performed by 
al
ulating the expe
tation value of the transi-tion operator Eq. (C.1). However, in the medium it is more 
onvenient to use the
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al theorem and 
al
ulate the 
ross se
tion. In this work we have used thisapproa
h and 
al
ulated the 
ross se
tions. In Appendix C some details of the
al
ulation are shown, the end result for the di�erential 
ross se
tion is found asEq. (C.29).For the derivation in Appendix C we have used several approximations thatare justi�ed if one 
onsiders the typi
al energy s
ales involved. The �rst one re-lates to the properties of baryons in a dense medium. The temperature rangewe are interested in is of the order 10 MeV thus we 
an safely assume that thebaryons we are 
onsidering (nu
leons and hyperons) due to their mass ∼ 1 GeV,whi
h is far greater than the temperature range (T ≪ Mb), are non-relativisti
.Hen
e in Eq. (C.38) we use the nonrelativisti
 propagators of Eq. (C.36) insteadof the relativisti
 ones Eq. (C.18). The approximation 
an also be expressed asdisregarding the baryon momentum 
ompared to its energy |pb|
Eb

≪ 1. The se
ondapproximation 
on
erns the leptons (ele
trons and neutrinos) whose 
hemi
al po-tential, in neutron stars, is far greater than the mass of the ele
tron or neutrino(ml ≪ µl). Hen
e we 
onsider the leptons as being fully relativisti
, whi
h gives
~pl

El
= ~̂pl and Eq. (C.27).With these approximations it is natural to use the laboratory referen
e framein whi
h, for the relative velo
ity, we have

vrel =
|~ki|
ǫi

. (5.12)Thus we have all of the information needed to perform the 
al
ulation of thedi�erential 
ross se
tion in-medium and the result 
al
ulated in Appendix C is:
1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

3 (1 − f(E3) [(1 + cos θ)SV (q0, q) + (3 − cos θ)SA(q0, q)] .(5.13)This equation works both for the 
harged 
urrent and the neutral 
urrent 
rossse
tion. In the �rst 
ase the Fermi fun
tion f and energy E3 will be those of theleptons while in the se
ond 
ase it will be the neutrinos. Obviously in both 
aseswe have to take 
are to use the appropriate stru
ture fun
tions.Sin
e in se
tion Se
. 5.3 we will be interested in the dependen
e of the dif-ferential 
ross se
tion on the transferred energy it is useful to see whi
h range ofvalues is allowed by the kinemati
s for the transferred energy given these approx-imations. The limiting fa
tor will be the value of the angle θ (equivalently cos θ).From the de�nition of transferred momentum ~q = ~pν − ~pl one gets
~pν · ~pl

EνEl

= cos θ =
E2

ν + E2
l − q2

2 − ElEν

. (5.14)



72 CHAPTER 5. NEUTRINO INTERACTIONSThe limits are | cos θ| ≤ 1. From this with the aid of the relation for the transferredenergy q0 = Eν − El we get two 
onditions |q0| ≤ q and q0 ≤ 2Eν − q. Sin
e inmost 
ases for the di�erential 
ross se
tion we �x |~q| = Eν , these two 
onditionswill be one and the same.From the di�erential 
ross se
tion we 
an 
al
ulate the total 
ross se
tion andthe mean free path. The total 
ross se
tion per unit volume is easily 
al
ulatedby integrating over all of the remaining variables by
σ(Eν)

Ω
=

∫

1

Ω

d3σ(Eν)

d2Ω dq0
dΩdq0 . (5.15)The mean free path is just the inverse of the total 
ross se
tion

λ(Eν) =

(

σ(Eν)

Ω

)−1

. (5.16)5.2 Random phase approximation

Figure 5.2: Higher-order loop 
orre
tions to the weak intera
tion in dense matter.In Appendix C we have introdu
ed the stru
ture (S) and polarization (Π̃)fun
tions in Eq. (C.28) and Eq. (C.25), respe
tively. The Hartree-Fo
k approxi-mation of the polarization fun
tion 
ontains only one loop. However in the 
aseof dense matter we must also 
onsider intera
tions with a higher number of loops.Essentially, a neutrino propagating in dense matter will 
reate an ex
itation whi
h
an propagate via the intera
tion with matter thus modifying the response of thematter. This 
an be represented s
hemati
ally as in Fig. 5.2.
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lusion of a higher number of loops 
orresponds to the ring approxima-tion or random phase approximation1 [33℄. The key point that must be stressedout about these graphs is that there are exa
tly two parti
les parti
ipating inea
h loop, that is if we were to 
ut the graph verti
ally we would only 
ross twopropagator lines. These propagator pairs in the loop are those of parti
les andholes and not parti
les and antiparti
les. One 
an also note that this is in fa
t aquasiparti
le RPA sin
e we are using the quasiparti
le approximation whi
h re-pla
es the bare mass and 
hemi
al potentials of parti
les with the e�e
tive ones.Putting it in another way, the propagators entering the zeroth-order polarizationfun
tion Π̃0(~q, q0) de�ned by Eq. (C.38), are not of free parti
les and holes, butare themselves dressed.In pra
ti
al terms the RPA relies on summing all of the ring diagrams inFig. 5.2. The summing of these ring diagrams yields then the Bethe-Salpeterequation2 for the parti
le-hole polarization fun
tion [33℄,
Π̃ηλϕχ(~q, q0) = Π0

ηλϕχ(~q, q0) +
∑

αβγδ

Π0
ηλαδ(~q, q0)Kαδ;βγ(~q, q0)Π̃βγϕχ(~q, q0) , (5.17)where Π̃(~q, q0) is the full polarization fun
tion and Kαδ;βγ(~q, q0) is a kernel de�nedby the intera
tion. The indi
es α, β,γ and δ run over both spin and isospin spa
eand in our 
ase also involve hyperons. For the RPA the kernel takes the form

K
(1)
αβ;γδ ≡ 〈γ β | V | α δ〉 − 〈β γ | V | α δ〉 , (5.18)where V is a potential, whi
h de�nes the intera
tion. It has been shown [33℄ thatsu
h a de�nition of the kernel indeed 
orresponds to the RPA, sin
e it produ
esthe same equations of motion.We will not go further here into the details about various kernels and the solu-tion of Eq. (5.17) but refer the reader to Appendix C. Additionally more detailson the RPA itself, espe
ially for �nite systems, 
an be found in [33℄. However wenote that for a truly self-
onsistent 
al
ulation one should interpret the RPA asthe small limit of time-dependent Hartree-Fo
k-Bogoliubov theory.5.2.1 Cross se
tions within the random phase approxima-tionWith the knowledge of the RPA polarization fun
tion we 
an see how the 
rossse
tion 
hanges with the in
lusion of it. The RPA is simply a

ounted for as the1This name has histori
 reasons and it is not very illuminating here. For our 
ase the termring approximation 
arries mu
h more meaning.2In our approa
h, sin
e we will be dealing with nonrelativisti
 parti
les this should be 
alledthe Salpeter equation, but at this level Eq. (5.17) is general and 
ould also be used for relativisti
parti
les.



74 CHAPTER 5. NEUTRINO INTERACTIONSrepla
ement of the stru
ture fun
tions S with the RPA stru
ture fun
tions SRPAobtained in Appendix C. The distin
tion between the ve
tor and axial stru
turefun
tion is more obvious in this 
ase as we 
annot just fa
torize out the 
oupling
onstant and get the same fun
tion. Thus for the 
ross se
tion in the RPA wehave, as in [5℄
1

Ω

d3σ(E1)

dΩ2dq0
=
G2

F

8π3
E2

3 [1 − f(E3)]
[

(1 + cos θ)SRPA
V (q0, q)

+(3 − cos θ)SRPA
A (q0, q)

]

. (5.19)Again, like Eq. (5.13), the formula is general enough to be used in both the 
harged
urrent and the neutral 
urrent 
ase. All we have to be 
areful about is whi
hstru
ture fun
tion we use and whi
h parti
le is the outgoing one.5.3 ResultsLet us now turn to the quantitative results of neutrino rea
tion rates. For the dif-ferential 
ross se
tion and the mean free path the 
ontributions from ea
h parti
letype need to be a

ounted for. For the 
al
ulation of the di�erential 
ross se
tionEq. (5.13), the 
hemi
al potentials, Fermi momenta and the temperature need tobe spe
i�ed. For symmetri
 matter these quantities are set by hand while, in the
ase of β-equilibrated matter, they are provided by the 
al
ulation explained in
hapter 3. The parti
le-hole parameters are 
al
ulated as in 
hapter 4. The e�e
tsof temperature, like the e�e
ts of the strong intera
tion, mainly a�e
t the resultspresented here through the polarization (stru
ture) fun
tions.In the 
ase where only nu
leons are present, we will fo
us on showing results at
0.5ρ0 and ρ0. For the 
ases with hyperons we will show results at 2ρ0 and 3ρ0 sin
eat these densities the 
on
entrations of hyperons are sizable. For the temperaturewe will fo
us on T = 0 MeV, whi
h should best des
ribe older and 
older neutronstars while T = 10 MeV represents neutron stars soon after 
reation.For all 
ross se
tions presented below we have �xed the neutrino energy at
Eν = 25 MeV and �xed the momentum transfer to q = Eν for the neutral 
urrent
ross se
tions and to q = Eν + µe for the 
harged 
urrent 
ross se
tions. For themean free path we take the neutrino energy to be Eν = πT sin
e this is the meanenergy of untrapped neutrinos [80℄.5.3.1 The neutral 
urrent 
ross se
tionAn indi
ation of intera
tion 
orre
tions is �rst shown in Fig. 5.3. This �gureshows arguably the simplest 
ase of all those investigated here, the neutrino neu-tral 
urrent 
ross se
tion in symmetri
 nu
lear matter with just two-body NN
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tions. Two densities and two temperatures are shown. The results of theHartree-Fo
k and RPA 
al
ulations for both the Vlow k and VUCOM are 
ompared.
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Figure 5.3: Neutrino neutral 
urrent 
ross se
tion in symmetri
 nu
lear matterwith just two-body NN intera
tions.At zero temperature (upper panels) we 
an 
learly see the e�e
ts of the di�erente�e
tive masses of a nu
leon in the Vlow k and VUCOM as the di�eren
e in endpointsof the 
ross se
tions. If we now 
ompare this result with Fig. 5.4 we see the samevalues for the endpoints with and without the density-dependent for
e. This isobvious be
ause, in the quadrati
 approximation for the energy, the endpoint isdetermined by the ratio kF

M∗ whi
h is di�erent for the Vlow k and VUCOM potentialsbut the same with and without the density-dependent for
e, 
f. Fig. 4.4.The bottom panels illustrate the e�e
t of temperature on the di�erential 
rossse
tion. At zero temperature only positive energies are present, be
ause of Pauliblo
king, but at non-zero temperature there is a su�
ient number of ex
ited statesto allow su
h transitions. This is an e�e
t present at any temperature. For lowbaryon densities even low temperatures render the system non-degenerate. Forthe temperature of T = 10 MeV, and in general for all �nite temperatures, the
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ross se
tion is dominated by a region for whi
h q0 < T .The biggest di�eren
e between the Hartree-Fo
k and RPA 
al
ulation is theenhan
ement apparent at the end of the allowed energy interval. This enhan
e-ment is easiest understood if we 
onsider the neutral 
urrent ve
tor polarizationfun
tion. In symmetri
 nu
lear matter, where only nu
leons 
ontribute and pro-ton and neutron zeroth-order polarization fun
tions are the same and Eq. (C.73)simpli�es to
Π̃NC

V = Π̃0
[

(

(cVpp)
2 + (cVnn)2

)

(

1 − fppΠ̃
0
)

+ 2cVppc
V
nnfpnΠ̃

0
]

/DV
NC , (5.20)where the denominator DV

NC simpli�es to
DV

NC =
[

1 − (fpp + fpn) Π̃0
] [

1 − (fpp − fpn) Π̃0
]

=

[

1 − 2F0
Π̃0

N0

][

1 − 2F ′
0

Π̃0

N0

]

, (5.21)where the F0 and F ′
0 are the Landau parameters and N0 is the density of states,see 
hapter 4. In the 
ase of the Hartree-Fo
k 
al
ulation the determinant DV

NC isequal to one. When it approa
hes zero in the 
ase of the RPA it 
auses pre
iselythe enhan
ement seen in Fig. 5.4 and all similar enhan
ements in subsequent�gures. This behavior is usually referred to as the zero-sound be
ause it representsa resonan
e 
orresponding to a 
olle
tive motion of the system.If we negle
t the zero-sound enhan
ement, the e�e
t of the medium 
orre
tionseen in the RPA 
urves is that of damping. From looking at Eq. (C.59) we 
an seethat whenever the kernel Kαβ;δγ is a positive-de�nite matrix (an overall repulsiveintera
tion) we will have a suppression and when we have negative-de�nite matrix(attra
tive intera
tion) we will have an enhan
ement. If the nature of the spin-like and spin-unlike intera
tion is di�erent, i.e. one is repulsive and the otherattra
tive, than we have a 
omposite e�e
t whose nature will depend on whi
h
hannel (ve
tor or axial) dominates. It is in fa
t often the 
ase that spin-like andspin-unlike intera
tions are di�erent, 
f. Fig. 4.13. In the 
ase of Fig. 5.3, and forall other neutral 
urrent 
ross se
tions with only nu
leons, the repulsive intera
tionin the ve
tor 
hannel mostly dominates the response. The only ex
eption is theenhan
ement at zero energy transfer at �nite temperature whi
h is 
aused by theaxial 
hannel.In Fig. 5.4 the neutrino neutral 
urrent 
ross se
tion in symmetri
 nu
lear mat-ter with density-dependent intera
tions is shown. It is evident that the in
lusionof density-dependent intera
tions enhan
es the 
olle
tive behavior of the system.Hen
e the peaks we see at zero temperature are mu
h more pronoun
ed. It alsosigni�
antly alters the �nite temperature response, although the Hartree-Fo
k 
al-
ulation, whi
h is only in�uen
ed by the e�e
tive mass, stays largely un
hanged.
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Figure 5.4: Neutrino neutral 
urrent 
ross se
tion in symmetri
 nu
lear matterwith density-dependent intera
tions.
Large e�e
ts for the RPA 
al
ulation are the result of signi�
antly altered inter-a
tions in both like spin (F0) and the unlike spin (G0) 
hannels whi
h we saw inFig. 4.5.The neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matter withdensity-dependent intera
tions is shown in Fig. 5.5. The appearan
e of two dis-tin
t Fermi surfa
es is now 
learly visible. Hen
e we now have two Fermi momentaand two e�e
tive masses to 
onsider. In the 
ase of the lower panels (ρ0/2) we seean extremely strong peak 
lose to zero. This peak is 
aused by the determinantof the ve
tor response whi
h appears when solving Eq. (5.18). Obviously at thisdensity the intera
tion is attra
tive enough to 
ause su
h an e�e
t. This is some-what unusual sin
e most other peaks at zero energy transfer are produ
ed by thedeterminant of the axial response, as we will see in the following �gures.In the 
ase of dense matter with hyperons we have a 
omplex multi
ompo-nent system whose response is di�erent from a response of the relatively simplenu
leoni
 system we showed so far. At any given density the 
on
entrations and
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Figure 5.5: Neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions.
the e�e
tive masses as well as the strength of the 
oupling to the medium willplay a signi�
ant role. In addition to the Fermi spheres of nu
leons we also haveto 
onsider those of hyperons and for the RPA we now have a more 
omplexmatrix whi
h enters the kernel. All of these e�e
ts will be entangled when wesolve the matrix equation Eq. (C.59) whi
h will make the study of individual ef-fe
ts di�
ult. However some of the leading e�e
ts 
an be re
ognized due to theirmagnitude.Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the neutrino neutral 
urrent 
ross se
tionin β-equilibrated dense matter with density-dependent intera
tions and the Y Nintera
tion for NSC97f, χEFT 600 and J04 models, respe
tively. The upper panelsshow results at 2ρ0 and the lower panels show those at 3ρ0. On the left-hand sidesof these three �gures we plot the Vlow k + DDa and on the right-hand sides
VUCOM +DDa.At zero temperature we see the �rst drop after the initial rise whi
h 
omesfrom the hyperons, the se
ond de
rease 
omes from protons and is mu
h less
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Figure 5.6: Neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions and Y N intera
tion from the NSC97f model.
pronoun
ed and the last drop is from neutrons. This 
learly binds the e�e
t ofhyperons to low energy transfers whi
h is also true for �nite temperatures. Thebest example for e�e
ts at higher energy transfer 
oming from nu
leons is theappearan
e of the peak on the left end of the T = 10 MeV 
urves. This peak
omes only from neutrons but it is strongly enhan
ed by the determinant of theve
tor response. The only reason why we do not have a stronger peak at thispoint is that at these energies the Pauli blo
king e�e
t is rather strong. Su
h apeak is 
ommonly referred to as the zero-sound peak. We 
an also noti
e that asthe density in
reases the peak moves out towards higher energy transfers, and onsome o

asions is 
ompletely outside of the main part of the 
ross se
tion.The biggest di�eren
e between the three �gures, Fig. 5.6, Fig. 5.7 and Fig. 5.8lies in their behavior at zero energy transfer. At this point the NSC97f modelshows a peak 
oming from the approa
h to zero of the axial response determinantwhose magnitude as this point is ∼ 0.1 at 2ρ0 leading to an order of magnitudein
rease in the 
ross se
tion. For χEFT 600 at the same density it has the value of
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Figure 5.7: Neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions and the Y N intera
tion from the χEFT 600model.
∼ 0.5 making the peak non-existent. The same value for the J04 lies between thesetwo at ∼ 0.25 whi
h results in a visible, but signi�
antly less pronoun
ed peak forthis model. While these observations were made for the 
ase of Vlow k +DDa anidenti
al hierar
hy is observed for VUCOM +DDa but in this 
ase all peaks are lesspronoun
ed. They are less pronoun
ed be
ause the axial response determinant issystemati
ally larger in these 
ases.The last �gure in this se
tion, Fig. 5.9, is devoted to displaying the 
omparisonof all neutrino neutral 
urrent 
ross se
tions in β-equilibrated dense matter withdensity-dependent intera
tions at a density of 3ρ0 and a temperature of T = 10MeV. This 
omparison shows in a systemati
 way some of observations made inspe
i�
 
ases before. The upper panels show the 
omparison of the Hartree-Fo
k
al
ulation while the lower shows the same for the RPA. The limitation of hyperone�e
ts to small energy transfers is evident if we take a look at the Hartree-Fo
k
al
ulation. Small di�eren
es at higher energy transfers 
ome from 
hanges in the
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Figure 5.8: Neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions and the Y N intera
tion from the J04 model.
neutron Fermi momentum introdu
ed by β-equilibrium. The zero-sound e�e
tsas well as the di�eren
es in the peaks at zero energy transfer are apparent in thelower left panel displaying the Vlow k + DDa. The absen
e of su
h an e�e
t for
VUCOM +DDa shows the sensitivity to the parameters in the kernel of Eq. (5.18).5.3.2 The 
harged 
urrent 
ross se
tionFig. 5.10 shows the 
harged 
urrent 
ross se
tion in symmetri
 nu
lear matterwith in
lusion of density-dependent intera
tions. As 
ould have been expe
tedthese graphs are very similar to those for the neutral 
urrent be
ause the polar-ization fun
tions of the nn and the pn system in symmetri
 matter are pra
ti
allyidenti
al. They are alike be
ause the kinemati
al di�eren
es whi
h arise in β-equilibrium due to the presen
e of the ele
tron 
hemi
al potential are not therein symmetri
 matter. The small di�eren
e seen in the upper panels, is that the
ross se
tion 
urves do not start at zero but at a small negative value. The reason
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Figure 5.9: Neutrino neutral 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions and various the Y N intera
tion at a densityof 3ρ0 and a temperature of T = 10 MeV.
behind this is the small di�eren
e in mass of the proton and neutron. The samepeak stru
ture at the end of the energy range as well as the suppression for lowerenergy transfers, for the RPA 
al
ulations, is seen here just like in the 
ase of theneutral 
urrent and the reasons for them are the same.In the Fig. 5.11 we display the neutrino 
harged 
urrent 
ross se
tion in β-equilibrated dense matter with density-dependent intera
tions. These results aresigni�
antly di�erent 
ompared to the neutral 
urrent 
ase be
ause of the presen
eof the ele
tron 
hemi
al potential in the 
ross se
tion. We see that the entire
ross se
tion has been shifted towards negative values of the energy transfer. Theamount of the shift is 
losely linked to the value of the ele
tron 
hemi
al potential.As for the phase spa
e available for these 
ross se
tions it is easy to see that onthe left-hand side they are dominated by Pauli blo
king while on the right-handside they are determined by the kinemati
al limits.For the 
ase of the 
harged 
urrent 
ross se
tion with hyperons we only show,
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Figure 5.10: Neutrino 
harged 
urrent 
ross se
tion in symmetri
 nu
lear matterwith density-dependent intera
tions.
Fig. 5.12, be
ause all e�e
ts seen in this model 
an be also seen in all others. Thegeneral feature of suppression in the RPA 
al
ulations 
ompared to the Hartree-Fo
k ones is here just like for Fig. 5.11, whi
h showed the 
ross se
tion withouthyperons. The limitations on the phase spa
e are the result of the same e�e
t.The only small di�eren
e is that the value of the ele
tron 
hemi
al potential isdi�erent due to di�eren
es in the β-equilibrium. Even the magnitudes of the 
rossse
tion stay the same be
ause by far the most dominate part is the pn polarizationloop. A small e�e
t of the hyperon polarization fun
tions 
an be seen in the lowerright �gure as a small indentation in the middle of the RPA 
urve for T = 10MeV.5.3.3 Mean free pathBoth neutral 
urrent (left) and 
harged 
urrent (right) neutrino mean free paths,in symmetri
 nu
lear matter with density-dependent intera
tions for several tem-
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Figure 5.11: Neutrino 
harged 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions.
peratures, are shown in Fig. 5.13. In this �gure it is easy to see that, as thein
rease of temperature opens up the phase spa
e available for the 
ross se
tions,the mean free path de
reases. The resulting in
rease will eventually lead to neu-trinos being trapped inside the neutron star. However, it is 
lear to see that asthe neutron star grows older and 
ools, the neutrinos will start to free streamout of it. Hen
e only young and hot neutron stars 
an be 
onsidered as possibleenvironments for neutrino trapping.The 
omparison between the left and the right side of Fig. 5.13 tells us thatwhile the 
harged 
urrent 
ontribution to the mean free path is slightly larger thanthe 
ontribution of the neutral 
urrent they are of the same order of magnitude andboth are equally important for the study of neutrino transport in dense matter.As for the di�eren
es between the Hartree-Fo
k and RPA 
al
ulations it is evenmore obvious than before that the main e�e
t of the medium's response is thesuppression of the 
ross se
tion. One ex
eption is the 
ase for low densities in theneutral 
urrent where we see an enhan
ement in the RPA 
al
ulation. However
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Figure 5.12: Neutrino 
harged 
urrent 
ross se
tion in β-equilibrated dense matterwith density-dependent intera
tions with the Y N intera
tion from the NSC97amodel.
if we re
all that this is pre
isely the density at whi
h F0 be
omes smaller than
−1, 
f. Fig. 4.5, we realize that this is where the approximation of in�nite nu
learmatter starts to breakdown. Hen
e, this e�e
t should be 
onsidered with somes
epti
ism and one wonders if Fermi liquid theory is valid in this density range.The e�e
ts of hyperons on the neutrino mean free path in β-equilibrated densematter with density-dependent intera
tions for several temperatures 
an be seenin Fig. 5.14. The results shown in this �gure represent the Hartree-Fo
k 
al
u-lation. It is 
learly seen how the appearan
e of hyperons de
reases the neutral
urrent neutrino mean free path. Obviously di�erent models with di�erent hy-peron threshold densities will start to a�e
t the mean free path at di�erent stages.By the time the density rea
hes 3ρ0 all models for whi
h both Λ and Σ− appearbelow this density give the same result. The model whi
h only has a Λ at this den-sity, χEFT600, is also the only model whi
h di�ers from all others. If we ex
ludethis model from our 
onsiderations we 
an 
on
lude that at 3ρ0 the introdu
tion
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 nu
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tions for several temperatures.
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5.3. RESULTS 87of hyperons leads to the fa
tor of ∼ 2 de
rease in the mean free path 
ompared tothe pure nu
leon 
ase. This makes the neutrinos whi
h are trapped at densitiesabove whi
h hyperons appear slightly longer trapped as the neutron star 
ools.
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Figure 5.15: Neutral 
urrent neutrino mean free paths in β-equilibrated densematter with density-dependent intera
tions for various Y N intera
tions. Theresults shown are for the RPA 
al
ulation at T = 10 MeV.The results of the RPA 
al
ulation are shown in Fig. 5.15. The �gure displaysthe neutral 
urrent neutrino mean free path in β-equilibrated dense matter withdensity-dependent intera
tions for various Y N intera
tions. The e�e
ts whi
hwe observe here are similar to those for all other temperatures so we fo
us ona temperature of T = 10 MeV. The enhan
ement at low densities that we sawin symmetri
 matter when 
onsidering Fig. 5.13, has now moved to density of
∼ 0.4ρ0, similar to the e�e
t we saw when we plotted F0 in β-equilibrium inFig. 4.13.An interesting di�eren
e is that for Vlow k without hyperons and VUCOM theresponse fun
tions have a di�erent density dependen
e. If we look at Eq. (C.53)we see that the polarization fun
tion is dire
tly proportional to the M∗2 (for theneutral 
urrent 
ase). Hen
e the faster de
rease of the e�e
tive mass in the 
aseof VUCOM , whi
h was observed in Fig. 4.4, explains this di�eren
e.Fig. 5.16 displays the ratio of mean free paths in the RPA and Hartree-Fo
k
al
ulations. The results shown are in β-equilibrated dense matter with density-dependent intera
tions for various Y N intera
tions at a temperature of T = 10MeV. This �gure shows that the response of the Vlow k and VUCOM 
ombined
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Figure 5.16: Ratio between the neutral 
urrent neutrino mean free paths for theRPA and the Hartree-Fo
k 
al
ulation. The result shown are in β-equilibrateddense matter with density-dependent intera
tions for various Y N intera
tions ata temperature of T = 10 MeV.
with density-dependent intera
tion DDa is di�erent even when 
ombining themwith hyperon intera
tions. It is obvious that the response of the medium withand without hyperons 
an be signi�
antly dependent on the exa
t values of theLandau-Migdal parameters entering the kernel. For the most part in nu
leoni
matter the neutrino mean free path is suppressed but when we in
lude hyperonsthis 
an 
learly lead to signi�
ant enhan
ements. In fa
t, in the 
ase of Vlow k somemodels lead to a drop in the mean free path between (2 − 3)ρ0 by an order ofmagnitude. Su
h a large 
hange, with the peak-like shape seen in Fig. 5.15, wouldlead to an a

umulation of trapped neutrinos at this density range 
oming fromdeeper inside the neutron star. However as we did not study trapped neutrinos itis possible that on
e they are in
luded su
h stru
tures would disappear.Fig. 5.17 shows the 
harged 
urrent neutrino mean free path in β-equilibrateddense matter with density-dependent intera
tions for various Y N intera
tions.The 
al
ulation displayed was preformed in the RPA. The e�e
ts here are nowherenearly as dramati
 as in the 
ase of the neutral 
urrent. Hen
e we do not show theresult of the Hartree-Fo
k 
al
ulation, but refer to the same result for the symmet-ri
 matter shown in Fig. 5.13. The e�e
t seen there is also true in β-equilibrateddense matter. The medium's response in
reases the mean free path through thesuppression of the 
ross se
tion. As for the e�e
t of hyperon appearan
e, unlike
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Figure 5.17: Charge 
urrent neutrino mean free path in β-equilibrated densematter with density-dependent intera
tions for various Y N intera
tions. Theresults shown are from the RPA 
al
ulation.in the neutral 
urrent 
ase, the Y N models do not rea
h a 
ommon point by 3ρ0.Additionally the e�e
t of hyperons 
ompared to the pure nu
leon 
ase is not thatlarge. The reason behind this e�e
t is that in the 
ase of the 
harged 
urrent thenu
leoni
 
ontribution to the 
ross se
tion is still by far the largest. The onlyway the hyperons a�e
t the 
ross se
tion is by 
hanging the phase spa
e through
hanges in the β-equilibrium. Hen
e the 
ross se
tion may shift around from oneenergy range to the next but still remains dominated by nu
leons.In our dis
ussion we have 
onsidered only ele
trons and their neutrinos. How-ever, the neutral 
urrent results are more general and 
an be applied to all neutrinospe
ies. Additionally, all derivations of the 
ross se
tions from Appendix C 
anbe easily extended to the 
ase of the other lepton families. The same is truefor antineutrinos, the only di�eren
e being that the 
on
entrations of muons and
τ -leptons, as well as of their antiparti
les, are zero in 
old neutron stars.
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6 Summary and Con
lusionThe 
onstru
tion of the hyperon-nu
leon low-momentum e�e
tive potential, Vlow k,allowed us to study the properties of hyperons in dense matter, together withproperties of dense matter 
ontaining hyperons. The Y N Vlow k potentials were
onstru
ted in a RG formalism from several bare potentials and applied to a nu-
lear matter 
al
ulation. The starting point of the nu
lear matter 
al
ulation,after determination of the matrix elements of Vlow k , was the single-parti
le po-tential of hyperons. Sin
e Vlow k is an e�e
tive intera
tion, standard many-bodyte
hnique 
an be dire
tly applied.As expe
ted the results show only a limited degree of agreement and we wereable to make only a few 
on
lusions regarding the single-parti
le potential. Onede�nite result was the attra
tive nature of the Λ single-parti
le potential in nu
learmatter, although its exa
t behavior 
ould not be as
ertained. The di�eren
esin the results 
ame from the inability to 
onstru
t a unique Y N intera
tion.This inability is not the fault of the Vlow k method, but the rather unfortunate
onsequen
e of in
omplete and low pre
ision of data available for Y N s
attering.However, we took this situation as an opportunity to study all possible out-
omes of di�erent hyperon single-parti
le potentials. In essen
e it is highly unlikelythat all of the potentials presented here will turn out to be in
orre
t, hen
e thetruth de�nitely lies within the range of possibilities explored in this thesis. Whi
hof these potentials gives a true des
ription will hopefully be de
ided in the not-so-distant future. The planned experiments at the J-PARC and FAIR fa
ilities are
ertainly going to give us some signi�
ant pointers in this dire
tion. The simpleaddition of some mu
h needed s
attering data would bring us, in the Y N se
tor,
loser to the high quality situation whi
h already exists for the NN se
tor. Anyfurther development in this area is then dependent on more experimental data,but we have developed a reliable method whi
h 
an be easily implemented as soonas su
h data is available.After the introdu
tion of the Y N single-parti
le potential we pro
eeded to the
al
ulation of the energy per parti
le in nu
lear matter. In this 
ase it turned outthat the NN Vlow k potential was not well suited for the study of dense matter.Even when 
ombining it with an appropriate three-body for
e from 
hiral pertur-bation theory, the properties of nu
lear matter were not reprodu
ed with su�
ient91
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eeded to repla
e the nu
leoni
 part of the equation of statewith a parametrization. The parameters made it possible to study a wide rangeof equations of state. This broadness, in addition to the multitude of di�erent
Y N potentials used makes us 
on�dent that the 
on
lusions drawn here are asreliable as possible.The primary result of this study is that strangeness will appear, via either the
Σ− or Λ, at around twi
e the saturation density of nu
lear matter. This is not anunexpe
ted result sin
e other studies in this area drew the same 
on
lusion, butnever before has anyone studied su
h a range of equations of state in 
ombinationwith so many di�erent potentials. Hen
e, any study of neutron stars must �nda way to either in
lude hyperons or to �nd a solid reason for ex
luding them.Unfortunately the results on neutron star masses were not in agreement with theobserved masses of known pulsars. However, this is a known side-e�e
t of negle
t-ing Y Y intera
tions and does not make our statement of hyperon appearan
e anyless 
orre
t.However, the parametrization introdu
ed made it impossible to study the re-sponses of matter to the neutrino probe. Hen
e we returned ba
k to the mi-
ros
opi
 intera
tion for the NN intera
tion and introdu
ed a density-dependentfor
e in order to mimi
 the e�e
ts of higher-order 
ontributions. This for
e wasthen used in 
ombination with the e�e
tive NN potentials (Vlow k and VUCOM)and �tted to the properties of nu
lear matter. On
e �xed, the density-dependentfor
e was used to 
al
ulate the Landau-Migdal parameters. These parametersserved as input to the 
al
ulation of the medium's response to an external probe.They des
ribe the strength of the intera
tion between the intera
ting parti
le-holestates.A straightforward extension to the nu
lear matter 
al
ulations performed inthis thesis, whi
h would apply to all 
onsidered quantities, is the in
lusion ofhigher order terms in the perturbative expansion. Su
h an extension is naturalgiven the fa
t that we are using soft e�e
tive potentials and should thus be de-s
ribed perturbatively. This would give 
ontributions beyond that of Hartree-Fo
kfor all quantities, ranging from the energy per parti
le over the single-parti
le po-tential, to the Landau-Migdal parameters. In this way a residual intera
tion 
anbe 
reated whi
h would surpass the 
al
ulation presented here and 
ould be easilyused for the study of the matter's response to neutrinos.On
e we determined the strength of the intera
tion we were able to 
al
ulatethe response of the medium to an external probe. The external probe used wasthe neutrino and the medium's response was studied in two approximations: theHartree-Fo
k approximation; and the RPA. In both 
ases we in
luded hyperonsand saw how the 
ross se
tion for both neutral and 
harged 
urrents was modi�ed.In the 
ase of the neutral 
urrent, the biggest e�e
t was the opening up of newrea
tion 
hannels leading to an in
rease of the 
ross se
tion at small energy trans-



93fers. At the same time the e�e
t of hyperons on the 
harged 
ross se
tion werenot large. The only e�e
ts were indire
t ones through the 
hange of the ele
tron
hemi
al potential due to β-equilibrium.For the di�eren
e between the medium's response in the Hartree-Fo
k approxi-mation and the RPA, we saw how for the most part in the latter 
ase the mediumsuppresses the 
ross se
tion. The only ex
eption was the appearan
e of strongpeaks in the neutral 
urrent 
ross se
tion. Those on the edge of the energy range
ame from the ve
tor response and were signals of zero sound; while those at zeroenergy transfer 
ame mostly from the axial response. The latter peaks from theaxial response were only noti
eable in the 
ase of �nite temperature, sin
e for zerotemperature Pauli blo
king leads to a 
omplete suppression.Finally, we used the neutrino mean free path to examine how it was in�uen
edby 
hanges in the 
ross se
tion. As expe
ted, the in
lusion of hyperons led to ade
rease of the mean free path. The 
on
lusions when the RPA was in
luded werenot so 
lear, but for the most part it led to a de
rease of the mean free path. Thiswas not unexpe
ted sin
e we noti
ed the suppression as the dominate e�e
t of theRPA for 
ross se
tions. However in the 
ases where an axial response led to greatin
rease of hyperon 
ontributions to the 
ross se
tion, we saw a strong de
rease ofthe mean free path. Su
h e�e
ts 
ould be signi�
ant for neutron stars as it wouldmean that neutrinos stay trapped inside the star for longer times, i.e until lowertemperatures.
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A Appendix A
A.1 Lippmann-S
hwinger equationIn order to mathemati
ally formulate the s
attering pro
ess we start from thetotal Hamiltonian H and assume that it 
an be separated as

H = H0 + V , (A.1)where H0 is the free (unperturbed) Hamiltonian. We will apply H to states whi
hhave the same energy spe
trum as free states, i.e.
H0 |φ〉 = E |φ〉 . (A.2)Then the S
hrödinger equation we have to solve is

H |ψ〉 = (H0 + V ) |ψ〉 = E |ψ〉 , (A.3)where |φ〉 is the eigenve
tor of H0, |ψ〉 is eigenve
tor of H , and E is an eigenvalueof both H and H0.The desired solution of Eq. (A.3) is then
|ψ〉 =

1

E −H0
V |ψ〉 + |φ〉 , (A.4)and is known as the Lippmann-S
hwinger equation [81℄.The transition operator T is de�ned su
h that

V |ψ〉 = T |φ〉 . (A.5)If we multiply Eq. (A.4) with V and apply Eq. (A.5) we obtain
T |φ〉 = V |φ〉 + V

1

E −H0 + iǫ
T |φ〉 (A.6)whi
h is the operator form of the Lippmann-S
hwinger equation sin
e it is validfor any 
omplete set of orthogonal states |φ〉.95



96 APPENDIX A. APPENDIX AA.2 Single parti
le statesA single-parti
le state of a fermion is denoted by |i〉 where i represents the 
om-plete set of quantum numbers (spin, isospin momentum, et
.). They are normal-ized su
h that
〈i|j〉 = δij . (A.7)The 
ompleteness relationship of single-parti
le states is expressed by the outerprodu
t
∑

i

|i〉 〈i| = 1 . (A.8)In the 
ase of 
ontinuous quantum numbers one must use the Dira
 delta fun
tioninstead of the Krone
ker delta and repla
e the summation with the integrationor a 
ombination of both in the 
ase of mixed dis
ret and 
ontinuous quantumnumbers.A.3 Plane wavesAn appropriate one-parti
le plane wave state 
an be labeled by momentum ~p,spin(isospin) s(t) and spin(isospin) proje
tion ms(mt). Thus we have
|~p, sms, tmt〉 = |~p〉 ⊗ |sms〉 ⊗ |tmt〉 , (A.9)with the normalization and 
ompleteness as de�ned above with momentum being
ontinuous. A fully antisymmetrized two-parti
le state 
an then be 
onstru
tedas:

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2〉 = (A.10)
|~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 − |~p2, s2ms2

, t2mt2〉 |~p1, s1ms1
, t1mt1〉√

2
.A.4 Partial wavesIn the partial-wave basis a two-parti
le state 
an be expressed as:

∣

∣

∣

~Pp(LS)JMJ t1mt1t2mt2

〉

=
∣

∣

∣

~Pp(LS)JMJ

〉

⊗ |t1mt1t2mt2〉 , (A.11)where the ~P is the total momentum of the system, p = |~p| is the magnitude ofthe relative momentum, L is the orbital angular momentum, S is the total spin,
J is the total angular momentum and MJ is its proje
tion. 11Isospin 
an be 
oupled in a similar fashion but we refrain from doing it sin
e we want tokeep the isospin dependen
e expli
it.



A.5. CHANGE OF BASIS (PLANE WAVE TO PARTIAL WAVE) 97Sin
e the total momentum is always 
onserved we will drop it from the further
onsiderations. The partial-wave states are normalized as
〈

p(LS)JMJ t1mt1t2mt2 |p′(L′S ′)J ′MJ ′t′1mt′1
t′2mt′2

〉

=
π

2pp′
δ(p− p′)δLL′δSS′δJJ ′δMJM ′

J
δt1t′1

δmt1
mt′

1

δt2t′2
δmt2

mt′
2

, (A.12)with the 
ompleteness relation as
2

π

∑

(LS)JMJ t1mt1
t2mt2

∫

p2dp |p(LS)JMJt1mt1t2mt2〉

〈p(LS)JMJ t1mt1t2mt2 | = 1 . (A.13)A.5 Change of basis (plane wave to partial wave)We 
an take two single-parti
le states des
ribed by Eq. (A.9) and 
ouple them to
reate the above de�ned two-parti
le state in the partial-wave basis Eq. (A.11).We �rst 
ouple the momenta by transferring to the 
enter of mass referen
e frame.The total and the relative momenta of a system of two parti
les, in the 
enter ofmass frame, are given by
~P = ~p1 + ~p2 , (A.14)
~p =

m1

m1 +m2
~p2 −

m2

m1 +m2
~p1 , (A.15)wherem1 andm2 are the masses of the parti
les. The inverse of these relationshipsis than given by

~p1 =
m1

m1 +m2

~P − ~p , (A.16)
~p2 =

m2

m1 +m2

~P + ~p , . (A.17)The 
oupling of spins pro
eeds in the usual fashion through the Clebsh-Gordan
oe�
ients:
|SMS〉 =

∑

ms1
ms2

(

s1 s2 S
ms1

ms2
MS

)

|s1ms1
〉 |s2ms2

〉 , (A.18)
|s1ms1

〉 |s2ms2
〉 =

∑

SMS

(

s1 s2 S
ms1

ms2
MS

)

|SMS〉 . (A.19)



98 APPENDIX A. APPENDIX AWe then transform the relative momentum to a basis involving the magnitude ofthis momentum, orbital angular momentum and its proje
tion.
|~p〉 =

√

2

π

∑

LML

|pLML〉
〈

LML|~̂p
〉

=

√

2

π

∑

LML

|p LML〉Y ∗
LML

(~̂p) , (A.20)where YLML
(~̂p) are spheri
al harmoni
s and ~̂p is a unit ve
tor in the dire
tion of

~p. What remains is to 
ouple the orbital angular momentum and the total spininto total angular momentum. Then we have
|~p1, s1ms1

, t1mt1〉 |~p2, s2ms2
, t2mt2〉 =

√

2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)

Y ∗
LML

(~̂p)

(

L S J
ML MS ML +MS

)

|p(LS)JMJt1mt1t2mt2〉 . (A.21)The sum over MJ has been suppressed be
ause of the relation MJ = ML +MS.A.6 Lippmann-S
hwinger equation in the partial-wave basisIf we use the partial wave states de�ned by Eq. (A.12) and Eq. (A.13) and evaluatethe operator form of the Lippmann-S
hwinger equation Eq. (A.6) we arrive at theform of the Lippmann-S
hwinger equation in partial wave basis:
T α′α

k,y′y(q
′, q; q2) = V α′α

k,y′y(q
′, q)+

2

π

∑

β,z

P

inf
∫

0

dl l2
V α′β

k,y′z(q
′, l)T βα

k,zy(l, q; q
2)

Ey(q) − Ez(l)
. (A.22)The labels y, z indi
ate the parti
le 
hannels, e.g. y = Y N , and α, β denotethe partial waves, e.g. α = LSJ where L is the angular momentum, J the totalmomentum and S the spin. In this equation the energies are given by

Ey(q) = My +
q2

2µy

, (A.23)with the redu
ed mass µy = MYMN/My and the total mass My = MY + MN ofthe hyperon MY and the nu
leon MN .In the basis de�ned by Eq. (A.12) the transition operator is seen to 
ouple var-ious spin and isospin 
hannels. However we are not 
ompletely free in the 
hoi
e
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ouplings. Our 
hoi
es are limited by the need to satisfy various 
onser-vation laws. This will redu
e the 
omplete matrix, whi
h one 
an 
onstru
t withdis
ret indi
es, into several smaller parts whi
h do not 
ouple with one another.Let us �rst examine all possible states we have. Obviously one does not needto 
onsider the total angular momentum J sin
e it is 
onserved. But for the totalspin and angular momentum we have the spin singlet states S = 0 with L = Jand the spin triplet states S = 1 with L = J + 1 or L = J or L = J − 1. Thiswould then give a 4 × 4 matrix in this spa
e but parity 
onservation redu
es thisto two 2 × 2 matri
es. If we suppress all other indi
es in addition to momentumwe 
an write them as:
(

T 0J0J T 0J1J

T 1J0J T 1J1J

)

,

(

T 1J−11J−1 T 1J−11J+1

T 1J+11J−1 T 1J+1J+1

)

. (A.24)Here the �rst matrix represents the singlet-triplet 
oupling and the se
ond one isthe triplet-triplet 
oupling 2.As for the isospin indi
es y, if we restri
t ourselves to 
ombinations of theform Y N , we have four possibilities for Y and two for N , whi
h give us eightpossibilities for y. This would result in an 8×8 matrix in this representation, butlike in the previous 
ase we also have a 
onservation law to 
onsider. Here it isthe 
onservation of 
harge whi
h limits the possible 
ouplings, so instead of one
8 × 8 matrix we have two 1 × 1 matri
es, for 
harge +2 and −1, and two 3 × 3matri
es, for 
harge 1 and 0. Now, if we suppress all indi
es ex
ept isospin we 
anwrite these matri
es as:

(TΣ+pΣ+p),





TΛpΛp TΛpΣ+n TΛpΣ0p

TΣ+nΛp TΣ+nΣ+n TΣ+nΣ0p

TΣ0pΛp TΣ0pΣ+n TΣ0pΣ0p



 ,





TΛnΛn TΛnΣ0n TΛnΣ−p

TΣ0nΛn TΣ0nΣ0n TΣ0nΣ−p

TΣ−pΛn TΣ−pΣ0n TΣ−pΣ−p



, (TΣ−nΣ−n) . (A.25)A.7 Numeri
sHere we show a few details regarding the numeri
al solution of Eq. (1.1). In thisse
tion for the sake of brevity we will suppress the subs
ript low k for all operatorssin
e from this point on all operators will be those of low momentum.In order to be able to 
al
ulate the T -matrix numeri
ally it is ne
essary thatwe derive an expression for it whi
h is suitable for a numeri
al use. Here several2For the NN potential there is no singlet-triplet 
oupling sin
e the o�-diagonal matrix ele-ments T 0J1J and T 1J0J do not exist.



100 APPENDIX A. APPENDIX Aproblems arise, but two are the main ones: the re
urrent nature of the Lippmann-S
hwinger equation and the prin
ipal value nature of the integral that appears.There are several ways to do this. Here we will essentially follow the pres
rip-tion used in [82℄ with ne
essary 
hanges made to a

ount for the multi
hannelLippmann-S
hwinger equation that we have instead of the single-
hannel equa-tion used in [82℄.Starting from Eq. (A.22), �rst we add and subtra
t an expression whi
h is
onveniently designed so we get rid of the prin
ipal value integral. This additionalexpression is easily simpli�ed
T α′α

y′y (q′, q; q2) = V α′α
y′y (q′, q)

+
2

π

∑

β,z

Λ
∫

0

dl
l2V α′β

y′z (q′, l)T βα
zy (l, q; q2) − E2

0V
α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)

Ey(q) −Ez(l)

+
2

π

∑

β,z

V α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)P

Λ
∫

0

dl
E2

0

Ey(q) −Ez(l)
, (A.26)where we use the abbreviation E2

0 = 2µz

(

My + q2

2µy
−Mz

). As one 
an noti
ethe �rst integral is no longer a prin
ipal value integral, but an ordinary integral,and the se
ond one is analyti
ally solvable. First let us solve the se
ond integral,
P

Λ
∫

0

E2
0dl

Ey(q) − Ez(l)
= −P

Λ
∫

0

2µzE
2
0dl

l2 −E2
0

= −µzE0 ln
Λ − E0

Λ + E0
. (A.27)The other integral needs to be solved numeri
ally so we use Gaussian quadra-ture

Λ
∫

0

dlF (l) =

N
∑

j=1

F (lj)ωj , (A.28)to represent the integration as a dis
rete sum, where ωj are the appropriateweights. Now we use these two results in Eq. (A.26) to yield:
T α′α

y′y (q′, q; q2) = V α′α
y′y (q′, q)

+
2

π

∑

β,z

N
∑

j=1

l2jV
α′β
y′z (q′, lj)T

βα
zy (lj, q; q

2) −E2
0V

α′β
y′z (q′, E0)T

α′α
zy (E0, q; q

2)

Ey(q) − Ez(lj)
ωj

−
∑

β,z

V α′β
y′z (q′, E0)T

βα
zy (E0, q; q

2)
2µz

π
E0 ln

Λ −E0

Λ + E0

. (A.29)



A.7. NUMERICS 101From here we easily �nd
V α′α

y′y (q′, q) =

N+1
∑

j=1

∑

β,z

[

δijδy′zδα′β + ω′
jV

α′β
y′z (q′, lj)

+ δjN+1V
α′β
y′z (q′, lj)

2µz

π
kN+1 ln

Λ − kN+1

Λ + kN+1

]

T βα
zy (lj, q) , (A.30)where we de�ne the new weights ω′

j as:
ω′

j =







− 2
π

l2j ωj

Ey(q)−Ez(lj)
for j 6= N + 1

2
π

∑N
m=1

k2
N+1

ωm

Ey(q)−Ez(lm)
for j = N + 1

, (A.31)and repla
ed E0 = kN+1.Hen
e through matrix inversion we 
an 
al
ulate the T -matrix as
T α′α

y′y (q′, q; q2) =
N+1
∑

j=1

∑

β,z

(

F α′β
y′z (q′, lj)

)−1

V βα
zy (lj, q) , (A.32)where

F α′β
y′z (q′, lj) = δijδy′zδα′β + ω′

jV
α′β
y′z (q′, lj)

+ δjN+1V
α′β
y′z (q′, lj)

2µz

π
kN+1 ln

Λ − kN+1

Λ + kN+1
. (A.33)We also note that sin
e we are dealing with the half-on-shell T -matrix we haveto keep in mind that the entire matrix needs to be on-shell simultaneously andthat there is a 
ommon energy E to whi
h all energies of the individual 
hannelsare equal to. This will have no in�uen
e on 
oupled 
hannels in whi
h the massesare equal su
h as Eq. (A.24), but in 
hannels where the masses are not equalsu
h as Eq. (A.25) we have to 
orre
t the on-shell value of the 
orrespondingmomentum. Thus our 
ut-o� Λ will not be the same for all 
hannels. If we usethe lightest 
hannel to set the 
ut-o�, then the other 
hannels have to be 
hangeda

ording to the following formula

Λy =
√

2µy(E −My) =

√

2µy(My′ +
Λ2

2µy′

−My′) . (A.34)For the 
harge equal to zero the lightest 
hannel is Λn, so we have ΛΛn = Λ. For
harge equal one we have ΛΛp = Λ.This e�e
t is easy to understand if one 
onsiders the o�-diagonal elementsof the T -matrix in Eq. (A.25) su
h as TΛpΣ+n. Here it is obvious that it is theenergy and not the momentum whi
h is 
onserved by the transition operator.More details on solving a multi-
hannel integral equation of Fredholm type 
anbe found in [83℄.
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B Appendix B
B.1 Hartree-Fo
k ground-state energyIn the Hartree-Fo
k approximation the Hamiltonian of the system is 
omposed ofthe mass, a kineti
 and a potential part [84℄:

Ĥ = M̂ + T̂ + V̂ . (B.1)In Hartree-Fo
k theory, the states of a homogenous and isotropi
 system are givenby plane waves
〈

~ki|~r
〉

=
1√
Ω
e−i~ki·~r , (B.2)where ~ki is the momentum and ~r is the position of the system. Ω represents thevolume of the system. The 
omplete set of states is then

|νi〉 =
∣

∣

∣

~ki

〉

⊗ |sms〉 ⊗ |tmt〉 =
1√
Ω
ei~p·~rχsms

χtmt
, (B.3)where χsms

(χtmt
) denotes the spin (isospin) wave-fun
tion. For the volume of thesystem Ω we will take the Ω → ∞ limit. From the dis
rete momentum basisde�ned by Eq. (B.2) we need to go to a 
ontinuous basis de�ned by

〈~p|~r〉 =
1

(2π)3/2
e−i~p·~r , (B.4)103



104 APPENDIX B. APPENDIX BB.1.1 Mass and kineti
 termWith these de�nitions of a 
ontinuous and dis
rete basis we now evaluate theone-body operators of mass and kineti
 energy:
〈

Φ|M̂ |Φ
〉

=
Ω

(2π)3

∑

s1ms1
t1mt1

Ms1ms1
t1mt1

∫

d3~p1

=
Ω

2π2

∑

s1ms1

∑

t1mt1

Ms1ms1
t1mt1

p3
Fs1ms1

t1mt1

3
(B.5)

〈

Φ|T̂ |Φ
〉

=
Ω

(2π)3

∑

s1ms1

∑

t1mt1

∫

d3~p1
~p2

1

2Ms1ms1
t1mt1

=
Ω

4π2

∑

s1ms1

∑

t1mt1

p5
Fs1ms1

t1mt1

5Ms1ms1
t1mt1

. (B.6)We 
an simplify this expression if we take into a

ount that our environmentis unpolarized and that it 
onsists of nu
leons and hyperons:
〈

Φ|M̂ |Φ
〉

=
Ω

π2



M00

p3
F00

3
+
∑

1
2
mt1

M 1
2
mt1

p3
F 1

2
mt1

3

∑

1mt1

M1mt1

p3
F1mt1

3





=
Ω

π2

(

MΛ

p3
FΛ

3
+
∑

N

MN

p3
FN

3

∑

Σ

MΣ

p3
FΣ

3

) (B.7)
〈

Φ|T̂ |Φ
〉

=
Ω

2π2





p5
F00

5M00
+
∑

1
2
mt1

p5
F 1

2
mt1

5M 1
2
mt1

+
∑

1mt1

p5
F1mt1

5M1mt1





=
Ω

2π2

(

p5
FΛ

5MΛ

+
∑

N

p5
FN

5MN

+
∑

Σ

p5
FΣ

5MΣ

)

. (B.8)B.1.2 Potential termThe potential part is a two-body operator whi
h, in the plane-wave basis, is eval-uated as:
〈

V̂
〉

=
1

2

∑

s1ms1

∑

s2ms2

∑

t1mt1

∑

t2mt2

∑

~p1

∑

~p2

(B.9)
(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 | V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2) ,
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 state 
an be expressed with the help of an ex
hangeoperator Pij as
|~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2) =

(1 − P12)√
2

|~p1, s1ms1
, t1mt1〉 |~p2, s2ms2

, t2mt2〉 .(B.10)We note that sin
e P 2
ij = 1 we have (1 − P12)

2 = 2(1 − P12).With help of [85℄
(

L S J
ML MS MJ

)

= (−1)S+L−J

(

S L J
MS ML MJ

)

, (B.11)and
Y ∗

LML
(−~̂q) = (−1)LY ∗

LML
(~̂q) , (B.12)we 
an easily derive, from Eq. (A.21),

|~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2) =

1√
2

√

2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)

Y ∗
LML

(~̂q)

(

L S J
ML MS ML +MS

)

[

|p(LS)JMJt1mt1t2mt2〉 − (−1)1−S+L |p(LS)JMJ t2mt2t1mt1〉
]

. (B.13)Now we 
an make a 
onne
tion between the expe
tation value of the potential inthe plane-wave basis and in the partial-wave basis as
(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 |V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2)

=
2

π

∑

SMS

∑

LML

∑

J

(

s1 s2 S
ms1

ms2
MS

)2(
L S J
ML MS ML +MS

)2

YLML
(~̂q)Y ∗

LML
(~̂q) [〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJt1mt1t2mt2〉

− (−1)1−S+L 〈q(LS)JMJt1mt1t2mt2 |V |q(LS)JMJt2mt2t1mt1〉
]

. (B.14)In the end going from the dis
rete to the 
ontinuous basis,
〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJ t1mt1t2mt2〉 =

(2π)3

Ω
V di

(LS)Jt1mt1
t2mt2

(q) ,(B.15)
〈q(LS)JMJ t1mt1t2mt2 |V |q(LS)JMJ t2mt2t1mt1〉 =

(2π)3

Ω
V xc

(LS)Jt1mt1
t2mt2

(q) ,(B.16)
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(~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2 | V |~p1, s1ms1

, t1mt1 ; ~p2, s2ms2
, t2mt2)

=
(2π)3

Ω

2

π

∑

SMS

∑

LML

∑

J

(

1/2 1/2 S
ms1

ms2
MS

)2(
L S J
ML MS ML +MS

)2

YLML
(~̂q)Y ∗

LML
(~̂q)
[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)1−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.17)From here, by summing over spins and using
YLML

(θ, φ) = (−1)ML

√

2L+ 1

4π

(L−ML)!

(L+ML)!
PML

L (cos θ)eiMLφ , (B.18)we �nd,
∑

s1ms1

∑

s2ms2

(~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2 |V |~p1, s1ms1
, t1mt1 ; ~p2, s2ms2

, t2mt2)

=
(2π)3

Ω

2

π

∑

SMS

∑

LML

∑

J

(

L S J
ML MS ML +MS

)2
2L+ 1

4π

(L−ML)!

(L+ML)!
(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.19)Combining Eq. (B.9) and Eq. (B.19), as well as going from summation to integra-tion ∑→ Ω/(2π)3
∫ , we obtain

〈V 〉 =
Ω

π(2π)3

∑

t1mt1

(

M

m1

)3
∑

t2mt2

∫

d3~p1

∫

d3~p2

∑

SMS

∑

LML

∑

J

2L+ 1

4π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.20)Finally we go from the integration over the single-parti
le momentum
∫

d3~p1

∫

d3~p2 = (B.21)
∫ pF1

0

dp1p
2
1

∫ π

0

dθ1 sin θ1

∫ 2π

0

dφ1

∫ pF2

0

dp2p
2
2

∫ π

0

dθ2 sin θ2

∫ 2π

0

dφ2 ,to relative momentum with the transition from (p2, θ2, φ2) to (q, θ, φ). This 
hoi
eis arbitrary and we 
ould equivalently have 
hosen to go from (p1, θ1, φ1) to (q, θ, φ)
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p2 cos θ2 =

m1 +m2

m1
q cos θ − m2

m1
p1 , (B.22)

p2 sin θ2 =
m1 +m2

m1

q sin θ , (B.23)
φ2 = φ , (B.24)and this then gives

p2
2dp2 sin θ2dθ2dφ2 =

(

M

m1

)3

q2dq sin θdθdφ . (B.25)The integrand in Eq. (B.20) is independent of all but one angle so we 
anperform the integration over θ1, φ1 and φ analyti
ally whi
h yields a fa
tor of 8π2.Finally
〈V 〉 =

Ω

π2

∑

t1mt1

∑

t2mt2

pF1
∫

0

dp1p
2
1

1
∫

−1

dt

qmax
∫

qmin

dqq2
∑

SMS

∑

LML

∑

J

2L+ 1

4π

(L−ML)!

(L+ML)!

(

L S J
ML MS ML +MS

)2

(PML

L (cos θ))2

[

V di
(LS)Jt1mt1

t2mt2
(q) − (−1)s1+s2−S+LV xc

(LS)Jt1mt1
t2mt2

(q)
]

. (B.26)Limits of integrationThe integration limits of relative momentum in Eq. (B.26) are derived from the re-quirement that the se
ond parti
le momentum at vanishing temperature is smallerthen the 
orresponding Fermi momentum (|~p2| ≤ pF2
). Then from Eq. (A.15) aftersome algebra we �nd:

M2q2 +m2
2p

2
1 + 2Mm2qp1t−m2

1p
2
F2

≤ 0 , (B.27)whi
h has the solution for the relative momentum q

q−(pF2
, p1, t) ≤ q ≤ q+(pF2

, p1, t) ,with the de�nitions
q±(pF2

, p1, t) =
m2

M

[

p1 · t±
√

m2
2

m2
1

p2
F2

− p2
1(1 − t2)

]

. (B.28)
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Figure B.1: Left: q±(pF2
, p1, t) as a fun
tion of t for di�erent 
hoi
es of p1 and�xed pF2

. Right: S
hemati
 representation of the 
onstru
tion of the relativemomentum ~q and its limits.Sin
e the relative momentum q is a real quantity this further 
onstrains theintegration variable t to
t ≥

√

1 −
(

m1

m2

pF2

p1

)2

, (B.29)whi
h is only valid if the hyperon momentum is p1 ≥ m1

m2
pF2

. In this 
ase we �nallydetermine the integration limits to be
tmin =

√

1 −
(

m1

m2

pF2

p1

)2

; tmax = 1 ;

qmin =q−(pF2
, p1, t) ; qmax = q+(pF2

, p1, t) , (B.30)be
ause the modulus of t is always smaller than or equal to one.For the 
ase that the hyperon momenta p1 ≤ m1

m2
pF2

, the fun
tions q±(pF2
, p1, t)are always real whi
h then yields the integration limits

tmin = − 1 ; tmax = 1 , ;

qmin =0 ; qmax = q+(pF2
, p1, t) . (B.31)In Fig. B.1 the integration limit fun
tions q± are shown as fun
tions of t forthree di�erent 
hoi
es of the hyperon momentum (p1 <

m1

m2
pF2

, p1 >
m1

m2
pF2

, p1 =
m1

m2
pF2

) and a �xed kF .



C Appendix C
C.1 Cross se
tionA 
ross se
tion is de�ned by the probability to observe a parti
le in a givenquantum state per unit solid angle if the target is irradiated by a �ux of oneparti
le per surfa
e unit. To 
ompute the 
ross se
tion we need the transitionprobability.C.2 Charge 
urrent 
ross se
tionThe transition probability for a 
harged 
urrent pro
ess shown on the left ofFig. 5.1 is

Tfi = 〈φl;φν| T̂ |φB2
;φB4

〉 . (C.1)The transition matrix 
onsists of the lepton and hadron 
urrents
T̂ = ĵµ(x)Ĵµ(x) , (C.2)where the lepton 
urrent is given by

ĵµ(kf , sf , ki, si) = ˆ̄ψ′(kf , sf)γµ(1 − γ5)ψ̂(ki, si) , (C.3)and equivalently the hadron 
urrent is:
Ĵµ(pf , Sf , pi, Si) = ˆ̄Ψ′(pf , Sf)γ

µ(V −Aγ5)Ψ̂(pi, Si) . (C.4)The notation here is somewhat more general than in Chapter 5 be
ause we willlater refer to the same equation for the neutral 
urrent 
ase.The wave fun
tions of the fermions are given by
ψ̂i(x) =

∑

pi

ψ̂i(pi)e
−ipi·x =

∑

sipi

(

mi

ΩEi

)1/2

csi
(pi)usi

(pi)e
−ipi·x , (C.5)109



110 APPENDIX C. APPENDIX Cwhere the spin sum results in the spinor 
ompleteness relation:
∑

s

[us(p)]f [ūs(p)]a =

(

p/+m

2m

)

fa

. (C.6)The 
al
ulation of the 
ross se
tion would than require the 
al
ulation of thesquare of the transition matrix. However in our 
ase it is useful to use the opti
altheorem instead the dire
tly squaring the transition matrix.C.2.1 Opti
al theoremThe opti
al theorem is a straightforward 
onsequen
e of the unitarity of the S-matrix: Ŝ†Ŝ = ŜŜ† = 1. Inserting Ŝ = 1 + iT̂ we have
−i
(

T̂ − T̂ †
)

= T̂ T . (C.7)We use a 
omplete set of states to evaluate the right-hand side:
〈φl;φν| T̂ T |φ′

l;φ
′
ν〉 =

∑

n

(

n
∏

i=1

∑

φi

)

〈φl;φν| T̂ |φi〉 〈φi| T |φ′
l;φ

′
ν ; 〉 . (C.8)For the 
ase of forward s
attering the opti
al theorem than has the form

ImM (φl;φν → φl;φν) = 2EAEBvrelσtot (φl;φν → all) , (C.9)where the invariant matrix element M is de�ned by
〈φl;φν |T |φ′

l;φ
′
ν〉 = (2π)(4)δ4(pl + pν − p′l − p′ν)M (φl;φν → φ′

l;φ
′
ν) . (C.10)The diagrammati
al representation of the opti
al theorem is shown in Fig. C.1.

2

= 2Im

Figure C.1: Diagrammati
al representation of the opti
al theorem.



C.2. CHARGE CURRENT CROSS SECTION 111C.2.2 Invariant matrix elementLet us now pro
eed with the 
al
ulation of the 
ross se
tion. The quantity whi
hwe �rst need to 
al
ulate is the invariant matrix element of the pro
ess shown onthe right-hand side of Fig. C.1. The momenta and energies of the parti
les aregiven by:
~pB4

= ~pB2
+ ~q , (C.11)

~pl = ~pν − ~q , (C.12)
ıωB4

= ıωB2
+ ıq0 , (C.13)

ıωl = ıων − ıq0 . (C.14)The labeling of the parti
le momenta and energy is obvious, with ~q the transferredmomentum and q0 the transferred energy.Using the Feynman rules for momentum spa
e from [33℄ we 
an immediatelywrite down:
M (φl;φν → φl;φν)=−G

2
F

2

mν

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
(C.15)

∑

sν

{

[ūsν
(iων , ~pν)]γ[γµ(1 − γ5)]γδ

[

Sl(iωl, ~pl)
]

δǫ
[γλ(1 − γ5)]ǫη[usν

(iων , ~pν)]η
}

{

[γµ(V − Aγ5)]α′α[SB4(ıωB4
, ~pB4

)]αβ [γλ(V −Aγ5)]ββ′ [SB2(ıωB2
, ~pB2

)]β′α′

}

= −G
2
F

4

1

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
LµλW

µλ . (C.16)The lepton tensor is
Lµλ = Tr [Sl(iωl, ~pl)γµ(1 − γ5)p/νγλ(1 − γ5)

]

, (C.17)where we have used the fa
t that the neutrino masses are pra
ti
ally zero.If we negle
t 
orrelations between the leptons, or later for the neutral 
urrentneutrinos, we 
an use the relativisti
 propagator
Sl(iωl, ~pl) =

p/l +m

p2
l −m2 + iǫ

, (C.18)to evaluate the tra
e and write the leptoni
 tensor as:
Lµλ = 8

[(pν)µ(pl)λ + (pl)µ(pν)λ − gµλ(pl · pν) − i(pl)α(pν)βǫαµβλ]

p2
l −m2 + iǫ

. (C.19)The hadroni
 tensor is given by
W µλ = Tr [γµ(V − Aγ5)SB4(ıωB4

, ~pB4
)γλ(V − Aγ5)SB2(ıωB2

, ~pB2
)
]

. (C.20)



112 APPENDIX C. APPENDIX CFrom here it is easy to make the nonrelativisti
 approximation by:
[γλ(V − Aγ5)]ββ′ ∼ [gV δ0λ + gAσ

iδiλ]ββ′ . (C.21)We note that the indi
es β and β ′ on the left side run through the values 1 to 4while in the nonrelativisti
 
ase on the left side they go from 1 to 2.The integral and the sum over parti
le B2 in Eq. (C.16) 
an than be used tode�ne the ve
tor polarization fun
tion
Πµλ

V (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

V Tr[SB4(ıωB4
, ~pB4

)SB2(ıωB2
, ~pB2

)
]

δ0µδ0λ , (C.22)and the axial polarization fun
tion
Πµλ

A (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

ATr[SB4(ıωB4
, ~pB4

)σiSB2(ıωB2
, ~pB2

)σj
]

δiµδjλ .(C.23)For the the axial polarization fun
tion one 
an show that for spin-symmetri
matter it simpli�es to
Πµλ

A (iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
g2

ATr[SB4(ıωB4
, ~pB4

)SB2(ıωB2
, ~pB2

)
]

δijδ
iµδjλ .(C.24)We 
an thus de�ne a polarization fun
tion 
ommon to both ve
tor and axialpolarization fun
tions as:

Π̃(iq0, ~q)=T
∑

ωB2
(odd)

∫

d3~pB2

(2π)3
Tr[SB4(ıωB4

, ~pB4
)SB2(ıωB2

, ~pB2
)
]

. (C.25)Combining all of these results and putting them in the invariant matrix elementEq. (C.16) we �nd:
M (φl;φν → φl;φν)=−G2

F

∫

d3~q

(2π)3
(1−fl(El)

(

1−exp (
−q0 + µ2 − µ4

T

)−1

[(1 + cos θ)ΠV (iq0, ~q) + (3 − cos θ)ΠA(iq0, ~q)] , (C.26)where we have used the approximation in whi
h we negle
t the masses of leptons
ompared to their momentum
(pν)

µ(pl)µ = Eν El

(

1 − ~pν · ~pl

Eν El

)

= Eν El(1 − cos θ) . (C.27)



C.2. CHARGE CURRENT CROSS SECTION 113With the aid of the 
onversion fa
tor (1 − exp ((−q0 + µ2 − µ4)/T ))−1 we de�nethe stru
ture fun
tion
ImΠ̃(q0, q) = −1

2
(1 − exp ((−q0 + µ2 − µ4)/T ))S(q0, q) , (C.28)and the di�erential 
ross se
tion is

1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

l (1 − fl(El) [(1 + cos θ)Scc
V (q0, q) + (3 − cos θ)Scc

A (q0, q)] .(C.29)Finally, the total 
ross se
tion is de�ned by
σ(E1)

Ω
=

∫

dΩ2q2
0dq0

1

Ω

d3σ(Eν)

dΩ2dq0
. (C.30)C.2.3 Neutral 
urrent 
ross se
tionThe 
ase for the neutral 
urrent is somewhat simpler sin
e the in
oming andoutgoing parti
les are the same. The transition matrix element is then given by

Tfi = 〈φν ;φν′| T̂ |φB;φB′〉 , (C.31)Using the Feynman rules again we get:
M (φν ;φν → φν ;φν)=−G

2
F

2

mν

Eν

T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
(C.32)

∑

sν

{

[ūsν
(iων , ~pν)]γ[γµ(1 − γ5)]γδ

[

Sl(iωl, ~pl)
]

δǫ
[γλ(1 − γ5)]ǫη[usν

(iων , ~pν)]η
}

{

[γµ(V − Aγ5)]α′α[SB4(ıωB4
, ~pB4

)]αβ [γλ(V −Aγ5)]ββ′ [SB2(ıωB2
, ~pB2

)]β′α′

}

= −G
2
F

4

1

Eν
T
∑

ω0(even)

T
∑

ωB2
(odd)

∫

d3~q

(2π)3

∫

d3~pB2

(2π)3
LµλW

µλ , (C.33)with the polarization fun
tion:
Π̃(iq0, ~q)=T

∑

ωB(odd)

∫

d3~pB

(2π)3
Tr[SB(ıωB, ~pB)SB′

(ıωB′ , ~pB′)
]

. (C.34)The di�erential 
ross se
tion is than de�ned as
1

Ω

d3σ(Eν)

dΩ2dq0
=
G2

F

8π3
E2

l (1 − fl(El) [(1 + cos θ)Snc
V (q0, q) + (3 − cos θ)Snc

A (q0, q)] .(C.35)
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ture fun
tion in the Hartree-Fo
k ap-proximationIn the Hartree-Fo
k approximation the baryoni
 propagator Sb is
[

Sb(ıωb, ~p)
]

αβ
=

δαβ

ıωn + µ− Eb(p)
, (C.36)where the energy is

Eb(p) = Mb +
p2

2M∗
b

+ Ũb . (C.37)As noted in Se
. 2.2 this is the quadrati
 approximation for the single-parti
lespe
trum. Thus, we have the polarization fun
tion for two di�erent nonrelativisti
intera
ting baryons:
Π̃0(iq0, ~q)=T

∑

ωB2
(odd)

∫

d3~pB2

(2π)3
2

[

1

ıωB2
+µB2

−EB2
(pB2

)

1

ıωB4
+µB4

−EB4
(pB4

)

]

,(C.38)whi
h we now label with a zero sin
e this is the zeroth-order Lindhard fun
tion[33℄.The 
onne
tion established earlier with the stru
ture fun
tion Eq. (C.28) givesus
S0(q0, q) =

1

2π2

∫

d3p2δ(q0 + E2 − E4)f2(E2)(1 − f4(E4)) . (C.39)where E4 = M4 + (~p2 + ~q)2/2M∗
4 + U4.We rewrite the energy delta fun
tion in terms of the angle between ~p2 and ~qas:

δ(q0 + E2 − E4) =
M∗

4

p2q
δ(cos θ − cos θ0)Θ(E2 − e−)Θ(e+ − E2) , (C.40)where

cos θ0 =
M∗

4

p2q

(

c− χp2
2

2M∗
4

)

, p2
± =

2q2

χ2

[

(

1 +
χM∗

4 c

q2

)

±
√

1 +
2χM∗

4 c

q2

]

, (C.41)
e± =

p2
±

2M∗
2

;
(~p2 + ~q)2

2M∗
4

=
p2

2

2M∗
2

+ q0 +M2 −M4 + U2 − U4 , (C.42)
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χ = 1 − M∗

4

M∗
2

; c = q0 +M2 −M4 + U2 − U4 −
q2

2M∗
4

. (C.43)The fa
tors M2 −M4 and U2 − U4 are the 
onversion energy gained due to thedi�eren
e in mass and potential. Substituting these results into Eq.(C.39) andperforming the angular integrals we obtain
S0(q0, q) =

M∗
4

πq

∫

p2dp2f2(E2)(1 − f4(E4)) . (C.44)With the substitution E2 = M2 +
p2
2

2M∗
2

+ U2 we get
S0(q0, q) =

M∗
2M

∗
4

πq

e+
∫

e−

dE2f(E2)(1 − f(E2 + q0)) (C.45)
=
M∗

2M
∗
4

πq

e+
∫

e−

dE2
1

1 + exp
(

E2−µ2

T

)

exp
(

E2+q0−µ4

T

)

1 + exp
(

E2+q0−µ4

T

) . (C.46)By using
∫

dx

1 + exp (x)

1

1 + exp (−x− z)
=− 1

1 − exp (−z) ln
1 + exp (x)

1 + exp (x+ z)
, (C.47)we have

S(q0, q) =
M∗

2M
∗
4T

πq

ξ− − ξ+
1 − exp(−z) , (C.48)where

z =
q0 + µ2 − µ4

T
, (C.49)

ξ± = ln

[

1 + exp e±−µ2+M2+U2

T

1 + exp e±+q0−µ4+M2+U2

T

]

. (C.50)The most general 
ase, whi
h we have presented so far, will also apply to the
ase of a 
harged 
urrent. For neutral 
urrents, sin
e the initial and �nal stateparti
les are identi
al for both leptons and baryons, we have the simpli�
ations
M2 = M4, µ2 = µ4, M

∗
2 = M∗

4 , U2 = U4 , (C.51)
z =

q0
T
, e− =

M∗
2

2q2

(

q0 −
q2

2M∗
2

)2

, e+ = ∞ . (C.52)



116 APPENDIX C. APPENDIX CThus, ξ+ = −z, and one �nds the following result for the neutral 
urrent stru
turefun
tion:
S0(q0, q) =

M∗2
2 T

πq

[

z

1 − exp(−z)

(

1 +
ξ−
z

)]

. (C.53)For the 
ase of a free gas all one has to do is to repla
e all e�e
tive masseswith bare masses and take all single-parti
le potentials to be equal to zero.C.4 Stru
ture fun
tions in the RPAIf we 
onsider the full form of the baryoni
 neutral 
urrent in the presen
e of bothnu
leons and hyperons we 
an write it in the following way 1
Jµ

n =
∑

f=p,n,Λ,Σ−,...

f̄γµ(g
ff
V − cff

A )f + Λ̄γµ(g
ΛΣ0

V − cΛΣ0

A )Σ0 . (C.54)From this form of the 
urrent it is obvious that we need to expand our notation toin
lude the isospin indi
es. This in 
ombination with the aim to study the in�u-en
e of matter on the polarization fun
tions of the RPA leads to the introdu
tionof the full polarization matrix, Π̃λµ;αβ(q0, ~q). Additionally at this point we relaxour restri
tion to spin unpolarized matter and 
onsider also the spin indi
es. Ingeneral the full polarization fun
tion is given by [33℄:
Π̃λµ;αβ(q0, ~q)=Π̃0

λµ;αβ(q0, ~q)+
∑

ηνρσ

Π̃0
λµ;ρν(q0, ~q)Kρν;ησ(q0, ~q)Π̃ησ;αβ(q0, ~q) . (C.55)The indi
es here should not be 
onfused with Lorentz indi
es of the γ-matri
essin
e these indi
es are from the spin and �avor spa
e. S
hemati
ally this 
an berepresented as in Fig. C.2.

Figure C.2: Salpether equation in RPA.The kernel K allows the 
al
ulation of polarization fun
tion to all orders. It issimple to see that in the lowest order 
ase where there is no intera
tion, K wouldbe zero and we would immediately re
over the Hartree-Fo
k approximation. The�rst-order approximation is then:
Kρν;ησ(q0, ~q) = −〈ρ σ | V | η ν〉 + 〈σ ρ | V | η ν〉 , (C.56)1The weak neutral 
urrent has no strangeness 
hanging 
omponents.



C.4. STRUCTURE FUNCTIONS IN THE RPA 117whi
h is exa
tly the RPA approximation.The zeroth-order polarization fun
tion Π0 is diagonal so we 
an write:
Π̃0

λµ;αβ(q0, ~q) = δλαδµβΠ̃0
λµ(q0, ~q) . (C.57)Note that there is no integral in equation Eq. (C.55) thus making the equationjust a system of algebrai
 equations. Thus Eq. (C.55) be
omes a matrix equation(further on we suppress (q0, ~q) but it is always implied):

Π = Π
0 + Π

0
KΠ . (C.58)The solution of this matrix equation is then

Π = (1 − Π
0
K)−1

Π
0 . (C.59)C.4.1 Single-parti
le 
aseLet us �rst 
onsider the 
ase of single 
omponent matter 
ontaining only parti
le

i, where we have only the spin indi
es. In this 
ase the Π
0-matrix is a unit-matrixmultiplied with the polarization fun
tion Π̃0. As for the kernel K in spin spa
ewe 
an, with the aid of Eq. (4.25), write:

Kii =









fii + gii 0 0 fii − gii

0 2gii 0 0
0 0 2gii 0

fii − gii 0 0 fii + gii









, (C.60)where the (1, 1) element of the matrix is <↑↑ |V | ↑↑> and the (4, 4) element is
<↓↓ |V | ↓↓>. The K-matrix 
an be diagonalized and we get:

Kii =









2fii 0 0 0
0 2gii 0 0
0 0 2gii 0
0 0 0 2gii









. (C.61)If we now use this in Eq. (C.59). Keeping in mind the unitary matrix used todiagonalize K we �nd̃
Π11ii

= Π̃Vii
=

Π̃0
ii

1 − fiiΠ̃0
ii

(C.62)
Π̃22ii

= Π̃33ii
= Π̃44ii

= Π̃Aii
=

Π̃0
ii

1 − giiΠ̃0
ii

. (C.63)



118 APPENDIX C. APPENDIX CThe imaginary part of the polarization fun
tion is then
ImΠ̃Vii

=
ImΠ̃0

ii

(1 − fiiReΠ̃0
ii)

2 + (fiiImΠ̃0
ii)

2
. (C.64)If the denominator is larger than one then the medium's response is suppressed,while if it is smaller it is enhan
ed.We note that we will always use the diagonalized version of the kernel, be
ausethat way the ve
tor and axial part 
an be solved separately.C.4.2 Neutral 
urrent 
aseFor the 
ase of the neutral 
urrent we 
an write the ve
tor 
oupling 
onstants as

(cNC
V )† =

(

cpp
V cnn

V cΛΛ
V cΣ

−Σ−

V cΣ
0Σ0

V cΣ
+Σ+

V cΛΣ0

V

)

, (C.65)whose values 
an be found in Tab. 5.2. Then with the knowledge of the RPApolarization matrix from Eq. (C.55) we obtain the polarization fun
tion
Π̃NC

V = (cNC
V )†ΠNC

V (cNC
V ) . (C.66)For the 
al
ulation of the neutral 
urrent RPA polarization matrix Π

NC
V weneed the zeroth order polarization matrix:

Π
0
NC =























Π̃0
pp 0 0 0 0 0 0

0 Π̃0
nn 0 0 0 0 0

0 0 Π̃0
ΛΛ 0 0 0 0

0 0 0 Π̃0
Σ−Σ− 0 0 0

0 0 0 0 Π̃0
Σ0Σ0 0 0

0 0 0 0 0 Π̃0
Σ+Σ+ 0

0 0 0 0 0 0 Π̃0
ΛΣ0























, (C.67)
and the appropriate kernel:

K
V
NC =





















fpp fpn fpΛ fpΣ− fpΣ0 fpΣ+ fppΛΣ0

fpn fnn fnΛ fnΣ− fnΣ0 fnΣ+ fnnΛΣ0

fpΛ fnΛ 0 0 0 0 0
fpΣ− fnΣ− 0 0 0 0 0
fpΣ0 fnΣ0 0 0 0 0 0
fpΣ+ fnΣ+ 0 0 0 0 0
fppΛΣ0 fnnΛΣ0 0 0 0 0 0





















. (C.68)
From this point on the 
al
ulation is straightforward matrix multipli
ation. Thus,and be
ause of its size and 
omplexity, we do not show the 
omplete polarization
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tion Π̃NC
V or any of the matrix elements of Π

NC
V . However for the sake ofillustration and 
omparison we show this for the 
ase of matter 
omposed only ofnu
leons. In this 
ase the matrix elements of the polarization fun
tion are:

Π̃Vpp
= Π̃0

pp

(

1 − fnnΠ̃0
nn

)

/DV
NC , (C.69)

Π̃Vpn
= fpnΠ̃0

nnΠ̃0
pp/D

V
NC , (C.70)

Π̃Vnn
= Π̃0

nn

(

1 − fppΠ̃
0
pp

)

/DV
NC , (C.71)where

DV
NC = 1 − Π̃0

ppfpp − Π̃0
nnfnn + Π̃0

ppΠ̃
0
nn

(

fnnfpp − f 2
pn

)

, (C.72)whi
h when 
ombined with the 
oupling 
onstants gives the ve
tor polarizationfun
tion as:
Π̃NC

V =
[

(cVpp)
2Π̃0

pp

(

1 − fnnΠ̃0
nn

)

+ 2cVppc
V
nnfpnΠ̃0

nnΠ̃0
pp

+ (cVnn)
2Π̃0

nn

(

1 − fppΠ̃
0
pp

)]

/DV
NC , (C.73)whi
h is identi
al to the result from [5℄.The same result 
an be found for the axial polarization fun
tion if we repla
ethe 
oupling 
onstants and make the following substitution f → g in the kernel.C.4.3 Charge 
urrent 
aseFor the 
harged 
urrent we have the following 
oupling 
onstants

(gV )† =
(

gpn
V gpΛ

V gnΣ−

V gpΣ0

V gΛΣ−

V gΛΣ+

V gΣ−Σ0

V gΣ0Σ+

V

)

, (C.74)whose values 
an be found in Tab. 5.1. However, due to the 
onservation lawssome of the pro
esses are forbidden su
h that the polarization matrix de
ouplesinto two parts. Thus we separate the 
oupling 
onstants into two parts
(g′V )† =

(

gpn
V gΛΣ−

V gΛΣ+

V gΣ−Σ0

V gΣ0Σ+

V

)

, (C.75)
(g

′′

V )† =
(

gpΛ
V gnΣ−

V gpΣ0

V

)

. (C.76)The 
harged 
urrent RPA polarization fun
tion is then
Π̃CC

V = (g′V )†ΠV ′

CC(g′V ) + (g
′′

V )†ΠV
′′

CC(g
′′

V ) . (C.77)



120 APPENDIX C. APPENDIX CWe now have to 
al
ulate two polarization matri
es Π
V ′

CC and Π
V

′′

CC . We will alsoneed two zero-order polarization matri
es
Π

0′

CC =













Π̃0
pn 0 0 0 0

0 Π̃0
ΛΣ− 0 0 0

0 0 Π̃0
Σ+Λ 0 0

0 0 0 Π̃0
Σ0Σ− 0

0 0 0 0 Π̃0
Σ+Σ0













, (C.78)and
Π

0′′

CC =





Π̃0
pΛ 0 0

0 Π̃0
nΣ− 0

0 0 Π̃0
pΣ0



 . (C.79)Obviously two kernels are also required
K

V ′

CC =













fpnpn fpnΛΣ− fpnΣ+Λ fpnΣ0Σ− fpnΣ+Σ0

fpnΛΣ− 0 0 0 0
fpnΣ+Λ 0 0 0 0
fpnΣ0Σ− 0 0 0 0
fpnΣ+Σ0 0 0 0 0













, (C.80)and
K

V “
CC =







K̃V
pΛpΛ K̃V

pΛnΣ− K̃V
pΛpΣ0

K̃V
nΣ−pΛ K̃V

nΣ−nΣ− K̃V
nΣ−pΣ0

K̃V
pΣ0pΛ K̃V

pΣ0nΣ− K̃V
pΣ0pΣ0






. (C.81)Here for the kernel elements we have adopted a similar notation as for the 
ase ofthe Landau-Migdal parameters although we have used Eq. (C.56) to de�ne them.



Bibliography[1℄ H.-T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo, and B. Mueller,Phys. Rept. 442, 38 (2007), astro-ph/0612072.[2℄ A. Burrows and T. A. Thompson (2002), astro-ph/0211404.[3℄ N. Iwamoto and C. J. Pethi
k, Phys. Rev. D25, 313 (1982).[4℄ A. Burrows and R. F. Sawyer, Phys. Rev. C59, 510 (1999),astro-ph/9804264.[5℄ S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev. C59, 2888(1999), astro-ph/9811294.[6℄ H. Heiselberg and M. Hjorth-Jensen, Phys. Rept. 328, 237 (2000),nu
l-th/9902033.[7℄ S. K. Bogner, T. T. S. Kuo, A. S
hwenk, D. R. Entem, and R. Ma
hleidt,Phys. Lett. B576, 265 (2003a), nu
l-th/0108041.[8℄ S. R. Beane et al. (NPLQCD), Nu
l. Phys. A794, 62 (2007),hep-lat/0612026.[9℄ S. K. Bogner, T. T. S. Kuo, and A. S
hwenk, Phys. Rept. 386, 1 (2003b),nu
l-th/0305035.[10℄ K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980a).[11℄ K. Suzuki and S. Y. Lee, Phys. Lett. B91, 173 (1980b).[12℄ F. Andreozzi, Phys. Rev. C54, 684 (1996).[13℄ B.-J. S
haefer, M. Wagner, J. Wamba
h, T. T. S. Kuo, and G. E. Brown,Phys. Rev. C73, 011001 (R) (2006).[14℄ M. Wagner, B.-J. S
haefer, J. Wamba
h, T. T. S. Kuo, and G. E. Brown,Phys. Rev. C74, 054003 (2006). 121



122 BIBLIOGRAPHY[15℄ P. M. M. Maessen, T. A. Rijken, and J. J. de Swart, Phys. Rev. C40, 2226(1989).[16℄ T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C59, 21 (1999).[17℄ J. Haidenbauer and U.-G. Meiÿner, Phys. Rev. C72, 044005 (2005).[18℄ B. Holzenkamp, K. Holinde, and J. Speth, Nu
l. Phys. A500, 485 (1989).[19℄ A. Reuber, K. Holinde, and J. Speth, Nu
l. Phys. A570, 543 (1994).[20℄ T. A. Rijken and Y. Yamamoto (2006a), nu
l-th/0608074.[21℄ T. A. Rijken and Y. Yamamoto, Phys. Rev. C73, 044008 (2006b),nu
l-th/0603042.[22℄ L. Mi
u, Nu
l. Phys. B10, 521 (1969).[23℄ P. F. Bedaque and U. van Kol
k, Ann. Rev. Nu
l. Part. S
i. 52, 339 (2002),nu
l-th/0203055.[24℄ E. Epelbaum, Prog. Part. Nu
l. Phys. 57, 654 (2006), nu
l-th/0509032.[25℄ R. J. Furnstahl, G. Rupak, and T. S
haefer (2008), arXiv:0801.0729[nu
l-th℄.[26℄ S. Weinberg, Phys. Lett. B251, 288 (1990).[27℄ S. Weinberg, Nu
l. Phys. B363, 3 (1991).[28℄ E. Epelbaum, W. Glö
kle, and U.-G. Meiÿner, Nu
l. Phys. A747, 362 (2005),nu
l-th/0405048.[29℄ H. Polinder, J. Haidenbauer, and U.-G. Meiÿner, Nu
l. Phys. A779, 244(2006).[30℄ C. L. Korpa, A. E. L. Dieperink, and R. G. E. Timmermans, Phys. Rev. C65,015208 (2002), nu
l-th/0109072.[31℄ J. Haidenbauer, U.-G. Meiÿner, A. Nogga, and H. Polinder, Le
t. Notes Phys.724, 113 (2007), nu
l-th/0702015.[32℄ D. B. Kaplan, M. J. Savage, and M. B. Wise, Nu
l. Phys. B534, 329 (1998).[33℄ A. L. Fetter and J. D. Wale
ka, Quantum Theory Of Many-parti
le Systems(M
Graw-Hill, In
., 1971).



BIBLIOGRAPHY 123[34℄ H. �apo, B.-J. S
haefer, and J. Wamba
h, Eur. Phys. J. A36, 101 (2008a),0802.2646.[35℄ P. Saha et al., Phys. Rev. C70, 044613 (2004).[36℄ H.-J. S
hulze, M. Baldo, U. Lombardo, J. Cugon, and A. Lejeune, Phys. Rev.C57, 704 (1998).[37℄ I. Vidana, A. Polls, A. Ramos, and H.-J. S
hulze, Phys. Rev. C64, 044301(2001).[38℄ I. Vidana, I. Bomba
i, A. Polls, and A. Ramos, Astron. Astrophys. 399, 687(2003).[39℄ N. Kaiser and W. Weise, Phys. Rev. C71, 015203 (2005).[40℄ H. Polinder, Ph.D. thesis, Nijmegen (2004).[41℄ N. Kaiser, Phys. Rev. C71, 068201 (2005).[42℄ M. Kohno, Y. Fujiwara, Y. Watanabe, K. Ogata, and M. Kawai, Phys. Rev.C74, 064613 (2006), nu
l-th/0611080.[43℄ H. Maekawa, K. Tsubakihara, and A. Ohnishi (2007), nu
l-th/0701066.[44℄ T. Nagae et al., Phys. Rev. Lett. 80, 1605 (1998).[45℄ F. Sammarru
a (2008), arXiv:0801.0879 [nu
l-th℄.[46℄ F. Coester, S. Cohen, B. Day, and C. M. Vin
ent, Phys. Rev. C1, 769 (1970).[47℄ S. K. Bogner, A. S
hwenk, R. J. Furnstahl, and A. Nogga, Nu
l. Phys. A763,59 (2005), nu
l-th/0504043.[48℄ A. Nogga, S. K. Bogner, and A. S
hwenk, Phys. Rev. C70, 061002 (2004).[49℄ A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C58, 1804(1998), nu
l-th/9804027.[50℄ R. Roth, H. Hergert, P. Papakonstantinou, T. Ne�, and H. Feldmeier, Phys.Rev. C72, 034002 (2005), nu
l-th/0505080.[51℄ S. L. Shapiro and S. Teukolsky, Bla
k Holes, White Dwarfs, and Neutronstars: The Physi
s of Compa
t Obje
ts (Wiley, New York, 1983).[52℄ N. K. Glendenning, Compa
t Stars (Springer, New York, 1997).



124 BIBLIOGRAPHY[53℄ J. M. Lattimer and M. Prakash, Phys. Rept. 442, 109 (2007),astro-ph/0612440.[54℄ M. Prakash et al., Phys. Rept. 280, 1 (1997), nu
l-th/9603042.[55℄ H. �apo, B.-J. S
haefer, and J. Wamba
h (2008b), 0811.2939.[56℄ M. Baldo, G. F. Burgio, and H. J. S
hulze, Phys. Rev. C58, 3688 (1998).[57℄ J. R. Oppenheimer and G. M. Volko�, Phys. Rev. 55, 374 (1939).[58℄ G. Baym, C. Pethi
k, and P. Sutherland, Astrophys. J. 170, 299 (1971).[59℄ J. W. Negele and D. Vautherin, Nu
l. Phys. A207, 298 (1973).[60℄ C. J. Pethi
k and D. G. Ravenhall, Ann. Rev. Nu
l. Part. S
i. 45, 429 (1995).[61℄ P. Haensel, in Physi
s of neutron star interiors, edited by D. Blas
hke, N. K.Glendenning, and A. Sedrakian (Springer-Verlag,Heidelberg, 2001), vol. 578of Le
ture Notes in Physi
s, p. 127.[62℄ S. B. Ruester, M. Hempel, and J. S
ha�ner-Bieli
h, Phys. Rev. C73, 035804(2006), astro-ph/0509325.[63℄ J. M. Weisberg and J. H. Taylor (2004), astro-ph/0407149.[64℄ I. Vidana, A. Polls, A. Ramos, L. Engvik, and M. Hjorth-Jensen, Phys. Rev.C62, 035801 (2000), nu
l-th/0004031.[65℄ J. S
ha�ner-Bieli
h, M. Hanauske, H. Stö
ker, and W. Greiner, Phys. Rev.Lett. 89, 171101 (2002).[66℄ J. S
ha�ner-Bieli
h, S. S
hramm, and H. Stö
ker (2007), 0711.2639.[67℄ L. Mornas, Eur. Phys. J. A24, 293 (2005), nu
l-th/0407083.[68℄ M. Bender, J. Doba
zewski, J. Engel, and W. Nazarewi
z, Phys. Rev. C65,054322 (2002), nu
l-th/0112056.[69℄ O. Sjoberg, Nu
l. Phys. A265, 511 (1976).[70℄ A. B. Migdal, Theory of Finite Fermi System and Apli
ation to Atomi
 Nu
lei(Inter-s
ien
e, New York, 1962).[71℄ K. Nakayama and W. G. Love, Phys. Rev. C38, 51 (1988).[72℄ H. �apo, Diploma thesis, Sarajevo (2004).



[73℄ H. Nakada, Phys. Rev. C68, 014316 (2003), nu
l-th/0304021.[74℄ S. Yamada and H. Toki, Phys. Rev. C61, 015803 (2000), astro-ph/9907044.[75℄ E. D. Commings and P. H. Bu
ksbaum, Weak intera
tion of leptons andquarks (Cambridge University press, New York, 1983).[76℄ M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).[77℄ S. Reddy, M. Prakash, and J. M. Lattimer, Phys. Rev. D58, 013009 (1998),astro-ph/9710115.[78℄ J. M. Gaillard and G. Sauvage, Ann. Rev. Nu
l. Part. S
i. 34, 351 (1984).[79℄ M. J. Savage and J. Walden, Phys. Rev. D55, 5376 (1997), hep-ph/9611210.[80℄ K. Strobel, C. S
haab, and M. K. Weigel, Astron. Astrophys. 350, 497 (1999),astro-ph/9908132.[81℄ J. J. Sakurai, Modern Quantum Me
hani
s (Addison-Wesley, 1985).[82℄ M. I. Haftel and F. Tabakin, Nu
lear Physi
s A 158, 1 (1970).[83℄ B. H. Bransden, C. J. Noble, and R. N. Hewitt, Journal of Physi
s B Atomi
Mole
ular Physi
s 26, 2487 (1993).[84℄ W. H. Di
kho� and D. Van Ne
k, Many-Body Theory Exposed (World S
ien-ti�
, Singapore, 2005).[85℄ K. L. G. Heyde, The Nu
lear Shell Model (Springer-Verlag, 1994).



A
knowledgments
First of all I would like to thank all of my 
o-workers and 
olleagues here at TUDarmstadt for wel
oming me to Germany. I am indebted to them for helping me�nd my pla
e in a foreign 
ountry, and for providing valuable insight into physi
sin general and my own resear
h in parti
ular.I would espe
ially like to thank Prof. Jo
hen Wamba
h for a

epting me as hisPhD student, allowing me the opportunity to perform the work presented here.His advi
e and guidan
e over the years was superb and lead me through the mazeof physi
s resear
h.Dr. Bernd-Jo
hen S
haefer deserves a spe
ial mention for his role as a valued
ollaborator. Our work together in the past four years has been thoroughly en-joyable and very produ
tive. His 
onstant demands for quality had a signi�
antimpa
t on this work.For agreeing to referee this thesis, I would like to thank Prof. Robert Roth towhom I am also grateful for his permission to use VUCOM . His many insightfuldis
ussions and readiness to answer a great deal of my questions about the varioustopi
s 
overed here are greatly appre
iated.I wish to thank Matthias Wagner for the development of Vlow k , in addition tohis help regarding 
omputer and numeri
al issues. His initial work on YN Vlow kmade possible the further developments presented in this thesis.I am also deeply indebted to Dr. Heiko Hergert and Dr. Dominik Ni
kel whowere my �rst friends when I arrived in Darmstadt and helped me in many ways,both inside and out of physi
s. For help with 
orre
tions of the thesis I thank Dr.Ri
hard Williams, Heiko Hergert, Klaus He
kman and Hannes Basler.The Helmholtz Resear
h S
hool for Quark Matter is gratefully a
knowledgedfor supporting this work through their provision of several ex
ellent seminars andworkshops, and their 
onstant work on improving the 
onditions under whi
h PhDstudents work. I thank the Helmholz Gemeins
haft for �nan
ial support undergrant number VH-VI-041.And �nally, I thank my parents Mujo and Senija and my brother Adis, togetherwith the rest of my family, for their support and patien
e throughout my entirelife as well as during the 
ompletion of this thesis. Without their unwaveringsupport I would not have been able to a

omplish all of the things that lead tothis moment.



Curri
ulum Vitae
Personal data:Name: Haris �apoDate of birth: 14. July. 1979Pla
e of Birth: Trebinje, Bosnia and Her
egovinaCitizenship: Bosnian and Her
egovinanParents: Mujo �apoSenija �apo, b.Jusufovi¢Marital status: single
Edu
ation09/1994-06/1998 Attended high s
hool: �Druga Gimnazija, Sarajevo,B&H�06/1998 Grade point average: 4.7 (high:5, low:1)10/1998-10/2002 Undergraduate study in Physi
s at University of Sara-jevo, B&H10/1998-02/2004 Grade point average: 8.9 (high:10, low:5)01/2003-09/2003 Diploma thesis work at TU Darmstadt, Germany �Neu-trino mean free paths in proto neutron stars�01/2004 Graduation, Sarajevo, Grade:1001/2004-06/2004 Military servi
e08/2004-present Graduate study in Physi
s at TU Darmstadt, Germany


