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Abstract

The hyperon-nucleon (Y'N) low momentum effective interaction (Vjo, k) allows
for an extensive study of the behavior of hyperons in dense matter, together with
an investigation of effects of the presence of hyperons on dense matter. The first
step towards this goal is the construction of the matrix elements for the hyperon-
nucleon low momentum potential. In contrast to the nucleon-nucleon interaction,
the available experimental data for the YN interaction are scarce. As a conse-
quence, no unique YN low-momentum potential Vi, can be constructed from
the various bare potentials. Nevertheless we can still use these low-momentum
Y N potentials to find out what these differences mean for the properties of dense
matter.

In order to assess the different properties of hyperons within these potentials we
calculate the hyperon single-particle potentials in the Hartree-Fock approximation
for all of the interactions. Their dependence on both momentum and density, is
studied. The single-particle potentials are then used to determine the chemical
potential of hyperons in neutron stars.

For nucleonic properties, the nucleon-nucleon Viyy, « can be used with the caveat
that the calculation of the ground-state energy of symmetric nuclear matter does
not correctly reproduce the properties of matter at saturation. Even when com-
bined with the appropriate three-nucleon forces the results are still not satisfac-
tory. Additionally, with the nucleon-nucleon Vi,  one is unable to reach the
densities needed for the calculation of neutron star masses. To circumvent this
problem we use two approaches: in the first one, we parametrize the entire nu-
cleonic sector. In the second one, we replace only the three-body force. The
former will enable us to study neutron star masses, and the latter for studying
the medium’s response to the external probe. In this thesis we take the external
probe to be the neutrino.

By combining this parametrization with the YN Vi, « potential, we calcu-
late the equation of state of equilibrated matter. Performing the calculation in
the Hartree-Fock approximation at zero temperature, the concentrations of all
particles are calculated. From these we can ascertain at which densities hyperons
appear for a wide range of parameters. Finally, we calculate the masses of neutron
stars with these concentrations.

For the calculation of the medium’s response to an external probe, we re-
place the three-body force with a density-dependent interaction. This density-
dependent interaction is fitted to the saturation properties of nuclear matter and



used together with the V|, x potential. The study of in-medium properties with
these interactions is accomplished with a combination of Fermi liquid theory and
random phase approximation(RPA). The Fermi liquid theory is then used to ob-
tain the strength of the particle-hole interactions. The medium’s response to
neutrinos is represented via changes of the polarization function in the random
phase approximation.

The properties of neutrinos in dense matter are studied in both, Hartree-
Fock and random phase, approximation. To understand how the changes in the
mediums response alter the behavior of neutrinos in dense matter, we calculate
the neutrino cross section and the neutrino mean free path. The neutrinos interact
with baryons and leptons through the weak interaction, hence we calculate these
for both neutral and charged currents. The comparison between the Hartree-Fock
approximation and RPA plays a central role in this work.



Zusammenfassung

Eine effektive Hyperon-Nukleon-(Y N)-Wechselwirkung im Bereich kleiner Im-
pulse, bekannt als Vi, k, ermoglicht eine ausgiebige Studie des Hyperon-Verhaltens
in dichter Materie, sowie der Auswirkungen, die die Prisenz der Hyperonen auf
die Eigenschaften dichter Materie hat. Dazu ist es zunéchst notwendig, die
Matrixelemente der effektiven Hyperon-Nukleon-Wechselwirkung zu konstruieren.
Im Gegensatz zur Nukleon-Nukleon-Wechselwirkung ist die Y N-Wechselwirkung
durch die geringen experimentellen Daten kaum eingeschrinkt, so dass selbst
mit Hilfe des Renormierungsgruppenzugangs von Vi, keine universelle Wech-
selwirkung aus den verschiedenen ‘nackten’ an die Streudaten angepassten Y N-
Potentialen extrahiert werden kann. Trotzdem lohnt sich ein Vergleich der Vorher-
sagen der unterschiedlichen effektiven Wechselwirkungen zu den Eigenschaften
dichter Materie.

Um die Eigenschaften der Hyperonen fiir die verschiedenen Wechselwirkungen
zu studieren, berechnen wir die Hyperon-Einteilchenpotentiale im Rahmen der
Hartree-Fock-Naherung und untersuchen ihre Impuls- und Dichteabhéngigkeiten.
Anhand der Einteilchenpotentiale kann anschlieftend das chemische Potential der
Hyperonen in einem Neutronenstern ermittelt werden.

Da die Rechnungen stark vom Nukleonen-Sektor beeinflusst werden, muss
auch fiir nukleonische Wechselwirkung eine angemessene Wahl getroffen werden.
In diesem Zusammenhang liefert das universelle Nukleon-Nukleon-Vj,, | ungliick-
licherweise kein physikalisch sinnvolles Séttigungverhalten fiir Kernmaterie. Selbst
bei zusétzlicher Verwendung einer Drei-Nukleon-Wechselwirkung werden die Sat-
urationseigenschaften der Kernmaterie nicht vollig korrekt beschrieben. Ein weit-
eres Problem besteht darin, dass Vj,,. per Konstruktion nicht bei den hohen
Dichten angewandt werden kann, welche zur Berechnung der Massen von Neutro-
nensternen erforderlich sind. Als Alternativen verwenden wir daher zwei Ansétze:
eine angepasste Parametrisierung des gesamten nukleonischen Sektors, bzw. eine
Anpassung der Parameter der 3N-Wechselwirkung. Der erstgenannte Zugang er-
laubt die Untersuchung von Neutronenstern-Massen, wihrend die zweite Methode
zur Untersuchung der Antwort des Mediums auf externe Sonden in unserem
Fall Neutrinos  verwendet werden kann.

Die vollstédndige Parametrisierung der nukleonischen Wechselwirkung wird zu-
sammen mit den YN — V|, zur Berechnung der Zustandsgleichung von Ma-
terie im Gleichgewicht verwendet. Die Rechnungen werden in der Hartree-Fock-
Néherung bei verschwindender Temperatur ausgefiihrt. Als Ergebnis erhalten wir



die Konzentrationen der verschiedenen Teilchenspezies und konnen bestimmen,
bei welchen Dichten Hyperonen auftreten. Die ermittelten Konzentrationen wer-
den anschliefend zur Berechnugn der Neutronenstern-Masse eingesetzt.

Zur Untersuchung der Antwort des Mediums auf externe Sonden verwenden
wir eine N N-Wechselwirkung zusammen mit einer angepassten dichteabhigigen
Naherung fiir die 3N-Wechselwirkung. Als Hyperon-Nukleon-Wechselwirkung
kommt wiederum das YN — Vjy,.x zum Einsatz. Auf dieser Grundlage berechnen
wir die In-Medium-Eigenschaften mit Hilfe einer Kombination aus Fermi-Liquid-
Theorie und Random Phase Approximation (RPA). Die Fermi-Liquid-Theorie
liefert die Stiarke der Teilchen-Loch-Wechselwirkungen, wihrend sich die Antwort
des Mediums auf Neutrinos anhand von Anderungen der Polarisationsfunktion in
der RPA bemerkbar macht.

Die Neutrino-Eigenschaften in dichter Materie werden sowohl in der Hartree-
Fock-Niherung als auch der RPA studiert. Um zu verstehen, wie sich Anderun-
gen des Mediums auf das Verhalten der Neutrinos auswirken, berechnen wir
Wirkungsquerschnitte und mittlere freie Weglédnge. Da Neutrinos mit Baryonen
und Leptonen schwach wechselwirken, betrachten wir in unseren Rechnungen
sowohl den neutralen als auch den geladenen Strom. Der Vergleich von Hartree-
Fock-Niaherung und RPA nimmt eine zentrale Rolle bei der Untersuchung ein.
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Introduction

The core collapse supernovae are some of the most spectacular events in the Uni-
verse. These events have been studied for more than three decades mainly through
numerical simulations. Despite the huge amount of physics involved and great un-
certainties, a kind of "standard model" exists: the inner iron core of a massive
star overcomes its hydrodynamical stability limit (the Chandrasekhar mass) and
collapses, increasing the density inside up to many times nuclear saturation den-
sity; the stiffness of nuclear matter then results in an elastic bounce of the core,
creating a shock-wave. This wave propagates through the star, while losing energy
by the dissociation of nuclei and production of neutrinos. If this wave had enough
energy to reach the star’s surface and to cause an explosion one would refer to
this as a "prompt" explosion mechanism. Unfortunately in simulations this wave
stalls at ~ 200 km and does not lead to an explosion.

In addition to the neutrinos produced by the shock-wave there is also a copious
amount of neutrinos produced deeper in the star behind the shock-wave front.
These neutrinos are initially trapped in this proto-neutron star because their mean
free path is smaller than the radius of the proto-neutron star. This is a unique
situation for neutrinos as they are usually free to leave the system in which they
are created without obstacle due to their very weak interaction with all forms of
matter.

Modern-day simulations of core collapse supernovae rely on these neutrinos
for a successful explosion. Once the neutrinos are no longer trapped they start to
stream out of the proto-neutron star in enormous quantities. Even if only a tiny
fraction of them deposits some of their energy in the shock-wave, this could be
sufficient to revive the shock-wave and enable it to reach the surface of the star,
thus causing an explosion. Such a mechanism of explosion is then referred to as
"delayed" because of the time lapse between the start of the shock-wave and the
time at which neutrinos cease to be trapped. For recent reviews of core collapse
supernova simulations see |1, 2| and references therein.

This makes the properties of neutrino interactions in hot and dense matter
a fundamental part of understanding supernova events. It is important both
to understand how neutrinos behave inside a proto-neutron star as well as how
effectively they transfer their energy to the shock-wave. In order to have an answer

X



X INTRODUCTION

to these questions one should thus determine what are the neutrino cross section
and mean free path in such dense environments.

Of particular interest, from a nuclear physics point of view, is the behavior
of neutrinos at densities above the saturation density of nuclear matter. It is
obvious, if one considers the scales involved, that the strong interaction will play an
important role in this case since the properties of baryons are changed when they
are in-medium. These in-medium modifications can be studied with mean-field or
Fermi liquid theories and the random-phase approximation (RPA) [3, 4, 5]; in this
thesis we will use a combination of Fermi liquid theories and RPA. In addition
to the description of neutrino transport properties, numerical simulations of the
supernova evolution require knowledge of the equation of state of dense matter.
These two aspects of nuclear physics play an important role in understanding the
physics of the core collapse supernova.

Another intriguing aspect of dense matter is then the influence of more exotic
forms of matter, other than nucleons. Among such exotica, which one expects
to appear at such high densities, are the hyperons. Other possibilities include
pion and kaon condensates, superfluidity, and also quarks, cf. |6]. Since hyperons
are the lightest baryons after nucleons they are considered as prime candidates
for appearance in neutron stars. It is expected that they appear at around twice
the nuclear saturation density and form sizable concentrations in the inner core
of neutron stars. Once they appear, hyperons introduce a host of new possible
processes between them and the neutrinos in addition to the ones which already
exist between neutrinos and nucleons. These new processes can play a significant
role in the neutrino cross section because some of the nucleonic processes might
be forbidden due to Pauli blocking.

In order to understand how hyperons, and strangeness in general, behaves
in dense matter, the understanding of the hyperon-nucleon (Y N) interaction is
essential. Unfortunately, the details of the YNV interaction are determined very
poorly by experiment and there are several different potentials available. This
then poses a challenge to see what results these different potentials give. Our
approach to this is the construction of an effective low momentum interaction
known as V., « from these different potentials. In this case Vj,, « offers a unique
possibility to study all of these potentials since it is relatively easy to perform a
Hartree-Fock calculation with them. This then allows for an extensive comparison
of the different results involving these interactions as well as for a robust study of
all possibilities that can arise.

The formalism of the Fermi liquid theory in combination with RPA can be
easily extended to the case of hyperons. With this extension we will include
hyperons into the medium’s response to the neutrino probe. Such derived cross
sections and mean free paths will then tell us how the presence of hyperons in the
medium alters the medium’s response compared to the response of pure nuclear
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matter.

Additionally, the baryonic equation of state (EoS) is the fundamental input
for the calculation of neutron star properties. It is particularly important to know
how the EoS behaves at densities above saturation density since this will play the
most important role in determining the maximum allowed mass of a neutron star.
At about twice the saturation density one expects strange baryons to appear as
new hadronic degrees of freedom. Unfortunately the nucleon-nucleon (NN) Vigy «
is not well suited for the study of neutron star masses. The reason for this lies in
the introduction of a scale that separates the low and high momenta. This scale
imposes a limit on the densities which can be studied with NN V. « and these
are too low for the study of neutron star masses. However YN Vi, «, thanks to
the higher masses and lower concentrations of hyperons, can reach the densities
of interest in neutrons stars. Hence we will replace the nucleonic part of the EoS
with a parameterization and use it in combination with YN Vi, « to study the
masses of neutron stars.

It is interesting to point out that many of the features mentioned in connection
with neutrinos coming from neutron stars can be measured practically any given
day, with a bit of luck. Should an occurrence similar to that of the supernova
explosion SN1987A repeat itself, present day detectors would collect a sizable
amount of data. It is not unreasonable to assume this will happen in the near
future as it is known from galaxy surveys that on average there are 3—4 supernova
per 100 years in galaxies similar to our own. Even back in 1987 enough data was
collected to discern some of the properties of supernova neutrinos. Today, after
three decades of building ever larger neutrino detectors, a supernova explosion
in our galaxy would provide enough information to discriminate between many
model predictions.

The structure of this thesis is as follows. Chapter 1 is devoted to the con-
struction of the low momentum effective hyperon-nucleon interactions and the
discussion of the resulting matrix elements. We also show and discuss some of the
low-energy observables directly calculated from the interaction.

In chapter 2 we introduce the concept of infinite nuclear matter and use it
in combination with a Hartree-Fock approximation to calculate the ground-state
energy. To achieve this goal we define and investigate the single-particle potential.
This will enable us to describe the in-medium properties of baryons. The failure
to reproduce the properties of nuclear matter by pure two-body forces leads to
the introduction of three-body forces.

Chapter 3 discusses the equation of state for equilibrated matter. In this
context we use the parametrization of the nucleonic part of equation of state
to investigate the influence of changes in parameters on the hyperon sector. We
conclude this chapter by calculating the properties of neutron stars with hyperons.

Properties of particle-hole excitations are examined in chapter 4. There we
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use the Landau Fermi liquid theory in order to calculate the Landau-Migdal pa-
rameters. In this chapter we also introduce the density-dependent force aimed
at replacing the three-body force which did not produce the correct values for
saturation density.

Chapter 5 is devoted to the calculation of neutrino properties in dense matter.
Results for the cross section and mean free path in symmetric and equilibrated
matter are shown.

In chapter 6 we summarize the results and offer an outlook of possible exten-
sions of this work.

The appendices are devoted to the details of the expressions used. In Ap-
pendix A we explain the details of the construction of the V.,  potential, in-
cluding the transition from the plane-wave basis to the partial-wave basis. In
Appendix B we present the calculation of the Hartree-Fock ground-state energy
in infinite nuclear matter. Neutrino cross sections are calculated in Appendix C.
Additionally, we use Appendix C to show the calculation of the RPA polarization
matrix in the medium containing both nucleons and hyperons.



1 Hyperon-Nucleon interaction

One of the greatest issues of nuclear theory is that from a numerical point of view
the bare nuclear forces are ill behaved. This comes from the inability of many-
body techniques to treat in a straightforward way the hard-core that bare nuclear
potentials have. This hard core is too strong to be treated perturbatively and
makes a direct self-consistent approach impossible. However the nucleon in nuclei
or nuclear matter do not feel this bare interaction but an effective interaction
which arises when one considers all many-body effects present. This effective
interaction is much better behaved and allows for the application of standard
many-body methods.

One such effective interaction which has appeared recently is the Vigy « |7]. By
requirement of phase shift equivalence V},,, x creates, from several different starting
potentials, a practically unique NN interaction. This gives the impression of
universality of the effective interactions.

We extend this idea of constructing an effective potential to the case of the
hyperon-nucleon (Y N) interaction. The motivation is twofold: if the NN V,,, k is
so universal then so should the Y N V|, « be and the standard many-body methods
can then be applied to the YN interaction. Unfortunately, there exist only a very
limited amount of scattering and phase shift data for the case of the Y N. This
data is not sufficient to uniquely constrain the Y N potentials. Thus different bare
potentials, for the YN V|, k construction, exhibit different phase shift results. It
is then not unexpected that at present it is not possible to construct a unique Y N
low-momentum effective interaction.

However forthcoming experiments at the planned J-PARC and FAIR facilities
are expected to add new data to the existing ones. This would then allow for
a better treatment of the YN interaction. Additionally, first lattice QCD sim-
ulations of the YN interaction have been performed [8]. This, combined with
the motivation to use many-body methods, has inspired us to develop the YN
Viow k in spite of the large uncertainties present today. Because once there is suffi-
cient data to construct a high-quality YN potential the method for constructing
the Vigw k from it will be readily available. This thesis is thus mainly devoted to
the construction and comparison of various Vi, x YN interactions in the dense
environment found in neutron stars.
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The outline of this chapter is as follows. The NN low-momentum effective
interaction is presented in Sec. 1.1 as an introduction for the construction of the
YN Vipwr which is done in Sec. 1.1.1. Sec. 1.1.2 discuses the bare potentials
used while Sec. 1.1.3 presents the results of the matrix elements of the YN Vi «
in several partial wave channels. In Sec. 1.2 we show some of the low-energy
observables directly calculated from the matrix elements of the potentials.

1.1 Low-momentum interaction

Viow k 1s supposed to represent a “universal” low-momentum effective interaction.
It is derived by performing the renormalization group(RG) decimation starting
from a “bare” interaction. In the case of the nucleon-nucleon(NN) interaction, as
shown in [9], this is indeed the case. This agreement is shown in Fig. 1.1. By
using several different modern NN interactions a low momentum interaction was
constructed and the agreement is obvious. For all partial waves the resulting Vioy «
potentials show excellent agreement.
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Figure 1.1: Diagonal momentum-space matrix elements of the hermitian Vi i
obtained from the different potential models for a cut-off A = 2.1fm™". Results
are shown for the partial waves J < 2 [9)].
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The basic idea behind the Vi,  is that the short-range physics which is rep-
resented by a hard core can be integrated out. The advantage is twofold. Firstly,
since this part of the interaction is not well constrained by phase shifts, removing
it will reduce the uncertainty. Secondly, any effect that the hard core has on long-
range (low-momentum) physics will be preserved. A further advantage is that
once created, such an interaction simplifies many nuclear structure calculations
by virtue of the significantly smaller momentum range that needs to be taken into
account.

In this chapter we generalize the construction of the Vj,, x to the YN inter-
action. Ideally such a potential would retain all of the advantages which the NN
Viow k has. As we shall show, however, while the short range effects and the sim-
plification remain as bonuses, the “universality” of the YN V|, « simply does not
exist. The reasons for this lack of agreement between various YN Vo,  potentials
shall be discussed in detail later.

1.1.1 Construction of Vi,w k

The starting point for the construction of the Vg,  is the half-on-shell T-matrix,
T(q, q; ¢?), which is determined by the nonrelativistic Lippmann-Schwinger equa-
tion Eq. (A.6) in momentum space. The on-shell energy is denoted by ¢* and ¢/,
where ¢ are the relative momenta between a hyperon and a nucleon. An effec-
tive low-momentum 7joy -matrix is then obtained by introducing a cut-off A in
the Lippmann-Schwinger kernel, thus integrating the intermediate state momenta
up to this cut-off. At the same time, the bare potential in the coupled-channel
partial wave Lippmann-Schwinger equation is replaced with the corresponding
low-momentum potential V., x. Thus from the usual Lippmann-Schwinger equa-
tion Eq. (A.22) we get:

ﬂow k,y' y(q q;4q ) ‘/lowakyy(q q)+

“ Z /dl ZQ‘/Ingkyz q l)j—‘lg\?\é/kzy(l’Qa q2) (1 1)
y(Q) - Ez(l) ‘ ‘

The effective low-momentum Vj,,  is then defined by the requirement that the
T-matrices are equivalent for all momenta below this cut-off

T, ¢;¢%) = TaX(d, 4 ¢%) q¢.qg<A. (1.2)

Thus the obtained Vi, is non-hermitian, nevertheless a phase-shift equiva-
lent hermitian low-momentum Y N interactions can be obtained. Since the low-
momentum 7-matrix Tjoy . must be cut-off-independent, i.e. dTjoy k/dA = 0, an
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RG flow equation for the V., x can immediately be derived:

AViow x (K, k) 2 Vigw i (K, )T (A, k;A?)

dA 5 1— k2/A? (13)

Instead of solving this flow equation with standard numerical methods (e.g. Runge-
Kutta) directly, the so-called ALS iteration method, pioneered by Andreozzi, Lee
and Suzuki, is used [10, 11, 12|. This iteration method is based on a similarity
transformation and its solution corresponds to solving the flow equation. Details
about the convergence of the ALS iteration method, applied to the coupled chan-
nel YN interaction, can be found in [13, 14]. For the hyperon-nucleon interaction
with strangeness S = —1 two different bases, the isospin and the particle basis of
the bare potentials, are available.

While in the NN case the only coupling which appears is that of angular
momentum arising due to the tensor force, in the YN case we have a more com-
plicated situation. One difference is that there exists a singlet-triplet coupling
between different spin states Eq. (A.24). However, this is practically identical to
the tensor couplings. So the increase in complexity is not significant. A much
bigger difference arises when we consider the isospin space. In the case of the con-
struction of the YN Vo « there is an additional level of complexity, as compared
to the NN case, because now we have a coupling which we did not encounter
in the NN case. Eq. (A.25) describes the situation if we consider all particles
separately. This is the particle basis which we use. The biggest consequence of
this difference is that when searching for the solution of the Lippmann-Schwinger
equation Eq. (1.1) we have to keep in mind that this entire matrix has to be
on-shell.

1.1.2 Bare potentials

In order to solve the flow equation Eq.(1.3) a bare potential as initial condition
for the flow must be chosen. In this work several initial YN potentials, the
original Nijmegen soft core model NSC89 [15], the series of models NSC97a-f |16]
also by the Nijmegen group and a recent model proposed by the Jiilich group
[17], labeled as J04 in the following, are used. All above mentioned models are
formulated in the conventional meson-exchange (OBE) framework. They involve
a set of parameters which have to be determined from the available scattering
data. These are the coupling constants of the corresponding baryon-baryon-meson
vertices and cut-off parameters for the vertex form factors. Due to the limited
Y N scattering data these parameters cannot be precisely fixed as opposed to the
NN interaction where a lot of scattering data is available. In order to consistently
construct conventional OBE models for the YN interaction, one usually assumes
flavor SU(3) constraints or G-parity arguments on the coupling constants, and
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in some cases even the SU(6) symmetry of the quark model and adjusts their
size by fits to NN data. The major conceptual difference between the various
conventional OBE models consists in the treatment of the scalar-meson sector,
which plays an important role in any baryon-baryon interaction at intermediate
ranges. In contrast to the pseudoscalar and vector meson sectors, it is still an
open issue which are the actual members of the lowest lying scalar-meson SU(3)
multiplet, what are the masses of the exchange particles and how, if at all, the
relations for the coupling constant, obtained by SU(3) flavor symmetry, should
be applied. For example, in the older versions of the YN models by the Jiilich
group [18, 19| a fictitious ¢ meson with a mass of roughly 550 MeV arising from
correlated mm exchange was introduced. The coupling strength of this meson
to the baryons was treated as a free parameter and finally fitted to the rare
data. However, in the novel Jiilich YN potential [17] a microscopic model of the
correlated 77 and K K exchange is established in order to fix the contributions in
the scalar o- and vector p-channel. This new model incorporates also the common
one-boson exchange parts of the lowest pseudoscalar and vector meson multiplets.
The corresponding coupling constants are determined by SU(3) flavor symmetry
and the so-called F'/(F + D) ratios are fixed to the pseudoscalar and vector meson
multiplets by invoking SU(6) symmetry.

In the Nijmegen YN models, NSC89 [15], NSC97 [16] and in the recently
extended soft core model for strangeness S = —2 ESC04 [20, 21| this interac-
tion is generated by a genuine scalar SU(3) nonet meson exchange. Besides this
scalar meson nonet two additional nonets, the pseudoscalar and vector SU(3)
flavor nonets, are considered in all Nijmegen models. Additionally, the Pomeron
exchange is also included which provides an additional short-range repulsion. Nev-
ertheless, there are a few conceptual differences in the various mentioned models.
In the NSC97 models the strength parameter for the spin-spin interaction, the
magnetic F'/(F + D) ratio is left as an open parameter and takes six different
values in a range of 0.4447 to 0.3647 for the six different models NSC97a-f. In the
original Nijmegen SC89 model this parameter is constrained by weak decay data.
Furthermore, the NSC97 models include additional SU(3) flavor breaking which
is based on the so-called 3Py model [22].

The predictions of the above mentioned models are compared with another
approach, the so-called chiral effective field theory (YEFT ) of nuclear inter-
actions which is based on chiral perturbation theory. For recent reviews see
e.g. |23, 24, 25|]. The major benefit of the YEFT is the underlying power counting
scheme, proposed by Weinberg [26, 27|, that allows one to improve the calcu-
lations systematically by going to higher orders in the expansion. Additionally,
higher two- and three-body forces can be derived consistently in this framework.
Furthermore, the effective potential is explicitly energy-independent in contrast
to the original Weinberg scheme.
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Within yEFT the NN interaction has been analyzed recently to a high preci-
sion (N®*LO) [28]. To leading order (LLO) the NN potential is composed of pion
exchanges and a series of contact interactions with an increasing number of deriva-
tives which parameterize the singular short-range part of the NN force. In order
to remove the high-energy components of the baryonic and pseudoscalar meson
fields a cut-off A dependent regulator function in the Lippmann-Schwinger (LS)
equation is introduced. Then with this regularized LS equation observable quan-
tities can be calculated. The cut-off range is restricted from below by the mass
of the pseudoscalar exchange mesons. Note that in conventional meson-exchange
models the LS equation is not regularized and convergence is achieved by introduc-
ing form factors with corresponding cut-off masses for each meson-baryon-baryon
vertex.

So far, the YN interaction has not been investigated in the context of the
YEFT as extensively as the NN interaction. A recent application to the YN
interaction by the Jiilich group can be found e.g. in [29]. Analogous to the NN
case, the YN potential, obtained in LO yEFT | consists of four-baryon contact
terms and pseudoscalar meson (Goldstone boson) exchanges which are all related
by SU(3)s symmetry. For the YN interaction typical values for the cut-off lie in
the range between 550 and 700 MeV (see e.g. [28]). At LO xEFT and for a fixed
cut-off A and pseudoscalar F'/(F + D) ratio there are five free parameters. The
remaining interaction in the other YN channels are then determined by SU(3)
symmetry. A next-to-leading order (NLO) xEFT analysis of the YN scattering
and of the hyperon mass shifts in nuclear matter was performed in |30|. However,
in this analysis the pseudoscalar meson exchange contributions were not taken into
account explicitly but the YV scattering data could be described successfully for
laboratory momenta below 200 MeV using 12 free parameters. One ambiguity
in this approach for the YN interaction is the value of the 7 coupling which is
identified with the octet ng meson coupling and not with the physical n meson.
The influence of this ambiguity on the data description can be disregarded [31].

Since data on Y N scattering is scarce, it has not been possible yet to deter-
mine uniquely the spin structure of the Y NV interaction. Nevertheless, all of the
above mentioned OBE models are consistent with the measured YN scattering
observables. Additionally, all of these potentials include the AN — XN conversion
process.

1.1.3 Results of the potential

Here we will present the result of the construction of the V., . The hyperon
nucleon scattering of the form, Y + N — Y’ + N’ will be shown in the partial
wave basis for several of the most dominant and representative cases. In general
we have used the Lippman-Schwinger equation to construct waves up to L = 5,
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but as can be seen in the following figures the S-wave is the most dominant one
and already the D-wave is almost an order of magnitude weaker.

For all cases shown here we have used the cut-off A = 500 MeV. We have
chosen this particular cut-off, because it is expected that the Vi, « is only weakly
dependent on the cut-off in the range from ~ 200 MeV to ~ 600 MeV. Essentially
at this value the short range (high momentum) effects have already been integrated
out while at the same time the pion contribution remains largely unchanged in
this interval.

In all figures of the potential we show both, the bare potential and the resulting
View k potential. The bare potentials are shown with points while the Vi « are
indicated by lines.
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Figure 1.2: Bare and Vi,  potentials for 1Sy, X7n (left) and 3Py, XTp (right).

Fig. 1.2 shows the bare and Vi, « potentials for the 1Sy, ¥~ n channel on the
left hand side and the 2Py, ¥p channel on the right-hand side. The potentials for
the Vy—p5-p and Vyi,5+, are almost the same in all partial wave channels, the
only small difference comes from the different reduced masses of these systems. As
one can see, most of the Vi,  potentials are the same in these channels showing
that Vigw k can produce a unique potential for the hyperons. This implies that the
ambiguous situation which we will meet later on in the other channels is not the
failing of the Vj,, x method. Essentially as soon as there are enough constraints
on the phase shifts, Vj,, x works well in calculating the correct low-momentum
potential.

The only exception to the good behavior of this channel is the yEFT600 which
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by itself is not a realistic potential but a theoretically constructed potential. As
a result, information regarding phase shifts cannot be used as directly as for the
other potentials. Thus for the yEFT600, though some degree of improvement
can be made on the theoretical side, ultimately it is also fitted, so increased data
quality would bring improvements. However since YEFT is also a low-momentum
potential, applying the V., x does not change it by much. This can be observed
in Fig. 1.2. The points of the bare YEFT600 and the lines of the V,, x are seen
to be very close. A very simple explanation for this is that the cut-off of the
YEFT is 600 MeV while the cut-off of the Vi, i is 500 MeV so there are not so
many “high” momentum effects which can be transferred to the low momenta in
the RG decimation procedure.
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Figure 1.3: Bare and Vi,  potentials for 1Sy, An (left) and 3P, Ap (right).

Fig. 1.2 also shows that in both channels the V|, « is more attractive than the
corresponding bare potential. This serves to show that in the bare potential some
of the attraction would be provided by the momentum states above the V.,
cut-off. It should also be said that these two figures show the simplest channel
in the YN sector since there is no coupling to any other channel. In general this
would not be the case since most channels are coupled, either in the isospin space
or in the angular momentum space.

In Fig. 1.3 we show the bare and Vi, i potentials for the 1Sy, An channel on
the left-hand side and the 3Py, Ap channel on the right-hand side. As can be seen
here, the resulting Vi, x do not show agreement with one another, although the
differences are not as large as for the bare potentials. As mentioned before this is
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because of the lack of data on phase shifts with which one could construct a high
quality YNV potential. In this case as well, isospin symmetry gives us a practically
identical potential for Ap and An for all partial waves.
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Figure 1.4: Bare and Vi, . potentials for 'Sy, X7 p (left) and Dy, X% (right).

These channels are coupled in the isospin, but not in the angular momentum
space. What is interesting to note is that since this is a coupled channel, greater
attraction which we can observe in the case of the V., compared to the bare
potentials, can also come from the off diagonal elements such as the Vj,5+,. This
gives us a much more complicated situation to interpret, since the statement that
changes in the Vi, x of the Vj,a, come only from higher momentum contributions
in this channel is no longer true. Most obviously for the NSC97f, this complex con-
nection between the diagonal and non-diagonal elements for the 'Sy, An channel
will give rise to an attractive Vo, 1 potential from a repulsive bare potential.

Fig. 1.4 shows the bare and Vi, , potentials for the 1Sy, X ~p channel on the
left-hand side and the 3Py, ¥X°n channel on the right-hand side. In this channel we
have both coupling of the isospin as well as coupling of the angular momentum.
We can see that the cut-off effects are more pronounced here than they are in the
other channels. One interesting feature of the 3D, channel is the non-zero value
for the J04 and yEFT600 potentials at zero momentum. This can be interpreted
as the presence of a bound state in these potentials in this channel which is not
present in the other channels. The repulsion of the 3S; channel which can be
seen for YEFT600, whereas the other potentials are attractive, will later lead to
a profound difference in the value of the ¥ single-particle potential.
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NSC89 —— NSC89 ——
NSC97a —— LT NSC97a ——
1t Nscore - e b 2 [ NSCo7c - 554
NSCO7f = g 8ot NSCO7f — = Lut #
05 J04 =y W s i 104 = &
' L 1 [ XEFT600
3 0 3
= S 0Ot
@ 9
S 05 5
i~ = -1Ff
= -1r 3
> >
2+
15 F
2 f p,5s'n - S %, 5" n
1 "
-2.5 L L . L -4 I " ! !
0 100 200 300 400 500 0 100 200 300 400 500
k [MeV] k [MeV]

Figure 1.5: Bare and Vi, « potentials for 1P, X n (left) and 3P, X% (right).

Fig. 1.5 shows the bare and Vi, x potentials for the ' P, ¥*n channel on the
left-hand side and the 3P, X% channel on the right-hand side. Like the previous
case this is a fully coupled case, but now in addition to the isospin coupling we
have a spin coupling. This channel is than particularly interesting because such
a coupling cannot exist in the nucleon-nucleon case. What we notice here in this
partial wave, and which forms a trend that applies also to the higher waves, is
that the differences between the bare potential and the Vj,,  potential are smaller
compared to the S-wave. This is understandable because relative to the S-waves,
these waves will have a smaller magnitude. So there will be less effects at higher
momentum which would lead to differences between bare and V|,  potentials due
to RG decimation.

Overall these results show how the construction of the V|, x changes the Y N
potential compared to the bare case on producing an effective low-momentum
potential. The results themselves are only as good as the starting bare potentials
and they are heavily dependant on the quality and quantity of phase shift data
available for their construction. The few cases where we see agreement between
different models show that given a high-quality potential, the Vj,, x procedure
could produce the same uniqueness of the potential in the YN sector as in the
NN sector. Unfortunately, with the situation being what it is, we will have to
contend with the disagreement between models throughout this work.
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1.2 Low-energy observables

In order to obtain further insight into the separation of scales for the evolution
of the low-momentum Vi, we investigate its cut-off dependence. A common
feature of all YN potentials is the long-range one-pion exchange (OPE) tail. In
general, the RG decimation eliminates the short-distance part of the bare potential
and preserves the model-independent impact of the high-momentum components
on low-momentum observables. In this sense, the ambiguities associated with the
unresolved short-distance parts of the interaction disappear and a universal low-
momentum Y N interaction Vi, can be constructed from phase shift equivalent
bare YN potentials.

The mentioned hierarchy of scales can be seen e.g. in the X7 n channel, see
Fig. 1.6. The Vjoy . matrix elements for vanishing momenta are shown as functions
of the cut-off A for the 1Sy partial wave. When A is decreased, the resulting Vigy «
becomes more and more attractive. For 1Sy and a cut-off A ~ 500 — 250 MeV
the Viow k becomes cut-off independent. Decreasing the cut-off further below the
21 exchange threshold, which corresponds to a momentum k ~ 280 MeV, the
cut-off insensitivity disappears since the pion contributions are finally integrated
out.
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Figure 1.6: Left:Vi,, x *(0) in 1S, partial wave for various bare potentials as a
function of the cut-off A in the ¥7n channel. Prediction from effective range
theory (lines) are added. Right:Vjy, i *(0) for the 3S; channel.

In the opposite direction, i.e. for A — oo no fluctuations have been integrated
and the Vi, r tends to the bare potential.

The limit A — 0 should yield the scattering length. In the limit of small
cut-offs an analytic solution obtained in the framework of the effective theory, see
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[32], is given by

AT!
V,(0) = {2@ - 2—] for A0, (1.4)
Qo ™

where we have simplified our notation in an obvious manner. Here, the scattering
length ag is needed as an input which we have calculated in the standard effective
range approximation directly from the T-matrix for the 1S, channel from the
Viow Kk potential. In this approximation the T-matrix for ¢ < A can be expanded
as

1 1 1
= —— + —1ryq”®, (1.5)

gcotdy = ———-——
2:UyTy(Q> q; q2) Qg 2

where r( is the effective range. The results for the different YN flavor channels
and for all potentials used in this work (bare OBE potentials and YEFT potentials
with cut-offs between 550 and 700 MeV) are listed in Tab. 1.1 for the scattering
length ap in units of fm and in Tab. 1.2 for the effective range r( also in fm.

‘ H Ap ‘ An ‘ Yo ‘ ¥n ‘ Yp ‘ Ytn ‘ Z_p‘ Xn ‘
NSC97a | -0.71 | -0.76 | -2.46 | -1.74 | -6.06 | -0.04 | 0.41 | -6.13
NSC97b | -0.90 | -0.96 | -2.47 | -1.72 | -5.98 | -0.04 | 0.41 | -6.06
NSC97¢ || -1.20 | -1.28 | -2.41 | -1.70 | -5.90 | -0.03 | 0.41 | -5.98
NSC97d || -1.70 | -1.82 | -2.38 | -1.68 | -5.82 | -0.03 | 0.41 | -5.89
NSC97e || -2.10 | -2.24 | -2.38 | -1.68 | -5.82 | -0.03 | 0.41 | -5.90
NSCIT7f -2.51 | -2.68 | -2.45 | -1.74 | -6.07 | -0.05 | 0.42 | -6.16
NSC89 -2.70 | -2.72 | -2.12 | -1.57 | -4.79 | -0.09 | 0.23 | -4.85

J04 -2.14 | -2.11 | -2.24 | -1.63 | -4.68 | -0.18 | 0.04 | -4.75
xEFT550 || -1.80 | -1.79 | -1.76 | -1.15 | -3.82 | 0.12 | 0.31 | -3.88
xEFT600 || -1.80 | -1.80 | -1.25 | -0.92 | -2.70 | 0.10 | 0.20 | -2.72
xEFT650 || -1.80 | -1.80 | -1.43 | -1.02 | -3.06 | 0.09 | 0.21 | -3.10
xEFT700 || -1.80 | -1.80 | -1.50 | -1.07 | -3.19 | 0.06 | 0.20 | -3.24

Table 1.1: Scattering lengths ag of Vio,  for different flavor channels in fm for
the 1.5, partial wave.

As is visible in Fig. 1.6 for small cut-offs A there is good agreement between the
analytical expansion and the full V|,  solution obtained from the flow equation.
Unfortunately, no general quantitative conclusion can be drawn from Tab. 1.1
and Tab. 1.2 due to the bad experimental situation for the YN data. The YN
interaction is yet largely unknown. However, agreement of the scattering lengths
of all NSC97 potentials except for the Ap and An channels is found. The latter
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‘ H Ap ‘ An ‘ ¥op ‘ ¥n ‘ Stp ‘ Ytn ‘ Xp ‘ Yn ‘
NSC97a || 5.87 | 6.12 | 4.58 | 0.60 | 3.28 | -6602 24.8 3.27
NSC97b | 4.93 | 5.10 | 4.68 | 0.59 | 3.29 | -8491 25.0 3.28
NSC97c¢ || 4.11 | 4.23 | 4.79 | 0.57 | 3.30 | -10670 | 254 | 3.29
NSC97d | 3.46 | 3.53 | 4.91 | 0.54 | 3.30 | -17115 | 254 | 3.29
NSC97e | 3.19 | 3.24 | 4.90 | 0.52 | 3.29 | -17326 | 25.2 3.29
NSC97f || 3.03 | 3.09 | 4.60 | 0.51 | 3.25 | -6341 24.1 3.24
NSCR89 2861298 | 5.76 | 0.74 | 3.35 | -1478 58.0 3.33

J04 293 13.09|3.76 | 1.04 | 3.32 | -329 1232.0 | 3.30
xEFTH550 || 1.73 | 1.84 | 6.10 | -2.96 | 2.70 -825 34.1 2.68
xEFT600 || 1.77 | 1.88 | 5.32 | -2.12 | 3.40 | -780 10.2 3.39
xEFT650 || 1.75 | 1.86 | 5.10 | -2.28 | 3.08 | -1210 27.6 3.05
xEFT700 || 1.74 | 1.86 | 4.91 | -2.17 | 2.97 | -2450 34.8 2.95

Table 1.2: Effective range rg of Vi, x for different flavor channels in fm for the
18, partial wave.

deviation is related to the different fits of the magnetic F'/(F + D) ratio in the
Nijmegen potentials [16]. The remaining two potentials, NSC89 and J04, have
different but comparable values to those of the NSC97 ones. Unfortunately, the
difference between these potentials and the YEFT is large.

The right part of Fig. 1.6 shows the same as the left panel for the 35, partial
wave. Unlike the 1S, channel, Vi  for the 25 channel remains cut-off dependent.
On the one hand, in the 1Sy channel, the potential has a strongly repulsive core
and on the other hand, in the S; channel, it has a strongly attractive core. Hence,
during the RG decimation towards smaller cut-offs the potential gets more and
more attractive (or less repulsive).
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2 Infinite nuclear matter

Infinite nuclear matter represents a hypothetical system without surface effects
and Coulomb interaction, whose relevant degrees of freedom are nucleons, or more
generally baryons. It is a system that cannot be studied experimentally in a
laboratory, but it is nevertheless a very useful and broadly used concept because
of its simplicity and its connection with the inner part of atomic nuclei and neutron
stars. Neutron stars support themselves against the gravitational collapse mainly
by the degeneracy pressure of neutrons. However, as the density of the system
increases one must consider the influence of the nuclear interaction as well as the
appearance of other degrees of freedom like hyperons, or eventually even quarks.

If we wish to examine the properties of infinite nuclear matter it is appropriate
to consider the single-particle wave functions as plane waves. This is convenient
since they are already the solutions in the Hartree-Fock approximation. This is
another motivation for using infinite nuclear matter, because the starting wave
functions are known and simple.

In the following, in Sec. 2.1, we will first present the Hartree-Fock approxima-
tion which is used to calculate the ground state of dense matter. The calculation
itself and the results for the single-particle potential as well as several other re-
lated quantities is presented in Sec. 2.2. The results follow in Sec. 2.2.2. At the
end we will consider the inclusion of three-body forces in Sec. 2.3.

2.1 Hartree-Fock approximation

The main feature of the Hartree-Fock method is that the interactions among the
baryons can be represented by an average potential felt by each of the baryons
due to the presence of all other baryons. In the Hartree-Fock approximation the
ground state is represented by a Slater determinant which is built from the single-
particle wave functions of all particles. Thus, instead of a complicated correlated
set of many-body states we have a simple product of the states.

We now consider an interacting system of particles described by a Hamiltonian

H=M+T+V, (2.1)

15
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where M is the mass operator, T the kinetic energy operator and V the two-body
interaction. The total energy E of this system is then obtained as the expectation
value of the Hamiltonian with respect to the ground state:

E = (O H|D) = (O] M |®) + (DT |®) + (| V |®) . (2.2)

In the case of a homogenous infinite system, the appropriate single-particle
states are plane-wave states, cf. Eq. (B.3). This property is the main appeal of
this approximation. The starting single-particle wave functions are known and
simple, which is not the case otherwise, such as for nuclei or atoms.

If we assume that the temperature of the system is equal to zero we can use
these states to derive the usual connection between the density of the states and
the Fermi momentum of the particles:

L 3
Psmstme = 5D Fon i, (2.3)

In this expression spin is sm, =T, | and isospin is tm; = p,n, A, X7, X%, X+, The
total baryonic density of the system is defined as the sum over all states.

PB = Z Psmstmy - (24)

smstmg

We note that in this thesis we will not deal with polarized matter, hence all
densities and momenta of particles with different spins will be equal. This yields

L
Ptmy = ﬁpl’tmt ) (2-5)
pB =Y Pim, - (2.6)
tmy

We can use the states defined by Eq. (B.3) directly to calculate the mass
(Eq. (B.7)) and the kinetic (Eq. (B.8)) part of Eq. (2.2). As for the potential
part, we cannot use the plane wave states directly since the potential is usually
given in partial waves. Thus, we need to change our basis first, which is done
in Appendix B.1.2. This will then give the potential part (Eq. (B.26)), and the



2.2. SINGLE-PARTICLE POTENTIAL 17

resulting Hartree-Fock ground-state energy is finally given by
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o (s ZWN@—WE)
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timey dmazx
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dmin

2QL+1(L—M) [ L S J 2(PML(t))2
4t (L + M)\ My Ms | My + Mg L

[‘/((}jS)Jtlmtltzmtz (q) - ( 1>1 S+LVLS Jtlmt1t2mt2 (q>:| ? (27)

with the integration limits derived in Appendix B.

When using the Vo  potential in Eq. (2.7), we need to keep in mind that it is
limited to the maximal momentum value of ¢ = 500 MeV or slightly more in the
case of heavier channels, by the sharp cutoff. This puts a restriction on the values
of the densities we can have when using the Vi, . In pure neutron matter this
limit will be around ~ 3p, while for symmetric nuclear matter it would be ~ 6py.
These restrictions come from considering the Fermi momentum of the neutron
which is usually the highest. We also need to keep in mind that the effects of a
sharp cut-off show up before the relative momentum ¢ reaches the value of cut-off.
Thus it is best to keep the relative momentum somewhat lower.

2.2 Single-particle potential

Generally, the single-particle potential is defined as the diagonal part in spin and
isospin space of the proper self-energy for the single-particle Green’s function in
the Hartree-Fock approximation. It represents to first-order the interaction energy
of a particle with incoming momentum p and given spin and isospin with the filled
Fermi sea. For an interaction V' the single-particle potential Uy, (p) describes
the behavior of the incoming particle with momentum p in the dense medium,
i.e. its interaction with a filled Fermi sea of all other particles. Pictorially, the
single-particle potential is represented by Goldstone diagrams as shown in Fig. 2.1.
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Figure 2.1: Goldstone diagrams for single-particle potential.

In the Hartree-Fock approximation the single-particle potential is defined as

Uy, (P Z > / 43P,

31mSl $2Msy laMmiy
(p17 Slms1 ) tlmt1 y P2, 82m827 tthQ‘ V |p17 Slmsl ) tlmtl y P2, 82m327 tth2> ) (28)

where the spin-averaging was performed to remove the spin-dependence of the
single-particle potential. We have done this since we will not be dealing with
spin-polarized matter and the contributions from the spin-up T and spin-down |
states are the same.

Just as in the case of the potential part of the ground-state energy in Eq. (2.8),
we need to make a basis transformation from plane waves to partial waves. The
single-particle potential Uy, (p1) for a particle with momentum p; = [p] is
obtained from the diagonal elements of the potential matrix, where, as before for
the ground-state energy, we have two contributions the (direct) Hartree- and the
(exchange) Fock-term [33]

9maz
Ui, () = 3 /dt/dqq Yy
tome, i SMs LMy, J

QL+1(L—M)N [ L S J Q(PML(t))Q
2r (L+ Mp)!'\ My Mg | Mg+ Mg L

Vst (@) = (D5 VG sty @] (29)

with the integration limits being the same as for the ground-state energy.

2.2.1 Single-particle energy and the effective mass

The single-particle energy for the states defined by Eq. (B.2) is

p2

= + Usm,tm, (D) - 2.10
S+ Vs () (210)

€smgtmy (m - Msmstmt +
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Figure 2.2: Momentum and density dependence of Up(p) (left), and for Us-(p)
(right), for symmetric nuclear matter. The NSC97f has been used as the bare
potential.

Mostly we will perform our nuclear matter calculations at zero or very low
temperatures, at least compared to the Fermi energy, hence the potential will be
influenced most by the momenta at and around Fermi momentum. This gives rise
to the quadratic approximation of the single-particle energy:

p2

+2M*

smstmg

Esmatmi (D) = M, tm, + Usmstmt (stmstmt) ; (2.11)

where M*

smstmy N
twofold. It retains the shape of the free single-particle energy spectrum and U is
independent of the momentum p. This will enable us to perform some of the later
calculations analytically without losing much accuracy.

is the effective mass. The advantage of such an approximation is

The effective mass can than be calculated as

_ d” Esmatmy (D)
op?

1 1 aesmstmt (]5)

3
Msmstmt stmstmt ap

. (212)

p:stmStmt p:stmStmt

and U is

2
~ stmStm 1
Usmstmt (stmStmt> = 2 : (M p B M*

smgtmy

) + U(PFamyim, )- (2.13)
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2.2.2 Symmetric nuclear matter

As an example, the numerical solution of Eq. (2.9) for the full momentum and
density dependent single-particle potential of the A hyperon with momenta up
to 500 MeV and nuclear densities up to 6pgy is shown on the left-hand side of
Fig. 2.2, where the NSC97f YN potential of the Nijmegen group has been used
as the bare potential for the underlying Vi« calculation, cf. |34]. One sees that
with increasing density, the momentum dependence becomes stronger, indicating
a decrease of the effective mass as the density increases.

Similarly, the right-hand side of Fig. 2.2, shows the full momentum and density
dependence of the X~ single-particle potential for symmetric nuclear matter, based
on the NSCI97f Y N potential. Here, the slope of the momentum dependence is less
pronounced which leads to a weaker density-dependent effective mass. However,
unlike in the A case, the curvature becomes negative at higher densities, leading
to an effective mass which is larger than the bare mass.

50 \ \ \ \ \ 20
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>
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S 50T = 20
o Z
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Figure 2.3: Ux(p = 0) as a function of density in symmetric nuclear matter is
shown in the left panel. The square represents the empirical point Uy(p = 0) =~
—30 MeV [35]. The momentum dependence of Ux(p) at saturation density in
symmetric nuclear matter is shown in the right panel.

The density dependence for several A single-particle potentials at rest (i.e.
p = 0) in symmetric nuclear matter is compared in the left panel of Fig. 2.3.
The square represents the generally accepted empirical potential depth of Up(p =
0) ~ —30 MeV. This value has been confirmed recently by an analysis of the
(7=, K') inclusive spectra on various target nuclei as best fits in a framework of
a distorted-wave approximation [35|. While most potentials can reproduce this
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value, the Jiilich potential (J04) yields a stronger binding and the old Nijmegen
potential (NSC89) underestimates the binding.

With the exception of the J04 and NSC89 potentials, all interactions yield
identical single-particle potentials up to the saturation density. However, with in-
creasing density, the differences between these potentials grow, leading to different
bindings at rest. This will have consequences for the predictions of the A hyperon
concentration in dense nuclear matter. In particular, this will affect the maxi-
mum mass of neutron stars. It is interesting to observe that even the Nijmegen
potentials NSC97a-f differ at higher densities. The only difference between these
potentials is the magnetic F'/(F + D) ratio.

In the past, the potentials NSC89, NSC97a and NSC97f have also been used
as a basis for a single-particle potential calculation in the G-matrix formalism
[36, 37]. These G-matrix calculations yield a more attractive A single-particle
potential. For example, at saturation density a potential depth of —29.8 MeV is
found for the NSC89 potential, the NSC97a gives —39.7 MeV, and the NSC97f
—36.6 MeV. On the other hand, a comparison with another G-matrix calculation
[16], which uses a different prescription for the intermediate spectra, yields similar
results to ours.

In Fig. 2.3, on the right-hand side, the momentum dependence of the A single-
particle potential at saturation density is shown for various YN potentials. While
all potentials increase with increasing momentum, the slopes deviate from each
other. Similar differences in the momentum behavior of the single-particle poten-
tial are also seen in other works, cf. e.g. |36, 38|.

| | S | *5 | ™A | "R [*A | B | Dy | Ua |
NSC97a || -4.86 |-27.79 | 1.70 |-0.10 | 2.10 | -2.03 | -0.09 | -32.12
NSC97b || -6.69 | -27.40 | 1.86 | 0.05 | 2.53 | -1.87 | -0.09 | -32.72
NSC97c -9.06 | -27.54 | 1.96 | 0.36 | 2.84 | -1.72 | -0.09 | -34.42
NSC97d || -12.14 | -26.05 | 2.22 | 0.64 | 3.54 | -1.33 | -0.08 | -34.46
NSC97e || -13.92 | -24.43 | 243 | 0.75 | 4.09 | -1.03 | -0.07 | -33.50
NSCI7f || -15.37 | -20.85 | 2.85 | 0.68 | 5.09 | -0.47 | -0.05 | -29.49
NSC89 || -15.73 | 4.52 | 2.00 | 0.52 | 2.55 | -3.46 | -0.07 | -10.84

J04 -9.55 | -35.18 | -0.15 | -0.70 | 0.58 | -3.17 | -1.31 | -50.28
xEFT550 || -11.11 | -15.46 | 1.50 | -1.69 | 3.17 | -0.07 | -3.14 | -27.14
xEFT600 || -12.29 | -11.39 | 1.50 | -1.73 | 3.17 | -0.07 | -6.14 | -27.37
xEFT650 || -11.99 | -6.70 | 1.50 | -1.77 | 3.17 | -0.07 | -9.90 | -26.27
xEFT700 || -11.91 | -1.77 | 1.50 | -1.81 | 3.17 | -0.08 | -13.84 | -25.35

Table 2.1: Partial wave contributions to the A single-particle potential Ux(p = 0)
at pp = pp in symmetric nuclear matter.
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Additionally, Eq. (2.9) cannot only be used for the calculation of the single-
particle potential, but also to extract the individual partial wave contributions to
the total single-particle potential. These contributions are obtained by neglecting
the summation over the LSJ quantum numbers in Eq. (2.9), and will be labeled
Uy (***1L;) in the following.

In Tab. 2.1 and Tab. 2.2 the resulting partial wave contributions to the U, and
Us.- single-particle potentials for zero momenta at saturation density are listed
for several Y N interactions.

| | S0 [ PS5 [ A [ °B | P | PR | PDy | Us |
NSC97a || 3.51 | -4.87 | -2.16 | 0.59 | 1.46 | -2.41 | -0.01 | -4.73
NSC97b || 3.58 | -5.37 | -2.14 | 0.63 | 1.54 | -2.31 | -0.01 | -4.91
NSC97¢ || 3.48 | -6.50 | -2.12 | 0.68 | 1.59 | -2.18 | 0.00 | -5.86
NSC97d | 3.50 | -6.08 | -2.02 | 0.71 | 1.70 |-1.92 | 0.01 | -4.88
NSC97e || 3.50 | -5.24 | -1.94 | 0.72 | 1.78 | -1.75 | 0.02 | -3.65
NSC97f || 3.51 | -5.11 | -1.85 | 0.71 | 1.90 | -1.60 | 0.02 | -3.14
NSC89 || -4.32 | 11.46 | -0.77 | 0.93 | 2.27 | -1.49 | 0.28 7.61

J04 -7.63 | 1.84 | -0.15| 0.52 | -0.70 | -3.37 | -3.65 | -15.13
xEFT550 || 2.28 | 14.69 | 1.50 | -0.20 | 0.09 | -0.01 | -2.73 | 14.11
xEFT600 || -3.70 | 66.26 | 1.50 | -0.28 | 0.06 | -0.01 | -5.36 | 56.89
xEFT650 || -2.72 | 42.41 | 1.50 | -0.35 | 0.01 | -0.01 | -8.60 | 30.38
xEFT700 || -2.93 | 39.93 | 1.50 | -0.41 | -0.04 | -0.02 | -11.60 | 24.68

Table 2.2: Partial wave contributions to the ¥~ single-particle potential Ug- (p =
0) at pp = po-

In these tables the partial waves up to L = 2 are shown and the last column
contains the sum up to L = 5. As expected, the influence of the S-wave is most
dominant. One can see that the combination of the coupled 3S; and 3D; channels
provides most of the attraction in the majority of the A single-particle potentials.

These tables also illustrate the different contributions to the hyperon single-
particle potential originating from the central, spin-spin and spin-orbit parts of the
Y N interaction. Furthermore, one recognizes from the different bare NSC97a-f
potentials that a change in the F/(F + D) ratio affects the single-particle po-
tential for the A stronger than for the . Another interesting feature is that
XEFT successfully reproduces the potential depth at saturation density. For this
density, YEFT agrees well with the Nijmegen NSC97a-f potentials.

On the left-hand side Fig. 2.4 shows a comparison of the Uy(p = 0) density
dependence obtained from xEFT | with results from Ref. [39]. Perfect agreement
for the Uy (p = 0) is evident and the independence of the YEFT single-particle po-
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tential on the regulator cutoff is also seen. This suggests that the two approaches,
[39] and [40], to construct an yEFT are closely related. Furthermore, YEFT in
leading order can already produce a reasonable AN potential.
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Figure 2.4: Left: Density dependence of Uy (p = 0) for symmetric nuclear matter.
The full line is from |39] and the dashed lines represent YEFT for various regulator
cutoffs. Right: Density dependence of Usg(p = 0) for symmetric nuclear matter.
The full line is from [41] and the dashed lines represent YEFT for various values
of regulator cutoff.

The left panel of Fig. 2.5 shows the density dependence for several ¥~ po-
tentials at rest in symmetric nuclear matter like in Fig. 2.3 for A. The other
members of the ¥ triplet, ¥t and X°, exhibit an almost identical behavior. A
small difference compared to the X7 case is seen due to a small difference in their
masses. Therefore, we will discuss only the ¥~ single-particle potential. For the
>~ potential no density range is found where all, or even most, potentials agree.
However, the difference between the NSC97a-f potentials is not significant and is
the same over the entire density range shown. This confirms that the influence
of the magnetic F'//(F + D) ratio on the XN interaction is less important than
on the AN interaction. Due to experimental uncertainties in the case of the X~
potential, no generally accepted empirical point can be used as a reference. On
the whole, the experimental situation concerning the >~ case is confusing: on the
one hand, recent results [35] based on a distorted wave impulse approximation,
yield a repulsive potential of the order of 100 MeV; on the other hand, the analysis
of the same data by Kohno et al. [42| in a semiclassical distorted-wave model and
an analysis by Maekawa et al. [43| within a distorted-wave impulse approxima-
tion with a local optimal Fermi-averaging T-matrix find a clearly less repulsive
potential. Additionally, there also exists a bound state of §,He [44], which defi-
nitely requires an attractive potential. Thus, neither theory nor experiment give
a conclusive scenario in this case.
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Figure 2.5: Ug(p = 0) as a function of density in symmetric nuclear matter

is shown in the left panel. The momentum dependence of Uy (p) at saturation
density in symmetric nuclear matter is shown in the right panel.

Compared to the G-matrix calculation a stronger binding of the ¥~ single-
particle potential is found. In particular, the NSC89 potential yields a binding
energy of —15.3 MeV |36], while —29.7 MeV and —25.5 MeV are found for the
NSC97a and the NSC97f potential, respectively |37|. In order to understand the
origin of such a significant difference, the single partial wave contributions to
the single-particle potential of Ref. [36] are compared to each other. The 1S,
channel contributions are approximately the same while those for the 3S; channel
are significantly different. This difference in the 3S; channel is present for both,
the A and X~ potentials, and is the result of a difference in the treatment of
the 3S; AN — XN channel. Since both, the Visw x and the G-matrix formalisms,
construct the effective interaction out of the same bare interaction, the difference
comes from the treatment of the attractive part of the bare potentials which is
found above the cutoff. Essentially the difference is in how much "attraction” is
transferred when constructing the effective interaction. This is similar to the case
shown in Fig. 1.6 (right), where a cutoff dependence is visible: for each lower
cutoff more "attraction” is effectively added to the interaction.

However, it is interesting to note that the effective potentials constructed in the
G-matrix calculations for the NSC89, NSC97a and NSC97f potentials depend on
the underlying bare potentials in a similar way as the potentials shown here. This
is another sign that the uncertainties are inherent in the underlying potentials.

Going back to Fig. 2.5 once more, the momentum dependence of the X~ single-
particle potential at saturation density for various YN potentials is displayed on
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the right-hand side. This figure illustrates how strong the parameterization of
the YV interaction deviates. The potentials at zero momentum as well as their
momentum dependence are very different. This demonstrates how poorly the XN
interaction is constrained.

The right panel of Fig. 2.4 shows the density dependence of the real part
Us(p = 0) and the imaginary part Wx(p = 0) of the single-particle potential in an
optical potential calculation [41] together with the results obtained from yYEFT .
The most interesting feature here is that all single-particle potentials are positive
and grow with increasing density in contrast to the other potentials. However,
unlike in the case of the A potential, the X~ single-particle potential depends on
the regulator cutoff and only yEFT with a cutoff of 600 MeV agrees with the
results of Ref. [41] quantitatively. As already mentioned, the repulsive 3~ single-
particle potential, which grows with density, has been suggested by Saha et al. [35]
by means of an analysis of (7~, Kt) inclusive spectra.

Recently, a calculation of the binding energy of the A hyperon in nuclear matter
within a Dirac-Brueckner-Hartree-Fock framework was performed using the most
recent Jiilich meson exchange YN potential [45]. The reported values of the A
single-particle potential, —51.27 MeV (—47.4 MeV) in the Brueckner-Hartree-
Fock (Dirac-Brueckner-Hartree-Fock) framework agree well with our prediction of
—50.28 MeV.

2.3 Three-nucleon force

It has long been known that soft nucleon-nucleon potentials without a hard core
do not reproduce the saturation properties of nuclear matter correctly [46|. From
the perspective of an effective potential this is not a failure but an expected
feature which suggests that to obtain saturation in nuclear matter three or higher
many-nucleon forces are required. Unfortunately, an RG based approach for the
combined two- and three-body potential is not yet available, but an approximation
can be made in which the three-body contributions are replaced by leading-order
three-nucleon force from chiral effective field theory |47].

Thus we add the three-nucleon force from [47] to our Vioy k potential. This
three-nucleon force contains a long-range 2m-exchange part V., an intermediate-
range lm-exchange part Vp and a short-range contact part Vg. The 27-exchange
interaction is given by

1/ g4\ (i - 4:)(9; - ;)
V. = (—) Z R AN L (2.14)

© 2\ 2fs A (@ m2)q+m2) T

where ¢ = l;:; — k denotes the difference of initial and final nucleon momentum
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while the 1m-exchange and the contact interaction are given respectively by

ga o i 0 1 ornym o
Vp= - A Y (7 7)(6:4)) (2.16)
Ce - o
Vo= grtc (7R, (2.17)
i#jF#k

where g4 = 1.29, f; = 92.4 MeV and m, = 138.04 MeV. The low-energy constants
are ¢; = —0.76 GeV™!, ¢35 = —4.78 GeV ™! and ¢y = 3.96 MeV ™!, For A, a value
of 700 MeV has been chosen [48]. In addition, all three contributions need to be
multiplied with the square of the regulator used in three-nucleon force fits:

fr(p,q) = exp [— <292+A72q2/4) ] : (2.18)

where p and ¢ are the Jacobi momenta and Ag is the regulator cutoff.

The low-energy constants c¢p and cg need to be fitted to some experimental
data. The fit in Ref. [47] is to the experimental binding energies of 3H and *He,
but we also attempted a fit to the nuclear saturation energy and incompressibility.
We refer to the first fit as "nuclei fit” while we label the second one with the value
of incompressibility used to fit it. The values of the low-energy constants c¢p and
cg at Ag = 500 MeV = 2.534 fm~! are for the "nuclei fit” ¢p = —3.9268 and cp =
—1.1288 [47], while for the nuclear fit with Ky = 220 MeV we have c¢p = 54.9241
and cg = 16.343. However, since it is expected that both constants cp and cg are
of "natural” size, i.e. of order one, the "nuclei fit” should be considered somewhat
superior.

Since the three-nucleon force is given in operator form, there is no need to
transform it to the partial wave basis. Thus, the three-body force contribution to
the total energy is

@Vnel®) = g X 2 X X XX [ @ [ [ s

§1Msy S2Msy S3Msy tlmtl tgmt2 tgmtS

(P, s1ms, , Ty, 5 Do, S2Ms,, taMMyys D3, S3Mesy, taMu, | Van e

D1, 1My, t1uy, 5 Do, SaMs,, Loy, P3, S3Misy, T3y ) (2.19)
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where the states have been fully antisymmetrized as in the case of two body force,
and are thus:

‘ﬁh Slms1 ) tlmtl ; ﬁQv S2m827 t2mt2;ﬁ37 S3m837 t3mt3>
1 . . o
- %AHS D1, $1Msy s 111, ) | D2, S2Msy sty ) | D3, S35 t3M05) (2.20)
where A123 =1- P12 - P13 - P23 + P12P23 + P13P23 is defined with the standard
exchange operators introduced in Appendix B.1.2.
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Figure 2.6: Energy per particle as a function of density in symmetric nuclear
matter.

Fig. 2.6 shows the energy per particle for symmetric nuclear matter for several
microscopic nucleon potentials. For comparison we also show the result for AV 18+
dv + UIX from Ref. [49| which reproduces the properties of nuclear matter
at saturation nicely and is currently accepted as the most accurate nucleonic
potential. If we compare its values, represented by points, and those of Vi, i, our
statement from the beginning of this section about the lack of saturation and the
need for a three body force becomes clear. As is evident V|, 1 shows no saturation
in the density range shown here, but as noted before, this is not unexpected.

In addition, we also compare the results with the Vycoa nucleon-nucleon
potential from [50]. The Vycon makes use of unitary correlation operators to
decouple the energy scales and thus transfers the high momentum effects to the
low momenta. This property and the fact that both, Vi, « and Vyconr, preserve
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the phase shifts makes these two effective NN potentials similar, but differences in
the construction lead to sufficient differences for these potentials to consider them
distinct from one another. As visible in Fig. 2.6 they produce different results
for nuclear matter, the biggest difference being that Viycons exhibits saturation at
higher densities, but interestingly has almost the correct binding energy.

As for the combinations of the Vi, x with a three-nucleon force it is clear that
for both, the nuclei fit as well as the nuclear fit, there is saturation, but it is not
at the correct point. The fit to finite nuclei is especially bad for the calculations of
nuclear matter because of its enormous stiffness. The nuclear matter fit has a more
appropriate stiffness, but the asymmetry energy is much too large, a; = 42.46 MeV
and as mentioned before the values of c¢p and cg are too large. Unfortunately at
this time there still does not exist a microscopic three-body force which can be
used in combination with Vi;coas in nuclear matter calculations.

What we have seen here is that two-body interactions such as the Vi, and
Viconr alone are clearly not useful for standard many-body theory calculations of
nuclear matter. While they improve the situation, the three-body forces coming
from chiral perturbation theory do not reproduce the saturation properties of
nuclear matter correctly. Since we are interested in investigating the properties of
hyperons in nuclear matter we have to be sure that our nucleonic sector is as good
as possible so that any conclusions made in the hyperonic sector are independent
of it. This leads to the conclusion that we have to replace either the nucleonic
sector with a suitable parameterization or to replace the three-body force with
another one which in combination with two-body forces is capable of accurately
reproducing the properties of nuclear matter.

We will explore both options in the following. In the next chapter we will
replace the nucleonic part with a corresponding parameterization of the energy
per particle. In the remaining chapters we will use a density-dependent Yukawa-
like force to mimic the effect of the three-body force. Both of these substitutions
have parameters which are fitted to the properties of nuclear matter. This makes
them as reliable as possible for further calculations regarding the hyperons. The
reason for using both is that they offer different insights into nuclear matter with
hyperons.



3 EOS and (-equilibrium

An important application of infinite nuclear systems introduced in the previous
chapter is the study of dense baryonic systems which can be found in astrophysical
contexts such as the interior of neutron stars. Like all stars, a neutron star is a
“battle” between the pull exerted by gravitation and a pressure generated inside
the star. In the case of a neutron star, this pressure comes from the degeneracy
pressure of the baryons. This makes a neutron star a unique structure where
gravitational and nuclear forces are both of equal interest. While the low-density
surface of a neutron star is explained in terms of nuclei and neutrons, the interior of
it remains largely a mystery with many possibilities. These possibilities range from
almost pure neutron matter with a few electrons and protons, through inclusion
of exotic states such as hyperons, pions, kaons as well as various condensates, all
the way to the possible realization of pure quark matter.

Inside a neutron star at densities above the “neutron drip line” we first expect
to find the form of matter in which neutrons, protons and electrons exist in an
equilibrium regulated by the weak force. This equilibrium is referred to as (-
equilibrium because the J-decay and similar processes dominate. However, since
the density increases as we go deeper into the star we expect other particles such
as the hyperons to appear. It is reasonable to expect hyperons to appear first
since they are the lightest baryons after the nucleons. Other possibilities include
various condensates and quarks.

This chapter is organized as follows: Sec. 3.1 presents the formalism of the
equation of state and other related quantities. In Sec. 3.2 we introduce and show
results for the parametric equation of state. Sec. 3.3 is devoted to the calcu-
lation of (-equilibrium and the stellar composition. The resulting composition
and threshold densities of hyperons are shown in Sec. 3.3.1 and Sec. 3.3.2, respec-
tively. Finally, in Sec. 3.4, we show results and discus the consequences of hyperon
emergence on the maximum mass of neutrons stars.

29
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3.1 Equation of state

The equation of state (EoS) of nuclear matter relates pressure or energy with
density and temperature for equilibrated nuclear matter. The quantity which one
needs is the energy per particle, given by Eq. (2.7). Additional information which
is needed is the composition which is determined by (-equilibrium. This will be
explained later. The total energy can then be written as '

EJA = p% Xb: :]Fb(gjrfig (Mb + QP—M 42 Ub( )) , (3.1)

where we have used the single-particle potential.
With the help of the baryon density fraction, x, = py/pp, which relates to the
Fermi momentum as

p?j?b = 3rmpp, (3.2)
we can then express the EoS as
2 PRy, )
L [ pdp
E/A = — U ) 3.3
4=y et~ [ E2U0) (33
0

In symmetric nuclear matter the lowest energy is obtained by minimizing £ =
E/A. This quantity then defines the saturation density py (equivalently, pg,) and
the energy &, via

~0. (3.4)

sat.

dps

The curvature at the saturation point with respect to pg is proportional to
the incompressibility,

0*E
pB a a2

825

F sat. sat.

where we have defined the Fermi momentum pg of nuclear matter composed of
an equal number of protons and neutrons as pp = 37%pp/2.
The volume symmetry energy corresponds to the curvature of £ with respect

to M,

1 9% 1 0*E
= - — 3.6
“=35 Ot .o ) 8%2, it ’ (36)

'For the sake of clarity and brevity we have changed the notation somewhat. Now instead
of explicit isospin indices tm; we use an abbreviation b (b = tmy)



EQUATION OF STATE 31

where 07 = (p, — pn)/pp -
For the experimental values of these quantities one can find the following values
in the literature, cf. [51, 52]. For the saturation density one finds

po =0.16 £0.02 fm . (3.7)

The value of the energy per nucleon at saturation density, which in symmetric
matter represents the lowest energy, is

E
€= 7 =-156£02MeV, (3.8)

the incompressibility at the same density is
K =~ 220 4+ 30 MeV (3.9)
and the symmetry energy is

a; = 30 MeV . (3.10)

3.1.1 Chemical potential

The chemical potential of a fermion at zero temperature is equal to its Fermi
energy. Depending on the approximations we use there are two cases of interest,
that of nonrelativistic interacting particles, baryons:

2

2Mb

= (pr,) - (3.11)

and that of relativistic noninteracting particles, in the form of leptons:

= \/ml (3m2p)7 (3.12)

where p; is the lepton density.
At finite temperature the chemical potential of fermions for a given density is
found as a solution of the equation

ey 1
7 Jo VP15 exp (6 — ) /1)

pi = (3.13)

where ¢; is the single-particle energy of either leptons or baryons.
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3.2 Parametric NN equation of state

It is well known that non-relativistic many-body calculations, based purely on
two-body forces, fail to reproduce the empirical saturation point for symmetric
nuclear matter. The usual solution to this problem is the introduction of three-
body forces. However a three-body force which would complement the Vi, i,
while providing the correct binding properties of light nuclei, does not reproduce
the properties of nuclear matter at saturation density [47|, cf. Fig. 2.6. Because
of this we will first attempt to include the higher-order effects by replacing the
purely nucleonic contribution to the energy per particle

N

Pr
2 d3p

Exvn/An=— /

NN/ N pN%:O (271’)3

by an analytic parameterization developed by Heiselberg and Hjort-Jensen |6]

2
p [
— 4+ U 14
<MN+2MN+2 N(p>) ) (3.14)

u—2-—9
ENN/AN = MN —Eou

Y(1 _ 2 1
s S (1 20,)°, (3.15)

where © = py/po is the ratio of the total nucleonic density py = (z, + z,)pp to
the nuclear saturation density.

In Eq. (3.14) we have separated the potential contribution of nucleons into one
coming from the interaction with other nucleons, U (p), and one coming from the
interaction with hyperons, U (p). The separation can be written as

Us(p) = U, (p) + U) (p) (3.16)

where we define the nucleonic contribution from Eq. (2.9), with the isospin sub-
stitution (b = tmy). The latter part, U (p), does not contribute to the pure
nucleonic EoS and was thus not includes in the replacement.

1 dmazx

e =3 [a [ arS Y S

b’:p,n_l SMg LMy, J

Amin
L+1(L—-M) ([ L S J 2(PML(t))2
2n (L+ Mp)!' \ My Mg | Mg + Mg L

VT o (@) = (=) Vi i (@)] - (3.17)
An analogous definition can be introduced for the hyperonic contribution. We

also note that due to the lack of the Y'Y interaction the single-particle potential
contributions of the form UY (p) will be neglected throughout this work.
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The used parameterization was fitted to the energy per particle obtained from
variational calculations using the Argonne Vjg nucleon-nucleon interaction with
three-body forces and relativistic boost corrections. The best fit parameters are
Ey = —15.8 MeV, Sy = 32 MeV, v = 0.6 and 6 = 0.2 |49].

The advantage of using this parameterization is that, since we are primarily
interested in the behavior of the hyperons, we want our nucleonic part of the
EoS to be as reliable as possible. Since the EoS from [49] is considered as one
of the most reliable ones avaliable, the usage of it removes as much as possible
uncertainties coming from the nucleonic EoS. Thus we can be reasonably sure
that any conclusion we make about the hyperons is not subject to effects coming
from the nucleonic part.

Additionally this approximation will allow us to use the density range well
above the range of validity of the NN Vi, «, which is limited by the cut-off. In
the case of symmetric matter at zero temperature the limit is ~ 6py while for
pure neutron matter that limit is ~ 3py. The extension of the density range will
enable us to study the masses of neutrons stars with hyperons, since the maximum
mass is usually reached at densities ~ 7 — 10pg. The cut-off of the YN Vi,  will
not pose a problem, since the concentrations of hyperons in neutron stars are not
very large. The drawback is that our approach is no longer microscopic and not
applicable for a Landau Fermi liquid calculation that we want to perform later
on. For this reason in the next chapter we will go back to a more microscopic
approach.

The parameters Ey, 9, S are related to properties of nuclear matter at satura-
tion density, i.e. Ejy is the binding energy per nucleon at saturation density while
Sp and ¢ are connected to the symmetry energy and the incompressibility, respec-
tively. Since there are no hyperons at saturation density we can use Eq. (3.15)
directly to find a; = Sy and Ky = —18E,/(1 + §).

This parameterization should then enable us to study the effects of the hyper-
ons without having to question the validity of the NN interaction. It also affords
us the opportunity to change the incompressibility and symmetry energy in a gen-
erally accepted range of values. From experimental constraints an accepted range
of values for Kj is 200 MeV to 300 MeV and for a; it is 28 MeV to 36 MeV, see
[53] and references therein. We aim to use the parameterization and modify K
and a; within this range. The goal is to study the effect of these two parameters
on the appearance and concentrations of hyperons in dense matter. While these
two parameters do not influence directly the concentration of particles, they do
change the composition of the matter indirectly by changing the energy available,
thus regulating the point at which the hyperons will appear.

In Fig. 3.1 the total energy per particle as a function of density is shown for
symmetric nuclear matter, where only the result of the pure nucleonic part of
the EoS from the parameterization Eq. (3.15) is used. In symmetric matter the
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Figure 3.1: Parametric EoS in symmetric nuclear matter.

energy per particle is only sensitive to the incompressibility, which can be seen in
the figure for values between Ky = 200 MeV and Ky = 300 MeV. The various EoS
reproduce the saturation point at £/A = —16 MeV. The parameter Kj allows us
to classify the EoS as a stiffer (K, = 300 MeV) or a softer (K, = 200 MeV) one.

Additionally, the incompressibility will directly control the maximum allowed
mass of a neutron star which is supported by the corresponding EoS. However,
if hyperons are present this conclusion is no longer straightforward. The reason
is that by increasing the incompressibility the energy of the system is also in-
creased and as a consequence, more hyperons can be produced. This in turn will
decrease the allowed maximum mass of a neutron star. However such a nontrivial
connection creates a conundrum: if we use a stiffer EoS by increasing the incom-
pressibility we then allow for higher hyperon concentrations which immediately
softens the EoS again.

With the help of Eq. (3.14) we have separated the energy per particle in
Eq. (3.1) into a purely nucleonic part and a remainder as

EJ/A= /;—NENN/A+E’/A, (3.18)
B
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where the remainder is given by

PEy
d*p 1
E'JA=" / —UX(p
/ p%: / (271')32 N( )
pry
2 / d3p ( p?
+= +
pzy: /) (@) YoMy
1.~ 1y
+ §UY (p) + §UY (p) | - (3.19)

In symmetric matter composed only of nucleons the E’'/A will be equal to
zero, but with this separation we are now able to calculate E/A with an arbitrary
concentration of hyperons. In the following section, after we have determined the
concentrations through the requirement of equilibrium, we will use it to calculate
the equation of state with hyperons.

3.3 [(-equilibrium

n B n B
a(pF,) — wB(prg)

we(0) pe(0)

Hn (p Fr, )

41 (0) 11 (0)

pn(pr,) < ps(0) Hn(pF,) > e (0)

Figure 3.2: Schematic chemical equilibrium.

The concentrations of different constituents in stars are determined by the
requirements of electric charge neutrality and equilibrium under weak and strong
interaction processes. If we consider a general process with baryons By and By, a
lepton [ and its corresponding neutrino v, we have [54|

By —- By +1l+1p; Byi+1l— By+uy, (3.20)
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where [ € {e™, u~, 7~} are the negatively charged leptons and 7; the corresponding
antineutrinos. For the condition of charge neutrality we require that

S+ A =S 321
b l b !

where the densities of positively and negatively charged baryons and leptons are
denoted by pl()i) and pl(i), respectively. For the equivalence of chemical potentials

we require

iy = bopin — @t — f1u,) (3.22)

where the chemical potentials p are labeled by the corresponding particle and b,
is its baryon number and ¢, is its charge.

In the case of a medium composed of nucleons, hyperon and leptons where
the neutrinos have left the system (x, = 0) all lepton and all antilepton chemical
potentials are equal. The (3-equilibrium condition can then be written as explicitly:

s = Hn + e, (3.23)
A = figo = fn , (3.24)
fis+ = fip = Py — He - (3.25)

For a given total baryon density pp Eq. (3.21) and Eq. (3.22) govern the com-
position of the matter, i.e. the baryonic and leptonic concentrations. The corre-
sponding solution is referred to as [-stable matter.

Fig. 3.3 shows the neutron chemical potential in §-equilibrated matter for all
models. The hyperons start to appear at the point at which the lines representing
the models with hyperons deviate from the pure NN line. As can be seen, once
the hyperons appear, the slope of the curves changes, and the increase of the
neutron chemical potential slows down. The second inflection point, which can
be most clearly seen in the curve for NSC89 on the right-hand side, is a signature
of the appearance of the second hyperon.

3.3.1 Composition of matter

For the sake of consistency we now have to treat the nucleonic part of the chemical
potential py in the same way as the corresponding energy per particle. Since the
chemical potential can be obtained as a derivative of the energy density € and is
related to the energy per particle via e = pgpE//A, we use the definition

Oe

= — .2
My 8,017’ (3 6)
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Figure 3.3: Neutron chemical potential in S-equilibrated matter for all models with
two different values for the incompressibility. On the left-hand side Ky = 200 MeV,
on the right-hand side Ky = 300 MeV and for both a; = 32 MeV.

to yield the appropriate replacement in the nucleonic chemical potential. Finally,
we arrive at the expression

. Oenn
HN Dow

+ U (ki) (327)

2
where we have effectively replaced My + ;AZJL + UN (kpy) of Eq. (3.11) with the
derivative Jeyn/Opn. In this way the parameterization Eq. (3.15) enters into the
nucleonic part of the chemical potential.
Since we are only parameterizing the nucleonic sector, no such replacement is
necessary for the hyperons. However, since we have neglected the Y'Y interaction,

Uy (kg,) is zero and Eq. (3.11) reduces to

2

k
py =My + 5 ;}Y + Uy (kry ) - (3.28)

As an indicator for the densities at which hyperons start to appear we show
the concentrations of all particles for two different values of K. The results
are presented in Figs. 3.4 and 3.5. In Fig. 3.4 a “soft” EoS is used, while in
Fig. 3.5 a “stiff” EoS is used. The point of the hyperon appearance can easily
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Figure 3.4: Particle fraction for a "soft" EoS with all YV interactions.

be estimated from these figures. Since the logarithmic scale begins at rather low
concentrations all we need to do is to take the intersection of the density-axis
with the appropriate curve describing the hyperon concentration and we get the
hyperon threshold density. In all of the figures we can see how at the onset of the
hyperon appearance their concentration rises quickly and then reaches a plateau
after which the concentration changes very slowly.

It is notable that with the appearance of the X~ hyperon the density of the
negatively charged leptons starts to drop immediately. This is because their role
in the charge neutrality condition, Eq. (3.21), is now being taken over by the ™.
Similarly, the appearance of the A hyperon will accelerate the disappearance of
neutrons since both are neutral particles.

Once the composition of matter has been determined by demanding (-equ
ilibrium we can calculate the energy per particle. For this purpose, we cannot use
Eq. (3.1), but have to use Eq. (3.18) and Eq.(3.15). The result is presented in
Fig. 3.6 where the energy per particle in $-stable matter is shown as a function of
density for the different Y NV models. The symmetry energy is fixed to a; = 32 MeV
while the incompressibility is set to Ky = 200 MeV (left panel in the figure) and
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Figure 3.5: Particle fraction for a "stiff" EoS and all YV interactions.

to Ko = 300 MeV (right panel). In addition, the EoS with hyperons is compared
with the purely nucleonic one.

One easily observes the onset of hyperon appearance as the point at which
the curves start to deviate. As expected the differences between the various Y N
interactions do not modify the EoS for very small densities. In the range between
(2 —3)po, all EoSs are similar to each other. However, for increasing densities the
influence of hyperons becomes more significant resulting in rather different EoSs.
This concerns not only the magnitudes of the different energies per particle but
also their slopes at higher densities. These variations will lead to differences in
the pressure and finally to significant changes in the possible maximum mass of a
neutron star.

3.3.2 Threshold densities

The onset of a given hyperon species can be determined by increasing the density
for fixed Ky and a;. The resulting threshold densities for the >~ hyperon for
certain incompressibilities and symmetry energies are collected in Fig. 3.7 for six
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Figure 3.6: EoS for -equilibrated matter for all models with two different values
for incompressibility. The one on the left-hand side is "soft" and the one on the
right-hand side is "stiff".

different YN interactions. Similarly, the threshold densities for the A hyperon are
shown in Fig. 3.8.

In these figures one sees how the single-particle potentials for various YN
interactions modify the threshold densities. In this way, the properties of the Y N
interaction in Fig. 2.3 and Fig. 2.5 can be attributed to the hyperon appearances.

From Fig. 3.7 one sees that the >~ hyperon appears in between 1.4p, and 2.4p,
with the exception of the YEFT600 model. For almost all used YV interactions
the X7 is the first hyperon which will appear even though the A hyperon is the
lighter one. The reason is that the heavier mass of the X~ is offset by the presence
of the e~ chemical potential, cf. Eq. (3.23). In general, heavier and more positively
charged particles appear later. In the case of the X7, compared to the A, the effect
caused by the electric charge dominates the one coming from the mass in almost
all cases.

For the ¥~ hyperon a further modification caused by the electric charge, is the
influence of the symmetry energy on the threshold density because the electron
chemical potential is modified by the symmetry energy. Thus, the decrease of the
threshold densities due to the increase of K is analogous to the decrease due to
ay.

For the A hyperon the range of threshold densities is between 1.7py to 4.5p,
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Figure 3.7: Threshold densities of >~ depending on the incompressibility and the
symmetry parameter for different YN interactions.

depending on the incompressibility, symmetry energy and the used YN interac-
tion, cf. Fig. 3.8. The influence of the incompressibility on the threshold density
for this hyperon is larger than the one from the symmetry energy. This is rea-
sonable since the incompressibility controls the rate of the energy increase with
density more directly, while the symmetry energy affects only the details of the 3-
equilibrium. One clearly recognizes in Fig. 3.8 that the A appears earlier for larger
incompressibilities. Thus, in general we see that for increasing incompressibilities
the threshold densities decrease for both hyperons.

In contrast to the influence of K\ and a;, the influence of the single-particle
potentials on the threshold densities is harder to analyze.

The threshold densities for the ¥~ are largest for the YEFT600 interaction
since it is obtained with the most repulsive X~ single-particle potential. In gen-
eral, hyperons will appear earlier for a more attractive single-particle potential.
This becomes obvious from Eq. (3.11): the chemical potential decreases for a
more negative Uy(kp,) and, consequently, the threshold density will also decrease.
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Figure 3.8: Threshold densities of A depending on the incompressibility and the
symmetry parameter for different YN interactions.

Thus, in this way, the most repulsive single-particle potential like the one for the
YEFT600 leads to the largest threshold density.

For the A hyperon the threshold densities are smallest for the most attractive
single-particle potential obtained with the J04 model, cf. Fig. 3.8. On the other
hand, they are largest for the most repulsive NSC89 interaction. For the NSC97f
interaction which is in between these extrema the A threshold densities are very
close to those of the most repulsive NSC89 one, cf. Fig. 3.8. The reason why they
are so close lies in the appearance of the ¥~ hyperon. The effect is caused by the
slowdown of the increase of the neutron chemical potential and is further related
to the rapid increase of the X~ density just after its appearance, cf. Fig. 3.5.
Basically, the slowdown occurs as soon as a new hyperon appears because most
of the energy is used for its creation. Once the concentration of the hyperon
has reached a plateau, the neutron chemical potential resumes its increase and
a further hyperon might appear if the conditions for its appearance are fulfilled.
Thus, the appearance of the first hyperon shifts the threshold density of the next
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hyperon towards higher values. Through this mechanism a delay of the appearance
of the next species of hyperons is achieved.

This effect explains why the threshold densities of the A are so similar for
the NSC97f and NSC89 interactions. Furthermore, it also makes clear why the
A threshold densities for the yEFT600 interaction are smaller than those of the
NSC97a, NSC97¢ and NSCI7f interactions even though their A single-particle
potentials are almost the same, cf. Fig. 2.3.

In the case of the JO4 model the above described delay mechanism becomes
very interesting. For this YN interaction the A and >~ hyperon appear almost
at the same density. In this case the neutron chemical potential stagnates but the
A and the X~ single-particle potentials are attractive enough to compensate this
effect. However the effect of a slower increase of the neutron chemical potential
could be seen in the slower initial increase of the densities of hyperons as well as
the later onset of the plateau. This explains why in Fig. 3.3 the J04 is the lowest
curve.

To summarize this section, we observe that strangeness appears around ~ 2p,
in all used YN models and parameter sets. Note, that the appearance of the first
hyperon, be it the X~ or the A, cannot be further altered by taking higher Y'Y
interactions into account which have been neglected in this work. The present
study in terms of the broad parameter ranges as well as the multitude of the used
Y N interaction models reveals that strangeness in the interior of neutron stars
cannot be ignored. This will be further analyzed in the following. The results
of this study where presented in [55] and similar conclusions are obtained in the
Brueckner-Hartree-Fock theory [56].

3.4 Structure of neutron stars

The last statement can be further underlined by an investigation of the EoS in-
cluding hyperons on neutron stars. We focus on non-rotating stars, thus ignoring
any changes, caused by the rotation, on the e.g. central pressure or energy density.
For a given EoS, the mass-radius relation of a NS can be determine by solving
the familiar Tolman-Oppenheimer-Volkoff equation (TOV) [57]. To describe the
outer crust and atmosphere of the star i.e., the region of very small baryon den-
sities below pg < 0.001 fm™>, we have used the EoS of Baym, Pethick, and
Sutherland |58|, which relies on properties of heavy nuclei. For densities between
0.001 fm™ < pp < 0.08 fm™3, i.e. for the inner crust, we have used the EoS of
Negele and Vautherin [59] who have performed a Hartree-Fock calculation of the
nuclear structure in the ground state. Details on crust properties can be found
e.g. in [60, 61|, while recent state-of-the-art approaches are discussed in [62].

As input for the TOV equation we need the relationship between the total
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energy density and the pressure. The total energy density is obtained by adding
baryonic and the leptonic contributions,

Er  E K
o =ity (3.29)

The leptonic contribution is that of a free gas and can be calculated analytically

E 1
o5 2 [ ut )i - mim (PE)]

l=e,p,7

The resulting solution of the TOV equation can then be used to compare the
results of our EoS to observations of masses and radii of pulsars.

The most accurately measured masses of neutron stars are from timing obser-
vations of radio binary pulsars. These binaries include a neutron star orbiting a
neutron star or a white dwarf of an ordinary main-sequence star. With sufficient
observation time an astounding accuracy can be achieved. For example in the
binary pulsar PSR 1913+16 the masses are measured to be 1.3867 £ 0.0002 and
1.4414 £+ 0.0002 M, respectively [63]. It is significant to note that while double
neutron star binaries have a mean mass close to the canonical 1.4 Mg, binaries
with white a dwarf have a broader range of masses. Some cases have been reported
where even a mass of pulsar larger than 2 M, was observed, but most have been

refuted or are under suspicion. A recent review of neutron star observations can
be found in [53].
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Figure 3.9: Dependence of mass of neutrons star on central density for soft EoS,
shown on the left-hand side and stiff EoS on the right-hand side. The curves are
shown for a symmetry energy a; = 32 MeV and different Y IV interactions. Values
of pure NN interaction is also shown.
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In Fig. 3.9 we show the dependence of neutrons star masses on central density,
where both baryon and lepton densities have been taken into account, for several
Y N interaction models and two values of K. The masses are given in units of
solar mass and the central density in units of saturation density. The previously
mentioned advantage of using the parametric equation of state in now obvious as
we can see here that the maximum of neutron star mass is realized for densities
above 6py.
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Figure 3.10: Mass-radius relation of a neutron star for a symmetry energy a, =
32 MeV and different YN interactions. For comparison the mass-radius curve
obtained for the pure NN interaction is also shown. Left panel: soft EoS, right
panel: stiff EoS.

In Fig. 3.10 the mass-radius relation of a NS for a soft EoS (left panel) and
for a stiff EoS (right panel) is shown. The symmetry energy a; = 32 MeV is
kept fixed in both calculations and the resulting mass-radius relation without any
strangeness influence is also added for comparison.

As can be seen from Fig. 3.10 the appearance of hyperons reduces the mass
of a NS drastically compared to the pure NN case. Even for larger values of the
incompressibility, i.e. Ky = 300 MeV, the maximum mass, obtained for all used
Y N interactions, is still below the canonically accepted 1.4 M. This is not an
unusual result and is also seen in other related works such as e.g. [64, 65, 66, 67].
In general, any inclusion of further degrees of freedom will reduce the NS mass.

Furthermore, we have to keep in mind that only the YN interaction has been
taken into account and if Y'Y interactions were considered the mass-radius re-
lation would also change. However, in order to calculate the maximum mass of
a NS large densities of the order of ~ 5py are needed. For these densities it is
expected that the Y'Y interaction will provide some repulsions which in turn leads
to higher allowed maximum NS masses. This behavior was found in 67| where
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an extensive study of Skyrme models including only the A hyperon reveals an
increase of the maximum mass. In almost all considered cases the increase was
strong enough to find maximum masses above 1.44M,. On the other hand, if
the YY interaction is attractive like in the case of [64] this will lead to smaller
maximum masses. Additionally, for such high densities or hyperon concentrations
higher order interactions such as the YN NN, YY N and YYY interactions might
also become important.



4 Landau Fermi liquid theory

Landau developed Fermi liquid theory in order to describe strongly interacting
systems at low temperatures. In this theory, elementary excitations of a strongly
interacting system are described by quasiparticles. If the low temperature as-
sumption holds these quasiparticles are long-lived and interact only weakly. If we
use the Fermi momentum of the system to define the ground state, all excitations
above it are quasiparticles and below are quasiholes. The in-medium interaction
is then used to “dress” the free particles and turn them into quasiparticles and
quasiholes.

So long as these assumptions hold, we can treat the quasiparticles as the
fundamental degrees of freedom which then interact with each other. Although
this theory cannot describe the ground state itself, it will enable us to study
excitations from it and how the medium responds to these excitations. This
will lead to the concept of the response function of the medium which we will
calculate microscopically. Subsequently, we can study the transport properties of
the medium such as cross sections and mean free paths.

After the introduction of the Landau-Migdal parameters in Sec. 4.1 we will
discuss the replacement of the three-body force with a density-dependent inter-
action in Sec. 4.2. In Sec. 4.2.1 we will repeat some of the results of the equation
of state (EoS) and composition of matter similar to the previous chapter but now
with the usage of a density-dependent interaction. In the final section, Sec. 4.3, we
will show results for the Landau-Migdal parameters, mainly in symmetric matter,
but also for the equilibrated matter.

4.1 Landau-Migdal parameters

A simple and instructive description of the residual interaction in homogenous
infinite nuclear matter is given by the Landau interaction developed in the context
of the Fermi liquid theory. Starting from the full density matrix in (relative)

47
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momentum space p(koro’r'), the various densities are defined as [68]

poo(k) = Z Z plkoroT), (4.1)
) = i i ,5(%0’7’0’7”)7‘;2, , (4.2)
)= ZU: i p(koT0'T) e (4.3)
1, (F) = i ZT: ﬁ(EaTa'T')ﬁag/Tii, , (4.4)

oo’ 1T/

!

p~1t3(

!

goo(

where the j(koro'7') is the density matrix defined in [68] and references therein.
The quantities o and 7 are the spin and isospin coordinates of the wave function
while & is its momentum. The quantities &, and Tf’;, are matrix elements of
the Pauli matrices in spin and isospin space. The Landau-Migdal interaction is
defined as

%
5ﬁ(ElalflallTl')5ﬁ(EgangaéTz')
= f(k1, ko) + f'(k1, k2)T1 - To + g1, ko)1 - Oo + §' (K1, ko) (G1 - Oo) (T2 - T2) , (4.5)

ind ad ! ! = ! !
V(k1o1110,7; koooToo,Ty) =

where V is the potential part of the energy per particle. The isoscalar-scalar,
isovector-scalar, isoscalar-vector, and isovector-vector channels of the residual in-
teraction are given by

o XA

[k ko) = ——=—=—, (4.6)
dpoo(k1)6 poo(k2)

o 5%y

[k k) = —m——s—, (4.7)
0Pty (k1)0pre, (K2)

o 5%y

g(kh k2) = = - ~ - (48)
5800(k1)5800(k2)

e 5%y

g (k’l, k’g) (49)

B 5§1t3 (E1)5§1t3 (E2) ‘

Assuming that only states at the Fermi surface contribute, f, f/,§ and §’ de-
pend only on the angle § between k; and ks, and can be expanded in Legendre
polynomials, e.g.

flky, k) = —ZFle(COS@)- (4.10)
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The coefficient Fl is called the Landau coefficient. Other Landau coeflicients
appear in the expansion of the other channels, so we also have Fz in the expansion
of f, G, in the expansion of § and G’ in the expansion of §’. The normalization
factor Ny representing the level density at the Fermi surface is given by,

2M*kp

Ny =
7T2

(4.11)

for a two-component system. It is used to make the Landau coefficient dimen-
sionless.
If we now apply the orthogonality relations for Legendre polynomials,

1
2
/_1 P[(I)P[z(l’)dl’ = 2 T 15”/ s (412)
we obtain
. 2l+1 S A A o o
F = TNO/ d(ky - ko) Pi(ky - ko) f (K1, k2) , (4.13)
-1

where k = k/|k|.

Since we are studying infinite nuclear matter we can choose pure neutron and
proton states, which leads to py 11 = 0 and p; = pip and similarly for all other
densities. This means that we can keep only the diagonal elements of the density
matrix and we have

p(E) = Ppt + Ppl + Pyt Pny s (4.14)
ps(k) = pp1 = Pp + Pt — Pul (4.15)
pi(k) = ppr + Ppl = Put = Pl s (4.16)
pst(k) = ppt — Pp1 = Pt + Pul (4.17)
and
L o2y
f(kfl, kg) — T S = (418)
Op(k1)0p(k2)
. PV
f(k1ke) = —= 5 (4.19)
Opi(k1)Ope (k2)
L e
g(kl, k’g) = = =, (420)
Ops(k1)0ps (k2)
. PV
qg (k’l, k’g) = pre = . (421)

8pst(k1)apst(k2)
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For the dimensionless Landau Fermi liquid parameters we have

20+ 1 S Soa Lo
F = TNO/ d(ky - ko) Pi(ky - ko) f(ky, ko) (4.22)
-1

The effective mass M* for symmetric nuclear matter can be calculated via
Eq. (2.12). For an isotropic system, Landau showed that [69]
M F

=1
M +3

(4.23)

by using Galilean invariance, where M is the free mass. The parameter F} is the
second coefficient in the Legendre expansion of the isoscalar-scalar channel of the
residual interaction.

The Landau-Migdal approximation is often used in connection with RPA cal-
culations because it greatly simplifies the calculation of the RPA response func-
tion. The approximation consists of assuming that the interacting particles and
holes are on the Fermi surface and that the interaction takes place only in the
limit where the transferred momentum ¢ = 0. Thus it is obvious that this ap-
proximation is only valid for small ¢q. For this purpose we will also introduce the
Landau-Migdal parameters, in addition to the Landau Fermi liquid parameters
that we have introduced thus far. It will become clear in the next chapter why
we need these parameters [70].

The Landau-Migdal parameters are defined as follows

0?V
8pﬂ7 (]Zl)ap'r’cr’ (%2) ’

and can, in the Hartree-Fock approximation, be easily connected to the direct and
exchange terms of the interaction

chr T'o! (]Zl, ]2;2) —

(4.24)

fre T/U/(El, /Zg) = <E170; EQT/U" \%

kiTo; /{:27'/0/>

- <E1TU; EQT/O'/’ \%4

koo E170> : (4.25)

The connection between the residual interaction channels and Landau-Migdal
parameters is quite obvious and straightforward. For the isoscalar-scalar channel
we have

— —

E E _ To o’ E E pTU(_]fjl)pT'UIEkQ).
S (ka, ks) T;;,f (K1, k2) PR

(4.26)

The same connection can be established for all other channels with the aid of
the inverse of the relationships Eq. (4.14)-Eq. (4.17) and the expressions Eq.
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(4.18)-Eq. (4.21). Additionally, the connection between the Landau Fermi liquid
parameters and the Landau-Migdal parameters can easily be established.
We can also define both zeroth and higher order Landau-Migdal parameters,
in a similar fashion as in Eq. (4.13):
1~ A A oA 2
17 (ke ko) = 2l d(ky - ko) Pi(ky - k) ~8 LA
2 -1 8p70(k1)8p7"o’ (k2)

In the case of unpolarized nuclear matter, we will suppress the spin indices
and use a simplified notation such that:

(4.27)

I (k1 ko) = F777 (ky, ko) . (4.28)

Unlike the Landau Fermi liquid parameters, the Landau-Migdal parameters are
not dimensionless but have the dimension [MeV %] in natural units.

The calculation of the effective mass has to be extended in the case of asym-
metric nuclear matter to allow for different masses of different particles. Since we
have already defined the Landau-Migdal parameters, we can use them and define
the effective mass in a similar fashion to Eq. (4.23) [69):

M* 1
P _ 14 ZFP 4.29
M + 3 1> ( )
M* 1
no—= —FP 4.
=L+ oF (4.30)
where
FY = N§ (f7 + Gk /R A7) (4.31)
= N (f™ + (kp/kn)? f7) (4.32)

Here we have introduced the proton and neutron density of states via

Mk,

Mk,
w2’ ’

T2

Né’ = N§ (4.33)
In addition to the connection between the effective mass and the Landau Fermi
liquid parameters there are other connections between these parameters and prop-

erties of nuclear matter. For the incompressibility in symmetric matter, we have

K—3k%(1+F) (4.34)
M 0 '
and the symmetry energy is
ki /
ay (1+ ). (4.35)

L
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4.2 Density-dependent force

Just as in the previous chapter, we supplement the NN interaction with effects
which come from higher many-body forces. Unfortunately, the parametric EoS
of the previous chapter has only a limited applicability. The major limit is that
we are unable to disentangle the momentum dependence of the original potential
(i.e. we cannot take the second derivative with respect to momentum). In order
to be able to do this and reproduce the properties of nuclear matter, we need to
introduce a microscopic potential which mimics the effect of higher-order contri-
butions, primarily the three-body force. This potential is than combined with the
two-body effective force (i.e. Viow x and Vyconr) and its parameters are fitted to
reproduce the properties of nuclear matter at saturation, such as the saturation
density, binding energy, incompressibility and symmetry energy. For this purpose
we use a density-dependent Yukawa-like force [71]:

2 2
g Mo s M3

A M%
" ——— (71 - T2) + asp ;
3 q* + 113

Vbop(q) = aip
(@ ¢+ 13

4.36
q? + Ha ( )

where 7 is the Pauli matrix acting in isospin space, ¢ is the transferred momentum
between in and out states and p = p/py. The range parameters of the density-
dependent force are p; = po = 1.42 fm™', 13 = 2.5 fm™'. The matrix elements of
the density-dependent force in the plane-wave basis can be found in [72].

Viowk + DDa | Vigwx +DDb | Vycon+ DDa | Vycon+ DDb
i 0.08 0.10 0.05 0.12
Ao 0.08 0.10 0.05 0.12
A3 0.20 0.65 0.20 0.65
a [fm?] -2089.98 -529.90 -1311.91 -498.13
o [fm?] 202.64 99.74 86.51 31.68
a3 [fm?] 2753.12 1347.86 1798.65 1190.37
Ko[MeV 240 300 240 300

Table 4.1: Table of coefficients for the nuclear potential Vpp (cf. [71] and |73])

In general we will favor the DDa version of the density-dependent force to
DDb. We do this because the incompressibility value of 300 MeV is considered
too large and the value of 240 MeV is favored as being closer to the actual physical
value. However for some of the results we will also show the D Db parametrization
as well for the sake of comparison.
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4.2.1 Equation of state

As in the previous chapter we need to satisfy the conditions of the (-equilibrium
in order to calculate the EoS of equilibrated matter. Thus, we again use Eq. (3.21)
and Eq. (3.22). As for the chemical potential in this case there is no need to sub-
stitute anything, like in the previous chapter, so we use Eq. (3.12) and Eq. (3.11)
in their unmodified form. Once we determine the (-equilibrium we use Eq. (3.3)
to calculate the energy per particle.

One significant difference, compared to the previous chapter is the introduction
of a non-zero temperature through Eq. (3.13). This also means that we have to
modify Eq. (3.3) such that we have

Eja= 27 v (M L +1U<~>) ! (4.37)
ppse) @ 02, T 2 e (@ —m)/T)”
where ¢, is given by:
P
Eb(ﬁ) =M, +—+ Ub(ﬁ) . (438)

2M,

Fig. 4.1 shows the particle concentrations for the various hyperon interactions
in combination with the NN-model Vi, « + DDa at zero temperature. As for
similar figures in the previous chapter we see how sharp the appearance of the
hyperons is, i.e. how quickly their concentration rises initially after their appear-
ance. Here again we see that the first hyperon appears around ~ 2p, and how
the appearance of X~ lowers the concentration of negatively charged leptons. In
essence, all of the behavior of hyperon appearance and concentration remains
similar to that of the parametric EoS with the same Kj.

As already mentioned, the usage of V|, x imposes a restriction on the allowed
density range. In the case of $-equilibrated matter with only protons and neutrons
and no hyperons it would be ~ 4py. However the introduction of hyperons lowers
the Fermi momentum of the neutrons sufficiently to make the calculation possible
up to ~ 5pg. Additionally the smoothness of the curves indicates that there are
no artifacts due to the sharp cut-off in this calculation.

Like Fig. 4.1, Fiig. 4.2 shows the particle concentrations for all hyperon interac-
tions in combination with the N N-model Vi, « +DDa, but now at a temperature
of T'= 10 MeV. While most of the features of these two figures are the same, there
are several notable differences which are to be expected. The biggest one is that
the density at which hyperons appear is shifted to lower values and for most mod-
els we already have a small amount of hyperons at saturation density. The other
noticeable effect is a significantly slower rate of increase of the hyperon densities
in the initial stages of their appearance.
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Figure 4.1: Composition of matter at 7" = 0 MeV for several hyperon interactions
with View k + DDa.

With the composition of matter fixed, we can now move on to the calculation
of the EoS in the equilibrium. Fig. 4.3 shows the EoS for the Vi, + DDa
(upper panels) and Vycon + DDa (lower panels). It also displays the EoS for
two different temperatures: 7'= 0 MeV on the right and 7" = 10 MeV on the left.
The concentrations of hyperons are not shown for Vycon + DDa since they are
similar to those of Viow x + DDa.

Once again the appearance of hyperons is evident in the deviation of the curves
from the ones without any hyperons. We also notice the softening of the EoS at
higher densities as the hyperons are introduced. This is the same result which
we had for the parametric EoS so it is reasonable to conclude that the effect of
the reduction of the maximum of the neutron stars mass are the same here, even
though we cannot calculate them in this case.

As for the effects of the non-zero temperature, it is clear from Fig. 4.3 that they

are present at lower densities and strongest at the very beginning of the curves.
However, as the density increases the influence of temperature becomes smaller
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Figure 4.2: Composition of matter at 7" = 10 MeV for several hyperon interactions
with View k + DDa.

and by the end of the curves it is practically impossible to tell the difference
between the two temperatures. This observation is easily explainable if we note
that the Fermi momentum of the particles increases with density, as does the Fermi
energy. As the Fermi energy increases the ratio between the system temperature
and it decreases. By the time the density reaches values of ~ 4pg, for a system
temperature of 7' = 10 MeV, this ratio is close to zero. Hence at such densities we
can neglect even the temperature of 7' = 10 MeV. Therefore in order see an effect
at high densities one would have to increase the temperature to levels which are
not expected to be found even in newly born neutron stars.

4.3 Results

In this section we will show results for the Landau-Migdal parameters. Although
one finds the Landau Fermi liquid parameters more often in the literature than
the Landau-Migdal parameters, we show the latter as well. We do this because
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Figure 4.3: Equations of state for microscopic interactions with hyperons. Upper
panels are with Vi, « + DDa and lower with Viycon + DDa while for the left
panels we have 7' = 0 MeV for the right we have T'= 10 MeV.

they serve as an input for the calculations within the framework of the RPA which
we will perform in the next chapter.

Most of the figures display results for symmetric matter, because there are
only a few differences compared to the results in S-equilibrium. Since the Landau-
Migdal parameters do not depend directly on the temperature we will not show
any of the results for non-zero temperatures, even though (-equilibrium indirectly
introduces a dependence on temperature. However in the next chapter we perform
our calculation consistently and use the appropriate parameters as input.
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Figure 4.4: The effective mass of nucleons in symmetric nuclear matter.

4.3.1 Symmetric matter

Fig. 4.4 shows the effective mass of nucleons in symmetric nuclear matter; the val-
ues for several interaction are shown. The figure clearly shows how the in-medium
mass of nucleons decreases with density, confirming that the NN interaction is
indeed attractive. As expected, as the nucleons become more tightly packed they
attract each other more strongly, thus continuously decreasing the effective mass
as the density increases. It is interesting to note that the effects of the density-
dependent force are not large in the case of the effective mass and that there is
a larger difference due to differences in the microscopic two-body interactions.
Additionally it is evident that these two-body interactions produce an effective
mass value at saturation density which is in the usual range of expected values.
The density dependence of the Landau Fermi liquid parameters Iy, F{j, G and
Gy in symmetric nuclear matter is shown in Fig. 4.5. As expected, Fj, representing
the central part of the force, is usually the most dominant. For values below —1
the system becomes unstable under density oscillations. One expects that at
densities where F; < —1 the approximations underlying nuclear matter start to
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Figure 4.5: Landau Fermi liquid parameters in symmetric nuclear matter for [ = 0.

breakdown and the nucleons start to form nuclei. Evidently the Vi, x without
any density dependent force is never above —1, while for the Viycoas the stability
is reached at ~ 1.5py. For the corrected potentials, the usual value of ~ 0.6p, in
symmetric nuclear matter is obtained. The ferromagnetic instability, Gy < —1,
which is observed in Skyrme models |5, 67| does not occur in any of our models.

Fig. 4.6 shows the density dependence of the Landau parameters F, F}, G; and
G’ in symmetric nuclear matter. The most important of them, F}, closely mimics
the behavior of the effective mass which it is connected to through Eq. (4.23).
Like in the case of the effective mass we observe that the influence of the density-
dependent force is not large. As for the remaining parameters, very little reliable
information exists about them which makes them difficult to interpret. As ex-
pected, all of the [ = 1 parameters are, for the most part, smaller than their
corresponding [ = 0 parameter and while it is also possible to calculate the Lan-
dau Fermi liquid parameters with larger [ from Eq. (4.22), they would be even
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Figure 4.6: Landau Fermi liquid parameters in symmetric nuclear matter for [ = 1.

smaller and thus contribute less.

Fig. 4.7 and Fig. 4.8 show the density dependence of the Landau-Migdal pa-
rameters in symmetric nuclear matter. The values for the neutron-neutron in-
teractions are not shown since they are identical to those of the proton-proton
interaction. The reason for this lies in the fact that we have neglected the elec-
tromagnetic force which leaves only the strong force to consider.

In the left column of Fig. 4.7 and Fig. 4.8, f,, and f,,, represent the spin-
independent interaction while those on the right side, g,, and g,,, represent the
spin-dependent interaction. One should also keep in mind that in reality these
parameters do not represent the particle-particle interactions but are in-fact in-
dicative of the in-medium particle-hole interaction. Thus, for f,, (g,,) we are
in-fact showing the strength of the interaction between two pp~! states with like
(unlike) spins, while f,, (g,,) indicates the matrix elements between nn~! and
pp~! states with like (unlike) spins.
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Figure 4.7: Landau-Migdal parameters in symmetric nuclear matter describing

the proton-proton interaction.
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Figure 4.8: Landau-Migdal parameters in symmetric nuclear matter describing

the proton-neutron interaction.

Hyperon-Nucleon Landau-Migdal parameters

Just as for the NN interaction, one can introduce Landau-Migdal parameters for
hyperons Eq. (4.27). The only difference is that the isospin can take more values.
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The generalization of Eq. (4.27) is straightforward. In the case of symmetric mat-
ter we can calculate these hyperon Landau-Migdal parameters if we use Eq. (4.25)
where the momentum of the hyperon is set to zero.

We have chosen to show only the symmetric matter results, again because the
results in G-equilibrium are not very different. Additionally, in symmetric matter
these parameters are not influenced by the NN interaction in any way and even
in equilibrated matter they are only weakly dependent on them.
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XEFT600
-50 } } —+—f—+—+

40 + g/\n -

-50 L L L L | L L L L | L L L L L L L L | L L L L |

PslPol PslPol

Figure 4.9: A Landau-Migdal parameters in symmetric nuclear matter.

In this section we will show the results only for the YN combinations, because
we do not use a Y'Y interaction. In the next chapter we will take all such Y'Y
combinations as being equal to zero. Like in the case of pn these YN combina-
tions indicate the matrix elements between NN~! states and YY ! state with
like (unlike) spins. Thus we have fy, (gap) describing in-medium particle-hole
interactions between pp~! and AA~! states with like (unlike) spins, etc.

Fig. 4.9 to Fig. 4.12 show all Y N combinations of the hyperon Landau-Migdal
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parameters. (Fig. 4.9 is devoted to the A, Fig. 4.10 to the ¥, Fig. 4.11 to
the X% and Fig. 4.11 to the ¥*.) It is evident (and expected) that several of
these combinations are equal to each other in symmetric matter. So we have
(in symmetric matter) fap, = fan, fxop = fron, fo—p = furn and fo-, = furp,
and there are analogous relations for the ¢’s. The reason is merely the isospin
independence of strong interactions. Small differences, which are hard to notice
in these figures, are present due to the different masses of these particles.
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Figure 4.10: ¥~ Landau-Migdal parameters in symmetric nuclear matter.

Fig. 4.9 shows the A Landau-Migdal parameters in symmetric nuclear matter.
The curves exhibit a very similar density dependence which is stronger (weaker)
for the like (unlike) spins. The main difference lies in the starting point, but this
is an expected result given the differences between the potentials we have seen
in the previous chapters. This is a general feature which can be observed in all
hyperon Landau-Migdal parameters. It is interesting to note that almost all YV
interactions give negative results for the like-spin interactions, implying that this
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part of the AN interaction is genuinely attractive. For the unlike-spin interactions
there is no consensus on attraction or repulsion.
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Figure 4.11: ¥° Landau-Migdal parameters in symmetric nuclear matter.

In Fig. 4.10, we display the X~ Landau-Migdal parameters. The density de-
pendence of the X7, as well as the Landau-Migdal parameters for the other X
hyperons, is very weak and some of them are practically constant. The reason
behind this behavior is that the values of the relative momentum on which the
Y N Vipw k depends are restricted to low values where the momentum dependence
of the potential is weak.

In this case all interactions, except J04, show remarkably similar results for
the fy-,, parameter suggesting a reliable result pointing towards attraction in this
channel. Similar agreement exists for the gy, parameter suggesting repulsion in
this case, with the y EFT600 being the notable exception in this channel. While
there isn’t such agreement in the other channels, we can at least claim that fx—,
and gy-, are attractive.
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Figure 4.12: ¥+ Landau-Migdal parameters in symmetric nuclear matter.

The X° Landau-Migdal parameters, shown in Fig. 4.11, indicate that for the
like spins most interactions are attractive. Fig. 4.12 finally shows the ¥ Landau-
Migdal parameters whose behavior is determined by the relationships mentioned
earlier, linking then to the behavior of the ¥~ parameters which we have already
discussed.

4.3.2 (-equilibrium

For completeness we show the Landau Fermi liquid parameters for [ = 0 in -
equilibrium. Fig. 4.13 shows that the differences compared to the case of sym-
metric matter are not that large for Fy and G, while they can be noticed for F{
and Gj. This is expected since the later two quantities are sensitive to differences
in the proton to neutron ratio while the former are not. Since this statement is
true in general, we do not need to show the other parameters in (-equilibrium.
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Figure 4.13: Landau Fermi liquid parameters in equilibrated matter for [ = 0.

One small difference that can be seen for Fj is that the point at which the matter
becomes unstable, F; < —1, has moved to smaller values and is now found at
~ 0.4pp.

In Fig. 4.13 we have not shown the pure Vi, « and Vyycoar since the equilibrium
is unrealistic in this case and often impossible to achieve. However, we have
instead shown values for the higher K which display some difference compared
to the lower Ky case. The most striking differences are the much larger value of
Iy towards higher densities and the very repulsive nature of the spin part of the
force seen through the large G values.
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5 Neutrino interactions

The neutrino opacity of dense matter plays an important role in the core collapse
supernova theory and in the theory of the development of a newly formed neutron
star. In fact, it is believed that neutrinos are intimately involved in the mechanism
behind supernovae explosions. Neutrino opacity in neutron stars has two sources:
neutral current and charged current interactions of neutrinos with the medium.
The calculation of these opacities is a complicated problem. A simple estimate
shows that neutrinos in such a dense environment interact with multiple baryons
simultaneously |74] as well as that the baryons themselves are interacting with
other baryons present in the medium.

Various approximations have been used to address these issues: the effects of
relativity; the matter composition; and effects of the baryon-baryon interaction. In
such calculations it is not unexpected to find enhancements of the neutrino mean
path by factors of ~ 2—3. One of the most common approaches is the modification
of the baryon response functions due to the in-medium modifications.

There are many physical issues that require the knowledge of the response
function of the medium to an external probe. Well-known examples are electron
scattering by nuclei or the propagation of neutrinos in nuclear matter. In the
mean-field framework, the response function must take into account the effects of
long-range correlations by the RPA | which is the small amplitude limit of a time-
dependent mean-field approach. The approximation is obtained when the particle-
hole interactions are approximated with the Landau-Migdal interaction from the
previous chapters. The diagrammatic representation of the approximation is show
in Fig. 5.2.

This chapter is organized in the following way; in Sec. 5.1 we will introduce
the weak interaction, the charged and neutral current process and calculate the
cross section. In Sec. 5.2 we introduce the random phase approximation (RPA)
and show the resulting cross sections. Sec. 5.3 is devoted to the results. Those
for the neutral current cross section are found in Sec. 5.3.1, the charged current
cross section in Sec. 5.3.2 and the mean free path is given in Sec. 5.3.3.

67
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5.1 Weak interaction

[~ 54 144

B2 14
Figure 5.1: Weak interactions for g-equilibrium.

The unified model of the electroweak interaction allows for the derivation of
accurate cross sections for weak processes between elementary particles [75]. The
Lagrangian of such interactions has the form:

— _L ToAN1 AP + .9 5 _
/Cl = 2\/5122377 [@Dw’y (1 Y )le)\ +’¢ I;Twulfy )le)\

- 4COZQW ['J}Vﬂ/)\(l - 75)?% - 'lzfl’}/A(l — 75)'17Dl} Z)\’ (51)
Ly= _%@DPWA(I — V" VWeruynWy — 2\/, ONUL e (1= 4%)hp W

— g |i¢P”)/ (1—%811’1 HW Yy )Qﬂp IDNWA(l—%SiIﬁ ew—’ys)w]v] Zg,
(5.2)

where £; contains the leptonic part and £, contains the quark part of the La-
grangian. The positive quarks are collected in ¢¥p = (¥, 1) 1;) and the negative
are found in 1y = (g ¥, ¥y). The standard Cabibbo-Kobayashi-Maskawa mixing
matrix is represented by Uckps [76]. The parameters in the electroweak La-
grangian are the coupling constant g = 0.231, the masses of the W* my, =
78 GeV, and the Z° my; = 89 GeV, bosons and the weak Weinberg angle
sin® Oy = 0.23.

However, since the momenta of all particles which we consider are far below
the masses of the vector bosons (Z and W*) we can take the lowest-order approx-
imation to the weak interaction. Thus the interaction Lagrangian is not the full
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electroweak Lagrangian, but instead we will have a Fermi-like weak Lagrangian,
(masses of the vector bosons are considered infinite), which can be written in
terms of current-current interactions as [77]:

e _ GO
int = \% Judi s (5.3)
e, = G ju g (5.4)

mt_\/iu zZ

where Gp = 1.166 x 10~'"MeV 2 is Fermi weak coupling constant, and C' is the
Cabibbo factor: C' = cos#, for strangeness changing reactions and AS = 0 and
C = sinf,. for AS = 1. The first Lagrangian Eq. (5.3) describes the charged
current process mediated by the W-boson, the left-hand side of Fig. 5.1,

Vl+BQ—>Z—|—B4, (55)

while the second Eq. (5.4) describes neutral current processes mediated by the
Z-boson, the right-hand side of Fig. 5.1,

v + Bg — v + B4 . (56)

The corresponding charged currents are:

Jn = (1 = 75) ¢, 5.7)

Ty = vy (gv — gas) 2, (5.8)
for Eq. (5.3), while for Eq. (5.4) the neutral currents are:

I = Dol = 75)¢0 (5.9)

Jy = oy (v — cavs) . (5.10)

The fields 1y, 1, 19 and 14 are quantized fields of leptons, neutrinos, incoming
baryons and outgoing baryons. Since they all are fermions they can be described
in terms of quantized Dirac fields. We expand them in terms of a complete set of
plane-wave states

va)=) (Qn;p) : cs(p)us(p)e™™", (5.11)

sp

where ¢,(p) is a creation operator and us(p) denotes the spinor of a particle with
spin s and four-momentum p. The normalization in this case is for a box of
volume (2, but as usual we will take the limit {2 — oo. The vector and axial-
vector coupling constants gy and g4 for charged currents and ¢y and c4 for neutral
currents are listed in Tab. 5.2 and Tab. 5.1 for the particles of interest, see Ref.|77].
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| |l gv | g4 |

vi+n—I1"+p 1 D+ F =123
4SS+ A 0 V/2/3D = 0.62

u+S =1 +30 | V2 V2F = 0.67

y+X0 =+t || -2 —V2F = —0.67
y+A—I1"+X%t 0 —/2/3D = —0.62
vu+A—=1"+p || V3/2|—/3/2(F+ D/3)=0.89
v+ =1 +p 1 V/1/2D = 0.54
43X =1 +p —1 D —F =0.28

Vet p~ — v, +e 1 1

Table 5.1: Charged current vector and axial vector couplings [77]. Numerical
values are quoted using D = 0.756, F = 0.477, sin® @y = 0.23 and sin? 4, = 0.053
(see Ref.|78]). As usual y(l) stands for all neutrinos (leptons). For corrections
arising due to explicit SU(3) breaking terms, see Ref.|79].

H cy | Ca
Ve+e —ve+e 0.5+ 2sin? Gy = 0.96 0.5
Vy+ 1 — v+ 0.5 + 2sin” Oy = 0.96 0.5
Ve + [b — Ve + 11~ —0.5 + 2sin” Oy = —0.04 —0.5
Vir +€ — v, +e | =05+ 2sin” 6y = —0.04 —0.5
v+n—uy+n —0.5 —D—F=-0.62
v+p—uy+p 0.5 — 2sin? @y, = 0.04 D+ F =0.62
v+ A — [N —0.5 —F - D/3 = —0.36
y+Y —y+2 || -15+2sin’0y =—-1.04| D—3F=—-0.34
v+t sy + 3t 0.5 — 2sin 6y = 0.04 D+ F =0.62
v+ 30—y + X0 —0.5 D—F=0.14
v+ =y 4+ A 0 2D/+/3 = 0.44

Table 5.2: Neutral current vector and axial vector couplings |77|. Numerical values
are quoted using D = 0.756, F' = 0.477, sin? fy, = 0.23 and sin?#@, = 0.053 (see
Ref.[78]). As usual y({) stands for all neutrinos (leptons). For corrections arising
due to explicit SU(3) breaking terms, see Ref.[79].

Once the currents and the states have been defined one is able to proceed with
the calculation of the processes shown in Fig. 5.1. In a vacuum such calculations
are most commonly performed by calculating the expectation value of the transi-
tion operator Eq. (C.1). However, in the medium it is more convenient to use the
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optical theorem and calculate the cross section. In this work we have used this
approach and calculated the cross sections. In Appendix C some details of the
calculation are shown, the end result for the differential cross section is found as
Eq. (C.29).

For the derivation in Appendix C we have used several approximations that
are justified if one considers the typical energy scales involved. The first one re-
lates to the properties of baryons in a dense medium. The temperature range
we are interested in is of the order 10 MeV thus we can safely assume that the
baryons we are considering (nucleons and hyperons) due to their mass ~ 1 GeV,
which is far greater than the temperature range (7" < M,), are non-relativistic.
Hence in Eq. (C.38) we use the nonrelativistic propagators of Eq. (C.36) instead
of the relativistic ones Eq. (C.18). The approximation can also be expressed as
disregarding the baryon momentum compared to its energy |§—lj < 1. The second
approximation concerns the leptons (electrons and neutrinos) whose chemical po-
tential, in neutron stars, is far greater than the mass of the electron or neutrino
(m; < ;). Hence we consider the leptons as being fully relativistic, which gives
% — p; and Eq. (C.27).

With these approximations it is natural to use the laboratory reference frame
in which, for the relative velocity, we have

sz'|‘

i

Vper = (5.12)

Thus we have all of the information needed to perform the calculation of the
differential cross section in-medium and the result calculated in Appendix C is:

3 2
%%Z’;) = %Eg (1 —f(E3)[(1 4 cos)Sv(qo,q) + (3 —cosb)Sa(qo,q)] -
(5.13)

This equation works both for the charged current and the neutral current cross
section. In the first case the Fermi function f and energy E3 will be those of the
leptons while in the second case it will be the neutrinos. Obviously in both cases
we have to take care to use the appropriate structure functions.

Since in section Sec. 5.3 we will be interested in the dependence of the dif-
ferential cross section on the transferred energy it is useful to see which range of
values is allowed by the kinematics for the transferred energy given these approx-
imations. The limiting factor will be the value of the angle 6 (equivalently cos6).
From the definition of transferred momentum ¢'= p, — p; one gets

Dy - Dl B2+ Ef — ¢’
=cosf) = ————— .

5.14
L E; 2—-EE, ( )
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The limits are | cosf| < 1. From this with the aid of the relation for the transferred
energy qo = E, — E; we get two conditions |¢o| < ¢ and ¢o < 2E, — ¢g. Since in
most cases for the differential cross section we fix |¢] = E,, these two conditions
will be one and the same.

From the differential cross section we can calculate the total cross section and
the mean free path. The total cross section per unit volume is easily calculated
by integrating over all of the remaining variables by

o(E,) 1 d30(E,)
v, _ et Sl . Nl
c / 0 a0 (5.15)

The mean free path is just the inverse of the total cross section

ME,) = (“(5"))_1 | (5.16)

5.2 Random phase approximation

U0

Figure 5.2: Higher-order loop corrections to the weak interaction in dense matter.

In Appendix C we have introduced the structure (S) and polarization (II)
functions in Eq. (C.28) and Eq. (C.25), respectively. The Hartree-Fock approxi-
mation of the polarization function contains only one loop. However in the case
of dense matter we must also consider interactions with a higher number of loops.
Essentially, a neutrino propagating in dense matter will create an excitation which
can propagate via the interaction with matter thus modifying the response of the
matter. This can be represented schematically as in Fig. 5.2.
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The inclusion of a higher number of loops corresponds to the ring approxima-
tion or random phase approximation' [33]. The key point that must be stressed
out about these graphs is that there are exactly two particles participating in
each loop, that is if we were to cut the graph vertically we would only cross two
propagator lines. These propagator pairs in the loop are those of particles and
holes and not particles and antiparticles. One can also note that this is in fact a
quasiparticle RPA since we are using the quasiparticle approximation which re-
places the bare mass and chemical potentials of particles with the effective ones.
Putting it in another way, the propagators entering the zeroth-order polarization
function I1°(q, qo) defined by Eq. (C.38), are not of free particles and holes, but
are themselves dressed.

In practical terms the RPA relies on summing all of the ring diagrams in
Fig. 5.2. The summing of these ring diagrams yields then the Bethe-Salpeter
equation? for the particle-hole polarization function [33],

aex (7, @) = Hn)\gox 7, q) + Z Hnm(s 7, q0) Kas;5+(T, QO)ﬁﬁwx(Cfa Q), (5.17)
afyd

where T1(, go) is the full polarization function and K,s.5,(7, qo) is a kernel defined
by the interaction. The indices «, 3,7 and ¢ run over both spin and isospin space
and in our case also involve hyperons. For the RPA the kernel takes the form

K s=(8|V]ad)—By|V]ad), (5.18)

where V is a potential, which defines the interaction. It has been shown [33] that
such a definition of the kernel indeed corresponds to the RPA, since it produces
the same equations of motion.

We will not go further here into the details about various kernels and the solu-
tion of Eq. (5.17) but refer the reader to Appendix C. Additionally more details
on the RPA itself, especially for finite systems, can be found in [33]. However we
note that for a truly self-consistent calculation one should interpret the RPA as
the small limit of time-dependent Hartree-Fock-Bogoliubov theory.

5.2.1 Cross sections within the random phase approxima-
tion

With the knowledge of the RPA polarization function we can see how the cross
section changes with the inclusion of it. The RPA is simply accounted for as the

! This name has historic reasons and it is not very illuminating here. For our case the term
ring approximation carries much more meaning.

2In our approach, since we will be dealing with nonrelativistic particles this should be called
the Salpeter equation, but at this level Eq. (5.17) is general and could also be used for relativistic
particles.
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replacement of the structure functions S with the RPA structure functions S#°4
obtained in Appendix C. The distinction between the vector and axial structure
function is more obvious in this case as we cannot just factorize out the coupling
constant and get the same function. Thus for the cross section in the RPA we
have, as in |5]

1 d3O'(E1) L G%—, 2 RPA
0 d2dg,  ane sl — /()] [(1+ cos0) S (g0, q)

+(3 — cos0) S (q0,9)] - (5.19)

Again, like Eq. (5.13), the formula is general enough to be used in both the charged
current and the neutral current case. All we have to be careful about is which
structure function we use and which particle is the outgoing one.

5.3 Results

Let us now turn to the quantitative results of neutrino reaction rates. For the dif-
ferential cross section and the mean free path the contributions from each particle
type need to be accounted for. For the calculation of the differential cross section
Eq. (5.13), the chemical potentials, Fermi momenta and the temperature need to
be specified. For symmetric matter these quantities are set by hand while, in the
case of (-equilibrated matter, they are provided by the calculation explained in
chapter 3. The particle-hole parameters are calculated as in chapter 4. The effects
of temperature, like the effects of the strong interaction, mainly affect the results
presented here through the polarization (structure) functions.

In the case where only nucleons are present, we will focus on showing results at
0.5p9 and py. For the cases with hyperons we will show results at 2py and 3pg since
at these densities the concentrations of hyperons are sizable. For the temperature
we will focus on T = 0 MeV, which should best describe older and colder neutron
stars while 7" = 10 MeV represents neutron stars soon after creation.

For all cross sections presented below we have fixed the neutrino energy at
E, = 25 MeV and fixed the momentum transfer to ¢ = F,, for the neutral current
cross sections and to ¢ = E, + u. for the charged current cross sections. For the
mean free path we take the neutrino energy to be £, = 7T since this is the mean
energy of untrapped neutrinos [80].

5.3.1 The neutral current cross section

An indication of interaction corrections is first shown in Fig. 5.3. This figure
shows arguably the simplest case of all those investigated here, the neutrino neu-
tral current cross section in symmetric nuclear matter with just two-body NN
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interactions. Two densities and two temperatures are shown. The results of the
Hartree-Fock and RPA calculations for both the Vi, « and Vycon are compared.

2 T T |'V'"F\;P'A"'l""|""|""|""|""|"
lowk?
VURO?WM,RPA -
15| T=0MeV,p, VUCI%ZEE ________ 4 T=0 MeV,py/2 -
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3F T=10MevV,p, 4+ T=10Mev,py2 .

v! %0 /dQ?dg, [10° Meviem™
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Figure 5.3: Neutrino neutral current cross section in symmetric nuclear matter
with just two-body NN interactions.

At zero temperature (upper panels) we can clearly see the effects of the different
effective masses of a nucleon in the Vj,,, « and Vycoar as the difference in endpoints
of the cross sections. If we now compare this result with Fig. 5.4 we see the same
values for the endpoints with and without the density-dependent force. This is
obvious because, in the quadratic approximation for the energy, the endpoint is
determined by the ratio & which is different for the V.,  and Vyconr potentials

k
but the same with and Wj\i/[thout the density-dependent force, cf. Fig. 4.4.

The bottom panels illustrate the effect of temperature on the differential cross
section. At zero temperature only positive energies are present, because of Pauli
blocking, but at non-zero temperature there is a sufficient number of excited states
to allow such transitions. This is an effect present at any temperature. For low
baryon densities even low temperatures render the system non-degenerate. For
the temperature of 7' = 10 MeV, and in general for all finite temperatures, the
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cross section is dominated by a region for which ¢y < T

The biggest difference between the Hartree-Fock and RPA calculation is the
enhancement apparent at the end of the allowed energy interval. This enhance-
ment is easiest understood if we consider the neutral current vector polarization
function. In symmetric nuclear matter, where only nucleons contribute and pro-
ton and neutron zeroth-order polarization functions are the same and Eq. (C.73)
simplifies to

TYC = T1° [ ((eh)? + (€)?) (1= £plI°) + 20h el fonlT’] /DK (5:20)
where the denominator D). simplifies to

DYe = [1 = (fop + fon) ﬁo} [1 = (fop = fim) 1:[0]

0

IT
1 —2Fy—

5.21
v , (5.21)

where the Fj and Fjj are the Landau parameters and Ny is the density of states,
see chapter 4. In the case of the Hartree-Fock calculation the determinant DY, is
equal to one. When it approaches zero in the case of the RPA it causes precisely
the enhancement seen in Fig. 5.4 and all similar enhancements in subsequent
figures. This behavior is usually referred to as the zero-sound because it represents
a resonance corresponding to a collective motion of the system.

If we neglect the zero-sound enhancement, the effect of the medium correction
seen in the RPA curves is that of damping. From looking at Eq. (C.59) we can see
that whenever the kernel K35, is a positive-definite matrix (an overall repulsive
interaction) we will have a suppression and when we have negative-definite matrix
(attractive interaction) we will have an enhancement. If the nature of the spin-
like and spin-unlike interaction is different, i.e. one is repulsive and the other
attractive, than we have a composite effect whose nature will depend on which
channel (vector or axial) dominates. It is in fact often the case that spin-like and
spin-unlike interactions are different, cf. Fig. 4.13. In the case of Fig. 5.3, and for
all other neutral current cross sections with only nucleons, the repulsive interaction
in the vector channel mostly dominates the response. The only exception is the
enhancement at zero energy transfer at finite temperature which is caused by the
axial channel.

In Fig. 5.4 the neutrino neutral current cross section in symmetric nuclear mat-
ter with density-dependent interactions is shown. It is evident that the inclusion
of density-dependent interactions enhances the collective behavior of the system.
Hence the peaks we see at zero temperature are much more pronounced. It also
significantly alters the finite temperature response, although the Hartree-Fock cal-
culation, which is only influenced by the effective mass, stays largely unchanged.
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Figure 5.4: Neutrino neutral current cross section in symmetric nuclear matter
with density-dependent interactions.

Large effects for the RPA calculation are the result of significantly altered inter-
actions in both like spin () and the unlike spin (Gy) channels which we saw in
Fig. 4.5.

The neutrino neutral current cross section in G-equilibrated dense matter with
density-dependent interactions is shown in Fig. 5.5. The appearance of two dis-
tinct Fermi surfaces is now clearly visible. Hence we now have two Fermi momenta
and two effective masses to consider. In the case of the lower panels (py/2) we see
an extremely strong peak close to zero. This peak is caused by the determinant
of the vector response which appears when solving Eq. (5.18). Obviously at this
density the interaction is attractive enough to cause such an effect. This is some-
what unusual since most other peaks at zero energy transfer are produced by the
determinant of the axial response, as we will see in the following figures.

In the case of dense matter with hyperons we have a complex multicompo-
nent system whose response is different from a response of the relatively simple
nucleonic system we showed so far. At any given density the concentrations and
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Figure 5.5: Neutrino neutral current cross section in -equilibrated dense matter
with density-dependent interactions.

the effective masses as well as the strength of the coupling to the medium will
play a significant role. In addition to the Fermi spheres of nucleons we also have
to consider those of hyperons and for the RPA we now have a more complex
matrix which enters the kernel. All of these effects will be entangled when we
solve the matrix equation Eq. (C.59) which will make the study of individual ef-
fects difficult. However some of the leading effects can be recognized due to their
magnitude.

Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the neutrino neutral current cross section
in (-equilibrated dense matter with density-dependent interactions and the YN
interaction for NSC97f, YEFT 600 and J04 models, respectively. The upper panels
show results at 2py and the lower panels show those at 3py. On the left-hand sides
of these three figures we plot the Vi, x + DDa and on the right-hand sides
Vucom + DDa.

At zero temperature we see the first drop after the initial rise which comes
from the hyperons, the second decrease comes from protons and is much less
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Figure 5.6: Neutrino neutral current cross section in -equilibrated dense matter
with density-dependent interactions and YN interaction from the NSC97f model.

pronounced and the last drop is from neutrons. This clearly binds the effect of
hyperons to low energy transfers which is also true for finite temperatures. The
best example for effects at higher energy transfer coming from nucleons is the
appearance of the peak on the left end of the 7" = 10 MeV curves. This peak
comes only from neutrons but it is strongly enhanced by the determinant of the
vector response. The only reason why we do not have a stronger peak at this
point is that at these energies the Pauli blocking effect is rather strong. Such a
peak is commonly referred to as the zero-sound peak. We can also notice that as
the density increases the peak moves out towards higher energy transfers, and on
some occasions is completely outside of the main part of the cross section.

The biggest difference between the three figures, Fig. 5.6, Fig. 5.7 and Fig. 5.8
lies in their behavior at zero energy transfer. At this point the NSC97f model
shows a peak coming from the approach to zero of the axial response determinant
whose magnitude as this point is ~ 0.1 at 2py leading to an order of magnitude
increase in the cross section. For YEFT 600 at the same density it has the value of
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Figure 5.7: Neutrino neutral current cross section in -equilibrated dense matter
with density-dependent interactions and the Y N interaction from the yEFT 600
model.

~ 0.5 making the peak non-existent. The same value for the J04 lies between these
two at ~ 0.25 which results in a visible, but significantly less pronounced peak for
this model. While these observations were made for the case of Vi, k + DDa an
identical hierarchy is observed for Vycon 4+ D Da but in this case all peaks are less
pronounced. They are less pronounced because the axial response determinant is
systematically larger in these cases.

The last figure in this section, Fig. 5.9, is devoted to displaying the comparison
of all neutrino neutral current cross sections in G-equilibrated dense matter with
density-dependent interactions at a density of 3py and a temperature of 7' = 10
MeV. This comparison shows in a systematic way some of observations made in
specific cases before. The upper panels show the comparison of the Hartree-Fock
calculation while the lower shows the same for the RPA. The limitation of hyperon
effects to small energy transfers is evident if we take a look at the Hartree-Fock
calculation. Small differences at higher energy transfers come from changes in the
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Figure 5.8: Neutrino neutral current cross section in -equilibrated dense matter
with density-dependent interactions and the YN interaction from the J04 model.

neutron Fermi momentum introduced by (-equilibrium. The zero-sound effects
as well as the differences in the peaks at zero energy transfer are apparent in the
lower left panel displaying the Vi, k + DDa. The absence of such an effect for
Vucom + DDa shows the sensitivity to the parameters in the kernel of Eq. (5.18).

5.3.2 The charged current cross section

Fig. 5.10 shows the charged current cross section in symmetric nuclear matter
with inclusion of density-dependent interactions. As could have been expected
these graphs are very similar to those for the neutral current because the polar-
ization functions of the nn and the pn system in symmetric matter are practically
identical. They are alike because the kinematical differences which arise in -
equilibrium due to the presence of the electron chemical potential are not there
in symmetric matter. The small difference seen in the upper panels, is that the
cross section curves do not start at zero but at a small negative value. The reason
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Figure 5.9: Neutrino neutral current cross section in -equilibrated dense matter
with density-dependent interactions and various the Y IV interaction at a density
of 3pp and a temperature of "= 10 MeV.

behind this is the small difference in mass of the proton and neutron. The same
peak structure at the end of the energy range as well as the suppression for lower
energy transfers, for the RPA calculations, is seen here just like in the case of the
neutral current and the reasons for them are the same.

In the Fig. 5.11 we display the neutrino charged current cross section in (-
equilibrated dense matter with density-dependent interactions. These results are
significantly different compared to the neutral current case because of the presence
of the electron chemical potential in the cross section. We see that the entire
cross section has been shifted towards negative values of the energy transfer. The
amount of the shift is closely linked to the value of the electron chemical potential.
As for the phase space available for these cross sections it is easy to see that on
the left-hand side they are dominated by Pauli blocking while on the right-hand
side they are determined by the kinematical limits.

For the case of the charged current cross section with hyperons we only show,
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Figure 5.10: Neutrino charged current cross section in symmetric nuclear matter
with density-dependent interactions.

Fig. 5.12, because all effects seen in this model can be also seen in all others. The
general feature of suppression in the RPA calculations compared to the Hartree-
Fock ones is here just like for Fig. 5.11, which showed the cross section without
hyperons. The limitations on the phase space are the result of the same effect.
The only small difference is that the value of the electron chemical potential is
different due to differences in the g-equilibrium. Even the magnitudes of the cross
section stay the same because by far the most dominate part is the pn polarization
loop. A small effect of the hyperon polarization functions can be seen in the lower
right figure as a small indentation in the middle of the RPA curve for T = 10
MeV.

5.3.3 Mean free path

Both neutral current (left) and charged current (right) neutrino mean free paths,
in symmetric nuclear matter with density-dependent interactions for several tem-
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Figure 5.11: Neutrino charged current cross section in [3-equilibrated dense matter
with density-dependent interactions.

peratures, are shown in Fig. 5.13. In this figure it is easy to see that, as the
increase of temperature opens up the phase space available for the cross sections,
the mean free path decreases. The resulting increase will eventually lead to neu-
trinos being trapped inside the neutron star. However, it is clear to see that as
the neutron star grows older and cools, the neutrinos will start to free stream
out of it. Hence only young and hot neutron stars can be considered as possible
environments for neutrino trapping.

The comparison between the left and the right side of Fig. 5.13 tells us that
while the charged current contribution to the mean free path is slightly larger than
the contribution of the neutral current they are of the same order of magnitude and
both are equally important for the study of neutrino transport in dense matter.
As for the differences between the Hartree-Fock and RPA calculations it is even
more obvious than before that the main effect of the medium’s response is the
suppression of the cross section. One exception is the case for low densities in the
neutral current where we see an enhancement in the RPA calculation. However
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Figure 5.12: Neutrino charged current cross section in [3-equilibrated dense matter
with density-dependent interactions with the YN interaction from the NSC97a
model.

if we recall that this is precisely the density at which F becomes smaller than
—1, cf. Fig. 4.5, we realize that this is where the approximation of infinite nuclear
matter starts to breakdown. Hence, this effect should be considered with some
scepticism and one wonders if Fermi liquid theory is valid in this density range.

The effects of hyperons on the neutrino mean free path in S-equilibrated dense
matter with density-dependent interactions for several temperatures can be seen
in Fig. 5.14. The results shown in this figure represent the Hartree-Fock calcu-
lation. It is clearly seen how the appearance of hyperons decreases the neutral
current neutrino mean free path. Obviously different models with different hy-
peron threshold densities will start to affect the mean free path at different stages.
By the time the density reaches 3py all models for which both A and ¥~ appear
below this density give the same result. The model which only has a A at this den-
sity, YEFT600, is also the only model which differs from all others. If we exclude
this model from our considerations we can conclude that at 3py the introduction
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of hyperons leads to the factor of ~ 2 decrease in the mean free path compared to
the pure nucleon case. This makes the neutrinos which are trapped at densities
above which hyperons appear slightly longer trapped as the neutron star cools.
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Figure 5.15: Neutral current neutrino mean free paths in g-equilibrated dense
matter with density-dependent interactions for various Y /N interactions. The
results shown are for the RPA calculation at T'= 10 MeV.

The results of the RPA calculation are shown in Fig. 5.15. The figure displays
the neutral current neutrino mean free path in g-equilibrated dense matter with
density-dependent interactions for various Y N interactions. The effects which
we observe here are similar to those for all other temperatures so we focus on
a temperature of T = 10 MeV. The enhancement at low densities that we saw
in symmetric matter when considering Fig. 5.13, has now moved to density of
~ 0.4pg, similar to the effect we saw when we plotted Fj in [-equilibrium in
Fig. 4.13.

An interesting difference is that for V., x without hyperons and Vycons the
response functions have a different density dependence. If we look at Eq. (C.53)
we see that the polarization function is directly proportional to the M*? (for the
neutral current case). Hence the faster decrease of the effective mass in the case
of Vuconr, which was observed in Fig. 4.4, explains this difference.

Fig. 5.16 displays the ratio of mean free paths in the RPA and Hartree-Fock
calculations. The results shown are in -equilibrated dense matter with density-
dependent interactions for various YN interactions at a temperature of 7' = 10
MeV. This figure shows that the response of the Vi« and Vycon combined
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Figure 5.16: Ratio between the neutral current neutrino mean free paths for the
RPA and the Hartree-Fock calculation. The result shown are in (-equilibrated
dense matter with density-dependent interactions for various Y N interactions at
a temperature of 7' = 10 MeV.

with density-dependent interaction DDa is different even when combining them
with hyperon interactions. It is obvious that the response of the medium with
and without hyperons can be significantly dependent on the exact values of the
Landau-Migdal parameters entering the kernel. For the most part in nucleonic
matter the neutrino mean free path is suppressed but when we include hyperons
this can clearly lead to significant enhancements. In fact, in the case of V|, x some
models lead to a drop in the mean free path between (2 — 3)py by an order of
magnitude. Such a large change, with the peak-like shape seen in Fig. 5.15, would
lead to an accumulation of trapped neutrinos at this density range coming from
deeper inside the neutron star. However as we did not study trapped neutrinos it
is possible that once they are included such structures would disappear.

Fig. 5.17 shows the charged current neutrino mean free path in -equilibrated
dense matter with density-dependent interactions for various Y N interactions.
The calculation displayed was preformed in the RPA. The effects here are nowhere
nearly as dramatic as in the case of the neutral current. Hence we do not show the
result of the Hartree-Fock calculation, but refer to the same result for the symmet-
ric matter shown in Fig. 5.13. The effect seen there is also true in [-equilibrated
dense matter. The medium’s response increases the mean free path through the
suppression of the cross section. As for the effect of hyperon appearance, unlike
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Figure 5.17: Charge current neutrino mean free path in [-equilibrated dense
matter with density-dependent interactions for various Y /N interactions. The
results shown are from the RPA calculation.

in the neutral current case, the Y /N models do not reach a common point by 3pp.
Additionally the effect of hyperons compared to the pure nucleon case is not that
large. The reason behind this effect is that in the case of the charged current the
nucleonic contribution to the cross section is still by far the largest. The only
way the hyperons affect the cross section is by changing the phase space through
changes in the (-equilibrium. Hence the cross section may shift around from one
energy range to the next but still remains dominated by nucleons.

In our discussion we have considered only electrons and their neutrinos. How-
ever, the neutral current results are more general and can be applied to all neutrino
species. Additionally, all derivations of the cross sections from Appendix C can
be easily extended to the case of the other lepton families. The same is true
for antineutrinos, the only difference being that the concentrations of muons and
T-leptons, as well as of their antiparticles, are zero in cold neutron stars.
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6 Summary and Conclusion

The construction of the hyperon-nucleon low-momentum effective potential, Vi i,
allowed us to study the properties of hyperons in dense matter, together with
properties of dense matter containing hyperons. The YN V., « potentials were
constructed in a RG formalism from several bare potentials and applied to a nu-
clear matter calculation. The starting point of the nuclear matter calculation,
after determination of the matrix elements of Vi, x, was the single-particle po-
tential of hyperons. Since V|, k is an effective interaction, standard many-body
technique can be directly applied.

As expected the results show only a limited degree of agreement and we were
able to make only a few conclusions regarding the single-particle potential. One
definite result was the attractive nature of the A single-particle potential in nuclear
matter, although its exact behavior could not be ascertained. The differences
in the results came from the inability to construct a unique Y /N interaction.
This inability is not the fault of the V|, x method, but the rather unfortunate
consequence of incomplete and low precision of data available for Y NV scattering.

However, we took this situation as an opportunity to study all possible out-
comes of different hyperon single-particle potentials. In essence it is highly unlikely
that all of the potentials presented here will turn out to be incorrect, hence the
truth definitely lies within the range of possibilities explored in this thesis. Which
of these potentials gives a true description will hopefully be decided in the not-so-
distant future. The planned experiments at the J-PARC and FAIR facilities are
certainly going to give us some significant pointers in this direction. The simple
addition of some much needed scattering data would bring us, in the Y N sector,
closer to the high quality situation which already exists for the NN sector. Any
further development in this area is then dependent on more experimental data,
but we have developed a reliable method which can be easily implemented as soon
as such data is available.

After the introduction of the Y N single-particle potential we proceeded to the
calculation of the energy per particle in nuclear matter. In this case it turned out
that the NN Vi,  potential was not well suited for the study of dense matter.
Even when combining it with an appropriate three-body force from chiral pertur-
bation theory, the properties of nuclear matter were not reproduced with sufficient
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quality. Thus we proceeded to replace the nucleonic part of the equation of state
with a parametrization. The parameters made it possible to study a wide range
of equations of state. This broadness, in addition to the multitude of different
Y N potentials used makes us confident that the conclusions drawn here are as
reliable as possible.

The primary result of this study is that strangeness will appear, via either the
>~ or A, at around twice the saturation density of nuclear matter. This is not an
unexpected result since other studies in this area drew the same conclusion, but
never before has anyone studied such a range of equations of state in combination
with so many different potentials. Hence, any study of neutron stars must find
a way to either include hyperons or to find a solid reason for excluding them.
Unfortunately the results on neutron star masses were not in agreement with the
observed masses of known pulsars. However, this is a known side-effect of neglect-
ing Y'Y interactions and does not make our statement of hyperon appearance any
less correct.

However, the parametrization introduced made it impossible to study the re-
sponses of matter to the neutrino probe. Hence we returned back to the mi-
croscopic interaction for the NN interaction and introduced a density-dependent
force in order to mimic the effects of higher-order contributions. This force was
then used in combination with the effective NN potentials (Vi x and Vyconr)
and fitted to the properties of nuclear matter. Once fixed, the density-dependent
force was used to calculate the Landau-Migdal parameters. These parameters
served as input to the calculation of the medium’s response to an external probe.
They describe the strength of the interaction between the interacting particle-hole
states.

A straightforward extension to the nuclear matter calculations performed in
this thesis, which would apply to all considered quantities, is the inclusion of
higher order terms in the perturbative expansion. Such an extension is natural
given the fact that we are using soft effective potentials and should thus be de-
scribed perturbatively. This would give contributions beyond that of Hartree-Fock
for all quantities, ranging from the energy per particle over the single-particle po-
tential, to the Landau-Migdal parameters. In this way a residual interaction can
be created which would surpass the calculation presented here and could be easily
used for the study of the matter’s response to neutrinos.

Once we determined the strength of the interaction we were able to calculate
the response of the medium to an external probe. The external probe used was
the neutrino and the medium’s response was studied in two approximations: the
Hartree-Fock approximation; and the RPA. In both cases we included hyperons
and saw how the cross section for both neutral and charged currents was modified.
In the case of the neutral current, the biggest effect was the opening up of new
reaction channels leading to an increase of the cross section at small energy trans-
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fers. At the same time the effect of hyperons on the charged cross section were
not large. The only effects were indirect ones through the change of the electron
chemical potential due to F-equilibrium.

For the difference between the medium’s response in the Hartree-Fock approxi-
mation and the RPA, we saw how for the most part in the latter case the medium
suppresses the cross section. The only exception was the appearance of strong
peaks in the neutral current cross section. Those on the edge of the energy range
came from the vector response and were signals of zero sound; while those at zero
energy transfer came mostly from the axial response. The latter peaks from the
axial response were only noticeable in the case of finite temperature, since for zero
temperature Pauli blocking leads to a complete suppression.

Finally, we used the neutrino mean free path to examine how it was influenced
by changes in the cross section. As expected, the inclusion of hyperons led to a
decrease of the mean free path. The conclusions when the RPA was included were
not so clear, but for the most part it led to a decrease of the mean free path. This
was not unexpected since we noticed the suppression as the dominate effect of the
RPA for cross sections. However in the cases where an axial response led to great
increase of hyperon contributions to the cross section, we saw a strong decrease of
the mean free path. Such effects could be significant for neutron stars as it would
mean that neutrinos stay trapped inside the star for longer times, i.e until lower
temperatures.
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A Appendix A

A.1 Lippmann-Schwinger equation

In order to mathematically formulate the scattering process we start from the
total Hamiltonian H and assume that it can be separated as

H=Hy+V, (A1)

where Hy is the free (unperturbed) Hamiltonian. We will apply H to states which
have the same energy spectrum as free states, i.e.

Hylg) = E|¢) . (A.2)
Then the Schrodinger equation we have to solve is
H ) = (Ho+ V) [¢) = E ) (A.3)

where |¢) is the eigenvector of Hy, |¢) is eigenvector of H, and E is an eigenvalue
of both H and H,.
The desired solution of Eq. (A.3) is then

1
- E— H,

[¥) Vi) +1¢) (A.4)

and is known as the Lippmann-Schwinger equation [81].
The transition operator 1" is defined such that

Vi) =Tlg) . (A.5)

If we multiply Eq. (A.4) with V and apply Eq. (A.5) we obtain

Tlg)=Vie)+V T¢) (A.6)

E—H0+ie

which is the operator form of the Lippmann-Schwinger equation since it is valid
for any complete set of orthogonal states |¢).
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A.2 Single particle states

A single-particle state of a fermion is denoted by |i) where ¢ represents the com-
plete set of quantum numbers (spin, isospin momentum, etc.). They are normal-
ized such that

(ilg) = 0i5 - (A7)

The completeness relationship of single-particle states is expressed by the outer
product

Z iy (i = 1. (A.8)

In the case of continuous quantum numbers one must use the Dirac delta function
instead of the Kronecker delta and replace the summation with the integration
or a combination of both in the case of mixed discret and continuous quantum
numbers.

A.3 Plane waves

An appropriate one-particle plane wave state can be labeled by momentum p,
spin(isospin) s(t) and spin(isospin) projection mg(m;). Thus we have
‘p: 8m87tmt> = |ﬁ> ® |5ms> ® |tmt> ) (Ag)

with the normalization and completeness as defined above with momentum being
continuous. A fully antisymmetrized two-particle state can then be constructed
as:

|ﬁl751 mslatl mtl;ﬁ2782 m827t2 mt2> = (A]‘O)

|1, 811y, T M, ) | D2,y 82 Mgy, T Migy) — [P, S2 My, to My ) [P1, 5110, , E1 4y

V2

A.4 Partial waves
In the partial-wave basis a two-particle state can be expressed as:
Pp(LS)I Myt tam, ) = ‘ﬁp(LS)JMJ> @ [tme, tama,) | (A.11)

where the P is the total momentum of the system, p = |p] is the magnitude of
the relative momentum, L is the orbital angular momentum, S is the total spin,
J is the total angular momentum and M} is its projection. !

'Tsospin can be coupled in a similar fashion but we refrain from doing it since we want to
keep the isospin dependence explicit.
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Since the total momentum is always conserved we will drop it from the further
considerations. The partial-wave states are normalized as

<p(LS) I M gtymy, tomy,|p'(L'S")J Myt my tymy, > =
T
2pp’

6(p - p/)(sLL’(SSS’5JJ’5MJM(’]5t1t’15mt1mt/l 5t2t’25mt2mt/2 ) (A12)
with the completeness relation as

2
— Z /dep Ip(LS)J M jtymy, tamy,)

T (LS)JM stime, tama,
(p(LS)JMJtlmtltgmt2| =1. (A13)

A.5 Change of basis (plane wave to partial wave)

We can take two single-particle states described by Eq. (A.9) and couple them to
create the above defined two-particle state in the partial-wave basis Eq. (A.11).
We first couple the momenta by transferring to the center of mass reference frame.
The total and the relative momenta of a system of two particles, in the center of
mass frame, are given by

]l

=p1+ D2, (A.14)

my ma
_ . A5
my + m2p2 my + m2p1 ( )

—

Sy
I

where m; and mo are the masses of the particles. The inverse of these relationships
is than given by

o my 5 o
=——P- A.16
1 m1+m2 b, ( )
_ me 5 -
=—2 P4y, A7
b2 my +m2 p ( )

The coupling of spins proceeds in the usual fashion through the Clebsh-Gordan
coefficients:

S1 S9o S
sagh = (e S ) (a9
Ms) Msoy
. S1 S9o S
|slm81>|82m82)—z<m81 . Ms)|SMS>. (A.19)

SMg
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We then transform the relative momentum to a basis involving the magnitude of
this momentum, orbital angular momentum and its projection.

) = @ > IpLMy) (LM, |5) = @ D Ip LML) Yin, (), (A20)

where Y77, (ﬁ) are spherical harmonics and ﬁis a unit vector in the direction of
p.- What remains is to couple the orbital angular momentum and the total spin
into total angular momentum. Then we have

S
st o samstans) =2 S5 (e |8
SMg LMy, J 51 52 o
vio (LS| p(LS)T Mtymy tam,) - (A.21)
LM My, Mg | My + Mg ! 2

The sum over M; has been suppressed because of the relation M; = M + Mg.

A.6 Lippmann-Schwinger equation in the partial-
wave basis

If we use the partial wave states defined by Eq. (A.12) and Eq. (A.13) and evaluate
the operator form of the Lippmann-Schwinger equation Eq. (A.6) we arrive at the
form of the Lippmann-Schwinger equation in partial wave basis:

T (d, q 7)) = Vk,yy(q’ q)+

Ba l.a: a2
_Z /sz AU @gz((})q’q). (A.22)

The labels y, z indicate the particle channels, e.g. y = YN, and «, # denote
the partial waves, e.g. a = LSJ where L is the angular momentum, .J the total
momentum and S the spin. In this equation the energies are given by

Ey(q) = My + o, (A.23)

with the reduced mass p, = My My /M, and the total mass M, = My + My of
the hyperon My and the nucleon My.

In the basis defined by Eq. (A.12) the transition operator is seen to couple var-
ious spin and isospin channels. However we are not completely free in the choice
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of these couplings. Our choices are limited by the need to satisfy various conser-
vation laws. This will reduce the complete matrix, which one can construct with
discret indices, into several smaller parts which do not couple with one another.

Let us first examine all possible states we have. Obviously one does not need
to consider the total angular momentum J since it is conserved. But for the total
spin and angular momentum we have the spin singlet states S = 0 with L = J
and the spin triplet states S =1 with L=J+1or L = J or L = J — 1. This
would then give a 4 x 4 matrix in this space but parity conservation reduces this
to two 2 X 2 matrices. If we suppress all other indices in addition to momentum
we can write them as:

TOJOJ TOJIJ TlJ—llJ—l TlJ—llJ—H
TlJOJ T1J1J ) T1J+11J—1 T1J+1J+1

(A.24)
Here the first matrix represents the singlet-triplet coupling and the second one is
the triplet-triplet coupling 2.

As for the isospin indices y, if we restrict ourselves to combinations of the
form Y N, we have four possibilities for Y and two for N, which give us eight
possibilities for y. This would result in an 8 x 8 matrix in this representation, but
like in the previous case we also have a conservation law to consider. Here it is
the conservation of charge which limits the possible couplings, so instead of one
8 X 8 matrix we have two 1 x 1 matrices, for charge 42 and —1, and two 3 x 3
matrices, for charge 1 and 0. Now, if we suppress all indices except isospin we can
write these matrices as:

TApAp TApZ+n TApEOp
(T2+p2+p)> TE*nAp TE*nXﬁn TEJrnEOp )
TgopAp T20p2+n Tz]OpEOp
TAnAn TAnZOn TAnE*p
Tvonan  Tsonson Tswons—p |, (To-nz-n) - (A.25)
TE*pAn TE*pEOn TE*pE*p

A.7 Numerics

Here we show a few details regarding the numerical solution of Eq. (1.1). In this
section for the sake of brevity we will suppress the subscript low k for all operators
since from this point on all operators will be those of low momentum.

In order to be able to calculate the T-matrix numerically it is necessary that
we derive an expression for it which is suitable for a numerical use. Here several

2For the NN potential there is no singlet-triplet coupling since the off-diagonal matrix ele-
ments 7%/ and T1/°7 do not exist.
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problems arise, but two are the main ones: the recurrent nature of the Lippmann-
Schwinger equation and the principal value nature of the integral that appears.
There are several ways to do this. Here we will essentially follow the prescrip-
tion used in [82| with necessary changes made to account for the multichannel
Lippmann-Schwinger equation that we have instead of the single-channel equa-
tion used in [82].

Starting from Eq. (A.22), first we add and subtract an expression which is
conveniently designed so we get rid of the principal value integral. This additional
expression is easily simplified

TS (q,q;4%) = V‘”(q’ q)

L2 Z/ Tﬁo‘(l q;q?) — Eg%ﬁ;ﬁ(q',EO)TZ,Q(E0>Q§Q2)
Ey(q) — E.(I)

B,z 0
A
+= Zvaﬁ °(Eo, ¢; ¢* P/dlE 50 (A.26)
y
0

where we use the abbreviation Eg = 2u, <My + % - MZ> As one can notice
Y

the first integral is no longer a principal value integral, but an ordinary integral,
and the second one is analytically solvable. First let us solve the second integral,

A A
E2 A—E
P/ dl P/ = —p.Eyln ¢, (A.27)
0 0

E,( AN+ Ey

y

The other integral needs to be solved numerically so we use Gaussian quadra-
ture

N

/ dIF(1) =Y F(lj)w; (A.28)

J=1

to represent the integration as a discrete sum, where w; are the appropriate
weights. Now we use these two results in Eq. (A.26) to yield:

T (d q'qz) =V (da)
l2VOé 5( )Tﬁa(l]’ q:q ) E2V0l ﬁ(q EO)Ta’a(EO’ q; q2)

J Yz 2y 2y ) ‘
T ZZ B0~ B0 “s

ﬁzyl

2.
—Z 2q, BTy (Bo 43 %) =B ln

A—Ey
AN+ Ey

(A.29)
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From here we easily find

N+1
Vi da) =) [5%]5@/%S 5+ WiVl (d 1)
J=1 67
+ 5‘N+1V?/ (q l; ) kN+1 hlm Tﬁa(l‘ q) (A?)O)
J yz ™ A+kN+1 2y D ’

where we define the new weights w; as:

2 l2-qu )
W = ‘%W for j#N+1 o
J Wm . ) .
2Zm 1 By ( N+}az(zm) for 3=N+1

and replaced Fy = kn.y1.
Hence through matrix inversion we can calculate the T-matrix as

N+1
T ) = 3030 (B2 ) Vi) (A.32)
Jj=1 B,z

where
F;;ﬁ(q/’ ) = 6130y 2005 + WiV (d, 1))

J' Yz

2.

D kg1 In
T

+ 0 Vel (gl (A.33)

We also note that since we are dealing with the half-on-shell T-matrix we have
to keep in mind that the entire matrix needs to be on-shell simultaneously and
that there is a common energy E to which all energies of the individual channels
are equal to. This will have no influence on coupled channels in which the masses
are equal such as Eq. (A.24), but in channels where the masses are not equal
such as Eq. (A.25) we have to correct the on-shell value of the corresponding
momentum. Thus our cut-off A will not be the same for all channels. If we use
the lightest channel to set the cut-off, then the other channels have to be changed

according to the following formula

A2
=/ 21y (B — M) = \/2Ny(My’ + ﬂ - My). (A.34)
y/

For the charge equal to zero the lightest channel is An, so we have A,,, = A. For
charge equal one we have Ay, = A.

This effect is easy to understand if one considers the off-diagonal elements
of the T-matrix in Eq. (A.25) such as Typx+,. Here it is obvious that it is the
energy and not the momentum which is conserved by the transition operator.
More details on solving a multi-channel integral equation of Fredholm type can
be found in [83].
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B Appendix B

B.1 Hartree-Fock ground-state energy

In the Hartree-Fock approximation the Hamiltonian of the system is composed of
the mass, a kinetic and a potential part |84]:

A ~

H=M+T+V, (B.1)

In Hartree-Fock theory, the states of a homogenous and isotropic system are given
by plane waves

. 1 o
<ki|f‘> = ik (B.2)

where k; is the momentum and 7 is the position of the system. (2 represents the
volume of the system. The complete set of states is then

. 1 .
= [ @ [smma) @ tm) = ——=e™ X Xom (5.3)

V02

where Xgm.(Xtm,) denotes the spin (isospin) wave-function. For the volume of the
system {2 we will take the {2 — oo limit. From the discrete momentum basis
defined by Eq. (B.2) we need to go to a continuous basis defined by

7 = e (B.4)
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B.1.1 Mass and kinetic term

With these definitions of a continuous and discrete basis we now evaluate the
one-body operators of mass and kinetic energy:

S1Msy t1mey

pF‘slmé tymg
27T2 Z Z Mslméltlmtl 31 ! (B5)

S1Msy t1mt1

) —2
(al719) = s 3 2 [ @5 LE TR——

S$1Msy tlmtl

[
DI (B

s1mMs, tlmtl Slmsltlmtl

We can simplify this expression if we take into account that our environment
is unpolarized and that it consists of nucleons and hyperons:

3

~ \Q 3 p mt pF my
(wiite) = 2 (B 4 5 ary, o 5, Do
Q %mtl Imty
f) 5 P} pF
-2 (e St St w2
o 5
2 2 p% pFlMt pFlmt
T (I)> _ 00 2™y 1
< ‘ | 272 | 5 My + 12 5M%mt1 + lmzl 5.]\417;1,51
Mty ¢
2 [ v}, Dy Py
_ B.8
(s w9

B.1.2 Potential term

The potential part is a two-body operator which, in the plane-wave basis, is eval-
uated as:

(V) =3 pIPIPIPIP MY (B.9)

S1m51 S$2Msy t1mey tamey, P

(p1> S1Mgy, tlmm ; p2> SoMg,, t2mt2| V |p1, S1Mgy, tlmtl y P2, S2Mls,, t2mt2) )
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where the fully antisymmetric state can be expressed with the help of an exchange
operator P;; as

D1y 15y Ly 3 P2, SaMsy, by, ) = 7 D1, s1m0sy s T, ) (D2, Sams,, Tamgy)
(B.10)
We note that since P = 1 we have (1 — Py3)* = 2(1 — Pyy).
With help of [85]
L S| J\ _ ser—s( S L
(ML Ms | M, ) = (=1 Ms My My ) B
and
Yin (=0 = (=1)"Y7, (@), (B.12)
we can easily derive, from Eq. (A.21),
|ﬁla §1Msy, tlmt1 ; ﬁQa SoMg,, t2mt2) -
S A L S J
Y*
vLED 3P I (VR VR CHCI GRS VAV
[[p(LS) T M stymy, tamy,) — (—1)' 54 [p(LS) T M stamy, timy, )] (B.13)

Now we can make a connection between the expectation value of the potential in
the plane-wave basis and in the partial-wave basis as

(D1, S1Mgy, t1My, 5 Pa, S2Ms,y, tam, | VD1, S1Ms,, L, Do, SoMgy, tay,)

ees (o) (i

SMg LMy J
Yiur, (Y7 a, (@) (g(LS) T M ytymy tamy, |V |q(LS) T Mytymy, tamy, )
— (=1)" T (G(LS) T M stymy, tamy, | V q(LS) T M stamy, tymy, )] (B.14)

J 2
My, + Mg

In the end going from the discrete to the continuous basis,
(27)° . 4
(q(LS)J M jtymy, tamy, |V |q(LS)J M jtymy, tomy,) = TV(LS )Jtime, tame, (9),
(B.15)
(2m)° e
(q(LS)JMJtlmt1t2mt2| V |q(LS)JMJt2mt2t1mtl) = T‘/( (Q)
(

LS) Jtlmtl tami,
B.16)
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we get
(P, s1musy s t1My 5 Do, SoMsy, oy, | V|1, s1ms, , tim, ;s Pa, Soms,, tamy,)

30 35 Sl (et I N (i)

SMg LMy J

Yoty @Yinn, (@ [Visy ey oy @ = (D75 Vi sty (@] - (BAT)

J 2
My, + Mg

From here, by summing over spins and using

Yiun, (0.6) = (—1)™ \/ el Eﬁ . %Li'PML<cos o)eMe (BIS)

we find,

E E (p17 Slms1 ) tlmtl y P2, 82m827 tthQ‘ V |p17 Slmsl ) tlmt1 y P2, S2m327 tth2>

S1Msy $2Msy

2 [
- Y (4 e e
T SMg LMy, T My (L M)
[wﬁsmwgmtz (@) = (=)™ SV vy (@) (B.19)

Combining Eq. (B.9) and Eq. (B.19), as well as going from summation to integra-
tion > — 2/(27)? [, we obtain

V=g (m) =[5 [y Sy

tame, SMg LMy,

2L+ 1 (L — My)! S J gy 2
P L
Ax (L+ML) (ML MS ML"‘MS) ( L (COSQ))
[WLS Jtlmt1t2mt2 (q) ( )81+S2 S+LWLS Jtlmt1t2mt2 (Q)] . (B20)

Finally we go from the integration over the single-particle momentum

/d?’pl/dgpg (B21)
2

/ dplpl/ d@l Sll’l¢91/ d(bl/ dp2p2/ deg Sll’l92/ d¢2,

0 0 0 0

to relative momentum with the transition from (ps, s, ¢2) to (g, 6, ¢). This choice
is arbitrary and we could equivalently have chosen to go from (py, 01, ¢1) to (¢, 0, @)
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as well. From Eq. (A.15) we get

Pa cOS by = m +m2qcosﬁ— @pl, (B.22)
mq mq
po Sin By = mq sinf, (B.23)
my
P2 =9, (B.24)
and this then gives
M 3
padps sin Oy dfydy = (—) ¢*dgqsin 0dfde . (B.25)
my

The integrand in Eq. (B.20) is independent of all but one angle so we can
perform the integration over ), ¢; and ¢ analytically which yields a factor of 872
Finally

Pry 1 dmazx
2 2
= z/dm/ [aw> Sy
tlmtl tzmtz 0 e Gmin SMg LMy, J

9L +1 (L — Mp)! 2 v

P L
47 (L + Mp)! ML M, +Ms (cos@))
[WLS Jtlmt1t2mt2 (q) ( )81+S2 S+LWLS Jtlmt1t2mt2 (Q)] . (B26)

Limits of integration

The integration limits of relative momentum in Eq. (B.26) are derived from the re-
quirement that the second particle momentum at vanishing temperature is smaller
then the corresponding Fermi momentum (|p3| < pp,). Then from Eq. (A.15) after
some algebra we find:

M?q* + m3p} + 2Mmoqpit — mipf, <0, (B.27)
which has the solution for the relative momentum g

q_(ngvplvt) S q S q+(pF27p17t> )

with the definitions

ms

e
qi(pF27p17t> == M P1 t:l: m2pF2 1(1 — t2)] . (B28)
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Figure B.1: Left: ¢ (pg,,p1,t) as a function of ¢ for different choices of p; and
fixed pp,. Right: Schematic representation of the construction of the relative
momentum ¢ and its limits.

Since the relative momentum ¢ is a real quantity this further constrains the

integration variable t to
2
t > 1—Cﬂ@%, (B.29)
ma P1

which is only valid if the hyperon momentum is p; > %sz- In this case we finally
determine the integration limits to be

2
tmin = 1— (ﬂ@) ; tmaz = 17
mo P1

Gmin =q (ngapla t) s Qmaz = q+(pF2ap1a t) ) (B30)

because the modulus of ¢ is always smaller than or equal to one.
For the case that the hyperon momenta p; < %sz, the functions ¢*(pg,, p1, 1)
are always real which then yields the integration limits

tmin:_l ; tma:c:1>;
Gmin =0 sy Qmaz = q+(pF2>p1>t) . (Bg]')

In Fig. B.1 the integration limit functions ¢& are shown as functions of ¢ for
three different choices of the hyperon momentum (p; < %ppz,pl > %ppz,pl =
"ipr,) and a fixed k.
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C.1 Cross section

A cross section is defined by the probability to observe a particle in a given
quantum state per unit solid angle if the target is irradiated by a flux of one
particle per surface unit. To compute the cross section we need the transition
probability.

C.2 Charge current cross section

The transition probability for a charged current process shown on the left of
Fig. 5.1 is

Tpi = (1 60| T |65y; 6,) - (C.1)
The transition matrix consists of the lepton and hadron currents
T = ju(2)J"(@), (C2)

where the lepton current is given by

ju(kf’ Sty kh Si) = 'I;I(kfa Sf)’}/u(l - ’75)121(]{723 Si) 5 (CS)

and equivalently the hadron current is:

A

J4(ps, Sp, pir ) = '(pg, S (V = Ays)U(pi, Si) (C.4)

The notation here is somewhat more general than in Chapter 5 because we will
later refer to the same equation for the neutral current case.
The wave functions of the fermions are given by

i) = S e =Y (e

SiPi

1/2 |
) Cs; (pi)us; (pi)e” ™", (C.5)
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where the spin sum results in the spinor completeness relation:

S ol = (%) (c6)

The calculation of the cross section would than require the calculation of the
square of the transition matrix. However in our case it is useful to use the optical
theorem instead the directly squaring the transition matrix.

C.2.1 Optical theorem

The optical theorem is a straightforward consequence of the unitarity of the S-
matrix: STS = SST = 1. Inserting S = 1 + 71" we have

i (T-T*) — 7T, (C.7)

We use a complete set of states to evaluate the right-hand side:

n

(G 0| TT |6:0) = (H Z) (01 8l T o) (53] T Iy 6) - (C8)

i=1 ¢
For the case of forward scattering the optical theorem than has the form
ImM (¢i; b — d13 6u) = 2E LRV (15 90 — all) (C.9)
where the invariant matrix element M is defined by
(00:0,| T 1030,) = 2m) V8" (o1 + p — 1) =Pl )M (D1: 00 — ¢1:61) . (C.10)
The diagrammatical representation of the optical theorem is shown in Fig. C.1.

2

Figure C.1: Diagrammatical representation of the optical theorem.
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C.2.2 Invariant matrix element

Let us now proceed with the calculation of the cross section. The quantity which

we first need to calculate is the invariant matrix element of the process shown on

the right-hand side of Fig. C.1. The momenta and energies of the particles are

given by:

ﬁB4 = ﬁBz + (ja ( )

n=p,—q, (C.12)

Wp, = Wp, + 10 , ( )

Wy = 1w, — 1] - (C.14)

The labeling of the particle momenta and energy is obvious, with ¢’ the transferred
momentum and ¢y the transferred energy.

Using the Feynman rules for momentum space from [33| we can immediately
write down:

3~
M (64560 — 1: 8) =— Fm"TZ Z d /de2 (C.15)

wo(even) w

Z {[asu (1w, Pu)]y [y (1 = )]“{5 [Sl(iu)l,pl)]ée [”YA(l - ’75>]en[usu (Zwmﬁz/)]n}

{[ M(V - A75)] [SB4 (ZWB4>ﬁB4)] [ )\(V - AVS)]ﬁﬁ’ [SB2 (ZszaﬁBz)]ﬁ’a'}

_—_T Z > / /d3szLuAW”A (C.16)

wo(even) wpg odd

The lepton tensor is

Ly = Tr [S'(iwr, 51)7,.(1 — v5)Bona(1 = %)) (C.17)

where we have used the fact that the neutrino masses are practically zero.
If we neglect correlations between the leptons, or later for the neutral current
neutrinos, we can use the relativistic propagator

ﬁl—l—m

Stiwy, ) = ————— C.18
(Zwbpl) pl2 —m2 T e ) ( )

to evaluate the trace and write the leptonic tensor as:
L= 8[(pv)u(pl)/\ + (P)u(Po)r — g (1 - po) — i(P1)a(Pv) pEans] . (C.19)

p? —m? + ie
The hadronic tensor is given by

W =Tr [y"(V — Ay°)SP (wp,, )7V (V — AY°) S (wp,, Ps,)] - (C.20)
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From here it is easy to make the nonrelativistic approximation by:

WV = AV sa ~ [gvdor + gac'din] s - (C.21)

We note that the indices § and (3 on the left side run through the values 1 to 4
while in the nonrelativistic case on the left side they go from 1 to 2.

The integral and the sum over particle By in Eq. (C.16) can than be used to
define the vector polarization function

d?
Hu Zqo,(j) T Z / sz 2TI‘ SB4(sz4,ﬁB4)SB2(sz2,ﬁB2)]50“50)‘, (022)

wp, (odd)

and the axial polarization function

d? o
1" (igo, §) = TZ / sz AT [SP (wp,, Pp,) 0" SP2 (wp,, Pr,) o’ | 6#67 .
5 (0dd)
(C.23)

For the the axial polarization function one can show that for spin-symmetric
matter it simplifies to

43 o
5 (igo, @) =T ) / sz GATe[SP (wp,, Pp,) SP* (Wi, , P, )] 65067 .
wp, (odd)

(C.24)

We can thus define a polarization function common to both vector and axial
polarization functions as:

d?
(zqo,(j) T Z / pB2TI‘[SB4(ZwB4,pB4)S (sz2,ﬁ32)] . (025)

By (0dd)

Combining all of these results and putting them in the invariant matrix element
Eq. (C.16) we find:

M@0, — b0 == G [ Z L 1=t (1-ep ((REIZI)
[(1 + cos 0)ITy (iqo, @) + (3 — cos @)1 4(iqo, @)] , (C.26)

where we have used the approximation in which we neglect the masses of leptons
compared to their momentum

(p)" (1) = By By (1 — %ﬂ'g) =E, Ej(1 —cosf). (C.27)
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With the aid of the conversion factor (1 — exp ((—qo + p2 — pa)/T)) ™" we define
the structure function

Imfi(a0,4) = 5 (1= exp ((~do + 12 — 12)/T)) S(a0 ). (C.28)

and the differential cross section is

1 d*o(E,) G2

0 d02dq, ] ( — fi(Ey) [(1 4 cos 0)S7(qo, q) + (3 — cos 0)SK (qo, q)] -

(C.29)
Finally, the total cross section is defined by
o(£h) / 2 2 1 &’0(E,)
dQq;dq C.30
0 ©0 d2dg, (C:30)

C.2.3 Neutral current cross section

The case for the neutral current is somewhat simpler since the incoming and
outgoing particles are the same. The transition matrix element is then given by

Tyi = (¢ui | T 655 0) (C.31)
Using the Feynman rules again we get:

M (bv; v — Gu; by) = —%@T oor Z / /dp32 (C.32)

wo(even) w

Z { uSV Zwuapu ’}/u(l -7 )]’Y(S [S (iwlapl)](ge [7)\(1 - 75)]6ﬁ[u5u(iwuaﬁu)]77}

{[ MV = Ay aral S (i, , D))o [ MV = Ao 8™ (w,, P, srar §

3
=—%LT Z > / / de%WM, (C.33)

wo(even) wp odd

with the polarization function:

(ZQO,CD T Z /d i Tr [SB(ZWB PB)S (ZWB’aﬁB’)] . (C.34)

wp(odd)

The differential cross section is than defined as

1do(E) _Gh
2 dQ2dg, 83

E} (1= fi Ey) [(1+ cos0) 53 (g0, q) + (3 — cos 8)S%(q0, q)] -
(C.35)
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C.3 Structure function in the Hartree-Fock ap-
proximation

In the Hartree-Fock approximation the baryonic propagator S° is

B (Zu)b,ﬁﬂ zwn+zaﬁ Blp) (C.36)

where the energy is
2

20M;

+ 0. (C.37)

Ey(p) = My +

As noted in Sec. 2.2 this is the quadratic approximation for the single-particle
spectrum. Thus, we have the polarization function for two different nonrelativistic
interacting baryons:

d p32 |i 1 1
(4qo, T
% (D Z / ZWBQ_'_MBQ_EBQ(sz)ZWB4+/~LB4_EB4(pB4>

wp, (odd)
(C.38)

which we now label with a zero since this is the zeroth-order Lindhard function
[33].

The connection established earlier with the structure function Eq. (C.28) gives
us

(0. ) = / Ppa8(ao + Ea — Eo) fo(Bo)(1 — fo(Ey)). (C.39)

2 9.2

where E4 = M4 + (ﬁQ + @2/2MZ + U4.
We rewrite the energy delta function in terms of the angle between py and ¢

as:
M
d(qo+ Er — Ey) = 0(cos @ — cosly)O(FEy —e_)O(ey — Es), (C.40)
P29q
where
M Xp2) 2q° xMjc 2xMjc
cosby= 4(0——2 cpi =1+ )£ 1+ = I C.41
" U 2Mg) T ¢ ¢ (©4)

2 = 2 2
i (240 D3
= ; = + My — My +U; —U C.42
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with

M* q2
ﬁ;’t; C:q0+M2—M4+U2_U4_2MZ.

X=1- (C.43)
The factors My — My and Uy — Uy are the conversion energy gained due to the
difference in mass and potential. Substituting these results into Eq.(C.39) and
performing the angular integrals we obtain

*

.M; /p2dp2f2(E2)(1 - f4(E4)) . (0-44)

So(q07 q) =

With the substitution Ey = My + 5372 —|— U, we get

e+

M*M*
S (anv) = T [ B (B~ F(Ba+ ) (C.45)
et
M*M* 1 Eo+qo—pa
/ dE, _ xp L ) (C.46)
mq 1+ exp (2272) 1 4 exp (Z2H0=4)
By using
d 1 1 1
/ v __ G e
1+exp(z)1l+exp(—z—2) 1—exp(—z) 1+exp(xz+2)
we have
MyM;T & —¢&,
S C.48
(q07 q) 7q 1 — eXp( ) ) ( )
where
qo + 2 — 4
== 7~ = C.49
T Y ( )
1+ et —p2+Ma+Us
€:|: =In 1 eXIZ:t'H]O—lZ-i—Mz—i—UQ (050)
+ exp o

The most general case, which we have presented so far, will also apply to the
case of a charged current. For neutral currents, since the initial and final state
particles are identical for both leptons and baryons, we have the simplifications

Mg = M4, M2 = g, M; = MZ, U2 = U4, (051)

2
_® _ M ¢’ _
z == e_ = 2 <q0 — 2M2*) , ey =00. (C.52)
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Thus, £, = —z, and one finds the following result for the neutral current structure
function:
M3*T z &
S° =2 1+ . C.53
(QOa Q) Tq [1 _ eXp(—z) ( + P ):| ( )

For the case of a free gas all one has to do is to replace all effective masses
with bare masses and take all single-particle potentials to be equal to zero.

C.4 Structure functions in the RPA

If we consider the full form of the baryonic neutral current in the presence of both
nucleons and hyperons we can write it in the following way !

= > el — D+ Byu(gd™ — )0, (C.54)
f=p,n, A3~ ,...

From this form of the current it is obvious that we need to expand our notation to
include the isospin indices. This in combination with the aim to study the influ-
ence of matter on the polarization functions of the RPA leads to the introduction
of the full polarization matrix, ]-:[)\u;aﬁ(qm ¢). Additionally at this point we relax
our restriction to spin unpolarized matter and consider also the spin indices. In
general the full polarization function is given by [33]:

ﬂ)\u;aﬁ (q0> (D = f‘[gu;aﬁ (qO’ d) + Zf‘[gu;pu (qO> (DKPVWU (C.IOa @ﬁna;aﬁ (qu @ . (055)
nvpo

The indices here should not be confused with Lorentz indices of the y-matrices
since these indices are from the spin and flavor space. Schematically this can be
represented as in Fig. C.2.

Figure C.2: Salpether equation in RPA.

The kernel K allows the calculation of polarization function to all orders. It is
simple to see that in the lowest order case where there is no interaction, K would
be zero and we would immediately recover the Hartree-Fock approximation. The
first-order approximation is then:

Kovino (00, @) = —(po |V Inv)y+{op|VInv), (C.56)

!The weak neutral current has no strangeness changing components.
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which is exactly the RPA approximation.
The zeroth-order polarization function II° is diagonal so we can write:

f[())\p;a,@(q(b q_> = 5)\a5pﬁﬁ())\“(q07 67) . (057)

Note that there is no integral in equation Eq. (C.55) thus making the equation
just a system of algebraic equations. Thus Eq. (C.55) becomes a matrix equation
(further on we suppress (qo, ¢) but it is always implied):

IT = I1° + IM°KII. (C.58)
The solution of this matrix equation is then

M= (1-I°K) '11°. (C.59)

C.4.1 Single-particle case

Let us first consider the case of single component matter containing only particle
i, where we have only the spin indices. In this case the II°-matrix is a unit-matrix
multiplied with the polarization function II°. As for the kernel K in spin space
we can, with the aid of Eq. (4.25), write:

fii+gus O 0 fii— i
fii—gu 0 0 fi+gu

where the (1,1) element of the matrix is <17 |V| 11> and the (4,4) element is
<1 |V| |l>. The K-matrix can be diagonalized and we get:

K = (C.60)

2fu 0 0 0
0 295 O 0
0 0 295 O

If we now use this in Eq. (C.59). Keeping in mind the unitary matrix used to
diagonalize K we find

- - TI0.
. . . . 1o
H22ii = H33ii = H44ii = HA" - % . (063)
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The imaginary part of the polarization function is then

I mf[?i

Imlly, = - - .
e (1 - fiiReH%)2 + (fiilmngi)2

(C.64)

If the denominator is larger than one then the medium’s response is suppressed,
while if it is smaller it is enhanced.

We note that we will always use the diagonalized version of the kernel, because
that way the vector and axial part can be solved separately.

C.4.2 Neutral current case
For the case of the neutral current we can write the vector coupling constants as
NC —y— 00 +y+ 0
@O (@t T Y ET @) (e

whose values can be found in Tab. 5.2. Then with the knowledge of the RPA
polarization matrix from Eq. (C.55) we obtain the polarization function

Y = () T () (C.66)

For the calculation of the neutral current RPA polarization matrix ITY¢ we
need the zeroth order polarization matrix:

(15, 0 0 0 0 0 0
0 o 0 0 0 0 0
0 0 A 3 0 0 0 0
Mye=| 0 0 0 M4y 0 0 0o |, (C.67)
0 0 0 0 H%OZO 0 0
0 0 0 0 0 H%+z+ 0
| 0 0 0 0 0 0 H?\Eo i
and the appropriate kernel:
[ fPID film fp/\ pr* prO fp2+ fppAEO ]
fpn fnn .an an* anO .an+ fnnAEO
pr an 0 0 0 0 0
Kyo= | fos=  fan- (C.68)

fp2+ fn2+
| fppAEO frmAZ)O

0
prO fnZO 0
0
0

o O OO
o O OO
o O OO
o O OO

From this point on the calculation is straightforward matrix multiplication. Thus,
and because of its size and complexity, we do not show the complete polarization
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function ITYC or any of the matrix elements of TIN®. However for the sake of
illustration and comparison we show this for the case of matter composed only of
nucleons. In this case the matrix elements of the polarization function are:

Tiy,,, = 10, (1= funllS,) /e (C.69)
Iy, = fpnﬁgnﬂgp/D]Vm, (C.70)
Ty, = 115, (1= fol15,) /DXe (C.71)
where
DXIO =1- ﬁgpfpp - ﬁgmfnn + ﬁgpﬁ(r)m (fnnfpp - ;z?n) ’ (0-72)

which when combined with the coupling constants gives the vector polarization
function as:

(0, (1= £l15,)] /DK (C.73)

T = [ ()20, (1= fanl15, ) + 2eb el fon 10,115

which is identical to the result from [5].
The same result can be found for the axial polarization function if we replace
the coupling constants and make the following substitution f — ¢ in the kernel.

C.4.3 Charge current case

For the charged current we have the following coupling constants

n na— 0 — —
) = (g @ @ A g @), (T

whose values can be found in Tab. 5.1. However, due to the conservation laws
some of the processes are forbidden such that the polarization matrix decouples
into two parts. Thus we separate the coupling constants into two parts

(G = (g7 o™ g™ o™ g™ ), (C.75)
1" _ 0
@) = (g a7 ) (C.76)

The charged current RPA polarization function is then

7 = () e (9v) + (9v) T (gy) (C.77)
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. . . ’ " .
We now have to calculate two polarization matrices IT%. and IT.. We will also
need two zero-order polarization matrices

(1, 0 0 0 0
0 IS 0 0 0
Mee=| 0 0 %, 0 0 : (C.78)
0 0 0TIy -0
| 0 0 0 0 1%, v |
and
m, o 0
M= 0 M. 0 |. (C.79)
0 0 ngo
Obviously two kernels are also required
fpnpn fpnAE* fan*A fanOZ* fpn2+20
fonas- 0 0 0 0
Klc=| fomsta 0 0 0 0 : (C.80)
fanOE* 0 0 0 0
fpn2+20 0 0 0 0
and
Ve {(IZ\IJA g(;j\nZ* g(;j\pEO
Kee = I{Y‘L/E*pl\ I{szzf Ig‘q/zfpzo : (C.81)
KIXJ/EOPA KIXJ/EOHE* KIYE%EO

Here for the kernel elements we have adopted a similar notation as for the case of
the Landau-Migdal parameters although we have used Eq. (C.56) to define them.
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