
Proposal for an Object Oriented Process Modeling
Language

Prof. Dr. Reiner Anderl, Dipl.-Ing. Jens Malzacher, Dipl.-Ing. Jochen Raßler

Department of Computer Integrated Design (DiK), Technische Universität Darmstadt
Petersenstr. 30, 64287 Darmstadt

{Anderl, Malzacher, Rassler} @dik.tu-darmstadt.de

Abstract. Processes are very important for the success within many business
fields. They define the proper application of methods, technologies and
company structures in order to reach business goals. Not only manufacturing
processes have to be defined from the start point to their end, also other
processes like product development processes need a proper description to gain
success. For example in automotive industries complex product development
processes are necessary and defined prior to product development.

Over the last decades several product modeling languages have been developed
moving to object oriented modeling languages, such as UML, but the used
process modeling languages are still procedural. The paradigm shift caused by
object oriented description within product modeling languages has to be
transferred to process modeling languages.

This paper introduces an object oriented approach for process modeling. Using
UML as a starting point an object oriented process modeling method is
differentiated. The basic concepts which are needed for process modeling are
put into an object oriented context and are explained. The paper also deals with
the most important methods behind object oriented process modeling and gives
an outlook, what can be achieved by this approach.

Keywords: process modeling, object orientation, UML, modeling language

1 Introduction

All over industrial appliance the necessity of well-defined and powerful processes are
known. These processes range from manufacturing processes over business processes
even to product development processes. During the last decades they have been
analyzed and defined in the according companies.
But within most areas the well-known and defined processes are represented with old
methodologies. Discipline-specific methods have been developed to a new level.
Applications for that are cross-enterprise collaboration, e.g. in manufacturing or
product development networks, and cross-discipline collaboration like mechatronical
product development. Within cross-enterprise collaboration the involved companies
are not integrated by the means of deliverables anymore, but are integrated in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/11680479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complete processes now. The cross-discipline collaboration is similar. It has used to
be integration by the means of interfaces and key objectives, but now it is integrated
at any time of the process. Both examples lead to two major problems. First of all
cross integration is new every time a new collaboration starts. Typically a company is
involved in several different collaboration networks at a time. They are all different
but principally support the same process. Second problem is that most existing
process descriptions are based on procedural process description. These are not
powerful enough to meet requirements of describing cross collaboration.
A short example is given to illustrate the problem. Within product development the
VDI2221 describes the sequential process of product development that allows some
iteration. The ideas behind that process are roughly 50 years old now. Products and
with that product development has changed dramatically. Mechatronical product
development requires a coordinated development process of several disciplines like
mechanics, electrical and electronical devices or software development. Especially
software development does not fit properly into the VDI2221 process. With the
“Münchner Vorgehensmodell” (MVM) a new approach on a process model for
product development was defined using important stages. Depending on the problem
every lived process according to the MVM may take its own way between these
stages. Still there is no proper description for flexible processes, but processes like
MVM or cross collaborations are required.
So a new process modeling language shall meet the following requirements:
1. Support of hierarchical structures
2. Support of flexible interpretation of a defined process without getting incompatible

– support of generalization and specification
3. Robust process definition for flexible proceeding sequences of activities without

losing process comparability – support of interchangeability of processes
4. Support of different integration scenarios and levels without changing process

description at any time.—support of flexibility of processes
5. Easy to learn and read – audience of those process definitions are very broad
Comparing the requirements to the paradigm change in information modeling, which
is caused by the introduction of object orientation, a similar approach seems
straightforward for the progress of powerful process description. In this paper some
existing procedural oriented process modeling languages and those who call
themselves object oriented will be mentioned and a new object oriented process
modeling language will be introduced. A conclusion closes this paper.

2 Existing Process Modeling Languages

In this chapter some existing process modeling languages are mentioned. These are
IDEF0/SADT, Event-driven Process Chain (EPC), process modeling with UML,
Business Process Modeling Notation (BPMN), Integrated Enterprise Modeling,
Process Specification Language (PSL) and processes with the Semantic Object
Model. These are not all process modeling languages but seem to be the most
important. A short statement why these languages do not meet the requirements of
modern process definition is included.

2.1 IDEF0 / SADT

IDEF0 is a procedural process modeling language. It explicitly supports hierarchic
definition of processes. Complex processes can be defined in different level of details.
Each activity can be detailed as own sub process. [1], [2]
As it is a procedural language its descriptions are not very flexible regarding changes
in the proceeding sequence of activities. IDEF0 remains on unchangeable sequences.
It is easy to read but it tends to get very complicated on complex processes. Except
the support of the hierarchy IDEF0 meets no mentioned requirements.

2.2 Event-Driven Process Chain (EPC)

Event-driven Process Chain is a procedural process modeling language. Compared
with IDEF0 it has more objects in the language. EPC supports events and activities
between events. For the process flow EPC allows explicit branching and aggregation
of processes. Furthermore there are additional objects, which support the process.
These are information and/or resource objects, persons and/or organizations. [3], [4]
EPC is a procedural language supporting different level of details. Compared with
IDEF0 it is more powerful to support different integration scenarios and levels. EPC
is not very flexible regarding to changes in the proceeding sequence of activities. It is
easy to read but it tends to get complicated on complex processes. Therefore EPC
meets only two of the mentioned requirements.

2.3 Process Modeling with UML

The Unified Modeling Language (UML) offers an all spanning modeling language.
Regarding data and information model the language is object oriented. Looking at the
process modeling capabilities of UML the processes are still described in a procedural
way. Most important process diagrams within UML are the activity, state chart and
the sequence diagram. Each of the process diagrams shows the process in exactly one
instance. For each instantiation the object oriented nature of the data model allows
different processes. But the processes can not be described in a generic way within
these diagrams. Solely the use case diagram seems not to fit into that. There some
kind of process understanding is modeled in an abstract way. [5], [6], [7]
UML is not an object oriented language for process modeling. Each activity is seen as
an object. Relations between activities still base on logical states. Processes defined
with UML are not very flexible regarding changes in the proceeding sequence of
activities. Like EPC process modeling with UML supports different level of details
and different integration scenarios and levels. It is quiet easy to read and to handle.
Therefore process modeling with UML meets three of the mentioned requirements.

2.4 Business Process Modeling Notation (BPMN)

The Business Process Modeling Notation (BPMN) was developed to provide a
notation for process descriptions. The specification includes the visual appearance of

the elements and the semantics of the elements. Furthermore it deals with the
exchange of process definition either between tools or as scripts (e. g. mapped on the
Business Process Execution Language). [8], [2]
BPMN representation of processes is quite similar to the UML activity diagram.
Processes are defined as a sequence of activities in swim lanes. Again it is a state
based connection between object oriented activities. Therefore the verdict upon
BPMN is in this case similar to the UML verdict. BPMN meets three of five
mentioned requirements.

2.5 Integrated Enterprise Modeling

The Integrated Enterprise Modeling was developed out of SADT. It capsules
activities as objects and adds static information as job, product or resources. Due to
this further information it is possible to generate views on the complete enterprise, not
only on its processes. [9], [2]
Integrated Enterprise Modeling represents processes in a SADT kind of style. Due to
its retaining on logical sequence of activities it has no real advantage in modeling
flexible processes. It still lacks a powerful support of process flexibility.

2.6 Process Specification Language (PSL)

The Process Specification Language (PSL) is a neutral language for process
specification to serve as an interchange language to integrate multiple process-related
applications throughout the manufacturing process life cycle. As it only defines itself
in informal manner it has no formal and graphical constructs. Therefore it is not
capable for process modeling and a big audience. [10]

2.7 Semantic Object Model

The Semantic Object Model methodology is an enterprise architecture, which allows
to divide an enterprise model into the model layers enterprise plan, business process
model, and resources, each of them describing a business system completely and from
a specific point of view. Within the process model the activity objects are connected
with events. This concept allows flexible and robust process modeling. Out of this
diagram the interaction scheme and the task-event scheme are developed. [2] Within
interaction scheme relations also seem to be object oriented, but not within task-event
scheme. So both worlds seem to be mixed up. Due to the integrated approach of
enterprise plan, process and resources constructs are difficult to understand.

2.8 Short Statement on the Languages

Looking on the process modeling languages above we see that most of them already
think in object oriented activities. Here paradigm changes already carried out. The
definition of relations mostly remain on state based, proceeding sequences of

activities. Only SOM seems to be beyond that, but is not clarified well. To meet all
requirements a new approach shall be started.

3 Proposal on an Object Oriented Process Modeling Language

The previous chapter has summarized the known and used process modeling
languages and their limitations regarding the requirements introduced in chapter 1.
Therefore a new approach for a process modeling language will be introduced in this
chapter, which uses object oriented techniques and hence meets all requirements.

3.1 Towards an Object Oriented Process Modeling Language

UML is a well known and widely used modeling language for large software systems
that uses object oriented techniques to obtain modularization, software reuse,
flexibility and easy maintaining, among others. Expansions, such as SysML,
introduce additional methods to use UML in other contexts than software engineering.
Also the development of BPMN shows that UML is a technology that has a wide
acceptance by users, developers and managers. Thus UML is a good starting point for
the development of an object oriented process modeling language.
Fig. 1 shows the definition of a UML class diagram. The first field shows the class
name, the second field lists the attributes, and the third field lists the methods, which
can be used within the context of the class. The class itself is time invariant as it is a
generic description of the content of the context. But the instance of a class, an object,
is time variant, because it holds characteristic values that can be checked to given
times and can change over time. This means, the values can change, but the general
structure of an object (number and kind of attributes) can not change.
class

attributes

methods
Fig. 1. UML class diagram

Having a time variant object it can be derived by time regarding to [11]

bjectO
dT

dObject
TT

TObjectTObject
TT

&==
−
−

→
0

0)()(lim
0

.
(1)

Equation (1) shows that the content of an object, which means the attributes of an
instance of a class, may change over time. Given a rule to change the attributes of an
object one can express the change of the object’s content as a process instance, which
is shown in (2). It is necessary to mention that we use a discrete time T instead of
continuous time t to implement “time steps”. This is due to the result of the derivation
as different process instances may need different time intervals to execute.

instanceProcess=bjectO& (2)

As we have derived the object we now have to derive the object’s content. Fig. 1 uses
the word attributes as defined in UML, in equation (3) we will derive the attributes,
but using the word information to make the meaning clearer and more generic.

nformationI
dT

ondInformati
TT

TnInformatioTnInformatio
TT

&==
−
−

→
0

0)()(lim
0

(3)

The derivation of information shows that the information may change over time. So
the change of information, the change of attributes or data can be expressed as a
method, which is shown in (4).

MethodnformationI =& (4)

The last field of a UML class diagram and thus in the object holds the methods, which
act on the attributes. In the following we use the term operation for UML methods to
differentiate between UML and our introduction. Operation and the just derived
method are quite similar and are the same in several cases. In the following we derive
the operation, which is shown in equation (5).

perationO
dT

dOperation
TT

TOperationTOperation
TT

&==
−
−

→
0

0)()(lim
0

(5)

The meaning of the derivation of an operation is quite complex. To express this
mathematically we can use equations (3) to (5), which show, that dOperation / dT is
the first derivation of an operation or the second derivation of information. This
means dOperation / dT is the gradient of an operation or the curvature of information.
The expression gradient of an operation seems quite handsome and opens the
question: what does result in the change of an operation? Or, more exact, what does
result in a change of the quality of the execution of a method? Think also of the
similarity of operation and method. This question directly leads to the answer to the
problem, which is

Resource=perationO& . (6)

Resources influence the execution of an operation. The use of more or less resources
leads to faster or slower execution, influences the quality of the output, may lead to
more innovation and so on.
Equations (1) through (6) have shown the derivation from a time variant object to a
time variant process instance. Generalizing the process instance we get a process
class, which again is time invariant. The diagram of a process is shown in Fig. 2.
process

methods

resources
Fig. 2. PML Process class diagram

Further we introduce the term PML, which stands for Process Modeling Language
and can be seen as an extension to UML, as SysML is. Thus the known techniques of
inheritance, association, and cardinalities can be used. Implementing those techniques

processes can be modeled hierarchically with modularization, structure,
exchangeability, and reusability. Hence all the requirements described in chapter one
are fulfilled.
A last topic of the class diagrams that have to be covered are assurances, which is
done in the following in a qualitative way. In UML assurances can be defined to
guarantee the co-domain of attributes. The assurances are conditions or constraints
that have to be met by methods changing those attributes. In PML those assurances
are important too, but apply to methods. This is obvious in the derivation’s context.
Further, a condition can be seen as a constant signal. With the beginning of the life
time of an attribute, which is the same as the life time of an object, the condition starts
and remains constant over time. That is, the condition must hold for the life time of
the attribute. Deriving the constant signal is straightforward using a Fourier
transformation. The transformation results in the delta function; its derivation is a
constant frequency signal. Back transformed to the time domain the result is a Dirac
impulse [12], which can be interpreted as an event.
The event actually can be a condition becoming true, the trigger from a finished
method, or information becoming available.
Thus the assurances are derived too and can be used for process modeling, which is
shown in Fig. 3.
process

methods
{event}

resources
Fig. 3. PML class diagram with assurances

3.2 Meaning of PML

Above we have shown mathematically the derivation of PML. We have introduced
the terms of process instance, which can also be called project, and the process as a
generic class description. We now want to clarify those terms and their meaning.
Fig. 4 shows the used way to derive PML. Starting from the time invariant UML
class we have instantiated a time variant object. This is derived by time and leads to a
process instance, or project, which is time variant, and finally generalized to a time
invariant process.

class object

process process instance
/ project

time invariant time variant

Fig. 4. Derivation loop of PML

Looking to application level the meaning of all four constructs will be clearer. The
generic class model is used to represent the data model in a PDM system, e.g. as
STEP AP214. Within one project the class is instantiated and the object holds the

actual data of the designed model. The class therefore describes the product in a
generic way, while the real contents are stored in its instantiation.
The same is true on process level. The PML process class describes the process in a
generic way. It allows one to define all methods with assurances and resources needed
for the process. The instantiation of a process is a project. This means, the instance of
a process defines the current occurrence of resources, used data models etc.
This not only leads to a paradigm change in process modeling, but also in the view to
processes and projects.

3.3 Using UML Constructs in PML

In this chapter we will give a short overview of using UML constructs within PML to
gain the capability of hierarchical and modular modeling.
Inheritance
The concepts for inheritance of process classes follow the notation of standard UML
classes. Fig. 5 shows the inheritance of process classes. Starting with a generic
Creativity Process that has a Creativity Method and requires a problem becoming
available as event, but no Resource, two subclasses are inherited. The Intuitive
Process, which adds two Resources and the TRIZ Process, which adds one Resource.
Both subclasses inherit the Creativity Method from their superclass Creativity
Process, TRIZ Process overwrites the Creativity Method with its own technique of
creativity. Brainstorming and Brainwriting are subclasses from Intuitive Process,
inheriting the Resources and the Creativity Method, which they overwrite. Both of the
subclasses define their own additional Resource. Creativity Method takes an
argument, problem, which can have assurances, which means starting and ending
conditions can be defined.

Creativity process

creativity method
{problem avail.}

Intuitive process

Persons
Pens

Creativity process

creativity method
{problem avail.}

TRIZ solver

Brainstorming

creativity method
{problem avail.}

Whiteboard

Brainwriting

creativity method
{problem avail.}

Paper
Fig. 5. PML inheritance diagram

The process class also supports abstract methods, as well as public and private
methods.
Associations
The known concepts of associations from UML classes can be used for process
classes. Fig. 6 through Fig. 8 show the concepts of associations, aggregations, and

compositions. All associations can use cardinalities to implement the number of
relations they use.
The techniques introduced above enable generic process modeling that supports
structural and hierarchical modeling, including modularization and flexible design. As
classes are time invariant no statement about the “running time” is made, e.g. about
sequential or parallel process execution. The actual execution is determined
instantiating the process classes and can be further described within the project with
activity diagrams (logical description) or sequence diagrams (timely description).
State diagrams can be used to describe the project states at given times. These
instantiation diagrams are quite similar to the state-of-the-art object oriented process
modeling languages.
process class 1 process class 2association name

Fig. 6. Association

process class 1 process class 2
Fig. 7. Aggregation

process class 1 process class 2
Fig. 8. Composition

3.3 An Example

To illustrate our way for process modeling we prepared a short example coming from
manufacturing. We have a small enterprise which is focused on shape cutting
manufacturing. Its production process description is shown in Fig. 9. Note that the
process looks very similar to an UML class diagram.

Work part handling
Handling {work
part avail.}

manual work part
handling

Handling {work
part avail.}
Manpower capacity

automated
work part handling

Handling {work
part avail.}
Machine capacity
NC Code

Shape cutting
Shape cutting
{work part avail.}

Lathing

Shape cutting
{work part avail.}

Lathe machine
capacity

NC Code

Milling

Shape cutting
{work part avail.}

Milling machine
capacity

NC Code

Drilling

Shape cutting
{work part avail.}

Drilling machine
capacity

NC Code

Screw thread
cutting
Shape cutting
{work part avail.}

Screw thread
cutting capacity

Handled work part

(Preliminary) work piece

0…2 1…2 0…1

0…1

Fig. 9. Example process diagram for a small enterprise specialized on shape cutting

There are two main processes which are connected. The within the enterprise adopted
technologies inherit their attributes from them. Let us assume the enterprise wants to
manufacture the product shown in Fig. 10.

Fig. 10. First example product

In the first manufacturing lot 30 pieces of that product are produced. Due to some
reasons of machine and technician availability and lot size the project is instantiated
as shown in Fig. 11.

automated
work part handling

Handling {work
part avail.}
Machine 1
NC Code 11

Lathing

Shape cutting
{work part avail.}

Machine 2
NC Code 12

automated
work part handling

Handling {work
part avail.}
Machine 1
NC Code 13

Milling

Shape cutting
{work part avail.}

Machine 3
NC Code 14

Screw thread
cutting
Shape cutting
{work part avail.}

Technician

automated
work part handling

Handling {work
part avail.}
Machine 4
NC Code 15

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

Fig. 11. Example process diagram for a small enterprise specialized on shape cutting

After the first lot the enterprise wants to produce a second lot of five more pieces.
Therefore they changed the used machine (see Fig. 12). Please note it is still the same
product and the same process. The instantiation only has changed. It is a new project.

automated
work part handling

Handling {work
part avail.}
Machine 5
NC Code 31

Milling

Shape cutting
{work part avail.}

Machine 6
NC Code 32

Screw thread
cutting
Shape cutting
{work part avail.}

Technician

automated
work part handling

Handling {work
part avail.}
Machine 5
NC Code 34

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

Drilling

Shape cutting
{work part avail.}

Machine 6
NC Code 33

(P
re

lim
in

ar
y)

w

or
k

pi
ec

e

Fig. 12. Example process diagram for a small enterprise specialized on shape cutting

The enterprise produces also another product as shown in Fig. 13.

Fig. 13. Example process diagram for a small enterprise specialized on shape cutting

For production of a certain lot the project shown in Fig. 14 is used. Now we have a
different product from a different instantiation based on the same process description.

automated
work part handling

Handling {work
part avail.}
Machine 5
NC Code 21

Milling

Shape cutting
{work part avail.}

Machine 6
NC Code 22

Screw thread
cutting
Shape cutting
{work part avail.}

Machine 6

automated
work part handling

Handling {work
part avail.}
Machine 5
NC Code 23

H
an

dl
ed

 w
or

k
pa

rt

H
an

dl
ed

 w
or

k
pa

rt

(P
re

lim
in

ar
y)

w
or

k
pi

ec
e

Fig. 14. Example process diagram for a small enterprise specialized on shape cutting

In this example it became obvious how powerful process modeling and description
with PML is. Once defined we can instantiate different processes leading to same or
different results.

3.4 Further Topics to be Mentioned

In the available paper we only have used class diagrams and instances to show our
concept. The other UML diagrams seem to fit for PML. The derivation and usage of
those diagrams will be covered in future works.
The most important diagrams, and those which are in widest use in UML, are
sequence, activity and state diagrams. State diagrams can be directly used to show the
state of a process instance. Sequence diagrams are more complex and show the
running time of a process instance in a given occurrence. That means, it shows which
sub processes run parallel or sequential, the instance’ life time, etc. We have started
working on this topic and it seems obvious using discrete Fourier transformations or
z-transformations to derive sequence diagrams from instance diagrams using time
based states of the project. Activity diagrams follow a similar derivation, but the goal
is to get a logical description instead of a time-dependent one of the project running
time.
PML and UML can be linked together using two techniques. The data classes – data
which is generated along the value creation chain – can be used as input for methods
or be written to the edges of associations. If company structures, resources, and
similar information are modeled, this may best fit as associations for the resources.
Further, there exists the attributed association, which can be used for explicit cross
modeling between PML and UML.
Process management will underlay an enormous change, since process management
mainly reduces to process modeling. For existing processes this means that changes in
the generic process description leads to extensions of the process description using
e.g. inheritance to specialize or modify given processes. Another important topic is
project management. It is obvious that project management directly influences the
process instances. This implies the timely activities and the allocation of resources.

4 Conclusion

The strength of the shown approach for process modeling is the complete object
oriented view to processes and the differentiation and linkage of and between
processes and projects. As in data modeling process modeling can now be done in a
generic way. The introduced process description perfectly fits into PDM systems with
the process class descriptions. Hence process management is now process modeling at
running time. A process in a PDM system can be extended by more classes, that
extent existing classes, or specialize them. The instances of those processes are used
in projects, which define the parameters of the instances. The implemented technique
of processes and projects within PDM systems is then similar to data models, where
object orientation has been a standard since years. Further works will focus on the

topics of process and project management and will introduce examples of how to use
the object oriented process modeling approach to implement real world projects.
The object oriented approach of process modeling introduces a paradigm change not
only to the view of process and project management, but also enables new
possibilities for interoperability. Heavy use of modularization enables exchangeability
and process reusability and hence strengthens the integration of third-party processes.
This leads to more powerful cross-enterprise collaboration.
Another important point is the certification of processes. Depending on products or
customers it is necessary to have certified processes. Think of ISO 9000 or
certification for medical issues. With PML the process is only certified once but can
lead to different instantiations – regardless to the project (in terms of same or different
product).
Summarizing the development of PML we have explained existing process modeling
languages, which call themselves object oriented, but this is only true for the modeled
activities. Therefore the modeled processes still look like sequences of activities. In
this paper we have developed a new approach. By deriving time-dependent objects we
got process instances. Taking them alone we do not use the complete power of object
oriented modeling. The step from process instances to process classes helped us to
define a new object oriented process modeling language. As processes are not
modeled on instances anymore, but as abstract classes, we have a completely new
representation of processes. Running processes then are projects. With this definition
we need a new comprehension on process and project management.

References

1. IEEE Std 1320.1-1998. IEEE Standard for Functional Modeling Language—Syntax and
Semantics for IDEF0. New York: IEEE, 1998.

2. Bernius, P.; Mertins, K.; Schmidt, G. (Eds): Handbook on Architectures of Information
Systems, 2nd Edition. Springer Verlag Berlin, Heidelberg (2006)

3. Scheer, A.-W.: ARIS – Business Process Frameworks, 2nd Edition, Berlin, 1998
4. Scheer, A.-W.: ARIS – Business Process Modeling, 2nd Edition, Berlin, 1999
5. OMG: Unified Modeling Language: Superstructure v2.1.1, of Feb 2007, www.omg.org,

2007
6. Eriksson, H.-E.; Penker, M.: Business modeling with UML: business patterns at work.

John Wiley & Sons, Inc, New York (2000)
7. Burkhardt, R.: UML – Unified Modeling Language: Objektorientierte Modellierung für

die Praxis. Addison-Wesley-Longman, Bonn (1997)
8. OMG: Business Process Modeling Notation Specification, of Feb 2006, www.omg.org,

2006
9. Spur, G.; Mertins, K.; Jochem, R.; Warnecke, H.J.: Integrierte Unternehmensmodellierung

Beuth Verlag GmbH (1993)
10. International Standards Organization (ISO): ISO 18629 Series: Process Specification

Language of 2004, www.iso.org, 2004
11. Luh, W.: Mathematik für Naturwissenschaftler, Bd.1, Differentialrechnung und

Integralrechnung, Folgen und Reihen, Aula, Wiesbaden (1987)
12. Clausert, H., Wiesemann, G.: Grundgebiete der Elektrotechnik 2. Wechselströme,

Leitungen, Anwendungen der Laplace- und Z-Transformation, Oldenbourg, München
(2000)

