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Zusammenfassung

Die vorliegende Arbeit enthält zwei Teile. Der erste beschreibt die Untersuchung

von Zuständen gemischtsymmetrischer Struktur in 94Mo. Der zweite beschäftigt

sich mit der astrophysikalisch relevanten Linienform des ersten angeregten 1/2+

Zustandes in 9Be.

Im ersten Teil wird die Natur der Ein- und Zweiphonon 2+ Zustände in 94Mo

mit symmetrischem und gemischtsymmetrischem Charakter mit Hilfe hoch-

auflösender inelastischer Elektronen- und Protonenstreuung in einer kombinierten

Analyse untersucht. Die (e,e′)-Experimente wurden am 169◦-Spektrometer des

S-DALINAC durchgeführt. Daten wurden bei einer Strahlenergie Ee = 70 MeV

und Streuwinkeln Θe = 93◦ – 165◦ aufgenommen. Im Energieverlustmodus wurde

eine Energieauflösung von ∆E = 30 – 45 keV (”full width at half maximum”)

erreicht. Die (p,p′)-Messungen wurden am iThemba LABS, Südafrika, an einem

K600-Spektrometer bei einer Protonenenergie Ep = 200 MeV und Streuwinkeln

Θp = 4.5◦ – 26◦ durchgeführt. Die typische Energieauflösung war ∆E ≃ 35 keV.

Die Daten wurden mit Rechnungen im Quasiteilchen-Phonon-Modell, Schalenmo-

dell und Modell wechselwirkender Bosonen mit Proton-Neutron-Freiheitsgraden

verglichen. Die kombinierte Analyse zeigt, dass die Übergänge zum ersten

und dritten 2+ Zustand eine dominante Einphonon-Struktur besitzen. Der iso-

vektorielle Charakter des Übergangs zum gemischtsymmetrischen Einphonon-

Zustand innerhalb der Valenzschale kann anhand der verschiedenen Abhängig-

keit des Impulsübertrages in der Elektronen- und Protonenstreuung und der

Analyse der mikroskopischen Wellenfunktionen bestätigt werden. Die Anregung

der Zweiphonon-Zustände ist empfindlich auf Beimischungen von Einphonon-

Komponenten. Es kann gezeigt werden, dass diese klein sind. Nach der Berück-

sichtigung von Zweistufen-Prozessen in der Protonenstreuung werden quantitativ

konsistente Abschätzungen der Einphonon-Beiträge aus beiden experimentellen

Proben erhalten.

Im zweiten Teil der Arbeit wird die Linienform des ersten angeregten 1/2+ Zu-

standes in 9Be studiert. Spektren der Reaktion 9Be(e,e′) wurden am S-DALINAC

bei einer Elektronenenergie Ee = 73 MeV und Streuwinkeln von 93◦ und 141◦

mit hoher Energieauflösung bis zu Anregungsenergien Ex = 8 MeV gemessen.

Der Formfaktor des ersten angeregten Zustandes wird aus den Daten gewonnen.



Die Impulsübertragsabhängigkeit des Formfaktors wird durch moderne ”no core”

Schalenmodell-Rechnungen sehr gut wiedergegeben. Die astrophysikalisch rele-

vanten 9Be(γ, n) Wirkungsquerschnitte werden aus der (e,e′)-Daten extrahiert

und Resonanzparameter des ersten angeregten 1/2+ Zustandes in 9Be im Rah-

men der R-Matrix-Theorie in Einzustandsnäherung bestimmt. Gemittelt über al-

le verfügbare (e,e′)-Daten erhält man ER = 1.748(6) MeV und ΓR = 274(8) keV

in guter Übereinstimmung mit dem letzten direkten (γ, n)-Experiment. Die ex-

trahierte B(E1) Übergangsstärke ist allerdings um einen Faktor zwei kleiner als

in letzterem, was möglicherweise auf eine Verletzung des Siegert-Theorems am

Photonenpunkt für diesen Übergang hinweist.



Summary

The present work contains two parts. The first one is devoted to the investigation

of mixed-symmetry structure in 94Mo and the second one to the astrophysical

relevant line shape of the first excited 1/2+ state in 9Be.

In the first part of the thesis the nature of one- and two-phonon symmetric and

mixed-symmetric 2+ states in 94Mo is investigated with high-resolution inelastic

electron and proton scattering experiments in a combined analysis. The (e,e′) ex-

periments were carried out at the 169◦ magnetic spectrometer at the S-DALINAC.

Data were taken at a beam energy Ee = 70 MeV and scattering angles Θe = 93◦ –

165◦. In dispersion-matching mode an energy resolution ∆E = 30 – 45 keV (full

width at half maximum) was achieved. The (p,p′) measurements were perfor-

med at iThemba LABS, South Africa, using a K600 magnetic spectrometer at

a proton energy Ep = 200 MeV and scattering angles Θp = 4.5◦ – 26◦. Typical

energy resolutions were ∆E ≃ 35 keV. The data are compared to calculations in

the quasiparticle-phonon model, shell model and interacting boson model with

proton-neutron degrees of freedom. The combined analysis reveals a dominant

one-phonon structure of the transitions to the first and third 2+ states, as well

as an isovector character of the transition to the one-phonon mixed-symmetric

state within the valence shell by the different momentum-transfer dependence in

electron and proton scattering and the analysis of the microscopic wave functi-

ons. Excitation of the two-phonon states is sensitive to admixtures of one-phonon

components, which are found to be small. Quantitatively consistent estimates of

the one-phonon admixtures are obtained from both experimental probes when

two-step contributions to the proton scattering cross sections are taken into ac-

count.

In the second part of the thesis the line shape of the first excited 1/2+ state in 9Be

is studied. Spectra of the 9Be(e,e′) reaction were measured at the S-DALINAC

at an electron energy Ee = 73 MeV and scattering angles of 93◦ and 141◦ with

high energy resolution up to excitation energies Ex = 8 MeV. The form factor

of the first excited state has been extracted from the data. The momentum-

transfer dependence of its form factor is well reproduced by the modern no-

core shell model calculations. The astrophysical relevant 9Be(γ, n) cross sections

have been extracted from the (e,e′) data. The resonance parameters of the first



excited 1/2+ state in 9Be are derived in a one-level R-matrix approximation. The

deduced resonance parameters averaged over all available (e,e′) data are ER =

1.748(6) MeV and ΓR = 274(8) keV in agreement with the latest direct (γ, n)

experiment. However, the extracted B(E1) strength is a factor of two smaller

than found in the latter indicating a violation of Siegert’s theorem at the photon

point.
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PART I:
Nature of the Mixed-Symmetry 2+ States in 94Mo
from High-Resolution Electron and Proton Scat-
tering

1 Mixed-symmetry states

1.1 Introduction

The low-energy spectrum of even-even nuclei is dominated by simple collective

excitation modes [1]. These correlations in the nucleon motion are induced by the

long-range quadrupole component of the nuclear force. In spherical nuclei with

few valence nucleons, surface vibrations evolve which can be described as bosons,

so-called phonons. In an ideal case the excitation spectrum of a vibrator nucleus

is a harmonic oscillator with equidistant level spacings ~w, where phonons can

couple to multiphonon states with different angular momenta and parities. For

large numbers of the valence nucleons an elliptically deformed equilibrium state

becomes energetically more favorable. Its vibrational modes can be divided into

vibrations of the deformation parameter β (β-vibrations) and the form parameter

γ (γ-vibrations).

Multiphonon excitations of atomic nuclei are interesting collective structures of

the nuclear many-body system. Their existence enables us to judge the capability

of the corresponding phonon modes to act as building blocks of nuclear structure.

Possible deviations from harmonic phonon coupling occur due to the microscopic

structure of the underlying phonon modes and serve as a sensitive source of

information on the formation of collectivity in the nuclear many-body system.

The proton-neutron interaction in the nuclear valence shell has been known for a

long time as the driving force for the evolution of the low-energy nuclear structure.

This has been discussed in many ways, e.g. in terms of the evolution of collectivity

in heavy nuclei as a function of the product of valence proton and neutron num-

bers Nπ Nν [2]. More recently Otsuka et al. have identified the proton-neutron
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interaction as being responsible for the evolution of shell structure [3]. Therefore,

it is interesting to study those nuclear excitations that are most sensitive to the

proton-neutron interaction in the valence shell. One class of states are collecti-

ve isovector valence shell excitations that are frequently called mixed-symmetry

states (MSSs) in the terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron scattering experi-

ments [4] on the deformed nucleus 156Gd. A strong M1 excitation to a 1+ state

close to 3 MeV excitation energy, the scissors mode, was observed. The scissors

mode has subsequently been studied mainly in electron and photon scattering

experiments on deformed nuclei. Data are available for many nuclei in the rare-

earth mass region and interpretations of the systematics of the centroid and the

total strength as a function of deformation have been put forward [5–8].

Recently, interest has focused on the study of mixed-symmetry structures in vi-

brational nuclei, which are less explored. Experimentally, MSSs have been found

in a number of vibrational nuclei predominantly in the mass regions A = 90 and

130 (see, e.g., [9–16]). The best studied example is 94Mo. One- and two-phonon

MSSs in 94Mo have been identified from large absolute M1 transition strengths

obtained in a variety of experiments [10–13]. The present work reports a study

of low-energy 2+ states in 94Mo using electron and proton scattering in a combi-

ned analysis which turns out to be a powerful tool to elucidate the multiphonon

structure of nuclear excitations in vibrational nuclei.
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1.2 The interacting boson model

In 1975 the interacting boson model (IBM) was introduced by Arima and Iachel-

lo [17]. The basic idea of this model is the assumption that due to the pairing

force the valence nucleons outside of closed shells in the nucleus are coupled to

pairs, which can be described approximately as bosons. In the frame of IBM the

lowest collective excitations of even-even nuclei are described by these bosons

in the valence space, while the contributions from nucleons in closed shells are

neglected.

In the sd-IBM the valence space is considered to contain s- and d-bosons only. The

s- and d-boson is a pair of valence nucleons coupled to total angular momentum

and parity Jπ = 0+ and 2+, respectively. It is suited for the description of many

collective low-lying nuclear excitations of even spin and positive parity. The states

possess a total number of bosons N = ns + nd, where ns(d) is the number of

s(d) bosons. An essential requirement to the all operators is the conservation of

the total bosons number. States can be written in terms of the operators s† (s

boson creator), d†µ (d boson creator with projection quantum numbers µ = -2,

. . ., 2), and boson annihilation operators s and dµ. Instead of the dµ operator

d̃µ = (−1)−µd−µ is used as d boson annihilator. This is an essential assumption

to achieve rotational invariance of the Hamilton operator.

The complete Hamiltonian of the IBM can be expanded into a sum over all n-

body terms using the boson operators. Usually one restricts the Hamiltonian

to include one- and two-body terms only. Also the operators can be written in

terms of creation and annihilation operators, where one usually stops at the level

of one-body terms. It is convenient to switch to a multipole expansion of the

Hamiltonian and the transition operators. The multipole operators can then be

written as

n̂d = (d† · d̃) d-boson number operator,

L̂ =
√

10 [d†d̃](1) angular momentum operator,

Q̂χ = [s†d̃+ d†s](2) + χ[d†d̃](2) quadrupole operator,

Û = [d†d̃](3) octupole operator,

V̂ = [d†d̃](4) hexadecapole operator

3



and the Hamiltonian takes the form

Ĥ = E0 + εn̂d + λ(L̂ · L̂) + k(Q̂χ · Q̂χ) + c3(Û · Û) + c4(V̂ · V̂ ). (1.1)

The transition operators are given by

T̂ (E0) = γ0 + β0n̂d, (1.2)

T̂ (M1) = gL̂, (1.3)

T̂ (E2) = eeffQ̂
χ, (1.4)

T̂ (M3) = β3Û , (1.5)

T̂ (E4) = β4V̂ , (1.6)

including parity-conserving operators only as the model describes only positive

parity states. For the description of negative parity states, bosons with an odd

total angular momentum, e.g., an f -boson (Jπ = 3−), must be added.

The simplest version of this model, the IBM-1 does not distinguish between the

proton and neutron bosons. Thus, it is suited for the description of proton-neutron

(pn) fully symmetric states (FSSs).

In contrast to IBM-1, in the IBM-2 the pn degrees of freedom is distinguished. It

predicts the existence of MSSs [18] – a new class of collective nuclear states which

are not fully symmetric with respect to the pn degrees of freedom. The IBM-2

introduces proton and neutron s- and d-bosons.

The Hamiltonian operator of the IBM-2 schematically has the following form

Ĥ = Ĥπ + Ĥν + V̂πν , (1.7)

where Ĥπ and Ĥν can be written in a multipole expansion in completely analogy

to that of the IBM-1 given in Eq. (1.1). The term of the pn interaction V̂πν

contains cross terms of the proton and neutron multipole operators of the kind,

e.g., (Qχπ

π ·Qχν

ν ). The transition operators are sums over the proton and neutron

transition operators analog to those in Eqs. (1.2) – (1.6), e.g., the M1 and E2

transition operators are given by

T̂ (M1) =

√

3

4π

(

gπL̂π + gνL̂ν

)

, (1.8)
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T̂ (E2) = eπQ̂
χπ

π + eνQ̂
χν

ν . (1.9)

One often uses a version of the Hamiltonian of Eq. (1.7) including only the boson

number operators and the quadrupole interaction, which is again motivated to

the dominance of the pairing interaction. In addition, the Majorana operator

M̂πν =
[

s†νd
†
π − s†πd

†
ν

](2) ·
[

s̃ν d̃π − s̃πd̃ν

](2)

− 2
3

∑

k=1

[

d†νd
†
π

](k) ·
[

d̃ν d̃π

](k)

(1.10)

is introduced, which represents a symmetry energy favouring states with protons

and neutrons in phase. This operator causes an overall energy shift of MSSs.

1.3 F -spin

In the IBM-2 the definition of MSSs is formalized by the bosonic F -spin symme-

try [19]. One finds eigenstates where wave functions are not symmetric against

exchange of a proton and neutron boson. Therefore, the F -spin is introduced. F -

spin is a bosonic analogon to the isospin formalism. Proton and neutron bosons

have F = 1/2 and the z-projection is Fz = +1/2 for protons and Fz = −1/2 for

neutrons. For a system of Nπ proton bosons and Nν neutron bosons the maximum

F -spin is given by

Fmax =
Nπ +Nν

2
≥ F ≥ |Nπ −Nν |

2
. (1.11)

States with maximum F -spin, i.e. F = Fmax are the proton-neutron FSSs. While

the MSSs have F < Fmax. The investigation of such MSSs is of great interest,

because they provide a better understanding of the pn degrees of freedom in heavy

nuclei. In the frame of IBM-2 strong M1 transitions between low-lying MSSs and

FSSs were predicted [18,20].

5



1.4 Mixed symmetry in the Q-phonon coupling
scheme

The experimental signatures of mixed-symmetry states can be clarified by the

Q-phonon coupling scheme [21]. From data and nuclear models like the IBM,

one learns about quadrupole collectivity in the low-lying excitations of even-

even nuclei. In nearly all even-even nuclei the first excited state is a 2+ state.

Taking into account the importance of the quadrupole interaction one can build

a simple and intuitive scheme describing the low-lying levels of even-even nuclei

as excitations by a quadrupole operator Q̂, hence called Q-phonon scheme. The

Q-phonon scheme can be expanded to include proton and neutron Q-phonons

and allows the description of mixed-symmetry states. For a symmetric coupling

of the proton and neutron quadrupole operators one obtains a proton-neutron

symmetric Q-phonon by

Q̂s = Q̂π + Q̂ν . (1.12)

The first 2+ state, the proton-neutron fully symmetric one-phonon 2+
1,FSS state

is created by acting with the quadrupole operator on the ground state

|2+
1,FSS〉 = NsQ̂s|0+

1 〉, (1.13)

with a proper normalization constant Ns. A second combination of the proton

and neutron quadrupole operators is

Q̂ms = a Q̂π − b Q̂ν , (1.14)

where a and b are inserted to guarantee orthogonality to the symmetricQ-phonon.

Acting with this operator on the ground state leads to the mixed-symmetry one-

phonon 2+
1,MSS state,

|2+
1,MSS〉 = NmsQ̂ms|0+

1 〉, (1.15)

the fundamental mode or building block of the quadrupole-collective mixed-

symmetry structures.

Figure 1.1 shows a Q-phonon scheme of the lowest-lying symmetric and mixed-

symmetric one- and two-phonon states in even-even vibrational nuclei and their

expected experimental signatures. A strongly collective E2 transition from the

6



F = F

(FSS)
max F = F -1

(MSS)
max

Qms

0 ,...,4ms ms

2ms

+

M1

0 ,2 ,42 2 1

+ + +

Q Qs s

Q Qs ms

E2

+

21

+

Qs

01

+ +

Fig. 1.1: Q-phonon scheme of low-lying vibrational one- and two-phonon sym-

metric and mixed-symmetry states. Dashed arrows denote E2 and solid

arrows M1 transitions. Strongly collective E2 transitions are expected

from the creation or annihilation of a Qs-phonon. Weakly collective E2

transitions are expected for a Qms-phonon. Enhanced M1 transitions are

predicted between the mixed-symmetric and symmetric states which re-

sult from the exchange of one Qms- with one Qs-phonon.

symmetric one-phonon state to the ground state is expected, while the 2+
1,MSS

should be of comparably weak collectivity due to the destructive interference

between the proton and neutron E2 matrix elements (see Eqs. (1.14) – (1.15)).

It should be noted that in this plot the lowest 2+ state is always the symmetric

one.

Following the Q-phonon scheme, higher-lying levels are multiphonon configurati-

ons generated by coupling Q-phonons to total spin J . Two symmetric phonons

form a triplet of states

|J+
s 〉 ∝ (Q̂sQ̂s)

(J)|0+
1 〉, with J = 0, 2, 4. (1.16)

The mixed-symmetry Qms-phonon may couple to the symmetric Qs as well. As

7



we then deal with non-identical phonons, a quintuplet of states is formed

|J+
ms〉 ∝ (Q̂sQ̂ms)

(J)|0+
1 〉, with J = 0, 1, 2, 3, 4. (1.17)

In terms of IBM-2 these states have an F -spin of F = Fmax − 1. It should be

noted that the 1+ member of this multiplet evolves into the well-known scissors

mode for rotational nuclei discovered in 156Gd [4]. Figure 1.1 summarizes the

general feature, that annihilation or creation of a Qs-phonon should lead to a

strongly collective E2 transition, while for the Qms-phonon only a weak collective

transition is expected. Within the IBM-2 approach one finds, that the exchange

of a Qms- and Qs-phonon should result in an enhanced M1 transition with a

matrix element of the order of 1 µN .

1.5 Case of 94Mo

The purpose of the first part of this Dissertation is an investigation of the na-

ture of the one- and two-phonon fully symmetric and mixed-symmetry 2+ states

considering 94Mo as an example. This nucleus is formed by Z = 42 protons and

N = 52 neutrons. With the small number of only two valence neutrons outside

the N = 50 neutron shell closure, this nucleus is expected to exhibit the pro-

perties of a quantum vibrator. Its low-energy spectrum is well studied and most

of one- and two-phonon fully symmetric and mixed-symmetry 2+ states have al-

ready been identified [10–13]. The relevant excitations with electron and proton

inelastic scattering are studied. Since in both electron and proton scattering the

one-phonon components of the nuclear wave function are predominantly excited

but the isospin differs, combining both experimental probes allows to

• test the fundamental phonon character of nuclear states,

• decompose the nuclear wave function into isoscalar and isovector parts, and

• estimate the purity of the two-phonon states.

8



2 Experiments

2.1 Electron scattering at the S-DALINAC

2.1.1 S-DALINAC

The superconducting Darmstadt electron linear accelerator (S-DALINAC) was

constructed at the Institute of Nuclear Physics of the Darmstadt Technical Uni-

versity [22]. It became the first superconducting continuous-wave linear accelera-

tor of electrons in Europe. Since 1991 the S-DALINAC delivers electron beams of

energies up to around 100 MeV with currents of about 10 µA routinely for a wide

range of experiments on nuclear physics. A schematic layout is shown in Fig. 2.1.

5 m

Fig. 2.1: Experimental facilities at the S-DALINAC. ©1 Nuclear resonance fluo-

rescence. ©2 Polarizability of the nucleon. ©3 (γ, γ′x) experiments at

NEPTUN tagger. ©4 (e,e′x) and 180◦ experiments at QCLAM spectro-

meter. ©5 High-resolution (e,e′) experiments at 169◦ spectrometer.

The electrons are emitted by a thermionic gun and then accelerated electrostati-

cally to an energy of 250 keV. The required time structure of the electron beam for

radio-frequency acceleration in a 3 GHz field is created by a chopper/prebuncher

system operating at room temperature. The superconducting injector linac con-

sists of one 2-cell, one 5-cell, and two standard 20-cell niobium cavities cooled to

2 K by liquid helium. The beam leaving the injector has an energy up to 10 MeV

and can be used for nuclear resonance fluorescence ©1 and photoactivation ex-

periments [23]. Alternatively, it can be bent by 180◦ and injected into the main
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accelerator section. This superconducting linac has eight 20-cell cavities which

provide an energy gain of up to 40 MeV. After passing through the main linac

the electron beam may be extracted to the experimental hall or it can be recircu-

lated and reinjected once or twice, before it is delivered to several experimental

facilities. A wide range of electron scattering experiments is carried out using the

QCLAM spectrometer ©4 and a high-resolution electron scattering facility with

a 169◦ spectrometer ©5 . The QCLAM spectrometer has a large angular and mo-

mentum acceptance and is mainly used for (e,e′x) coincidence experiments [24–27]

and (e,e′) at 180◦ scattering [28–30].

Additionally, a spectrometer for high-resolution (e,e′) experiments [31–34] which

was already used with the old normal-conducting accelerator DALINAC is availa-

ble. This spectrometer can be operated in a so-called energy-loss mode. The main

advantage of this mode is that the resolution of the electron scattering experiment

does not depend on the energy spread of the primary electron beam. In order to

carry out high-resolution electron scattering experiments especially with heavy

nuclei, where the level densities are high, a new detector system has recently been

developed at the spectrometer [35,36]. The old scintillator system is replaced by

a modern silicon microstrip detector.

2.1.2 High-resolution electron scattering facility and 169◦

magnetic spectrometer

The layout of the beam transport system to the 169◦ spectrometer is shown

in Fig. 2.2. The electron beam from the accelerator is guided to the energy-

loss beam transport system. It consists of two 70◦ bending magnets (E4BM01

and E4BM02) symmetrically placed around an energy-defining slit system. This

system includes a vertical system of slits and a horizontal comb which consists

of a water-cooled copper block notched in five slits with a width of 1 mm at a

distance of 2 mm. Because of the ion-optical properties of the beam-dispersion

system the electron beam is dispersively broadened in horizontal direction and

the electrons pass through the separate slits with different energies. The comb is

needed for the beam optimisation in the energy-loss mode. Its image, that is the

five strips, is projected on the detector. The beam adjustment is optimal when

one spot (from elastic scattering) of minimal size is mapped on the detector. By
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169° Spectrometer

Fig. 2.2: High-resolution electron scattering facility.

different settings of the quadrupole singlets E4QUO3 and E4QUO4, the electron

beam is made dispersive at the exit E4BM02.

Due to lack of space the spectrometer is placed vertically. A rotator, consisting of

five quadrupoles (labelled as E4QR01− 05), turns the dispersion plane to 90◦ in

the dispersive plane of the 169◦ spectrometer. An accurate adjustment is achieved

with the help of the quadrupole triplets E4QU05 and E4QU06. The scattering

chamber allows measurements at angles of 33 – 165◦ in steps of 12◦. A quadrupole

doublet behind the target reduces the beam divergence due to multiple scattering

and delivers it to a Faraday cup, which simultaneously serves as a current monitor.

The scattered electrons are momentum analyzed in the 169◦ spectrometer.
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1

2

3

Fig. 2.3: A photo of the 169◦ spectrometer. The electron beam goes from left to

the right, hits the target placed in the scattering chamber ©1 . Electrons

scattered in the solid angle Ω are momentum analysed by the dipole

magnet©2 and focused on the focal plane©3 where the detector system

is placed.

The energy-loss spectrometer is shown in Fig. 2.3. The electron beam from the

accelerator (electron beam goes from left to the right) hits the target which is

placed inside the scattering chamber ©1 at the pivot point of the spectrometer.

The scattered electrons pass the spectrometer entrance slit defining the accep-

ted solid angle Ω, and are deflected by the dipole magnet ©2 to an angle of

π
√

8/3 = 169.7◦ (the so-called ”magic” angle) which was chosen to improve the
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ion-optical properties of the spectrometer [32]. At the exit of the spectrometer a

vacuum chamber hosting the focal plane detector ©3 is mounted.

Some important parameters of the 169◦ spectrometer are listed in Tab. 2.1.

Tab. 2.1: Main parameters of 169◦ spectrometer.

Electron energy range 20 − 120 MeV

Angle range 33◦ − 165◦

Angle step 12◦

Deflection angle 169.7◦ ± 0.1◦

Radius of central trajectory 1.0 m

Tilt of focal plane 35◦ ± 2◦

Dispersion 3.76 cm/%

Momentum acceptance ± 2.1%

Resolution (point source, FWHM) 0.015%

Maximal solid angle acceptance 6 msr

Field strength 0.6 − 4.0 kG

Weight:

Spectrometer 17 t

Shielding (safe load) 10 t

2.1.3 Focal plane detector system

The high-resolution electron scattering experiments at S-DALINAC have been

successfully realized for many years using the 169◦ spectrometer with a focal plane

detector system based on overlapping scintillators [31–34]. However, the use of

plastic scintillators showed some significant drawbacks like different individual

detector efficiencies which required lengthy repetitions of the measurements.

An upgrade of the complete beam line for dispersion matching including the

vacuum system, the focal plane detection system and its background shielding
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Fig. 2.4: View of silicon strip detectors mounted in the magnetic spectrometer

focal plane. ©1 Magnetic spectrometer iron yoke. ©2 Vacuum connec-

tions of bias signals to the preamplifiers. ©3 Vacuum connection of the

preamplifiers analog signals. ©4 Detector unit. ©5 Vacuum connections

of supply voltages and control signals of the preamplifiers. ©6 Detector

case. ©7 Readout electronics and HV main adaptor (from [36]).

was recently performed. A new focal plane detector system based on modern

silicon microstrip detectors together with fast readout electronics [35, 36] and a

new radiation shielding [37] have been developed. The main advantages of the

new detector system are the ability to process very high count rates, a high

spatial resolution and an easy mechanical setup. It consists of silicon microstrip

detectors and a trigger detector. Figure 2.4 presents a picture of the Si microstrip

detector. There is no single-strip detector available covering the full focal plane

length of 24 cm. Therefore, four single-strip detectors were mounted together,

each providing 96 strips with a thickness of 500 µm and a pitch of 650 µm. The

guard ring around the 96 strips and the printed circuit board carrier result in an

inactive zone of about 7 mm (or 10.5 strips) between two adjacent detectors. In
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the measurements these blind spots in the spectrum are shifted in regular time

intervals by slight variations of the spectrometer magnetic field.

For background suppression a trigger detector system is used. It consists of a

40 cm long plastic scintillator with a thickness of 5 mm (material NE102A) and

40 cm long Cherenkov counter of 5 cm thickness run in coincidence.

2.2 Proton scattering at the iThemba LABS

2.2.1 Separated-sector cyclotron facility

The inelastic proton scattering experiments were carried out at the iThemba

LABS (Themba means hope, and LABS stands for Laboratory for Accelerator

Based Sciences) located in Somerset West, near Cape Town, South Africa.

Figure 2.5 shows schematically the layout of the main accelerator together with

related installations for various experiments and applications. A primary beam

of protons and light ions can be produced and pre-accelerated by an injector

cyclotron SPC1. Another injector cyclotron SPC2 with an external ion sources is

used for polarized protons and heavy ions. The heart of the facility is a separated-

sector cyclotron (SSC), a four-sector machine with a sector angle of 34◦. After

the injection into the cyclotron the particles start to gain energy while circulating

in the RF and magnetic fields on the cyclotron orbits, the largest proton energy

gain per turn being about 1 MeV. The maximum energy achievable for protons

is 200 MeV. At the exit high-energy beams of various ions can be extracted and

used in a wide range of applications, like radioactive isotope production, proton

and neutron therapy of cancer patients and fundamental nuclear physics research.

15



3 4 9

1 2

5

6

7

8 10

11

12

Fig. 2.5: A layout of the experimental facilities at the iThemba LABS. ©1 ECR

ion source. ©2 SPC1 injector cyclotron. ©3 SPC2 injector cyclotron.

©4 Separated-sector cyclotron. ©5 Radioactive isotope production.

©6 Proton therapy. ©7 Neutron therapy. ©8 Experiments with char-

ged particles. ©9 Experiments with neutron beams. ©10 γ-spectroscopy.

©11 K600 magnetic spectrometer. ©12 Beam swinger magnet.
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2.2.2 K600 spectrometer

For the present experiment proton beams were delivered to the experimental hall

of the K600 spectrometer, which has been used intensively for high-resolution

inelastic scattering experiments [38–41]. A layout of the experimental setup is

displayed in Fig. 2.6. The beam enters the scattering chamber ©1 with a set of

beam
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SSC

to
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 c
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4

5

6
7
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9

Fig. 2.6: An overview of the K600 spectrometer at the iThemba LABS. ©1 Scat-

tering chamber. ©2 Internal Faraday cup for small-angle scattering ex-

periments. ©3 Set of collimators. ©4 Sextupole magnet. ©5 Quadru-

pole magnet. ©6 First dipole. ©7 Second dipole. ©8 Two horizontal

and one vertical drift chamber. ©9 Two plastic scintillators.

targets put on a target ladder. For measurements under small scattering angles

an internal Faraday cup ©2 is used as a beam dump. Scattered protons on the

target are collimated by one of the collimators installed on the carousel ©3 , which

defines the solid angle. The protons then pass through the ion-optical system of

the K600 spectrometer, which consists of a sextupole magnet ©4 , a quadrupole

magnet ©5 for vertical focussing, and two horizontally bending dipole magnets

©6 and ©7 . The particles are focused on the focal plane of the spectrometer,

where a detector system is placed, consisting of three miltiwire drift chambers©8 ,
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two horizontal and one vertical for event reconstruction. Two plastic scintillators

©9 located behind the drift chambers serve as a trigger and particle identification

detector.

2.3 Lateral dispersion matching technique

For the experiments discussed in this thesis, high energy resolution is of utmost

importance in order to resolve the nuclear transitions of specific interest. Usually,

the energy resolution is limited by the relative beam energy spread (typically

∆E/E ≃ 10−3). This limitation can be overcome if the characteristics of the beam

are matched to those required by the ion-optical properties of the spectrometer

by adjusting the beam line parameters.

The lateral dispersion matching technique is realized in both experimental facili-

ties at the S-DALINAC and at iThemba LABS, respectively. The basic principle

of lateral dispersion matching (often also called energy-loss mode) is shown sche-

matically in Fig. 2.7 and requires an adjustment of the beam dispersion, emit-

tance and spot size at the target position using beam line focussing and steering

elements to match with the ion-optical properties of the spectrometer. In the

conventional dispersive mode (on the l.h.s. of Fig. 2.7), the beam is focussed to

a spot at the target. If the scattered particles are not monoenergetic, but have

some energy spread ∆E, then trajectories having slightly different energies will

cross it under slightly different angles. The image resolution in such a case will

be affected by the initial energy spread of the beam. In the lateral dispersion

matching mode (on the r.h.s. of Fig. 2.7) the beam is projected on the target by

the beam transport system as an extended spot. Its size corresponds to the beam

energy spread ∆E. Thus, one adjusts the dispersion of the beam at the target

position in such a way that the trajectories of different momenta (energies) tra-

verse different path lengths through the magnetic field of the spectrometer, and

are focussed back on the focal plane at one spot (solid line), thus providing better

image resolution almost unaffected by the residual spread of the primary beam

energy. If the particles lose some energy δE by passing through the target the be-

am spot on the focal plane is displaced (dashed line) by the distance determined
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Fig. 2.7: Dispersion matching technique. Left: dispersive mode. The position and

the angle of scattered particles at the focal plane depend on the initial

energy spread ∆E, which thereby limits the resolution. Right: lateral

dispersion matching. It allows to improve the resolution by spatially

spreading the beam spot at the target position according to the disper-

sion of the beam, matching it to that of the spectrometer.

by the energy loss of electrons in the target. That makes the system sensitive to

the energy loss in the target only and independent of the energy spread of the

beam. Such a technique allows to achieve a relative energy resolution down to

∆E/E ≃ 1×10−4.

2.4 Experiments

The (e,e′) experiments were carried out at the high-resolution 169◦ magnetic

spectrometer of the S-DALINAC. The data presented on the l.h.s. of Fig. 2.8 were

taken at an incident electron beam energy Ee = 70 MeV and scattering angles Θe

= 93◦ – 165◦ with typical beam currents of 2 µA. For the measurements a self-

supporting 94Mo target enriched to 91.6% with an areal density of 9.65 mg/cm2
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was used. In dispersion-matching mode an energy resolution ∆E ≃ 30 – 45 keV

(full width at half maximum, FWHM) was achieved.

High-resolution (p,p′) measurements were performed at the cyclotron of iThemba

LABS, South Africa, using the K600 magnetic spectrometer. The target consisted

of a self-supporting molybdenum foil enriched to 93.9% 94Mo of 1.2 mg/cm2 areal

density. Data were taken at a proton energy Ep = 200 MeV and scattering angles

Θp = 4.5◦ – 26◦ with currents varying from 1 to 30 nA, depending on scattering

angle. On the r.h.s. of Fig. 2.8 examples of the spectra measured at scattering

angles of 6◦, 9◦, 22◦, and 26◦ are presented up to an excitation energy of 4 MeV.

Typical energy resolutions were ∆E ≃ 35 keV (FWHM).
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Fig. 2.8: Representative spectra of 94Mo(e,e′) reaction (left) and 94Mo(p,p′) reaction (right) measured in the present work.
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The prominent peaks correspond to the elastic line, the collective one-phonon

FSS (2+
1 , Ex = 0.871 MeV) and 3−1 (Ex = 2.534 MeV) states, and the suggested

one-phonon 2+ MSS (2+
3 , Ex = 2.067 MeV). The dominance of the transitions to

the 2+
1 and 2+

3 states indicates already the concentration of one-phonon strength

in their wave functions, as visible in Fig. 2.9.
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Fig. 2.9: Top: spectrum of the 94Mo(e,e′) reaction at Ee = 70 MeV and Θe =

141◦. Bottom: spectrum of the 94Mo(p,p′) reaction at Ep = 200 MeV

and Θp = 9◦. Insets: zoom on the Ex = 1.5 – 4 MeV region of the

respective spectra.

The candidates for the two-phonon FSS (2+
2 , Ex = 1.864 MeV) and MSS (2+

5 ,

Ex = 2.870 MeV) are only weakly excited, but the extended view (insets of

Fig. 2.9) demonstrates their observation as well as that of all other 2+ states

known [13] up to 4 MeV due to the good energy resolution in both experiments.
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3 Data analysis

3.1 Electron scattering

3.1.1 Decomposition of the spectra

The spectra of the present 94Mo(e,e′) experiment are assumed to have no instru-

mental, but physical background due to radiative processes. For the analysis of

the discrete states the line area content Aexp
in was determined by adjusting a model

function for the line shape of the measured spectrum using the program FIT [42].

For the description of electron scattering an asymmetric Gaussian function is

used as a line shape with a width modified on the low-energy side due to energy

losses of the electron in target. The radiative tail is approximated by a hyperbolic

function continuously connected to the Gaussian function. For the decomposition

of the spectra the following parameterisation [43] of the line shape was used

y = y0 ·



















exp [− ln 2 · (x− x0)
2/∆x2

1] x ≤ x0

exp [− ln 2 · (x− x0)
2/∆x2

2] x0 < x ≤ x0 + η∆x2

A/(B + x− x0)
γ x > x0 + η∆x2,

(3.1)

with

x0 the energy at the peak,

y0 the count rate at the peak maximum,

∆x1,2 the half widths at half maximum for Ex < x0 and Ex > x0, respectively,

η the starting point of the radiative tail in units of ∆x2,

γ the exponent of the hyperbolic function of the radiative tail.

The parameters A and B result from the condition of a continuously differentiable

connection of the individual functions at the intersection point x0 + η∆x2.

The area content Aexp
in is calculated as an integral of the function used in the pa-

rameterisation. Because the spectra of the inelastic scattered electrons cannot be
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measured up to infinitely small energies, the area under the peak is integrated up

to a cutoff limit Ecutoff = x0 +5∆x1. The calculated peak area Aexp
in is multiplied

by correction factors for the radiation effects

Ain = Aexp
in eδS+δB+δI . (3.2)

The first of the radiative corrections, the Schwinger correction δS, accounts for

the loss of the peak area due to those electrons degraded because of the emission

of real soft photons as well as emission and absorption of virtual photons of any

energy. The bremsstrahlung correction δB takes into account effects which cause

an asymmetric distortion of the peak due to small angle scattering from electrons

and nuclei other than the scattering nucleus. The third effect, Landau straggling

(ionization correction) δI , describes the broadening of the peak due to energy loss

from atomic excitations and ionisation. A detailed description of these corrections

can be found, e.g., in [44].

3.1.2 Energy calibration

The momentum acceptance of the spectrometer is about 4%. That means, for

example, an energy byte is only 2.92 MeV for an incident electron energy Ee =

73 MeV. To measure larger energy regions one needs to perform measurements

for different settings of the spectrometer magnetic field. Then it is necessary

to perform also a calibration measurement for each spectrometer magnetic field

setting using known prominent transitions. The calibration is performed using

a direct correspondence between the scattered electron energy E ′ and a channel

number N . One has to take into account the mean electron energy loss ∆E in the

target. This can be roughly estimated with the help of the following expression

∆E [MeV] = 1.4 × teff [g/cm2], (3.3)

where teff is the effective target thickness. For measurements at the scattering

angles Θe ≤ 141◦ the target is placed in transmission geometry (perpendicular

to the scattering angle bisector). In this case the electrons have an effective path

length teff = t/ cos(Θe/2), where t and Θe are the target thickness and the

scattering angle, respectively. Measurements at angles Θe > 141◦ are possible

only in the reflection geometry, the target is placed parallel to the scattering
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angle bisector. In this case the effective path length of the electrons in the target

is teff = t/ sin(Θe/2).

The energy of scattered electrons taking into account the target nucleus recoil

and the electron energy before and after scattering can be expressed as

E ′ =
(Ee − 0.5 ∆E) − Ex(1 + Ex

2Mc2
)

1 +
2 (Ee − 0.5 ∆E)

Mc2
sin2 (Θe/2)

− 0.5 ∆E = f(N), (3.4)

with Ei, Ex, M being the initial electron energy, excitation energy and mass of

the target nucleus, respectively.

Due to the fact that the spectrometer magnetic field is quite homogeneous, the

function f(N) is expected to be linear. Thus, solving Eq. (3.4) one gets a quadratic

equation relative to Ex. This calibration is valid only for a given spectrometer

magnetic field setting and has to be performed independently for other settings.

In order to combine the excitation energy spectra measured at different magnetic

field settings it is necessary to reduce all spectra to the same energy bin size.

To calibrate the 94Mo(e,e′) spectra the precisely known excitation energies (from

Ref. [13]) of the prominent transitions in 94Mo to states like 0+
1 , 2+

1 , 2+
3 , 3−1 were

used.

3.1.3 Determination of the cross sections

The absolute value of the differential cross sections can be calculated from the

peak area Aexp
in corrected for the radiative correction (see Eq. (3.2)), for the detec-

tion efficiency (discussed later in Sec. 8.2), and for the dead time of the electronics

according to

dσ

dΩ
= Aexp

in · 1

∆Ω
· e
It

· M

teff NA

, (3.5)

where ∆Ω is the spectrometer solid angle [sr], It the accumulated charge [C], M

the mass number [g/mol], teff the effective areal density of the target [g/cm2]

and NA the Avogadro number [1/mol].
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3.1.4 Error estimate

The measured (e,e′) cross sections contain not only statistical but also the follo-

wing systematic errors which contribute to the total uncertainty in the determi-

nation of the cross sections:

• inaccuracy in the determination of the solid angle (≈ 5%),

• uncertainty in the determination of the accumulated charge in the Faraday

cup (≈ 5%),

• error in the dead-time correction (< 1%),

• target inhomogeneity (≈ 5%).

The errors although being systematic ones were treated as independent of each

other and therefore added quadratically resulting in a total systematic error of

about 9%. The statistical uncertainties are taken from the error in the area defi-

nition during the fit of the lines in the spectrum with model functions.

3.2 Proton scattering

3.2.1 Peak deconvolution and background subtraction

The total number of events of each state was obtained from a deconvolution of the

spectrum by a peak fitting software [45]. The physical background in the spectra

from the hydrogen contamination in the target was estimated by an empirical

smooth function.

3.2.2 Energy calibration

In binary reaction measurements, the energy of the scattered particle E ′ is given

by the following equation

E ′ = Ei − (Ex + ∆E + Erec +Q), (3.6)
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where Ei, Ex, ∆E, Erec, and Q are the energy of incident particle, excitation

energy of the target nucleus, energy loss of incident particle when penetrating

the target, the recoil energy and the reaction Q-value, respectively. For scattering

reactions Q = 0. In order to calibrate the 94Mo(p,p′) spectra the accurately known

excitation energies (Ref. [13]) of the prominent transitions to the 0+
1 , 2+

1 , 2+
3 , 3−1

levels in 94Mo were used.

3.2.3 Determination of the cross sections

Cross sections were calculated similar as described in Sec. 3.1.3. The line areas

Aexp
in were corrected for the detection efficiency of the multiwire drift chambers

(the total efficiency is about 85%), and for the dead time of the electronics.

3.2.4 Error estimate

The measured (p,p′) cross sections contain not only statistical but also the follo-

wing systematic errors which contribute to the total uncertainty in the determi-

nation of the cross sections:

• inaccuracy in the determination of the solid angle (≈ 5%),

• uncertainty in the determination of the accumulated charge in the Faraday

cup (≈ 5%),

• error in the dead-time correction (≈ 5%),

• target inhomogeneity (≈ 5%).

The systematic error was estimated to be 10%. The statistical uncertainties are

taken from the error in the area definition during the fit of the lines in the

spectrum with model functions. The total error was calculated to be the square

root of the sum of the squared systematic and statistical errors.
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4 Results and discussion

4.1 Details of the model calculations

To extract quantitative information on the phonon character of the observed

states, the momentum-transfer dependence of the cross section has been calcula-

ted using microscopic shell model (SM), quasiparticle-phonon model (QPM) and

IBM-2 wave functions.

4.1.1 Shell model

The shell model Hamiltonian is taken as

H = H0 + Vres, (4.1)

where the term H0 is the mean field part of the nuclear Hamiltonian which des-

cribes independent motion of non-interacting particles in a self-generated average

potential. The term Vres is the residual interaction. It causes a superposition

of particle-hole configurations in the wave function of excited states and thus

(amongst others) the appearance of collective states in nuclear spectra.

It is not possible to take into account the full Hilbert space of the Hamiltonian

of Eq. (4.1) for practical model calculations, due to the large (infinite) number

of particles and orbitals. For the two-body interaction 2A terms play a role, pro-

ducing a matrix that is impossible to diagonalize. Subsequently, the shell model

employs the idea of a truncation of the Hilbert space by the concept of an inert

core. In this concept a nucleus with magic proton and neutron numbers is regar-

ded as closed, i.e. orbitals below the magic number do not contribute. In addition,

the number of orbitals above the inert core is limited to only a few orbitals. This

limitation is in principle arbitrary – the model space is chosen in order to descri-

be certain physical properties of the atomic nucleus. In this way the number of

orbitals and the number of valence particles outside the closed shells are limited.

The problem is reformulated in terms of an effective Hamiltonian and effective

operators, so that the Schrödinger equation is modified

Hψ = Eψ −→ Heffψeff = Eψeff , (4.2)
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where the derived wave functions ψeff contain generally only a small part of

the real and complicated wave functions ψ due to the truncation. Nevertheless,

the success of the shell model shows that this small part often carries the main

physical properties.

Defining a core, the Hamiltonian can be written in the second quantization form

as

H =

nval
∑

k

ǫk a
†
ρk
aρk

+

+
∑

ρa,ρb,ρc,ρd,J,M,T

〈 (ρaρb)JT |V12 | (ρcρd)JT 〉 (a†ρa
a†ρb

)T
JM (aρc

aρd
)T
JM .

(4.3)

where nval is the number of single-particle states in the adopted valence shells, ǫi

are single-particle energies which are taken from data and incorporate the mean-

field potential representing the binding energies of a particle on the i-th orbital,

a†ρ creates and aρ annihilates a particle on the single orbital |ρ〉 = |n, l, j,mj , t =

1/2, tz〉 and T is the isospin of the coupled particles.

Shell-model calculations for the present case described in [46] are based on the

low-momentum nucleon-nucleon (NN) interaction Vlow−k. The basic idea is that

the interaction needs only to be defined up to a resolution scale which allows

to resolve the physics one is interested in. Using the renormalization group, one

starts from one of the high-precision NN interactions and integrates out the high-

momentum components above a cutoff Λ [47]. It should be chosen such that the

NN scattering phase shifts and deuteron properties are exactly conserved at low

momentum. It has been shown that as Λ is lowered to 2.1 fm−1, which corresponds

to a distance scale at 1/Λ ∼ 0.5 fm, the Vlow−k interaction is universal and

independent of the specific parameterization of the NN interaction [48,49]. Since

the Vlow−k interaction is energy independent it is suitable for SM calculations in

any nuclear region [50]. In these SM calculations a Vlow−k interaction derived from

the CD-Bonn [51] potential with a cutoff Λ = 2.1 fm−1 was used.

Shell-model calculations in this work were carried out with the shell model co-

de OXBASH [52] using the effective interaction described above to reprodu-

ce mixed-symmetry structure in 94Mo. As in previous shell-model work using

the simplified surface delta interaction [53], 88Sr was chosen as the inert co-

re and the proton-neutron model space was taken to be: π (2p1/2, 1g9/2) and
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ν (2d5/2, 3s1/2, 1g7/2, 2d3/2, 1h11/2). The single-particle energies were taken from

the experimental values in 89Sr and 89Y.

Due to the truncation of the single-particle basis the collectivity of low-lying

states is underestimated. To reproduce the B(E2) transition strengths to the

one-phonon FSS and supposed one-phonon MSS effective quadrupole charges,

ep = 1.98 e and en = 1.38 e have been used determined by a fit to the experimental

values.

4.1.2 Quasiparticle-phonon model

In this model 1p1h excitations are projected on a space of one-phonon states,

whose properties (excitation energies and internal fermion structure) are obtained

from solving quasiparticle-RPA equations [54]. When the phonon basis is built,

the wave function of excited states are written as a combination of interacting

one- and multiphonon configurations (see, e.g., [55]). Multiphonon configurations

are obtained by coupling of one-phonon configurations. In general, the size of the

space of all multiphonon configurations is the same as in the no-core SM if a

similar single-particle basis is used. Thus, in realistic calculations the QPM also

requires a basis truncation. It is performed following two main principles. First

of all, very complex N -phonon configurations are cut out. In practice, the most

complex configurations included in the wave function of low-lying states are of

3-phonon nature. Secondly, only configurations with an energy below some ma-

ximum value are accounted for. In fact, these truncation principles are physically

motivated. The density of complex configurations is rather low below the par-

ticle threshold and the influence of truncated configurations at high excitation

energies on the properties of low-lying states is very weak. Altogether it allows

to consider the QPM calculations as rather realistic from the point of view of the

basis completeness at low excitation energies.

Although in scattering reactions the levels are mainly excited via one-phonon

components of the wave function, multiphonon configurations are also very im-

portant because they are responsible for fragmentation of the one-phonon strength.

The structure of excited states in the QPM calculations is obtained from a diago-

nalization of the QPM Hamiltonian for the above-mentioned wave functions. The

diagonalization yields eigenenergies of excited states and their wave functions in
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terms of phonons or 1p1h, 2p2h, and 3p3h configurations. The model Hamiltonian

H = H0 + Hpair + Vres (4.4)

contains an average field H0, monopole pairing interaction Hpair for protons and

neutrons, and a residual interaction Vres written in a separable form. A Woods-

Saxon potential with a standard set of parameters is used as mean field. The

monopole pairing strength is fixed from description of pairing energies [56]. The

strength of the residual interaction is adjusted to reproduce the properties (exci-

tation energy and transition strength) of the 2+
1 and 3−1 levels.

In the calculations reported below, multiphonon configurations have been built

from phonons with Jπ = 1± – 6±. They have been truncated at 7 MeV. The

calculations are similar to the ones in Ref. [57,58] except for the treatment of the

particle-particle channel of the residual interaction which is not included here.

Additionally, results (referred to as pure QPM) will be presented in which excited

states are described as pure one- or two-phonon states with the same phonons

as in the full calculation but with the interaction between them being artificially

switched off.

Contrary to the SM, the single-particle basis in QPM calculations is rather com-

plete and includes all mean-field levels from 1s1/2 to quasi-bound levels in the

continuum. For this reason, no effective charges are needed to describe collectivi-

ty of low-lying excited states.

4.1.3 Interacting Boson Model – 2

The IBM-2 description of (e,e′) form factors followed the approach suggested

in [59]. The radial dependence of the transition densities was obtained in a

generalized-seniority shell-model calculation [60, 61] using the Vlow−k interacti-

on as input. This calculation is done separately for neutron and proton bosons.

The basic transition densities of 1p1h transitions are summed with coefficients

determined from a calculation of transition rates within the IBM-2. In a two-level

approximation the transition densities of the one-phonon FSS and MSS states can

be obtained as
ρFSS(r) = A1 ρπ(r) +B1 ρν(r),

ρMSS(r) = A2 ρπ(r) +B2 ρν(r).
(4.5)
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Using the vibrational U(5) limit coefficients A1, B1 and A2, B2 are given by [62]

A1 =

√

5

Nπ +Nν

Nπ eπ
1

√

B(E2)π

,

B1 =

√

5

Nπ +Nν

Nν eν
1

√

B(E2)ν

,

A2 =

√

5Nπ Nν

Nπ +Nν

eπ
1

√

B(E2)π

,

B2 = −
√

5Nπ Nν

Nπ +Nν

eν
1

√

B(E2)ν

,

(4.6)

where Nπ(ν) describes the number of proton (neutron) bosons and B(E2)π(ν) the

reduced transition strengths obtained from the charge transition proton (neutron)

densities ρπ(ν), respectively. The experimental effective proton and neutron boson

charges eπ = 10.7 e fm2 and eν = 2.3 e fm2 were taken from [13].

For the quantitative discussion below this approximation should show little dif-

ference to a calculation with a realistic IBM parameters. Fit of the IBM-2 model

parameters to the data on 94Mo leads to value between U(5) (vibrator) and O(6)

(γ-soft rotor) dynamical limits. However, little difference for analytic predictions

of U(5) and O(6) for the data are of interest.

4.1.4 Cross section calculations

The electron scattering cross sections were calculated in the Distorted Wave Born

Approximation (DWBA) using the code of Ref. [63]. The radial transition charge

densities calculated by the theoretical models described above have been used

as input. The theoretical proton scattering cross sections were calculated using

the code DWBA05 [64] with the RPA amplitudes obtained in the QPM and the

one-body transition densities obtained in the SM to describe the excited states.

The t-matrix parametrization of Franey and Love [65] at 200 MeV was used as

effective projectile-target interaction.
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4.2 Shell model and quasiparticle-phonon mo-
del predictions

In Fig. 4.1 a comparison of the experimentally known [13] excitation energies of

the lowest 2+ states in 94Mo with the QPM and SM predictions is shown. The

QPM calculation reproduces the number of experimentally known 2+ states in

the energy interval up to 4 MeV studied indicating a sufficiently large model

space and also predicts their excitation energies with an accuracy of better than

300 keV allowing to establish a one-to-one correspondence between calculated

states and the data. The SM results show a little bit worse energy correspondence

but reproduce the mixed-symmetry structure in 94Mo.

4.3 One-phonon fully symmetric and
mixed-symmetry states

Figure 4.2 presents the cross sections of the transitions populating the one-phonon

FSS and MSS in 94Mo as a function of momentum transfer q. The dominance of

these transitions observed in Fig. 2.9 already indicates the concentration of the

one-phonon strength in their wave functions. It should be noted that the (e,e′)

data exhibit a very similar q-dependence, while it differs for the (p,p′) data for

both states. Since proton scattering is a predominantly isoscalar nuclear probe,

the relative shift of the maxima and minima in the cross sections points to an

isovector character of the 2+
3 state.

It should be noted that all theoretical results shown hereafter are absolute without

a further normalization to the data. The SM results provide a good description of

the (e,e′) form factors and the (p,p′) cross sections except at higher momentum

transfers, where correlations outside the valence space become important. The

IBM-2 form factors are very similar to the SM results. Considering an overall

uncertainty of about 25% due to the choice of the effective interaction [66], the

QPM accounts well for the proton scattering results but shows a systematic shift

of the form factor maximum compared the electron scattering data. Related dis-
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Fig. 4.1: Experimental and theoretical excitation energies predicted by the QPM

and SM (Vlow−k) for the lowest 2+ states in 94Mo. The one- and two-

phonon FSS are labelled as 2+
1,FSS and 2+

2,FSS. The one- and two-phonon

MSS are labelled as 2+
3,MSS and 2+

5,MSS, respectively. The correspondence

between experimental and theoretical excitation energies is indicated by

dotted lines.

cussions are given in the next section. Overall, all models agree on the one-phonon

character of the 2+
1 FSS and 2+

3 MSS.

4.4 Isospin character of the one-phonon states

Due to different sensitivity of the one-phonon states to proton and neutron degrees

of freedom, the combined information from electron and proton scattering results

permits an extraction of their F -spin character. Based on successful description

by microscopic model results one can analyze the structure of the one-phonon
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Fig. 4.2: Momentum-transfer dependence of the one-phonon FSS (top) and MSS

(bottom) excitation cross sections in 94Mo. Left: electron scattering.

Right: proton scattering. The data (full squares) are compared to QPM

(solid lines), SM (dashed lines), and IBM-2 (dotted lines) predictions

described in the text.

states in terms of their main particle-hole configurations. In Tab. 4.1 the main

proton and neutron components of the QPM and SM wave functions of the one-

phonon FSS and MSS are presented. Note, that the SM results are given in terms

of one-body transition densities.

Tab. 4.1: Main configurations of the QPM and SM wave functions.

Main configuration
2+

1,FSS 2+
3,MSS

QPM SM (Vlow−k) QPM SM (Vlow−k)

π (1g9/2 1g9/2) 0.60 0.39 0.64 0.51

ν (2d5/2 2d5/2) 0.70 0.55 -0.71 -0.33
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The QPM and SM predict the dominant proton and neutron terms in the wave

function of the FSS to have the same, and that of the MSS opposite signs. That

confirms the picture of dominantly isoscalar character of the FSS and isovector

character of the MSS in the valence shell.
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Fig. 4.3: Radial transition proton (solid line) and neutron (dashed line) charge

densities for the one-phonon FSS (top) and MSS (bottom). Left: QPM

predictions. Right: SM (Vlow−k) predictions.

Figure. 4.3 presents the radial charge transition densities of protons (solid lines)

and neutrons (dashed lines) predicted by the QPM (left) and SM (right) for the

transition populating one-phonon FSS (top) and MSS (bottom). While for the

one-phonon FSS in the nuclear interior protons and neutrons oscillate in phase

representing the predominantly isoscalar nature, the behavior of the QPM and

SM transition charge densities for the suggested one-phonon MSS is different: in

the nuclear interior the protons and neutrons move out of phase in accordance

with the isovector nature of the 2+
3 state in the valence shell.

The transition densities of the both states are peaked at the nuclear surface and

thus provide evidence of the collectivity of these states. Looking at the scale of
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the ordinate, the QPM predicts these states to be more collective than the SM.

While the number of protons (neutrons) changes from 40 to 50 the 1g9/2 subshell

is filled in. In 94Mo this subshell is fully occupied for neutrons and contains two

protons only. In the (e,e′) calculations for the QPM only protons contribute, in the

SM both protons and neutrons are taken into account. As a result the maximum

of (e,e′) form factors predicted by the QPM is displaced to larger momentum

transfers that is seen in Fig. 4.1 of the section above. The experimental charge

radius in the proton mean-field description by a global Woods-Saxon potential

within the QPM is underestimated. An artificial increase of the potential radius

would allow for a reproduction of the data comparable to SM and IBA-2. However,

the structure of the 94Mo ground state with only two valence protons in the

1g9/2 shell does not leave much room for a modification of the proton mean-field

parameters with the constraint to reproduce other quantities like empirical single-

particle energies. This problem is avoided in the SM calculations by the use of

effective charges normalized to the experimental transition strengths.

4.5 Two-phonon fully symmetric and
mixed-symmetry states

Next, the structure of two-phonon state candidates is discussed. Figure 4.4 shows

the comparison of the SM and QPM results to the corresponding (e,e′) and (p,p′)

data. Again, the momentum transfer dependence of the transitions to the 2+
2 and

2+
5 states is quite similar in the electron scattering while it differs qualitatively

from that of the one-phonon states shown in Fig. 4.2. The (e,e′) form factors are

sensitive to the interference of the weakly excited, but large two-phonon com-

ponents with strongly excited, but small one-phonon admixtures. Here, the SM

significantly overshoots the (e,e′) data on the FSS indicating too large one-phonon

components in the wave function. This is indicated by large seniority-2 contributi-

ons of about 45% in the SM wave function (although they do not provide a direct

measure of the one-phonon component). The QPM provides cross sections of the

correct magnitude although it predicts a pronounced minimum at a momentum

transfer q ≃ 0.72 fm−1 due to an interference of the main two-phonon component
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Fig. 4.4: Momentum-transfer dependence of the two-phonon FSS (top) and MSS

(bottom) excitation strengths in 94Mo. Left: electron scattering. Right:

proton scattering. The data (full squares) are compared to QPM (solid

lines), SM (dashed lines), and simplified (pure) QPM (dashed-dotted

lines) calculations described in the text.

(81%) with a (19%) admixture of the 2+
4 state. Because of its dominant neutron

configuration (2d−1
5/23s1/2), the overall contribution to the (e,e′) cross sections is

small. In the simplified QPM calculations discussed above (considering the basic

one- and two-phonon states only) a good description is achieved. This indicates

that the symmetric two-phonon state is very pure; more pure than the full QPM

can quantitatively predict.

For the MSS, the SM and the full QPM results are very similar. The theoretical

results are somewhat smaller than the data but account roughly for the momen-

tum transfer dependence. An increase of the predicted one-phonon admixtures of

about 3% to 8 – 15% (depending on the assumed configuration) would lead to

a quantitative agreement with experiment. In any case, a dominant two-phonon

character prevails.

As is visible on the r.h.s. of Fig. 4.4, both SM and QPM results fail to describe
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the (p,p′) results for both two-phonon 2+ states. A possible explanation is the

neglect of two-step processes in the (p,p′) reaction mechanism. Such contribu-

tions are small for collective transitions at a beam energy of 200 MeV but are

important [67] for the extreme case of very weak one-step excitations and strong

two-step excitations through collective levels encountered here.

4.5.1 Coupled-channel analysis

To estimate the two-step processes at least qualitatively, a coupled-channel analy-

sis was performed with the code CHUCK3 [68]. It is based on the collective model

describing nuclear excitations as surface vibrations of multipolarity L, whose am-

plitude is proportional to a coupling strength cL, which is defined as the ratio of

the experimental to the calculated cross section

c2L =

(

dσ

dΩ

)exp

L

/

(

dσ

dΩ

)DWBA

L

. (4.7)

This approximation is insensitive to the isospin nature of the transitions to the

one-phonon states. The only requirement is collectivity demonstrated above for

the case of 94Mo.

Tab. 4.2: Parameters of the optical potential for the description of the incoming

and outgoing protons for the 94Mo(p,p′) reaction at 200 MeV used for

the coupled-channel analysis.

Woods-Saxon potential LS potential

V , MeV r, fm a, fm V , MeV r, fm a, fm

Re 17.520 1.257 0.750 -2.484 1.021 0.787

Im -10.980 1.253 0.822 1.853 1.020 0.592

Starting from the global set of Ref. [69], optical model parameters for the descrip-

tion of the incoming and outgoing protons for the 94Mo(p,p′) reaction at 200 MeV

were determined by a fit to the elastic scattering cross sections and are listed in

Tab. 4.2.
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The transition potential was taken to be the derivative of the optical potential. In

the calculations the same set of parameters has been used for the description of

the distorted waves (Tab. 4.2) and of the transition potential. Only the diffuseness

of the real part of the Woods-Saxon potential for the transition to the 2+
3 state and

of the imaginary part of the Woods-Saxon and LS potential for the all transitions

have been adjusted to 0.3 fm to reproduce the momentum-transfer dependence

of the transitions to the one-phonon 2+
1 and 2+

3 states.

01

21

+

+

22

+
23

FSS +

25

+
MSS

Fig. 4.5: Coupled-channel scheme for the excitation of the one- and two-phonon

FSS (left) and MSS (right) in the 94Mo(p,p′) experiment.

Figure 4.5 shows the coupling schemes taken into account for the one- and two-

phonon FSS (left) and MSS (right), respectively. The coupling strengths of the

one-phonon transitions to the 2+
1 and 2+

3 states were determined by a fit to the

data. These results are displayed on the l.h.s. of Fig. 4.6. The best descriptions of

the one-phonon FSS and MSS were obtained for c2 = 1.23 and 0.35, respectively.

For the calculation of the transitions to the two-phonon states, unknown (like

2+
1 → 2+

5 ) or poorly known (like 2+
1 → 2+

2 ) transition strengths [13] were fixed

assuming harmonic vibrations.

The CHUCK3 results for the two-phonon states are displayed on the r.h.s. of

Fig. 4.6. The best description of the 2+
2 state is achieved for a vanishing one-step
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Fig. 4.6: Coupled-channel analysis for the excitation of the one- and two-phonon

FSS and MSS in the 94Mo(p,p′) experiment. Left: Best fits to the data

(solid and dashed lines, respectively) using coupling strengths c2 = 1.23

and 0.35 for the transitions to the one-phonon FSS (top) and to the MSS

(bottom), respectively. Right: Best fits to the data (dashed-dotted and

dotted lines, respectively) using coupling strengths c2 = 0.0 and 0.2 for

the transitions to the FSS (top) and to the MSS (bottom), respectively.

amplitude (c2 = 0.0), i.e., the cross sections are explained by two-step processes

entirely. This in turn confirms the conclusion of a nearly pure two-phonon nature

already drawn from the electron scattering results. A value of c2 = 0.2 is obtai-

ned for the transition to the 2+
5 state. The corresponding one-step cross section

implies a one-phonon component roughly (the exact value is sensitive to possible

anharmonicities and optical model parameters) in accord with the estimate obtai-

ned from the (e,e′) results. Thus, after consideration of two-step contributions to

the (p,p′) cross sections a consistent picture is obtained with both experimental

probes: The one-phonon components of the predominant two-phonon states are

< 10% for the FSS and 8 - 15% for the MSS. In both cases they are small indeed.
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5 Summary and outlook

The nature of one- and two-phonon symmetric and mixed-symmetric 2+ states in
94Mo have been tested for the first time through high energy-resolution inelastic

electron and proton scattering experiments in a combined analysis. Results from

QPM, SM and IBM-2 calculations confirm the dominant one-phonon structure

of the transitions to the first and third 2+ state.

In contrast to electron scattering, where the proton component of the nuclear

wave function is excited only, in proton scattering both electron and proton com-

ponents contribute. Thus, the combined data reveal the isovector character of

the transition to the one-phonon MSS within the valence shell by their diffe-

rent momentum-transfer dependence and the analysis of the microscopic wave

functions.

Excitation of the two-phonon states is sensitive to admixtures of one-phonon

components, which are found to be small. Consistent estimates of one-phonon

admixtures are obtained from both experimental probes when two-step contribu-

tions to the proton scattering cross sections are taken into account.

Clearly, the combination of electromagnetic and hadronic scattering is a versatile

tool for detailed studies of nuclear wave functions. This work opens a new experi-

mental avenue for future investigations of MSSs. One obvious application would

be the study of 92Zr. Its structure is particularly interesting because it lies at the

proton subshell closure Z = 40, and strong shell effects are expected to influ-

ence in the properties of the collective one-phonon states [16,70]. It is planned to

investigate the structure of this nucleus with the high-resolution electron and pro-

ton scattering experiments also. Proton scattering experiments have already been

performed at the iThemba LABS; a 92Zr(p,p′) spectrum measured with 200 MeV

protons at 6◦ is presented in Fig. 5.1. The electron scattering experiments will be

carried out during a forthcoming beam time at the S-DALINAC.

It would be also very interesting to investigate the mixed-symmetry structure of

the 94Zr nucleus, where for the first time, the B(E2; 2+
1,MSS → 0+

1 ) is observed [71]

to be larger than B(E2; 2+
1,FSS → 0+

1 ).
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Fig. 5.1: Spectrum of the 92Zr(p,p′) reaction measured with 200 MeV protons at

a scattering angle of 6◦ at iThemba LABS.
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PART II:
Line Shape of the First Excited 1/2+ State in 9Be

6 Introduction

The recent renewed interest in very light nuclei due to the progress in ab initio

calculations applied to their structure, now capable to describe their properties

up to mass number A ≈ 12 [72]. The low-energy level structure (see Fig. 6.1) of

the 9Be nucleus has long been a matter of interest, in particular with respect to

the strength of three-body α + α + n cluster configurations.
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Fig. 6.1: The low-lying excited states in 9Be with corresponding energies, intrinsic

widths and possible decay channels (adopted from [73]).

In neutron-rich astrophysical environments, such as core-collapse supernovae, the

three-body reaction α + α + n → 9Be followed by 9Be(α, n)12C may provide a

route for building up the heavy elements and triggering the r-process [74–77].
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Fig. 6.2: Possible production chains of 12C.

Figure 6.2 shows possible production chains of 12C. The first stage can proceed

mainly by two routes, either α + α → 8Be followed by 8Be +n → 9Be (solid

line), or α+ n → 5He followed by 5He +α → 9Be (dashed line). Triple α-process

(dotted line) for the production of 12C, which dominates in stellar burning, can

be neglected in explosive nucleosynthesis because of the short time scales. In the

absence of any experimental evidence for the 5He +α configuration, calculations

are generally performed assuming the 8Be +n route only, the argument being that

the different lifetimes of the 8Be and 5He intermediate states (10−16 s and 10−21 s,

respectively) should favour the former. For example, this has recently been studied

for the second excited state at Ex = 2.429 MeV, but remains unknown for other

transitions. However, calculating the rate properly requires a knowledge of the

relative importance of 8Be +n and 5He +α cluster configurations in 9Be.

The key states in this context are those just above the particle threshold, in

particular the first excited state at Ex = 1.684 MeV (Jπ = 1/2+), see Fig. 6.1.

The description of this unbound level, its resonance energy and width is a long-

standing problem. Due to its closeness to the 8Be +n threshold the resonance has

a strongly asymmetric line shape.

Many experiments have investigated the 9Be(γ, nα)4He reaction, either with real

photons from bremsstrahlung or from laser-induced Compton backscattering, or

45



with virtual photons from electron scattering (see Ref. [73] for a discussion and

references). But despite a large number of different experiments there still exist

considerable uncertainties of the resonance parameters. In the work of Utsono-

miya et al. [78] the photoneutron cross section for 9Be was measured with real

photons in the whole energy range of astrophysical relevance. Electromagnetic

quantities for 9Be were deduced by a least-squares analysis of the data within the

Breit-Wigner formalism. The best-fit resonance parameters for the 1/2+ state are

summarized in Tab. 6.1 in comparison with results from earlier electron scattering

experiments [79,80].

Tab. 6.1: Resonance parameters and reduced transition probability of the 1/2+

state in 9Be deduced from different experiments.

Real photon exp. (e,e′) Reanalysis of [79]

Ref. [78] Ref. [79] Ref. [80] by Barker [82]

ER, MeV 1.75(1) 1.684(7) 1.68(15) 1.7316

ΓR, keV 283(42) 217(10) 200(20) 280

B(E1)↑, e2fm2 0.0535(35) 0.027(2) 0.034(3) 0.0685

Obviously there are significant differences between resonance properties deduced

from the photonuclear and the electron scattering experiments. The discrepancy

in the B(E1) transition strength amounts to a factor of 2 when comparing with

the results of the earlier (e,e′) experiments [79, 81], while it is reduced to ∼ 30%

by the later (e,e′) experiment [80]. The reason for these discrepancies between the

real photon experiment and virtual photon remains still unknown. Barker [82] has

reanalysed previously measured (e,e′) data of Küchler et al. [79]. The parameter

values obtained (ER = 1.7316 MeV, ΓR = 280 keV, B(E1)↑ = 0.0685 e2fm2)

differ considerably from those of [79].

In order to resolve these discrepancies, in the present work new high-resolution
9Be(e,e′) experiments were performed at the S-DALINAC and an independent

reanalysis of the electron scattering data [79] is presented.
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7 Description of excited states in the
continuum

In the present work, R-matrix theory in one-level approximation is used to deduce

the resonance parameters. In scattering experiments above the particle thresholds

in addition to the scattered particles one or several reaction products have to be

considered in the final state. The cross section for such a reaction is of the type

A+ a→ B∗ →



















C + c

D + d ,

. . .

(7.1)

in which the nucleusB is formed in a state unstable to particle emission. Assuming

only one decay channel C + c, the cross section giving the energy distribution of

particle c can be expressed as

σ(EB) = const ·
∣

∣

∣

〈

C + c | Ô |A+ a
〉∣

∣

∣

2

· ρ(EB). (7.2)

In addition to the matrix element of the transition operator Ô the energy de-

pendence of the cross section is described by the density-of-state function ρ(EB)

of the nucleus B, providing the probability to form B with excitation energy

EB [83].

According to Breit and Wigner [84], the contribution to the cross section from a

level of spin J , in the one-level approximation of R-matrix theory [83] is given by

σa,c(E) =
π

2 k2
a

gJ
Γa Γc

(E − Eλ − ∆(E))2 + Γ2

4

. (7.3)

The quantities Γa and Γc denote the partial decay widths and Γ the total width,

Eλ corresponds to the energy eigenvalue, and to ka the wave number of the

incoming particle a. The level shift ∆(E) is given by

∆(E) = −γ2 (S(E) −Bn), (7.4)

with the reduced width γ2, the shift factor S(E) and the boundary condition

parameter Bn (see Ref. [83]). The spin statistical factor gJ is defined as

gJ =
2J + 1

2I + 1
, (7.5)
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where I, J are the total angular momenta of initial and compound nucleus, re-

spectively.

In the case of a photoabsorption process followed by neutron decay the photon

corresponds to particle a, the target nucleus is A, neutron c, and the rest nucleus

C. Thus, the (γ, n) cross section for the excitation of an isolated level near thres-

hold can be written as

σγ,n(Eγ) =
π

2 k2
γ

gJ
Γγ Γn

(Eγ − Eλ − ∆)2 + Γ2

4

, (7.6)

where kγ = Eγ/~c stands for the photon wave number, Γγ for the ground state

radiative width, Γn for the neutron decay width, and the total decay width Γ =

Γγ + Γn.

Then for 1/2+ level in 9Be excited by E1 γ-radiation and decaying by s-wave

neutrons, and for an energy E = Eγ −Sn > 0 (with the neutron threshold energy

Sn(9Be) = 1.6654 MeV), one has

Γγ =
16π

9
e2 k3

γ B(E1, k)↓, (7.7)

Γn = 2
√

ǫ (Eγ − Sn), (7.8)

∆ = 0, (7.9)

with B(E1, k)↓ being the reduced transition strength at the photon point for

the decay, ǫ = 2µ a2 γ4/~2 > 0, where µ, a are the reduced mass and channel

radius for the 8Be + n channel, respectively. Calculating the energy shift ∆ (see

Eq. (6.1)), the boundary condition parameter Bn is taken to be zero and the

shift factor S(E) = 0 for s-wave neutrons [83]. Thus, on the low energy side the

originally symmetric Breit-Wigner line is modified and shows a steep rise up to

maximum. On the high energy side the resonance follows the Breit-Wigner form

of Eq. (7.6).

Since Γn ≫ Γγ, the total resonance width Γ ≈ Γn and the energy dependence of

the photoabsorbtion cross section of Eq. (7.6) is given by

σγ,n(Eγ) =
16π2

9

e2

~c
gJ B(E1, k)↓ Eγ

√

ǫ (Eγ − Sn)

(Eγ − ER)2 + ǫ (Eγ − Sn)
, (7.10)
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Resonance levels occur at energies ER which fulfil the condition ER−Eλ−∆n = 0.

Thus, the resonance energy is defined as

ER = Eλ + ∆(ER), (7.11)

and the resonance width using Eq. (7.8)

ΓR(ER) = 2
√

ǫ(ER − Sn). (7.12)

It should be noted that in the present case the resonance energy ER does not

coincide with the energy at the maximum of the cross section, and the resonance

width ΓR and FWHM are not the same.

If there is no further open channel near threshold, one can find a relationship

between the σγ,n cross section and those measured in the electron scattering σe,e′

by extrapolating the reduced transition strength B(E1, q) at finite momentum

transfer q to that at the photon point, i.e. B(E1, k). For not too large (Γ < 1 MeV)

widths, the momentum transfer varies little over the resonance and the e,e′) cross

sections as a function of the excitation energy Ex in the excited nucleus can be

written as

σe,e′(Ex) =
16π2

9

e2

~c
B(E1, q)↑ Ex

√

ǫ (Ex − Sn)

(Ex − ER)2 + ǫ (Ex − Sn)
, (7.13)

with B(E1, q)↑ being the reduced transition for the excitation, which is connected

to that for the decay through B(E1, q)↑ = gJ B(E1, q)↓. Note that Eq. (7.13) is

defined for Ex > Sn only.

In the Plane Wave Born Approximation (PWBA) appropriate for light nuclei and

low momentum transfers an extrapolation of the reduced transition strength to

the photon point provides a connection between B(E1, k) and B(E1, q) with the

help of the so-called transition radius Rtr [85]

√

B(C1, q) =
√

B(C1, k)

(

1 − q2 R
2
tr

10
+ q4 R

4
tr

280
− . . .

)

. (7.14)

Assuming validity of the Siegert theorem, B(E1, q) = (k/q)2B(C1, q), one can

extract B(E1, k).

49



8 Results and discussion

8.1 Experiments

The 9Be(e,e′) experiment was carried out at the high-resolution 169◦ magnetic

spectrometer of the S-DALINAC. Data were taken at an incident electron beam

energy Ee = 73 MeV and scattering angles Θe = 93◦ and 141◦ with typical beam

currents of 2 µA. For the measurements a self-supporting 9Be target with an

areal density of 5.55 mg/cm2 was used. In dispersion-matching mode an energy

resolution ∆E ≃ 30 keV (FWHM) was achieved.

As already discussed in Sec. 3.1.2 due to the limited spectrometer momentum

acceptance of only about 4% an excitation energy region of about 2.92 MeV

is covered only at an incident electron beam energy of 73 MeV. To extract an

excited spectrum up to about 8 MeV separate spectra were measured at different

magnetic field settings, calibrated using well known prominent excitations of Jπ =

0+, 2+, 3− states up to Ex = 8 MeV in 12C [86] and 28Si [87], reduced to the same

energy bin size, and then sewed together.

Figure 8.1 presents the spectra of the 9Be(e,e′) reaction measured at scattering

angles of 93◦ (top) and 141◦ (bottom). There are only two narrow peaks visible.

The first one is the elastic line and the second one corresponds to the excitation of

the 5/2− state at Ex = 2.429 MeV. The tiny peaks at about 4.2 MeV correspond to

the second excited state in 12C (Ex = 4.439 MeV). The bumps around 5.1 MeV

in the top spectrum and around 8.1 MeV in the bottom spectrum are due to

elastic scattering on hydrogen. The broad bump between 6 and 7 MeV is shown

to correspond to the states at Ex = 6.38 MeV (Jπ = 7/2−) and Ex = 6.76 MeV

(Jπ = 9/2+) in 9Be [80]. The asymmetric line shape of the 1/2+ state at Ex =

1.684 MeV is already clearly visible without background subtraction.
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Fig. 8.1: 9Be(e,e′) spectra measured at Ee = 73 MeV and Θe = 93◦ and 141◦.
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8.2 Decomposition of the spectra

During the experiments it was observed that some strips of the new focal plane

detector [36] have become noisy influencing the detector efficiency. It is known

that the 12C(e,e′) spectrum above an excitation energy of 30 MeV has no structure

and no resonances, and can thus serve as a ”white” spectrum. The result of such

a measurement is shown in Fig. 8.2. The dashed line is a mean value deduced

from detectors 1, 2 and 4. The efficiency over the detection modules assuming

a Gaussian distribution is found to be constant within a 2σ band (dotted lines)

except for the third detector module.
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Fig. 8.2: Spectrum of 12C(e,e′) reaction at Ee = 78 MeV, Θe = 93◦ and Ex ≈
32 MeV used as a check of relative efficiency. The dashed line is the

mean value deduced from detectors 1, 2 and 4. The efficiency along

the detection modules assuming a Gaussian distribution is seen to be

constant within a 2σ band (dotted lines) except for the third detector

module.

For the measurements of strongly excited transitions this effect can be neglected,

but not in the case of very weak excitations as in the present case. Especially,

since one wants to determine the line shape of the resonance, the spectra need to

be corrected. For that purpose a spectrum of the 12C(e,e′) reaction measured in

the same kinematics as one of the 9Be data sets was used as shown on the l.h.s.

of Fig. 8.3.
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Fig. 8.3: Spectrum of 12C(e,e′) reaction at Ee = 73 MeV and Θ = 93◦. Top:

Original spectrum. The solid line is a fit of the radiative tail of elastic

scattering excluding the third detector module. It is seen that the region

marked with an oval (enlarged in the insets on the r.h.s.) in the third

detector module systematically too high. Bottom: Corrected spectrum

with an extended view (on the r.h.s.) on the relevant region.

The spectrum covers an excitation energy region from Ex = 0 – 3 MeV. The solid

line corresponds to a fit of the radiative tail of the elastic line in the interval

excluding the third detector module. An extended view (inset on the r.h.s. of

Fig. 8.3) clearly shows that within the third detector module there is a region

where the microstrips are too ”noisy”. Except for the elastic line no other exci-

tations are expected. Therefore, count rates in that region have to be corrected.

The correction factor can be defined as a ratio of the fit function and the expe-

rimental spectrum. In this case the correction depends on the statistics of the

53



reference spectrum. To remove the statistical fluctuations the correction factor

was smoothed with a Gaussian function. The corrected spectrum is presented on

the l.h.s. of Fig. 8.3 (bottom) with the extended view on the r.h.s. The same

correction procedure was applied to the 9Be(e,e′) spectra.

A decomposition of 9Be(e,e′) spectra into a background from the radiative tail

and resonance contributions, taking into account all states of Fig. 6.1 performed

using the programm FIT [42]. The line shape of the narrow states was described

by the function given in Eq. (3.1) and the line shape of the broad resonances by

the modified Breit-Wigner function of Eq. (7.13). The positions and widths of

the resonances (taken from the last compilation [73]) were kept fixed during the

fit except for the parameters of the elastic line and the first inelastic state. The

results of the decomposition are shown in Fig. 8.4.

54



0 2 4 6 8
0

3

6

0

12

24

36

Excitation Energy (MeV)

C
o
u
n
ts

 /
 m

C

9Be(e,e´)
E = 73 MeV

= 93°

e

eQ

Qe = 141°

Fig. 8.4: Spectra of the 9Be(e,e′) reaction at Ee = 73 MeV and Θe = 93◦ (top)

and 141◦ (bottom) and their decomposition. Solid lines: Experimentally

known resonances and fit (see Fig. 6.1). Dashed lines: Radiative tail from

elastic scattering.
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8.3 Extraction of the B(E1) transition strength

Absolute differential cross sections for the 1/2+ state where determined from the

area contents corrected for the radiation effects using the procedure described in

Sec. 3.1.3. The B(E1) transition strength at the photon point was extracted from

the experimental data using two independent ways. The first method is model

independent. In PWBA one can extract the reduced transition strength at photon

point k using Eq. (7.14).
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 (
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 f
m
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Fig. 8.5: Extrapolation of the reduced transition probability to the photon point.

Data are from Ref. [81] (triangles), Ref. [79] (circles) and present work

(squares).

Figures 8.5 presents the old data measured at low momentum transfer together

with the present data using Eq. (7.14). The solid line shows a fit of the data resul-

ting in the B(E1, k)↑ = 0.027(4) e2fm2 and the transition radius Rtr = 2.9(3) fm,

which agrees with the result already published in Ref. [79].
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Fig. 8.6: Comparison of the measured form factor of the 1/2+ state in 9Be with

NCSM calculations in different model spaces. The dashed line corre-

sponds to a (4 – 5) ~Ω model space, the dotted line to a (6 – 7) ~Ω

model space. The solid line is the best fit on the experimental data.

The B(E1, k) transition strength can be also determined by fitting the experi-

mental data using a theoretically calculated momentum-transfer dependence of

the form factor. Figure 8.6 presents the momentum transfer dependence of the

(e,e′) cross section normalized to the Mott cross section for the transition to the

first excited state in 9Be. The experimental data are compared to a no-core shell

model calculation (NCSM) [88–91]. In this ab initio approach one starts from a

realistic nucleon-nucleon potential and solves the A-body problem, producing an

antisymmetrized total wave function. Here there is no closed shell core, meaning

that all nucleons are active as compared to the usual shell model calculations (al-

ready discussed in Sec. 4.1.1), where only valence nucleons are taken into account.

At present time the computer processing power limits the NCSM calculations in

A = 9 nuclei to model spaces up to about 8 ~Ω. Figure 8.6 also shows NCSM

results with model spaces of 4 – 5 ~Ω (dashed line) and 6 – 7 ~Ω (dotted line)

which predict the B(E1, k)↑ = 0.0145 e2fm2 and 0.0155 e2fm2, respectively. It

is seen that the model space is not yet sufficient to reproduce the experimental
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B(E1) transition strength, i.e. the calculations are not yet converged. A fit on

the experimental data (solid line) gives B(E1, k)↑ = 0.027(3) e2fm2 in agreement

with the result obtained from the PWBA analysis.

8.4 Extraction of the 9Be(γ,n) cross sections

Subtracting all contributions from other resonances and from the elastic line, one

can convert (e,e′) cross sections to the (γ, n) cross sections using Eq. (7.10) and

the extracted B(E1, k) transition strength at the photon point. Figure 8.7 shows

the results and a fit using Eq. (7.10) folded with the instrumental resolution

function to reproduce the line shape. The two upper graphs correspond to the

present measurements. The bottom graph displays the old (e,e′) data from [79]

and their reanalysis. The results of the fits are summarized in the Tab. 8.1. The

resonance energies and widths of the spectra are close but differ by slightly more

then 1σ. Reanalysis of [79] shows parameters in agreement with the new data and

differ from those published in [79].

Tab. 8.1: Line shape parameters of the 1/2+ state in 9Be obtained from the pre-

sent data and a reanalysis of older (e,e′) data [79].

present data old data [79]

73 MeV, 93◦ 73 MeV, 141◦ 49 MeV, 117◦

ER, MeV 1.746(8) 1.768(12) 1.737(10)

ΓR, keV 265(10) 308(20) 275(14)

Since all three measurements are independent, the data can be averaged and

then reanalysed. The resulting (γ, n) cross sections and fit are presented on

Fig. 8.8. The fit results in a resonance energy ER = 1.748(6) MeV and a width

ΓR = 274(8) keV in agreement with the results obtained from the latest real

photon experiments [78].
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Fig. 8.7: Photoneutron cross section extracted from the (e,e′) present (top and

middle) and older (bottom) experiments [79]. The solid lines correspond

to a fit with the modified Breit-Wigner function of Eq. (7.10) folded

with the experimental resolution function. Fit parameters are given in

Tab. 8.1.
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function of Eq. (7.10) folded with the experimental resolution function.
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8.5 Astrophysical implications

The rate of the astrophysically relevant reaction chain 4He(α, γ)8Be(n, γ)9Be can

be calculated with the resonance parameters obtained in the present work. For

temperatures T9 = 0.1 – 3 (in units of 109 K) the rate is determined almost ex-

clusively of the cross sections at 1/2+ resonance in 9Be. At larger temperatures

higher-lying resonances in 9Be start to contribute. Compared to the latest com-

pilation of astrophysical important cross sections between light nuclei [92] the

present results suggest values about 20% smaller at T9 = 0.1 but is about 15%

larger at T9 = 10 with a roughly linear increase in between. Correspondingly

revised rates should be used in future astrophysical network calculations.
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9 Summary

Spectra of the 9Be(e,e′) reaction have been measured at the S-DALINAC at an

electron energy E0 = 73 MeV and scattering angles of 93◦ and 141◦ with high-

energy resolution up to excitation energies Ex = 8 MeV. The form factor of the

first excited state has been extracted from the data. The momentum-transfer

dependence of its form factor is well reproduced by the modern no-core shell

model calculations. The astrophysical relevant 9Be(γ, n) cross sections have been

extracted from the (e,e′) data. The resonance parameters of the first excited 1/2+

state in 9Be have been derived in a one-level R-matrix approximation from the

present and older [79] data. The resonance parameters averaged over these three

independent measurements result in the resonance energy ER = 1.748(6) MeV

and resonance width ΓR = 274(8) keV. These are in mutual agreement with

the resonance parameters obtained from the latest real photon experiments [78].

However, the B(E1, k) transition strength deduced from (e,e′) in two independent

ways differs from the real photon results by a factor of two. This might be a hint

that the Siegert theorem underlying this comparison is violated at the photon

point for this weak transition. Such a violation might has been observed in other

cases for E1 transitions in light nuclei before [93].

The calculation of the reaction chain 4He(α, γ)8Be(n, γ)9Be under stellar condi-

tions shows systematic deviations as a function of temperature compared to the

compilation by [92] which should be considered in future astrophysical network

calculations.
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1986 – 1996 Besuch der Sekundärschule Nr. 59, Kharkiv, Ukraine

1996 – 2002 Studium der Physik an der Fakultät für Physik und

Technik der Karazin Kharkiv National University,

Ukraine. Vertiefungsrichtung - Kernphysik

1999 – 2000 Ausbildung zum Offizier

1999 – 2000 Laborassistent an der Fakultät für Physik und Technik

der Karazin Kharkiv National University im Rahmen

des Projektes ”The elaboration of the combined telesco-

pe for measurement of high energy charge fluxes in the

near Earth space and in dosimetry purposes”

Juli 2001 – Feb. 2002 Diplompraktikum am Institut für Kernphysik der Tech-

nische Universität Darmstadt

Februar 2002 Abschluss des Studiums mit Diplom mit Auszeichnung.

Thema: ”Design of a shielding for the new focal plane

detector system of the energy-loss spectrometer at the

S-DALINAC”

März – Juni 2002 Wissenschaftlicher Mitarbeiter am Institut für Kernphy-

sik der Technische Universität Darmstadt

2002 – 2004 Stipendiat bei der FAZIT-Stiftung der Frankfurter All-

gemeine Zeitung

2003 – 2006 Kollegiat des Graduiertenkollegs ”Physik und Tech-

nik von Beschleunigern” an der Technische Universität

Darmstadt

seit Juni 2004 Wissenschaftlicher Mitarbeiter am Institut für Kernphy-

sik der Technische Universität Darmstadt



Erklärung:
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