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Chapter 1

Motivation

1.1 Importance of an Emission Model

The theory of electron emission and the associated numerical methods used
in simulations have been extensively researched and developed over the early
and later half of the last century. Ever since a whole gamut of electron devices
have been constructed, employing a wide variety of electron sources deliver-
ing the current densities required as per the problem specifications. Electron
sources can be found in many applications such as cathode ray tubes widely
used in display devices, microwave tubes, particle accelerators, plasma gen-
erators, optical devices etc.

The design of electron sources begins with the selection of the type of excita-
tion that is to be used in extracting the electrons from an emitting material.
It was found from practice that quite a number of the electron devices have
often failed to provide the current densities required as the amount of charge
that can be drawn from a unit surface area of the emitter is either insufficient,
or in a different scenario have short life time when subjected to very high
temperatures or electric fields. To overcome the above problems, many tech-
niques have been developed such as maximizing the effective surface area of
emission within the restrictions of physical dimensions or by using a variety
of material combinations to enable more free electrons inside the material
that can be extracted easily. After the extraction, the electrons generated
have to be channeled from emitter into the device. For this purpose a set
of electrodes are employed to generate fields around the emitter that would
draw the electrons from emitter. To make the design process easier and re-
liable, a variety of simulation tools have been developed that can simulate
emission from complex emitter geometries using different excitation meth-
ods. In almost all of the emission models that have been developed until
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now, approximations are introduced in surface modeling, such as a staircase
grid which alters the emission angle of electrons with respect to the actual
surface. A tetrahedral grid can overcome the above problem but at the ex-
pense of computational time.

In the wake of the above problems the need for a comprehensive emission
model that is computationally feasible and at the same time accurate is very
much necessary. The work presented in the following chapters will show that
all the above problems are addressed systematically and a generalized emis-
sion model is developed that is accurate and flexible to meet the requirements
of any specific application. The emission model developed here is coupled
with the state-of-the-art electromagnetic field solver based on Finite Integra-
tion Technique (FIT) developed by Thomas Weiland in 1977. The FIT has
seen many useful additions since then, addressing almost the whole spectrum
of electromagnetic field problems with the help of a conformal boundary fit-
ted grid. The different steps that are required in an emission model are given
in the flow chart Fig.1.1.

Emission Model

Geometric modeling
of the emitter

}

Defining the
type of emission

}

Setting up
initial conditions

Figure 1.1: Flow chart depicting the tasks of a typical emission model

The first among that process is identifying the physical shape of the electron
source and generating a surface grid that will define the spatial distribution
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of the electrons. The next step is to identify the type of emission, the ma-
terials involved and their properties in order to calculate the current. Once
the current is known the charge has to be calculated and assigned to com-
putational particles with a phase space distribution. These tasks essentially
constitute the emission model.

1.2 Overview of the Work

In Chapter 2 that follows, the Theory of Electron Emission is presented,
where different processes involved in extracting electrons from materials are
discussed and the governing equations for the calculation of current and
charge are presented.

In Chapter 3 The Finite Integration Technique (FIT), for calculating the
field solutions is presented. A brief description of how the Mazwell equations
are discretized and solved in a problem space is shown. The conformal mesh
that is used in the above technique will also be presented.

In Chapter 4 The Particle in Cell method used in simulating field-charge
interaction is discussed. The chapter deals with the methods commonly used
in calculation of forces exerted by the external fields on particles and the
resulting charged particle dynamics.

The Chapter 5 deals with the Geometric Modeling of the emitters and a brief
introduction to surface grid generation using Constrained Delaunay Triangu-
lation algorithm. The different methods to obtain a problem specific surface
mesh and emission samples will also be discussed.

In Chapter 6 The Space Charge Limited Emission (SCL) will be discussed.
The various methods by which the current can be calculated under limiting
conditions are presented, besides the iterative methods that are used to cal-
culate a field-charge consistency condition are discussed.

In Chapter 7 Simulations and Applications are presented comparing different
methods used in modeling SCL emission. As an application problem, sim-
ulation of a Travelling Wave Tube Amplifier (TWTA) is presented at the end.

In Chapter 8 the Summary of work is discussed and an Outlook on further
improvements in the model are mentioned.
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Chapter 2

Theory of Electron Emission

2.1 Classification of Solids Based on Conduc-
tivity

The fundamental theory of electron emission was developed long back and
since then many new mechanisms involving a wide range of materials and
geometries have been tried to bolster the performance and current densities
required for typical applications. The materials used for electron emission
can be broadly classified as conductors and semi-conductors. A cathode or
an electron gun is the basic source of electrons. To understand the process of
emission it is vital to know the properties of these materials and their energy
distribution [1]. The quantum theory states that electrons inside a solid oc-
cupy specified energy levels given by their quantum numbers. According to
Fermi-Dirac statistics electrons fill up all the lower energy levels first. The
maximum energy which an electron can have at absolute zero of temperature
with all lower energy levels filled is E'y or Fermi energy. In other words Ferms
enerqgy level is the uppermost surface of all energy states where electrons can
be found inside a metal. The energy distribution of electrons inside a metal
can be written as eq. (2.1)

1 1 e(B-Ep/kT

n(E)dE = An(2m)¥? ( vE > dE (2.1)

where the probability that an energy state is occupied is given by the Ferm:
function as eq. (2.2)
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1
f(E) = 1+ e(B-Ep)/kT

(2.2)

where F; = h?/2m (3n/87)%* is the Fermi energy, m is the mass of electron,
k is the Boltzmann’s constant, T is the temperature in absolute scale and n
is the number of electrons per unit volume.

The band theory of solids defines materials based on different energy states
occupied by the charge carriers or electrons [2]. The three energy bands with
which materials can be classified are valence band, conduction band and the
forbidden band or forbidden energy gap. All the highest energy levels of an
atom, of a material where electrons are paired constitute the valence band.
On the other hand a conduction band is a set energy levels where electrons
are free to move inside the material. In other words all unpaired electrons
lying in the outermost shell of an atom of a material constitute the conduc-
tion band. The forbidden energy gap is the energy band where there are no
charge carriers and it separates the valence and conduction bands. Based on
these energy band definitions, materials can broadly be classified as

1. Conductors : The type of materials where the valance and conduc-
tion bands are overlapped and the electrons are free to move inside the
material. In other words, materials where the lowest energy levels are
all filled and have an excess of electrons filling up the higher energy
states extending into the conduction band Fig. 2.1(a).

2. Semi-Conductors : The type of materials where the valance and
conduction bands are separated by a small energy gap. At room tem-
perature there are fewer charge carriers in the conduction band and an
external excitation or impurities is required to enable them to move
across into conduction band Fig. 2.1(b).

3. Insulators : The materials which have a large energy gap separates
the valance and conduction bands. There are hardly any free charge
carriers inside the material for conduction. If all the electrons inside
an atom are paired up, there can be no electrons free to move inside
such a material Fig. 2.1(c).

Now it is easy to deduce from the above argument that for a material to be
used as an electron emitter, it should have sufficient number of electrons in
the conduction band which can be extracted by a variety of ways discussed
in latter sections. This makes the conductors the best choice for emitters,
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Figure 2.1: (a) The energy band diagram of a conductor. The shaded region
is the overlapping of the conduction and valence bands. E is the reference
energy of unbounded states and Ey is the Fermi energy level. ¢ is the
potential barrier or work function of the material and it is the energy required
for the electron to come to the level of surface energy and escape from the
material.

(b) The energy band structure of a semi-conductor with a forbidden energy
gap. An electron must cross this energy gap and additionally possess energy
to overcome the potential barrier to escape from the material.

(c¢) The energy band structure of an insulator where there is a large forbidden
energy gap separating the conduction and the valence bands, which makes it
almost impossible for the electrons to cross into conduction band or escape
from the material.

but with new breakthroughs in semi-conductor technology, a wide variety of
semi-conductor electron sources are also being developed.

Based on the knowledge of band structure of materials, the work function ¢
can now be defined as the difference between the Fermi energy Ey and the
maximum energy level of the conduction band E, of a material. In other
words, work function is the potential barrier the electrons have to cross be-
fore they escape from the material. It is vital to note that semi-conducting
materials can have more than one work function. Although the actual work
function corresponds to the potential barrier between the Fermsi level and the
surface of the material, it may sometimes include the work function required
to bring an electron from valence band into the conduction band.

There are three major kinds of electron emission based on the type of exci-
tation applied to an emitter. These can be classified as

1. Thermionic Emission (electrons extracted by heating the emitter)
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2. Field Emission (electrons extracted by tunneling under high electric
fields)

3. Photo Emission (electrons extracted by irradiating emitter with light
of suitable frequency)

2.2 Thermionic Emission

When a metal is heated to very high temperatures, electrons gain sufficient
energy to overcome the potential barrier and escape from the metal. The elec-
tron emission subject to thermal excitation is called thermionic emission. For
the electrons to be free from the metal, need energy at least equal to potential
barrier ¢ or work function of that particular metal. In other words the energy
of an electron after escaping from the metal would be £ > E¢+¢. Where Ey
is the Fermi energy as described before. From the energy plot Fig. 2.2 we can
conclude that sufficient electrons can escape from surface at very high tem-
peratures. According to Fermi-Dirac statistics electrons can be considered
as indistinguishable particles in phase space defined by dzdydzdu,du,du.. In
an equilibrium state, the total number of electrons in an elemental volume
of a metal can be obtained by multiplying the Fermi-Dirac probability dis-
tribution function eq. (2.2), with the phase space, which then yields eq. (2.3)

_2mPvdu, duy du,
Cp3 (1 + e(EfEf)/lcT)

AN (2.3)

where v = dxdydz is the elemental volume of the metal. Since we are in-

terested in the current normal to the surface of the metal, we integrate eq.
(2.3) over all values of velocities in the normal direction. If z axis is consid-
ered as the normal to the metal surface and w,q is the minimum velocity of
the electrons after they overcome the potential barrier, the current can be
written as

2mde [ [ [ w, dug du, du,
J_T/ / / —x e (2.4)
—00 —0o0 Juzp ( 2 _ Ef) /kT
e +1

where z, y form the plane of the metal surface and u = \/ (u2 +u2 +u?) is

the velocity of electrons inside the metal. The exponential term in the above
equation is much higher than one, even for the electrons that are emitted
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T>>0

n(E)A E,
e

free electrons

'

E

Figure 2.2: The distribution of electrons at room temperature. As the tem-
perature increases electrons which are already at Fermi level gain sufficient
energy to cross the potential barrier and escape into free space.

with zero velocity, hence the above equation can be rewritten as

e B % —u2m/2kT - —u2m/2kT - —u?m/2kT
erT et dx e dy u, e "z dz
—00 Uz0
using the standard integrals and rearranging terms one would get

4rmek?
J= T”Z’ge eEf/kTTZG(—uEOm)/W{:T (25)
where —u?ym/2 = FE is the minimum energy which an electron has after it

overcomes the potential barrier. Substituting £ — E; = ¢, the work function
of the metal in the above equation, we get

J = AgT?e /T (2.6)

which is the well known Richardson-Dushman equation for temperature lim-
ited current from a metal of unit surface area per unit time [3,4].
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where Ay = 4mmek?/h? is a constant with a value 120.4A4/cm? °K?, T is the
temperature in absolute scale, ¢ is the work function of the metal and k is
the Boltzmann’s constant.

2.2.1 Schottky Effect

The current derived in eq. (2.6) does not take the external electric field into
consideration. In many applications electrons are accelerated with high elec-
tric fields after being extracted from the cathode altering the work function
of the material and eventually the current Fig. 2.3 [5,6]. This phenomena is
called Schottky effect. By the method of images the force acting on an elec-
tron that is just outside the metal due to a mirror charge inside, separated
by a small distance x is obtained by the gradient of potential —e?/4x. Simi-
larly the potential outside the metal due to an anode potential of V' volts is
eEficiqr, where Epq = —V/d and d is the distance of cathode from anode.
Now the work function is reduced by the term e?/4z + eFticiqx, which is
the net potential outside the metal due to the image charge plus the external
electric field. The maximum reduction in work function can be found by tak-
ing the first derivative of the above term, which gives = = 1/2(e/Eyiaa)">.
The work function is now reduced by an amount e® QE}%/Zd. The modified
Richardson-Dushman equation for current under the influence of external
electric field can be written as eq. (2.7)

_ GS/QE},{;d) /kT

J= A0T26_<¢ (2.7)

where Fyiqq is the external electric field.

The charge associated with the current derived in eq. (2.7) can be calculated
by knowing the distribution of electrons inside a volume enclosing the sur-
face of the emitter. Now if an electron possesses energy mu?,/2 after losing
energy mu?/2 in crossing the potential barrier at the surface, we can write
the velocity distribution of electrons as

4rm*kT
dN, = %e(Ef’E)/deuz (2.8)

Where the energy E = (mu?,/2 + mu?/2) is the total energy of all elec-
trons in the volume enclosing the surface of the metal. Integrating the above
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cathode anode

Figure 2.3: The energy E of the electrons plotted as the distance from the
cathode z. It can be noted that the work function is reduced by an amount
A¢ as the anode potential is steadily increased.

equation and substituting the expression of current in it would result in the
equation relating charge associated with the above current density

J [2mm
N=—\— 2.9
2e V. kT (29)
where N is the number of electrons coming out of unit surface area of the
metal per unit time.

2.2.2 Temperature Variation of the Work-Function

In the equation of current derived in eq. (2.7), we have not considered the
temperature variation of the work function. As the temperature of the emit-
ter increases, there will be a change in the bulk properties of that material
and consequently a change in the energy levels, so that the work function
does not remain the same. The change in work function is given by

o= ¢+ T

where « is a temperature dependent variable evaluated from the Richardson’s
constant A as a = k/eln(A/Ap).
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2.3 Field Emission

The quantum mechanics states that, a particle inside a potential well has
small but finite probability to escape from the well. Taking the Schridinger’s
stationary wave equation eq. (2.10)

2
V2 + h—?Ew ~0 (2.10)

for an electron inside a material defined by periodic potential wells spaced
at intervals L, Fig. 2.4, the solution for the above wave function would be

)= ej(mr)/Lu(q;, Y, z)

where u(z,y,z) is a function having same periodicity as the lattice inside
the material. It can be seen from the solution that the wave amplitude
decays exponentially at the potential barrier, so there exists a probability
for the amplitude to be finite on the other side of the barrier. This phe-
nomenon is called tunneling effect where electrons with lower kinetic energy
tunnel through the higher potential barrier. But the probability of tunneling
depends on the width of the potential barrier. If the potential difference be-
tween anode and cathode is of the order of several thousand volts, the width
of the potential barrier can be reduced to few electron volts thus enabling
large number of electrons to tunnel through the barrier. The process of emit-
ting electrons with the application of high electric fields at room temperature
is called field emission.

To derive the equation for the current we first have to define the tunneling
or transmission coefficient. The transmission coefficient is a function of the
kinetic energy of an electron, the external electric field and the potential
barrier or the work function of the material. For a potential barrier with no
image charge and considering the same notation as before, with x — y plane
forming the plane parallel to the surface of the material and z axis normal to
the surface, Fowler and Nordheim have derived the transmission coefficient
T(E,) for an electron as

_4y/8m*m/h?
_ 4V E.(¢ - Ez)e 3E fietd
¢

(¢ . EZ)3/2)

T(E.) (2.11)
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\ Vacuum

e Efield r4

crystal

Figure 2.4: The energy level diagram of a crystal with periodicity L. The
electric field at the surface is Ey;eq. High electric fields enable the electrons
to tunnel across the potential barrier into vacuum

where FE, is the kinetic energy of electron normal to the surface of the ma-
terial, Efieq is the Electric field and ¢ is the field emission work function of
the material.

Recalling the Fermi-Dirac distribution function of electrons in the phase

space we have

B 2m3 du, duy du,
o h3[1 + e(}zLEf)/kT]

AN (2.12)

where E = m(u} 4 u} + u?)/2 is the total kinetic energy of the electron.

The product of the transmission coefficient and the total number of electrons
inside the phase space with normal kinetic energy gives the field emission
current eq. (2.13)
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2 3 \2Es/m 00 00 d :rd
J==" / T(E.) u, du, / / 7 Vo Ty (2.13)
0 —oo J—00

h + e(EfEf)/kT]

where /2E;/m is the maximum velocity of electrons at the Fermi level. By
integrating the eq. (2.13) and assuming that £y — E > kT we have

7 47rm26/V2Ef/m

5 T(E,) u,(Ef — E)du,
o Jo

replacing £y — ' = o and expanding the above equation in terms of this
quantity, we have

1/2
_ 6Ejf/ Ej%ield e SEfield
21th(Ey + ¢)¢l/?

B 4+/8m>m/h? ¢3/2>
(2.14)

which is the Fowler-Nordheim equation for the field emission current per unit
surface area per unit time [3,7].

The equation above is good for planar field emitters where electric field den-
sity over the surface of the material is more or less constant. But in the
presence of sharp edges, the local electric field values can be of the order of
several thousand volts per unit surface area of the emitter, resulting a high
current. We have to include the shape factors of the emitter and also the
area of such edges or tips. The current equation is modified for the above
corrections, which can be written as

J = aB} et Prie (2.15)

where a = 1.42107%a5%/(¢e®®/V?) and b = 6.52107¢*?/3, « is the area of
the effective emission and [ is the field enhancement factor.

After obtaining the current from the emitter, we follow the same procedure
as in thermionic emission to find the charge associated with this current den-
sity. For this we divide current density with eu, and take integral of u, over
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the same values as in the eq. (2.13)

(2.16)

N J
. /°° /°° /VQEf/m du,du,du,
—oo J—o0 JO (1

+ e E=En)/KT)

The exponential term in the denominator of eq. (2.16) is very much greater
than one, hence neglecting the latter and integrating the equation gives the
charge associated with the current eq. (2.14)

Jm?

N = ekt (2.17)

2.4 Photo-Electric Emission

When a metal or semi-conductor is irradiated by light of suitable frequency it
emits electrons. The electron absorbs a quantum of energy hv from a photon
and gains sufficient kinetic energy to escape from the material Fig. 2.5. This
phenomenon is known as photo-emission. The number of electrons emitted
depends on the intensity and the frequency of the incident light. Besides the
material properties, there is a minimum frequency of the radiation that is
required to generate current. The energy required by a photon to emit an
electron is hyy, where v is the lower limit of the frequency known as cutoff
frequency. To emit an electron from the material this energy must be at least
equal to the work function of the material

hV0:¢

writing the above equation in terms of the cutoff wavelength we have

- 12.36210°7

Ao 5

m (2.18)

Following the same approach as in thermionic and field emission, the velocity
distribution when multiplied by the transmission coefficient gives the total
current. Fowler considered the probability of transmission to be a constant
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photo electron

o o -

Figure 2.5: The figure illustrates the photo-emission. A photon of energy hv
impinges on an electron at the Fermi energy level and transfers its energy to
the electron, which then has sufficient kinetic energy to escape the metal.

since the energy spectrum of photo electrons is narrow. If we call the proba-
bility of transmission as a constant o and write the distribution function in
terms of normal energy, we have the equation for current as

In(1 + ePr=BV/FY g, (2.19)

drmek?*T?a [
J= = —

«—hv
where FE, is the critical energy an electron needs to escape potential barrier

or b, — Ey = ¢. Integrating the above equation would give the photo current
per unit surface area of a metal [3]

J = aAT?f(z) (2.20)
where,
e % — e:fz ejz —-... for uy <1

%2—1-%2—(6_9”—6_422—1-6;31)... for ug > 1
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(v — 1)
e (2.21)

Again considering a thermal velocity spread inside the metal and dividing
eq. (2.19) with gives the total charge per unit surface area of the metal

L (2.22)

ef (z)

where f(x) has the same meaning as above.
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Theory of Electron Emission
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Chapter 3

The Finite Integration
Technique

3.1 Maxwell’s Equations

The methods to obtain the solutions of electromagnetic fields can be broadly
classified into two categories. The ones, that give exact solutions of the math-
ematical relations governing a field problem, known as analytical methods
and those which give approximate solutions accommodating more complex
field problems and are known as numerical methods. The choice of a method
depends on the problem space over which the solutions are to be obtained,
the kind of mathematical relations governing the problem and the boundary
conditions that have to be fulfilled by the solutions. It is obvious that ana-
lytical solutions cannot be obtained for problems involving complex physical
geometries or for inhomogeneous, anisotropic medium or mixed, time depen-
dent boundary conditions. In such cases numerical methods are applied to
get accurate solutions depending on the number of constraints. Here we dis-
cuss the Finite Integration Technique (FIT) as the basis for field solutions
and show how the discrete representation is consistent with the general laws
of electromagnetics. We also discuss the flexibility of the method in handling
complex surfaces and material definitions, which would be vital for the de-
velopment of an emission model discussed in later chapters.

The laws governing the classical electromagnetic theory are given by Mazwell
equations [8]. In a stationary state the integral and consecutive differential
forms can be written as
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OB(F,t)
ot

4 4 D(7 . .
7{ H(F,t)-dSz/(a a(r’t)+ (F,t))-dA =
A a\ t (3.2)
iy = 220N | g

]{ E(f,t)-dg*:—/aB(’" .Y CdA < V x E(F\t) =
0A A

o (3.1)

where E and H are the electric and magnetic field strengths, and D and B
are the electric and magnetic flux densities V A,V € R3. For a non steady
state field problem, the conservation of charge was later on included into
Ampere’s law by Mazwell in the form of continuity equation

]{ J(Ft) - dA = —/ WY gy ey iy = 2000 55
A ST ot

where J and p are the current and charge densities respectively. The field
strengths and the flux densities mentioned in the equations (3.1)-(3.5) are
related to each other through material parameters. In the absence of perma-
nent electric or magnetic polarizations, the material equations for an isotropic
medium are

D(F,t) = cE(F1)
é(m) = 7 (7, 1) } (3.6)
J(Ft) = Ji(7.t)+ kE(F1)

where e, 1, k are the permittivity, permeability and conductivity respectively.
J; (7, t) term is associated with free current sources. The eq.’s (3.1)-(3.6) along

with initial and boundary conditions completely define an electromagnetic
field problem.
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3.2 Finite Integration Algorithm

The numerical solutions to the Maxwell’s Equations require discretization
of a bounded problem space Fig. 3.1 [9]. The grid that encompasses the
problem space is a collection of a finite number of non-overlapping cells, each
of which will uniquely hold the information of the continuous space variables.
The topology of these cells will be lines or edges, faces and volumes in one,
two and three dimensions respectively and together they form a cell complex

G.

AN

E\

/ k
u
v Wy

u, u; u, w

1

Figure 3.1: A Cartesian grid that expands along a problem domain with a
total number of grid points N, = I ¥ J x K and each cell index given by
n(i,j,k) =i+ (j—1)I+ (k—1)IJ. I,J, K being the total number of points
on each axes of the coordinate system.

3.2.1 Grid Maxwell Equations

The Finite Integration Technique discretizes the Maxwell integral equations
in the problem space using a dual staggered grid complex GG and G [10]. The
need for such a dual grid arrangement stems from the fact that the Mazwell
equations are coupled with electric and magnetic fields inter-related to each
other and the dual grid arrangement represents a geometrical equivalent of
these equations. Both of these cell complexes, referred as primary and dual
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grid are constructed in such a way that the nodes of a cell from primary grid
form the barycenters of the corresponding cell of the dual grid and vice versa.
Now we shall discuss the FIT with the help of a simple three-dimensional
Cartesian grid although it can be implemented in general for any orthogonal,
non-orthogonal or unstructured grids. The method also includes sub-grids
used in the problems that require local mesh refinement. With the help of
dual grid system we can now write the Finite Integration (FI) state variables
as [11,12]

&= [, E()-d hy = [;, H(7)-dS
d. = [; _D(7) - ff by = [, B(7)-dA (3.7)
5=hJV)M7 4 =[5, p(F)dV

Where L,, L., A,, A,,V, are the lengths of the edges, area of the faces and
volume of each primary and dual cells respectively. As can be seen from the
Fig. 3.2 the electric and magnetic field strengths are integrated along the
edges of the primary and dual grids, respectively. Similarly the electric and
magnetic fluxes are integrated over the faces of each cell of the primary and
dual grids.

Taking one face of a primary grid cell fig. 3.3(a),3.3(b), we can write the
discrete counterpart of eq. (3.1) as

~

d:
——bu(i, j, k + 1))

euli, g k) +é,(i + 1,4, k) —éu (i, 5+ 1, k) —é,(i,4,k) = 7

The above discretization is applied to the rest of the edges and faces of the
grid complex GG, G to obtain a set of independent algebraic equations that
can be written in matrix form as

Ce— -9
CT T d

Following the same approach and considering eq. (3.4), the discretization of
fluxes over the faces of a cell fig.3.4(a),3.4(b), can be written as
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Figure 3.2: The grid couplet in FIT

G G

&, (i, j+1, k-1) N h, (i, j+1, k-1)
N % N 3 ‘x’\:{t’; .......... T
\“\ ) \\»\ : f Y}
o N = ) P - \y
A YT R R RO
o3 = : ; i 3 <
~ -. n
< & I N by
=i = g e =f =i 1E =ic
< b, (i/j, k+1) = = iod, (i¥1,j+1, k) ‘;: EES
-\E ‘ 1) v \; \. ‘ : H
‘Q . ‘{) [ -3 ,}. ------- L e TTTTTT] ;..........:\
Y o R N
\\ i AS H \
Y A\ u H\ T\
\y P \
X 5’-’-.-------,;.-.-.;.-.-:-.-—. ------------ a r‘\’x‘
&, (i, k) w h, (i, j, k)

Figure 3.3: (a) Electric field components along primary grid edges.
(b) Magnetic field components along dual grid edges.

~
~

—by(i—1, 7, k)+by(i, j, k) =by (i, j, k)+by(i, j—1, k) —=by (i, j, k) +bu (i, 4, k+1) = 0

which, for the entire grid complex, will transform into matrix form as
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Figure 3.4: (a) Magnetic flux on the faces of primary grid or, consequently,
along the edges of dual grid.

(b) Electric flux on the faces of dual grid or, consequently, along the edges
of primary grid.

Sh =0

After similar discretization of the other two Mazwell equations, with mag-
netic field components along the edges of dual grid G and electric current
and flux densities over the faces, we obtain a set of matrix equations referred
to as Mazwell Grid Equations (MGE).

ce — —4%
.
Cho= gt (3.8)
Sd = q
Sb = 0

Where C, é, S. S are topological matrices with elements carrying a value of
either -1,0,1 and are the discrete counterparts of the continuous differential
operators curl and div. We can see from the above equations that C, C are
the discrete curl operators on primary and dual grids respectively and they
only carry information on how the electric and magnetic field components, é
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and h are integrated on both the grids. Likewise, the discrete div operators
S,S will carry the information to integrate the electric and magnetic flux d

and b on the dual grid system.

The discrete curl and div operators so obtained can be verified to fulfil the
analytical relations [11]

diveurl=0 <= SC=0,SC=0
curlgrad =0 < CST=0,CST=0

The fulfillment of the above algebraic properties by the discrete system en-
sures the conservation of charge and energy.

3.3 Material Operators in FIT

The Mazwell Grid Equations (MGE) are exact and no approximations have
been made while discretizing them [14]. The approximations come into play
when we consider material equations relating the fields to their flux densities.
The first step is to discretize the material equations with respect to the dual
grid complex, which will again result in a set of matrix equations,

d = M.se
b = M,h (3.9)
j = M.é+j;

where M., M,, M, are the discrete material matrices.

Here we have to make a note that since the material distribution may not be
continuous across each primary-dual grid couplet, we have to find an approx-
imation technique that would average the material properties and enable us
to solve the above equations. Let us consider the first of eq. (3.9) where we

have the permittivity € of the medium connecting the electric flux d inte-
grated on dual grid faces to the electric field é integrated along the edges of
the primary grid. The first assumption is to consider a homogenous material
distribution in the primary grid cell as shown in the Fig. 3.5(a). As can
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be seen, each of the four primary grid cells are filled with a material of per-
mittivity €1, €9, €3, €4 respectively and the dual grid face which cuts through
each of the primary grid cells has areas Ay, Ay, As, Ay respectively. Now the
permittivity on this dual grid face can be averaged as

511211 + 821212 + 63/13 -+ E4A~4
A+ Ay + A3+ Ay

E= (3.10)

Extending the same argument to the case of conductivity x, where the cur-
rent density on a dual grid face is coupled to the electric field vector along
the edges of primary grid cells, we write the average conductivity on a dual
grid face as

K1A1 + KQAQ + /{3A~3 + /434/14
A+ Ay + A3+ Ay

(3.11)
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Figure 3.5: (a) Averaging permittivity and conductivity along a dual grid
face. (b) Averaging Permeability along a dual grid edge.

The remaining material parameter to be averaged is permeability p that

couples the magnetic flux b from a primary grid face to the magnetic field h
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along the corresponding dual grid edges, fig. 3.5(b). As we already assumed
the material filling of a primary grid cell to be homogenous the average of
permeability along a dual grid edge is,

M1[~/1 + sz@

= ~ (3.12)
Ly + Ly

Ia:

For homogenous, isotropic material distribution the above averaging when
applied to the entire grid complex will result in a set of diagonal matrices
D.,D,,D,. Until now we have averaged only the material parameters and
are yet to couple the grid voltages on the edges to the flux densities on the
faces of a grid cell. If we consider the field and flux to be constant along the
edges and faces, the final discrete material equations can be written as

J5, D7) -dA 5|4 di . D:)iDali _ d — d=DM.s
[, B a8 " Il T & Dsi e 6
o /a8 mIAL G DMl d sy
[ B -dd Il & Dsh @ K

S H@-dS ptiL) by DDs) b a0
[ B -dA Al T, Dap M

where, D A,f) A,Ds,f)s are the diagonal area and edge length matrices for pri-
mary and dual grids respectively, and M, = D5]~)AD§1, M, = DKﬁADgl,
M,=D,D Af)§1 are the final matrices that have complete information about
materials and the grid dimensions.

3.4 Conformal Material Operators

The approach to discretize materials, discussed in the previous section will
result in a staircase approximation of curved objects, as can be seen in Fig
3.6(a). Taking a fine mesh would increase the computational costs and may
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still lead to erroneous results for problems that are curvature dependent. As
will be seen in later chapters, the process of emission requires the field com-
ponents normal to the surface and in such cases a staircase mesh will fail
to provide the right field values on the boundary. There are many schemes
under FIT that can handle this problem depending on the accuracy required
and computational costs that can be afforded. The first of them are triangu-
lar Fig. 3.6(b) or tetrahedral material fillings inside the volume of a cell. This
method has a better description of the boundaries than the staircase approx-
imation. There also exists sub-grid schemes that can make a refinement of
the mesh locally at a curved boundary Fig. 3.6(c) [15]. The non-orthogonal
grid as shown in Fig. 3.6(d) can handle the problem of curved boundaries
with much higher efficiency but at the expense of additional computational
costs in interpolating the fields and flux densities on the grid couplet which
now are non-orthogonal to each other [16]. A new technique called Confor-
mal Finite Integration Technique (CFIT) as seen from Fig. 3.6(e), is capable
of accurately modeling the curved boundaries even with coarser grids and is
very apt for the problem of emission [17]. This method preserves the orthog-
onal structure of the original FIT by keeping the topological matrices intact,
but adjusts the material matrices with the new edge lengths and areas of the
faces, considering the exact material intersections with each edge and face of
the primary and dual grid cells. The re-adjustment of material matrices take
only a little more of computational time during pre-processing but will give
accurate results for the fields on boundaries. Because of the requirement of
high field accuracy in emission modeling, this technique is used in all simu-
lations in this work.

3.5 Electro- and Magneto-statics

In field problems where only the steady state response of the system is of
interest, the FIT will employ a static field solver, which in turn will consider-
ably reduce the computational burden. Here the Poisson’s equation is solved
by defining scalar potentials ¢ on cell nodes. The corresponding fields can be
obtained by taking the gradient of these potentials along the corresponding
cell edges [18].

E() = —gradp.() (3.13)

Substituting the above equation into eq (3.5) and the corresponding result
into eq. (3.2) will yield
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a) b)

Grid Completely Filled Cells

Partially Filled Cells

Figure 3.6: (a) Staircase approximation. (b) Triangular filling of material.
(¢) Sub-grid technique applied near material boundaries. (d) Non-orthogonal
grid. (e) Conformal Boundary Approximation technique considers the exact
material filling inside each grid cell ensuring the solutions to be accurate on
the boundaries.
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V- (eVoe(r)) = —p(7) (3.14)

which is Poisson’s equation. Using the topological and material matrices the
above equation can be transformed into discrete form as

SD.DsD5'ST¢e = —qe (3.15)

Where, ST = —G is the gradient matrix and ¢. the total charge enclosed
inside a grid cell. Once the boundary conditions are specified, the above
matrix equation can be solved.

The magneto-static fields are solved in similar way. The magnetic field from
permanent magnets is calculated using the static field solver of CST EM
STUDIO and is imported into the emission model [19,20]. The magneto-
static solver need not be executed in each iteration cycle since only static
magnetic fields are considered in emission model. The fields produced by
the electrons are neglected as the simulations performed in this work are
non-relativistic.
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Chapter 4

The Particle-in-Cell Method

The systems containing charged particles and external forces acting upon
them have been studied by many different methods. The basic mathematical
model of all these methods is to simulate the physical phenomena with an
appropriate computational model reproducing the original system as closely
as possible. The simulation method defines a six dimensional phase space
(positions and velocities in 3D) distribution of the test particles, an interpo-
lation method to find the forces acting on the particles and an appropriate
solution for the equations of motion. Here we give a brief overview of differ-
ent methods used for simulating particle systems.

It can be observed that most of the fluid dynamic problems or plasma simu-
lations use the magneto-hydrodynamic (MHD) method where the electrically
conducting fluid dynamics is modeled with the combination of Navier-Stokes
and the Mazwell equations. In this method the phase space distribution
function, such as Mazwell-Boltzmann, defines the positions and velocities of
the charged particles macroscopically. This method usually suits large phys-
ical systems where the simulation of macroscopic behaviour of the charged
particles would suffice. On the other hand it is often required to study the
dynamics of the system before it reaches an equilibrium state, that demands
a study of the physical phenomena microscopically. One way to do this is
by defining particles in the six dimensional phase space given by the Viasov
equation [22]

where Z is the position vector of the particle, p the momentum, ¢ the charge,
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m the mass of the particle, E the electric and B the magnetic fields acting
upon the particle.

The space charge and the current densities can now be obtained by integrat-
ing the above distribution function in the momentum space as

p(E.5,8) = q / JE R OPp,  T@E R = q / @Oy (42)

where p, J are the charge and current densities respectively and v the velocity
of the particle.

4.1 Equations of Motion

The numerical integration of Viasov equation eq.(4.1) along with the Mazwell
equations in 3D amounts to considerable computational burden. The Viasov-
Mazwell system of equations is non linear and in six dimensional phase space
becomes impractical to solve as the number of operations to update fields
scales as the square of the number of computational particles. An alternative
to overcome these difficulties are Particle Methods, where the trajectories
of the particles can be obtained by numerically integrating linear ordinary
differential equations that are characteristic equivalent of Viasov equation
and written as

dv - d7
i = 3 4.
mdt F, g U (4.3)

where, F = qF + q(V x g) is the Lorentz force acting on the particle.

Again, based on the type of the problem under study, Particle Methods can be
subdivided into Particle-Particle (PP), Particle-Mesh (PM) methods. The
PP method is based on the calculation of force exerted on a particle by all
other particles in the system. If we have N, particles then the operation count
would be of the order O(sz). For a system consisting of many particles the
method would be computationally expensive. To avoid the above problem
and make the system computationally feasible and robust we choose PM
method where the physical system is discretized by a mesh and particles are
distributed among these mesh cells. In the first step particle charges are
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deposited on the mesh and solved for the new fields along with the boundary
conditions. The fields so obtained are then interpolated from mesh to the
particle positions and the equations of motion are integrated. Since the
number of charged particles in a physical system is far beyond the capability
of a computer model, we group a set of charged particles into a macro particle.
The charge deposition and the force interpolation scheme when applied over
macro particles introduces a discretization error depending on the spatial
resolution of mesh or the particle dimension. Also the grid resolution should
be smaller than the smallest wavelengths of the physical system. The tradeoff
between the accuracy of simulation and the computational time demands a
careful selection of the mesh resolution and the number of computational
particles.

4.2 Particle-in-Cell Method

The Particle-in-Cell (PIC) method as the name suggests defines macro par-
ticles inside a physical domain discretized by a mesh. The idea is to solve for
the scalar potentials or fields in the entire physical domain using the standard
grid based methods such as Finite Integration Technique (FIT) with appro-
priate initial and boundary conditions and interpolate the force exerted by
these fields on all particles that lie inside the corresponding mesh cell Fig.
4.1 [23,24]. Once the force on each particle is known, we can integrate the
equations of motion given by eq. (4.3) to get the new particle positions and
velocities. The charge carried by each macro particle is then assigned to the
cell nodes in which it lies and the above procedure is repeated in each time
step. The PIC scheme can be visualized from the flow chart shown in Fig.
4.2. We shall briefly discuss about different operations that are part of a PIC
cycle.

4.3 Particle Initialization and Emission

We initialize a PIC' simulation by defining the particle positions and their
initial velocities. As will be described in the Chapter 5, the emission sources
are identified and position vectors for particles are defined over the surface.
The velocities are initialized by Mazwell-Boltzmann distribution function eq.
(2.3) or can also be set to zero, depending on whether the initial conditions
of particles play a major role in overall particle dynamics of that particular
system.
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Figure 4.1: A visual representation of the Particle-in-Cell method where the
electric potentials ¢ are defined on the primary grid cell nodes. @, is a macro
particle that is the net charge inside the grid-cell obtained after summing up
the charge of all independent macro particles q.

4.4 Charge and Force Interpolation Schemes

The next important step is to find an interpolation scheme, which will assign
the charge of all particles inside a cell to the corresponding cell nodes and
consequently interpolate the forces on particles due to the fields defined at
the cell nodes. There are different schemes to do this depending on the
accuracy required and the computational cost. Here we shall discuss the
schemes in one dimension for simplicity, which can be easily extended to
higher dimensions.

4.4.1 Nearest Grid Point (NGP)

It is a zeroth order weighting scheme where the force is calculated from the
nearest grid point from the particle position and the same procedure is ap-
plied to the charge deposition Fig. 4.3.

If we consider a one dimensional mesh with corresponding mesh nodes sepa-
rated by a distance H then the weighting function for the NGP scheme can
be written as,
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Figure 4.2: A Particle-in-Cell simulation cycle
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where, x,, is the position of the particle and x is the position of the grid point.
It can be noted that the weighting function in this case is a delta function.
Now the force interpolation function can be written using eq. (4.4) as,

Np—1

ﬁ(xp) = p Z W(z — xp>Ep (4.5)

p=0

where, N, is the number of grid points, g, is the charge and Ep is the electric
field at the grid point. The force due to magnetic field is also calculated
in the same way and the total force is obtained by summing up the electric
and magnetic force terms. It can be noted from Fig. 4.4(b) that the NGP
scheme when applied to a periodic system of two equal and opposite charges
separated by a distance L, yields force which is discontinuous compared to
that of a continuous force variation Fig. 4.4(a). This is obvious since the
delta function used in the weighting function varies with a period equal to
the grid spacing. This results in a very noisy force interpolation. Similarly
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Figure 4.3: The figure illustrates the NGP scheme. The charge of a particle
is entirely assigned to the grid point which is nearest to it. An exact opposite
operation is done in the case of force interpolation.

the charge deposition over the grid can be written as,

Np—1

pla) = Y FW(a =) (4.6)

where p(z) is the total charge density at a grid point x and ¢ is the charge of
the particle located at x,. The charge interpolation with NGP method can
be visualized from Fig. 4.6(a). It can be seen that the charge is assigned to
the grid point which lies inside the shape function defined by eq. (4.4).

4.4.2 Cloud in Cell Method (CIC)

The CIC method tries to rectify the noisy interpolation of NGP but at more
computational expense [23,25,26]. Considering the same one dimensional
mesh as in the case of NGP method and taking two mesh points x and z+H
for interpolation, we can write the total CIC force function as a linear com-
bination of individual forces obtained by applying NGP separately to each
mesh point. The weighting function can now be written as,

1_M, v — x| < H

W(x —z,) = H (4.7)

0, otherwise
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a) F

Figure 4.4: (a) The force experienced by a particle in a one dimensional
system with equal and opposite charges lying at x = 0 and z = L. (b) The
force interpolation of the same system using NGP approximation which gives
rise to a staircase force field. (c) CIC interpolation smoothens the staircase
using a triangular weighting function.

The force interpolation for the case of two points mentioned above can now
be obtained by taking a linear combination of the force functions derived
using the above weighting function at the individual points.

F(z) = [W} E, + {@} Epir (4.8)

The above force interpolation plotted in Fig. 4.4(c) varies smoothly. The
charge deposition follows the same approach as before but with the weight-
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Figure 4.5: A Cloud in Cell charge deposition can be visualized here. The
charge () is assigned to all the nodes of the cell using a weighting function
that is a linear combination of the distances of each cell node with that
of the particle () = Z?:o ¢;- The same operation is reversed for the force
interpolation.

ing function given by eq. (4.7). It can be seen from Fig. 4.6(b) that the
charge weighting now varies smoothly even across the mesh boundary. In
three dimensions the scheme can be visualized with Fig. 4.5 where the inter-
polation is done by the linear combination of weighting functions from each
node surrounding the particle.

There are higher order methods like Triangle Shape Cloud (T'SC) and cubic
splines where the charge is spread among more mesh points adjoining the
particle, reducing the noise further. The weighting functions in such methods
can be derived following the same approach as in CIC, by taking the forces as
a linear combination of individual forces from more adjoining nodes. Though
such approximations give greater accuracy, it adds to the computational
burden. The charge interpolation scheme for a higher order method can be
visualized from Fig. 4.6(c).

4.5 Particle Pusher

Once the fields have been calculated over the entire problem domain using
the above method, we can proceed to interpolate the fields at the particle
positions and calculate the force. After calculating the forces acting on each
particle we can solve eq. (4.3) and update the positions and velocities. There
are different time integration schemes of which Fuler, Runge-Kutta and leap-
frog methods are widely used. The FEuler’s method which is a forward time
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Figure 4.6: (a) The figure gives the NGP weighting function as a function of
distance along the grid. A particle placed at x is assigned only to the grid
point p as the weight for other two grid points is zero. (b) The triangular
weighting function in the case of CIC' enables that the charge be spread
among the grid points around it. (c¢) A second order approximation such as
a triangular shape cloud further smoothens the weighting function. Here it
distributes the charge among all the nearest grid points.

difference scheme is only first order accurate and is unstable. Comparing
the other two methods leap-frog method is of second order while the Runge-
Kutta is fourth order accurate. When compared to Runge-Kutta the leap-frog
scheme requires less storage space as it doesn’t have to store intermediate vec-
tors that arise in Runge-Kutta method, which makes it faster and economical
for a PIC simulation. The stability, convergence and the time reversibility
makes the leapfrog scheme an appropriate choice for our problem. Taking eq
(4.3) and writing the difference equations using leap-frog method, we get



40 The Particle-in-Cell Method

n+1/2 n—1/2
At m; At : ‘

where F" is the Lorentz force on the i'" particle due to electric £ and B}
magnetic fields and g the charge of the particle. The force can now be written
as,

n+1/2 n—1/2
Fr=qE"+¢q (“’" ;”i ) X B?) (4.10)

Since the above scheme is time centered and as we cannot determine the
velocity and position of the particle at the same instance of time, we push
back the velocity by half time step v(t — At/2) using the force calculated at
time ¢ = 0. The method can be visualized from Fig. 4.7.

/\m t+2AL t+3AL t+AAL

UL M Ram mm  ma Jng

t-At/2 t+At/2 t+3At/2 t+5At/2 t+7At/2
X X X X

Figure 4.7: Time centered leap-frog method where the velocities and po-
sitions are calculated interchangeably between two consecutive forward and
backward time values. The initialization requires making one backward Euler
push of velocity at time ¢ = 0.

The Boris algorithm for leap-frog time stepping of the Lorentz force is the
most efficient and stable. This algorithm applies half energy change due
to the electric field term, then one rotation due to the magnetic field that
doesn’t contribute to an energy change, and finally another half of the energy
change to resolve the Lorentz equation. The force equation can be divided by
considering the electric and magnetic forces separately. Taking two auxiliary
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velocity terms v; and vy we can write the first electric acceleration term as

t—At/2 4 quAt

= 4.11
v =, 5 (4.11)
then vy can be calculated from the magnetic rotation as
BIAt
Vg = U1 + ('Ul + Ug) X 47 (412)

2m

once we have the second velocity term we can calculate the velocity at the
instance t + At/2 with another electric acceleration as

EiAt
LAY 1 qL,

4.13
; 2+ (4.13)

Where the superscripts have been indexed in time for clarity of time stepping
scheme. After we have the velocity at ¢+ At/2, it can be substituted into eq.
(4.9) to get the new positions. The above discussed methods together form
the complete PIC simulation cycle.

The Particle-in-Cell method finds its applications in the simulation of plasma
and vacuum electron devices. The hybrid PIC-Monte Carlo methods are used
for the simulation of collisional plasmas [27,28,29].
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The Particle-in-Cell Method
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Chapter 5

Geometric Modeling

5.1 Surface Mesh Generation

Surface mesh generation is the process of discretizing the surface of an emit-
ter by a set of triangular elements called emission samples. These emission
samples enable us to calculate the current and charge by interpolating the
fields that are solved on an external grid. It has to be noted that an external
grid is the discretization of the entire problem space, on the other hand a
surface mesh is discretization of an emitter surface for defining initial posi-
tions of macro particles. The basic description of an emitter comes from a
3D geometric modeling tool such as ACIS, which provides for curve, surface
and solid modeling of objects. The elements defining an object are a set of
triangles in 2D and tetrahedra in 3D. The faces of such non-overlapping ele-
ments whose normals direct away from the object form a Surface Mesh. The
spatial information of these elements can be obtained in the form of a Stan-
dard ACIS Text (SAT) file. The barycenters of the elements so obtained will
be the initial positions of the macro particles, over which the grid variables
are interpolated. The dimensions of surface elements are in general far big-
ger than the external grid. Which means that the discretization of external
grid is finer than the surface mesh resulting in an inaccurate interpolation of
fields on emitter.

It is evident from the above discussion that the emission model requires
re-triangulation of the surface of an emitter, so that the dimensions of the
surface elements are comparable to that of the external grid. The process
of connecting a set of points in space enclosed by a convex hull, resulting in
a unique set of triangles in 2D and tetrahedra in 3D is often referred to as
Delaunay Triangulation (DT) [30]. A convex hull is a domain that encloses
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all the points that are to be triangulated. In the case of 2D a convex hull is
a polygon and in 3D it is a polyhedra. The Delaunay triangulation fulfills all
conditions of geometrical modeling while retaining the topology of an object.
We shall discuss the main properties of a Delaunay triangulation for a planar
2D surface and extend it to 3D using constraints. The input for triangula-
tion is a finite set of distinct points or lines in space called vertices or edges
respectively. This space is further divided into small sub-regions that en-
able the vertices or edges to be connected to each other with ease, retaining
the exact topology. Once these small regions are triangulated the boundary
vertices or edges from one sub region are connected with other sub-regions
to complete the triangulation of the entire object. The two basic properties
of Delaunay triangulation, which are essential for connecting points in space
are discussed in next two sections.

5.2 Circum-Circle Criterion

A triangle T with vertices V(Vq, Va, V3) is said to fulfil Delaunay of a set of
points S if and only if no other point of S lie internal to the circum-circle
defined by the points (Vi,V5,V3). In Fig. 5.1(a) we have three triangles
Ty, T3, Ty with corresponding circum-circles Cy, Cy, C3 obtained by connecting
some arbitrarily distributed points in space. As we can see the triangulation
is not Delaunay since the circum-circle C5 of the triangle T3 includes another
point P of S. The result is that the triangulation is not unique. The triangle
T3 is corrected as shown in Fig. 5.1(b) which now satisfies the circum-circle
criteria of DT.

5.3 Angle Criterion

The diagonal that splits the quadrilateral into two triangles T}, T5 should be
such that it maximizes the minimum internal angles. In Fig. 5.2(a) we have
the triangles 17, T5 with internal angles 6, 05, 63, 04. The internal angles have
been maximized by re-arranging the diagonal of the quadrilateral as seen in
Fig. 5.2(b). This operation results in triangles with better aspect ratio,
which is defined as the ratio of the radii of inscribing to the circumscribing
circle in 2D and that of the sphere in the case of 3D. Alternately it can also
be defined as the ratio of the longest edge to the shortest edge of a triangle
or tetrahedra.
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Figure 5.1: (a) An illegal Delaunay triangulation. (b) A corrected triangula-
tion with circum-circle Cs.

Figure 5.2: (a) An edge between triangles 7),7» with minimum internal
angles. (b) Maximizing the minimum angles with an edge flip.

5.4 Sub-Triangulation

Now we can extend the conditions mentioned in previous sections to 3D
where the points in three-dimensional space sharing the same facet are con-
nected to form a tetrahedra. But it is more complicated than 2D since the
angle criterion is no longer valid and the aspect ratio is normalized with re-
cursive sub-triangulation. As stated in the beginning, we need more sample
points for every boundary external grid cell to keep the discretization and
interpolation errors to minimum. To fulfill this criterion the first condition
is to ensure that the largest edge of the triangle or tetrahedra is smaller than
the smallest edge of the external grid and the second condition is to keep
the aspect ration close to one, so as to have a uniform surface mesh. The
ideal condition is when the aspect ratio is one, where all the edges are of
equal length and such a triangulation has all the sample points uniformly
distributed over the surface. However, Delaunay triangulation cannot guar-
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Figure 5.3: Points Py, P, P5 inserted to split the original triangulation. The
dotted lines denote the new edges formed by new vertices.

antee the desired aspect ratios for a surface mesh and hence we have to apply
a few constraints while triangulating the surface. Here we discuss the appli-
cation of constraints in a simple 2D case, which are then extended to 3D but
with increased complexity. The two common methods used in Constrained
Delaunay Triangulation (CDT) are

1. Insertion of Points : In this method a point or vertex is added to

a triangle to which the constraint is to be applied. The splitting of
a triangle further into three more triangles automatically satisfies the
properties of DT, which is already fulfilled by the parent triangle. For
a triangle whose aspect ratio is poor, the point is usually inserted at
the center of the longest edge and the sub-triangles are checked for the
aspect ratio after splitting. The process is repeated iteratively until the
aspect ratio and the edge lengths fall within the specified limits Fig.
5.3.

. Insertion of Edges : Insertion of edges is commonly used in triangu-

lation around sharp edges or critically curved surfaces. Triangulation
in such regions has poor aspect ratio and further insertion of points
and sub-triangulation might be computationally very expensive and
may also result in an over populated set of samples. The solution can
be found in re-adjusting the edges according to the angle criterion or
rejecting the edges and reconnecting the points to eliminate skewed
triangles. If we desire to have an edge between two vertices or points,
the first step is to remove all other edges that intersect the desired edge
Fig. 5.4(a) and reconnect all the points accordingly to have the new
triangulation Fig. 5.4(b).
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Figure 5.4: (a) Ei, Ey are the edges to be inserted. (b) The edges which
intersect with Ei, Fy are deleted and the new edges come in their place.

5.5 Uniform and Adaptive Sampling

In most of the cases where we have no critically curved emission surfaces
such as the sphere shown in Fig. 5.5(a), a uniform surface mesh Fig. 5.5(b)
is better suited as there is no charge concentration over any particular region
of the emitter surface and does not require curvature specific sampling. But
in the case of emitters with fine tips or sharp edges which carry more charge,
we can refine the surface mesh locally to get a reasonable charge per particle
ratio and thus avoid interpolation errors Fig. 5.6. Especially in modeling
Field Emitter Arrays where the charge emission is from many fine cathode
tips etched on a semi-conducting substrate, local refinement of surface mesh
is better suited.

5.6 Implementation

For the implementation of CDT we use the Gnu Triangulated Surface (GTS)
library [31]. It is an open source object-oriented code for 3D surface meshes.
It also provides the flexibility to operate on many topological attributes such
as points, vertices, line segments, edges, faces, triangles or any general ge-
ometrical shape. The library includes options such as boolean intersection
between surfaces, increasing or decreasing the number of edges and vertices,
vertex split or an edge collapse and other geometric modeling operations. In
the case of the emission problem we have two approaches to generate surface
mesh Fig. 5.7, one that is performed based on all boundary cells of the ex-
ternal grid which intersect the emitter and is referred as cell based emission
sampling and another which takes uniform samples over an entire emission
object, referred as shape based emission sampling.
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Figure 5.5: (a) Surface triangles from a basic geometrical kernel such as
ACIS. The triangulation in this case has long edges at the vortex points and
results in poor charge sampling. (b) Uniform distribution of samples after
Constrained Delaunay Triangulation. The edges that are skewed are split
based on a specified aspect ratio.

5.6.1 Cell Based Emission Samples

In this procedure we scan all the cells of external grid and identify the cells
which have intersection with the emitter. First we define a bounding box
which contains the emitter. After that we traverse through each cell and
pass the cell coordinates and other constraints such as accuracy and curvature
correction to the GTS sampling function which in turn returns position of
the samples, normal vectors to the samples and the corresponding sample
areas. Each emission cell is now termed as a booth, where all the sample
information is stored.

5.6.2 Shape Based Emission Samples

As the name suggests, the samples are taken from the whole shape of an
emitter by supplying the GTS with the accuracy and the maximum number
of samples that we require. Later each of the samples so obtained are as-
signed to the emission booths by locating the cells in which the samples are
bound. The sample information is stored in the corresponding booth cells as
in the previous method.

Once the booth array is acquired with all the information about emission
samples, we can initialize the positions, charge, current and velocities of the
macro particles for a PIC simulation.
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Figure 5.6: (a) Surface triangles from geometrical kernel ACIS. (b) Sub-

triangulation using CDT. (c¢) Local surface mesh refinement required for
After obtaining uniform sampling of surface tri-

emitters with fine tips.
angles, a new aspect ratio is specified for triangles lying near the tips. These

triangles are further refined using CDT.

External grid

/
r'e

Surface mesh
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Emitter

Samples
Figure 5.7: The figure depicts the discretization of emission surface and

generation of samples for each emission booth.
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Chapter 6

The Space Charge Limited
Emission

In chapter 2 various primary emission mechanisms have been discussed,
where the electron emission was mainly dependent on the external forces.
But all practical electron devices have an upper limit to the current that
they can supply. This limit on the current from an emitter can be defined by
the conditions under which the device is operated. In further sections of this
chapter, we discuss such conditions under which the current is limited and
derive the governing equations and finally present the numerical methods to
implement them in the emission model.

6.1 I-V Characteristics of a Diode

The current-voltage or the I-V characteristics of a diode is shown schemati-
cally in Fig.6.1. It can be observed from the I-V plot that the anode current
is classified into different regions as a function of the anode voltage. The elec-
trons emitted from a cathode have different energies defined by the Fermi-
Dirac distribution function. The electrons, which come with greater energy
move faster and reach the anode while the low energy electrons are slower. If
the emission from cathode is continuous, the density of the electrons that are
slow and lagging behind increases for a given anode potential. This eventual
increase of low energy electrons results in an electron cloud or space charge
around the cathode, which in turn acts as a negative grid neutralizing the
anode potential. When the potential of this electron cloud or virtual cath-
ode equals that of the anode potential, emission ceases. This condition of
limiting the current by the formation of a wvirtual cathode or space charge is
known as Space Charge Limited (SCL) emission [32,33]. This phenomenon is
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Figure 6.1: A schematic of current-voltage characteristics of a diode. It can
be seen that the characteristic curve can be analyzed by dividing it into 4
regions of operation based on the anode potential. At low anode voltages the
space charge and temperature of the cathode govern the anode current but
at very high voltages the diode enters saturation

more pronounced at low anode voltages as the electrons that are emitted see
low accelerating fields and bunch up around the cathode. When the anode
potential is increased the current will start rising once again and the space
charge limit transfers to a higher current limit.

The region 1 in Fig. 6.1 depicts the operation of a diode, where the anode
current increases accordingly with the anode voltage, and for a fixed anode
potential the current reaches a maximum value defined by the space charge
limit. The current in a diode as a function of saturation current density can
be written as,

3] = [Jole"mn/*T (6.1)

where V' is the anode potential with respect to cathode and V,,;, is the
potential of space charge cloud and |Jo| = Age~?/*T is the saturation current.
For given input parameters the space charge limited current at different space
charge cloud potentials can be plotted as in Fig. 6.2 by solving eq. (6.1). In
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Figure 6.2: The plot taken between anode current and anode potential for
different space charge limits. It can be observed that for a given anode
potential, the total current that can be drawn is limited by the space charge
between the electrodes. If the anode potential is increased further, it would
result in a high saturation current and space charge effects cease. With more
space charge, the saturation current limit only comes at relatively at higher
voltages.

reality the emission will not cease completely but oscillates around a certain
minimum value.

6.2 Current Limited by Temperature

In the region 2 of Fig. 6.1 we see that the current is almost independent of
the anode potential and only varies as a function of the cathode tempera-
ture. Electron devices usually operating with thermionic cathodes fall into
this region of operation where the current is limited by the amount of tem-
perature to which the cathode can be raised. This dependence of current on
the temperature is defined as Temperature Limited emission.

It can be observed from Fig. 6.3(a) that the current steadily increases with
temperature for materials of different work function, and reaches a maximum.
Further increase in the temperature will not give rise to a corresponding in-
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Figure 6.3: (a) The curves show the current density as a function of temper-
ature. A higher temperature is required to draw current from a material of
larger work function. But however the current in all cases varies to a certain
limit beyond which the emission is dependent on space charge. It has to be
noted that even if a large current is present at the cathode surface due to
thermal heating, if an appropriate external field is not present to draw the
electrons away, it would result in build up of space charge, which would force
the charge back into the cathode. (b) In this curve the Schottky effect can be
visualized. For a given material and work function the current is more when
the external field is increased. It was an obvious result from the expression
derived in Chapter 2. If the fields are further increased, it would result in a
huge current and the field emission relations for current come into play.
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crease in the current and the limit is said to have reached. Any attempt to
increase temperature will only result in destroying the cathode, referred as
thermal runaway. A high operating temperature also means less life span of
the cathode. The current limited by temperature is given by the Richardson-
Dushman eq. (2.6).

The region 3 of Fig. 6.1 shows an increase in the current for a small increment
in the anode voltage. This phenomena is observed in thermionic cathodes.
When the external field is of the order of many thousand volts per meter,
more electrons can be drawn away from the cathode even after the cutoff
set by temperature limited emission is reached. This is known as Schottky
emission, defined by eq. (2.7).

In the region 4, the current increases exponentially with respect to anode
voltage. This is known as field emission given by the Fowler-Nordheim eq.
(2.14). Here the electric field due to anode voltage is so high that all the
electrons which are emitted are collected by the anode and the diode is set
to have reached saturation.

6.3 Current Limited by Space Charge

In eq. (6.1) we assumed the current to be dependent on the space charge
potential V,,;,. The latter however depends on the emitted current. The
self-consistent solution of this problem was first given by Child [34]. Let us
consider a planar diode as shown in Fig. 6.4, with anode and cathode plates
extending infinitely in the x —y plane and separated by a distance d along the
z axis. The anode is maintained at a potential V' with respect to the cathode.

If we assume no charge inside the anode and cathode gap, the potential
distribution varies linearly in the space separating the two electrodes. The
saturation current density Jo in a diode can be obtained using eq. (2.6),
substituting it in eq. (6.1) we can calculate the space charge limited current
for a given potential minimum V,,;,. After obtaining the current, potential
distribution inside the diode can be calculated by substituting it back into
the Poisson’s equation. The potential distribution inside the diode, assum-
ing various values of potential minimum is give in Fig. 6.5. If we increase
the charge further by increasing the value of potential minimum, the curve
dips with more non-linearity near to the cathode indicating the formation of
a space charge cloud or virtual cathode. If the charge is increased further,
the potential of the space charge around the cathode increases. When the
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Figure 6.4: A picture depicting space charge effects on cathode emission. It
can be seen from the figure that electrons of low energy will return back into
cathode with a very short life-time and those with higher energy can manage
to get across the space charge sheath.

potential minimum increases further, the curve crosses into the negative axis
indicating that the virtual cathode, formed by the space charge sheath, has
more repelling field on the emitting electrons than the accelerating field of
the anode. At this moment the space charge limit is said to have reached.

The first boundary condition for the calculation of space charge limited cur-
rent is that the total electric field on the surface of cathode be equal to zero
|E,| = 0. Now the potential distribution in the anode-cathode gap can be
written by the Poisson’s equation[35], as

2
v _ s (6.2)
dz? €

where V' and p are the potential and charge density respectively, and ¢ is the
permittivity of the medium. The reduction of the space charge problem to
1D stems from the mathematical hindrance in solving the Poisson’s equation
in 3D along with the equations of motion of electrons. For arbitrary anode
and cathode geometries it is impossible to obtain a solution in 3D except for
the numerical methods. The current and charge density are related as
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Figure 6.5: Potential plot of a parallel plate electrode with anode plate at
500V with respect to cathode and separated by a distance of 3cm. It can be
seen that more charge between the plates defined by a larger potential min-
imum would neutralizes the anode potential. The curve crosses the abscissa
when space charge potential reaches the anode potentials.

[ =p-[ul (6.3)

where J and u are the current density and velocity of the electron respec-
tively. Substituting the above equation in eq. (6.2) we get

d*V J
a9l (6.4)
dz? elul|

The conservation of energy can now be included into the above equation by
considering the fact that the potential energy is totally converted into the
kinetic energy of the electron, which can be written as

mlul*

2 - e(Va - V::) (65>

where V, = V' is the anode potential,V, = 0 is the potential at the cathode
and e, m are the charge and mass of the electron respectively. Next we Cal-
culate u from the above equation and substitute in eq. (6.4). Multiplying it
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then by 2dV/dz on both sides and integrating, we get

dv\® 43| |V

where 7 is the charge to mass ratio of electron and c; is the constant of inte-
gration. Now imposing the boundary condition that at the cathode V. = 0
and also the condition that |E,| = dV/dz = 0, the constant is found to be
equal to zero. The eq. (6.6) can now be written as,

Integrating the above equation yields,

4V73/4 J /1
3 =2 |5_|(%)Z+CQ (6.8)

Again taking the boundary conditions V. =0 at z=0and V, =V at z =d,
the second constant of integration ¢, is also found to be equal to zero. The
above equation can then be re-written as,

de V3/2

which is the Child-Langmuir equation for the current per unit surface area
per unit time, in a space charge limited diode. The potential in the anode-
cathode gap with the space charge current included can be easily obtained
by re-writing the eq. (6.9). In a physical device, cathodes have a finite di-
mension unlike the infinite plane as assumed in the beginning of the above
derivation. If A is the area of the cathode, the total current can be written
as I = PV3/2 where P = 4e/21/92? is the perveance and depends only on
the diode geometry.

The above derivation has many approximations that have to be modified to
simulate practical problems. The assumption of the diode as an infinitely
extending parallel plates was made to avoid the non-linear distribution of
the fields at the edges. Similarly, it is assumed that the electric field and the



6.3 Current Limited by Space Charge 59

initial velocities of electrons tend to zero on the surface of the cathode. In
reality the space charge cloud is only high enough to reduce the fields on the
cathode to a minimum, but there would still be some electric field on the
cathode. Also the electrons come out of the emitter with finite initial veloci-
ties due to the external fields and temperature of the cathode. The electrons
that have sufficiently high energy can go across the potential minimum of the
space charge cloud and reach the anode, and the electrons with less energy
return back to the cathode. When the anode voltage is increased, the poten-
tial minimum moves towards the vicinity of the cathode surface, resulting in
greater number of electrons to have energy sufficient to reach anode. And
when the potential minimum is just about the cathode surface given by the
condition dV/dz = 0 , the space charge limit ceases and the anode draws all
the electrons emitted by the cathode as given by eq. (6.1). With the above
arguments the anode-cathode gap can now be divided into two regions, one
that exists between cathode surface and the potential minimum V,,;, and
another between the potential minimum and the anode. The current can
now be written as,

3= / [uldJul (6.10)
0

If the initial velocities of the electrons are assumed to vary between the lim-
its |u| and |u| + d|u|, we can write the velocities according to the Mazwell-
Boltzmann distribution given by eq. (2.3). Substituting the same into the
above equation and integrating by applying the boundary conditions of the
two regions mentioned above, the new space charge limited current density
with initial velocity correction can be obtained.

I =

_6 - . )3/2
2.336 x 107°(V = Viin) (1+2'66> (6.11)

(2 = Zmin)? VX

where 2,,;, is the position of the potential minimum, 7" is the temperature

of cathode in degrees Kelvin and x = e(V —V,,,;,,) /kT = 11,605(V —Vin) /T .

The values of the potential minimum and its position can be calculated for
a given input of cathode temperature, saturation current and anode voltage.
It has to be noted that the above equation results in a higher current density
than that given by eq. (6.9), which was an over estimate of the space charge
limit. A similar expression for space charge limited current can be calculated
for electrons emitted with near ultra relativistic velocities, which can be the
case in high field emission devices.
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6.4 Current in Spherical and Cylindrical
Diodes

Until now we only made necessary corrections to the original Child’s law cur-
rent assuming planar geometries. But in the actual practice there are hardly
any applications which use planar emitters. In many emitter design prob-
lems it has been found that the current per unit surface area of a cathode
is often less when compared to the system requirements. Since the emitter
surfaces cannot stretch to large dimensions owing to the constraints set by
the size of a device, it is a common practice to have a maximum effective
surface area of the emitter within the same physical space to generate more
current density. A practical alternative to achieve the above objectives is
to employ a circular cylindrical [36] or a spherical cathode [37]. This not
only increases the effective area of emission but also ensures an easy beam
focusing mechanism for convex emitter surfaces.

The assumptions we made for a planar diode are no longer valid for the
diodes of either circular or spherical symmetry. The Poisson’s equation is
taken in cylindrical coordinates eq. (6.12) assuming the potential variation
only in the radial direction and constant along the other directions.

10 ovy p

Using the same boundary conditions as in the planar diode, the space charge
limited current for a circular cylindrical diode can be derived as,

2.336 x 10°61/3/2

ralel?

where, r, and r. are the anode and cathode radii respectively and § =
0 —202/5+1103/120 — 47921 /3300 + . . ., with Q = In(r,/r.).

3| = (6.13)

Similarly taking the Poisson’s equation in spherical coordinates eq. (6.14),
with potential variation only along the radial direction and constant along 6

and ¢ axis, we have
10 (,0V p
- A [ 14
r2 Or (T 87“) £0 (6.14)

The space charge limited current derived by Langmuir and Blodgett for a
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spherical diode is [37]

2.336 x 10761/3/2
a2

3| = (6.15)

where a = Q — 0.302 + 0,07503 — 0.001432Q* + 0.002161€° . .. and © holds
the same relation as in cylindrical case, but now for the radii of the respective
spherical electrodes.

It should be noted that in the above corrections to the current, the three-
halves power law holds irrespective of the diode geometry or initial conditions.
The correction only comes in the perveance factor, which is dependent on the
shape of the emitter.

6.5 Numerical Methods

The calculation of space charge limited current using analytical methods is
again restricted to only few well-defined geometrical structures. The emitter
geometries that are used in practice come in very arbitrary shapes and even
though the emitter may have a particular symmetry, the other electrodes
that are used to focus the beam may not confer to the same rule. All this
sums up to a situation where the charge and potential distribution between
the electrodes can no longer be defined with an analytical equation. The
conformal field solutions discussed in Chapter 3 and a well-defined geometric
model for emission can produce numerical solutions to the space charge lim-
ited problem with good accuracy. Here we shall consider two models that are
implemented in this work and validate them for different diode geometries
(38].

6.5.1 Virtual Cathode Method

The equations for current density derived in previous sections are useful only
in one dimensional simulations. But for emitters of arbitrary shapes, Child’s
law current is impossible to derive without few approximations [39,40]. If
the anode and cathode are concentric and have same axis of symmetry, the
Langmuir-Blodgett corrections could have been applied to get an analytical
solution. A solution to the problem of arbitrary emission geometries can be
found by transforming the 3D emission surface into a set of 1D diode struc-
tures as shown in Fig. 6.6 This transformation requires finding a surface
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Figure 6.6: The figure depicts a 2D view of the Virtual Cathode method
for the calculation of space charge limited current. It can be seen that the
emission samples are translated along the normal through a distance ¢, which
is generally a couple of grid cells away from the cathode. The space between
the parallel plates is filled with a uniform charge distribution after calculating
the current Js using Child’s law. The 1D approximation is applied over the
whole emitter to calculate SCL current.

around the cathode inside which there is an almost linear variation of poten-
tial under no space charge conditions. This region can then be considered as
a parallel plate diode obeying the 1D Child’s law.

Referring back to Chapter 5 where the generation of a surface grid over an
emitter was presented, it has been shown that the surface of an emitter is
descretized with a set of sample elements over which current is calculated. If
we consider a sample surface of same dimensions in the vicinity of cathode
along the normal, both the sample surfaces can be considered as two plane
parallel electrodes. The accuracy of the scheme depends on carefully selecting
the distance at which the virtual cathode is to be located. This can also be
done iteratively until we get an appropriate gap width §. The procedure
transforms a 3D problem into a set of 1D problems for the application of
Child’s law. If we can calculate the potentials on the surface of each of
the samples of virtual cathode and assume it to be constant, we can apply
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eq. (6.9) to the resulting 1D diode structure and find the Child-Langmuir
current. This current will now be emitted from the virtual cathode.

6.5.2 Equivalent Gap Charge

The charge density inside a diode goes to infinity as we approach the surface
of the cathode p ox —1/r, where r is the distance between the point of ob-
servation and cathode. This condition cannot be modeled numerically. To
avoid this problem we assume a constant charge density inside the gap sep-
arating the virtual and the actual cathode. We have already seen that using
CFIT it is possible to compute the fields on geometries of any shape with
good accuracy, and it only requires interpolation of these fields on the virtual
cathode. In the first step we solve for the fields inside the whole diode. Next
we use the Cloud in Cell interpolation to find the potentials or fields at any
point inside a grid cell. After locating the position of the virtual cathode,
the potential or fields on that surface is a weighted interpolation of all the
potentials lying on the corresponding grid nodes. The space charge limited
current can then be calculated as described in the previous section. Now
we have to fill up the gap between the real cathode and the virtual cathode
with an equivalent charge that satisfy the boundary conditions of the diode.
Leaving the gap open without any charge will render the model unphysical.
Now if ¢(d) and ¢(c) are the potentials at the virtual cathode and the actual
cathode as shown in the Fig. 6.7, the potential distribution anywhere inside
the gap can be written as,

6(2) = 0(0) + otd) — o(0)] (2) " (6.16)

where d is the position of the virtual cathode. Differentiating the above
equation along the cathode gap gives

do(z) 4 Z1/3

"2 = 210(d) - 0l o (617)

By applying the boundary condition for the electric field at z = d, we have

) g o 615)

which is the normal electric field at the surface of the virtual cathode. Sub-
stituting it into eq (6.17) gives,
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Figure 6.7: The figure depicts the charge distribution between the actual
cathode and the virtual cathode. The actual charge density tends to infinity
as the cathode is approached, which is replaced by an equivalent linear charge
distribution.

[#(d) — ¢()] = J|Ea(d)|d (6.19)

The first assumption to find an equivalent charge is to consider the charge
constant inside the gap, although in reality the charge increases exponen-
tially as one approaches the cathode. The first boundary condition is that
this constant charge should satisfy the potentials and the electric fields at
the virtual cathode in order to make the assumption valid. The idea behind
considering a constant charge is to enable the integration of the Poisson’s
equation, which will yield

do(z
% = Pconstant? + ¢ (620)

The constant of integration ¢; can be found by applying the boundary con-
dition given by eq. (6.18), which then gives

do(z)

dz = Peonstant? + |En<d)| - pconstantd (621)
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Integrating the above equation once again along the gap gives,

2
constan ¥ nd
(z) = Leonstant® ; L Ea(d)]2 — 2peomsiantd + ¢ (6.22)

Again, the constant of integration ¢y can be determined by applying the
boundary condition ¢(z) = ¢(c) at z = 0. Re-arranging the terms after the
substitution gives

2 ~
6(2) — () = 2L 4 2(|Bu(d)] — poonstamed)  (6.23)

Taking z = d and substituting eq. (6.19) into the LHS of the above equation
and re-arranging the terms will give

pu— . 4
pconstant 2 l ( )

which is the charge that is required to be filled inside the gap. It can be noted
that this charge fulfils all the boundary conditions set by the space charge
limited emission. If we consider a stream of particles equidistant along the
normal connecting the real and virtual cathode surfaces Fig. 6.6, the above
charge can be equally distributed among these particles. This procedure is
repeated for all the samples over the emitter surface.

6.5.3 Simulation of a Planar Diode

The validation of the virtual cathode method can be made with a simple
parallel plate diode. The diode considered here has an anode and a cathode
of equal surface area of 1lem? and are separated by a distance d = 1lem. The
cathode is at a potential of -500V with respect to the anode. The problem
space is discretized to a resolution of one million mesh cells, which then gives
rise to a mesh resolution of around 0.01cm. For the case of planar diode the
gap width should theoretically play no role in the calculation of the space
charge limited current since both the electrodes are parallel to each other and
1D Child’s law can be directly applied. Two set of simulations have been
made with a gap width of 6 = 0.02cm and 6 = 0.05¢m. The effect of the
virtual cathode position can be clearly seen from the Fig. 6.8(a) and 6.8(b).
The charge in the gap should vary linearly to ensure that the boundary
condition at the virtual cathode is fulfilled. An increased gap width requires
more particles to fill up the bigger space. From the simulations it can be
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seen that the charge density in the anode-cathode gap conforms well with
the analytical solution, as shown in the Fig. 6.9(a). Similarly a plot for the
potential distribution in the anode-cathode gap is made in Fig. 6.9(b). It
can be noticed that the error is less than five percent in either case and the
deviation from the analytical curve only becomes obvious as we approach the
cathode surface. A smaller gap width on the other hand can reduce the error
in charge density while approaching the cathode surface.
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Figure 6.8: (a) A 2D view of a planar diode simulation with the virtual
cathode method. The Iso-surface plot shows the gap and the potential dis-
tribution around it. The simulation has been performed with approximately
500 particles per time step.

(b) Simulation with the same input conditions but with an increased gap
width, which can be visualized clearly by the displacement of virtual cath-
ode. The noise in the contours is due to the interpolation error in post
processor.
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Figure 6.9: (a) The charge density as a function of the inter-electrode spacing
for two different gap widths is shown.
(b) The potential distribution inside the gap anode cathode gap for the two

gap widths.
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6.5.4 Charge Conservation Method

The solution given to the 1D Child’s law problem in the Virtual Cathode
method still has few pitfalls and can result in erroneous results for emitters
which are critically curved [41]. Besides it is cumbersome to find the right
gap width for the solution to converge. This not only makes the Virtual
Cathode method unstable for critical emitter shapes but also costly in terms
of computational time as it requires additional interpolations of charge and
fields inside the gap in each time step. Here we develop a Charge Conserva-
tion algorithm to overcome the afore mentioned problems.

As stated previously the space charge limited emission assumes the total
electric field consisting of the tangential and normal components, to be zero
on the surface of the cathode. The tangential component of the electric field
on a perfect electric conductor is zero, which is intrinsic to the electrostatic
field solver. Now we have to find the charge distribution and initial condi-
tions of the particles, that would impose the condition of vanishing normal
component of the electric field. It has been already shown that such a so-
lution can be found by solving the Poisson’s equation along with a set of
initial conditions given by the equations of motion. The Poisson’s equation
in integral form can be written as,

//dve(ng)-d/T:///quV (6.25)

where ¢ is the charge inside the volume V. Substituting E = —V¢ in the
above equation and using eq. (3.6) results in eq. (3.3), which is the Gauf
law. The significance of eq. (3.3) is that the total electric flux from the sur-
face enclosing a volume is equal to the total charge enclosed by the volume.
The numerical solution of this law is implemented in CFIT with its discrete
counterpart given in eq. (3.7). As it is known that the electric fluxes are
integrated over the faces of the dual grid, we consider all those boundary
dual grid cells that intersect the emitter over which we have to calculate the
current.

Once again writing the discrete counterpart of eq. (3.3) for a dual grid cell
shown in Fig. 6.10, we have
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Figure 6.10: A boundary dual grid cell containing a part of the emitter

~

—di g+ dy — dyy A+ dy — dj—l + Czj +d, = —(Qe + Q) (6.26)

where the electric fluxes are integrated over the exact areas of the corre-
sponding cell faces, excluding the material intersections. It should also be

noted that an additional electric flux term d, is only added for more clarity
of understanding the original Maxwell equation and has no particular sig-
nificance otherwise in the discrete model. The discrete equation represents
the flux that flows through the cell surface, encompassing the entire volume,
which in this case is a boundary dual grid cell.

The total charge inside a boundary dual grid cell at any instance of time is
a combination of the charge already present inside the cell volume and the
charge that enters from the adjoining cell faces. In this case it would be an
emitter that would contribute charge to the dual grid cell. Hence the total
charge inside the volume consists of two terms, (). the charge that enters
the cell volume from an emitter and @), the charge already present inside
the cell. However the SCL emission implicitly has the condition for normal

component of the electric field to be zero, from which we have cie = 0. Sub-
stituting this in eq. (6.26), we find that the left hand side is the total electric
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flux through the faces of dual grid cell, which is already known. On the right
hand side we known the charge enclosed by the boundary dual grid cell. By
rearranging terms, the charge entering the dual grid cell from the emitter
can be calculated.

~ ~ ~
~ ~

Qe=1|di 1 +di —dpr+dp —dj_1 +d;] — Q. (6.27)

In other words (). is the charge that should be emitted to have a vanishing
electric field on the emitting surface, which is nothing but the space charge
limited emission. The process is repeated over all boundary dual grid cells
until the solution converges. When there is no increase in the charge Q.
within a given tolerance, field-charge consistency is said to have reached.

6.5.5 Comparative Study for a Planar Diode

The Charge Conservation method has obvious advantages over the Virtual
Cathode (VC) method. First it doesn’t consider the 1D model for the cal-
culation of the Child’s law current, which is not only costly in terms of
computations that have to be performed but also its dependence on the se-
lection of an optimum gap width. On the other hand Charge Conservation
method considers the exact volume and area integrals which are already im-
plemented in CFIT with great accuracy, therefore we make no error in the
charge and current calculations and the accuracy is totally dependent on the
discretization of the problem space. It also has the flexibility to choose the
initial velocity of the particles, since it directly obtains the charge and de-
couples the velocity with current calculation, which is more complex to deal
in the Virtual Cathode method. A thermal velocity distribution of electrons
for a space charge limited thermionic cathode can be easily introduced here,
whereas in the VC method, it requires to integrate the velocity distribution
function and find the location of the potential minimum outside the cathode.
The Charge Conservation method considers the same planar diode for val-
idation used in the previous case. The convergence of charge density using
both the methods is compared in Fig. 6.11, which show good agreement with
the analytical solution.

A comparison of the CPU time for simulating the above problem using both
the methods is shown in Fig. 6.12. The plots show the time taken for
executing the emission module, which includes the calculation of charge over
all samples, interpolating the fields on the sample positions and generating a
particle array with necessary initial conditions. It is evident from the graph
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Figure 6.11: The graph shows the charge density inside the anode-cathode
gap calculated using the Charge Conservation Method and the Virtual Cath-
ode Method for a discretization of one million mesh cells.
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Figure 6.12: The CPU time for both Virtual Cathode and Charge Con-
servation Method for emitting 500 macro particles in each time step. The
calculation time scales with O(N), where N is the number of macro particles
to be emitted.
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that the Virtual Cathode method is computationally costlier than Charge
Conservation method and the CPU time increases with an increase in the
number of particles inside the gap.

6.6 Field-Charge Consistency

Until now the methods to calculate the space charge limited current given
by Child’s law have been presented. Now we have to select an iterative
method with which the space charge is filled up in the entire problem space
in each time step. In other words, the problem space should have a potential
distribution that would satisfy the steady state condition given by the space
charge limit. This requires injection of space charge into the problem space
and solving for the fields until the solution converges and a steady state is
reached, where the fields and space charge remain constant within a given
tolerance. There are two iterative methods that can be used to achieve the
field-charge consistency condition, which will be presented in this section.

6.6.1 Trajectory Iterative Algorithm

The trajectory iterative algorithm as the name suggests is an iterative method
that recursively corrects the path of the electrons inside a problem space for
a given potential distribution [42]. If we calculate the fields by solving the
Laplace equation, we can then solve the particle equations of motion eq. (4.3)
to trace the particle trajectories inside the problem space Fig. 6.13. Once
the path of the charge particles is known, the space charge distribution and
the corresponding change in the potential distribution is calculated. After
updating the new fields the new charge to be emitted is calculated and the
trajectories are traced again. This iterative procedure is continued until the
charge and field converge to a steady state.

The iterative method starts with the calculation of the potentials everywhere
inside the problem space and from the given potential distribution an equiv-
alent charge is calculated using Child’s law. The macro particles carrying
this charge are traced till the end of the problem space by calculating the
forces acting on the particle due to the fields. The charge is left on the nodes
of all grid cells it traverses. From the second iteration cycle the Poisson’s
equation is solved, with the charge that was left over the grid points from the
previous iteration. The Potential distribution in the beginning correspond to
a problem that had no space charge inside the problem space. If the charge
calculated from such a potential distribution is emitted, it would result in
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Figure 6.13: The figure depicts the trajectory iterative algorithmin 1D. Par-
ticles generated at an instance At are traced till the dump. In this process
the charge is deposited on the grid nodes Py, P», P35, Py, Ps all along the tra-
jectory. New trajectories can be traced in the time step 20t after updating
the fields due to the charge distribution in previous time step dt.

a sudden fluctuation in the potential distribution inside the problem space
which is unphysical. This change in the potential distribution would then
effect the charge that is to be emitted in the following iteration cycles. The
cumulative error finally results in an oscillatory solution that will not con-
verge towards the actual solution. The process of adjusting the potentials
and charge in every iteration cycle for the solution to converge is known as
relaxation [43]. Here we introduce a relazation factor w, which ensures that
a fraction of the total charge calculated in each iteration is released into the
problem space, so that the transition from a no space charge to a space charge
limited state is smooth without oscillations. A Successive Qver Relaxation
(SOR) algorithm is used in this emission model for the iterative process to
converge towards the desired solution. The charge that is to be emitted in
each iteration can be written as

Pn=wpp + (1 —w)pn_1 (6.28)

where p,, is the charge calculated in n'* time step and p,_; is the charge that
is emitted in the (n — 1) time step. The convergence of the solution again
depends on the initial guess of the relaxation factor and has to be adjusted
according to the rate of convergence. If the charge in a time step exceeds
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Figure 6.14: The flow chart of the trajectory iterative algorithm.

that of the previous time step, it is evident that the solution is diverging and
the iterative process is terminated and a new relaxation factor is selected.
The computational cycle of the trajectory iterative algorithm is given by the
flow chart in Fig. 6.14.

6.6.2 Time Iterative Algorithm

The time iterative algorithm solves for the fields along with the equations
of motion in each time step. The procedure starts by getting the poten-
tial distribution inside the problem space by solving the Laplace equation.
The charge under space charge conditions is then calculated from the above
potential distribution. This charge is emitted and the particles are pushed
into the problem space. The new potential distribution is obtained using the
Poisson’s equation after depositing the charge on the respective grid nodes.
It has to be noted that the particles are pushed only once before the new
fields are calculated. Unlike the trajectory iterative algorithm the particles
can only traverse through a single grid cell in each time step Fig. 6.15. The
iterative procedure is repeated till a steady state has been reached and the
charge and fields are consistent with each other. The flow chart of a typical
time iterative algorithm is given in Fig. 4.2.

6.6.3 Convergence Studies

The important consideration in the selection of an iterative method is con-
vergence. This in turn depends on the type of the problem that is being
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Figure 6.15: The figure shows a 1D time iterative algorithm. The particles
emitted in the time step At are pushed into the problem space. The new
fields are then calculated from the charge distribution at At. The new charge
is now calculated at time step 2At and pushed into the problem space. The
particle that had been emitter in At will also undergo a push. It can be seen
that the particles can only traverse one cell in each time step.

solved. It is already known that the convergence of SOR method depends
on the selection of an appropriate relaxation factor. The general limits of
the relaxation factor w is between 0 and 2. But for the problem of space
charge limited emission the upper bound is equal to 1 and in almost all
practical problems, is a fraction of that limit. The charge calculated with
w = 1, when injected into the problem space will result in an inaccurate
solution of the potential distribution. The result is a solution that oscillates
with an amplitude equal to the error in the space charge and the solution
diverges. This condition is often referred to as under damping. Hence we
select w < 1,that injects the charge gradually into the problem space in each
iteration. On the other hand if the initial guess of w is less than the optimum
value, oscillations can be avoided but the solution will not converge within
the tolerance range. This condition is defined as over damping. The solution
that converges within specified tolerance range in a reasonable number of
iterations is called a critically damped solution.

The relaxation factor for space charge problems lies between 0 and 0.1. For
practical simulations the value of relaxation parameter is lesser than 0.1 as
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can be seen from the convergence plots Fig. 6.16. In simulations that employ
fine grid, the relaxation factor takes a bigger value than a coarser grid for the
same problem. A fine grid dampens the oscillations resulting from a large re-
laxation factor, whereas the coarser grid will continue to propagate the error.

The three graphs in Fiig. 6.16 progressively show how the planar diode reaches
the steady state. The iterations are continued until the final solution is
within the tolerance range. It has to be noted that a smaller relaxation
factor would not ensure a better convergence if the grid is coarser. In such
cases the discretization error overrides all other criteria. Hence the number of
particles that sample the charge distribution, the external grid resolution and
the input conditions play the primary role in convergence of the solution. As
another example the convergence of a spherical diode is considered as shown
in Fig. 6.17. The afore mentioned criteria play a very important role for
a spherical diode than the planar diode as the curvature effects come into
the problem. The grid resolution is 2.5 million mesh cells and convergence
is studied using four different relaxation factors. The three different cases of
damping can be clearly seen using different relaxation factors.
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Figure 6.16: The convergence study of a spherical diode. (a) Convergence of
the charge for three different relaxation factors. The solution for the larger
relaxation factor w = 0.005 is under damped. (b) The solution converges
faster for w = 0.0005 but oscillates above the tolerance range. (c) For w =
0.00001 the solution is over damped and for w = 0.00007 the solution shows
good convergence and corresponds to critical damping.
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Figure 6.17: The convergence study of a spherical diode. (a) Convergence of
the charge for three different relaxation factors. The solution oscillates for
the larger relaxation factor w = 0.00015 and corresponds to the case of under
damping. (b) The solution takes longer to converge for w = 0.00008. This is
the case of over damping. (c) For w = 0.00005 the solution converges faster
and corresponds to critical damping.
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Chapter 7

Simulations and Applications

It has been shown in the previous chapter that both the Charge Conservation
and Virtual Cathode method agree well with the analytical solution in the
case of a planar diode. Since the planar diode already has an exact analytical
solution in 1D, a numerical solution is of less importance. As it has been
mentioned in the previous chapter, a planar diode is rarely found in practical
applications due to the small effective area of emission. However, it stands
as a benchmark test for the worthiness of a numerical model. For practical
applications, emitters come in different sizes and shapes. To standardize the
methods discussed in the previous chapter and to establish their robustness,
a thorough study is made here using a spherical and cylindrical diode. As an
application problem, the simulation of a Traveling Wave Tube is presented
at the end of the chapter.

7.1 Spherical Diode

The spherical diode geometry is widely used in the design of the emitters.
This is due to the fact that the effective surface area of emission is large for
spherical symmetry when compared to planar emitters. In this test prob-
lem we consider two concentric spheres, with the smaller sphere of radius
r. = 2.0cm as cathode and the larger sphere with a radius of r, = 2.5em
as anode Fig. 7.1. The anode is at a potential of 10kV with respect to the
cathode. This particular spherical diode geometry gives rise to a divergent
beam, and electrons travel radially outward and are collected on the anode.
On the contrary if the cathode constitutes the outer sphere, the beam con-
verges to the anode.

The analytical corrections to the 1D space charge limited current in the case
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Cathode

Figure 7.1: The cross-sectional view of a spherical diode. A grid of 2.5 million
mesh cells was used to dicretize the problem space.

of a spherical diode was made by Langmuir and Blodgett and is given by the
eq. (6.15). The current is independent of the actual size of the electrodes.
The equation given there has a perveance correction factor, which appears as
a logarithmic series of the ratio of anode to cathode radii. This series which
is given, up to six terms, holds good for the ratio of anode to cathode radius
of less than 5 units. Hence the problem defined here fulfils the conditions set
by the analytical equation given therein. The simulation has been performed
starting from a grid resolution of 1 to 2.5 million mesh cells. The radial
charge density inside the anode-cathode gap using the Charge Conservation
Method is plotted in Fig. 7.2. It can be noticed that at small mesh resolu-
tions the convergence is very poor owing to the fact that the emitter surface
is curved and has to be finely discretized to minimize the curvature effect.
The convergence study is made with a relaxation factor of w = 0.00008. The
importance of grid resolution on the radial distribution of charge density is
visualized in Fig. 7.3, where the charge density is calculated at a distance of
0.25¢m away from the cathode, into the anode-cathode gap. It can be seen
that for low grid resolution, the charge oscillates with a greater amplitude
compared to a finer grid. Besides that, the charge is also offset with respect
to the analytical solution by a higher value than the case of a finer mesh.

In a further simulation, a comparative study of the Virtual Cathode and
Charge Conservation methods is done to validate the convergence of both
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Figure 7.2: A plot of charge density as a function of the radial distance in the
anode-cathode gap. The simulations have been performed using the Charge
Conservation method.

for a curved emitter. Fig. 7.4 shows the charge density along the radial
direction for both the methods. It can be observed that both the methods
converge well with respect to the analytical solution.

A corresponding plot of the potential distribution in the anode-cathode gap
is plotted using the two methods and both are found to confer well with the
analytical curve Fig. 7.5. The discrepancy that might arise in the case of
the Virtual Cathode (VC) method is due to its dependence on 1D model.
Theoretically the VC' method will have very good convergence if the radius
of the anode is very large when compared to cathode, so that the radius of
curvature seen by the virtual cathode tends to infinity making the electrodes
look each other as parallel plates. In other words, the virtual cathode should
be very close enough to the actual cathode to fulfil the above condition. But
selecting such a gap width again depends on the grid resolution. On the other
hand, inaccuracy in the Charge Conservation method arises purely from the
discretization error.
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Figure 7.3: The plot shows a transversal profile of charge density at a distance
of 0.25cm from the cathode
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Figure 7.4: A comparison of charge density in the anode-cathode gap using
Virtual Cathode and Charge Conservation methods.
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Figure 7.5: The plot shows potential distribution along the radial direction.

7.2 Cylindrical Diode

As a second validation problem a circular cylindrical diode is used for its
many applications among electron tubes such as coaxial magnetrons and
other cross-field devices. The analytical correction to the 1D space charge
limited current is made by Langmuir given in eq (6.13). Though circu-
lar cylindrical diodes have axial symmetry and are often studied by reduc-
ing them into a 2D problem [44], curvature produces significant changes in
the fields and charge on the surface of the emitter, necessitating a study in
3D. The diode in this problem consists of a cylindrical cathode of radius
r. = 1.0cm and an anode of radius r, = 2.3¢m as shown in Fig 7.6. The
cathode is maintained at a potential of —10kV with respect to the anode.
The simulations are conducted with grid resolutions of 1 and 2 million mesh
cells respectively.

The convergence of the Virtual Cathode (VC) method is given by the graphs
in Figs 7.7 and 7.8. In the first graph the convergence for different gap widths
(distance between actual cathode and virtual cathode) is shown. It can be
noticed that when the gap width is varied from 0.02c¢m to 0.0002¢m the con-
vergence gradually improves and conforms well with the analytical solution.
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Anode

Cathode

Figure 7.6: The cross-sectional view of a spherical diode. A grid of 2.5 million
mesh cells was used to dicretize the problem space.

The reason for this, as mentioned previously is due to the planar model of
VC method. But it can be seen from the Fig. 7.7, that when the gap width is
further reduced from 0.0002c¢m to 0.00002c¢m there is no significant change in
the convergence, which explains that when the gap width is smaller than the
minimum grid step, the external fields cannot be resolved further and there
would be no change in the current emitted. In the Fig. 7.8 the convergence
is studied with respect to the external grid resolution. It can be noticed that
the convergence is good and conforms well with the analytical solution as we
take a finer grid as expected. At the same time it can also be noted that the
gap width is a very crucial factor even with a fine discretization. As it can
be seen, a gap width of 0.002cm shows almost same convergence with both
finer and coarser grid resolutions, and the advantage gained in discretization
is lost by selecting an incorrect gap-width. This also validates the above
argument that a 2D model is not sufficient as it can be seen that there is
considerable error in final output by not taking into account the exact cur-
vature for a given anode-cathode gap.

The convergence in the case of Charge Conservation method can be visu-
alized in the Fig. 7.9. It can be seen that the convergence improves quite
well and conforms to the analytical solution as the number of mesh cells are
increased from half a million to two million.
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Figure 7.7: The graph depicting the importance of the gap width in Virtual
Cathode Method.
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Figure 7.8: The plot of charge density in the inter-electrode space for different
gap widths and grid resolutions.
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Figure 7.9: The plot depicting the convergence of the Charge Conservation
Method for different grid resolutions.
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Figure 7.10: A comparison of the Charge Conservation and Virtual Cathode
methods for a grid resolution of 2 million mesh cells.
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The Fig. 7.10 shows a comparison of both the Virtual Cathode and Charge
Conservation methods with a resolution of two million mesh cells. It can be
seen that both the methods are in good agreement with the analytical solu-
tion. While gap width and grid resolution play a very important role in the
convergence of the Virtual Cathode method,in Charge Conservation method
it is just the resolution of the external grid that decides the convergence. In
case of the latter method the accuracy of the conformal mesh is crucial as
any errors in calculation of volumes and areas from the material intersections
will result in an error in electric flux and that in turn results in an erroneous
charge calculation. The CFIT is very precise for this purpose and hence the
errors can be avoided.

7.3 'Traveling Wave Tube Amplifier

The Traveling Wave Tube Amplifier (TWTA) is a broadband microwave de-
vice [45,46]. Tt is widely used in space and military applications. The device
consists of an electron gun that forms the source of electrons, a beam focusing
structure that guides the electrons through the tube, an interaction section
where the beam interacts with the radio frequency (rf) signal and energy
transfer takes place and finally the collector where the beam is dumped. The
longitundinal cross-section of the device can be seen in Fig 7.11. Here only a
part of the device is taken for simulation and the collector section is omitted
as the emission problem doesn’t require the simulation of the entire device,
which is discussed in further sections. Here we shall consider the simulation
of the above device using both the methods that have been discussed previ-
ously. Before that a brief description of the various components of a TWTA
will be presented here.

Electron Gun :

The electron gun of a TWTA consists of a cathode that emits electrons, a
focusing electrode to confine the emitted charge into a narrow beam and an
anode that will accelerate the electrons away from the cathode. The TWTA
discussed here uses a Pierce type electron gun [47]. The purpose of this type
of arrangement is to focus the electrons into a thin laminar flow. The cath-
ode is designed based on the principle of a spherical diode discussed in the
beginning of the chapter. The Pierce gun is a conical section of a spherical
diode as shown in the Fig. 7.12. This not only offers greater effective area of
emission but also acts as a beam converging lens with a suitable positioning
of the focusing electrodes. The total current in a spherical diode is given by
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Focusing Magnets

Interaction Region
Electron Gun

Figure 7.11: Longitudinal cross-section of the Traveling Wave Tube Amplifier.

the Langmuir-Blodgett eq. (6.15). Now the current in such a conical section,
in terms of the total current in the spherical diode can be written as

B 1—cost

I = I 1
; (1)

where, I, is the total current in the spherical diode with r. and r, as the
radii of cathode and anode respectively and @ is the half angle of the cone.

The emitted electrons from the cathode are then drawn away under the ac-
celerating field of the anode, which is maintained at a higher potential. The
charge so emitted and accelerated has to be confined into a narrow, laminar
flow enabling it to enter the interaction region. For this purpose a focusing
electrode, maintained at the same potential as cathode is introduced to cor-
rect the electron trajectories, which would otherwise diverge under the space
charge effects [48,49,50]. A schematic of the Pierce gun can be visualized in
Fig. 7.13.

The path of the electrons is always perpendicular to the equipotential lines.
If electrons were to travel freely under the accelerating field of the anode



7.3 Traveling Wave Tube Amplifier 91

Cathode

Figure 7.12: A conical anode-cathode section of Pierce gun realized from a
spherical diode arrangement.

without a focusing electrode, then the equipotential lines would diverge due
to the space charge created by the electrons as shown in Fig. 7.14(a). Under
such conditions the electron beam would diverge and hit the walls of the
tube. Hence a focusing electrode and its orientation with respect to cathode
should be such that the equipotential lines are spherical despite the presence
of the electron space charge Fig. 7.14(b). For simplicity if we consider a par-
allel plane diode, we have two regions of interest, one within the beam where
Poisson’s equation applies and another outside the beam where Laplace’s
equation holds. Now if we consider the trajectories of electrons at the edges
of the cathode to be perpendicular to the surface, a one dimensional Laplace’s
equation with the boundary conditions d¢/0x = 0¢/dy = 0 and ¢ = f(z2)
can be solved at the edge of the electron beam. Where ¢ is the potential and
f(2) is the Child-Langmuir’s equation for the space charge limited emission.

The solution of the Laplace’s equation in polar coordinates can be written as

o(r,0) = Ad*/? cos %9 (7.2)

where d is the inter-electrode distance. If (4/3)0 = 7/2 then 6 = 67.5%, at
which the potential is zero. Which means if an electrode of zero potential is
placed at the above angle with respect to the edge of the cathode, the electron
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Figure 7.13: A typical Pierce electron gun with cathode, anode and focusing
electrode.

beam can be confined to a laminar flow. In other words an electrode with
zero potential placed at the above angle with respect to cathode will ensure
perpendicular electron trajectories at the edge of the cathode that which can
be found only in the case of a planar diode. This electrode is often referred
to as Pierce electrode as can be seen in the Fig. 7.15. Once the electron
beam is confined to a narrow laminar flow, it has to be extracted from the
gun and injected into the interaction region. For this purpose the anode has
an aperture through which the beam is extracted. At this point the effect
of focusing electrode vanishes and the equipotential lines form a diverging
lens. The beam then starts diverging, which then has to be confined us-
ing an appropriate magnetic field. The diverging lens has the effect that the
beam, which has to converge at the edge of the anode, will now have the min-
imum beam width extending beyond the normal anode focal length Fig. 7.15.

The focal length of the defocusing lens can now be written as

4,

T~

(7.3)

where ¢, is the anode potential and E is the electric field along the ax-
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Figure 7.14: (a) Equipotential lines inside the electron gun without focusing
electrode. (b) Equipotential lines with a focusing electrode. The focusing
electrode forms a converging lens for the beam.

ial direction in the anode-cathode space, which can be calculated from the
current-voltage relation of the conical diode.

Focusing Magnets :

The TWTA employs an axial magnetic field to confine the beam within the
interaction region. For this reason TWTs are also referred as linear beam
tubes, which means devices having magnetic field along the direction of the
motion of electrons. The device under study uses periodic permanent magnet
(PPM) focusing for this purpose. A stack of permanent magnets are placed
end to end with reversed poles along the interaction region as shown in Fig.
7.16 to generate an axial, sinusoidal varying magnetic field. The PPMs are
designed in such a way that there is no magnetic field extending into the
electron gun and the beam is assumed to enter the interaction region in a
laminar flow with no radial velocity components. The magnetic flux that is
required to balance the space charge and centrifugal forces of the cyclotron
motion is called Brillowin flur and the beam dynamics resulting from such a
flux is called Brillouin flow [51].

If B, is the peak magnetic flux and L the period of the magnets, then the
magnetic flux along the axis of the tube can be written as

2
B = B, cos % (7.4)
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Figure 7.15: The focal length of the anode lens where the beam converges
to the minimum radius shifts due to the diverging equipotential lines at the
aperture.

The beam equation under the influence of above magnetic flux can now be
written as

2) B, 2 I
0 +b{" p m] U (7.5)

922 2ug R 2mequdb

where ug is the velocity and I the current of the beam respectively. Now tak-
ing the period of the focusing field as 7' = 2/L and the cyclotron frequency
w = 2muy/ L and substituting in the above equation gives

0T n 1
or? = 2

[%} ’ (1+ cos2T)T" — % [ﬁ} i % =0 (7.6)

w

where I is the normalized beam radius, wy, = nB,/2 is the Lamour frequency,
wy, = 1/a\/2nl [Teguy is the average Plasma frequency, and a is the radius of
the beam. Using these relations the magnetic coefficient and the space charge
coefficient can be calculated. The beam is optimally focussed when these two
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Figure 7.16: Periodic Permanent Magnets used for focusing electron beam
along the axis of TWTA

coefficients are equal. Which means to say that when the Lamour frequency
due to the magnetic field equals the cyclotron frequency of the plasma, the
beam will be confined within the interaction structure. When the magnetic
field coefficient is less than the space charge coefficient the beam diverges
out of the interaction region due to insufficient focusing field and if the mag-
netic coefficient is in excess the electrons which are on the outer surface of
the beam break into oscillations and escape out of the interaction region. A
typical simulation of the magnetic fields for the TWTA can be seen in Fig.
7.17 and Fig. 7.18.

Interaction Region :

The interaction region is where weak radio frequency (rf) signals are amplified
in a TWTA. This is achieved by coupling the energy of the electron beam
that it acquires from the static fields of the anode-cathode gap, into the time
varying rf signal by selecting a suitable structure for the interaction. Since
the rf signal travels at the speed of light, it is impossible for the electrons
to interact with it under normal conditions. Therefore a slow-wave structure
such as the helix is used in the interaction region to bring down the axial
velocity component of rf to that of electrons. The phase velocity of a time
varying signal can be written as

V= (7.7)

where wy is the angular frequency of the wave, defined by the number of cy-
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Figure 7.17: A Vector plot of the magnetic flux inside the interaction region
of TWTA.

cles per unit time and x,, the wave number, defined by the number of cycles
per unit distance. Now if the rf signal is made to propagate on the helix,
it would have to travel greater distance along the axial direction, which in-
creases the wave number and assuming the helix to be non-dispersive, the
phase velocity of the wave can be brought down. The reduction in the phase
velocity would be equal to the pitch of the helix. By this arrangement, the
phase velocity of rf is reduced to that of the axial velocity of electrons, which
will have the effect that the electrons would see the same phase of the rf sig-
nal along the interaction region and an exchange of energy takes place, until
the space charge forces become predominant and a steady state is reached.
It has to be noted that the effect of the rf signal does not extend into the
electron gun region and hence a static simulation of the emission is sufficient
in the current problem.

7.3.1 Simulation of TWTA

The TWTA discussed above consists of an ungridded electron gun, a rf sec-
tion (interaction region), a beam focusing section (magnets) and a collector,
besides rf input and output. The emission problem requires only the simula-
tion of the beam dynamics inside the electron gun and a part of the rf section
to validate that the beam is launched correctly into the helix structure with
the help of magnetic field. Therefore we remove the other half of TWTA
along with the collector from our simulation. The technical specifications of
the device are
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Figure 7.18: The magnetic field plotted along the axis of the tube. At the
surface of cathode the magnetic field is almost zero and increases rapidly
from the drift tube region where the beam starts to diverge due to space
charge effects. The magnetic field along the tube keeps the beam within the
helical interaction structure.

Operating Frequency 4.5 - 18 GHz
Cathode Potential (including focus electrode) -4.55 kV
Anode Potential (including the body of TWTA) | Ground (0 V)
Cathode Radius 1.5mm
Peak DC current of the beam (pulsed mode) ~ 170mA
Magnetic Field 0.003 Tesla

The model is discretized with a rectangular grid of nearly 2 million mesh cells
and approximately 5000 particles in each time step. The emission is space
charge limited and hence Child-Langmuir law is used for the calculation of
the current. The simulation is performed using both the Charge Conserva-
tion, and Virtual Cathode methods. The operation of the TWTA in space
charge regime can be visualized from the graph shown in Fig. 7.19.

The graph plots the electric field along the axis of the tube. The anode is
at a potential of 4550 V with respect to the cathode and the surface of the
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Figure 7.19: 19 The Electric field along the axis of TWTA with and without
emission. The ordinate of the graph is the plane of the cathode.

cathode is the ordinate of the plot. It can be seen that when there is no
emission the electric field increases gradually as we move towards the anode
and after crossing the anode it falls off to zero since the rest of the tube is
also at the same potential as anode and there is no dc electric field beyond.
After the commencement of emission the electric field on the surface of the
cathode drops due to the negative potential of electron space charge. The
point where the emission curve deviates from the non-emission curve is the
location where the space charge sheath (potential minimum) is located. If we
move towards the anode, the space charge effects diminish, but beyond the
surface of the anode, we see the electric field oscillating around zero, which
is an indication of the space charge field. The oscillations will be more pro-
nounced in the presence of the rf electric field, which is responsible for the
bunching of electrons in the interaction region. If the tube was to be operated
in saturation regime, the electric field would be so high that there would be
no space charge cloud around cathode and the electric field on the surface
of cathode will vary proportionately with the potential difference between
the anode and cathode. But in space charge regime the electric field on the
surface of the cathode is entirely dependent on the space charge potential.
It can be seen that in practice, the electric field on the surface of cathode is
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Figure 7.20: (a) Electric Fields along the axis of TWTA for different anode
potentials. The plots are made prior to electron emission.

(b) Electric fields along the axis of the tube after the commencement of
electron emission.
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never zero even under space charge conditions contrary to the boundary con-
dition we set to calculate the current. Under no space charge conditions the
electric field is plotted along the axis for different anode potentials as shown
in Fig. 7.20(a). The electric field on the cathode varies proportionately with
the change in anode potential. In Fig 7.20(b) the electric fields are plotted
after the commencement of emission. It can be seen clearly that the electric
field on cathode is less influenced by the anode potential. The electric field
drops to a minimum under space charge and varies very little from this value
as we reduce the anode potential. At this point it has to be noted that in
practice, reducing the anode potential beyond a certain minimum can cease
emission altogether.

The charge is injected into the problem space with relaxation factor w =
0.000002, for which the charge residue (ratio of charge from two consecutive
iterations) is found to be of the order of 1.0e — 06. The trajectories of elec-
trons are corrected in every iteration cycle after the fields are computed from
the previous cycle. When the field-charge consistency is attained after the
charge reaches within the give tolerance, the trajectories are well confined
within the structure as can be seen in Fig. 7.21.

A thorough picture of the trajectories in the interaction region can be ob-
tained by including the rf fields. But it can be seen from the electric field
plots that the space charge fields inside the interaction region are very small
when compared to the fields in anode-cathode gap, resulting in negligible
effect of electron bunching on actual emission. The final current has been
calculated using both the Virtual Cathode and Charge Conservation meth-
ods and is plotted in transverse coordinates along the surface of the cathode.
The Virtual Cathode method uses a gap width of 0.0001m for the calculation
of Child’s law current. It can be seen from the graph Fig. 7.22, the current
in the first time step is very large as the external fields are inconsistent with
the SCL emission conditions. But within few iterations the charge converges
well within the final steady state. When the residue reaches the given accu-
racy the iterations are stopped. The final steady state current is found to
be 158m A, which falls within 10 percent error of the peak DC current given
in design specification mentioned previously. The simulation is then carried
out with the Charge Conservation method with the same input conditions
and the current is plotted across the cathode surface as shown in Fig 7.23.
The final current in this case is found to be 161mA, which is in very good
agreement with the design specification.
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Figure 7.22: Plot of current across the surface of the cathode calculated with
Virtual Cathode method. The current in first iteration is unphysical due
to the incorrect fields inside the problem domain. After few iterations the
current stabilizes to a final value and a steady state is reached.
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the Charge Conservation method. The Current gradually reaches steady
state within few iterations and field-charge consistency is reached
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7.3.2 Emission with Initial Velocities

The simulations until now have used a cold emission defined by zero initial
velocities. But in a practical scenario the electrons are emitted with finite
energy after they overcome potential barrier inside the metal [52]. Even
though the boundary condition for SCL emission has zero electric field over
the surface of the cathode, the emitted electrons can still have energy from
the thermal excitation due to the heating of the cathode. The velocities
of electrons emitted by thermal excitation can be written with the help of
Mazwell-Boltzmann distribution function [53,54]

N
AN = %e*mﬁﬂ”duo (7.8)

where uq is the velocity in normal direction and N the number of electrons
that have velocities between the range uy and ug+dug and T" the temperature.

Writing the above equation in terms of energy we have
dN 2 okt
N~ kT° 4Eo (7.9)

where Ej is the energy in normal direction. Rearranging the terms and tak-
ing logarithm on both sides we have

(7.10)

kTdN E,
ONdE,| kT

The ratio inside the logarithm takes values from 0 and 1, which is nothing
but the probability of finding the N electrons in a given velocity range. The
normally directed velocity can now be written as

uy = \/2kT In(ry)] (7.11)

where 7, is a random number between 0 and 1. After obtaining the velocity,
it has to be assigned to a particle in 3D space. The thermal electrons so ob-
tained come out of the cathode in arbitrary directions and hence the above
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calculated normal velocity should be assigned to a random vector coming out
of cathode Fig. 7.24(a).
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Figure 7.24: (a) Computational particles initialized with an arbitrary velocity
components over the surface of the cathode.

(b) Computational particles initialized with a normal velocity distribution
over the surface of the cathode.

If x — y plane forms the transverse coordinates of the cathode, the velocity
obtained as above can be split into the three coordinates axes using the 3D
rotation matrix [55] as

Uy = ugcos(m/2 —rqy)sin(n/2 —r3)
u, = upsin(m/2 —ry)sin(mr/2 — r3) (7.12)
u, = wugcos(m/2—r;3)

where 11,19, 73 are random numbers between 0 and 1 that generate random
angles in radians. Consequently the electrons can be assumed to come out of
cathode normal to the surface under high electric fields, which can be the case
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in many practical problems. Under such conditions the normal component
of velocity is much higher than the transverse components. The particles can
now be emitted along the normal to the surface Fig. 7.24(b). The velocity
of emitting particles can now be written as

u, =Up- i (7.13)

where u,, is the normal component of velocity and fi is the unit normal vec-
tor to the surface. The simulations have been performed with a much lower
relaxation factor of w = 0.0000002 to obtain convergence when compared to
that used in cold emission. This in-turn means more number of iterations
that are required to reach a steady state. The temperature of the cathode
is taken as T = 2500°C, which is a typical temperature of the cathode of
the simulated TWTA. The final current for the three different cases of zero,
arbitrary and normal initial velocities can be seen from the graph Fig. 7.25.
It can be seen that the current for zero initial velocity agrees well with the
previous result of 161mA and the current for initial velocities in arbitrary
direction settles to a value of 163mA and that of normal velocities to a value
of 165mA.

The introduction of initial velocities is more pronounced at the edges of the
cathode. More so in the case of normal velocities where the electrons emitted
come out faster at the edges and result in pushing the space charge towards
the center of the cathode. The convergence for the three cases can be seen
in Fig. 7.26. It can be noticed that emission with initial velocities has an
oscillatory convergence and a very low relaxation factor has to be used to
keep the oscillations to minimum and obtain reasonable convergence. The
convergence with normal velocities take more iterations to converge as the
charge is injected faster into the problem space and the solution oscillates
more than the other two cases before settling into the tolerance range. The
thermal velocity distribution mentioned above does not include a spatial dis-
tribution over the surface of the cathode. If the temperature distribution over
the cathode surface is given, a better initialization of the emission velocities
can be made.
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Figure 7.25: Final current along the transverse coordinates of the cathode
for different initial velocity distributions. It can be seen that normal velocity
distribution amplifies the current at edges thus pushing the charge towards
the center and consequently a lesser current compared to other two plots. In
case of arbitrary velocities an increase in the current can also be noticed.
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Figure 7.26: Convergence of the charge residue for all the three initial velocity
distributions. It can be noted that the charge converges fast with no initial
velocities, whereas in the other two cases convergence is slower. In other
words, faster the induction of charge into problem space, slower is the rate
of convergence.
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Chapter 8

Summary and Outlook

The emission model presented in this work has many obvious advantages
over the currently available simulation tools. The foremost of them is its
ability to handle the exact curvature of the emission surfaces, which is vital
in launching the electrons into the problem space without any errors that
arise from boundary approximations. Most of the emission models are based
on finite element or boundary element meshes, which require many opera-
tions and computationally cumbersome than the number of unknowns that
can be easily solved with a simple dual orthogonal mesh system used in Fi-
nite Integration Technique (FIT). The conformal field solutions increase the
ability of the present model in exactly treating fields at the boundary, which
in turn leads to the calculation of current and initial velocities with minimum
error. The geometrical modeling of an emitter is the first step in ensuring
a good spatial distribution of emitter samples that can closely represent the
actual physical system. It has been shown that the Gnu Triangulated Surface
libraries along with the constraints supplied by the emission problem, suc-
cessfully execute the task of sampling the emission surface. The local mesh
refinement, that can be performed with a cell based sampling is of great ad-
vantage in problems that have sharp curvature or emission tips such as field
emitter arrays (FEA). Hence the discretization of any practical emitters used
in electron sources can be done with very good accuracy.

The Particle-in-Cell (PIC) method along with the FIT, offers a huge advan-
tage of modeling electron-field interactions with good accuracy. The emission
model here takes full advantage of this by initializing the particles in the con-
formal phase space. The model can interpolate fields on particle positions in
the boundary cells using sub-grid information that enables in precise calcu-
lation of emission parameters. Based on the input specifications, the model
can simulate thermal, field, photo or space charged limited emission. Besides
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the traditional Virtual Cathode method, the space charge limited emission
can also be modeled using Charge Conservation method, which offers obvi-
ous advantages over its predecessor. The simulations have been performed on
planar, spherical and circular cylindrical diodes to validate that both meth-
ods conform well with the analytical solutions. Also a comparison has been
made between both the methods and the characteristics have been analyzed.
In the Charge Conservation method the advantage and ease of introducing
thermal velocities to electrons at initialization has been highlighted. The
electrons can be initialized with zero or arbitrary initial velocities using a
thermal distribution function. The characteristics of the trajectory and time
iterative algorithms has been discussed and verified. As an application, the
Traveling Wave Tube Amplifier has been simulated using both the space
charge limited emission algorithms and the results have been found to match
well with the design specifications. This establishes that the model is accu-
rate and can address any real time applications.

8.1 Outlook

There are few additions that can be made to the current model to enhance
its application in simulation of a wide spectrum of devices. The first among
them is emission in a time domain system. The TWTA that was simulated
has no time varying fields effecting the emission. But in devices such as
magnetron or other cross field tubes, the emitter can be under direct influence
of rf fields and hence necessitates a thorough study using a time domain
simulation. Also in such devices the emitter maybe under direct influence of
the magnetic field, making it necessary to incorporate magnetic field into the
phase space initialization of macro particles. The emission model also has to
include a collisional emission to address the problems of secondary electron
emission and primary emission due to ion or other particle collisions.
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List of Notation

Mathematical Symbols

T Position vector

ds, dff, av Infinitesimal length, surface and volume elements
As, AA Discrete length and surface elements

U, U, W Unit vectors of local coordinate system (u,v,w)

d(z) Delta function

dx,dy,dz Infinitesimal vectors in cartesian coordinates

dug, du,, du, Infinitesimal velocity vectors in cartesian coordinates
n Unit normal vector

Field Theory

Electric and Magnetic field strengths
Electric and Magnetic flux densities

Udlvml

Electric current density

Electric current

Electric potential

Charge density

Permittivity of free space

Ery My K Relative Permittivity, Relative Permeability and
Conductivity

c Velocity of light in free space

q Charge

S~ O

Finite Integration Technique

G,G Primary and Dual grids

L. L, Primary and Dual grid edges

A, A, Primary and Dual grid faces

V.., V. Primary and Dual grid volumes

C.C Discrete Curl operator on primary and dual grids

S, S Discrete Divergence operator on primary and dual grids
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D, D, Diagonal matrices of primary and dual grid edges

Dy, Dy Diagonal matrices of primary and dual grid faces

M., M,, M, Material matrices

D.,D,, D, Diagonal matrices of averaged material parameters

é, h Discrete electric and magnetic field vectors

cz,l; Discrete electric and magnetic flux density vectors

j’ Discrete electric current vector

q Discrete grid electric charge

Theory of Electron Emission

Ugy Uy s Uy

TR .

N
t
I
~—

a,b
Z

Energy state inside a metal

Fermi energy level

Probability distribution function

Energy distribution function

Velocity distribution function
Boltzmann’s constant

Number of electrons per unit volume
Temperature in absolute scale
Infinitesimal volume element

Work function

Mass and Charge of electron

Velocity components in cartesian coordinates
Richardson constant

Electric potential

Electric current density

Number of electrons per unit surface area
Wave function

Normal component of electric field
Transmission coefficient of electron
Effective area of emission and Field enhancement factor
Cut off frequency and Cut off wavelength

Particle-in-Cell Method

Momentum and velocity vectors
Time step

Lorentz force

Weighting function

Force interpolation function
Charge interpolation function
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N, Number of macro particles
H Length of grid edge

m,q Mass and charge of electron
Q Total charge inside a cell

Space Charge Limited Emission and Applications

V. V., V. Potential difference between anode and cathode, Anode
potential and Cathode potential respectively

Vinin Potential of the space charge cloud

Zmin Position of the potential minimum

dz Infinitesimal length in normal direction

0 Velocity vector

d Distance between anode and cathode

n Charge to mass ratio of electron

1 Total current over the surface of cathode

) Electric potential

TasTe Radius of anode and cathode respectively

J Electric current density

0 Gap width in Virtual Cathode Method

Qv, Qe Total Charge inside a cell, Total charge
emitted from cathode

w Relaxation factor
[ fa Focal length of defocusing lens and focal length
of anode respectively
E Axial electric field
B, B, Magnetic field and peak magnetic field in axial direction
Vp Phase velocity
Wy, K, Angular velocity and Phase number of rf signal
Ug, Up, Initial and Normal velocity of electrons
Uz, Uy, Uy Velocity vectors in cartesian coordinates

Ey Normal kinetic energy of electrons
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